GENERIC SIGNATURE FROM NOISY SYSTEMS

TREY LI

Abstract

This paper provides a cryptographic application to our previous paper [Li22h], where we considered noisy systems of discrete exponential equations over a land, which is a monoid without the requirement of associativity. In this paper we give a general methodology for signature scheme construction from noisy systems.

1. Introduction

In [Li22g] we give signature schemes from the multiple modular subset product with errors problem (M-MSPE) as well as the multiple modular subset sum with error problem (M-MSSE) and the learning parity with noise problem (LPN). In [Li22h] we give general language to this kind of problems by introducing noisy systems. In this paper we give a generic signature scheme from noisy systems over a uniquely generated land with inverse and with a unique solution (with overwhelming probability), where unique generation and existence of inverses are basic requirements for using the Fiat-Shamir transformation, and the requirement of overwhelming probability of unique solution is for the security reduction from the scheme to the underlying noisy system.

2. Noisy systems

We review some concepts proposed in [Li22h].
A land is a monoid without the axiom of associativity. Typical examples are groups, rings, etc. A special example is integers with subtraction ($\mathbb{Z},-$), which is a land but not a group. A land L is said to be with inverse if for every element $a \in L$ there is an element $b \in L$ such that $a b=1$, where 1 is the identity of L.

A land homomorphism is a morphism between two lands that preserves the operation. A land isomorphism is a bijective land homomorphism.

Let \approx be the generalized equals sign that captures both the equals sign $=$ and the isomorphism sign \cong. A noisy (discrete exponential) equation over a land L is an equation of the form

$$
\left(\prod_{i=1}^{n} a_{i}^{x_{i}}\right) \cdot e \approx a,
$$

where $a_{1}, \ldots, a_{n} \in L$ and $a \in L$ are given, but $e \in L$ is not given, also $a_{i}^{1}=a_{i}$ and $a_{i}^{0}=1$ (identity). The goal is to find $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$. We call a_{1}, \ldots, a_{n} the bases and e the noise. A noisy (discrete exponential equation) system is a system of noisy discrete exponential equations. A noisy (restoration) problem is a problem that asks to solve a polynomial size noisy system with predefined base distribution $D_{1}(L)$ and noise distribution $D_{2}(L)$.

[^0]
3. IDEA

A signature scheme allows people to sign on a digital document such that no one else can forge a signature. This implies that the scheme does not leak the secret that the signer use to create signatures; and that the signer cannot deny her signatures.

There is a well-known generic way to construct a signature scheme: first create a Schnorr identification scheme then use the Fiat-Shamir transform to make it a signature scheme. We construct our scheme in the same way. In fact, our generic signature scheme is a generalization of the scheme in [Li22g] by using more general noisy problems than subset product with errors [Li22g; Li22d; Li22a].

4. GENERIC IDENTIFICATION SCHEME

Let $m, n, d \in \mathbb{N}$ with m polynomial in n and d superpolynomial in n. Let $L=\langle g\rangle$ be a land with inverse of order d generated by g. Let $D_{1}(L)$ and $D_{2}(L)$ be two distributions over L. We shall assume that the land operation as well as the sampling of $D_{1}(L)$ and $D_{2}(L)$ are efficient.

Let $M=\left\{a_{i, j}\right\}_{m \times n} \leftarrow D_{1}(L)^{m \times n}$. Let $(s, u) \leftarrow \mathbb{Z}_{d}^{n} \times D_{2}(L)^{m}$. Let $S=\left(S_{1}, \ldots, S_{m}\right)$ with $S_{i}=$ $\left(\prod_{j=1}^{n} a_{i, j}^{s_{j}}\right) \cdot u_{i}$ for $i \in[m]$. The prover's private key is (s, u); the pubic key is (M, S).
(1) The prover samples $(x, e) \leftarrow \mathbb{Z}_{d}^{n} \times D_{2}(L)^{m}$; computes $A=\left(A_{1}, \ldots, A_{m}\right)$ with $A_{i}=\left(\prod_{j=1}^{n} a_{i, j}^{x_{j}}\right)$. e_{i} for $i \in[m]$; and sends A to the verifier as the commitment;
(2) The verifier samples $c \leftarrow \mathbb{Z}_{d}$ and sends it to the prover as the challenge;
(3) The prover computes $y=x-c s=\left(x_{1}-c s_{1}, \ldots, x_{n}-c s_{n}\right)(\bmod d)$ and $v=e u^{-c}=\left(e_{1} u_{1}^{-c}, \ldots\right.$, $e_{m} u_{m}^{-c}$), and sends (y, v) to the verifier as the response;
(4) The verifier computes $B=\left(B_{1}, \ldots, B_{m}\right)$ with $B_{i}=\prod_{i=1}^{n} a_{i, j}^{y_{j}}$ for $i \in[m]$; computes $A^{\prime}=$ $B \cdot S^{c} \cdot v=\left(B_{1} \cdot S_{1}^{c} \cdot v_{1}, \ldots, B_{m} \cdot S_{m}^{c} \cdot v_{m}\right)$; and accepts if $A^{\prime}=A$ or rejects if $A^{\prime} \neq A$.

5. Correctness

Theorem 1. If every party in the scheme is honest then $A^{\prime}=A$.
Proof. For each $i \in[m]$, we have

$$
\begin{aligned}
A_{i}^{\prime} & =B_{i} \cdot S_{i}^{c} \cdot v_{i} \\
& =\left(\prod_{j=1}^{n} a_{i, j}^{y_{j}}\right) \cdot\left(\left(\prod_{j=1}^{n} a_{i, j}^{s_{j}}\right) \cdot u_{i}\right)^{c} \cdot e_{i} u_{i}^{-c} \\
& =\left(\prod_{j=1}^{n} a_{i, j}^{y_{j}+c s_{j}}\right) \cdot u_{i}^{c} \cdot e_{i} u_{i}^{-c} \\
& =\left(\prod_{j=1}^{n} a_{i, j}^{x_{j}}\right) \cdot e_{i} \\
& =A_{i} .
\end{aligned}
$$

6. SECURITY

We assume that the adversary is given the public key $p k$ and can eavesdrop previous executions of the protocol with respect to the same private key $s k$. Let $o_{s k}$ be the oracle that each time invokes a fresh execution of the protocol and returns the full transcript (t, c, y) of the execution. Then what we assume is that the adversary is given $p k$ and $o_{s k}$.

An identification scheme is said to be secure (against impersonation) if for all probabilistic polynomial time adversaries \mathcal{A}, there is a negligible function μ such that the probability that \mathcal{A} (given $p k$ and $o_{s k}$) convinces the verifier is $\leq \mu$.

Theorem 2. If the underling noisy problem is hard and it has a unique solution with overwhelming probability, then the identification scheme is secure against impersonation.

Proof. We use the generic proving routine illustrated in [KL14, p. 457, 2nd edition] with the change that we argue that it also works for underlying problems with a unique solution with overwhelming probability rather than with probability 1.

Let \mathcal{A} be any probabilistic polynomial time adversary, which is given $p k$ and $o_{s k}$. Define a noisy system solver \mathcal{B} as the following. \mathcal{B} takes as input a noisy problem instance (M, S) (together with the ground land L). It runs $\mathcal{A}(p k)=\mathcal{A}(M, S)$. When \mathcal{A} outputs A, \mathcal{B} chooses a uniform $c_{1} \leftarrow \mathbb{Z}_{d}$ as the challenge and gives it to \mathcal{A}; \mathcal{A} responses with $\left(y^{(1)}, v^{(1)}\right)$. \mathcal{B} then runs $\mathcal{A}(p k)$ a second time with c_{1} replaced by an independent $c_{2} \leftarrow \mathbb{Z}_{d} ; \mathcal{A}$ responses with $\left(y^{(2)}, v^{(2)}\right)$. If

$$
\left(\prod_{i=1}^{n} a_{i, j}^{y_{j}^{(1)}}\right) \cdot S_{i}^{c_{1}} \cdot v_{i}^{(1)}=A_{i}
$$

and

$$
\left(\prod_{i=1}^{n} a_{i, j}^{y_{j}^{(2)}}\right) \cdot S_{i}^{c_{2}} \cdot v_{i}^{(2)}=A_{i}
$$

for all $i \in[m]$ and that

$$
c_{1} \neq c_{2}
$$

then \mathcal{B} outputs $\left(y^{(1)}-y^{(2)}\right) /\left(c_{1}-c_{2}\right)(\bmod d)$. In the following let us keep in mind that (M, S) might not have a unique solution hence the two times that \mathcal{A} impersonates are possibly with respect to two different solutions x and x^{\prime} to (M, S), and therefore the output ($y^{(1)}-$ $\left.y^{(2)}\right) /\left(c_{1}-c_{2}\right)(\bmod d)$ of \mathcal{B} might not be a solution to (M, S) even if \mathcal{A} succeeds twice with $c_{1} \neq c_{2}$.

Let ω be the randomness during the execution. Define $V(\omega, c)=1$ if and only if the problem (M, S) has a unique solution and \mathcal{A} correctly responds to challenge c when randomness ω is used in the rest of the execution; define $V^{\prime}(\omega, c)=1$ if and only if the problem (M, S) has nonunique solutions and \mathcal{A} correctly responds to challenge c when randomness ω is used in the rest of the execution. For any fixed ω, define $\delta_{\omega}:=\operatorname{Pr}_{c}[V(\omega, c)=1]$ and $\delta_{\omega}^{\prime}:=\operatorname{Pr}_{c}\left[V^{\prime}(\omega, c)=1\right]$; with ω fixed, they are the probabilities over c that \mathcal{A} responds correctly under the two situations of unique and nonique solutions of (M, S) respectively.

Denote $\delta(n)$ as the probability that \mathcal{A} succeeds when (M, S) has a unique solution. We have

$$
\delta(n)=\operatorname{Pr}_{\omega, c}[V(\omega, c)=1]=\sum_{\omega} \operatorname{Pr}[\omega] \cdot \delta_{\omega} .
$$

Denote $\delta^{\prime}(n)$ as the probability that \mathcal{A} succeeds when (M, S) has nonunique solutions. We have

$$
\delta^{\prime}(n)=\operatorname{Pr}_{\omega, c}\left[V^{\prime}(\omega, c)=1\right]=\sum_{\omega} \operatorname{Pr}[\omega] \cdot \delta_{\omega}^{\prime} .
$$

Denote $\bar{\delta}(n)$ as the probability that \mathcal{A} succeeds. We have

$$
\bar{\delta}(n)=\mathrm{P} \cdot \delta(n)+(1-\mathrm{P}) \cdot \delta^{\prime}(n) .
$$

In the following we show that this probability is negligible.
Denote P as the probability that (M, S) has a unique solution. By assumption, P is overwhelming.

Denote $\tilde{\delta}(n)$ as the probability that \mathcal{B} succeeds. Note that \mathcal{B} successfully solves (M, S) if (1) (M, S) has a unique solution and \mathcal{A} succeeds twice with $c_{1} \neq c_{2}$; or (2) (M, S) has nonunique solutions and \mathcal{A} succeeds with twice with $c_{1} \neq c_{2}$ and that the two times that \mathcal{A} succeeds are with respect to the same solution $x^{(1)}=x^{(2)}$ to (M, S). Hence

$$
\begin{aligned}
\tilde{\delta}(n)= & \mathrm{P} \cdot \operatorname{Pr}_{\omega, c_{1}, c_{2}}\left[V\left(\omega, c_{1}\right) \wedge V\left(\omega, c_{2}\right) \wedge c_{1} \neq c_{2}\right] \\
& +(1-\mathrm{P}) \cdot \operatorname{Pr}_{\omega, c_{1}, c_{2}}\left[V^{\prime}\left(\omega, c_{1}\right) \wedge V^{\prime}\left(\omega, c_{2}\right) \wedge c_{1} \neq c_{2} \wedge x^{(1)}=x^{(2)}\right] \\
& \geq \mathrm{P} \cdot \operatorname{Pr}_{\omega, c_{1}, c_{2}}\left[V\left(\omega, c_{1}\right) \wedge V\left(\omega, c_{2}\right) \wedge c_{1} \neq c_{2}\right] \\
& \geq \mathrm{P} \cdot\left(\operatorname{Pr}_{\omega, c_{1}, c_{2}}\left[V\left(\omega, c_{1}\right) \wedge V\left(\omega, c_{2}\right)\right]-\operatorname{Pr}_{\omega, c_{1}, c_{2}}\left[c_{1}=c_{2}\right]\right) \\
= & \mathrm{P} \cdot\left(\sum_{\omega} \operatorname{Pr}[\omega] \cdot\left(\delta_{\omega}\right)^{2}-1 / d\right) \\
\geq & \mathrm{P} \cdot\left(\left(\sum_{\omega} \operatorname{Pr}[\omega] \cdot \delta_{\omega}\right)^{2}-1 / d\right) \\
= & \mathrm{P} \cdot\left(\delta(n)^{2}-1 / d\right),
\end{aligned}
$$

where the second-to-last step uses Jensen's inequality.
Now by the assumption that the noisy problem (M, S) is hard, \mathcal{B} succeeds with negligible probability. I.e. $\tilde{\delta}(n)$ is negligible. Also note that P is overwhelming and $1 / d$ is negligible. Hence $\delta(n)$ is negligible.

Also $1-\mathrm{P}$ is negligible since P is overwhelming.
Therefore $\bar{\delta}(n)=\mathrm{P} \cdot \delta(n)+(1-\mathrm{P}) \cdot \delta^{\prime}(n)$ is negligible. I.e., \mathcal{A} succeeds with negligible probability. Hence the scheme is secure.

7. GENERIC SIGNATURE SCHEME

Let $m, n, d \in \mathbb{N}$ with m polynomial in n and d superpolynomial in n. Let $L=\langle g\rangle$ be a land with inverse of order d generated by g. Let $D_{1}(L)$ and $D_{2}(L)$ be two distributions over L with efficient sampling algorithms. The scheme is the following.

KeyGen (m, n, L) :

- Sample $M=\left\{a_{i, j}\right\}_{m \times n} \leftarrow D_{1}(L)^{m \times n}$;
- Sample $(s, u) \leftarrow \mathbb{Z}_{d}^{n} \times D_{2}(L)^{m}$;
- Compute $S=\left(S_{1}, \ldots, S_{m}\right)$ with $S_{i}=\left(\prod_{j=1}^{n} a_{i, j}^{s_{j}}\right) \cdot u_{i}$ for $i \in[m]$;
- Output ($s k, p k$) with $s k:=(s, u), p k:=(M, S)$.

Sign $(s k, a)$:

- Sample $(x, e) \leftarrow \mathbb{Z}_{d}^{n} \times D_{2}(L)^{m}$ and compute $A=\left(A_{1}, \ldots, A_{m}\right)$ with $A_{i}=\left(\prod_{j=1}^{n} a_{i, j}^{x_{j}}\right)$. e_{i} for $i \in[m]$;
- Compute $c=H(A, a)$, where H is a cryptographic hash function;
- Compute $y=x-c s=\left(x_{1}-c s_{1}, \ldots, x_{n}-c s_{n}\right)(\bmod d)$ and $v=e u^{-c}=\left(e_{1} u_{1}^{-c}, \ldots, e_{m} u_{m}^{-c}\right)$;
- Output (y, v, c) as the signature.

Verify $(a, y, v, c, p k)$:

- Compute $B=\left(B_{1}, \ldots, B_{m}\right)$ with $B_{i}=\prod_{i=1}^{n} a_{i, j}^{y_{j}}$ for $i \in[m]$;
- Compute $A^{\prime}=B \cdot S^{c} \cdot v=\left(B_{1} \cdot S_{1}^{c} \cdot v_{1}, \ldots, B_{m} \cdot S_{m}^{c} \cdot v_{m}\right)$;
- Compute $c^{\prime}=H\left(A^{\prime}, a\right)$;
- Accept if $c^{\prime}=c$ or rejects if $c^{\prime} \neq c$.

8. Correctness

Theorem 3. $c=c^{\prime}$.
Proof. By a similar argument to the proof of Theorem 1, we have $A^{\prime}=A$. Then $c^{\prime}=H\left(A^{\prime}, a\right)=$ $H(A, a)=c$.

9. SECURITY

The security is from Theorem 2 and the following well-known theorem.
THEOREM 4. [KL14, p. 454 Theorem 12.10] If an identification scheme is secure against impersonation and the hash function is modeled as a random oracle, then the signature scheme that results by applying the Fiat-Shamir transform is secure against impersonation.

THEOREM 5. If the underling noisy problem is hard and has a unique solution with overwhelming probability and that the hash function H is modeled as a random oracle, then our signature scheme is secure against impersonation.

Proof. Immediate from Theorem 2 and 4.

References

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. 2nd. Chapman \& Hall/CRC, 2014. ISBN: 1466570261.
[Li22a] Trey Li. "Subset Product with Errors over Unique Factorization Domains and Ideal Class Groups of Dedekind Domains". 1st paper of the series. 2022, October 1.
[Li22b] Trey Li. "Jacobi Symbol Parity Checking Algorithm for Subset Product". 2nd paper of the series. 2022, October 2.
[Li22c] Trey Li. "Power Residue Symbol Order Detecting Algorithm for Subset Product over Algebraic Integers". 3rd paper of the series. 2022, October 3.
[Li22d] Trey Li. "Multiple Modular Unique Factorization Domain Subset Product with Errors". 4th paper of the series. 2022, October 4.
[Li22e] Trey Li. "Post-Quantum Key Exchange from Subset Product with Errors". 5th paper of the series. 2022, October 5.
[Li22f] Trey Li. "Post-Quantum Public Key Cryptosystem from Subset Product with Errors". 6th paper of the series. 2022, October 6.
[Li22g] Trey Li. "Post-Quantum Signature from Subset Product with Errors". 7th paper of the series. 2022, October 7.
[Li22h] Trey Li. "Discrete Exponential Equations and Noisy Systems". 8th paper of the series. 2022, October 8.

[^0]: This is the $9^{\text {th }}$ paper of the series. Previously: [Li22a; Li22b; Li22c; Li22d; Li22e; Li22f; Li22g; Li22h].
 Date: October 9, 2022.
 Email: treyquantum@gmail.com

