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ABSTRACT. This paper provides a cryptographic application to our previous paper [Li22h],
where we considered noisy systems of discrete exponential equations over a land, which is a
monoid without the requirement of associativity. In this paper we give a general methodology
for signature scheme construction from noisy systems.

1. INTRODUCTION

In [Li22g] we give signature schemes from the multiple modular subset product with
errors problem (M-MSPE) as well as the multiple modular subset sum with error problem
(M-MSSE) and the learning parity with noise problem (LPN). In [Li22h] we give general
language to this kind of problems by introducing noisy systems. In this paper we give a
generic signature scheme from noisy systems over a uniquely generated land with inverse
and with a unique solution (with overwhelming probability), where unique generation and
existence of inverses are basic requirements for using the Fiat-Shamir transformation, and
the requirement of overwhelming probability of unique solution is for the security reduction
from the scheme to the underlying noisy system.

2. NOISY SYSTEMS

We review some concepts proposed in [Li22h].
A land is a monoid without the axiom of associativity. Typical examples are groups, rings,

etc. A special example is integers with subtraction (Z,−), which is a land but not a group.
A land L is said to be with inverse if for every element a ∈ L there is an element b ∈ L such
that ab = 1, where 1 is the identity of L.

A land homomorphism is a morphism between two lands that preserves the operation. A
land isomorphism is a bijective land homomorphism.

Let −∼ be the generalized equals sign that captures both the equals sign = and the isomor-
phism sign ∼=. A noisy (discrete exponential) equation over a land L is an equation of the
form (

n∏
i=1

axi
i

)
· e −∼ a,

where a1, . . . ,an ∈ L and a ∈ L are given, but e ∈ L is not given, also a1
i = ai and a0

i = 1 (iden-
tity). The goal is to find (x1, . . . , xn) ∈Zn. We call a1, . . . ,an the bases and e the noise. A noisy
(discrete exponential equation) system is a system of noisy discrete exponential equations. A
noisy (restoration) problem is a problem that asks to solve a polynomial size noisy system
with predefined base distribution D1(L) and noise distribution D2(L).
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3. IDEA

A signature scheme allows people to sign on a digital document such that no one else can
forge a signature. This implies that the scheme does not leak the secret that the signer use
to create signatures; and that the signer cannot deny her signatures.

There is a well-known generic way to construct a signature scheme: first create a Schnorr
identification scheme then use the Fiat-Shamir transform to make it a signature scheme.
We construct our scheme in the same way. In fact, our generic signature scheme is a gener-
alization of the scheme in [Li22g] by using more general noisy problems than subset product
with errors [Li22g; Li22d; Li22a].

4. GENERIC IDENTIFICATION SCHEME

Let m,n,d ∈N with m polynomial in n and d superpolynomial in n. Let L = 〈g〉 be a land
with inverse of order d generated by g. Let D1(L) and D2(L) be two distributions over L.
We shall assume that the land operation as well as the sampling of D1(L) and D2(L) are
efficient.

Let M = {ai, j}m×n ← D1(L)m×n. Let (s,u) ← Zn
d ×D2(L)m. Let S = (S1, . . . ,Sm) with Si =(∏n

j=1 as j
i, j

)
·ui for i ∈ [m]. The prover’s private key is (s,u); the pubic key is (M,S).

(1) The prover samples (x, e)←Zn
d×D2(L)m; computes A = (A1, . . . , Am) with A i =

(∏n
j=1 ax j

i, j

)
·

e i for i ∈ [m]; and sends A to the verifier as the commitment;
(2) The verifier samples c ←Zd and sends it to the prover as the challenge;
(3) The prover computes y= x−cs = (x1−cs1, . . . , xn−csn) (mod d) and v = eu−c = (e1u−c

1 , . . . ,
emu−c

m ), and sends (y,v) to the verifier as the response;
(4) The verifier computes B = (B1, . . . ,Bm) with Bi = ∏n

i=1 ayj
i, j for i ∈ [m]; computes A′ =

B ·Sc ·v = (B1 ·Sc
1 ·v1, . . . ,Bm ·Sc

m ·vm); and accepts if A′ = A or rejects if A′ ̸= A.

5. CORRECTNESS

THEOREM 1. If every party in the scheme is honest then A′ = A.

Proof. For each i ∈ [m], we have

A′
i = Bi ·Sc

i ·vi

=
(

n∏
j=1

ayj
i, j

)
·
((

n∏
j=1

as j
i, j

)
·ui

)c

· e iu−c
i

=
(

n∏
j=1

ayj+cs j
i, j

)
·uc

i · e iu−c
i

=
(

n∏
j=1

ax j
i, j

)
· e i

= A i.

□
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6. SECURITY

We assume that the adversary is given the public key pk and can eavesdrop previous
executions of the protocol with respect to the same private key sk. Let osk be the oracle that
each time invokes a fresh execution of the protocol and returns the full transcript (t, c, y) of
the execution. Then what we assume is that the adversary is given pk and osk.

An identification scheme is said to be secure (against impersonation) if for all probabilistic
polynomial time adversaries A, there is a negligible function µ such that the probability that
A (given pk and osk) convinces the verifier is ≤µ.

THEOREM 2. If the underling noisy problem is hard and it has a unique solution with
overwhelming probability, then the identification scheme is secure against impersonation.

Proof. We use the generic proving routine illustrated in [KL14, p. 457, 2nd edition] with
the change that we argue that it also works for underlying problems with a unique solution
with overwhelming probability rather than with probability 1.

Let A be any probabilistic polynomial time adversary, which is given pk and osk. Define
a noisy system solver B as the following. B takes as input a noisy problem instance (M,S)
(together with the ground land L). It runs A(pk)=A(M,S). When A outputs A, B chooses
a uniform c1 ← Zd as the challenge and gives it to A; A responses with (y(1),v(1)). B then
runs A(pk) a second time with c1 replaced by an independent c2 ← Zd; A responses with
(y(2),v(2)). If (

n∏
i=1

a
y(1)

j
i, j

)
·Sc1

i ·v(1)
i = A i

and (
n∏

i=1
a

y(2)
j

i, j

)
·Sc2

i ·v(2)
i = A i

for all i ∈ [m] and that
c1 ̸= c2

then B outputs (y(1)− y(2))/(c1− c2) (mod d). In the following let us keep in mind that (M,S)
might not have a unique solution hence the two times that A impersonates are possibly
with respect to two different solutions x and x′ to (M,S), and therefore the output (y(1) −
y(2))/(c1 − c2) (mod d) of B might not be a solution to (M,S) even if A succeeds twice with
c1 ̸= c2.

Let ω be the randomness during the execution. Define V (ω, c) = 1 if and only if the prob-
lem (M,S) has a unique solution and A correctly responds to challenge c when random-
ness ω is used in the rest of the execution; define V ′(ω, c) = 1 if and only if the problem
(M,S) has nonunique solutions and A correctly responds to challenge c when randomness
ω is used in the rest of the execution. For any fixed ω, define δω := Prc[V (ω, c) = 1] and
δ′ω := Prc[V ′(ω, c) = 1]; with ω fixed, they are the probabilities over c that A responds cor-
rectly under the two situations of unique and nonique solutions of (M,S) respectively.

Denote δ(n) as the probability that A succeeds when (M,S) has a unique solution. We
have

δ(n)= Pr
ω,c

[V (ω, c)= 1]=∑
ω

Pr[ω] ·δω.
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Denote δ′(n) as the probability that A succeeds when (M,S) has nonunique solutions. We
have

δ′(n)= Pr
ω,c

[V ′(ω, c)= 1]=∑
ω

Pr[ω] ·δ′ω.

Denote δ̄(n) as the probability that A succeeds. We have

δ̄(n)=P ·δ(n)+ (1−P) ·δ′(n).

In the following we show that this probability is negligible.
Denote P as the probability that (M,S) has a unique solution. By assumption, P is over-

whelming.
Denote δ̃(n) as the probability that B succeeds. Note that B successfully solves (M,S) if (1)

(M,S) has a unique solution and A succeeds twice with c1 ̸= c2; or (2) (M,S) has nonunique
solutions and A succeeds with twice with c1 ̸= c2 and that the two times that A succeeds
are with respect to the same solution x(1) = x(2) to (M,S). Hence

δ̃(n)=P · Pr
ω,c1,c2

[V (ω, c1)∧V (ω, c2)∧ c1 ̸= c2]

+ (1−P) · Pr
ω,c1,c2

[V ′(ω, c1)∧V ′(ω, c2)∧ c1 ̸= c2 ∧ x(1) = x(2)]

≥P · Pr
ω,c1,c2

[V (ω, c1)∧V (ω, c2)∧ c1 ̸= c2]

≥P ·
(

Pr
ω,c1,c2

[V (ω, c1)∧V (ω, c2)]− Pr
ω,c1,c2

[c1 = c2]
)

=P ·
(∑
ω

Pr[ω] · (δω)2 −1/d
)

≥P ·
((∑

ω

Pr[ω] ·δω
)2

−1/d
)

=P · (δ(n)2 −1/d
)
,

where the second-to-last step uses Jensen’s inequality.
Now by the assumption that the noisy problem (M,S) is hard, B succeeds with negligible

probability. I.e. δ̃(n) is negligible. Also note that P is overwhelming and 1/d is negligible.
Hence δ(n) is negligible.

Also 1−P is negligible since P is overwhelming.
Therefore δ̄(n)=P ·δ(n)+ (1−P) ·δ′(n) is negligible. I.e., A succeeds with negligible prob-

ability. Hence the scheme is secure.
□

7. GENERIC SIGNATURE SCHEME

Let m,n,d ∈N with m polynomial in n and d superpolynomial in n. Let L = 〈g〉 be a land
with inverse of order d generated by g. Let D1(L) and D2(L) be two distributions over L
with efficient sampling algorithms. The scheme is the following.

KeyGen(m,n,L):
• Sample M = {ai, j}m×n ← D1(L)m×n;
• Sample (s,u)←Zn

d ×D2(L)m;

• Compute S = (S1, . . . ,Sm) with Si =
(∏n

j=1 as j
i, j

)
·ui for i ∈ [m];
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• Output (sk, pk) with sk := (s,u), pk := (M,S).
Sign(sk,a):

• Sample (x, e)←Zn
d ×D2(L)m and compute A = (A1, . . . , Am) with A i =

(∏n
j=1 ax j

i, j

)
·

e i for i ∈ [m];
• Compute c = H(A,a), where H is a cryptographic hash function;
• Compute y= x−cs = (x1−cs1, . . . , xn−csn) (mod d) and v = eu−c = (e1u−c

1 , . . . , emu−c
m );

• Output (y,v, c) as the signature.
Verify(a, y,v, c, pk):

• Compute B = (B1, . . . ,Bm) with Bi =∏n
i=1 ayj

i, j for i ∈ [m];
• Compute A′ = B ·Sc ·v = (B1 ·Sc

1 ·v1, . . . ,Bm ·Sc
m ·vm);

• Compute c′ = H(A′,a);
• Accept if c′ = c or rejects if c′ ̸= c.

8. CORRECTNESS

THEOREM 3. c = c′.

Proof. By a similar argument to the proof of Theorem 1, we have A′ = A. Then c′ = H(A′,a)=
H(A,a)= c. □

9. SECURITY

The security is from Theorem 2 and the following well-known theorem.

THEOREM 4. [KL14, p.454 Theorem 12.10] If an identification scheme is secure against
impersonation and the hash function is modeled as a random oracle, then the signature
scheme that results by applying the Fiat-Shamir transform is secure against impersonation.

THEOREM 5. If the underling noisy problem is hard and has a unique solution with over-
whelming probability and that the hash function H is modeled as a random oracle, then our
signature scheme is secure against impersonation.

Proof. Immediate from Theorem 2 and 4. □
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