
Broadcast, Trace and Revoke with Optimal Parameters from
Polynomial Hardness

Shweta Agrawal* Simran Kumari† Anshu Yadav‡ Shota Yamada§

Abstract

A broadcast, trace and revoke system generalizes broadcast encryption as well as traitor
tracing. In such a scheme, an encryptor can specify a list L ⊆ N of revoked users so
that (i) users in L can no longer decrypt ciphertexts, (ii) ciphertext size is independent of
L, (iii) a pirate decryption box supports tracing of compromised users. The “holy grail”
of this line of work is a construction which resists unbounded collusions, achieves all
parameters (including public and secret key) sizes independent of |L| and |N |, and is based
on polynomial hardness assumptions. In this work we make the following contributions:

1. Public Trace Setting: We provide a construction which (i) achieves optimal parameters,
(ii) supports embedding identities (from an exponential space) in user secret keys, (iii)
relies on polynomial hardness assumptions, namely compact functional encryption
(FE) and a key-policy attribute based encryption (ABE) with special efficiency
properties, and (iv) enjoys adaptive security with respect to the revocation list. The
previous best known construction by Nishimaki, Wichs and Zhandry (Eurocrypt
2016) which achieved optimal parameters and embedded identities, relied on
indistinguishability obfuscation, which is considered an inherently subexponential
assumption and achieved only selective security with respect to the revocation list.

2. Secret Trace Setting: We provide the first construction with optimal ciphertext, public
and secret key sizes and embedded identities from any assumption outside Obfustopia.
In detail, our construction relies on Lockable Obfuscation which can be constructed
using LWE (Goyal, Koppula, Waters and Wichs, Zirdelis, Focs 2017) and two ABE
schemes: (i) the key-policy scheme with special efficiency properties by Boneh et al.
(Eurocrypt 2014) and (ii) a ciphertext-policy ABE for P which was recently constructed
by Wee (Eurocrypt 2022) using a new assumption called evasive and tensor LWE. This
assumption, introduced to build an ABE, is believed to be much weaker than lattice
based assumptions underlying FE or iO – in particular it is required even for lattice
based broadcast, without trace.

Moreover, by relying on subexponential security of LWE, both our constructions can
also support a super-polynomial sized revocation list, so long as it allows efficient
representation and membership testing. Ours is the first work to achieve this, to the
best of our knowledge.

*IIT Madras, shweta@cse.iitm.ac.in
†IIT Madras, sim78608@gmail.com
‡IIT Madras, anshu.yadav06@gmail.com
§AIST Tokyo, yamada-shota@aist.go.jp

1

Contents

1 Introduction 3
1.1 Prior Work: Embedded Identity Trace and Revoke. 5
1.2 Our Results . 5
1.3 Technical Overview . 7

2 Preliminaries 17
2.1 Functional Encryption . 19
2.2 Attribute Based Encryption . 21
2.3 Key-Policy ABE by Boneh et al. [BGG+14] . 24
2.4 Lockable Obfuscation . 26
2.5 Laconic Oblivious Transfer . 27

3 Revocable Predicate Encryption 28

4 Public-key RPE from FE and LWE 30
4.1 Construction . 30
4.2 Security . 33
4.3 Alternate Construction using LOT . 46

5 Revocable Mixed Functional Encryption 48
5.1 Definition . 48
5.2 Construction . 49
5.3 Security . 53

6 Secret Key RPE from Evasive and Tensor LWE 62
6.1 Construction . 62
6.2 Security . 64

7 Embedded Identity Trace and Revoke 68
7.1 Indexed Trace and Revoke with Embedded Identity 69
7.2 Bounded Trace and Revoke with Embedded Identity 70
7.3 Unbounded Trace and Revoke with Embedded Identity 71

8 Indexed Trace and Revoke with Embedded Identity 72
8.1 Construction . 72
8.2 Security . 75

9 Bounded Trace and Revoke with Embedded identity 82
9.1 Construction . 82
9.2 Security . 85

10 Unbounded Trace and Revoke with Embedded Identities 90
10.1 Construction . 90
10.2 Security . 93

11 Extension to Super-Polynomial Size Revocation List 96

2

1 Introduction

Traitor Tracing. Traitor tracing (TT) schemes were first proposed by Chor, Fiat, and Naor
[CFN94] to enable content providers to trace malicious users who exploit their secret keys
to construct illegal decryption boxes. More formally, a TT system is a public key encryption
system comprising N users for some large polynomial N . Each user i ∈ [N] is provided with a
unique secret key ski for decryption, and there is a common public key pk which is used by the
content distributor to encrypt content. If any collection of users attempts to create and sell a
new decoding box that can be used to decrypt the content, then the tracing algorithm, given
black-box access to any such pirate decoder, is guaranteed to output an index i ∈ [N] of one of
the corrupt users, which in turn allows to hold them accountable. The literature has considered
both public and secret tracing, where the former requires knowledge of a secret key to run the
trace procedure and the latter does not suffer from this restriction.

Broadcast Encryption. Broadcast Encryption [FN93] (BE) introduced by Fiat and Naor, is
also an N user system which supports an encrypted broadcast functionality. In BE, a content
provider can transmit a single ciphertext over a broadcast channel so that only an authorized
subset S ⊆ N of users can decrypt and recover the message. More formally, each user i ∈ [N] is
provided with a unique decryption key ski and a ciphertext ctm for a messagem also encodes an
authorized list S so that ski decrypts ctm if and only if i ∈ S. Evidently, public key encryption
provides a trivial construction of BE with ciphertext of size O(N) – thus, the focus in such
schemes is to obtain short ciphertext, ideally logarithmic in N .

Broadcast, Trace and Revoke. Naor and Pinkas [NP10] suggested a meaningful interleaving of
these two functionalities so that traitors that are identified by the TT scheme can be removed
from the set of authorized users in a BE scheme. To capture this, they defined the notion
of “Broadcast, Trace and Revoke” (or simply “Trace and Revoke”, which we denote by TR)
where the content provider in a broadcast encryption scheme includes a list L of revoked
users in the ciphertext, and ski works to decrypt ctL if i /∈ L. Moreover, it is required that
revocation remain compatible with tracing, so that if an adversary builds a pirate decoder that
can decrypt ciphertexts encrypted with respect to L, then the tracing algorithm should be able
to output a corrupt non-revoked user who participated in building the illegal decoder. Trace
and revoke systems provide a functionality which is richer than a union of BE and TT, since
the traitor traced by the latter must belong to the set of non-revoked users for the guarantee to
be meaningful. As such, TT schemes have been challenging to construct even given TT and BE
schemes.

The Quest for Optimal Parameters. All the above primitives have been researched extensively
over decades, resulting in a long sequence of beautiful constructions, non-exhaustively [BGW05,
BW06, BWZ14, BZ17, NWZ16, KW20, GKW18, GKW19, AY20, Wee22]. A central theme in this
line of work is to achieve optimal parameters, namely optimal sizes for the ciphertext, public
key and secret key (and understanding tradeoffs thereof), while still supporting unbounded
collusion resistance. Towards this, the powerful hammer of indistinguishability obfuscation (iO)
[BGI+01] yielded the first feasibility results for traitor tracing [BZ17] as well as trace and revoke
[NWZ16] while multilinear maps [GGH13, CLT13] led to the first construction for broadcast
encryption [BWZ14]. Though there has been remarkable progress in the construction of iO
from standard assumptions, with the breakthrough work of Jain, Lin and Sahai [JLS21, JLS22]
finally reaching this goal, iO is an inherently subexponential assumption [GPSZ17] because
the challenger is required to check whether two circuits are functionally equivalent, which can
take exponential time in general. Indeed, all known constructions of iO assume subexponential
hardness of the underlying algebraic assumptions. To address this limitation, a sequence of

3

works [GPSZ17, AM18, BKS16, GPS16, KS20] has sought to replace iO by polynomially hard
assumptions such as functional encryption in different applications.

Optimal TT, BE and TR from Polynomial Assumptions: For traitor tracing, the first
construction from standard assumptions was finally achieved by the seminal work of Goyal,
Koppula and Waters [GKW18] in the secret trace setting, from the Learning With Errors
(LWE) assumption. For broadcast encryption, this goal was achieved by Agrawal and
Yamada [AY20] from LWE and the bilinear GGM. In the standard model, Agrawal, Wichs
and Yamada [AWY20] provided a construction from a non-standard knowledge assumption
on pairings, while Wee [Wee22] provided a construction from a new assumption on lattices,
called Evasive and Tensor LWE. For trace and revoke, the only construction without iO that
achieves collusion resistance and optimal parameters is by Goyal, Vusirikala and Waters
(GVW) [GVW19] from positional witness encryption (PWE) which is a polynomial hardness
assumption. However, their construction incurs an exponential loss in the security proof,
requiring the underlying PWE to satisfy subexponential security. Moreover, although PWE is
not an inherently subexponential assumption as are iO and witness encryption (WE), we do
not currently know of any constructions of PWE that rely on standard polynomial hardness
assumptions. In particular, [JLS21, JLS22] do not imply PWE from polynomial hardness.

Pathway via Secret Tracing. Both the iO and PWE based constructions of TR [NWZ16, GVW19]
achieve public tracing. Taking a lesson from TT, where optimal parameters were achieved from
standard assumptions only in the secret trace setting [GKW18], a natural approach towards
optimal TR from better assumptions is to weaken the tracing algorithm to be secret key. This
approach has been explored in a number of works – the current best parameters are achieved
by Zhandry [Zha20] who obtains the best known tradeoff in ciphertext, public key and secret
key size. In particular, Zhandry [Zha20] showed that all parameters can be of size O(N1/3)
by relying on the bilinear generic group model (GGM). Note that the generic group model
is a strong assumption, and indeed a construction secure in this model cannot be considered
as relying on standard assumptions, since several non-standard assumptions on pairings are
secure in the GGM. Prior to [Zha20], Goyal et al. [GQWW19] provided a construction from
LWE and Pairings, but their overall parameters are significantly worse – while their ciphertext
can be arbitrarily small, O(N ϵ), their public key is O(N) and secret key is O(N c) for some large
constant c1.

Thus, a central open question in TR is:

Can we construct collusion resistant Trace and Revoke with optimal parameters from concrete
polynomial assumptions?

Embedding Identities. Traditionally, it was assumed that tracing the index i ∈ [N] of a corrupt
user is enough, and there is an external mapping, maintained by the content distributor or some
other party which associates the number i to the identity of the user, i.e. name, national identity
number and such, which is then used to ensure accountability. The work of Nishimaki, Wichs
and Zhandry (henceforth NWZ) [NWZ16] argued that this assumption is problematic since it
implies that a user must trust the content provider with her confidential information. Storing
such a map is particularly worrisome in the setting of public tracing since the user either cannot
map the recovered index to an actual person, or the index-identity map must be stored publicly.

NWZ provided an appealing solution to the above conundrum – they suggest that identifying
information be embedded in the key of the user, so that if a coalition of traitors constructs a

1Zhandry [Zha20] states that the secret size in [GQWW19] is O(N2) but in fact the exponent is much larger due
to the usage of arithmetic computations in NC1, which blows up the circuit size associated with the ABE secret keys.

4

pirate decoder, the tracing algorithm can directly retrieve the identifying information from
one of the keys that was used to construct the decoder and no one needs to keep any records
associating users to indices. Notably, the identities can live in an exponential sized space, which
introduces significant challenges in the tracing procedure. Indeed, handling an exponential
space in the tracing procedure is the key contribution of NWZ. They also provided constructions
of traitor tracing as well as trace and revoke with embedded identities, denoted by EITT and
EITR respectively, from various assumptions.

1.1 Prior Work: Embedded Identity Trace and Revoke.

In the public trace setting, the only work that achieves embedded identity trace and revoke
(EITR) with full collusion resistance is that of NWZ. However, while it takes an important first
step, the construction by NWZ suffers from the following drawbacks:

1. Reliance on Subexponential Hardness Assumption. The construction relies on indistinguisha-
bility obfuscation [BGI+01], which appears to be an inherently subexponential assumption
as discussed above.

2. Selective Security in Revocation List: Despite relying on adaptive security of functional
encryption, the notion of security achieved by their construction is selective – the adversary
must announce the revocation list before making any key requests or seeing the challenge
ciphertext.

In the secret trace setting, the work of Kim and Wu [KW20] achieves EITR from the
subexponential Learning With Errors (LWE) assumption. However, their construction incurs
a ciphertext size that grows with the size of the revocation list. Additionally, while they can
achieve adaptive security with respect to the revocation list, this is either by incurring an
exponential loss in the security proof, or by assuming sub-exponential security for an ingredient
scheme.

1.2 Our Results

In our work , we provide the first constructions with optimal parameters from polynomial
assumptions, which additionally support embedded identities from an exponential space. We
detail our contributions below.

Public Trace Setting. We provide a construction of Trace and Revoke with public tracing
which overcomes the limitations of NWZ – (i) it relies on polynomial hardness assumptions,
namely functional encryption and “special” attribute based encryption, both of which can be
constructed using standard polynomial hardness assumptions [BGG+14, JLS21, JLS22] (ii) it
enjoys adaptive security in the revocation list.

A detailed comparison with prior work is provided in Table 1.

Our Assumptions. Functional Encryption (FE) and Attribute Based Encryption (ABE) are
generalizations of Public Key Encryption. In FE, a secret key corresponds to a circuit C and a
ciphertext corresponds to an input x from the domain of C. Given a function key skC and a
ciphertext ctx, the decryptor can learn C(x) and nothing else. It has been shown that FE implies
iO [AJ15, BV15] albeit with exponential loss. The aforementioned work of Jain, Lin and Sahai
[JLS21, JLS22] provides a construction of compact FE from polynomial hardness assumptions,
namely LPN, PRG in NC0 and pairings. ABE is a special case of FE in which the input can be

5

Work |CT| |SK| |PK| Trace
Space

Sel/Adp Asspn Identities

[NWZ16] 1 1 1 Exp Selective Subexp
(iO)

Yes

[GVW19] 1 1 1 Poly Adaptive Subexp
(subexp
PWE)

No

This 1 1 1 Exp Adaptive Poly (FE
and

Special
ABE)

Yes

Table 1: State of the art with Public Traceability.

divided into a public and private part (x,m) and the circuit C in the secret key skC is only
evaluated on the public part x in the ciphertext ctx,m. The private message m is revealed by
decryption if and only if C(x) = 1. While FE implies ABE in general, we require our underlying
ABE to satisfy special efficiency properties, which is not generically implied by FE. However,
the desired ABE can be instantiated using the construction of Boneh et al. [BGG+14] which is
based on LWE.

Secret Trace Setting. In the secret trace setting, we achieve the optimal size of O(logN) for
ciphertext, public and secret key by relying on Lockable Obfuscation (LO) [GKW17, WZ17] and
two special ABE schemes – one, the key-policy scheme with special efficiency properties by
Boneh et al. [BGG+14] which is based on LWE, and two, a ciphertext-policy ABE for P which was
recently constructed by Wee [Wee22] using the new evasive and tensor LWE assumptions. Along
the way, we show that a small modification to the TR construction by Goyal et al. [GQWW19]
yields a ciphertext of size O(logN) as against their original O(N ϵ), from LWE and pairings.
However, this construction retains the large public and secret keys of their construction, which
depend at least linearly on N . Our results are summarized in Table 2.

Our Assumptions. We remark that while FE has now been constructed from standard
assumptions [JLS21, JLS22], the reliance of these constructions on pairings makes it insecure
in the post-quantum regime. From lattices, constructions of FE rely on strong, non-standard
assumptions which are often subject to attack [Agr19, APM20, WW21, GP21, DQV+21, JLLS23].
Hence, there is an active effort in the community [Wee22, Tsa22, VWW22] to construct advanced
primitives from the hardness of weaker assumptions in the lattice regime. The new assumptions
by Wee, also independently discovered by Tsabary [Tsa22], are formulated for designing
ciphertext-policy ABE which is much weaker than FE since ABE is an all or nothing primitive
in contrast to FE. As such, these are believed to be much weaker than lattice based assumptions
that have been introduced in the context of FE or iO. In particular, based on the current state of
art, evasive LWE is required even for broadcast encryption in the lattice regime, and is therefore
necessary for the generalization of broadcast encryption studied in this work.

Super-polynomial Revoke List. Lastly, by relying on subexponential security of LWE, both
our constructions can support a super-polynomial sized revocation list, so long as it allows
efficient representation and membership testing. Ours is the first work to achieve this, to the
best of our knowledge.

6

Work |CT| |SK| |PK| Trace
Space

Asspn Identities

[GQWW19] N ϵ Npoly N Poly LWE and
Pairings

No

[Zha20] Na N1−a N1−a Poly GGM
Pairings

No

[KW20] L 1 1 Exp Subexp
LWE

Yes

This 1 1 1 Exp Evasive
Tensor
LWE

Yes

Modified
[GQWW19]

1 N c N Poly LWE and
Pairings

No

Table 2: State of the Art with Secret Traceability. The column |CT| captures the dependence of
ciphertext size on N and L where N denotes the number of users and L denotes the length
of the revocation list. Parameters that are logarithmic in N , L or polynomial in the security
parameter are represented as 1. Here, 0 < a < 1 and ϵ > 0 can be chosen arbitrarily. c is a large
constant.

1.3 Technical Overview

We proceed to give an overview of our techniques. We begin by defining the notion of revocable
predicate encryption (RPE) in both the public and secret setting, then describe the ideas used to
instantiate this primitive. Finally we outline how to upgrade public/secret RPE to build trace
and revoke with embedded identities with public/secret tracing.

Revocable Predicate Encryption. NWZ introduced the notion of revocable functional
encryption (RFE) and used it to construct EITR with public tracing. Subsequently, Kim and Wu
[KW20] adapted this notion to the secret key setting, under the name of revocable predicate
encryption (RPE) and used it to construct EITR with secret tracing. In this work, we extend Kim
and Wu’s notion of RPE to the public key setting and use it to construct EITR with public tracing.
Our notion of RPE in the public setting is similar to but weaker than RFE2 – it only supports “all
or nothing” decryption in contrast to RFE. This weaker notion nevertheless suffices to construct
EITR and moreover admits constructions from weaker assumptions.

In RPE, the key generation algorithm takes as input the master secret key msk, a label lb ∈ L
and an attribute x ∈ X . It outputs a secret key sklb,x. The encryption algorithm takes as input
the encryption key ek, a function f , a message m ∈M, and a revocation list L ⊆ L. It outputs a
ciphertext ct. Decryption recovers m if f(x) = 1 and lb /∈ L. In the public variant of RPE, ek is
a public key, while in the secret variant, ek is a secret key. In the secret variant, the scheme is
also required to support a public “broadcast” functionality, i.e. there exists a public encryption
algorithm that allows anyone to encrypt a message with respect to the “always-accept” policy,
i.e. a policy that evaluates to true for all inputs. This is analogous to the primitive of “mixed FE”
introduced by [GKW18].

In terms of security, we require RPE to satisfy message hiding and function hiding. At a
high level, message hiding stipulates that an adversary cannot distinguish between encryptions
of (f,m0) and (f,m1) as long as every key query for (lb, x) satisfies f(x) = 0 or lb ∈ L. Function

2Syntactically, RPE is “ciphertext-policy” while RFE is “key-policy”, i.e. the function is emdedded in the
ciphertext in RPE as against the key in RFE.

7

hiding stipulates that an adversary cannot distinguish between encryptions of (f0,m) and
(f1,m) as long as every key query for (lb, x) satisfies f0(x) = f1(x) or lb ∈ L.

Before we describe our constructions, we highlight the chief difficulties that are inherent to
designing RPE:

1. Independence of parameter sizes from |L|. A key requirement in TR schemes is that the
ciphertext size should be independent of the length of the revocation list L – this constraint
must also be satisfied by the underlying RPE, in both the secret and public setting. In
our work, we insist that even the public and secret keys satisfy |L| independence. This
constraint is inherited from broadcast encryption, and is challenging to satisfy. Further,
note that Lmust be unbounded – its length cannot be fixed during setup, which introduces
additional difficulties.

2. Encrypted Computation. While the revocation list L need not be hidden by the ciphertext,
the function f3 in the ciphertext is required to be hidden, as formalized by our function
hiding requirement. Yet, this hidden function must participate in computing f(x) where x
is provided in the key. This requirement makes TR schemes worryingly close to collusion
resistant functional encryption, an “obfustopia” primitive which we want to avoid in the
secret trace setting.

Constructing Public Revocable Predicate Encryption. We proceed to describe the main ideas
in constructing public RPE.

Overview of NWZ. The work of NWZ addresses the challenge of making the ciphertext size
independent of |L| by using a somewhere statistically binding (SSB) hash and hides the function
f by using a functional encryption scheme, where f is encrypted in the ciphertext. However,
they must additionally rely on iO – at a high level, this is because they require the decryptor to
compute the SSB opening π and then run SSB verification on it (details of how SSB algorithms
work are not relevant for this overview). In turn, the reason they need the decryptor to compute
the opening π is because this needs both the set L and the label lb, which are available only
to the decryptor – note that the encryptor has only L and the key generator has only lb. Now,
since the decryptor has to compute π and run SSB verification, and since the program that
computes SSB verification has some secrets, the decryptor is allowed to obtain obfuscation
of this program. To implement this idea, they nest iO inside a compact FE scheme so that FE
decryption outputs an iO which is then run by the decryptor on openings that it computes.

Trading iO for ABE. Above, note that the usage of iO is caused by the usage of SSB, which in
turn is used to compress L. However, compression of a list has been achieved by much weaker
primitives than iO in the literature of broadcast encryption – in particular, the construction
of optimal broadcast encryption by Agrawal and Yamada uses the much weaker primitive of
ABE (with special efficiency properties) to achieve this. However, ABE does not permit hiding
anything other than a message, in particular, an ABE ciphertext cannot encrypt our function
f since we desire f to participate in computation. ABE only permits computation on public
values, and using ABE to encode f would force f to be public which we cannot allow.

In order to get around this difficulty, we leverage the power of functional encryption (FE),
which permits encrypted computation and exactly fills the gap over ABE that we require. A
natural candidate for RPE would be to simply use FE to encrypt f , L and m, and encode x and

3For the informed reader, this function encodes the “index” and function hiding corresponds to “index hiding”
in the literature.

8

lb in the secret key for a functionality which tests that lb /∈ L, that f(x) = 1 and outputs m if
so. Indeed, this approach using FE is folklore, and was explicitly discussed by NWZ. Yet, they
end up with a construction that additionally uses SSB, iO, a puncturable PRF and secret key
encryption scheme because of the requirement of size independence from |L| – we do not have
candidates for FE with ciphertext size independent of the public attributes. In short, ABE gives
us L compactness (in some cases by encoding L in the secret key [BGG+14] and in some cases
by encoding L in the ciphertext [ALP11]) but does not hide f , whereas FE gives the opposite.

Synthesis of ABE and FE. We address this conundrum by combining the two primitives in a way
that lets us get the best of both. In particular, we use ABE to check that lb /∈ L and use FE to
compute f(x). Evidently, the two steps cannot be performed independently in order to resist
mix and match attacks so we use nesting, i.e. we use FE to generate ABE ciphertexts. Here,
care is required, because ABE encryption takes L as input and done naively, this strategy will
again induce a size dependence on L. We address this challenge by using the special ABE by
Boneh et al. [BGG+14] which enjoys succinct secret keys and encoding L in the ABE secret key.
In more detail, we let the RPE encryption generate ABE.sk(CL) for a circuit CL which takes as
input lb and checks that lb /∈ L. Additionally, it generates an FE ciphertext for the function f
and message m. The RPE key generator computes an FE key for a function which has (lb, x)
hardwired and takes as input a function f , checks whether f(x) = 1 and if so, generates a
fresh ABE ciphertext with attribute lb and message m. Thus the decryptor can first compute
FE decryption to recover the ABE ciphertext ABE.ct(lb,m) and then use ABE decryption with
ABE.sk(CL) to output m if and only if lb /∈ L. It is easy to verify that this construction achieves
optimal parameters – this is because ABE has optimal parameters and we used FE only for a
simple functionality that does not involve L.

Putting it all Together. The above description is over-simplified and ignores technical challenges
such as how to leverage indistinguishability based security of FE, how to generate the
randomness used for ABE encryption and such others – we refer the reader to Section 4 for
details. However, even having filled in these details, we get only a selectively secure RPE.
Substantial work and several new ideas are required for adaptive security, as we discuss next.

Adaptive Security. Next, we outline our ideas to achieve adaptive security, namely where the
revocation listL is chosen adaptively by the adversary. Note that to avoid complexity leveraging,
we are required to rely only on the selective security of the underling ABE – this creates multiple
technical difficulties which are resolved by very carefully using specific algebraic properties of
our ingredients.

Leveraging Late Generation of ABE. Our first observation is that full adaptive security of ABE
may be unnecessary, since in our construction of RPE, the generation of the ABE instance is
deferred until the generation of the challenge ciphertext, at which time the set of revoked users
is known. This intuition turns out to be true, but via a complicated security proof as we outline
next. Below, we consider the case of function hiding in the RPE ciphertext, the case of message
hiding is similar.

Recall that function hiding says that two ciphertexts encoding (fb,m,L), where b ∈ {0, 1}
should be indistinguishable so long as for any requested key sklb,x it holds that f0(x) = f1(x)
or lb ∈ L. Note that the adversary is permitted to query for keys that allow decryption of the
ciphertexts, i.e. f0(x) = f1(x) = 1.

Embedding ABE CTs in FE keys. In order to use ABE security to prove RPE security, a first (by
now standard) step is to use the “trapdoor technique” [CIJ+13, ABSV15, BS18], which allows us
to hardwire ABE ciphertexts into FE secret keys. In the security game with the ABE challenger,

9

the reduction submits the label lb associated with each RPE secret key as its challenge attribute
and embeds the returned ABE ciphertext into the FE key. Here we immediately run into a
difficulty, since in the RPE setting some ABE ciphertexts are decryptable by the adversary and
we cannot leverage ABE security. Moreover, we cannot even hope to guess which keys will
correspond to decryptable ABE ciphertexts since there are an unbounded polynomial number
of key queries in the RPE security game. The same difficulty is faced by NWZ and is the main
reason why their construction does not achieve adaptive security in the revocation list.

Polynomial Function Space Suffices for TR. To overcome this hurdle, we leverage the serendipi-
tous fact that for the purpose of constructing TR, it suffices to construct RPE whose function
space (recall that functions are encoded in the ciphertext) is only of polynomial size. This
observation, which was implicitly present in [GKW19], is abstracted and used explicitly in our
proof. In particular, we can assume that the reduction algorithm knows the challenge functions
(f0, f1) at the beginning of the game, since it can simply guess them. Now, given the secret key
query (lb, x), the reduction checks whether f0(x) = f1(x). If yes, then there is no need to use
ABE security, for the ABE ciphertexts in this case will encode the same message, and will hence
be independent of the challenge bit. On the other hand, if f0(x) ̸= f1(x), then we have by the
admissibility condition that lb ∈ L, even when L is not known. In this case, the reduction can
use the security of the ABE without any difficulty.

Additional Hurdles Stemming from ABE Selective Security. We now highlight another challenge in
the proof. For concreteness, let us consider the second key query (lb(2), x(2)), which we assume
is a pre-challenge query, and assume that f0(x(2)) ̸= f1(x

(2)). Hence, by the above discussion,
we are required to use ABE security for the ciphertexts with attribute lb(2). However, according
to the selective definition, the reduction is required to choose the challenge attribute at the very
start of the game, without even seeing the public parameters. At the same time, the reduction is
required to simulate the ABE ciphertext for the first key query, before receiving the second key
query from the adversary, that is, without seeing the ABE parameters, leading to an apparent
impasse.

We address this issue by considering the following two cases separately: for the first query
(lb(1), x(1)), we have (1) f0(x(1)) ̸= f1(x

(1)) or (2) f0(x(1)) = f1(x
(1)). In first case, it is tempting

to think that one can simply use a hybrid argument to change the ABE ciphertext associated
with each key query satisfying f0(x(i)) ̸= f1(x

(i)) for i ∈ [2]. However, this does not work as
is, since the ABE ciphertext may leak information about the ABE public key. To address this,
we rely on the pseudorandomness of ciphertexts in our ABE [BGG+14] due to which we are
guaranteed that the ciphertext does not reveal any information about the public parameters,
enabling the hybrid strategy above. To handle the second case, we change the way in which
the ABE ciphertext for the first key is generated. In more detail, we stop hardwiring the the
ABE ciphertext into the first key and instead generate it directly using ABE parameters. This
removes the aforementioned problem since we no longer need to embed the ABE ciphertext or
public key into the first FE key. To enable this idea, we introduce additional branch of trapdoor
mode for the construction to separate the paths of computation for the cases f0(x) = f1(x) and
f0(x) ̸= f1(x). To handle post-challenge queries, we need to address additional challenges,
which we do not describe here. We refer the reader to Section 4 for details.

Handling Super-polynomial Revocation List. Our construction (also the secret version, described
next) organically supports super-polynomially large revocation list, something that was not
known before, to the best of our knowledge. In more detail, let L be a list of super-polynomial
size, such that L can be represented as a string of polynomial length and there exists a circuit
CL of polynomial size which takes as input some string lb and checks whether lb ∈ L or not.
Note that any super-polynomially large list must have efficient representation in order to even

10

allow various algorithms to read it. Then, the key generation of [BGG+14] can naturally encode
the circuit CL as before and the construction works as before. A subtlety that arises with super-
polynomial L is that when we deal with post challenge key queries in the proof, we have to
deal with the ABE queries in the order of key first and ciphertext later. With polynomial size L,
this does not pose a problem because when the adversary chooses L, all the labels for which we
use ABE security are in L and we can perform a hybrid argument over these labels. However,
this is not possible for super polynomial L, which requires to rely on subexponentially secure
LWE. Please see Section 11 for details.

Instantiating Public RPE. Overall, armed with the above ideas, we get a public RPE from compact
FE and efficient ABE supporting exponential sized identity space and adaptive security in the
revocation list L. Currently, we only know how to instantiate our desired ABE from LWE
[BGG+14], whereas FE can be instantiated in multiple different ways. A natural candidate
would be the FE from standard assumptions [JLS21, JLS22] which relies on pairings, LPN and
low depth PRG – in this case, our RPE will require the extra assumption of LWE. Another option
is to instantiate FE with a post-quantum candidate [GP21, LPST16, WW21, Agr19, DQV+21]
from non-standard strengthenings of LWE – this has the advantage that the ABE does not incur
any extra assumption in the final construction. For super-polynomial L, we need subexponential
hardness of LWE in either pathway to instantiation, as discussed above.

Alternative Construction Based on Laconic OT. Here, we sketch an alternative construction of RPE
based on laconic OT (LOT) [CDG+17] that works when the number N of possible labels is
polynomially bounded (i.e., the identity space is of polynomial size). Since LOT is known to be
possible from various assumptions, this diversifies the assumptions that we need to rely on. The
basic idea is to replace ABE with LOT. In more detail, the encryptor chooses LOT parameters
instead of ABE parameters and computes the digest of the list of recipients (or equivalently, the
list of revoked users), which is represented as a binary string of lengthN with 1 for non-revoked
identities. The digest, whose size is independent of N , is then embedded into the FE ciphertext.
Then, FE decryption yields LOT encryption of the message for the label lb ∈ [N], which is the
label associated with the secret key, instead of ABE ciphertext. The LOT ciphertext is encrypted
so that it can be decrypted only when the lb-th bit of the binary string representing the list of
recipients is 1. We note that this idea does not extend for identities from exponentially large
space and cannot therefore support embedded identities any more.

Revocable Predicate Encryption in Private Setting. For private revocable predicate en-
cryption, our starting point is the work of Goyal et al. [GQWW19], who show how to
combine “broadcast mixed FE” (called BMFE) together with ABE to achieve RPE (via a different
abstraction which they call AugBE). They construct BMFE by adding the broadcast functionality
to the primitive of mixed FE defined by [GKW18]. They embed BMFE ciphertext into an ABE
ciphertext to achieve RPE, where BMFE is constructed from LWE and ABE is instantiated using
pairings.

Supporting Exponential Identity Space. To begin, we upgrade their notion of BMFE to support an
exponential space of identities (which we refer to as labels) towards the goal of embedded
identity trace and revoke. We refer to our notion as Revocable Mixed FE (denoted by RMFE)
and construct it from LWE. Both [GQWW19] and our work start with a mixed FE scheme
and add broadcast to it, but their construction builds upon the scheme based on constrained
PRFs [CVW+18] while ours begins with the scheme based on Lockable Obfuscation (LO), also
from [CVW+18]. Our construction of RMFE deviates significantly from theirs, and achieves
significantly better secret key size – O(logN) as against O(N) – in addition to supporting
exponential instead of polynomial space. We describe this construction next.

11

Mixed FE. The notion of mixed FE was introduced by Goyal, Koppula and Waters in the context
of traitor tracing [GKW18]. Identifying and constructing this clever primitive is the key insight
that enables [GKW18] to construct traitor tracing with optimal parameters from LWE. Mixed
FE is, as the name suggests, a mix of public and secret key FE. Thus, it has a secret as well as
a public encryption procedure. The secret encryption procedure takes as input a function f
and computes ctf . This is decryptable by a key skx to recover f(x). The adversary can make
one query to the encryption oracle in addition to getting the challenge ciphertext for challenge
(f0, f1). It can also make an unbounded number of key requests so long as f0(x) = f1(x).
The public encryption algorithm computes a ciphertext for the “always accept” function, i.e.
a function which evaluates to 1 for any input x. It is required that the public ciphertext be
indistinguishable from the secret ciphertext.

One of the constructions of mixed FE suggested by [CVW+18] uses a secret key FE scheme
(SKFE) to construct the secret encryption algorithm and leverages the power of lockable
obfuscation (LO) to construct the public encryption procedure. Recall that in a lockable
obfuscation scheme [GKW17, WZ17] there exists an obfuscation algorithm Obf that takes
as input a program C, a message m and a (random) “lock value” α and outputs an obfuscated
program P̃ . One can evaluate the obfuscated program on any input x to obtain as output m if
P (x) = α and ⊥ otherwise. Intuitively, the idea of [CVW+18] is to wrap the FE ciphertext using
LO and to define the public key encryption algorithm as outputting a simulated version of the
LO obfuscated circuit, which is publicly sampleable.

In more detail, the construction works as follows. The secret key for a user with input x is
an SKFE secret key SKFE.sk(x). The secret ciphertext of MFE for function f is constructed as
follows.

1. First, SKFE ciphertext SKFE.ct(Hf,α) is generated, where α is a freshly chosen random
value and Hf,α is a circuit that takes as input x and outputs α if f(x) = 0 and 0 otherwise.

2. Then, LO with lock value α and any message m ̸= ⊥ is used to obfuscate the circuit
SKFE.Dec(SKFE.ct(Hf,α), ·), namely the circuit that takes as input an SKFE secret key and
decrypts the hardwired ciphertext using this.

The decryption result of MFE is defined as 1 if the evaluation result of the LO circuit on the
given input SKFE secret key is ⊥ and 0 otherwise. Correctness follows from correctness of
SKFE and LO. In particular, if f(x) = 0, then SKFE decryption outputs α, which unlocks the
LO to give m, otherwise ⊥. By definition, MFE decryption will output 1 if LO outputs ⊥ which
happens when f(x) = 1, and 0 otherwise.

Revocable Mixed FE. RMFE augments MFE so that the encryption algorithms (both secret and
public) now include a revocation list L and the secret key additionally includes a label lb. A
secret key sklb,x decrypts a secret ciphertext ctf,L to recover f(x) if lb /∈ L and 1 otherwise. For
a public ciphertext ctL, the output of decryption is always 1 regardless of which secret key
is being used. For security, we need two properties: function hiding and mode hiding. For
function hiding, we require that a secret ciphertext ctf0,L is indistinguishable from ctf1,L if for
all queries, either f0(x) = f1(x) or lb ∈ L. For mode hiding, we require that a secret ciphertext
ctf,L is indistinguishable from a public ciphertext ctL. Recall that L is not required to be hidden,
but we require that the parameters do not depend on |L|.

To extend MFE to RMFE, we retain the idea of letting the secret ciphertext be an LO
obfuscated circuit and public ciphertext be the simulated LO. To incorporate the list L, we must
ensure that the LO lock value α is recovered only when f(x) = 0 and lb /∈ L. To do so, we
consider two subsystems such that one system outputs partial decryption result α1 only when
f(x) = 0 and the second system outputs partial decryption result α2 only when lb /∈ L such

12

that α = α1 + α2. We must ensure that α1 and α2 are user specific decryption results to avoid
collusion attacks.

Note that the second subsystem, which entails L, should be constructed so that the
hardwired values inside the circuit do not depend on |L|, but still control access to the value
α2 depending on L. To satisfy these apparently conflicting requirements, we make use of the
unique algebraic properties of the ABE construction by Boneh et al [BGG+14], as described
below. For the first subsystem, we use SKFE.

In more detail, our candidate scheme is as follows.

1. Secret Key: The RMFE secret key consists of ABE.ct(lb,K) and SKFE.ct((x,K,R)) where
K and R are user specific random strings, lb is used as an attribute and K is the plaintext
for ABE encryption.

2. Ciphertext: To generate RMFE ciphertext, the secret key encryption procedure is as
follows:

• It first generates ABE.sk(CL), where CL is a circuit that takes as input a label lb and
outputs 1 only when lb /∈ L.

• It also generates SKFE.sk(Hf,α), where Hf,α takes as input (x,K,R) and outputs
K ⊕ α if f(x) = 0 and R if f(x) = 1.

• Now, consider the circuit CC[ABE.sk(CL), SKFE.sk(Hf,α)], which takes as an input
the pair (ABE.ct, SKFE.ct), decrypts both ABE and SKFE ciphertexts using their
respective keys, and then outputs the XOR between the decryption results.

• The final ciphertext is an LO of CC[ABE.sk(CL), SKFE.Enc(Hf,K,α)] with lock value
α and any arbitrary message m ̸= ⊥.

By key compactness of [BGG+14], the size of ABE.sk(CL) is independent of |L|. A subtle point
here is that ABE decryption is happening inside the LO and this depends on L. If the LO must
process L, then the size of the LO and hence ciphertext blows up with L! Fortunately, the
algebraic structure of the ABE scheme we use [BGG+14] again comes to our rescue. At a high
level, ABE decryption can be divided into an “L-dependent” step which results in a short
processed ciphertext, followed by an “L-independent” step. Importantly, the L-dependent step
does not depend on the ABE secret key which is hardwired in the LO and hence inaccessible,
and can hence be performed outside the LO by the decryptor! The resultant short processed
ciphertext can then be provided as input to the LO preventing the problematic size blowup.

RMFE Proof Overview. Next we outline some of the ideas developed for the security proof. For
ease of understanding, we limit ourselves to the simpler setting where the adversary does not
have access to the encryption oracle. This restriction can be removed using combinatorial tricks,
similar to [CVW+18]. For security, we must argue two properties – mode indistinguishability
and function hiding. The former can be established by relying on security of SKFE and LO
analogously to the MFE proof in [CVW+18]. Hence, we focus on function hiding for the rest of
the overview, which is subtle and requires several new ideas.

For function hiding, we must make use of the security of ABE and SKFE. Intuitively,
security of SKFE guarantees that the values encoded in SKFE ciphertexts and secret keys are
hidden, beyond what is revealed by decryption.4 First note that given a key for (lb, x) such
that f0(x) = f1(x), no information about the challenge bit is revealed by decryption, since the

4We note that we need message and function hiding security for the underlying SKFE, while [CVW+18] only
needs message hiding security.

13

decryption results of SKFE are the same for both cases. The case with f0(x) ̸= f1(x) is more
challenging. Let us assume f0(x) = 0 and f1(x) = 1. In this case, the decryption result of the
challenge ciphertext is R or K ⊕ α depending on the value of the challenge bit. Since both
are random strings, it is tempting to conclude that they do not reveal any information of the
challenge bit.

However, in reality, information about K is encoded in the ciphertext ABE.ct(lb,K) and
creates a correlation which must be handled. Indeed, a computationally unbounded attacker can
learn the challenge bit by breaking open the ABE ciphertext, recoveringK and then correlating it
with the decryption result of SKFE. Hence, security of ABE must play a role and fortunately, we
show that security of ABE suffices to overcome this difficulty. Recall that our security definition
of RMFE requires that if f0(x) ̸= f1(x), then it should hold that lb ∈ L. This means that the
ciphertext ABE.ct(lb,K) is computationally indistinguishable from ABE.ct(lb, 0), since the only
ABE secret key available to the adversary is ABE.sk(CL). Now, in the adversary’s view, both
K ⊕ α and R are random strings that are independent from other parameters. Therefore, the
adversary cannot obtain any information of the challenge bit from the decryption result in this
case as well. For more details, please see Section 5.

Comparison with the BMFE by Goyal et al. [GQWW19]. We observe that both our RMFE as well
as the BMFE by [GQWW19] rely solely on LWE. However, our secret key is ABE.ct(lb,K)
and SKFE.ct((x,K,R)), which has optimal size, being clearly independent of N and L. In
contrast their secret key depends linearly on N . We also observe that our RMFE can support an
exponentially large space of identities, while their BMFE does not.

Combining RMFE and ABE to get RPE. Finally, we nest our RMFE inside an outer ABE scheme
to obtain RPE. This step is very similar to [GQWW19], but we need to use a different ABE
scheme. In particular, in the construction of RPE in [GQWW19], a key policy ABE (kpABE)
is used to encrypt the message m with attributes as the RMFE ciphertext along with the list
L. The RPE secret key for (x, lb) is a kpABE secret key for a the RMFE decryption circuit
RMFE.Dec(RMFE.sk, ·, ·).

An obvious difficulty here is that encoding the attribute (L,RMFE.ct) in the ABE ciphertext
can cause the ciphertext size to depend on the size of L. To avoid this blowup, [GQWW19] use
a special kpABE which has the property that the ciphertext size is independent of the size of the
attribute. They instantiate this kpABE with the scheme [ALP11] which uses pairings5. However,
we cannot use [ALP11, Tak14] because of the following two reasons:

1. First, the ABE scheme by [ALP11] only supports NC1. However, our circuit
RMFE.Dec(RMFE.sk, ·, ·) does not fit into NC1

6.

2. Furthermore, even if the above problem could be resolved, using [ALP11] is problematic
since their ABE has secret and public keys at least as large as O(|L|). While the scheme of
[GQWW19] also suffers from this blow-up, our goal is to obtain short keys, independent
of |L|.

The first problem cannot be resolved even if we use the ABE schemes for circuits [GVW13,
BGG+14], since their ciphertext size also depends on |L|. To instantiate our ABE, we use recent
construction of compact cpABE from evasive and tensor LWE [Wee22], whose parameter sizes
depend only on the input length of the circuit and are independent of its size. Armed with the
above ideas, we suggest the following RPE:

5In fact, one could instead use the kpABE constructed by [Tak14]. This enjoys the same efficiency properties and
is based on the standard DLIN assumption as against the q-type assumption of [ALP11].

6The informed reader may wonder whether we can solve this issue by using preprocessing as in [GQWW19] but
this does not work due to technical reasons.

14

1. The encryption algorithm of RPE, given m, f, L computes RMFE ciphertext encoding
(f, L) and then computes cpABE.Enc(RMFE.Dec(RMFE.ct, ·, L),m).

2. The key generation algorithm RPE given (lb, x), computes RMFE secret key for (lb, x) and
outputs cpABE.sk(RMFE.sk).

Correctness of RPE follows from correctness of cpABE and RMFE while optimality of parameters
follows from the efficiency of the underlying schemes. In particular, observe that all parameters
are independent of |L|. Also note that evasive and tensor LWE are required only to instantiate
cpABE with the desired efficiency. If future work standardizes the assumptions underlying the
cpABE, our construction will inherit these assumptions. For more details, we refer the reader to
Section 6.
Instantiating Secret RPE. Currently, the only two suitable ABE schemes that we know to
instantiate our compiler are the LWE based kpABE by Boneh et al. [BGG+14] and the evasive
and tensor LWE based cpABE by Wee [Wee22]. These two ABEs give us a secret RPE scheme
supporting exponential identities and with optimal parameters, from evasive and tensor LWE.
Note that this construction does not achieve adaptive security in the revoke list. Nevertheless, it
is the first construction of optimal RPE, even without embedded identities, from any assumption
outside Obfustopia. Note that the usage of a non-standard assumption outside of obfustopia
(in particular, only from lattice techniques) is somewhat inherent given that even broadcast
encryption without tracing requires non-standard assumption if we instantiate it only from
lattices. We are hopeful that future improvements in cpABE will yield a construction from
completely standard assumptions.

Trace and Revoke with Optimal Ciphertext from LWE and Pairings. Along the way, we
observe that the broadcast and trace construction provided by Goyal et al. [GQWW19], without
embedded identities, can be easily modified to achieve at least optimal ciphertext size, from the
same assumptions. At a high level, they construct a broadcast mixed FE from LWE with optimal
ciphertext size and then nest this inside the kpABE by [ALP11], which enjoys ciphertext size
independent of the attribute length, and can support computation in NC1. Since their BMFE
decryption does not fit into NC1, they preprocess the ciphertext so that part of the decryption is
performed “outside”, namely, they group logN matrix tuples into c groups of (logN)/c tuples
each. Then they precompute all possible 2(logN)/c = N1/c subset-products within each group.
Due to this, BMFE decryption only needs to multiply together c of the preprocessed matrices,
which can be done in NC1 so long as c is constant. Unfortunately, this step increases their
ciphertext size to O(N ϵ) for any ϵ > 0 though the BMFE ciphertext size was optimal.

We observe that they are “under-using” the ciphertext size independence of [ALP11] – in
particular, while the attribute length has indeed been blown up to O(N ϵ), this does not affect
the ciphertext size of [ALP11]. Moreover, while the attribute must also be provided outside in
the clear, this part can be compressed, i.e. the preprocessing which expands the attribute to
size N ϵ can be performed by the decryptor directly by grouping and multiplying matrices as
described above, and there is no need for the encryptor to provide this expanded form. Thus,
their scheme tweaked with this simple modification already achieves ciphertext of optimal size,
though with large secret key O(N c) for some large constant c.

Trace and Revoke from Revocable Predicate Encryption. It remains to show how to construct
the final goal of trace and revoke with embedded identities. As discussed earlier, we follow
[NWZ16, KW20] and use the abstraction of RPE to build trace and revoke. However, to embed

15

identities in our trace and revoke schemes, we deviate from these works and instead build upon
ideas developed by [GKW19] (henceforth GKW) in the context of traitor tracing.

Embedded Identity Traitor Tracing (EITT) by GKW. The work of Goyal, Koppula and Waters
[GKW19] provided an alternative approach for embedding identities in traitor tracing schemes.
A well known approach for constructing Traitor Tracing systems suggested by Boneh, Sahai and
Waters [BSW07] is via the intermediate primitive of Private Linear Broadcast Encryption (PLBE),
which allows to construct a tracing algorithm that performs a linear search over the space of
users to recover the traitor. Since the number of users was polynomial, this algorithm could be
efficient. However, if we allow arbitrary identities to correspond to user indices then the space
over which this search must be performed becomes exponential even if the number of users
is polynomial, and the trace algorithm is no longer efficient. The main new idea in NWZ that
enables them to handle exponentially large identity spaces is to replace a linear search over
indices by a clever generalization of binary search, which efficiently solves an “oracle jump
problem” which in turn suffices for tracing.

Goyal, Koppula and Waters (GKW) provided an alternate route to the problem of embedding
identities. Instead of using PLBE and generalizing the search procedure, they instead extend
the definition of PLBE to support embedded identities, denoted by EI-PLBE, and then used
this to get a full fledged EITT scheme. This approach has the notable advantage that even
if the space of identities is exponential, it can use the fact that the number of users is only
polynomial and hence rely on only selective security of the underlying primitives. In particular,
they demonstrate a “nested” tracing approach, where the tracing algorithm works in two steps:
first, it outputs a set of indices that correspond to the users that are traitors, and then it uses
each index within this set to recover the corresponding identity. Additionally, GKW provide a
sequence of (increasingly stronger) TT primitives with embedded identities, namely, indexed
EITT, bounded EITT and finally unbounded EITT where unbounded EITT satisfies the most
general notion of embedded identity traitor tracing. They also provide generic transformations
between these notions, which allows to focus on the weakest notion for any new instantiation.

Embedded Identity Trace and Revoke (EITR). We adapt the approach of GKW and show how to
use their nested approach to trace embedded identities even in the more challenging setting
of trace and revoke. As in their case, this lets us use polynomial hardness assumptions in
obtaining EITR, in contrast to NWZ. We also define indexed, bounded and unbounded EITR
and provide transformations between them. Our definitions as well as transformations are
analogous to GKW albeit care is required to incorporate the revoke list L in each step and adapt
the definitions and proofs of security accordingly. We then construct indexed EITR using RPE,
and obtain unbounded EITR via our generic conversions.

We note that our framework unifies the approaches of Kim and Wu [KW20] who used the
framework of RPE in the context of TR and that of GKW who used the framework of EI-PLBE in
the context of TT, to obtain EITR. This unification yields a clean abstraction which can be used
for both public and secret key settings. We believe this framework is of independent interest.
We refer the reader to Sections 7, 8, 9 and 10 for details. An overview of our constructions is
provided in Figure 1.

Organization of the paper. We provide notation and preliminaries in Section 2. We define RPE
in Section 3 and provide a construction of public-key RPE in Section 4. We give our construction
of RMFE in Section 5. Then we construct secret-key RPE using RMFE in Section 6. We define
different versions of trace and revoke with embedded identities in Section 7 and construct
indexed-EITR in Section 8, bounded-EITR in Section 9 and unbounded-EITR in Section 10. Our
goal is unbounded-EITR and other variants are introduced as intermediate goals. Secret and

16

Figure 1: Overview of our constructions. Solid lines represent the implications shown by our
work and are based on new techniques. Dashed lines represent the implications that are new
but based on techniques developed in [GKW19].

public tracing unbounded-EITR can be obtained by applying the conversions in Section 8, 9, and
10 to the secret-key and public key RPE, respectively. We show how to extend our constructions
for super-polynomial sized revocation list in Section 11.

2 Preliminaries

In this section we define the notation and preliminaries used in our work.

Notation. We use bold letters to denote vectors and the notation [a, b] to denote the set of
integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n]. Concatenation is denoted by
the symbol ∥. We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n)
to denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some constant
c > 0, and we use poly(n) to denote a polynomial function of n. We use the abbreviation PPT
for probabilistic polynomial-time. We say an event occurs with overwhelming probability if its
probability is 1 − negl(n). For two distributions Xλ and Yλ, Xλ ≈c Yλ denotes that they are
computationally indistinguishable for any PPT algorithm. For a vector x, we let xi denote its
i-th entry. For a set S, we let |S| denote the number of elements in S. For a binary string x, we
let |x| denote the length of x.

Definition 2.1 (Pseudorandom Functions). A function F : K × X → Y , with key space K =
{Kλ}λ∈[N], domain X = {Xλ}λ∈[N], and range Y = {Yλ}λ∈[N] is a pseudorandom function if it
satisfies the following properties:

• Efficiency: For all k ∈ Kλ and x ∈ Xλ, F (k, x) is efficiently computable.

• Security: There exists a negligible function negl such that for all PPT adversary A, for all
λ, the advantage of A in the following security experiment is negl.
ExptPRFA (λ)

– The challenger samples a key k ← Kλ and a bit b ∈ {0, 1}.

17

– The adversary issues polynomially many queries of the following two types in any
order:
Evaluation Queries: A outputs x ∈ Xλ. The challenger returns y = F (k, x).
Challenge Queries: A outputs x ∈ Xλ. The challenger returns yb, where y0 = F (k, x)
and y1 ← Yλ.

– In the end, A outputs its guess bit b′.

Awins the experiment if b′ = b.

Remark 2.2. The above security notion is tailored to our purpose and may look stronger
than more standard security notion, where the adversary is not allowed to make evaluation
queries. However, we can easily show that more standard security notion implies the above
by considering the following hybrid games. The first game is the same as above game with
b = 0. Then, we consider the game where we change all the answers to both evaluation and
challenge queries to be random. The game is indistinguishable from the previous one assuming
the standard security notion. Finally, we consider a game where answers to the evaluation
queries are changed to be F (k, x), while answers to the challenge queries remain random.
Again, using the standard security notion, this game is indistinguishable from the previous
game. Furthermore, notice that this game is the same as the above game with b = 1.

Definition 2.3 (Symmetric Key Encryption). A symmetric key encryption scheme for message
space M = {Mλ}λ∈[N] and key space K = {Kλ}λ∈[N] and ciphertext space CT SKE has the
following syntax:

Setup(1λ) → sk. The setup algorithm takes as input the security parameter λ and outputs a
secret key sk.

Enc(sk,m) → ct. The encryption algorithm takes as input the secret key sk and a message
m ∈Mλ and outputs a ciphertext ct.

Dec(sk, ct)→ m′. The decryption algorithm takes as input a secret key sk and a ciphertext ct
and outputs a message m′ ∈Mλ.

Correctness: A SKE scheme is said to be correct if there exists a negligible function negl(·) such
that for all λ ∈ N, for every message m ∈Mλ, we have

Pr

 m′ = m :
sk← Setup(1λ);
ct← Enc(sk,m);
m′ = Dec(sk, ct).

 ≥ 1− negl(λ),

Security: A SKE scheme is said to have pseudorandom ciphertext if there exists a negligible
function negl(·) such that for all λ ∈ N, for every message m ∈Mλ, we have

Pr

[
β′ = β :

sk← Setup(1λ);

β′ ← AEnc(sk,·),Encβ(sk,·).

]
≤ 1/2 + negl(λ),

where the Enc(sk, ·) oracle, on input a message m, returns Enc(sk,m) and Enc(sk, ·) oracle, on
input a message m, returns ctβ , where ct0 ← Enc(sk,m) and ct1 ← CT SKE.

Remark 2.4. We note that similarly to the case of PRF, the above security notion looks a bit
different from more standard security notion where the adversary does not have access to
Enc(sk, ·) oracle. However, by a similar reduction ro the case of PRF explained in Remark 2.2, it
can be seen that they are equivalent.

18

2.1 Functional Encryption

Here, we recall the definition of public-key and secret-key functional encryption.

2.1.1 Public-Key Functional Encryption

Consider a function family F = {Fλ}λ∈N, with input spaceM = {Mλ}λ∈N and output space
Y = {Yλ}λ∈N, i.e, Fλ = {f :Mλ → Yλ}. A public-key functional encryption scheme FE for F
consists of four polynomial time algorithms (Setup,KeyGen,Enc,Dec):

Setup(1λ) → (mpk,msk). The setup algorithm takes as input the security parameter λ and
outputs a public key mpk and a master secret key msk.

KeyGen(msk, f)→ skf . The key generation algorithm takes as input the master secret key msk
and a function f ∈ Fλ and it outputs a functional secret key skf .

Enc(mpk,m)→ ct. The encryption algorithm takes as input the public key mpk and a message
m ∈Mλ and outputs a ciphertext ct.

Dec(skf , ct) → y. The decryption algorithm takes as input a functional secret key skf and a
ciphertext ct and outputs y ∈ Yλ.

Definition 2.5 (Correctness). A functional encryption scheme is said to be correct if there exists
a negligible function negl(·) such that for all λ ∈ N, for every message m ∈Mλ, and for every
function f ∈ Fλ, we have

Pr

[
f(m)← Dec

(
KeyGen(msk, f),Enc(mpk,m)

)]
≥ 1− negl(λ)

where (mpk,msk) ← Setup(1λ) and the probability is taken over the random coins of all
algorithms.

Definition 2.6 (Selective Message Privacy). A functional encryption scheme over a function
space F = {Fλ}λ∈N is said to have selective message privacy (or simply is selectively secure) if
for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, we
have

Pr

 AKeyGen(msk,·)(mpk, ct) = b :

(m0,m1)← A;
(mpk,msk)← Setup(1λ);
b← {0, 1}; ct← Enc(mpk,mb)

 ≤ 1/2 + negl(λ),

where each key query for a function f ∈ Fλ, queried by A to the KeyGen oracle must satisfy the
condition that f(m0) = f(m1).

Compactness : We say that a FE scheme is compact if the running time of the encryption
algorithm only depends on the security parameter and the input message length. In particular,
it is independent of the complexity of the function class supported by the scheme.

Definition 2.7 (Fully Compact FE). A functional encryption scheme, FE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for input space M = {Mλ}λ∈N and function class
F = {Fλ}λ∈N, where each Fλ is a finite collection of functions, is said to be fully compact if the
running time of the encryption algorithm FE.Enc, on input FE.mpk and a message m ∈Mλ, is
poly(λ, |m|).

19

Jain, Lin and Sahai [JLS21, JLS22] provided the first construction of FE with sublinear
compactness, from standard assumptions. In more detail:

Lemma 2.8 ([JLS22, GS16, AJS15]). There exists a public-key functional encryption scheme for
polynomial sized circuits having selective security (as per Definition 2.6) and full compactness (as
per Definition 2.7) with encryption time poly(λ, |m|), where λ ∈ N is the security parameter, m is the
input message, assuming LPN, DLIN and existence of boolean PRGs in NC0.

2.1.2 Secret Key Functional Encryption

A secret key functional encryption scheme is the same as the public key functional encryption
scheme, except that the setup algorithm only outputs msk and the encryption algorithm takes
the master secret key msk as input, instead of the master public key mpk.

Definition 2.9 (Ada-IND Function-Message Privacy ([BS18], adapted)). A SKFE =
(Setup,KeyGen,Enc,Dec) scheme over an input space M = {Mλ}λ∈N and a function
space F = {Fλ}λ∈N is said to be Ada-IND function and message private if for any PPT
algorithm A, there exists a negligible function negl(·) such that

|Pr[ExptA(λ, 0) = 1]− Pr[ExptA(λ, 1) = 1]| ≤ negl(λ)

where for each b ∈ {0, 1} and λ ∈ N, the ExptA(λ, b) is defined as follows

1. msk← Setup(1λ).

2. b′ ← AKeyGenb(msk,·,·),Encb(msk,·,·), where the oracle KeyGenb(msk, ·, ·) on input (f0, f1)
outputs KeyGen(msk, fb) and Encb(msk, ·, ·) on input (m0,m1) outputs Enc(msk,mb).

3. Output b′.

and A is admissible only if for all the key queries (f0, f1) ∈ F × F and encryption queries
(m0,m1) ∈M×M, it must hold that f0(m0) = f1(m1).

Note: We refer to the t-bounded Ada-IND function and message private SKFE scheme where
Def. 2.9 holds only if at most t queries are made to the KeyGenb(msk, ·, ·) oracle.

Remark 2.10. We can construct a SKFE scheme satisfying t-bounded Ada-IND message privacy
(without function privacy, i.e., f0 = f1 should hold in the security game) from one-way functions
[AV19]. This implies a SKFE scheme satisfying t-bounded Ada-IND function-message privacy,
using the conversion results from [BS18].

We also need a 2-bounded semi-adaptive simulation based function-message private SKFE
scheme, defined next.

Definition 2.11 (Simulation Based Function-Message Privacy). A secret-key functional
encryption scheme is said to satisfy t-bounded semi-adaptive simulation based function and
message privacy, if for all PPT stateful algorithm A, there exists PPT stateful algorithms
SimSK,SimCT such that:

{ExprealA (1λ)}λ∈N ≈c {ExpidealA,SimSK,SimCT(1
λ)}λ∈N

where the real and ideal experiments of stateful algorithms A,SimSK, SimCT are as follows:

ExprealA (1λ) ExpidealA,Sim(1
λ)

20

msk← Setup(1λ) msk← Setup(1λ)

For i ∈ [t] : For i ∈ [t] :

A → fi ∈ F ; A → fi ∈ F ;
A ← skfi = KeyGen(msk, fi) A ← skfi = SimSK(msk, 1|fi|)

Repeat polynomially many times: Repeat polynomially many times:
A →m ∈M; A →m ∈M;

A ← Enc(msk,m) A ← SimCT(msk, {fi(m)}i∈[t])
A → b; Output b A → b; Output b

Lemma 2.12. There exists a 2-bounded semi-adaptive simulation based function and message private
SKFE scheme, assuming the existence of one-way functions.

Proof. Let Π = (Π.Setup,Π.KeyGen,Π.Enc,Π.Dec) be a 2-bounded Ada-IND function-message
private SKFE scheme. We construct a 2-bounded semi-adaptive simulation based function-
message private SKFE = (Setup,KeyGen,Enc,Dec) scheme as follows:

1. Setup(1λ): Sample msk← Π.Setup(1λ).

2. KeyGen(msk, f): sk ← Π.KeyGen(msk, E[f, 0]). Here, E[f,mode] is defined as
E[f,mode](m, y1, y2) = ymode for mode ∈ {0, 1, 2}, where y0 := f(m).

3. Enc(msk,m): ct← Π.Enc(msk, (m,⊥,⊥).

4. Dec(sk, ct): m′ ← Π.Dec(sk, ct).

Simulators for encryption and keygen are described as follows:

SimCT(msk, {f1(m), f2(m)}) outputs Π.Enc(msk, (⊥, f1(m), f2(m))).

SimSK(msk, 1|f |) outputs Π.KeyGen(msk, E[1|f |, b]) for the b-th key query, for b ∈ {1, 2}.

Security:
Firstly, observe that the simulator thus constructed is valid since its output does not depend
on the function f or input m. Then proof of security follows directly from Ada-IND security of
Π, because for any set of queries consisting of two functions f1 and f2 and polynomial many
inputs {mi}, fb(mi) = gb(zi) for b ∈ {1, 2}, where gb is the circuit defined as (E[1|fb|, b]) and
zi = (⊥, f1(mi), f2(mi)) used by the simulators to generate the simulated keys and ciphertexts,
respectively.

2.2 Attribute Based Encryption

We define both ciphertext policy attribute-based encryption (cpABE) and key policy attribute-
based encryption (kpABE) in a unified form below.

Let R = {Rλ : Aλ × Bλ → {0, 1}}λ∈N be a relation where Aλ and Bλ denote “ciphertext
attribute” and “key attribute” spaces. An attribute-based encryption (ABE) scheme for R and a
message spaceM = {Mλ}λ∈N is defined by the following PPT algorithms:

Setup(1λ)→ (mpk,msk). The setup algorithm takes as input the unary representation of the
security parameter λ and outputs a master public key mpk and a master secret key msk.

Enc(mpk, X, µ)→ ct. The encryption algorithm takes as input a master public key mpk, a
ciphertext attribute X ∈ Aλ, and a message µ ∈Mλ. It outputs a ciphertext ct.

21

KeyGen(msk, Y)→ skY . The key generation algorithm takes as input the master secret key msk
and a key attribute Y ∈ Bλ. It outputs a private key skY .

Dec(mpk, skY , Y, ct, X)→ µ or ⊥. The decryption algorithm takes as input the master public
key mpk, a private key skY , private key attribute Y ∈ Bλ, a ciphertext ct and ciphertext
attribute X ∈ Aλ. It outputs the message µ or ⊥ which represents that the ciphertext is
not in a valid form.

Definition 2.13 (Correctness). An ABE scheme for relation family R is correct if for all λ ∈ N,
X ∈ Aλ, Y ∈ Bλ such that R(X,Y) = 1, and for all messages µ ∈Mλ,

Pr


(mpk,msk)← Setup(1λ),
skY ← KeyGen(msk, Y),
ct← Enc(mpk, X, µ) :

Dec
(
mpk, skY , Y, ct, X

)
̸= µ

 = negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.14 (Sel-IND security for ABE). For an ABE scheme ABE = {Setup,Enc,KeyGen,Dec}
for a relation family R = {Rλ : Aλ ×Bλ → {0, 1}}λ∈[N] and a message space {Mλ}λ∈N and an
adversary A, let us define Sel-IND security game as follows.

1. A outputs the challenge ciphertext attribute X⋆ ∈ Aλ.

2. Setup phase: On input 1λ, the challenger samples (mpk,msk)← Setup(1λ) and gives mpk
to A.

3. Query phase: During the game, A adaptively makes the following queries, in an arbitrary
order. A can make unbounded many key queries, but can make only single challenge
query.

(a) Key Queries: A chooses an input Y ∈ Bλ. For each such query, the challenger replies
with skY ← KeyGen(msk, Y).

(b) Challenge Query: At some point, A submits a pair of equal length messages
(µ0, µ1) ∈M2 to the challenger. The challenger samples a random bit b← {0, 1} and
replies to Awith ct← Enc(mpk, X⋆, µb).

We require that R(X⋆, Y) = 0 holds for any Y such that A makes a key query for Y in
order to avoid trivial attacks.

4. Output phase: A outputs a guess bit b′ as the output of the experiment.

We define the advantage AdvSel-INDABE,A (1λ) of A in the above game as

AdvSel-INDABE,A (1λ) :=
∣∣∣Pr[ExpABE,A(1λ) = 1|b = 0]− Pr[ExpABE,A(1

λ) = 1|b = 1]
∣∣∣ .

The ABE scheme ABE is said to satisfy Sel-IND security (or simply selective security) if for any
stateful PPT adversary A, there exists a negligible function negl(·) such that AdvSel-INDABE,A (1λ) =
negl(λ).

We can consider the following stronger version of the security where we require the
ciphertext to be pseudorandom.

22

Definition 2.15 (Sel-INDr security for ABE). We define Sel-INDr security game similarly to
Sel-IND security game except that the adversary A chooses single message µ instead of (µ0, µ1)
at the challenge phase and the challenger returns ct← Enc(mpk, X⋆, µ) if b = 0 and a random
ciphertext ct ← CT from a ciphertext space CT if b = 1. Here, we assume that uniform
sampling from the ciphertext space CT is possible without any parameter other than the
security parameter λ. We define the advantage AdvSel-INDr

ABE,A (1λ) of the adversary A accordingly
and say that the scheme satisfies Sel-INDr security if the quantity is negligible.

We also consider the very selective and adaptive version of the security.

Definition 2.16 (VerSel-IND security for ABE). We define VerSel-IND security game similarly to
Sel-IND security game except that the adversary A outputs the key queries Y1, . . . , YQ, where Q
is the number of key queries made by A, along with the challenge ciphertext attribute X⋆ in the
beginning of the security game. We define the advantage AdvVerSel-INDABE,A (1λ) of the adversary A
accordingly and say that the scheme satisfies VerSel-IND security if the quantity is negligible.

Definition 2.17 (Ada-IND security for ABE). We define Ada-IND security game similarly to
Sel-IND security game except that the adversary A can choose the challenge ciphertext attribute
X⋆ adaptively. We define the advantage AdvAda-INDABE,A (1λ) of the adversary A accordingly and say
that the scheme satisfies Ada-IND security if the quantity is negligible.

In the following, we recall definitions of various ABEs by specifying the relation.

Ciphertext-policy Attribute Based encryption (cpABE). We define cpABE for circuit class
{Cℓ(λ),d(λ)}λ by specifying the relation. Here, Cℓ(λ),d(λ) is a set of circuits with binary output
whose input length is ℓ(λ) and the depth is at most d(λ). Note that we do not pose any restriction
on the size of the circuits. We define AcpABE

λ = Cℓ(λ),d(λ) and BcpABE
λ = {0, 1}ℓ. Furthermore, we

define the relation RcpABE
λ as

RcpABE
λ (C,x) = C(x).

Key-policy Attribute Based encryption (kpABE). To define kpABE for circuits, we simply swap
key and ciphertext attributes in cpABE for circuits. More formally, to define kpABE for circuits,
we define AkpABE

λ = {0, 1}ℓ and BkpABE
λ = Cℓ(λ),d(λ). We also define RkpABE

λ : AkpABE
λ ×BkpABE

λ →
{0, 1} as

RkpABE
λ (x, C) = C(x).

Boneh et al. [BGG+14] provided a construction of kpABE which satisfies key compactness
and ciphertext succinctness. The following theorem summarizes the efficiency properties of
their construction.

Theorem 2.18 (Properties of [BGG+14]). There exists a key-policy ABE scheme kpABE =
(kpABE.Setup, kpABE.KeyGen, kpABE.Enc, kpABE.Dec) for function class Cℓ,d which is selectively
secure under the LWE assumption and has the following properties. In particular:

Key Compactness. We have |ABE.skC | ≤ poly(λ, d) for any C ∈ Cℓ,d, where (ABE.mpk,ABE.msk)←
ABE.Setup(1λ) and ABE.skC ← ABE.KeyGen(ABE.msk, C). In particular, the length of the
secret key is independent of the attribute length ℓ and the size of the circuit C.

Parameters Succinctness. We have |ABE.mpk|, |ABE.msk| ≤ poly(λ, d, ℓ) and |ABE.ct| ≤
poly(λ, d, ℓ)+ |µ| for any x ∈ Xλ and µ ∈Mλ, where (ABE.mpk,ABE.msk)← ABE.Setup(1λ)
and ABE.ct← ABE.Enc(ABE.mpk,x, µ).

23

Online-Offline Decryption. The decryption algorithm Dec(mpk, skC , C, ctx,x) can be divided into two
parts, which we call

• Decoff(mpk, C,x)→ off, which performs the heavier computation that involves the circuit
C and attribute x offline without knowing the ciphertext ctx or the secret key skC to get a

”help” off. We have that the size of off is poly(λ, ℓ, d) and the depth of the circuit Decoff(·, ·, ·)
is bounded by poly(λ, ℓ, depth(C)), where depth(C) is the depth of the circuit C.

• Decon(skC , ctx, off) takes the help off generated offline along with the secret key skC and
the ciphertext ctx and outputs the underlying message µ. We note that this part does not
take C as input and in particular, the size of the circuit Decon(·, ·, ·) is poly(λ, ℓ, d), which
is independent from the size of the circuit C.

We will provide the detail of the kpABE scheme given by [BGG+14] in Sec. 2.3. There, we
will show that the scheme satisfies the online-offline decryption property defined above.

We will also use the cpABE scheme given by [Wee22]. The following theorem summarizes
the properties of the scheme.

Theorem 2.19 (Properties of [Wee22]). There exists a ciphertext policy ABE scheme cpABE =
(cpABE.Setup, cpABE.KeyGen, cpABE.Enc, cpABE.Dec) for function class Cℓ,d, which is very selec-
tively secure under the evasive and tensor LWE assumption and has the following properties. In
particular:

Ciphertext Compactness. We have |cpABE.ct| ≤ poly(λ, d) + |µ| for any C ∈ Cℓ,d and
µ ∈ Mλ, where (cpABE.mpk, cpABE.msk) ← cpABE.Setup(1λ) and cpABE.ct ←
cpABE.Enc(cpABE.mpk, C, µ). In particular, the size of the ciphertext is independent from the
size of the circuit C and its input length.

Parameters Succinctness. We have |cpABE.mpk|, |cpABE.msk|, |cpABE.skx| ≤ poly(λ, ℓ, d) for any
x ∈ {0, 1}ℓ, where (cpABE.mpk, cpABE.msk) ← cpABE.Setup(1λ) and cpABE.sk ←
cpABE.KeyGen(cpABE.msk,x).

2.3 Key-Policy ABE by Boneh et al. [BGG+14]

We will use the kpABE scheme proposed by Boneh et al. [BGG+14]. We provide the description
of the scheme in the following while showing that the decryption algorithm can be divided into
two phases as stated in Theorem 2.18. We note that the presentation here is largely based on
[AY20].

2.3.1 Lattice Preliminaries

Here, we introduce necessary backgrounds for presenting the scheme.

Trapdoors. Let SampZ(γ) be an output of discrete Gaussian distribution with parameter γ
over Z. Let us consider a matrix A ∈ Zn×m

q . For all V ∈ Zn×m′
q , we let A−1

γ (V) be an output
of SampZ(γ)m×m′

conditioned on A · A−1
γ (V) = V. A γ-trapdoor for A is a trapdoor that

enables one to sample from the distribution A−1
γ (V) in time poly(n,m,m′, log q) for any V. We

slightly overload notation and denote a γ-trapdoor for A by A−1
γ . We also define the special

gadget matrix G ∈ Zn×m
q as the matrix obtained by padding In ⊗ (1, 2, 4, 8, . . . , 2⌈log q⌉) with

zero-columns. The following properties had been established in a long sequence of works. We
refer to [AY20] and references therein for the details.

Lemma 2.20 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

24

1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .

2. Given A−1
τ , one can obtain [A∥B]−1

τ and [B∥A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1
τ0) where A ∈ Zn×m

q

for some m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(
√
n log q logm).

Lattice Evaluation. The following is an abstraction of the evaluation procedure in previous
LWE based FHE and ABE schemes. We follow the presentation by Tsabary [Tsa19].

Lemma 2.21 (Fully Homomorphic Computation [BGG+14]). There exists a pair of deterministic
algorithms (EvalF,EvalFX) with the following properties.

• EvalF(B, F)→ HF . Here, B ∈ Zn×mℓ
q and F : {0, 1}ℓ → {0, 1} is a circuit.

• EvalFX(F,x,B) → ĤF,x. Here, x ∈ {0, 1}ℓ and F : {0, 1}ℓ → {0, 1} is a circuit with depth
d. We have [B− x⊗G]ĤF,x = BHF − F (x)G mod q, where we denote [x1G∥ · · · ∥xkG] by
x⊗G. Furthermore, we have ∥HF ∥∞ ≤ mO(d) and ∥ĤF,x∥∞ ≤ mO(d).

• The running time of (EvalF,EvalFX) is bounded by poly(n,m, log q, d).

Note that the last item implies that the circuits computing EvalF and EvalFX can be
implemented with depth poly(n,m, log q, d).

2.3.2 Key-Policy ABE by Boneh et al. [BGG+14]

The scheme supports the circuit class Cℓ(λ),d(λ), which is the set of all circuits with input length
ℓ(λ) and depth at most d(λ) with arbitrary ℓ(λ) = poly(λ) and d(λ) = poly(λ). In our case, we
will set d(λ) = ω(log λ). In the description below, we focus on the case where the message space
is {0, 1} for simplicity. To encrypt a long message, we run the construction in parallel to encrypt
an SKE key K ∈ {0, 1}λ and then use it to encrypt the message.

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ), m = m(λ), noise
distributions χ over Z, τ0 = τ0(λ), τ = τ(λ), and B = B(λ) as specified later. It then
proceeds as follows.

1. Sample (A,A−1
τ0)← TrapGen(1n, 1m, q) such that A ∈ Zn×m

q .

2. Sample random matrix B = (B1, . . . ,Bℓ)← (Zn×m
q)ℓ and a random vector u← Zn

q .

3. Output the master public key mpk = (A,B,u) and the master secret key msk = A−1
τ0 .

KeyGen(msk, C): The key generation algorithm takes as input the master public key mpk, the
master secret key msk, and a circuit C ∈ Cℓ,d and proceeds as follows.

1. Set F := ¬C to be the same circuit as C except that the output bit is flipped. 7

2. Compute HF = EvalF(B, F) and BF = BHF .

3. Compute [A∥BF]
−1
τ from A−1

τ0 and sample r ∈ Z2m as r⊤ ← [A∥BF]
−1
τ (u⊤).

4. Output the secret key skC := r.

7While we follow the standard definition of ABE and require the decryption to be possible when C(x) = 1, it is
when C(x) = 0 in [BGG+14]. To fill the gap, we flip the output bit.

25

Enc(mpk,x, µ): The encryption algorithm takes as input the master public key mpk, an attribute
x ∈ {0, 1}ℓ, and a message µ ∈ {0, 1} and proceeds as follows.

1. Sample s← Zn
q , e0 ← χ, e← χm, and ei,b ← χ̃m for i ∈ [ℓ] and b ∈ {0, 1}, where χ̃m

is the distribution obtained by first sampling x← χm and S← {−1, 1}m×m and then
outputting Sx.

2. Compute

For all i ∈ [ℓ], b ∈ {0, 1}, ψi,b := s(Bi − bG) + ei,b ∈ Zm
q

ψ2ℓ+1 := sA+ e ∈ Zm
q , ψ2ℓ+2 := su⊤ + e0 + µ⌈q/2⌉ ∈ Zq,

3. Output the ciphertext ctx := ({ψi,xi}i∈[ℓ], ψ2ℓ+1, ψ2ℓ+2), where xi is the i-th bit of x.

Dec(mpk, skC , C, ctx,x): The decryption algorithm takes as input the master public key mpk,
a secret key skC for a circuit C, and a ciphertext ctx for an attribute x and proceeds as
follows. The decryption algorithm can be divided into offline and online phase Decoff and
Decon, respectively, as defined below.

Decoff(mpk, C,x):

1. Compute C(x) and ĤF,x = EvalF(F,x,B), where F = ¬C.

2. Output off = (C(x), ĤF,x).

Decon(skC , ctx, off):

1. Parse off as (C(x), ĤF,x) and ctx → ({ψi,xi ∈ Zm
q }i∈[ℓ], ψ2ℓ+1 ∈ Zm

q , ψ2ℓ+2 ∈ Zq),
and skC = r ∈ Z2m. If any of the component is not in the corresponding domain
or C(x) = 0, output ⊥.

2. Concatenate {ψi,xi}i∈[ℓ] to form ψx = (ψ1,x1 , . . . , ψℓ,xℓ
).

3. Compute
ψ′ := ψ2ℓ+2 − [ψ2ℓ+1∥ψxĤF,x]r

⊤.

4. Output 0 if ψ′ ∈ [−B,B] and 1 if [−B + ⌈q/2⌉, B + ⌈q/2⌉].

Parameters and Security. We choose the parameters for the scheme as follows for concreteness:

d = log n log logn, n = Θ̃(λc), m = n1.1 log q, q = nO(log3 n),

χ = SampZ(3
√
n), τ0 = n log q logm, τ = nO(log2 n) B = nO(log2 n),

where c is some constant (e.g., c = 1).
It is easy to see that the efficiency requirement stated in Theorem 2.18 directly follows from

the above parameter settings and Lemma 2.21.

Theorem 2.22 (Adapted from [BGG+14]). The above scheme satisfies Sel-INDr security (Definition
2.15) if we assume the LWE assumption with nO(log3 n) approximation factor.

2.4 Lockable Obfuscation

We define lockable obfusctaion [GKW17, WZ17] below. Consider a function family F =
{Fλ}λ∈N, with input space X = {Xλ}λ∈N and output space Y = {Yλ}λ∈N, i.e, Fλ = {f : Xλ →
Yλ}. A lockable obfuscation scheme forF consists of algorithms Obf and Eval with the following
syntax:

26

Obf(1λ, f, α) → f̃ . The obfuscation algorithm takes as input the security parameter λ, a
function f ∈ Fλ and a lock value α ∈ Yλ. It outputs an obfuscated program f̃ .

Eval(f̃ , x)→ 1 ∪ {⊥}. The evaluation algorithm takes as input the obfuscated program f̃ and
an input x ∈ Xλ. It outputs 1 or ⊥.

Definition 2.23 (Correctness). A lockable obfuscation scheme is said to be correct if it satisfies
the following properties:

1. For all λ ∈ N, f ∈ Fλ, x ∈ Xλ and α ∈ Yλ such that f(x) = α, we have

Eval
(
Obf(1λ, f, α), x

)
= 1

2. There exists a negligible function negl(·) such that for all λ ∈ N, f ∈ Fλ, x ∈ Xλ and α ∈ Yλ
such that f(x) ̸= α, we have

Pr[Eval
(
Obf(1λ, f, α), x

)
= ⊥] ≥ 1− negl(λ)

where the probability is taken over the random coins used during obfuscation.

Definition 2.24 (Security). A lockable obfuscation scheme is said to be secure if there is a PPT
simulator Sim such that for all f ∈ Fλ, we have

Obf(1λ, f, α) ≈c Sim(1λ, 1|f |)

where α← Yλ and the probability is taken over the randomness of the obfuscator and simulator
Sim.

Theorem 2.25 ([GKW17, WZ17]). There exists lockable obfuscation for all circuits with lock space
{0, 1}λ from the LWE assumption.

2.5 Laconic Oblivious Transfer

We define laconic oblivious transfer (LOT) [CDG+17] below. A LOT scheme consists of four
algorithms crsGen, Hash, Send and Receive with the following syntax:

crsGen(1λ)→ crs. It takes the security parameter λ as input and outputs a common reference
string crs.

Hash(crs, D) → (digest, D̂). It takes as input a common reference string crs and a database
D ∈ {0, 1}∗ and outputs a digest digest of the database and a state D̂.

Send(crs, digest, L,m0,m1)→ e. It takes as input a common reference string crs, a digest digest,
a database location L ∈ N and two messages m0 and m1 of length λ, and outputs a
ciphertext e.

ReceiveD̂(crs, e, L) → m. This is a RAM algorithm with random read access to D̂. It takes as
input a common reference string crs, a ciphertext e, and a database location L ∈ N. It
outputs a message m.

27

Definition 2.26 (Correctness). A LOT scheme is said to be correct if for any database D of size
at most M = poly(λ) for any polynomial function poly(·), any memory location L ∈ [M], and
any pair of messages (m0,m1) ∈ {0, 1}λ × {0, 1}λ, we have

Pr

 m = mD[L] :

crs← crsGen(1λ)

(digest, D̂)← Hash(crs, D)
e← Send(crs, digest, L,m0,m1)

m← ReceiveD̂(crs, e, L)

 = 1,

where the probability is taken over the random choices made by crsGen and Send.

Definition 2.27 (Sender Privacy Against Semi-Honest Receivers). There exists a PPT simulator
LOTSim such that the following holds. For any database D of size at most M = poly(λ) for
any polynomial function poly(·), any memory location L ∈ [M], and any pair of messages
(m0,m1) ∈ {0, 1}λ × {0, 1}λ, let crs← crsGen(1λ) and digest← Hash(crs, D). Then it holds that

(crs,Send(crs, digest, L,m0,m1)) ≈c (crs, LOTSim(D,L,mD[L])).

Theorem 2.28 ([CDG+17, DG17, BLSV18, DGHM18]). There exists laconic oblivious transfer where
the length of digest is a fixed polynomial in security parameter λ, independent of the size of the database
assuming either the Computational Diffie-Hellman assumption or the Factoring assumption or the
Learning with Errors assumption. Moreover, the algorithm Hash runs in time |D| · poly(log |D|, λ),
Send and Receive run in time poly(log |D|, λ) for any database D of size at most poly(λ) for any
polynomial function poly(·).

3 Revocable Predicate Encryption

We define revocable predicate encryption (RPE), in both public and secret key setting. Since the
two notions differ only in the encryption algorithm, we present them here in a unified way.

Definition 3.1. A RPE scheme for an attribute space X = {Xλ}λ∈[N], a function family F =
{Fλ}λ∈[N] where Fλ = {f : Xλ → {0, 1}}, a label space L = {Lλ}λ∈[N] and a message space
M = {Mλ}λ∈[N] has the following probabilistic polynomial time algorithms:

Setup(1λ)→ (mpk,msk). The setup algorithm takes the security parameter λ as input and it
outputs a master public key mpk and a master secret key msk.

KeyGen(msk, lb, x)→ sklb,x
8. The key generation algorithm takes as input the master secret key

msk, a label lb ∈ Lλ and an attribute x ∈ Xλ. It outputs a secret key sklb,x.

Enc(ek, f,m,L)→ ct. The encryption algorithm takes as input the encryption key ek, a function
f , a message m ∈Mλ, and a revocation list L ⊆ Lλ. It outputs a ciphertext ct.

Dec(sklb,x, ct, L) → m′. The decryption algorithm takes the secret key sklb,x, a ciphertext ct,
and a revocation list L and it outputs m′ ∈Mλ ∪ {⊥}.

In public-key RPE, we take ek = mpk in the Enc algorithm, and in secret-key RPE, we take ek = msk.
Furthermore, there is an additional algorithm in the secret key setting defined as follows:

8We want to point out that the secret key sklb,x does not hide the corresponding label lb and attribute x and we
assume these to be included in the secret key.

28

Broadcast(mpk,m,L)→ ct. On input the master public key, a message m, and a revocation list
L ⊆ Lλ, the broadcast algorithm outputs a ciphertext ct.

Definition 3.2 (Correctness). A revocable predicate encryption scheme is said to be correct if
there exists a negligible function negl(·) such that for all λ ∈ N, label lb ∈ Lλ, attributes x ∈ Xλ,
predicates f ∈ Fλ such that f(x) = 1, all messages m ∈ Mλ and any set of revoked users
L ⊆ Lλ such that lb /∈ L, if we set (mpk,msk)← Setup(1λ) and sklb,x ← KeyGen(msk, lb, x), then
the following holds

Pr [Dec(sklb,x, ct, L) = m] ≥ 1− negl(λ),

for ct ← Enc(ek, f,m,L) (Encryption correctness) and ct ← Broadcast(mpk,m,L) (Broadcast
correctness).

Security. In the following security definitions, we assume for simplicity that the adversary does
not make key queries for same input (lb, x) more than once.

Definition 3.3 (q-query Message Hiding). Let q(·) be any fixed polynomial. A RPE scheme
satisfies q-query message hiding property if for every PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, all messages m ∈ Mλ and any subset of revoked
users L ⊆ Lλ, the following holds

Pr

 β′ = β :

(mpk,msk)← Setup(1λ);

(f,m0,m1, L)← AKeyGen(msk,·,·),Enc(ek,·,·,·)(mpk);
β ← {0, 1}; ctβ ← Enc(ek, f,mβ, L);

β′ ← AKeyGen(msk,·,·),Enc(ek,·,·,·)(ctβ)

 ≤ 1

2
+ negl(λ)

whereA can make at most q(λ) queries to the encryption oracle Enc(ek, ·, ·, ·), andA is admissible
if and only if for all the key queries (lb, x) to the KeyGen(msk, ·, ·) oracle, either f(x) = 0 or
lb ∈ L.

Definition 3.4 (q-query Selective Message Hiding). This is the same as the Def 3.3 except that A
outputs the revocation list L in the beginning of the game, before the Setup algorithm is run.

Definition 3.5 (q-query Very Selective Message Hiding). This is the same as the Def 3.4 except
that A outputs all the key queries (lb, x) to the KeyGen(msk, ·, ·) oracle in the beginning of the
game, before the Setup algorithm is run.

Definition 3.6 (q-query Function Hiding). Let q(·) be any fixed polynomial. A RPE scheme
satisfies q-query function hiding property if for every PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, all messages m ∈ Mλ and any subset of revoked
users L ⊆ Lλ, the following holds

Pr

 β′ = β :

(mpk,msk)← Setup(1λ);

(f0, f1,m,L)← AKeyGen(msk,·,·),Enc(ek,·,·,·)(mpk);
β ← {0, 1}; ctβ ← Enc(ek, fβ,m,L);

β′ ← AKeyGen(msk,·,·),Enc(ek,·,·,·)(ctβ)

 ≤ 1

2
+ negl(λ)

whereA can make at most q(λ) queries to the encryption oracle Enc(ek, ·, ·, ·), andA is admissible
if and only if for all the key queries (lb, x) to the KeyGen(msk, ·, ·) oracle, either f0(x) = f1(x) or
lb ∈ L.

Definition 3.7 (q-query Selective Function Hiding). This is the same as the Def 3.6 except that
A outputs the revocation list L in the beginning of the game, before the Setup algorithm is run.

29

The following security notion is defined only for secret-key RPE scheme.

Definition 3.8 (q-query Selective Broadcast Security). Let q(·) be any fixed polynomial. A RPE
scheme satisfies q-query selective broadcast security if there exists a negligible function negl(·)
such that for every PPT adversary A, for every λ ∈ N, all messages m ∈Mλ and any subset of
revoked users L ⊆ Lλ, the following holds

Pr

 β′ = β :

L← A(1λ);
(mpk,msk)← Setup(1λ);

f,m← AKeyGen(msk,·,·),Enc(msk,·,·,·)(mpk);
β ← {0, 1}; ct0 ← Enc(msk, f,m,L);
ct1 ← Broadcast(mpk,m,L);

β′ ← AKeyGen(msk,·,·),Enc(msk,·,·,·)(ctβ)

 ≤
1

2
+ negl(λ)

where A can make at most q(λ) queries to the encryption Enc(msk, ·, ·, ·) oracle and A is
admissible if and only if f(x) = 1, ∀x ∈ Xλ.

Remark 3.9. In the public-key RPE scheme, the adversary A can itself simulate the encryption
oracle Enc(ek, ·, ·, ·), as ek = mpk in this setting. Therefore, in public-key setting, we refer to the
security definitions without imposing the q-query bound on the encryption oracle.

Remark 3.10. We note that when the message space is binary, function space Fλ is polynomially
small and q is a constant, the weaker security definitions where adversary outputs the challenge
function f , the challenge message m and the SK-Enc query functions {f̄i}i∈[q] at the beginning
of the game, before the Setup(1λ) algorithm is run, is equivalent to the definitions where the
adversary outputs f,m, {f̄i}i∈[q] adaptively. First, the functions can be guessed with polynomial
loss. Furthermore, if we restrict the message space to be binary, we can guess the challenge
message as well. To extend the message space, we can encrypt each bit by parallel systems.

4 Public-key RPE from FE and LWE

4.1 Construction

In this section we provide our construction of a public key RPE scheme RPE =
(RPE.Setup,RPE.KeyGen,RPE.Enc,RPE.Dec) for an attribute space X = {Xλ}λ, a function
family F = {Fλ}λ where Fλ = {f : Xλ → {0, 1}}, a label space L = {Lλ}λ and a message
spaceM = {Mλ}λ from polynomial hardness assumptions. We assume that |Fλ| and |Mλ| are
bounded by some polynomial in λ. The restriction on |Fλ| is sufficient for our purpose and the
restriction on |Mλ| can be removed by running the scheme in parallel.
Our construction uses the following building blocks:

1. A Sel-INDr secure key-policy ABE scheme kpABE = (kpABE.Setup, kpABE.Enc,
kpABE.KeyGen, kpABE.Dec) for circuit class Cℓ(λ),d(λ) with parameter succinctness and
key compactness (Theorem 2.18). Here ℓ(λ) is the input length and is the length of
labels in our setting and the depth of the circuit is d(λ) ∈ ω(log λ) to support unbounded
revocation list. The message space of the scheme kpABE isM = {Mλ}λ and CT kpABE

denotes the ciphertext space. We assume that uniform sampling from CT kpABE is
efficiently possible without any parameter.

2. A (fully) compact, selectively secure, public-key functional encryption scheme FE =
(FE.Setup, FE.Enc, FE.KeyGen, FE.Dec) that supports polynomial sized circuits. We assume

30

that the message space is sufficiently large so that it can encrypt an ABE master public
key, a (description of) function f ∈ Fλ, a PRF key, two secret keys of SKE, and a trit
mode ∈ {0, 1, 2}.

3. A PRF F : {0, 1}λ ×X → {0, 1}t where t is the length of the randomness used in kpABE
encryption (Def. 2.1)

4. A symmetric key encryption schemes SKE = (SKE.KeyGen, SKE.Enc, SKE.Dec) with
pseudorandom ciphertexts (Def. 2.3) We let CT SKE denote the ciphertext space of
SKE.9 We assume that uniform sampling from CT SKE is efficiently possible without
any parameter.

We describe our construction below.

RPE.Setup(1λ)→ (RPE.mpk,RPE.msk). The setup algorithm does the following:

• Generate (FE.mpk,FE.msk)← FE.Setup(1λ).

• Output RPE.mpk = FE.mpk and RPE.msk = FE.msk.

RPE.KeyGen(RPE.msk, lb, x)→ RPE.sklb,x. The key generation algorithm does the following:

• Sample random values γ1, γ2, δ ← CT SKE.

• Construct a circuit Re-Enc[lb, x, γ1, γ2, δ] which has the label lb, attribute x, γ1, γ2 and
δ hardwired, as defined in Figure 2.

• Compute FE.sklb,x ← FE.KeyGen(FE.msk,Re-Enc[lb, x, γ1, γ2, δ]).

• Output RPE.sklb,x = FE.sklb,x.

RPE.Enc(RPE.mpk, f,m,L)→ RPE.ct. The encryption algorithm does the following:

• Parse RPE.mpk = FE.mpk.

• Sample a PRF key K ← {0, 1}λ.

• Generate (kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ).

• Compute FE.ct← FE.Enc(FE.mpk, (kpABE.mpk, f,m,K, 0,⊥,⊥)).
• Construct a circuit CL, with revocation list L hardwired defined as follows:

On input a label lb ∈ Lλ,

CL(lb) = 1 if and only if lb /∈ L. (4.1)

Compute kpABE.skL ← kpABE.KeyGen(kpABE.msk, CL).

• Output RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct).

RPE.Dec(RPE.sklb,x,RPE.ct, L)→ m′. The decryption algorithm does the following:

• Parse RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct) and RPE.sklb,x = FE.sklb,x.

• Compute ct′ = FE.Dec(FE.sklb,x,FE.ct).

• Construct circuit CL from L and compute m′ = kpABE.Dec(kpABE.mpk,
kpABE.skL, CL, ct

′, lb).

• Output m′.

9 We note that we use the same ciphertext space for simplicity even though messages with different lengths are
going to be encrypted. To have the same ciphertext space, we can, for example, pad short messages to be some fixed
length, which is possible when the message length is bounded by some polynomial.

31

Function Re-Enc[lb, x, γ1, γ2, δ]

Hardwired values: A label lb, an attribute x, and SKE ciphertexts γ1, γ2, and δ.
Inputs: A kpABE master public key kpABE.mpk, a function f ∈ Fλ, a message m ∈Mλ , a PRF
key K, a trapdoor mode mode ∈ {0, 1, 2} and SKE keys SKE.key1 and SKE.key2.
Output : A kpABE ciphertext.

1. Parse the input as (ABE.mpk, f,m,K,mode,SKE.key1,SKE.key2).

2. Set m̃ =

{
m if f(x) = 1

0 if f(x) = 0.

3. Compute kpABE.ctlb = kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))).

4. Compute flag = SKE.Dec(SKE.key2, δ).

5. Compute outi = SKE.Dec(SKE.keyi, γi) for i ∈ {1, 2}.

6. If mode = 0, output kpABE.ctlb.

7. If mode = 1, output out1.

8. If mode = 2, output

{
out2 if flag = 1

kpABE.ctlb if flag = 0.

Figure 2: Function to compute kpABE ciphertexts depending on various conditions.

Correctness. We now show that the above construction is correct via the following theorem.

Theorem 4.1. Suppose FE and kpABE schemes are correct. Then the above construction satisfies the
encryption correctness (Def. 3.2).

Proof. Firstly, for any label lb, attribute x, and function f such that f(x) = 1, we have
FE.Dec(FE.sklb,x,FE.ct) = kpABE.ctlb, where kpABE.ctlb = kpABE.Enc(kpABE.mpk, lb,m;
F (K, (lb, x))), by the correctness of FE and the definition of Re-Enc. We then observe that
CL(·) can be implemented with depth O(log(|L| · |lb|)) = O(log poly(λ)) = O(log λ) ≤ d and
thus CL(·) ∈ Cℓ,d. Then if lb /∈ L we have CL(lb) = 1 and hence from the correctness of the
kpABE scheme it follows that kpABE.Dec(kpABE.mpk, kpABE.skL, CL, kpABE.ctlb, lb) = m. So
the decryption correctly recovers the message when f(x) = 1 and lb /∈ L.

Efficiency. Here we argue that our construction achieves optimal parameters. Namely, we
show that the size of each parameter is independent from |L|. We note that |f | refers to the
description size of the function, not the circuit size that implements the function. When |x| is
very long and f has succinct description, the former can be much shorter than the latter.

1. Public key size |RPE.mpk|: We have |RPE.mpk| = |FE.mpk|. Since we assumed that FE is
fully compact (Def. 2.7), the length of FE.mpk only depends on the input length of Re-Enc.
We have that the input length is |ABE.mpk| + |f | + |m| + |K| + |mode| + 2|SKE.key| =

32

|ABE.mpk|+ |f |+O(λ). We have |ABE.mpk| ≤ poly(λ, |lb|, d) = poly(λ, |lb|) by Theorem
2.18. The total length is therefore poly(λ, |f |, |lb|).

2. Secret key size |RPE.sklb,x|: We have |RPE.sklb,x| = |FE.sklb,x|. Since the size of the latter
is polynomially dependent on the size of Re-Enc, we evaluate its size. We can see that
the size of Re-Enc is polynomial in the total length of the input and the hardwired values.
The length of the input is bounded by poly(λ, |f |, |lb|) as analyzed in the above item. The
length of the hardwired values are |lb|+|x|+|γ1|+|γ2|+|δ|. We have |γ1|+|γ2|+|δ| = 3|γ2|10

and |γ2| = poly(λ, kpABE.ctlb) = poly(λ, lb, d) = poly(λ, lb). Therefore, the size of Re-Enc
is poly(λ, |x|, |f |, |lb|) and so is the size of the secret key.

3. Ciphertext size |RPE.ct|: We have |RPE.ct| = |kpABE.mpk| + |kpABE.skL| + |FE.ct|. We
have |ABE.mpk| = poly(λ, |lb|) as we showed in the first item. We also have |kpABE.skL| ≤
poly(λ, d) ≤ poly(λ) by the key compactness of kpABE (2.18). By similar analysis to the
first item, full compactness of FE implies |FE.ct| ≤ poly(λ, |f |, |lb|). Therefore, the overall
length of the ciphertext is poly(λ, |f |, |lb|).

4.2 Security

Now we prove that the above construction of RPE satisfies both function hiding and message
hiding security.

Function Hiding

Theorem 4.2. Assume that F is a secure PRF, SKE is correct and secure, FE and kpABE are secure as
per definitions 2.6 and 2.15, respectively. Furthermore, assume |Fλ| ≤ poly(λ) and |Mλ| ≤ poly(λ).
Then the RPE constructed above is function hiding (Def. 3.6).

Proof. Recall that for function hiding we need RPE.Enc(RPE.mpk, f0,m,L) ≈c

RPE.Enc(RPE.mpk, f1,m,L), where for all the key queries (lb, x), either f0(x) = f1(x)
or lb ∈ L.

The proof proceeds via a sequence of hybrid games between the challenger and a PPT
adversary A.

Hybrid0. This is the real world with β = 0, i.e. the challenge ciphertext is computed using the
function f0. We write the complete game here to set up the notations and easy reference
in later hybrids.

1. The adversary outputs the challenge functions f0 and f1 and the challenge message
m11.

2. The challenger generates (FE.mpk,FE.msk)← FE.Setup(1λ), sets RPE.mpk = FE.mpk
and sends it to the adversary. The challenger then responds to different queries from
A as follows:

3. Key Queries : For each key query (lb, x), the challenger does the following:

• Samples random values γ1, γ2, δ ← CT SKE.
• Defines the circuit Re-Enc[lb, x, γ1, γ2, δ] as in Figure 2 and computes FE.sklb,x ←

FE.KeyGen(FE.msk,Re-Enc[lb, x, γ1, γ2, δ]).

10We assumed that |γ1| = |γ2| = |δ|. See Footnote 9.
11To keep the proofs and notations simple, we let f0, f1,m to be given selectively. This is sufficient to achieve

security as in Def 3.6, as mentioned in Remark 3.10.

33

• Returns RPE.sklb,x = FE.sklb,x to the adversary.

4. Challenge Query: When the adversary outputs the revocation listL for the challenge
query, the challenger does the following:

• Samples a PRF key K.
• Generates (kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ).
• Computes FE.ct as

FE.Enc(FE.mpk, (kpABE.mpk, f0,m,K, 0,⊥,⊥)).

• DefinesCL as in Eq. (4.1) and computes kpABE.skL ← kpABE.KeyGen(kpABE.msk, CL).
• Returns RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct) to the adversary.

5. In the end, the adversary outputs a bit β′.

Hybrid1. This hybrid is same as the previous hybrid except the following changes:

• The challenger generates (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ) in the
beginning of the game after the adversary outputs the challenge functions f0 and f1
and the challenge message m. It also samples a SKE secret key SKE.key1 and a PRF
key K.

• For each key query (lb, x), γ1 is computed differently. In particular, the challenger
does the following

– Sets m̃ =

{
m if f0(x) = 1

0 if f0(x) = 0

and computes kpABE.ct′lb = kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))).
– Sets γ1 as SKE.Enc(SKE.key1, kpABE.ct′lb).

Hybrid2. This hybrid is same as the previous hybrid except the following changes:

• The challenger samples two SKE secret keys SKE.key1 and SKE.key2 in the beginning
of the game (after receiving f0, f1,m from A).

• For each key query (lb, x), γ2 and δ are computed differently from the previous
hybrid. In particular, the challenger does the following:

– Sets flag =

{
1 if f0(x) ̸= f1(x)

0 otherwise.
– Sets δ ← SKE.Enc(SKE.key2, flag) and γ2 ← SKE.Enc(SKE.key2, kpABE.ct

′
lb) if

flag = 1; else γ2 ← CT SKE. We note that kpABE.ct′lb and γ1 are computed as in
the previous hybrid.

Hybrid3. This hybrid is same as the previous hybrid except that FE.ct in the challenge ciphertext
is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f0,m,⊥, 1,SKE.key1, SKE.key2)).

Hybrid4. This hybrid is same as the previous hybrid except that for each key query (lb, x),
kpABE.ct′lb is computed as follows:

• If flag = 1, kpABE.ct′lb = kpABE.Enc(kpABE.mpk, lb, m̃; r), where r ← {0, 1}t.
• Else, if flag = 0, kpABE.ct′lb = kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))).

34

Hybrid5. This hybrid is same as the previous hybrid except that FE.ct in the challenge ciphertext
is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f0,m,K, 2,⊥, SKE.key2)).

Hybrid6. This hybrid is same as the previous hybrid except that for each key query (lb, x), γ1 is
set differently as γ1 ← CT SKE.

Hybrid7. This hybrid is same as the previous hybrid except that for each such key query
(lb, x) where flag = 1, kpABE.ct′lb is sampled uniformly from CT kpABE, i.e., kpABE.ct′lb ←
CT kpABE.

Hybrid8. This hybrid is same as the previous hybrid except that FE.ct in the challenge ciphertext
is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f1,m,K, 2,⊥, SKE.key2)).

We note that in the hybrids hereafter, we rewind the changes made in the preceding hybrids.

Hybrid9. This hybrid is same as the previous hybrid except that for each such key query
(lb, x) where flag = 1, kpABE.ct′lb is changed back to kpABE.Enc(kpABE.mpk, lb, m̃; r) for
r ← {0, 1}t, where m̃ is now defined as m if f1(x) = 1 and 0 otherwise.

Hybrid10. This hybrid is same as the previous hybrid except that for all the key queries (lb, x),
the challenger sets γ1 as SKE.Enc(SKE.key1, kpABE.ct′lb).

Hybrid11. This hybrid is same as the previous hybrid except that FE.ct in the challenge
ciphertext is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f1,m,⊥, 1,SKE.key1, SKE.key2)).

Hybrid12. This hybrid is same as the previous hybrid except that for each key query (lb, x),
kpABE.ct′lb is computed as kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))).

Hybrid13. This hybrid is same as the previous hybrid except that FE.ct in the challenge
ciphertext is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f1,m,K, 0,⊥,⊥)).

Hybrid14. This hybrid is same as the previous hybrid except that γ2 and δ2 are set as γ2, δ ←
CT SKE.

Hybrid15. This hybrid is same as the previous hybrid except that γ1 is set as γ1 ← CT SKE. Note
that this is the real world with β = 1, i.e., f1 is encrypted in the challenge ciphertext.

Indistinguishability of hybrids We now show that the consecutive hybrids are indistinguish-
able.

Claim 4.2.1. Assume that SKE is secure, then Hybrid0 ≈c Hybrid1.

Proof. We show that if A can distinguish between Hybrid0 and Hybrid1 with non-negligible
advantage ϵ, then there exists a PPT adversary B against the security of SKE scheme with
advantage ϵ. The reduction is as follows.

35

1. The SKE challenger samples SKE.key1 ← SKE.Setup(1λ) and a bit β̂ ← {0, 1} and starts
the SKE security game with B.

2. B invokes A, which then outputs the challenge functions f0 and f1 and the challenge
message m.

3. B generates (FE.mpk,FE.msk) ← FE.Setup(1λ), sets RPE.mpk = FE.mpk and sends
RPE.mpk to A.
B also generates (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ) and samples a PRF key
K.

4. Key Queries : Whenever A issues a key query (lb, x), B does the following:

• It sets m̃ =

{
m if f0(x) = 1

0 if f0(x) = 0

and computes kpABE.ct′lb = kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))).

• It sends kpABE.ct′lb as the challenge message to the SKE challenger.
The SKE challenger returns ctβ̂ to B, where ct0 ← CT SKE and ct1 ←
SKE.Enc(SKE.key1, kpABE.ct

′
lb).

• It sets γ1 = ctβ̂ , samples random values γ2, δ ← CT SKE and computes the FE key for
the circuit Re-Enc[lb, x, γ1, γ2, δ] and returns it as the secret key RPE.sklb,x to A.

5. Challenge Query : When A outputs the revocation list L for the challenge ciphertext, B
does the following:

• Computes FE.ct← FE.Enc(FE.mpk, (kpABE.mpk, f0,m,K, 0,⊥,⊥)).
• Defines CL as in Eq. 4.1 and computes kpABE.skL ← kpABE.KeyGen(kpABE.msk, CL).

• Returns RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct) to A.

6. In the end, A outputs a bit β′. B sends β′ to the SKE challenger.

We observe that if the SKE challenger samples β̂ = 0, then B simulated Hybrid0, else Hybrid1
with A. Hence, advantage of B = |Pr(β′ = 1|β̂ = 0)−Pr(β′ = 1|β̂ = 1)| = |Pr(β′ = 1|Hybrid0)−
Pr(β′ = 1|Hybrid1)| = ϵ (by assumption).

Claim 4.2.2. Assume that SKE is secure. Then Hybrid1 ≈c Hybrid2.

Proof. The proof follows the same steps as that for the claim 4.2.1 and hence omitted.

Claim 4.2.3. Assume that FE satisfies selective security (Def. 2.6) and SKE is correct. Then Hybrid2 ≈c

and Hybrid3.

Proof. We show that if A can distinguish between the two hybrids with non-negligible
advantage ϵ, then there exists a PPT adversary B against the security of FE with the same
advantage ϵ. B is defined as follows:

1. Upon being invoked by the FE challenger, B invokesA. A outputs the challenge functions
f0 and f1 and the challenge message m.

2. B samples two SKE secret keys SKE.key1, SKE.key2, a PRF key K and generates
(kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ).

36

3. It sets µ0 = (kpABE.mpk, f0,m,K, 0,⊥,⊥) and µ1 = (kpABE.mpk, f0,m,⊥, 1,
SKE.key1,SKE.key2) and sends (µ0, µ1) to the FE challenger as challenge messages.

4. The FE challenger generates (FE.mpk,FE.msk) ← FE.Setup(1λ), samples β̂ ← {0, 1}. It
then computes FE.ctβ̂ ← FE.Enc(FE.mpk, µβ̂) and sends (FE.mpk,FE.ctβ̂) to B.

5. B sets RPE.mpk = FE.mpk and sends RPE.mpk to A.

6. Key Queries : When A issues a key query (lb, x), B does the following:

• It sets m̃ =

{
m if f0(x) = 1

0 if f0(x) = 0

and computes kpABE.ct′lb = kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))).

• It sets flag =

{
1 if f0(x) ̸= f1(x)

0 otherwise
.

• It computes γ1 ← SKE.Enc(SKE.key1, kpABE.ct
′
lb), δ ← SKE.Enc(SKE.key2, flag) and

γ2 ← SKE.Enc(SKE.key2, kpABE.ct
′
lb) if flag = 1; else samples γ2 ← CT SKE.

• It defines Re-Enc[lb, x, γ1, γ2, δ] as in Figure 2 and sends a key query
Re-Enc[lb, x, γ1, γ2, δ] to the FE challenger. The FE challenger returns the secret key
FE.sklb,x to B.

• B returns RPE.sklb,x = FE.sklb,x to A.

7. Challenge Query : When A outputs the revocation list L for the challenge ciphertext, B
does the following:

• It definesCL as in Eq. (4.1) and computes kpABE.skL ← kpABE.KeyGen(kpABE.msk, CL).

• Returns RPE.ct = (kpABE.mpk, kpABE.skL,FE.ctβ̂) to A.

8. In the end, A outputs a bit β′. B sends β′ to the FE challenger.

We observe that if FE challenger chose β̂ = 0, then B simulated Hybrid2, else Hybrid3 with A.
Hence, advantage of B = |Pr(β′ = 1|β̂ = 0)−Pr(β′ = 1|β̂ = 1)| = |Pr(β′ = 1|Hybrid2)−Pr(β′ =
1|Hybrid3)| = ϵ (by assumption).
Admissibility of B
Firstly, we observe that the only key queries that B issues to the FE challenger are
for the Re-Enc functions defined for each key query (lb, x) by A. Next, we observe
that for any function Re-Enc[lb, x, γ1, γ2, δ], µ0 = (kpABE.mpk, f0,m,K, 0,⊥,⊥), and µ1 =
(kpABE.mpk, f0,m,⊥, 1,SKE.key1, SKE.key2) the following holds true from the definition of
Re-Enc and correctness of SKE decryption,

Re-Enc[lb, x, γ1, γ2, δ](µ0) = kpABE.ctlb

= kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x)))

Re-Enc[lb, x, γ1, γ2, δ](µ1) = SKE.Dec(SKE.key1, γ1)

= kpABE.ct′lb

= kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x)))

Thus, for all the keys queried to the FE challenger, Re-Enc[lb, x, γ1, γ2, δ](µ0) =
Re-Enc[lb, x, γ1, γ2, δ](µ1). This establishes the admissibility of B.

37

Claim 4.2.4. Assume that PRF is secure, then Hybrid3 ≈c Hybrid4.

Proof. We show that if A can distinguish between the two hybrids with non-negligible
advantage ϵ, then there exists a PPT adversary B against PRF security with the same advantage
ϵ. The reduction B is defined as follows:

1. The PRF challenger samples a PRF key K and a bit β̂ ← {0, 1} and starts the game with B.

2. B then invokes A which outputs the challenge functions f0 and f1 and the challenge
message m.

3. B samples two SKE secret keys SKE.key1, SKE.key2, generates (kpABE.mpk, kpABE.msk)←
kpABE.Setup(1λ), (FE.mpk,FE.msk) ← FE.Setup(1λ), sets RPE.mpk = FE.mpk and sends
RPE.mpk to A.

4. Key Queries : When A issues a key query (lb, x), B does the following:

• If flag = 0, it sends an evaluation query for input (lb, x) to the PRF
challenger and gets back F (K, (lb, x)). It then computes kpABE.ct′lb =
kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))).

• If flag = 1, it sends (lb, x) as a challenge query to the PRF challenger and gets
back rβ̂ , where r0 = F (K, (lb, x)) and r1 ← {0, 1}t. It then computes kpABE.ct′lb =

kpABE.Enc(kpABE.mpk, lb, m̃; rβ̂).

• Computes γ1 ← SKE.Enc(SKE.key1, kpABE.ct
′
lb), δ ← SKE.Enc(SKE.key2, flag) and

γ2 ← SKE.Enc(SKE.key2, kpABE.ct
′
lb) if flag = 1; else γ2 ← CT SKE.

• Defines Re-Enc[lb, x, γ1, γ2, δ] and computes the FE key for the circuit
Re-Enc[lb, x, γ1, γ2, δ] and returns it as the secret key RPE.sklb,x to A.

5. Challenge Query : When A outputs the revocation list L for the challenge ciphertext, B
does the following

• Computes FE.ct← FE.Enc(FE.mpk, (kpABE.mpk, f0,m,⊥, 1,SKE.key1,
SKE.key2)).

• Defines CL as in Eq. 4.1 and computes kpABE.skL ← kpABE.KeyGen(kpABE.msk, CL).

• Returns RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct) to A.

6. In the end, A outputs a bit β′. B sends β′ to the SKE challenger.

We observe that if β̂ = 0, then B simulated Hybrid3, else Hybrid4 with A. Hence, advantage of
B = |Pr(β′ = 1|β̂ = 0) − Pr(β′ = 1|β̂ = 1)| = |Pr(β′ = 1|Hybrid3) − Pr(β′ = 1|Hybrid4)| = ϵ (by
assumption).

Claim 4.2.5. Assume that FE is selectively secure (as per Def 2.6) and SKE is correct. Then Hybrid4 ≈c

Hybrid5.

Proof. We show that if A wins with non-negligible advantage ϵ in distinguishing the two
hybrids, then there exists an adversary B against FE security with the same advantage
ϵ. The steps of the reduction are similar as in the proof of the Claim 4.2.3, with µ0 =
(kpABE.mpk, f0,m,⊥, 1,SKE.key1, SKE.key2) and µ1 = (kpABE.mpk, f0,m,K, 2,⊥, SKE.key2).

38

Hence, here we only argue the admissibility of B in the FE security game.

Admissibility of B
Firstly, we observe that the only key queries that B issues to the FE challenger are for the
Re-Enc[lb, x, γ1, γ2, δ] functions, where each function is defined corresponding to a key query
(lb, x) by A. Here, γ1 ← SKE.Enc(SKE.key1, kpABE.ct

′
lb), δ ← SKE.Enc(SKE.key2, flag)

and γ2 ← SKE.Enc(SKE.key2, kpABE.ct
′
lb) if flag = 1; else γ2 ← CT SKE. Also

kpABE.ct′lb = kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))) if flag = 0; else kpABE.ct′lb ←
kpABE.Enc(kpABE.mpk, lb, m̃; r) where r ← {0, 1}t.
Next, we observe that for any function Re-Enc[lb, x, γ1, γ2, δ], µ0 = (kpABE.mpk, f0,m,⊥, 1,
SKE.key1,SKE.key2), and µ1 = (kpABE.mpk, f0,m,K, 2,⊥,SKE.key2) the following holds true
from the definition of Re-Enc and correctness of SKE decryption,

Re-Enc[lb, x, γ1, γ2, δ](µ0) = SKE.Dec(SKE.key1, γ1)

= kpABE.ct′lb

=

{
kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))) if flag = 0

kpABE.Enc(kpABE.mpk, lb, m̃; r) if flag = 1

Re-Enc[lb, x, γ1, γ2, δ](µ1) =

{
kpABE.ctlb if flag = 0

SKE.Dec(SKE.key2, γ2) = kpABE.ct′lb if flag = 1

=

{
kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))) if flag = 0

kpABE.Enc(kpABE.mpk, lb, m̃; r) if flag = 1

Thus, Re-Enc[lb, x, γ1, γ2, δ](µ0)=Re-Enc[lb, x, γ1, γ2, δ](µ1). This establishes the admissibility
of B.

Claim 4.2.6. Assume that SKE is secure, then Hybrid5 ≈c Hybrid6.

Proof. The proof is similar to the proof for the claim 4.2.1 and hence omitted.

Claim 4.2.7. Assume that kpABE is Sel-INDr secure (Def. 2.15), then Hybrid6 ≈c Hybrid7.

Proof. To argue indistinguishability between the two hybrids, we define an intermediate
hybrid Hybrid6a as follows - this hybrid is same as Hybrid6 except that for each such pre-challenge
key query (lb, x) where flag = 1, kpABE.ct′lb ← CT kpABE. The proof then follows from the
following two claims:

Claim 4.3 (1). Assuming kpABE is Sel-INDr secure (Def. 2.15), Hybrid6 ≈c Hybrid6a.

Proof. Let Qfpre be the number of pre-challenge key queries with flag = 112. Then, we further
define the following sub hybrids: for i = 0 to Qfpre, define Hybrid6.i which is same as Hybrid6,
except that for the first i key queries with flag = 1, kpABE.ct′lb ← CT kpABE. Thus, Hybrid6.0 =
Hybrid6 and Hybrid6.Qfpre

= Hybrid6a. Next, we show that for all i ∈ [Qfpre], Hybrid6.i−1 ≈c

Hybrid6.i. In particular, we show that if A distinguishes between the two hybrids with non-
negligible advantage ϵ, then there exists a PPT algorithm B against Sel-INDr security of kpABE
with the same advantage ϵ.

Observe that the two hybrids differ only in the value of kpABE.ct′lb used in the computation
of RPE.sklb,x for the i-th key query (lb, x) with flag = 1; in the former hybrid we have

12Note that we can upper bound Qfpre as Qfpre ≤ |L|.

39

kpABE.ct′lb = kpABE.Enc(kpABE.mpk, lb, m̃; r), while in the latter hybrid, kpABE.ct′lb ←
CT kpABE. Now, we define the reduction B.

1. B firstly invokes A and gets f0, f1 and m.

2. B then samples two SKE secret keys SKE.key1, SKE.key2, a PRF key K and generates
(FE.mpk,FE.msk) ← FE.Setup(1λ). It sets RPE.mpk = FE.mpk and sends it to A. It then
answers different queries from A as follows:

3. Key Queries: For each key query (lb, x), B does the following:

• Sets flag = 0, if f0(x) = f1(x); else flag = 1. It computes δ = SKE.Enc(SKE.key2, flag)
and samples γ1 ← CT SKE.

• Computes γ2 as follows:

– If flag = 0, γ2 ← CT SKE.
– Else, if flag = 1, then let this be the j-th key query with flag = 1. Then,

* For j < i, γ2 ← SKE.Enc(SKE.key2, kpABE.ct
′
lb), where kpABE.ct′lb ←

CT kpABE. (Note that this does not require kpABE.mpk).

* For j = i, B does the following:
· Sends lb and m̃ as the challenge attribute and message, respectively, to the
kpABE challenger.

· The kpABE challenger samples β̂ ← {0, 1} and computes kpABE.ct ←
kpABE.Enc(kpABE.mpk, lb, m̃; r), if β̂ = 0, else samples kpABE.ct ←
CT kpABE. The kpABE challenger sends {kpABE.mpk, kpABE.ct} to B.

· B then computes γ2 ← SKE.Enc(SKE.key2, kpABE.ct).

* For j > i, γ2 ← SKE.Enc(SKE.key2, kpABE.ct
′
lb), where kpABE.ct′lb ←

kpABE.Enc(kpABE.mpk, lb, m̃; r).

• Defines Re-Enc[lb, x, γ1, γ2, δ], computes an FE key for this circuit and returns it as
the secret key RPE.sklb,x to A.

4. Challenge Query: When A outputs the revocation list L for the challenge query, B does
the following:

• Computes FE.ct← FE.Enc(FE.mpk, (kpABE.mpk, f0,m,K, 2,⊥,SKE.key2)).
• Defines CL as in Eq. 4.1 and sends a key query for the circuit CL to the kpABE

challenger. The kpABE challenger returns kpABE.skL.

• Returns RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct) to A.

5. In the end, A outputs its guess bit β′. B sends β′ to the kpABE challenger as its guess bit.

We observe that if the kpABE challenger chose β̂ = 0, then B simulated Hybrid6,i−1, else
Hybrid6,i with A. Hence, advantage of B = |Pr(β′ = 1|β̂ = 0) − Pr(β′ = 1|β̂ = 1)| =
|Pr(β′ = 1|Hybrid6,i−1)− Pr(β′ = 1|Hybrid6,i)| = ϵ (by assumption).

Admissibility of B: Observe that B issues a single kpABE key query which is for circuit CL

and the challenge attribute is the label lb corresponding to a key query (lb, x) by A for which
flag = 1. Hence, by the admissibility condition of A, lb ∈ L and hence CL(lb) = 0.

Claim 4.4 (2). Assume kpABE is Sel-INDr secure (Def. 2.15). Then, Hybrid6a ≈c Hybrid7.

40

Proof. To prove the claim, we again consider sub hybrids, Hybrid6a.i for i = 0 to |L|, defined
as follows: let L[1:j] be the set of first j labels in the revocation list L. Then, Hybrid6a.i is same
as Hybrid6a except the following changes: for any post-challenge key query (lb, x) such that
lb ∈ L[1:i] and flag = 1, kpABE.ct′lb ← CT kpABE. Thus, Hybrid6a.0 = Hybrid6a and Hybrid6a.|L| =
Hybrid7. Next we prove the following claim:

Claim 4.5. Assume kpABE is Sel-INDr secure (Def. 2.15). Then for i ∈ [|L|], Hybrid6a.i−1 ≈c

Hybrid6a.i.

Proof. Let lbi be the i-th label in L. Then we observe that if there is no post-challenge key query
(lb, x) such that flag = 1 and lb = lbi then the two hybrids are identical. Else, we show that if A
can distinguish between the two hybrids with non negligible advantage ϵ then there exists a
PPT algorithm B against Sel-INDr security of kpABE security with the same advantage ϵ. B is
defined as follows:

1. B firstly invokes A and gets f0, f1 and m.

2. It then samples a SKE secret key SKE.key2, a PRF key K and generates FE keys as
(FE.mpk,FE.msk) ← FE.Setup(1λ). It sets RPE.mpk = FE.mpk and sends it to A. It then
answers different queries from A as follows:

3. Pre-challenge Key Queries: For pre-challenge key query (lb, x), B does the following:

• Sets flag = 0 if f0(x) = f1(x); else flag = 1 and computes δ = SKE.Enc(SKE.key2, flag).
It also samples γ1 ← CT SKE.

• Computes γ2 as follows: if flag = 0, γ2 ← CT SKE; else γ2 ←
SKE.Enc(SKE.key2, kpABE.ct

′
lb), where kpABE.ct′lb ← CT kpABE. (Note that this

does not require kpABE.mpk).

• Defines Re-Enc[lb, x, γ1, γ2, δ], computes an FE key for this circuit and returns it as
the secret key RPE.sklb,x to A.

4. Challenge Query: WhenA outputs the revocation list L = {lb1, . . . , lb|L|} for the challenge
ciphertext, B does the following:

• Sends lbi to the kpABE challenger as the challenge attribute. The kpABE challenger
samples (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ) and β̂ ← {0, 1}, and sends
kpABE.mpk to B.

• Constructs circuit CL as defined in the construction and sends a key query for CL to
the kpABE challenger and gets kpABE.skL in response.

• Computes FE.ct← FE.Enc(FE.mpk, (kpABE.mpk, f0,m,K, 2,⊥,SKE.key2))
• Returns RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct) to A.

5. Post-challenge Key Queries: For each post-challenge key query (lb, x), B computes flag, δ
and γ1 as defined for the hybrid and defines Re-Enc[lb, x, γ1, γ2, δ], where γ2 is computed
as follows:

• if flag = 0, γ2 ← CT SKE. Else,

– if lb ∈ L[1:i−1], γ2 = SKE.Enc(SKE.key2, kpABE.ct
′
lb), where kpABE.ct′lb ←

CT kpABE.

41

– if lb = lbi, B sends challenge query with message m̃ to the kpABE
challenger. The kpABE challenger returns a ciphertext kpABE.ct =
kpABE.Enc(kpABE.mpk, lbi, m̃; r), if β̂ = 0; else kpABE.ct ← CT kpABE. Then B
computes γ2 ← SKE.Enc(SKE.key2, kpABE.ct). 13

– if lb ̸∈ L[1:i], then γ2 ← SKE.Enc(SKE.key2, kpABE.ct
′
lb), where kpABE.ct′lb =

kpABE.Enc(kpABE.mpk, lb, m̃; r).

B computes an FE key for Re-Enc[lb, x, γ1, γ2, δ] and returns it as the secret key RPE.sklb,x
to A.

6. In the end, A outputs its guess bit β′. B sends β′ to the kpABE challenger as its guess bit.

We observe that if the kpABE challenger chose β̂ = 0, then B simulated Hybrid6a,i−1, else
Hybrid6a,i with A. Hence, advantage of B = |Pr(β′ = 1|β̂ = 0) − Pr(β′ = 1|β̂ = 1)| =
|Pr(β′ = 1|Hybrid6a,i−1)− Pr(β′ = 1|Hybrid6a,i)| = ϵ (by assumption).

Admissibility of B: Observe that B issues a single ABE key query, which is for circuit CL and
the challenge attribute is lbi ∈ L. Hence, by the design of CL, CL(lbi) = 0 as desired.

Claim 4.5.1. Assume that FE is secure, then Hybrid7 ≈c Hybrid8.

Proof. We show that if A wins with non-negligible advantage ϵ in distinguishing the
two hybrids, then there exists an adversary B against FE security with the same
advantage ϵ. The steps of the reduction are similar to the proof of Claim 4.2.3, with
µ0 = (kpABE.mpk, f0,m,K, 2,⊥,SKE.key2) and µ1 = (kpABE.mpk, f1,m,K, 2,⊥, SKE.key2).
Hence, here we only argue the admissibility of B in the FE security game.

Admissibility of B :
Firstly, we observe that the only key queries that B issues to the FE challenger are
for the Re-Enc[lb, x, γ1, γ2, δ] functions, where each function is defined corresponding
to a key query (lb, x) by A. Here, γ1 ← CT SKE, δ ← SKE.Enc(SKE.key2, flag)
and γ2 ← SKE.Enc(SKE.key2, kpABE.ct

′
lb) if flag = 1; else γ2 ← CT SKE, where

kpABE.ct′lb ← CT kpABE for flag = 1. Next, we observe that for any Re-Enc[lb, x, γ1, γ2, δ] function,
µ0 = (kpABE.mpk, f0,m,K, 2,⊥,SKE.key2), and µ1 = (kpABE.mpk, f1,m,K, 2,⊥, SKE.key2)
the following holds true from the definition of Re-Enc and correctness of SKE decryption,

• when flag = 0, i.e f0(x) = f1(x), m̃ in kpABE.ctlb = kpABE.Enc(kpABE.mpk, lb, m̃;F (K, (lb, x))),
computed inside the Re-Enc[lb, x, γ1, γ2, δ] function is same for both f0 and f1, and hence
same on both the inputs µ0 and µ1. So,

Re-Enc[lb, x, γ1, γ2, δ](µ0) = kpABE.ctlb (since mode = 2 and flag = 0).

Re-Enc[lb, x, γ1, γ2, δ](µ1) = kpABE.ctlb (since mode = 2 and flag = 0).
13In case multiple queries with lb = lbi are made, we need to simulte the ciphertext multiple times. In that case, we

rely on multi-challenge version of Sel-INDr, which is easily seen to be equivalent with the single challenge version.

42

• When flag = 1,i.e f0(x) ̸= f1(x), by definition of Re-Enc[lb, x, γ1, γ2, δ] we have

Re-Enc[lb, x, γ1, γ2, δ](µ0) = SKE.Dec(SKE.key2, γ2)

= kpABE.ct′lb (since mode = 2 and flag = 1).

Re-Enc[lb, x, γ1, γ2, δ](µ1) = SKE.Dec(SKE.key2, γ2)

= kpABE.ct′lb (since mode = 2 and flag = 1).

This establishes the admissibility of B.

The rest of the hybrids, Hybrid9 to Hybrid15, are simply unwinding the previous hybrids and
their proofs of indistinguishability are same as their corresponding counterparts in the first set
of hybrids and hence, omitted.

Message Hiding

Theorem 4.6. Assume that F is a secure PRF, SKE is correct and secure, FE and kpABE are secure as
per definitions 2.6 and 2.15, respectively. Furthermore, assume |Fλ| ≤ poly(λ) and |Mλ| ≤ poly(λ).
Then the construction for RPE satisfies message hiding property as defined in Def. 3.3.

Proof. Recall that for message hiding we want

RPE.Enc(RPE.mpk, f,m0, L) ≈c RPE.Enc(RPE.mpk, f,m1, L),

where for all the key queries (lb, x), either f(x) = 0 or lb ∈ L. The proof is given via a similar
sequence of hybrid games between the challenger and a PPT adversary A as in the proof of
Theorem 4.2. The hybrids are defined as follows:

Hybrid0. This is the real world with β = 0, i.e., the challenge ciphertext is computed using the
message m0. We write the complete game here to set up notations and easy reference in
later hybrids.

1. The adversary outputs the challenge messages (m0,m1) and the challenge function
f14.

2. The challenger generates (FE.mpk,FE.msk)← FE.Setup(1λ), sets RPE.mpk = FE.mpk
and sends RPE.mpk to the adversary.

3. Key Queries : When adversary issues a key query on (lb, x), the challenger does the
following:

• Samples random values γ1, γ2, δ ← CT SKE.
• Defines the circuit Re-Enc[lb, x, γ1, γ2, δ] as in the Figure 2.
• Computes FE.sklb,x ← FE.KeyGen(FE.msk,Re-Enc[lb, x, γ1, γ2, δ]).
• Returns RPE.sklb,x = FE.sklb,x to the adversary.

4. Challenge Query : When the adversary outputs the revocation list L for the
challenge ciphertext, the challenger does the following:

• Samples a PRF key K.
• Generates (kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ).

14To keep the proofs and notations simple, we let f,m0,m1 to be output selectively. This is sufficient to achieve
security as in Def 3.3, as mentioned in Remark 3.10.

43

• Computes FE.ct as

FE.Enc(FE.mpk, (kpABE.mpk, f,m0,K, 0,⊥,⊥)).

• DefinesCL as in Eq. 4.1 and computes kpABE.skL ← kpABE.KeyGen(kpABE.msk, CL).
• Returns RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct) to the adversary.

5. In the end, the adversary outputs a bit β′.

Hybrid1. This hybrid is same as the previous hybrid except the following changes:

• The challenger generates (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ) in the
beginning of the game after the adversary outputs (m0,m1) and f . It also samples a
SKE secret key SKE.key1 and a PRF key K.

• For each key query (lb, x), γ1 is computed differently. In particular, the challenger
does the following:

- Sets m̃0 =

{
m0 if f(x) = 1,

0 if f(x) = 0.

and computes kpABE.ct′lb = kpABE.Enc(kpABE.mpk, lb, m̃0;F (K, (lb, x))).
- Sets γ1 as SKE.Enc(SKE.key1, kpABE.ct′lb).

Hybrid2. This hybrid is same as the previous hybrid except the following:

• The challenger samples two SKE secret keys SKE.key1 and SKE.key2.

• For each key query (lb, x), γ2 and δ are computed differently as follows:

- Set flag =

{
1 if f(x) = 1,

0 otherwise.
- Set δ ← SKE.Enc(SKE.key2, flag) and γ2 ← SKE.Enc(SKE.key2, kpABE.ct

′
lb) if

flag = 1, else γ2 ← CT SKE.

Hybrid3. This hybrid is same as the previous hybrid except that FE.ct in the challenge ciphertext
is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f,m0,⊥, 1,SKE.key1, SKE.key2)).

Hybrid4. This hybrid is same as the previous hybrid except that for each key query (lb, x)
kpABE.ct′lb is computed as follows:

• If flag = 1, kpABE.Enc(kpABE.mpk, lb, m̃0; r), where r ← {0, 1}t,
• Else, if flag = 0, kpABE.ct′lb ← kpABE.Enc(kpABE.mpk, lb, m̃0;F (K, (lb, x))). (This is

same as in the previous hybrid).

Hybrid5. This hybrid is same as the previous hybrid except that FE.ct in the challenge ciphertext
is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f,m0,K, 2,⊥,SKE.key2)).

Hybrid6. This hybrid is same as the previous hybrid except that for all the key queries (lb, x),
γ1 ← CT SKE.

Hybrid7. This hybrid is same as the previous hybrid except that for each such key query (lb, x)
where flag = 1, kpABE.ct′lb ← CT kpABE.

44

Hybrid8. This hybrid is same as the previous hybrid except that FE.ct in the challenge ciphertext
is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f,m1,K, 2,⊥,SKE.key2)).

We note that the hybrids hereafter are unwinding the changes made in the previous hybrids.

Hybrid9. This hybrid is same as the previous hybrid except that for each key query (lb, x)
with flag = 1, kpABE.ct′lb is changed back to kpABE.Enc(kpABE.mpk, lb, m̃1; r), where
r ← {0, 1}t.

Hybrid10. This hybrid is same as the previous hybrid except that for each key query (lb, x),
γ1 ← SKE.Enc(SKE.key1, kpABE.ct

′
lb).

Hybrid11. This hybrid is same as the previous hybrid except that FE.ct in the challenge
ciphertext is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f,m1,⊥, 1,SKE.key1, SKE.key2)).

Hybrid12. This hybrid is same as the previous hybrid except that for each key query (lb, x),
kpABE.ct′lb is computed as kpABE.Enc(kpABE.mpk, lb, m̃1;F (K, (lb, x))).

Hybrid13. This hybrid is same as the previous hybrid except that FE.ct in the challenge
ciphertext is computed as

FE.Enc(FE.mpk, (kpABE.mpk, f,m1,K, 0,⊥,⊥)).

Hybrid14. This hybrid is same as the previous hybrid except that the γ2, δ are now sampled
uniformly from CT SKE for all the key queries.

Hybrid15. This hybrid is same as the previous hybrid except that γ1 is now sampled uniformly
from CT SKE for all the key queries. This is the real world where the message m1 is
encrypted in the challenge ciphertext.

Indistinguishability of hybrids: The indistinguishability between the consecutive hybrids is
argued in the same way as that in the proof of Theorem 4.2. Therefore, here we give only a brief
sketch.

Hybrid0 ≈c Hybrid1 ≈c Hybrid2 from SKE security. Hybrid2 ≈c Hybrid3 due to FE security
and SKE correctness and Hybrid3 ≈c Hybrid4 follows from PRF security. Hybrid4 ≈c Hybrid5
follows from FE security and SKE correctness and Hybrid5 ≈c Hybrid6 follows again from the
SKE security. Hybrid6 ≈c Hybrid7 follows from selective security of ABE. We observe that in
both Hybrid6 and Hybrid7, ABE.ct′lb is not used when flag = 0 and when flag = 1, it is sampled
from CT kpABE directly which can be efficiently done without using kpABE.mpk. This lets the
reduction go through. The steps of reduction are same as in the proof of Claim 4.2.7. Hybrid7 ≈c

Hybrid8 follows again from the security of FE and SKE correctness. In particular, we observe
that here the FE challenge messages are µ0 = (kpABE.mpk, f,m0,K, 2,⊥,SKE.key2) and µ1 =
(kpABE.mpk, f,m1,K, 2,⊥,SKE.key2). For every Re-Enc[lb, x, γ1, γ2, δ] function (corresponding
to RPE key query (lb, x)) for which FE key is generated, we have the following:

• When flag = 0, this implies f(x) = 0, which in turn implies that m̃0 = m̃1 = 0. Hence,

Re-Enc[lb, x, γ1, γ2, δ](µ0)

45

= Re-Enc[lb, x, γ1, γ2, δ](kpABE.mpk, f,m0,K, 2,⊥,SKE.key2)
= kpABE.Enc(kpABE.mpk, lb, 0;F (K, (lb, x)))

= Re-Enc[lb, x, γ1, γ2, δ](kpABE.mpk, f,m1,K, 2,⊥,SKE.key2)
= Re-Enc[lb, x, γ1, γ2, δ](µ1).

• When flag = 1,

Re-Enc[lb, x, γ1, γ2, δ](µ0)
= Re-Enc[lb, x, γ1, γ2, δ](kpABE.mpk, f,m0,K, 2,⊥,SKE.key2)
= SKE.Dec(SKE.key2, γ2)

= Re-Enc[lb, x, γ1, γ2, δ](kpABE.mpk, f,m1,K, 2,⊥,SKE.key2)
= Re-Enc[lb, x, γ1, γ2, δ](µ1).

This satisfies the admissibility condition for FE security. The rest of the hybrids undo the changes
made so far to get to the real world with β = 1 and the arguments for indistinguishability are
same as their counterparts in the first set of hybrids.

4.3 Alternate Construction using LOT

Here, we consider an alternative construction using LOT. Compared to our construction
in Sec. 4.1, the construction here can only handle the case where the number of users is
polynomially bounded and only achieves selective security. On the other hand, it can be
based on FE and LOT rather than FE and kpABE with specific properties. Note that LOT can be
based on more diverse assumptions than kpABE and this leads to an instantiation without LWE
in particular.

The construction is similar to that in Sec. 4.1 except that we use LOT in place of ABE, which
brings in the following changes in the KeyGen, Enc, and Dec algorithms:

• We use LOT = (LOT.crsGen, LOT.Hash, LOT.Send, LOT.Receive) instead of kpABE.

• The function in Figure 2, for which FE key is generated now takes as input
LOT objects crs and digest, instead of kpABE.mpk and computes LOT.ctlb =
LOT.Send(crs, digest, lb, 0, m̃;F (K, (lb, x))), instead of kpABE.ctlb.

• The encryption algorithm changes as follows:
RPE.Enc(RPE.mpk, f,m,L)→ RPE.ct. The encryption algorithm does the following:

– Parse RPE.mpk = FE.mpk and sample a PRF key K ← {0, 1}λ.

– Generate crs← LOT.crsGen(1λ).

– Compute (digest, D̂) ← LOT.Hash(crs, D), where D is a binary vector of length N
(the number of users) and is 1 at positions corresponding to non-revoked labels, i.e.
D[lb′] = 1 iff lb′ ̸∈ L.

– Compute FE.ct← FE.Enc(FE.mpk, (crs, digest, f,m,K, 0,⊥,⊥)).
– Output RPE.ct = (crs,FE.ct).

• The algorithm for decryption also changes accordingly as follows:
RPE.Dec(RPE.sklb,x,RPE.ct, L)→ m′. The decryption algorithm does the following:

46

– Parse RPE.ct = (crs,FE.ct) and RPE.sklb,x = FE.sklb,x.

– DefineD from L as described in the encryption algorithm and compute (digest, D̂)←
LOT.Hash(crs, D).

– Compute LOT.ct′ = FE.Dec(FE.sklb,x,FE.ct).

– Compute m′ = LOT.ReceiveD̂(crs, LOT.ct′, lb).

– Output m′.

We note that the above construction works when the identity space is of polynomial size. Next
we sketch the correctness, efficiency and security of the above construction.

Correctnness. Firstly, for any label lb, attribute x, and function f such that f(x) = 1,
we have FE.Dec(FE.sklb,x,FE.ct) = LOT.ctlb, where LOT.ctlb = LOT.Send(crs, digest, lb, 0,m
;F (K, (lb, x))) , by the correctness of FE and the definition of Re-Enc. Next we observe that
if lb /∈ L, then D[lb] = 1 and hence from the correctness of LOT scheme it follows that
LOT.ReceiveD̂(crs, LOT.ctlb, lb) = mD[lb] = m1 = m.
So the decryption correctly recovers the message when f(x) = 1 and lb /∈ L.

Efficiency Here we argue that the above construction using LOT achieves optimal parameters.
Namely, we show that the size of each parameter is independent from |L|. We note that |f |
refers to the description size of the function, not the circuit size that implements the function.
When |x| is very long and f has succinct description, the former can be much shorter than the
latter.

1. Public key size |RPE.mpk|: We have |RPE.mpk| = |FE.mpk|. Since we assumed that FE is
fully compact (Def. 2.7), the length of FE.mpk only depends on the input length of Re-Enc.
We have that the input length is |crs|+ |digest|+ |f |+ |m|+ |K|+ |mode|+ 2|SKE.key| =
|crs| + |digest| + |f | + O(λ). We have |crs| + |digest| = poly(λ) by the efficiency of LOT
(Theorem 2.28). The total length of the public key is therefore poly(λ, |f |).

2. Secret key size |RPE.sklb,x|: We have |RPE.sklb,x| = |FE.sklb,x|. Since the size of the latter is
polynomially dependent on the size of Re-Enc, we evaluate its size. We can see that the
size of Re-Enc is polynomial in the total length of the input and the hardwired values. The
length of the input is bounded by poly(λ, |f |) as analyzed in the above item. The length
of the hardwired values are |lb|+ |x|+ |γ1|+ |γ2|+ |δ|. We have |γ1|+ |γ2|+ |δ| = 3|γ2|15

and |γ2| = poly(λ, LOT.ctlb) = poly(log |D|, λ) = poly(λ). Therefore, the size of Re-Enc is
poly(λ, |f |) + |lb|+ |x| and so is the size of the secret key.

3. Ciphertext size |RPE.ct|: We have |RPE.ct| = |crs|+ |FE.ct|. We have |crs| = poly(λ). Also,
by similar analysis to the first item, full compactness of FE implies |FE.ct| ≤ poly(λ, |f |).
Therefore, the overall length of the ciphertext is poly(λ, |f |).

Security We show that the above construction satisfies the function hiding (Def. 3.7) and the
message hiding (Def. 3.4) properties. The key difference here is that we only achieve selective
security w.r.t the revoke list L.

15We assumed that |γ1| = |γ2| = |δ|. See Footnote 9.

47

Function Hiding The security proof for function hiding will follow the same sequence of
hybrids as in the Theorem 4.2 except the following differences :

• In Hybrid0, the challenger generates and uses LOT parameters to compute
the challenge ciphertext. Concretely, the challenger computes FE.ct as
FE.Enc(FE.mpk, (crs, digest, f0,m,K, 0,⊥,⊥)) and returns RPE.ct = (crs,FE.ct) to
the adversary.

• In Hybrid1 to Hybrid3 , the challenger computes LOT.ct′lb = LOT.Send(crs, digest, lb, 0, m̃;
F (K, (lb, x))) instead of ABE.ct′lb while answering the key queries.

• Similarly, in Hybrid4 to Hybrid6, for each key query (lb, x), instead of ABE.ct′lb, LOT.ct′lb is
computed as follows:

– If flag = 1, LOT.ct′lb = LOT.Enc(crs, digest, lb, 0, m̃; r), where r ← {0, 1}t.
– Else, if flag = 0, LOT.ct′lb = LOT.Enc(crs, digest, lb, 0, m̃;F (K, (lb, x))).

• In Hybrid7, when flag = 1, LOT.ct′lb is simulated using LOTSim, i.e., LOT.ct′lb ←
LOTSim(D, lb, 0). We observe that when flag = 1, lb ∈ L (by admissibility), so D[lb] = 0
and we havemD[lb] = m0 = 0. Hence, the indistinguishabilty between Hybrid6 and Hybrid7
follows from the sender privacy of LOT (Def. 2.27).

We note that after Hybrid8, we rewind the changes made in the preceding hybrids accordingly.
The reason why we only achieve selective security w.r.t the revoke list L is that while answering
the key queries, computation of LOT.ct′lb uses digest. This digest is computed using the database
D, which in turn is derived using the revoke list L.

Message Hiding The proof for message hiding is given via the same sequence of hybrids as
in the Theorem 4.6. The differences in the hybrids are similar to the case of function hiding as
highlighted in the above paragraph, where we use LOT parameters to compute the challenge
ciphertext and LOT.ct′lb instead of ABE.ct′lb while answering the key queries.

5 Revocable Mixed Functional Encryption

5.1 Definition

A revocable mixed functional encryption (RMFE) scheme with input domain X = {Xλ}λ∈[N], a
function family F = {Fλ}λ∈[N] where Fλ = {f : Xλ → {0, 1}}, a label space L = {Lλ}λ∈[N] has
the following syntax.

Setup(1λ) → (mpk,msk). The setup algorithm takes as input the security parameter λ and
outputs a master public key mpk and a master secret key msk.

KeyGen(msk, lb, x)→ sklb,x. The key generation algorithm takes as input the master secret key
msk, a label lb ∈ Lλ and an input x ∈ Xλ. It outputs a secret key sklb,x.

PK-Enc(mpk, L)→ ct. The public key encryption algorithm takes as input the master public
key mpk and a revocation list L ⊆ Lλ and outputs a ciphertext ct.

SK-Enc(msk, f, L)→ ct. The secret key encryption algorithm takes as input the master secret
key msk, a function f ∈ Fλ and a revocation list L ⊆ Lλ, and outputs a ciphertext ct.

48

Dec(sklb,x, L, ct) → {0, 1}. The decryption algorithm takes the secret key sklb,x, a revocation
list L ⊆ Lλ and a ciphertext ct and outputs a bit.

Definition 5.1 (Correctness). A RMFE scheme is said to be correct if there exists negligible
functions negl1(·), negl2(·) such that for all λ ∈ N, the following holds

Pr

[
Dec(sklb,x, L, ct) = 1 :

(mpk,msk)← Setup(1λ);
sklb,x ← KeyGen(msk, lb, x);
ct← PK-Enc(mpk, L)

]
≥ 1− negl1(λ).

lb /∈ L⇒ Pr

[
Dec(sklb,x, L, ct) = f(x) :

(mpk,msk)← Setup(1λ);
sklb,x ← KeyGen(msk, lb, x);
ct← SK-Enc(msk, f, L)

]
≥ 1− negl2(λ).

Security. Here we define the security requirements of RMFE scheme.

Definition 5.2 (q-query Mode Hiding). Let q(·) be any fixed polynomial. A RMFE scheme
satisfies q-query mode hiding security if for every PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N,

Pr

 β′ = β :

(mpk,msk)← Setup(1λ);

f, L← AKeyGen(msk,·,·),SK-Enc(msk,·,·)(mpk);
β ← {0, 1}; ct0 ← SK-Enc(msk, f, L);
ct1 ← PK-Enc(mpk, L);

β′ ← AKeyGen(msk,·,·),SK-Enc(msk,·,·)(ctβ)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to the SK-Enc(msk, ·, ·) oracle and is admissible only if
for all the key queries (lb, x) to the KeyGen(msk, ·, ·) oracle, f(x) = 1.

Definition 5.3 (q-query Selective Function Hiding). Let q(·) be any fixed polynomial. A RMFE
scheme satisfies q-query selective function hiding security if for every PPT adversary A, there
exists a negligible function negl(·) such that for every λ ∈ N,

Pr

 β′ = β :

L← A(1λ);
(mpk,msk)← Setup(1λ);

(f0, f1)← AKeyGen(msk,·,·),SK-Enc(msk,·,·)(mpk);
β ← {0, 1}; ctβ ← SK-Enc(msk, fβ, L);

β′ ← AKeyGen(msk,·,·),SK-Enc(msk,·,·)(ctβ)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to the SK-Enc(msk, ·, ·) oracle and for all the key queries
(lb, x) to the KeyGen(msk, ·, ·) oracle, either f0(x) = f1(x) or lb ∈ L.

Remark 5.4. We note that when the function space Fλ is polynomially small and q is a constant,
a variant of Definition 5.3 where the adversary outputs the challenge functions (f0, f1) and the
SK-Enc query functions {f̄i}i∈[q] at the beginning of the game, before the Setup(1λ) algorithm
is run, is equivalent to Definition 5.3 where the adversary adaptively outputs the challenge
functions (f0, f1) and can make SK-Enc queries adaptively, with polynomial loss. Similar
comment also applies to Definition 5.2. We will use these simplifications in the security proofs.

5.2 Construction

In this section we give a construction of 1-query secure RMFE scheme, with input space
X = {Xλ}λ, a function family F = {Fλ}λ where Fλ = {f : Xλ → {0, 1}} and a label space

49

L = {Lλ}λ. We assume that the size of |Fλ| is bounded by some polynomial in λ, which will
suffice for our purpose.
Our scheme uses the following building blocks:

1. A 2-bounded semi-adaptive simulation based function-message private (Definition 2.11
) SKFE scheme SKFE = (SKFE.Setup, SKFE.KeyGen, SKFE.Enc, SKFE.Dec) that supports
the function class F . This can be instantiated from one-way functions (Lemma 2.12).

2. A key-policy ABE scheme kpABE = (kpABE.Setup, kpABE.Enc, kpABE.KeyGen,
kpABE.Dec) for the circuit class Cℓ(λ),d(λ) with message space {0, 1}λ satisfying Sel-IND
security (Definition 2.14) and efficiency properties described in Theorem 2.18 . We set
ℓ(λ) = ℓlb + log(λ) + 1 and d(λ) = ω(log λ), where ℓlb is the label length.16 This can be
instantiated from the LWE assumption (Theorem 2.18).

3. A lockable obfuscation scheme LO = (LO.Obf, LO.Eval) with lock space {0, 1}λ that
supports circuits of the form CC defined in Fig. 3. As we will analyze later, the circuit is of
fixed polynomial size in λ and |f |, where |f | is the description size of the function f ∈ F .
This can be instantiated from the LWE assumption (Theorem 2.25).

Below we describe our construction of a 1-query secure RMFE scheme RMFE =
(RMFE.Setup,RMFE.KeyGen,RMFE.PK-Enc,RMFE.SK-Enc,RMFE.Dec).

RMFE.Setup(1λ)→ (RMFE.mpk,RMFE.msk). The setup algorithm does the following:

• Generate SKFE.msk← SKFE.Setup(1λ).

• Generate (kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ).

• Output RMFE.mpk = kpABE.mpk and RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk).

RMFE.KeyGen(RMFE.msk, lb, x) → RMFE.sklb,x. The key generation algorithm does the
following:

• Parse RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk).

• For all j ∈ [λ], b ∈ {0, 1}, sample Kj,b, Rj,b ← {0, 1}λ.
Denote K = {Kj,b}j∈[λ],b∈{0,1} and R = {Rj,b}j∈[λ],b∈{0,1}.

• Compute
SKFE.ct← SKFE.Enc(SKFE.msk, (x,K,R)).

• For all j ∈ [λ], b ∈ {0, 1}, compute

kpABE.ctlb,j,b ← kpABE.Enc(kpABE.mpk, (lb, j, b),Kj,b).

• Output RMFE.sklb,x = (SKFE.ct, kpABE.mpk, {(lb, j, b), kpABE.ctlb,j,b}j∈[λ],b∈{0,1}).

RMFE.PK-Enc(RMFE.mpk, L) → RMFE.ct. The public key encryption algorithm does the
following:

• Computes a simulated code RMFE.ct← LO.Sim(1λ, 1|CC|)17.

• It outputs RMFE.ct as the ciphertext.
16Concretely, we can choose d(λ) = Θ(log λ log log λ) for example.
17Here, CC represents the maximum possible size of CC[·, ·] circuit defined in Figure 3.

50

RMFE.SK-Enc(RMFE.msk, f, L) → RMFE.ct. The secret key encryption algorithm does the
following:

• Parse RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk), and sample a tag z ←
{0, 1}λ and a lock value α← {0, 1}λ.

• For all j ∈ [λ], compute kpABE.skL,j,zj ← kpABE.KeyGen(kpABE.msk, CL,j,zj), where
the function CL,j,zj has L, j and zj hardwired and is defined as follows :
On input (lb, i, b) ∈ Lλ × [λ]× {0, 1},

CL,j,zj (lb, i, b) =

{
1 if (lb /∈ L) ∧ (i = j) ∧ (b = zj)

0 otherwise.
(5.1)

• Compute SKFE.sk← SKFE.KeyGen(SKFE.msk, Pf,z,α), where the function Pf,z,α has
f, z, α hardwired and is defined as follows :
On input x ∈ Xλ,K = {Kj,b}j∈[λ],b∈{0,1}, R = {Rj,b}j∈[λ],b∈{0,1},

Pf,z,α(x,K,R) =

{⊕
j Kj,zj ⊕ α if f(x) = 0⊕
j Rj,zj if f(x) = 1.

(5.2)

• Construct function CC[SKFE.sk, {kpABE.skL,j,zj}j∈[λ]], with SKFE.sk and
{kpABE.skL,j,zj}j∈[λ] hardwired and is defined as in Figure 3.

• Output RMFE.ct← LO.Obf(CC[SKFE.sk, {kpABE.skL,j,zj}j∈[λ]], α).

RMFE.Dec(RMFE.sklb,x,RMFE.ct, L)→ {0, 1}. The decryption algorithm does the following:

• Parse RMFE.sklb,x = (SKFE.ct, kpABE.mpk, {(lb, j, b), kpABE.ctlb,j,b}j∈[λ],b∈{0,1}) and
RMFE.ct = C̃C, where C̃C is regarded as an obfuscated circuit of LO.

• For all j ∈ [λ], b ∈ {0, 1}, compute

kpABE.off lb,j,b ← kpABE.Decoff(kpABE.mpk, CL,j,b, (lb, j, b)).

• Compute

y = LO.Eval
(
C̃C, (SKFE.ct, {kpABE.ctlb,j,b, kpABE.off lb,j,b}j∈[λ],b∈{0,1})

)
.

• Output 1 if y = ⊥, else output 0.

Remark 5.5. We note that by performing the part of the ABE decryption that uses CL,j,b,
outside of CC , we do not need to provide CL,j,b (or L) as input to CC. Instead, we provide
{kpABE.off lb,j,b}j∈[λ],b∈{0,1} whose size is independent of the size of CL,j,b (and thus that
of L). This helps us in getting succinct ciphertext.

Correctness. We prove the correctness via the following theorem.

Theorem 5.6. Suppose kpABE, LO and SKFE are correct and LO is secure, then the above construction
of RMFE satisfies correctness as defined in Def. 5.1.

Proof. We consider the following two cases:

51

Function CC[SKFE.sk, {kpABE.skL,j,zj}j∈[λ]]

Hardwired values: A SKFE secret key SKFE.sk and kpABE keys {kpABE.skL,j,zj}j∈[λ].
Inputs: A SKFE ciphertext SKFE.ct and kpABE ciphertexts
{kpABE.ctlb,j,b, kpABE.off lb,j,b}j∈[λ],b∈{0,1}.

Output : A binary string α∗ ∈ {0, 1}λ.

1. For all j ∈ [λ], compute mj = kpABE.Decon(kpABE.skL,j,zj , kpABE.ctlb,j,zj ,
kpABE.off lb,j,zj).
Let M0 =

⊕
j mj

2. Compute M1 = SKFE.Dec(SKFE.sk, SKFE.ct).

3. Output M1 ⊕M0.

Figure 3: Compute and Compare function CC

1. Public Encryption Correctness.
For RMFE.ct← RMFE.PK-Enc(RMFE.mpk, L), we have that RMFE.ct = LO.Sim(1λ, 1|CC|).
Firstly, we note that from LO security, RMFE.ct is indistinguishable from RMFE.ct′

computed as LO.Obf(C,α), for any circuit C of the same size as that used by the simulator
and has output of length λ. Now, since α← {0, 1}λ has high entropy, for all but negligible
inputs w, C(w) ̸= α. So, from the correctness of LO, it follows that with all but negligible
probability

LO.Eval(RMFE.ct, (SKFE.ct, {kpABE.ctlb,j,b, kpABE.off lb,j,b}j∈[λ],b∈{0,1})) = ⊥.

Hence the RMFE.Dec algorithm outputs 1 with all but negligible probability.

2. Secret Encryption Correctness.
For RMFE.ct ← RMFE.SK-Enc(RMFE.msk, f, L), we have RMFE.ct =
LO.Obf(CC[SKFE.sk, {kpABE.skL,j,zj}j∈[λ]], α). Now consider the following steps
of
LO.Eval(RMFE.ct, (SKFE.ct, {kpABE.ctlb,j,b, kpABE.off lb,j,b}j∈[λ],b∈{0,1}))

• Since lb /∈ L, by correctness of kpABE, for all j ∈ [λ], M0 = ⊕jmj = ⊕jKj,zj with all
but negligible probability.

• By correctness of SKFE, if f(x) = 0, we have M1 =
⊕

j Kj,zj ⊕α, else M1 =
⊕

j Rj,zj .

• We have M0 ⊕M1 = α if f(x) = 0.

So, by the correctness of LO, LO.Eval outputs 1 if f(x) = 0, ⊥ otherwise with all but
negligible probability. Hence the RMFE.Dec algorithm, by construction, outputs 0 if
f(x) = 0 and 1 if f(x) = 1 with all but negligible probability.

This proves the correctness of the above construction.

52

Efficiency. Here we argue that our construction achieves optimal parameters. Namely, we
show that the sizes of the parameters are independent of |L|. We first observe that CL,j,b as
defined in Eq (5.1) can be implemented with depth d = ω(log λ), since the membership check

lb
?
∈ L can be done with depth log(|lb| · |L|) = log(poly(λ)) and the equality check can be done

with depth log(|j|) = log log λ. We then bound the size of parameters.

1. Public key size |RMFE.mpk|: By the efficiency property of kpABE (Theorem 2.18), we have
|RMFE.mpk| = |kpABE.mpk| = poly(λ, d, |lb|) = poly(λ, |lb|).

2. Secret key size |RMFE.sklb,x|: We have |RMFE.sklb,x| = |SKFE.ct| + |kpABE.mpk| +
2 · λ(|(lb, j, b)| + |kpABE.ct|). The first term can be bounded by poly(λ, |f |, |x|), the
second is poly(λ, |lb|), and the last terms is poly(λ, |lb|). Therefore, the total size is
poly(λ, |f |, |x|, |lb|).

3. Ciphertext size |RMFE.ct|: We first bound the size of the circuit CC defined in Fig. 3. The
dominant operations in the circuit is the decryption of SKFE and the online decryption of
kpABE. We can see that the former is implemented by a circuit of size poly(λ, |x|, |f |) by
the efficiency of SKFE. The latter can be implemented by a circuit of size poly(λ, ℓ, d) =
poly(λ, lb) by the online efficiency of kpABE (Theorem 2.18). Therefore, the total size CC is
poly(λ, |f |, |x|, |lb|). By the efficiency of LO, the size of the ciphertext is poly(λ, |f |, |x|, |lb|)
as well.

4. Depth of the circuit implementing RMFE.Dec: We also evaluate the depth of the circuit
implementing RMFE.Dec and show that it is independent from |L|, since it will be used
later in Sec. 6. We first observe that the dominant operations in RMFE.Dec are the offline
decryption of kpABE and the evaluation of CC. The depth of the former can be bounded
by poly(λ, ℓ, depth(CL,j,b)) ≤ poly(λ, |lb|) by Theorem 2.18. The depth of the latter can be
bounded by its size and thus is poly(λ, |f |, |x|, |lb|) as we have seen in the previous item.
The total depth is thus bounded by poly(λ, |f |, |x|, |lb|), which is independent from |L|.

5.3 Security

In this section we show that our construction of RMFE scheme satisfies all the security
requirements.
We will use the following notations in the security proof:
For X ∈ {K,R},

• X := {Xj,b}j∈[λ],b∈{0,1}, Xb := {Xj,b}j∈[λ], Xj := {Xj,b}b∈{0,1}.

• For any vector z ∈ {0, 1}λ, Xz := {Xj,zj}j∈[λ].

Mode hiding

Theorem 5.7. Assume that SKFE and LO are secure as per definitions 2.11 and 2.24, respectively.
Furthermore, assume |Fλ| ≤ poly(λ). Then the RMFE construction satisfies 1-query mode hiding
security as per Definition 5.2.

Proof. Recall that for mode hiding, we need

RMFE.SK-Enc(RMFE.msk, f∗, L∗) ≈c RMFE.PK-Enc(RMFE.mpk, L∗),

where for all key queries (lb, x), f∗(x) = 1.

53

The proof proceeds via the following sequence of hybrid games between the challenger and a
PPT adversary A.

Hybrid0 : This is the real world with β = 0, where the challenge ciphertext for (f∗, L∗) is
computed using the RMFE.SK-Enc algorithm. We write the complete game here to set up
the notations and easy reference in later hybrids.

1. The adversary outputs the challenge function f∗ and the SK-Enc query function f̄18.

2. The challenger generates SKFE.msk← SKFE.Setup(1λ),
(kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ), sets RMFE.mpk = kpABE.mpk and
RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk). It sends RMFE.mpk to A.

3. Key Queries: For each key query (lb, x), the challenger computes
SKFE.ct and kpABE.ctlb,j,b as in the construction and returns RMFE.sklb,x =
(SKFE.ct, kpABE.mpk, {(lb, j, b), kpABE.ctlb,j,b}j∈[λ],b∈{0,1}) to A.

4. Challenge Query: When the adversary outputs L∗ for the challenge query, the
challenger does the following:

• Samples a tag z∗ ← {0, 1}λ and a lock value α∗ ← {0, 1}λ.
• Computes kpABE secret keys {kpABE.skL∗,j,z∗j

}j∈[λ] and a SKFE secret key
SKFE.sk∗ as in the construction.

• Constructs CC[SKFE.sk∗, {kpABE.skL∗,j,z∗j
}j∈[λ]] as defined in Figure 3 and

returns RMFE.ct∗ ← LO.Obf(CC[SKFE.sk∗, kpABE.skL∗,j,z∗j
}j∈[λ]], α∗) to the

adversary A.

5. SK-Enc Query: When the adversary outputs L̄ for the SK-Enc query, the challenger
does the following:

• Samples a tag z̄← {0, 1}λ and a lock value ᾱ← {0, 1}λ.
• Computes kpABE secret keys {kpABE.skL̄,j,z̄j}j∈[λ] and a SKFE secret key

SKFE.s̄k as in the construction.
• Constructs CC[SKFE.s̄k, {kpABE.skL̄,j,z̄j}j∈[λ]] and returns RMFE.c̄t ←

LO.Obf(CC[SKFE.s̄k, {kpABE.skL̄,j,z̄j}j∈[λ]], ᾱ) to the adversary A.

6. In the end, A outputs a bit β′.

Hybrid1 : This hybrid is same as the previous hybrid except the following changes:

1. The challenger samples α∗, ᾱ, z∗, z̄ in the beginning of the game after the adversary
outputs f∗, f̄ .

2. The challenger then computes SKFE.sk∗ ← SKFE.SimSK(SKFE.msk, 1|Pf∗,z∗,α∗ |) and
SKFE.s̄k← SKFE.SimSK(SKFE.msk, 1poly(|Pf̄ ,z̄,ᾱ|) in this order using SKFE simulators.

3. The key generation, challenge and SK-Enc queries are answered as follows:

• For each key query (lb, x), the SKFE ciphertext in RMFE.sklb,x is computed as
SKFE.SimCT(SKFE.msk,

⊕
j Rj,z∗j

, Pf̄ ,z̄,ᾱ(x,K,R)).
Note that Pf∗,z∗,α∗(x,K,R) =

⊕
j Rj,z∗j

, due to admissibility requirement.

18To keep the proofs and notations simple, we let f∗ and f̄ to be given selectively. This is sufficient to achieve
security as in Def 5.2, as mentioned in Remark 5.4.

54

• To answer the challenge and the SK-Enc queries, SKFE.sk∗ and SKFE.s̄k
generated by SKFE simulators in Step 2 are used for generating RMFE.ct∗ and
RMFE.c̄t, respectively.

Hybrid2 : This hybrid is same as the previous hybrid except that the challenger uses LO.Sim to
generate the challenge ciphertext.

RMFE.ct∗ = LO.Sim(1λ, 1|CC|)19.

Hybrid3 : This hybrid is same as the previous hybrid except that the challenger uses SKFE.Enc
and SKFE.KeyGen to generate SKFE ciphertexts and keys respectively. Formally,

SKFE.s̄k = SKFE.KeyGen(SKFE.msk, Pf̄ ,z̄,ᾱ)

For each key query (lb, x),

SKFE.ct = SKFE.Enc(SKFE.msk, (K,R, x)),

where vectors K and R are freshly sampled for each key as defined in the construction.
This is the real world with β = 1, where the challenge ciphertext is computed using the
RMFE.PK-Enc algorithm.

Indistinguishability of hybrids

Claim 5.7.1. Assume that SKFE is secure (Def. 2.11), then Hybrid0 ≈c Hybrid1.

Proof. We show that if there exists a PPT adversary A who can distinguish between Hybrid0
and Hybrid1 with non-negligible advantage ϵ, then there exists a PPT adversary B against the
security of SKFE scheme with the same advantage ϵ. The reduction is as follows.

1. Upon being invoked by the SKFE challenger, B invokes Awhich outputs f∗, f̄ .

2. B samples α∗, ᾱ, z∗, z̄← {0, 1}λ.

3. B defines the functions Pf∗,z∗,α∗ and Pf̄ ,z̄,ᾱ as defined in Eq. (5.2) and sends it
to the SKFE challenger in this order as key queries. The challenger generates
SKFE.msk← SKFE.Setup(1λ) and samples β̂ ← {0, 1}.
If β̂ = 0, it computes SKFE.sk∗ = SKFE.KeyGen(SKFE.msk, Pf∗,z∗,α∗) and
SKFE.s̄k = SKFE.KeyGen(SKFE.msk, Pf̄ ,z̄,ᾱ)

else it computes SKFE.sk∗ = SKFE.SimSK(SKFE.msk, 1|Pf∗,z∗,α∗ |), SKFE.s̄k =

SKFE.SimSK(SKFE.msk, 1|Pf̄ ,z̄,ᾱ|) and sends {SKFE.sk∗, SKFE.s̄k} to B.

4. B generates (kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ), sets RMFE.mpk = kpABE.mpk
and sends RMFE.mpk to A.

5. Key Queries: For each key query (lb, x), B does the following:

• Samples Kj,b, Rj,b ← {0, 1}λ, ∀j ∈ [λ], b ∈ {0, 1}.
• Computes kpABE.ctlb,j,b ← kpABE.Enc(kpABE.msk, (lb, j, b),Kj,b) for j ∈ [λ], b ∈
{0, 1}.

19Here, |CC| represents the maximum size of the circuit CC[·, ·] defined in Figure 3.

55

• It sends (x,K,R) as challenge message to the SKFE challenger. The challenger
returns SKFE.ctβ̂ , where SKFE.ct0 = SKFE.Enc(SKFE.msk, (x,K,R)) and SKFE.ct1 =

SKFE.SimCT(SKFE.msk,
⊕

j Rj,z∗j
, Pf̄ ,z̄,ᾱ(x,K,R)).

• Returns RMFE.sklb,x = (SKFE.ctβ̂, kpABE.mpk, {(lb, j, b), kpABE.ctlb,j,b}j,b) to A.

6. Challenge Query: When A outputs L∗ for the challenge query, B does the following:

• Computes kpABE secret keys {kpABE.skL∗,j,z∗j
}j∈[λ].

• Constructs CC[SKFE.sk∗, {kpABE.skL∗,j,z∗j
}j∈[λ]] as defined in Figure 3 and returns

RMFE.ct∗ ← LO.Obf(CC[SKFE.sk∗, kpABE.skL∗,j,z∗j
}j∈[λ]], α∗) to A.

7. SK-Enc Query: When the adversary outputs L̄ for the SK-Enc query, B does the following:

• Computes kpABE secret keys {kpABE.skL̄,j,z̄j}j∈[λ].
• Constructs CC[SKFE.s̄k, {kpABE.skL̄,j,z̄j}j∈[λ]] and returns RMFE.c̄t ←

LO.Obf(CC[SKFE.s̄k, {kpABE.skL̄,j,z̄j}j∈[λ]], ᾱ) to A.

8. In the end, A outputs a bit β′. B forwards β′ as its guess bit to the SKFE challenger.

We observe that if β̂ = 0, then B simulated Hybrid0, else Hybrid1 with A. Hence, advantage of
B = |Pr(β′ = 1|β̂ = 0) − Pr(β′ = 1|β̂ = 1)| = |Pr(β′ = 1|Hybrid0) − Pr(β′ = 1|Hybrid1)| = ϵ (by
assumption).

Claim 5.7.2. Assume that LO is secure (Def. 2.24), then Hybrid1 ≈c Hybrid2.

Proof. We show that if there exists a PPT adversary A who can distinguish between Hybrid1
and Hybrid2 with non-negligible advantage ϵ, then there exists a PPT adversary B against the
security of LO scheme with the same advantage ϵ. The reduction is as follows

1. Upon being invoked by the LO challenger, B invokes A. A outputs f∗, f̄ .

2. B samples ᾱ, z∗, z̄← {0, 1}λ. It also defines the function Pf̄ ,z̄,ᾱ.

3. B generates SKFE.msk ← SKFE.Setup(1λ), (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ)
and sets RMFE.mpk = kpABE.mpk and RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk)
and sends RMFE.mpk to A.

4. Key Queries: For each key query (lb, x), B does the following:

• Samples Kj,b, Rj,b ← {0, 1}λ, ∀j ∈ [λ], b ∈ {0, 1}.
• Computes kpABE.ctlb,j,b ← kpABE.Enc(kpABE.mpk, (lb, j, b),Kj,b) ∀j ∈ [λ], b ∈ {0, 1}

and SKFE.ct← SKFE.SimCT(SKFE.msk,
⊕

j Rj,z∗j
, Pf̄ ,z̄,ᾱ(x,K,R)).

• Returns RMFE.sklb,x = (SKFE.ct, kpABE.mpk, {(lb, j, b), kpABE.ctlb,j,b}j,b) to A.

5. Challenge Query: When the adversary outputs L∗ for the challenge ciphertext , B does
the following:

• Computes kpABE secret keys {kpABE.skL∗,j,z∗j
}j∈[λ].

• Constructs a function CC[SKFE.sk∗, {kpABE.skL∗,j,z∗j
}j∈[λ]] as defined in Figure 3,

where SKFE.sk∗ ← SKFE.SimSK(SKFE.msk, 1|Pf∗,z∗,α∗ |)20.
20The size of Pf∗,z∗,α∗ is independent of any specific lock value and hence can be computed without the knowledge

of α∗.

56

• It sends CC[SKFE.sk∗, kpABE.skL∗,j,z∗j
] to the LO challenger. The challenger samples

a lock value α∗ ← {0, 1}λ and β̂ ← {0, 1}, computes and return Obf β̂ , where Obf0 =

LO.Obf(CC[SKFE.sk∗, {kpABE.skL∗,j,z∗j
}j∈[λ]], α∗) and Obf1 = LO.Sim(1λ, 1|CC|).

• It sets RMFE.ct∗ = Obf β̂ and sends it to the adversary A.

6. SK-Enc Query: When the adversary outputs L̄ for the SK-Enc query, B does the following:

• Computes kpABE secret keys {kpABE.skL̄,j,z̄j}j∈[λ].

• Constructs CC[SKFE.s̄k, {kpABE.skL,j,zj}j∈[λ]], where SKFE.s̄k← SKFE.SimSK(SKFE.msk,

1|Pf̄ ,z̄,ᾱ|).

• Computes RMFE.c̄t← LO.Obf(CC[SKFE.s̄k, {kpABE.skL̄,j,z̄}j∈[λ]], ᾱ) and returns it to
the adversary A.

7. In the end, A outputs a bit β′. B forwards β′ as its guess bit to the LO challenger.

We observe that if β̂ = 0, then B simulated Hybrid1, else Hybrid2 with A. Hence, advantage of
B = |Pr(β′ = 1|β̂ = 0) − Pr(β′ = 1|β̂ = 1)| = |Pr(β′ = 1|Hybrid1) − Pr(β′ = 1|Hybrid2)| = ϵ (by
assumption).

Claim 5.7.3. Assume that SKFE is secure (Def. 2.11), then Hybrid2 ≈c Hybrid3.

The proof of this claim is similar to that of Claim 5.7.1, hence omitted.

Function Hiding

Theorem 5.8. Assume SKFE is secure (Def. 2.11), kpABE satisfies Sel-IND security (Def. 2.14).
Furthermore, assume |Fλ| ≤ poly(λ). Then, the RMFE construction satisfies 1-query function hiding
as defined in Definition 5.3.

Proof. We prove the theorem via the following sequence of hybrids.

Hybrid0 : This is the real world with β = 0. We summarize the steps of the game here to set up
the notations used in the later hybrids.

1. The adversary outputs the challenge query f0, f1, L∗ and the SK-Enc query function
f̄ in the beginning of the game21. The challenger then does the following:

• Generates SKFE.msk← SKFE.Setup(1λ),
(kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ), sets RMFE.mpk = kpABE.mpk
and RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk).

• It also samples a tag z∗ ∈ {0, 1}λ and a lock value α∗.
• Computes SKFE.sk∗ ← SKFE.KeyGen(SKFE.msk, Pf0,z∗,α∗) and
{kpABE.skL∗,j,z∗j

}j∈[λ] as defined in the construction.
• Returns RMFE.mpk and the challenge ciphertext RMFE.ct∗ ←

LO.Obf(CC[SKFE.sk∗, {kpABE.skL∗,j,z∗j
}j∈[λ]], α∗) to A.

2. Key Queries: For each key query (lb, x), the challenger returns
RMFE.sklb,x = (SKFE.ct, {(lb, j, b), kpABE.ctlb,j,b}j∈[λ],b∈{0,1}), where
SKFE.ct, {kpABE.ctlb,j,b}j∈[λ],b∈{0,1} are computed as in the construction.

21To keep the proofs and notations simple, we let f0, f1 and f̄ to be given selectively. This is sufficient to achieve
security as in Def 5.2, as mentioned in Remark 5.4.

57

3. SK-Enc Query : When the adversary outputs L̄ for the SK-Enc query, the challenger
does the following:

• Samples a tag z̄← {0, 1}λ and a lock value ᾱ← {0, 1}λ.
• Computes kpABE secret keys {kpABE.skL̄,j,z̄j}j∈[λ] and a SKFE secret key

SKFE.s̄k as in the construction.
• Constructs CC[SKFE.s̄k, {kpABE.skL̄,j,z̄j}j∈[λ]] and returns RMFE.c̄t ←

LO.Obf(CC[SKFE.s̄k, {kpABE.skL̄,j,z̄j}j∈[λ]], ᾱ) to A.

4. In the end, A outputs a bit β′.

Hybrid1 : This hybrid is same as the previous hybrid except the following:

1. The challenger samples α∗, ᾱ, z∗, z̄ and defines the functions Pf0,z∗,α∗ and Pf̄ ,z̄,ᾱ in
the beginning of the game.

2. The SKFE ciphertexts and keys are computed using SKFE simulators as:

• For each key query (lb, x), the SKFE ciphertext in RMFE.sklb,x is computed as
SKFE.SimCT(SKFE.msk, Pf0,z∗,α∗(x,K,R), Pf̄ ,z̄,ᾱ(x,K,R)).

• The SKFE secret keys SKFE.sk∗ and SKFE.s̄k in RMFE.ct∗ and
RMFE.c̄t are computed as SKFE.SimSK(SKFE.msk, 1|Pf0,z

∗,α∗ |) and
SKFE.SimSK(SKFE.msk, 1|Pf̄ ,z̄,ᾱ|), respectively.

Hybrid2 : In this hybrid, for each key query (lb, x) with lb ∈ L∗, for all j ∈ [λ], kpABE.ctlb,j,1−z̄j

in RMFE.sklb,x is computed as kpABE.Enc(kpABE.mpk, (lb, j, 1− z̄j), 0λ).

Hybrid3 : In this hybrid, for each key query (lb, x) with lb ∈ L∗, K-values are chosen differently
as follows: let i ∈ [λ] be the first position where z∗i ̸= z̄i. If no such i exists, then the
challenger aborts the game. Else, it samples {Kj,b}j∈[λ]\{i},b∈{0,1}, Ki,z̄i , {Rj,b}j∈[λ],b∈{0,1}
uniformly randomly as in the original game. It then sets Ki,1−z̄i =

⊕
j∈[λ]\{i}Kj,z∗j

⊕ α∗ ⊕⊕
j∈[λ]Rj,z∗j

.

Hybrid4 : This hybrid is same as the previous hybrid, except that the SKFE ciphertexts and keys
in RMFE secret keys and ciphertexts are now generated with function f1 in place of f0 as
follows:

• For each key query (lb, x), the SKFE ciphertext in RMFE.sklb,x is computed as
SKFE.SimCT(SKFE.msk, Pf1,z∗,α∗(x,K,R), Pf̄ ,z̄,ᾱ(x,K,R)).

• The SKFE secret key SKFE.sk∗ in RMFE.ct∗ is computed as SKFE.SimSK(SKFE.msk,

1|Pf1,z
∗,α∗ |).

Now, from here we undo the changes made in the previous hybrids.

Hybrid5 : In this hybrid, for each key query (lb, x) with lb ∈ L∗, Ki,1−z̄i (where i is the first
position where z∗ and z̄ differ) is also sampled randomly.

Hybrid6 : In this hybrid, for each such key query (lb, x) with lb ∈ L∗,
kpABE.Enc(kpABE.mpk, (lb, j, 1−z̄j), 0λ) is changed back to kpABE.Enc(kpABE.mpk, (lb, j, 1−
z̄j),Kj,1−z̄j) in RMFE.sklb,x.

Hybrid7 : In this hybrid SKFE ciphertexts in RMFE secret keys and SKFE secret keys in RMFE
ciphertexts are computed as in the real world. That is,

58

• For each key query (lb, x), RMFE.sklb,x = (SKFE.Enc(SKFE.msk,K,R), kpABE.mpk,
{(lb, j, b), kpABE.Enc(kpABE.mpk, (lb, j, b),Kj,b)}j∈[λ],b∈{0,1}).

• RMFE.ct∗ = LO.Obf(CC[SKFE.sk∗, {kpABE.skL∗,j,z∗j
}j∈[λ]], α∗), RMFE.c̄t =

LO.Obf(CC[SKFE.s̄k, {kpABE.skL̄,j,z̄j}j∈[λ]], ᾱ), where SKFE.sk∗ = SKFE.KeyGen(SKFE.msk,

Pf1,z∗,α∗) and SKFE.s̄k = SKFE.KeyGen(SKFE.msk, Pf̄ ,z∗,α∗)

Note that this hybrid corresponds to the real world for β = 1.

Indistinguishability of the hybrids. Now we show that the consecutive hybrids are
computationally indistinguishable for any PPT adversary A.

Claim 5.8.1. Assume that SKFE is secure (Def. 2.11). Then, Hybrid0 ≈c Hybrid1.

Proof. The proof follows similar steps as the proof for Claim 5.7.1, hence omitted.

Claim 5.8.2. Assume that kpABE is selectively secure. Then, Hybrid1 ≈c Hybrid2.

Proof. To prove the claim we consider the following sub hybrids between Hybrid1 and Hybrid2.
Let L∗ = {lb1, . . . , lb|L∗|} with some fixed ordering between the labels in L∗. Let L[1:k] ⊆ L∗

denote the set of first k labels in L∗, i.e. L∗
[1:k] = {lb1, . . . , lbk}. Then for all 1 ≤ i ≤ |L∗| and

0 ≤ τ ≤ λ, define Hybrid1.(i,τ): which is same as Hybrid1 except that for any key query (lb, x),
{kpABE.ctlb,j,b}j∈[λ],b∈{0,1} is computed differently as follows:

kpABE.ctlb,j,b = kpABE.Enc(kpABE.mpk, (lb, j, b),W),

where

W =

{
Ki,b if (b = z̄j) ∨ (lb ̸∈ L[1:i]) ∨ (lb = lbi ∧ j > τ),

0λ otherwise, i.e. (b = 1− z̄j) ∧ (lb ∈ L[1:i−1]) ∨ (lb = lbi ∧ j ≤ τ).

Then, we observe that Hybrid1.(1,0) = Hybrid1, Hybrid1.(|L∗|,λ) = Hybrid2 and Hybrid1.(i−1,λ) =
Hybrid1,(i,0).

Hence, all we need to show is that for all i ∈ [|L∗|], τ ∈ [λ],

Hybrid1.(i,τ−1) ≈c Hybrid1.(i,τ).

This follows from the Sel-IND security of kpABE. In particular, if there is no key query issued
for lbi, then the hybrids are identical. On the other hand, if there is a key query (lb, x), such that
lb = lbi, then we show that if A can distinguish between the two hybrids with non-negligible
advantage ϵ then we can design a PPT algorithm B with the same advantage ϵ against Sel-IND
security of kpABE. B is defined as follows:

1. Upon being invoked by the kpABE challenger, B invokes A which outputs f0, f1, L∗, f̄ .
Let L∗ = {lb1, . . . , lb|L∗|}.

2. B sends (lbi, τ, 1 − z̄τ) as challenge attribute to the kpABE challenger. The kpABE
challenger samples β̂ ← {0, 1} and (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ) and
sends kpABE.mpk to B.

3. B generates SKFE.msk ← SKFE.Setup(1λ) and sets RMFE.mpk = kpABE.mpk. It also
samples α∗, ᾱ, z∗, z̄ and defines Pf0,z∗,α∗ and Pf̄ ,z̄,ᾱ. It then does the following:

• For each j ∈ [λ], defines the circuit CL∗,j,z∗j
and sends a key query for CL∗,j,z∗j

to the
kpABE challenger. The kpABE challenger returns kpABE.skL∗,j,z∗j

.

59

• Computes SKFE.sk∗ ← SKFE.SimSK(SKFE.msk, 1|Pf0,z
∗,α∗ |).

• Computes RMFE.ct∗ ← LO.Obf(CC[SKFE.sk∗, {kpABE.skL∗,j,z∗j
}j∈[λ]]).

• Returns RMFE.mpk and RMFE.ct∗ to A.

4. Key Queries: For each key query (lb, x), B does the following:

• Computes SKFE.ct← SKFE.SimCT(SKFE.msk, Pf0,z∗,α∗(x,K,R), Pf̄ ,z̄,ᾱ(x,K,R)).

• To compute kpABE ciphertext, kpABE.sklb,j,b for j ∈ [λ], b ∈ {0, 1},
– if (lb = lbi) ∧ j = τ ∧ b = 1 − z̄j

22, then B sends challenge query with
messages µ0 = Kj,1−z̄j and µ1 = 0λ. The kpABE challenger returns kpABE.ct =
kpABE.Enc(kpABE.mpk, (lbi, τ, 1− z̄τ), µβ̂), which B sets as kpABE.ctlbi,τ,1−z̄τ .

– else, B computes kpABE.ctlb,j,b on its own using kpABE.mpk as defined for
Hybrid1.(i,τ−1) (same for Hybrid1.(i,τ)).

• Returns RMFE.sklb,x = (SKFE.ct, kpABE.mpk, {(lb, j, b), kpABE.ctlb,j,b}j,b) to A.

5. SK-Enc Query: When A outputs L̄ as part of SK-Enc query, B does the following:

• Computes SKFE.s̄k← SKFE.SimSK(SKFE.msk, 1|Pf̄ ,z̄,ᾱ|).

• For each j ∈ [λ], defines circuit CL̄,j,z̄j
and sends a kpABE key query for CL̄,j,z̄j

. The
kpABE challenger returns kpABE.skL̄,j,z̄j .

• Computes RMFE.c̄t← LO.Obf(CC[SKFE.s̄k, {kpABE.skL̄,j,z̄j}j∈[λ]]).
• Returns RMFE.c̄t to A.

6. In the end, A outputs a bit β′. B forwards β′ as its guess bit to the kpABE challenger.

We observe that if β̂ = 0, then B simulated Hybrid1.(i,τ−1), else Hybrid1.(i,τ) with A. Hence,
advantage of B = |Pr(β′ = 1|β̂ = 0)− Pr(β′ = 1|β̂ = 1)| = |Pr(β′ = 1|Hybrid1.(i,τ−1))− Pr(β′ =
1|Hybrid1.(i,τ))| = ϵ (by assumption).

Admissibility of B: Firstly, we observe that B issues key queries for only the following set of
circuits: {CL∗,j,z∗j

}j∈[λ], {CL̄,j,z̄j
}j∈[λ] and the challenge attribute is (lbi, τ, 1− z̄τ), where lbi ∈ L∗.

Next, we note that

• CL∗,j,z∗j
(lbi, τ, 1− z̄τ) = 0 for all j ∈ [λ], because lbi ∈ L∗.

• CL̄,j,z̄j
(lbi, τ, 1− z̄τ) = 0 for all j ̸= τ , and CL̄,τ,z̄j

(lbi, τ, 1− z̄τ) = 0, because z̄τ ̸= 1− z̄τ .

This establishes the admissibility of B.

Claim 5.8.3. Hybrid2 and Hybrid3 are statistically indistinguishable.

Proof. Firstly, we observe that Pr[z∗ = z̄] = 1/2λ. Hence, with probability 1 − 1/2λ, the
challenger does not abort in Hybrid3. Next we show that if the game is not aborted, the
two hybrids are statistically indistinguishable in the view of the adversary. In this case, the
only difference between the two hybrids is the following: for each key query (lb, x) with
lb ∈ L∗, the value of Ki,1−z̄i (i.e. Ki,z∗i

), where i is the first index such that z∗i ̸= z̄i, are
computed differently. In Hybrid2, Ki,z∗i

is sampled uniformly, while in Hybrid3, it is computed as
Ki,z∗i

=
⊕

j∈[λ]\{i}(Kj,z∗j
⊕Rj,z∗j

)⊕Ri,z∗i
⊕ α∗. However, note that if f0(x) = 1, then Ki,z∗i

is not

22If there are more than one key queries with lb = lbi, then we use multi-challenge version of Sel-IND security of
kpABE which can easily be shown equivalent to the one defined in Definition 2.14.

60

used in anywhere because of the change we introduced in Hybrid2 and hence does not affect the
adversary’s view. On the other hand, if f0(x) = 0, Ri,z∗i

is not used anywhere, and hence Ki,z∗i
is uniformly random in the adversary’s view because of the randomness of Ri,z∗i

.

Claim 5.8.4. Hybrid3 and Hybrid4 are identical in the view of the adversary.

Proof. Observe that the two hybrids differ only in the computation (simulation) of SKFE
ciphertexts and secret keys. In particular,

• SKFE.SimSK(SKFE.msk, 1|Pf0,z
∗,α∗ |) is changed to SKFE.SimSK(SKFE.msk, 1|Pf1,z

∗,α∗ |) in the
computation of RMFE.ct∗. This is just a conceptual change and both the computations are
exactly the same, since |Pf0,z∗,α∗ | = |Pf1,z∗,α∗ |.23

• For each key query (lb, x), SKFE.SimCT(SKFE.msk, Pf0,z∗,α∗(x,K,R), Pf̄ ,z̄,ᾱ(x,K,R)) is
changed to SKFE.SimCT(SKFE.msk, Pf1,z∗,α∗(x,K,R), Pf̄ ,z̄,ᾱ(x,K,R)). The change is
again only conceptual and does not affect the actual computation as we argue below:

– For f0(x) = f1(x): there is no change.

– For f0(x) ̸= f1(x): let f0(x) = 1 and f1(x) = 0. Then, lb ∈ L∗ and thus

Pf0,z∗,α∗(x,K,R) =
⊕
j∈[λ]

Rj,z∗j

Pf1,z∗,α∗(x,K,R) =
⊕

j∈[λ]\{i}

Kj,z∗j
⊕ α∗ ⊕Ki,z∗i

=
⊕

j∈[λ]\{i}

Kj,z∗j
⊕ α∗ ⊕ (

⊕
j∈[λ]\{i}

(Kj,z∗j
⊕Rj,z∗j

)⊕Ri,z∗i
)⊕ α∗

=
⊕
j∈[λ]

Rj,z∗j
.

– The same argument works for f0(x) = 0 and f1(x) = 1.

Indistinguishability between the rest of the hybrids can be argued in the same way as their
counterparts in the previous set of hybrids. In particular, proofs for indistinguishability between
Hybrid4 and Hybrid5 is same as the proof of claim 5.8.3, Hybrid5 and Hybrid6 is same as the proof
for claim 5.8.2 and Hybrid6 and Hybrid7 is same as the proof for claim 5.8.1.

Acknowledgements. We thank the reviewers of Eurocrypt 2023 for helpful comments, especially
for suggesting the alternative construction of RPE based on FE and laconic OT. This work
was supported in part by the DST “Swarnajayanti” fellowship, Cybersecurity Center of
Excellence, IIT Madras, National Blockchain Project and the Algorand Centres of Excellence
programme managed by Algorand Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of sponsors. The fourth author was partially supported by JST AIP Acceleration
Research JPMJCR22U5 and JSPS KAKENHI Grant Number 19H01109, Japan.

23we can use padding to make the sizes equal.

61

6 Secret Key RPE from Evasive and Tensor LWE

In this section we construct a secret-key RPE scheme from evasive and tensor LWE, followed by
the efficiency and security analysis of our scheme.

6.1 Construction

We give a construction of the secret-key RPE scheme RPE = (RPE.Setup,RPE.KeyGen,
RPE.Broadcast,RPE.Enc,RPE.Dec) for an attribute space X = {Xλ}λ, a function family F =
{Fλ}λ where Fλ = {f : Xλ → {0, 1}}, a label space L = {Lλ}λ and a message space
M = {Mλ}λ. We assume that the size of |Fλ| is bounded by some polynomial in λ, which will
suffice for our purpose. Our scheme uses the following building blocks:

1. An RMFE scheme RMFE = (RMFE.Setup, RMFE.KeyGen, RMFE.PK-Enc, RMFE.SK-Enc,
RMFE.Dec) with attribute space X , label space L and function family F . We instantiate it
by our construction in Sec. 5.2 based on LWE.

2. A CP-ABE scheme cpABE = (cpABE.Setup, cpABE.Enc, cpABE.KeyGen, cpABE.Dec) with
message spaceM satisfying VerSel-IND security (Def. 2.16) that supports the circuit class
Cℓ(λ),d(λ) and the efficiency property listed in Theorem 2.19. We set ℓ(λ) = |RMFE.sklb,x|
and d(λ) to be the upper bound on the depth of the circuit CL,RMFE.ct in Eq. (6.1). Looking
ahead, we show that the depth is bounded by some polynomial poly(λ, |f |, |x|, |lb|). We
choose d so that it is larger than the value. We can instantiate the scheme by the one
proposed by [Wee22] based on tensor and evasive LWE.

We describe our construction below.

RPE.Setup(1λ) → (RPE.mpk,RPE.msk). The setup algorithm takes as input the security
parameter λ and does the following:

• Generates (RMFE.mpk,RMFE.msk)← RMFE.Setup(1λ) and (cpABE.mpk, cpABE.msk)←
cpABE.Setup(1λ).

• Outputs RPE.mpk = (RMFE.mpk, cpABE.mpk) and RPE.msk = (RMFE.msk, cpABE.msk).

RPE.KeyGen(RPE.msk, lb, x) → RPE.sklb,x. The key generation algorithm takes as input the
master secret key RPE.msk, a label lb ∈ L and an attribute x ∈ X and does the following:

• Parse RPE.msk = (RMFE.msk, cpABE.msk).

• Compute RMFE.sklb,x ← RMFE.KeyGen(RMFE.msk, lb, x).

• Set att = ((lb, x),RMFE.sklb,x).

• Compute cpABE.sklb,x ← cpABE.KeyGen(cpABE.msk, att).

• Output RPE.sklb,x = (att, cpABE.sklb,x).

RPE.Broadcast(RPE.mpk,m,L)→ RPE.ct. The broadcast algorithm takes as input the master
public key RPE.mpk, a message m, and a revocation list L ⊆ L and does the following:

• Parse RPE.mpk = (RMFE.mpk, cpABE.mpk).

• Compute RMFE.ct← RMFE.PK-Enc(RMFE.mpk, L).

62

• Construct circuit CL,RMFE.ct, with L and RMFE.ct hardwired, defined as follows:
On input (lb, x) and RMFE.sklb,x,

CL,RMFE.ct((lb, x),RMFE.sklb,x)

=(lb /∈ L) ∧ (RMFE.Dec(RMFE.sklb,x,RMFE.ct, L) = 1). (6.1)

• Compute cpABE.ct← cpABE.Enc(cpABE.mpk, CL,RMFE.ct,m).

• Output RPE.ct = (RMFE.ct, cpABE.ct).

RPE.Enc(RPE.msk, f,m,L) → RPE.ct. The encryption algorithm takes as input the master
secret key, a function f , a message m, and a revocation list L ⊆ L and does the following:

• Parse RPE.msk = (RMFE.msk, cpABE.msk).

• Compute RMFE.ct← RMFE.SK-Enc(RMFE.msk, f, L).

• Construct circuit CL,RMFE.ct from L and RMFE.ct as defined in Eq. (6.1).

• Compute cpABE.ct← cpABE.Enc(cpABE.mpk, CL,RMFE.ct,m).

• Output RPE.ct = (RMFE.ct, cpABE.ct).

RPE.Dec(RPE.sklb,x,RPE.ct, L)→ m. The decryption algorithm takes as input the secret key
RPE.sklb,x, a ciphertext RPE.ct, and a revocation list L and does the following:

• Parse RPE.sklb,x = (att = ((lb, x),RMFE.sklb,x), cpABE.sklb,x) and RPE.ct =
(RMFE.ct, cpABE.ct).

• Construct circuit CL,RMFE.ct from L and RMFE.ct as defined in Eq. (6.1).

• Compute and output cpABE.Dec(cpABE.mpk, cpABE.sklb,x, att, cpABE.ct,
CL,RMFE.ct).

Correctness. First, we show that CL,RMFE.ct ∈ Cℓ,d. In particular, it suffices to bound the depth
of the circuit d by some fixed polynomial poly(λ). We first observe that checking whether lb ∈ L
or not can be done with depth | log(|lb| · |L|) = log(poly(λ)) ≤ λ. We also have that the depth of
RMFE.Dec is bounded by poly(λ, |f |, |x|, |lb|) as we saw in Sec. 5.2. Therefore, the total depth is
bounded by poly(λ, |f |, |x|, |lb|).

Theorem 6.1. Suppose RMFE and cpABE are correct, then the above construction of secret-key RPE
satisfies correctness (Def. 3.2).

Proof. For any (lb, x), function f ∈ Fλ and a revocation list L ⊆ Lλ such that f(x) = 1,∀x ∈ Xλ

and lb /∈ L, consider the following two cases:

1. Broadcast Correctness: For any ciphertext RPE.ct← RPE.Broadcast(RPE.mpk,m,L), we
have RPE.ct = (RMFE.ct, cpABE.ct), where RMFE.ct ← RMFE.PK-Enc(RMFE.mpk, L)
. So, by the public encryption correctness of RMFE scheme, with all but negligible
probability

RMFE.Dec(RMFE.sklb,x,RMFE.ct, L) = 1.

Since lb /∈ L, we have CL,RMFE.ct(att) = 1, where att = ((lb, x),RMFE.sklb,x). Hence by the
correctness of cpABE scheme we have that with all but negligible probability

cpABE.Dec(cpABE.mpk, cpABE.sklb,x, att, cpABE.ct, CL,RMFE.ct) = m.

63

2. Encryption Correctness: For any ciphertext RPE.ct ← RPE.Enc(RPE.msk, f,m,L), we
have RPE.ct = (RMFE.ct, cpABE.ct), where RMFE.ct ← RMFE.SK-Enc(RMFE.msk, f, L).
If (lb /∈ L) ∧ f(x) = 1, then by the correctness of RMFE.SK-Enc algorithm, we have with
all but negligible probability

RMFE.Dec(RMFE.sklb,x,RMFE.ct, L) = 1.

Furthermore, lb /∈ L implies CL,RMFE.ct((lb, x),RMFE.sklb,x) = 1. Hence by the correctness
of cpABE scheme, we have that with all but negligible probability

cpABE.Dec(cpABE.mpk, cpABE.sklb,x, att, cpABE.ct, CL,RMFE.ct) = m.

Hence the above construction of secret-key RPE satisfies correctness.

Efficiency. Here we argue that our construction achieves optimal parameters. Namely, we
show that all the parameters are independent from |L|.

1. Public key size |RPE.mpk|: We have |RPE.mpk| = |cpABE.mpk| + |RMFE.mpk|. The
former is bounded by poly(λ, ℓ, d) = poly(λ, |f |, |x|, |lb|) using Theorem 2.19, where we
additionally used ℓ = |RMFE.sklb,x| = poly(λ, |f |, |x|, |lb|) and d = poly(λ, |f |, |x|, |lb|).

2. Secret key size |RPE.sklb,x|: We have |RPE.sklb,x| = |att| + |cpABE.sklb,x|. We have
|att| = |lb| + |x| + |RMFE.sklb,x| = poly(λ, |f |, |x|, |lb|) and |cpABE.sklb,x| = poly(ℓ, d) =
poly(λ, |f |, |x|, |lb|) by Theorem 2.19. Therefore, the overall size is poly(λ, |f |, |x|, |lb|).

3. Ciphertext size |RPE.ct|: We have |RPE.ct| = |RMFE.ct| + |cpABE.ct|. The for-
mer is bounded by poly(λ, |f |, |x|, |lb|) and the latter is bounded by poly(λ, d) =
poly(λ, |f |, |x|, |lb|) by Theorem 2.19. Therefore, the overall size is poly(λ, |f |, |x|, |lb|).

6.2 Security

In this section we show that our construction of secret-key RPE is secure.

Message Hiding Security

Theorem 6.2. Assume that cpABE is very selectively secure (Def. 2.16) , RMFE is correct and |F| ≤
poly(λ). Then RPE scheme satisfies 1-query very selective message hiding security (Def. 3.5).

Proof. Recall that in the message hiding security game, we want

RPE.Enc(RPE.msk, f,m0, L) ≈c RPE.Enc(RPE.msk, f,m1, L),

where for all the key queries (lb, x) to the RPE.KeyGen(RPE.msk, ·, ·) oracle, either f(x) = 0 or
lb ∈ L. We show that if there exists an adversary Awho has non-negligible advantage ϵ in the
selective message hiding security game, then there exists a PPT adversary B against the security
of cpABE scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the key queries {(lb1, x1), (lb2, x2), . . . , (lbQ, xQ)}, f and L24.

24To keep the proofs simple, we let f to be given selectively. This is sufficient to achieve security as in Def 3.4, as
mentioned in Remark 3.10.

64

2. B generates (RMFE.mpk,RMFE.msk) ← RMFE.Setup(1λ) and computes RMFE.ct ←
RMFE.SK-Enc(RMFE.msk, f, L).

3. B computes RMFE.sklbi,xi
← RMFE.KeyGen(RMFE.msk, lbi, xi) for all i ∈ [Q]. It

also constructs the circuit CL,RMFE.ct as defined in the construction and sends
(CL,RMFE.ct, {(lbi, xi),RMFE.sklbi,xi

}i∈[Q]) as the challenge function and key attributes to
the cpABE challenger.
The cpABE challenger generates (cpABE.mpk, cpABE.msk) ← cpABE.Setup(1λ) and
keys cpABE.sklbi,xi

← cpABE.KeyGen(cpABE.msk, (lbi, xi),RMFE.sklbi,xi
) and returns

(cpABE.mpk, {cpABE.sklbi,xi
}i∈[Q] to B. B sets RPE.mpk = (RMFE.mpk, cpABE.mpk) and

sends (RPE.mpk, {cpABE.sklbi,xi
}i∈[Q]) to A.

4. Challenge Query: When A sends the challenge messages (m0,m1), B forwards it
to the cpABE challenger. The cpABE challenger samples a bit β̂ ← {0, 1} and
returns cpABE.ctβ̂ ← cpABE.Enc(cpABE.mpk, CL,RMFE.ct,mβ̂) to B. B sends RPE.ct =

(RMFE.ct, cpABE.ctβ̂) to A.

5. Encryption Query: When Amakes the encryption query (f̄ , m̄, L̄), B does the following:

• Computes RMFE.c̄t ← RMFE.SK-Enc(RMFE.msk, f̄ , L̄) and constructs the circuit
CL̄,RMFE.c̄t as defined in the construction.

• Computes cpABE.c̄t← cpABE.Enc(cpABE.mpk, CL̄,RMFE.c̄t, m̄).

• Returns RPE.c̄t = (RMFE.c̄t, cpABE.c̄t) to A.

6. In the end, A outputs a bit β′.

Observe that if the cpABE challenger chose β̂ = 0, then B simulated the real world where m0

was encrypted, else it simulated the real world where m1 was encrypted with A.
Hence, advantage of B is |Pr[β′ = 1|β̂ = 0] − Pr[β′ = 1|β̂ = 1]| = |Pr[β′ = 1|RPE.ct =
RPE.Enc(RPE.msk, f,m0, L)] − Pr[β′ = 1|RPE.ct = RPE.Enc(RPE.msk, f,m1, L)]| = ϵ (by
assumption).

Admissibility of B. We observe that for the challenge circuit CL,RMFE.ct and for all key
queries (lbi, xi), i ∈ [Q], queried by B, we have CL,RMFE.ct((lbi, xi),RMFE.sklbi,xi

) = 0 as either
(i) lbi ∈ L, or (ii) f(xi) = 0 , which implies RMFE.Dec(RMFE.sklbi,xi

,RMFE.ct) = 0 (due to
RMFE correctness), by the admissibility condition on A. So, if A is admissible then so is B.

Function Hiding Security

Theorem 6.3. Assume RMFE satisfies 1-query selective function hiding security (Def. 5.3), then the
RPE scheme satisfies 1-query selective function hiding security (Def. 3.7).

Proof. Recall that in the function hiding security game, we want

RPE.Enc(RPE.msk, f0,m,L) ≈c RPE.Enc(RPE.msk, f1,m,L),

where for all the key queries (lb, x) to the RPE.KeyGen(RPE.msk, ·, ·) oracle, either f0(x) = f1(x)
or lb ∈ L.
We show that if there exists an adversary A who has non-negligible advantage ϵ in the 1-query
selective function hiding security game, then there exists a PPT adversary B against the 1-query
selective function-hiding security of RMFE scheme with the same advantage ϵ. The reduction is
as follows.

65

1. B runs A and gets the revocation list L.

2. B sendsL as the challenge revocation list to the RMFE challenger. The challenger generates
(RMFE.mpk,RMFE.msk) and returns RMFE.mpk to B.

3. B generates (cpABE.mpk, cpABE.msk) ← cpABE.Setup(1λ). It sets RPE.mpk =
(RMFE.mpk, cpABE.mpk) and sends it to A.

4. Key Queries: On each key query (lb, x), B does the following:

• It sends a key query (lb, x) to the RMFE challenger and gets back RMFE.sklb,x.

• Sets att = ((lb, x),RMFE.sklb,x) and computes cpABE.sklb,x ← cpABE.KeyGen(cpABE.msk,
att).

• It returns RPE.sklb,x = (att, cpABE.sklb,x) to A.

5. Challenge Query: When A sends the challenge functions (f0, f1) and message m, B does
the following:

• Sends (f0, f1) as the challenge functions to the RMFE challenger. The challenger
samples β̂ ← {0, 1}, computes RMFE.ctβ̂ ← RMFE.SK-Enc(RMFE.msk, fβ̂, L) and
returns RMFE.ctβ̂ to B.

• Constructs the circuit CL,RMFE.ctβ̂
as defined in the construction and computes

cpABE.ct← cpABE.Enc(cpABE.mpk, CL,RMFE,ctβ̂
,m).

• Returns RPE.ct = (RMFE.ctβ̂, cpABE.ct) to A.

6. Encryption Query: When Amakes an encryption query (f̄ , m̄, L̄), B does the following:

• Sends a SK-Enc query (f̄ , L̄) to the RMFE challenger and gets back RMFE.c̄t.

• Constructs the circuit CL̄,RMFE.c̄t as defined in the construction.

• Computes cpABE.c̄t← cpABE.Enc(cpABE.mpk, CL̄,RMFE.c̄t, m̄).

• Returns RPE.c̄t = (RMFE.c̄t, cpABE.c̄t) to A.

7. In the end, the adversary outputs a bit β′.

Observe that if the RMFE challenger chose β̂ = 0, then B simulated the real world where f0 was
encrypted, else it simulated the real world where f1 was encrypted with A.
Hence, advantage of B is |Pr[β′ = 1|β̂ = 0] − Pr[β′ = 1|β̂ = 1]| = |Pr[β′ = 1|RPE.ct =
RPE.Enc(RPE.msk, f0,m,L)] − Pr[β′ = 1|RPE.ct = RPE.Enc(RPE.msk, f1,m,L)]| = ϵ (by
assumption).

Admissibility of B. First, we note that since A is allowed to make only one query, (f̄ , m̄, L̄) to
the RPE.Enc(msk, ·, ·, ·) oracle, B also makes only one query, (f̄ , L̄), to the RMFE.SK-Enc(msk, ·, ·)
oracle. Next, we observe that since A is restricted to make key queries (lb, x) such that either
f0(x) = f1(x) or lb ∈ L, thus B also issues key queries (lb, x) to RMFE challenger such that
either f0(x) = f1(x) or lb ∈ L. Hence, if A is admissible, then so is B.

Broadcast Security

Theorem 6.4. Assume RMFE satisfies 1-query mode hiding security (Def. 5.2), then the RPE scheme
satisfies 1-query selective broadcast security (Def. 3.8).

66

Proof. Recall that in the broadcast security game, we want

RPE.Enc(RPE.msk, f,m,L) ≈c RPE.Broadcast(RPE.mpk,m,L),

where f(x) = 1, ∀x ∈ X .
We show that if there exists an adversaryAwho has non-negligible advantage ϵ in the broadcast
security game, then there exists a PPT adversary B against the mode-hiding security of RMFE
scheme with the same advantage ϵ. The reduction is as follows.

1. B runs A and gets the revocation list L.

2. B sendsL as the challenge revocation list to the RMFE challenger. The challenger generates
(RMFE.mpk,RMFE.msk) and returns RMFE.mpk to B.

3. B generates (cpABE.mpk, cpABE.msk) ← cpABE.Setup(1λ). It sets RPE.mpk =
(RMFE.mpk, cpABE.mpk) and sends it to A.

4. Key Queries: On each key query (lb, x), B does the following:

• It sends a key query (lb, x) to the RMFE challenger and gets back RMFE.sklb,x.

• Sets att = ((lb, x),RMFE.sklb,x) and computes cpABE.sklb,x ← cpABE.KeyGen(cpABE.msk,
att).

• It returns RPE.sklb,x = (att, cpABE.sklb,x) to A.

5. Challenge Query: When A sends the challenge function f and message m, B does the
following:

• Sends f as the challenge function to the RMFE challenger. The challenger
samples β̂ ← {0, 1}, and returns RMFE.ctβ̂ to B, where RMFE.ct0 ←
RMFE.SK-Enc(RMFE.msk, f, L) and RMFE.ct1 ← RMFE.PK-Enc(RMFE.mpk, L).

• Constructs the circuit CL,RMFE.ctβ̂
as defined in the construction and computes

cpABE.ct← cpABE.Enc(cpABE.mpk, CL,RMFE,ctβ̂
,m).

• Returns RPE.ct = (RMFE.ctβ̂, cpABE.ct) to A.

6. Encryption Query: When Amakes an encryption query (f̄ , m̄, L̄), B does the following:

• Sends a SK-Enc query (f̄ , L̄) to the RMFE challenger and gets back RMFE.c̄t.

• Constructs the circuit CL̄,RMFE.c̄t as defined in the construction.

• Computes cpABE.c̄t← cpABE.Enc(cpABE.mpk, CL̄,RMFE.c̄t, m̄).

• Returns RPE.c̄t = (RMFE.c̄t, cpABE.c̄t) to A.

7. In the end, the adversary outputs a bit β′.

Observe that if the RMFE challenger chose β̂ = 0, then B simulated the real world where
the ciphertext was computed using Enc algorithm else it simulated the real world where the
ciphertext was computed using Broadcast algorithm, with A.
Hence, the advantage of B is |Pr[β′ = 1|β̂ = 0] − Pr[β′ = 1|β̂ = 1]| = |Pr[β′ = 1|RPE.ct =
RPE.Enc(RPE.msk, f,m,L)] − Pr[β′ = 1|RPE.ct = RPE.Broadcast(RPE.msk,m,L)]| = ϵ (by
assumption).

67

Admissibility of B. First, we note that since A is allowed to make only one query, (f̄ , m̄, L̄) to
the RPE.Enc(msk, ·, ·, ·) oracle, B also makes only one query, (f̄ , L̄), to the RMFE.SK-Enc(msk, ·, ·)
oracle. Next, we observe that since A is restricted to output f , such that f(x) = 1 for all x ∈ X ,
this implies B also issues such f as the challenge query to the RMFE challenger in the above
mode hiding security game. Thus, if A is admissible, then so is B.

7 Embedded Identity Trace and Revoke

In this section, we define different variants of an embedded identity trace and revoke system
(EITR). Our definitions extend the different notions that Goyal et al. [GKW19] introduced, in the
context of embedded identity traitor tracing, to incorporate the revocation list. Concretely, we
define three variants of an EITR scheme: 1) Indexed EITR, 2) Bounded EITR, and 3) Unbounded
EITR. Our goal is Unbounded EITR and other variants are introduced as intermediate goals.
We show a construction of indexed EITR from RPE in Sec. 8, bounded EITR from indexed EITR
in Sec. 9, and unbounded EITR from bounded EITR in Sec. 10. These implications hold for both
secret key and public key settings.

An EITR scheme consists of five polynomial time algorithms–Setup,KeyGen,Enc,Dec and
Trace. The syntax of the EITR variants mentioned above differs only in the inputs to the
Setup,KeyGen and Trace algorithms. Here we give a unified definition and later specify the
distinctness of the three variants.

Consider a general identity space GID, a label space L and a message space M. An
embedded identity trace and revoke scheme EITR = (Setup,KeyGen,Enc,Dec,Trace) has the
following syntax:

Setup(1λ, params1)→ (mpk,msk). The setup algorithm takes as input the security parameter λ
and parameters params1. It outputs a master public key mpk and a master secret key msk.

KeyGen(msk, lb, gid)→ sklb,gid. The key generation algorithm takes as input the master secret
key msk, a label lb ∈ L, and a general identity gid ∈ GID. It outputs a secret key sklb,gid.

Enc(mpk,m,L) → ct. The encryption algorithm takes as input the master public key mpk, a
message m ∈M, a revocation list L ⊆ L and outputs a ciphertext ct.

Dec(sklb,gid, ct, L)→ y. The decryption algorithm takes as input a secret key sklb,gid, a ciphertext
ct, and a revocation list L and outputs y ∈M∪ {⊥}.

TraceD(tk, params2,m0,m1, L) → T . The tracing algorithm takes as input a tracing key tk,
parameter params2, two messages m0,m1, a revocation list L and has an oracle access to a
decoder D. It outputs a set of traitors T .

The above syntax captures both public key and secret key trace EITR schemes. For any public
tracing EITR scheme, we have tk = mpk and in the secret tracing EITR scheme, tk = msk. We
now describe the properties satisfied by an EITR scheme.

Definition 7.1 (Correctness). An EITR scheme is said to be correct if there exists a negligible
function negl(·) such that for all λ ∈ N, any label lb ∈ L, and any revocation list L ⊆ L such that
lb /∈ L, the following holds

Pr

[
Dec(sklb,gid, ct, L) = m :

(mpk,msk)← Setup(1λ, params1);
sklb,gid ← KeyGen(msk, lb, gid);
ct← Enc(mpk,m,L)

]
≥ 1− negl(λ).

68

Definition 7.2 (IND-CPA Security). An EITR scheme is said to be IND-CPA secure if for every
stateful PPT adversary A, there exists a negligible function negl(·) such that for every λ ∈ N,
the following holds

Pr

 AKeyGen(msk,·,·)(ctβ) = β :

params1 ← A(1λ);
(mpk,msk)← Setup(1λ, params1);

(m0,m1, L)← AKeyGen(msk,·,·)(mpk);
β ← {0, 1}; ctβ ← Enc(mpk,mb, L)

 ≤ 1

2
+ negl(λ)

where the adversary has the access to the KeyGen(msk, ·, ·) oracle which has msk hardwired and
A is admissible only if for all the key generation queries (lb, gid) to the KeyGen oracle, lb ∈ L .

Definition 7.3 (Very Selective IND-CPA Security). The very selective IND-CPA security of an
EITR scheme is defined in the same way as Def. 7.2, except that the adversary outputs the
revocation list L and all the key queries {lbi, gidi}i∈[Q], where Q is the number of key queries
made, along with params1 before the Setup algorithm is run.

In the following, we specify the space GID, inputs params1, gid and params2 to the
Setup,KeyGen and Trace algorithm, respectively, and then define the secure tracing guarantee
of each of the EITR notions separately. We let ID = {0, 1}κ denote the identity space.
Remark 7.4. We assume that there exists an efficiently computable mapping map : GID → L,
that uniquely maps an gid ∈ GID to a label lb ∈ L. This can be easily ensured, for e.g. by making
label lb a part of id. We further note that in real world applications one may also want to ensure
that any label lb is associated with at most one id. This can be achieved by using a collision
resistant hash function.

7.1 Indexed Trace and Revoke with Embedded Identity

In an indexed EITR scheme, the key is generated w.r.t. an identity and an index. We have
GID = ID × [nind], where [nind] is the index space for nind ∈ N, params1 = (1κ, nind), gid =
(id, i) ∈ ID × [nind], and params2 = y for some y > 1.
We now define the secure tracing requirement.

Definition 7.5 (Secure Tracing). Let Ind-TR = (Setup,KeyGen,Enc,Dec,Trace) be an indexed
EITR scheme. For any non-negligible function ϵ(·) and stateful PPT adversary A, define an
experiment Expt-Ind-TRA,ϵ(λ) as in Figure 4.
Let S be the set of key queries (lb, id, i) queried by A and SID = {id : ∃lb ∈ L, i ∈
[nind] s.t (lb, id, i) ∈ S}.
Consider the following probabilistic events and their corresponding probabilities:

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(mpk,mb, L)] ≥ 1/2 + ϵ(λ)
Pr-Good-DecoderA,ϵ(λ) = Pr[Good-Decoder].

• Cor-Tr : |T | > 0, (T ⊆ SID) ∧ (Tlb ∩ L = ϕ), where Tlb = {lb ∈ L : ∃i ∈ [nind], ∃id ∈
T, (lb, id, i) ∈ S}.
Pr-Cor-TrA,ϵ(λ) = Pr[Cor-Tr].

• Fal-Tr : (T ⊈ SID) ∧ (Tlb ∩ L = ϕ)
Pr-Fal-TrA,ϵ(λ) = Pr[Fal-Tr].

The Ind-TR scheme is said to satisfy secure tracing property if for every PPT adversary A and
non-negligible function ϵ(·), there exists negligible functions negl1(·) and negl2(·), such that for
all λ ∈ N, the following holds:

Pr-Fal-TrA,ϵ(λ) ≤ negl1(λ), Pr-Cor-TrA,ϵ(λ) ≥ Pr-Good-DecoderA,ϵ(λ)− negl2(λ).

69

Experiment Expt-Ind-TRA,ϵ(λ)

• 1κ, 1nind ← A(1λ)

• (mpk,msk)← Setup(1λ, 1κ, nind)

• (D,m0,m1, L)← AKeyGen(msk,·,·,·)(mpk)

• T ← TraceD(tk, 11/ϵ(λ),m0,m1, L)

Here A has the oracle access to KeyGen(msk, ·, ·, ·), which has msk hardwired and on query
(lb, id, i), it outputs sklb,id,i. The adversary is admissible only if it makes at most one key query
for each index.

Figure 4: Expt-Ind-TR

Definition 7.6 (Very Selective Secure Tracing). The very selective secure tracing of an indexed
EITR scheme is defined in the same way as Def. 7.5, except that the adversary outputs the
challenge revocation list L and all the key queries (lb, id, i) along with (1κ, 1nind) in the beginning
of the Expt-Ind-TRA,ϵ(λ).

Remark 7.7. In the definition above, Setup takes nind as an input in the binary form rather than
in the unary form. This indicates that Setup runs in polynomial time, even if nind = 2poly(λ). On
the other hand, the adversary outputs nind in the unary form in the security game (Fig. 4). This
indicates that we consider the security game only for the case where nind = poly(λ). Looking
ahead, the former property is necessary when we convert bounded EITR into unbounded EITR
in Sec. 10.

7.2 Bounded Trace and Revoke with Embedded Identity

In a bounded EITR scheme, we have GID = ID, params1 = (1κ, 1nbd), where nbd ∈ N is the
bound on the number of key queries that an adversary can make in the correct trace experiment
game, gid = id for id ∈ ID, and params2 = y for some y > 1.
We now define the secure tracing requirement.

Definition 7.8 (Secure Tracing). Let BD-TR = (Setup,KeyGen,Enc,Dec,Trace) be a bounded
EITR scheme. For any non-negligible function ϵ(·) and stateful PPT adversary A, define an
experiment Expt-BD-TRA,ϵ(λ) as in Figure 5.
Let S be the set of key queries made by A and SID = {id : ∃lb ∈ L s.t (lb, id) ∈ S}. Consider the
following probabilistic events and their corresponding probabilities :

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(mpk,mb, L)] ≥ 1/2 + ϵ(λ)
Pr-Good-DecoderA,ϵ(λ) = Pr[Good-Decoder ∧ |SID| ≤ nind].

• Cor-Tr : |T | > 0, (T ⊆ SID) ∧ (Tlb ∩ L = ϕ), where Tlb = {lb ∈ L : ∃id ∈ T, (lb, id) ∈ S}.
Pr-Cor-TrA,ϵ(λ) = Pr[Cor-Tr].

• Fal-Tr : (T ⊈ SID) ∧ (Tlb ∩ L = ϕ)
Pr-Fal-TrA,ϵ(λ) = Pr[Fal-Tr].

The scheme is said to satisfy secure tracing if for every PPT adversary A and non-negligible
function ϵ(·), there exists negligible functions negl1(·) and negl2(·), such that for all λ ∈ N, the

70

Experiment Expt-BD-TRA,ϵ(λ)

• 1κ, 1nbd ← A(1λ)

• (mpk,msk)← Setup(1λ, 1κ, nbd)

• (D,m0,m1, L)← AKeyGen(msk,·,·)(mpk)

• T ← TraceD(tk, 11/ϵ,m0,m1, L)

HereA has the oracle access to KeyGen(msk, ·, ·), which has msk hardwired and on query (lb, id),
it outputs sklb,id.

Figure 5: Expt-BD-TR

following holds:

Pr-Fal-TrA,ϵ(λ) ≤ negl1(λ), Pr-Cor-TrA,ϵ(λ) ≥ Pr-Good-DecoderA,ϵ(λ)− negl2(λ).

Definition 7.9 (Very Selective Secure Tracing). The very selective secure tracing of a bounded
EITR scheme is defined in the same way as Def. 7.8, except that the adversary outputs the
challenge revocation list L and all the key queries (lb, id) along with (1κ, 1nbd) in the beginning
of the Expt-Ind-TRA,ϵ(λ).

Remark 7.10. We point out that the bound on the number of key queries by the adversary is
only required for the correct trace guarantee. The false trace guarantee will hold even if the
adversary exceeds nbd key queries– this is essential for the transformation from bounded-EITR
scheme to unbounded-EITR scheme.

7.3 Unbounded Trace and Revoke with Embedded Identity

In an unbounded EITR scheme, we have GID = ID, params1 = 1κ, gid = id for id ∈ ID, and
params2 = (y,Qbd) where y > 1,Qbd ∈ N.
We now define the secure tracing requirement.

Definition 7.11 (Secure Tracing). Let TR = (Setup,KeyGen,Enc,Dec,Trace) be an unbounded
EITR scheme. For any non-negligible function ϵ(·), polynomial p(·) and stateful PPT adversary
A, define the experiment Expt-TRA,ϵ,p(λ) as in Figure 6.
Let S be the set of key queries made by A and SID = {id : ∃lb ∈ L s.t (lb, id) ∈ S}. Consider the
following probabilistic events and their corresponding probabilities :

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb, L) ≥ 1/2 + ϵ(λ)]
Pr-Good-DecoderA,ϵ,p(λ) = Pr[Good-Decoder ∧ |SID| ≤ p(λ)].

• Cor-Tr : |T | > 0, (T ⊆ SID) ∧ (Tlb ∩ L = ϕ), where Tlb = {lb ∈ L : ∃id ∈ T, (lb, id) ∈ S}.
Pr-Cor-TrA,ϵ,p(λ) = Pr[Cor-Tr].

• Fal-Tr : (T ⊈ SID) ∧ (Tlb ∩ L = ϕ)
Pr-Fal-TrA,ϵ,p(λ) = Pr[Fal-Tr].

The scheme is said to satisfy secure traitor tracing property if for every PPT adversary A and
non-negligible function ϵ(·),there exists negligible functions negl1(·) and negl2(·), such that for

71

Experiment Expt-TRA,ϵ,p(λ)

• 1κ ← A(1λ).

• (mpk,msk)← Setup(1λ, 1κ).

• (D,m0,m1, L)← AKeyGen(msk,·,·)(mpk).

• T ← TraceD(tk, 11/ϵ(λ), p(λ),m0,m1, L).

HereA has the oracle access to KeyGen(msk, ·, ·), which has msk hardwired and on query (lb, id),
it outputs sklb,id.

Figure 6: Expt-TR

all λ ∈ N, the following holds:

Pr-Fal-TrA,ϵ,p(λ) ≤ negl1(λ), Pr-Cor-TrA,ϵ,p(λ) ≥ Pr-Good-DecoderA,ϵ,p(λ)− negl2(λ).

Definition 7.12 (Very Selective Secure Tracing). The very selective secure tracing of an
unbounded EITR scheme is defined in the same way as Def. 7.11, except that the adversary
outputs the challenge revocation list L and all the key queries (lb, id) along with 1κ in the
beginning of the Expt-TRA,ϵ(λ).

Remark 7.13. [Remark 10.4, [GKW19]]. Note that here the trace algorithm takes an additional
parameter Qbd. In the correct trace definition, we require that as long as the tracing algorithm
uses a bound greater than the number of keys queried, the tracing algorithm must identify at
least one traitor. However, the false trace guarantee should hold for all polynomially bounded
Qbd values. In particular, even if the number of keys queried is more than the bound used in
tracing, the trace algorithm must not output an identity that was not queried. We can show that
this definition implies the ‘standard’ tracing definition where the trace algorithm does not take
this bound as input. One simply needs to run this bounded-version of trace with increasing
powers of two until the trace algorithm outputs at least one traitor.

8 Indexed Trace and Revoke with Embedded Identity

In this section we construct an indexed (secret/public tracing)-EITR scheme from a (se-
cret/public key)-RPE scheme. We present the construction and proofs for the secret trace
setting primarily and also outline the differences in the public trace setting simultaneously.

8.1 Construction

Consider the identity space ID = {0, 1}κ and index bound nind. For our purpose, it suffices to
assume nind ≤ 22λ. Let RPE = (RPE.Setup,RPE.KeyGen,RPE.Broadcast,RPE.Enc,RPE.Dec) be
a (secret/public key) RPE scheme25 with attribute space ID × [nind], and supports the function
class F = {f [j, ℓ, b]}j∈[nind],ℓ∈[κ],

b∈{0,1}
, where f [j, ℓ, b] : ID × [nind]→ {0, 1} is as defined in figure 8.1.

We construct an indexed (secret/public tracing)-EITR scheme with identity space ID = {0, 1}κ
and index bound nind as follows :

25Public key RPE does not have the Broadcast algorithm.

72

Inputs: an identity id and an index i.
Hardwired Values : Indices j ∈ [nind], ℓ ∈ [κ], a bit b ∈ {0, 1}.
Output : 0/1.

f [j, ℓ, b](id, i) =

{
1 if (i > j) ∨ (i = j ∧ ℓ = ⊥) ∨ (i = j ∧ idℓ = 1− b)
0 otherwise

Figure 7: Comparison Function f [j, ℓ, b]

Setup(1λ, 1κ, nind)→ (mpk,msk). The setup algorithm does the following:

• Samples (RPE.mpk,RPE.msk)← RPE.Setup(1λ).

• Outputs mpk = RPE.mpk and msk = RPE.msk.

KeyGen(msk, (lb, id, i))→ sklb,id,i. The key generation algorithm does the following:

• Parse msk = RPE.msk.

• Sets x = (id, i) and runs RPE.sklb,id,i ← RPE.KeyGen(RPE.msk, lb, x).

• Outputs sklb,id,i = RPE.sklb,id,i.

Enc(mpk,m,L)→ ct. The encryption algorithm does the following:

• Parse mpk = RPE.mpk.

• Compute RPE.ct ← RPE.Broadcast(RPE.mpk,m,L). (In public trace setting, the
algorithm computes RPE.ct← RPE.Enc(RPE.mpk, f [1,⊥, 0],
m, L)).

• Outputs ct = RPE.ct.

Dec(sklb,id,i, ct, L)→ m′. The decryption algorithm does the following:

• Parse sklb,id,i as RPE.sklb,id,i and ct as RPE.ct.

• Computes and outputs m′ ← RPE.Dec(RPE.sklb,id,i,RPE.ct, L).

TraceD(tk, y,m0,m1, L) → T . Parse tk as msk = RPE.msk (in the public trace setting tk is
mpk = RPE.mpk). The tracing algorithm is a two phased process. Briefly the tracing is
implemented as follows:

1. First, we run the Index.Trace algorithm as defined in Figure 8, on the index space
[nind]. If the key associated with index i ∈ [nind] is used in constructing the decoder
box, then the bit b in the output of the Index.Trace algorithm is 1. We maintain a set
Tindex to store all such indices on which b = 1.

2. Next, the ID.Trace algorithm, defined in Figure 9, takes the set Tindex as input and
uses the decoder D to compute the identity associated with each index.

73

Algorithm Index.Trace(tk, y,m0,m1, L, i)

Inputs: Tracing key tk, a parameter y, messages m0,m1, revocation list L and an index i.
Output : (b, p, q), where b ∈ {0, 1} and p, q ∈ [0, 1] ∪ {⊥}.
Let ϵ = ⌊1/y⌋. It sets N = λ · nind/ϵ and temp1 = temp2 = 0. For j = 1 to N , it computes the
following:

1. It samples bj ← {0, 1} and computes ctj,1 ← RPE.Enc(tk, f [i,⊥, 0],mbj , L) and sends ctj,1
to D.
If D outputs bj , set temp1 = temp1 + 1, else set temp1 = temp1 − 1.

2. It samples cj ← {0, 1} and computes ctj,2 ← RPE.Enc(tk, f [i+ 1,⊥, 0],mcj , L) and sends
ctj,2 to D.
If D outputs cj , set temp2 = temp2 + 1, else set temp2 = temp2 − 1.

If temp1−temp2
N > ϵ

4nind
, output

(
1, temp1

N , temp2
N

)
else output (0,⊥,⊥).

Figure 8: Index Tracing

Specifically, the algorithm runs as follows:

• Set Tindex := ϕ. For i = 1 to nind,

– Compute (b, p, q)← Index.Trace(tk, y,m0,m1, L, i).
– If b = 1, set Tindex := Tindex ∪ (i, p, q).

• Set T = ϕ. For (i, p, q) ∈ Tindex,
– Compute id← ID.Trace(tk, y,m0,m1, L, (i, p, q)).
– Set T := T ∪ {id}.

• Output T .

Correctness. We prove that the above construction of indexed (secret/public tracing)-EITR
scheme satisfies correctness (Def. 7.1) via the following theorem.

Theorem 8.1. If RPE is a correct (secret/public key)-RPE scheme, then the above construction of indexed
(secret/public tracing)-EITR scheme is correct.

Proof. For the secret trace setting, the correctness follows directly from the broadcast correctness
of the underlying (secret-key) RPE scheme.
For the public trace setting, firstly we observe that for any (id, i) ∈ ID×[nind], f [1,⊥, 0](id, i) = 1.
Hence, correctness follows directly from the encryption correctness of the underlying (public-
key) RPE scheme.

Efficiency. We can instantiate the above construction using public key and secret key RPE.
The size of each parameter is directly inherited from that of the underlying RPE. We have
|x| = |id| + log nind ≤ |id| + λ and |f | := |f [j, ℓ, b]| = log nind + log κ + 1 = O(λ). We note that
here, |f [j, ℓ, b]| refers to the description size of the function |f [j, ℓ, b]|, not the size of the circuit
implementing it. In particular, the latter can depend on |id| while the former is independent
from |id|.

74

Algorithm ID.Trace(tk, y,m0,m1, L, (i, p, q))

Inputs: Tracing key tk, a parameter y, messages m0,m1, revocation list L, index i, and
probabilities p, q.
Output : id ∈ {0, 1}κ

Let ϵ = ⌊1/y⌋. It sets N = λ · nind/ϵ and tempℓ = 0 for ℓ ∈ [κ]. For ℓ = 1 to κ, it does as follows:

1. For j = 1 to N
It samples bj ← {0, 1} and computes ctj ← RPE.Enc(tk, f [i, ℓ, 0],mbj , L) and sends ctj to
D.
If D outputs bj , set tempℓ = tempℓ + 1, else set tempℓ = tempℓ − 1.

Let id be an empty string. For ℓ = 1 to κ, do the following:

1. If p+q
2 > tempℓ

N , set idℓ = 0, else set idℓ = 1.

Output id = id1∥ · · · ∥idκ.

Figure 9: Identity Tracing

Secret Tracing Setting. If we instantiate the scheme with our secret key RPE in Sec. 6, we have

|mpk|, |ct|, |sk| = poly(λ, |f |, |x|, |lb|) = poly(λ, |id|, |lb|).

Public Tracing Setting. If we instantiate the scheme with our public key RPE in Sec. 4, we have

|mpk|, |ct| = poly(λ, |f |, |lb|) = poly(λ, |lb|), |sk| = poly(λ, |f |, |x|, |lb|) = poly(λ, |id|, |lb|).

8.2 Security

In this section we show that our construction of the indexed (secret/public tracing)-EITR
scheme is secure.

IND-CPA security.

Theorem 8.2. If (secret/public key)-RPE scheme satisfies (0-query- very selective/adaptive) message
hiding property (Def. 3.4/Def. 3.3) then our construction of indexed (secret/public tracing)-EITR scheme
is (very selective/adaptive) IND-CPA secure (Def. 7.2/Def. 7.3).

Proof. Recall that for IND-CPA security, we need

Enc(mpk,m0, L) ≈c Enc(mpk,m1, L).

For indexed secret tracing EITR scheme, this is equivalent to

RPE.Broadcast(RPE.mpk,m0, L) ≈c RPE.Broadcast(RPE.mpk,m1, L). (8.1)

To prove this, we define the following hybrids:

Hybrid0 : This is the real world with the challenge bit b = 0. In particular, the challenger returns
the ciphertext ct = RPE.Broadcast(RPE.mpk,m0, L).

75

Hybrid1 : In this hybrid, the challenger returns the ciphertext ct = RPE.Enc(RPE.mpk,
f [1,⊥, 0],m0, L). Indistinguishability from Hybrid0 follows from the broadcast security of
secret-key RPE.

Hybrid2 : In this hybrid, the challenger returns the ciphertext ct = RPE.Enc(RPE.mpk,
f [1,⊥, 0],m1, L). Indistinguishability from Hybrid1 follows from the message hiding
property of secret-key RPE.

Hybrid3 : In this hybrid, the challenger returns the ciphertext ct = RPE.Broadcast(RPE.mpk,m1, L).
This is the real world with b = 1. Indistinguishability from Hybrid2 follows from the
broadcast security of secret-key RPE.

For indexed public trace EITR scheme, IND-CPA security is equivalent to

RPE.Enc(RPE.mpk, f [1,⊥, 0],m0, L) ≈c RPE.Enc(RPE.mpk, f [1,⊥, 0],m1, L). (8.2)

The indistinguishability here follows directly from the message hiding property of the
underlying RPE scheme.

Secure Tracing Analysis. We now show that our construction of indexed (secret/public
tracing)-EITR scheme achieves the correct and false trace guarantees. The following analysis is
mostly taken from ([GKW19], Section 5.2.2) with appropriate modifications to incorporate the
revocation list.

False Trace Guarantee. The false trace guarantee of a trace and revoke scheme ensures that
the tracing algorithm does not falsely accuse any user. We prove that there does not exist a
PPT adversary who can output a decoder D such that the tracing algorithm, when executed
using this decoder D, outputs an identity for which key was not queried by the adversary or
the corresponding label is in the revocation list.

Theorem 8.3. For every stateful PPT adversary A and non-negligible function ϵ(·), there exists
negligible functions negl(·), such that for all λ ∈ N

Pr-Fal-TrA,ϵ(λ) ≤ negl(λ)

where the probability Pr-Fal-TrA,ϵ is as defined in Def. 7.5.

Proof. Let S ⊆ L × ID × [nind] be the set of label-identity-index pairs on which A issues
key queries. That is, S = {(lb, id, i) : A issues a key query on (lb, id, i)}. Let us first recall the
assumption that A can issue at most one key query for any index i ∈ [nind]. Next, we set up
some notations. For lb ∈ L, i ∈ [nind], id ∈ ID and a revocation list L, let

Sindex = {i : (lb, id, i) ∈ S for some (lb, id) ∈ L × ID},
Lindex = {i : (lb, id, i) ∈ S and lb ∈ L},

B = {(id, i) : (lb, id, i) ∈ S and lb /∈ L},
Bindex = {i : (id, i) ∈ B}.

For any decoder box D, messages m0,m1, revocation list L, for any i ∈ [nind + 1], ℓ ∈ [κ], lb ∈ L
we define

pDi,⊥ = Pr[D(ct) = b : b← {0, 1}, ct← RPE.Enc(tk, f [i,⊥, 0],mb, L)]

76

pDi,ℓ = Pr[D(ct) = b : b← {0, 1}, ct← RPE.Enc(tk, f [i, ℓ, 0],mb, L)]

where the probability is taken over the random coins to decoder D and the randomness used
during the encryption. We show that Pr-Fal-TrA,ϵ(λ) ≤ negl(λ). For i ∈ [nind], ℓ ∈ [κ], we also

define the following events:

Diff-AdvDi : pDi,⊥ − pDi+1,⊥ > ϵ/8nind

Diff-AdvDi,ℓ,lwr : p
D
i,⊥ − pDi,ℓ > ϵ/16nind

Diff-AdvDi,ℓ,upr : p
D
i,ℓ − pDi+1,⊥ > ϵ/16nind

Diff-AdvD :
∨

i∈[nind]\(Sindex\Lindex)

Diff-AdvDi
∨

(id,i)∈B,ℓ∈[κ],
s.t idℓ=1

Diff-AdvDi,ℓ,lwr
∨

(id,i)∈B,ℓ∈[κ]
s.t idℓ=0

Diff-AdvDi,ℓ,upr

We will drop the dependence on D for the ease of notation. We have

Pr[Fal-Tr] = Pr[Fal-Tr | Diff-Adv]Pr[Diff-Adv] + Pr[Fal-Tr | Diff-Adv]Pr[Diff-Adv]

≤ Pr[Fal-Tr | Diff-Adv] + Pr[Diff-Adv]

= Pr[Fal-Tr | Diff-Adv] +
∑

i∈[nind]

Pr[i /∈ Sindex\Lindex ∧ Diff-Advi]

+
∑

(i,ℓ)∈[nind]×[κ]

Pr

[
∃id ∈ {0, 1}κ s.t (id, i) ∈ B

∧ ([Diff-Advi,ℓ,lwr ∧ idℓ = 1] ∨ [Diff-Advi,ℓ,upr ∧ idℓ = 0])

]
Now, we argue that each of the terms on the RHS is bounded by a negligible function.

Lemma 8.4. For every stateful PPT adversary A, there exists a negligible function negl1(·), such that
∀λ ∈ N, we have

Pr[Fal-Tr | Diff-Adv] ≤ negl1(λ).

Proof. Note that the event Fal-Tr occurs if and only if the trace algorithm outputs an identity
that was not queried by the adversary or outputs an identity which was queried but also
revoked. Since, the tracing scheme is two phased, the false tracing can happen in any of the two
stages. First, during the index-tracing procedure, it can happen that ∃(i, p, q) ∈ Tindex, such that,
i /∈ Sindex\Lindex and secondly, during the identity-tracing procedure, the ID.Trace algorithm
outputs an incorrect identity corresponding to some i ∈ Sindex\Lindex. So, we have

Pr[Fal-Tr | Diff-Adv]

≤
∑

i∈[nind]

Pr[Fal-Tr ∧ i /∈ Sindex\Lindex ∧ (∃p, q : (i, p, q) ∈ Tindex) | Diff-Adv]

+
∑

(i,ℓ)∈[nind]×[κ]

Pr[Fal-Tr ∧ ∃id, îd : (id, i) ∈ B ∧ (∃p, q : (i, p, q) ∈ Tindex)

77

∧ îd← ID.Trace(tk, 1y,m0,m1, (i, p, q)) ∧ idℓ ̸= îdℓ | Diff-Adv].

Consider the first term on RHS. If Diff-Adv happens then ∀i /∈ Sindex\Lindex event Diff-Advi
happens.
We know that Diff-Advi implies pi,⊥ − pi+1,⊥ ≤ ϵ/8nind. Also the event (∃p, q : (i, p, q) ∈ Tindex)
implies p̂i,⊥ − p̂i+1,⊥ > ϵ/4nind, where p̂j,⊥ is the estimated probability for pj,⊥.

By applying Chernoff bound, we have, for every i ∈ [nind]

Pr[i /∈ Sindex\Lindex ∧ (∃p, q : (i, p, q) ∈ Tindex) | Diff-Adv] ≤ e−λ/24 ≤ 2−O(λ).

Now, in the second term, for a fixed (i, ℓ) the probability term corresponds to the event when
the ID.Trace outputs an identity îd corresponding to index i, such that îdℓ ̸= idℓ, where id is
such that the adversary made a key query for (id, i). So, if the event Diff-Adv happens then
∀(id, i) ∈ B, ℓ ∈ [κ], event Diff-Advi ,ℓ,X happens where X = lwr if idℓ = 1 else X = upr.
Thus, when we have idℓ = 1, then Diff-Advi ,ℓ,lwr implies pi,⊥ − pi,ℓ ≤ ϵ/16nind.
Also, the event (∃ p, q : (i, p, q) ∈ Tindex) implies that p̂i,⊥ − p̂i+1,⊥ ≥ ϵ/4nind and the event
îd ← ID.Trace(tk, 1y,m0,m1, (i, p, q)) ∧ îdℓ = 0 implies (p̂i,⊥ + p̂i+1,⊥ > 2p̂i,ℓ). These together
imply that p̂i,⊥ − p̂i,ℓ > ϵ/8nind. Similarly, when idℓ = 0 and îdℓ = 1, Diff-Advi ,ℓ,upr implies
pi,ℓ − pi+1,⊥ ≤ ϵ/16nind and following the similar reasoning as above, we get p̂i,⊥ − p̂i+1,⊥ ≥
ϵ/4nind and p̂i,⊥ + p̂i+1,⊥ ≤ 2p̂i,ℓ which implies p̂i,ℓ − p̂i+1,⊥ ≥ ϵ/8nind.
Hence, using Chernoff bound, we get that

Pr[∃id, îd : (id, i) ∈ S ∧ (∃p, q : (i, p, q) ∈ Tindex) ∧ îd← ID.Trace(tk, 1y,m0,m1, (i, p, q))

∧ îd ∈ T ∧ idℓ ̸= îdℓ | Diff-Adv] ≤ 2−O(λ).

Combining the probability of both the RHS terms, we get

Pr[Fal-Tr | Diff-Adv] ≤ nind · 2−O(λ) + nind · κ · 2−O(λ) = negl1(λ).

Lemma 8.5. If the underlying (secret/public key)-RPE satisfies (1-query-selective/adaptive) function
hiding security property (Def. 3.7/Def. 3.6), then for every stateful PPT adversary A, there exists a
negligible function negl2(·), such that ∀λ ∈ N and i ∈ [nind], we have

Pr[i /∈ Sindex\Lindex ∧ Diff-Advi] ≤ negl2(λ).

Proof. We give a proof by contradiction. Suppose there exists a PPT adversary A that outputs
a good decoder D along with messages m0, m1 and a revocation list L such that there exists
i∗ ∈ [nind] for which Pr[i∗ /∈ Sindex\Lindex ∧ Diff-Advi∗] ≥ δ where δ is some non-negligible
function in the security parameter λ. We use this adversary A to build a reduction B that can
break the function hiding security of the underlying RPE scheme. The reduction is as follows:

1. In the beginning, A outputs 1nind , 1κ, L (A will output L adaptively in the public trae
setting).

2. The RPE challenger samples (RPE.mpk,RPE.msk)← RPE.Setup(1λ) and sends RPE.mpk
to B. B sets mpk = RPE.mpk and forwards it to A.

3. When A issues a secret key query (lb, id, j) (recall that A can make at most one query
for each index j), B sends a key query to the RPE challenger on (lb, x = (id, j)). The
challenger returns sklb,id,j which B forwards to A.

78

4. In the end, A outputs a decoder D and messages m0,m1 (and a revocation list L in the
case of public tracing EITR scheme) to B. B then does the following:

(a) Samples i← [nind] \ (Sindex \ Lindex) and sets f0 = f [i,⊥, 0] and f1 = f [i+ 1,⊥, 0].
(b) Samples b ← {0, 1} and sends (f0, f1,mb) to the RPE challenger. The challenger

samples α← {0, 1}, computes ct1 ← RPE.Enc(RPE.msk, fα,mb, L) and sends ct1 to
B. (In public trace setting, ct1 ← RPE.Enc(RPE.mpk, fα,mb, L).)

(c) B samples β ← {0, 1} and sends a encryption query on (fβ,mb, L) and sets the
ciphertext returned by the RPE challenger as ct2. (In public trace setting, B computes
ct2 itself as ct2 ← RPE.Enc(RPE.mpk, fβ,mb, L).)

(d) B samples β ← {0, 1}, computes ct2 ← RPE.Enc(RPE.mpk, fβ,mb, L).
(e) If D(ct1) = D(ct2), sets α′ = β, else α′ = 1− β.
(f) B returns α′ to the RPE challenger.

B wins the game if α = α′. Note that since i ← [nind] \ (Sindex \ Lindex), for every key query
(lb, id, j) that B issues to the RPE challenger, either f0(id, j) = f1(id, j) (when i /∈ Sindex) or
lb ∈ L (when i ∈ Sindex ∩ Lindex). This establishes the admissibility of B. Now, let us analyse the
probability of B winning against the RPE challenger.

Let qj,b = Pr[D(ct) = b : b← {0, 1}, ct← RPE.Enc(tk, f [j,⊥, 0],mb, L)].
Let ED be the event that B wins and ED

b be the event that B wins when it samples b as the
message bit in step 4b. So, we have

Pr[ED
b] =

1

4

(
Pr[ED

b | α = 0, β = 0] + Pr[ED
b | α = 0, β = 1]

+Pr[ED
b | α = 1, β = 0] + Pr[ED

b | α = 1, β = 1]
)

=
1

4

(
q2i,b + (1− qi,b)2 + 2(qi,b(1− qi+1,b) + (1− qi,b)qi+1,b) + q2i+1,b + (1− qi+1,b)

2
)

=
1

2
+

(qi,b − qi+1,b)
2

2
.

We have assumed ∃i∗ ∈ [nind] such that Pr[i∗ /∈ Sindex\Lindex∧Diff-Advi∗] ≥ δ. Pr[i = i∗] = 1/nind.
So we get Pr[i = i∗ ∧ i∗ /∈ Sindex\Lindex ∧ Diff-Advi∗] ≥ δ/nind.

Let F be the event: ∃i∗ ∈ [nind] such that i = i∗ ∧ i∗ /∈ Sindex\Lindex ∧ Diff-Advi∗ . Then when
F occurs, we have pi,⊥ − pi+1,⊥ > ϵ/8nind ⇒ ∃b′ ∈ {0, 1} s.t qi,b′ − qi+1,b′ > ϵ/8nind. Also,
Pr[ED

b] ≥ 1/2 for b ∈ {0, 1}, irrespective of occurrence of F. Now,

Pr[ED
b′] =Pr[ED

b′ | F]Pr[F] + Pr[ED
b′ | F̄]Pr[F̄]

≥
(
1/2 +

ϵ2

128nind2
)
× (δ/nind) + 1/2× (1− δ/nind)

=1/2 +
ϵ2δ

128nind3
.

Again,

Pr[ED] =
Pr[ED

b′]

2
+

Pr[ED
b̄′
]

2
≥ 1

2

(
1

2
+

ϵ2δ

128nind3

)
+

1

4
=

1

2
+ η, where η =

ϵ2δ

128nind3
.

Thus, Bwins against the function-hiding security of the underlying RPE scheme with advantage
≥ η, which is non-negligible for non-negligible ϵ and δ, a contradiction. Hence the lemma
follows.

79

Lemma 8.6. If the underlying (secret/public key)-RPE scheme satisfies (1-query-selective/adaptive)
function hiding security property (Def. 3.7/Def. 3.6), then for every stateful PPT adversary A, there
exists a negligible function negl3(·), such that ∀λ ∈ N and i ∈ [nind], ℓ ∈ [κ], we have

Pr

[
∃id ∈ {0, 1}κ s.t (id, i) ∈ B ∧ ([Diff-Advi,ℓ,lwr ∧ idℓ = 1] ∨ [Diff-Advi,ℓ,upr ∧ idℓ = 0])

]
≤ negl3(λ).

Proof. The proof is similar to the proof of Lemma 8.5. We show that if there exists a PPT
adversary A who outputs a good decoder D along with messages m0, m1 and a revocation
list L for which there exists i∗ ∈ [nind], ℓ

∗ ∈ [κ] such that Pr[∃id ∈ {0, 1}κ s.t (i∗, id) ∈ B ∧
([Diff-Advi∗,ℓ∗,lwr ∧ idℓ∗ = 1] ∨ [Diff-Advi∗,ℓ∗,upr ∧ idℓ∗ = 0])] ≥ δ.
We use this adversary A to build a reduction B that can break the function hiding security of
the underlying RPE scheme. B is defined in the same way as in the proof of Lemma 8.5, except
Step 4a, which is now described as follows:
B samples i← Bindex, ℓ ∈ [κ] and a bit g ← {0, 1} and sets f0 = f [i,⊥, 0] and f1 = f [i, ℓ, 0],

if g = 0, else sets f0 = f [i, ℓ, 0] and f1 = f [i+ 1,⊥, 0].

Analysis of B’s advantage:
Let qj,k,b = Pr[D(ct) = b : b← {0, 1}, ct← RPE.Enc(tk, f [j, k, 0],mb, L)].
Let ED be the event that B wins and ED

b be the event that B wins when B samples b as the
message bit in step 4b. So, we have

Pr[ED
b] =

1

8

(
Pr[ED

b | α = 0, β = 0, g = 0] + Pr[ED
b | α = 0, β = 1, g = 0]

+Pr[ED
b | α = 1, β = 0, g = 0] + Pr[ED

b | α = 1, β = 1, g = 0]

+Pr[ED
b | α = 0, β = 0, g = 1] + Pr[ED

b | α = 0, β = 1, g = 1]

+Pr[ED
b | α = 1, β = 0, g = 1] + Pr[ED

b | α = 1, β = 1, g = 1]
)

=
1

8

(
q2i,⊥,b + (1− qi,⊥,b)

2 + 2(qi,⊥,b(1− qi,ℓ,b) + (1− qi,⊥,b)qi,ℓ,b) + q2i,ℓ,b+

(1− qi,ℓ,b)2 + q2i,ℓ,b + (1− qi,ℓ,b)2 + 2(qi,ℓ,b(1− qi+1,⊥,b)+

(1− qi,ℓ,b)qi+1,⊥,b) + q2i+1,⊥,b + (1− qi+1,⊥,b)
2
)

=
1

2
+

(qi,⊥,b − qi,ℓ,b)2

4
+

(qi,ℓ,b − qi+1,⊥,b)
2

4
.

We have assumed that ∃ i∗ ∈ [nind], ℓ
∗ ∈ [κ] such that Pr[∃id ∈ {0, 1}κ s.t (i∗, id) ∈ B ∧

([Diff-Advi∗,ℓ∗,lwr ∧ idℓ∗ = 1] ∨ [Diff-Advi∗,ℓ∗,upr ∧ idℓ∗ = 0])] ≥ δ.
Using Pr[i = i∗ ∧ ℓ = ℓ∗] = 1/κnind, we get Pr[(i = i∗ ∧ ℓ = ℓ∗) ∧ ∃id ∈ {0, 1}κ s.t ((i∗, id) ∈
B ∧ ([Diff-Advi∗,ℓ∗,lwr ∧ idℓ∗ = 1] ∨ [Diff-Advi∗,ℓ∗,upr ∧ idℓ∗ = 0]))] ≥ δ

κnind

Let F be the event: ∃ i∗ ∈ [nind], ℓ
∗ ∈ [κ] such that (∃id ∈ {0, 1}κ s.t (i∗, id) ∈ B ∧

([Diff-Advi∗,ℓ∗,lwr ∧ idℓ∗ = 1] ∨ [Diff-Advi∗,ℓ∗,upr ∧ idℓ∗ = 0])). Then when F occurs, we
have (pi,⊥ − pi,ℓ > ϵ/8nind) ∨ (pi,ℓ − pi+1,⊥ > ϵ/8nind). This implies that there exists
b′ ∈ {0, 1} s.t (qi,⊥,b′ − qi,ℓ,b′ > ϵ/8nind) ∨ ((qi,ℓ,b′ − qi+1,⊥,b′ > ϵ/8nind)). Also, Pr[ED

b] ≥ 1/2
for b ∈ {0, 1}, irrespective of occurrence of F. Now,

Pr[ED
b′] =Pr[ED

b′ | F]Pr[F] + Pr[ED
b′ | F̄]Pr[F̄]

≥
(
1/2 +

ϵ2

256nind2
)
× (δ/κnind) + 1/2× (1− δ/κnind)

80

=1/2 +
ϵ2δ

256κnind3
.

Again,

Pr[ED] =
Pr[ED

b′]

2
+

Pr[ED
b̄′
]

2
≥ 1

2

(
1

2
+

ϵ2δ

256κnind3

)
+

1

4
=

1

2
+ η, where η =

ϵ2δ

512nind3κ
.

Combining the result of Lemmas 8.4, 8.5 and 8.6, we get

Pr-Fal-TrA,ϵ(λ) ≤ negl1(λ) + nind · negl2(λ) + nind · κ · negl3(λ) = negl(λ).

Correct trace guarantee. We prove that whenever an adversary outputs a good decoder, the
tracing algorithm will output, with all but negligible probability, at least one valid user identity
which was queried by the adversary.

Theorem 8.7. If the underlying (secret/public key)-RPE scheme in the indexed (secret/public tracing)-
EITR scheme construction satisfies (1-query-selective broadcast and very selective message/adaptive
message) hiding property, then for every stateful PPT adversary A for the (very selective/adaptive)-
tracing game (Def. 7.6/Def. 7.5) and non-negligible function ϵ, there exists a negligible function negl(·)
such that for all λ ∈ N, the following holds

Pr[Cor-Tr] ≥ Pr[Good-Decoder]− negl(λ)

Proof. Let us define pDBroadcast = Pr[D(ct) = b : b← {0, 1}, ct← RPE.Broadcast(RPE.mpk,mb, L)].
Then in the secret trace setting, if the event Good-DecoderA,ϵ occurs, then this implies
pDBroadcast ≥ 1/2 + ϵ. Further, from the broadcast security of (secret-key) RPE, we get
pD1,⊥ ≥ pDBroadcast − negl1(λ), which implies

pD1,⊥ ≥ 1/2 + ϵ− negl1(λ). (8.3)

In public trace setting, the event Good-DecoderA,ϵ directly implies pD1,⊥ ≥ 1/2+ϵ by definition.
Also, by message hiding property of the underlying (secret/public key) RPE scheme, we have

pDnind+1,⊥ ≤ 1/2 + negl2(λ) (8.4)

for some negligible function negl2(·) with overwhelming probability. This is so, because
f [nind,⊥, 0](id, i) = 0 for all (id, i) ∈ ID × [nind].
Combining equations (8.3) and (8.4), we get pD1,⊥ − pDnind+1,⊥ > ϵ/2.

Let S ind = {i ∈ [nind] | pDi,⊥ − pDi+1,⊥ > ϵ/2nind}. Then if the event Good-Decoder occurs, S ind ̸= ϕ.
By Chernoff bound, we have

∀i ∈ S index, Pr
[
p̂Di,⊥ − p̂Di+1,⊥ ≤ ϵ/4nind

]
≤ 2−O(λ) = negl3(λ)

for some negligible function negl3(·). Here, p̂ denotes the estimate for p computed by tracing
algorithm.

So, with all but negligible probability,

Tindex ̸= ϕ and ∀(i, p, q) ∈ Tindex, p− q > ϵ/4nind

81

where Tindex and p, q are as defined in the Trace algorithm 8.1.
Note that the ID.Trace algorithm (Figure 9) takes as input (i, p, q) ∈ Tindex and outputs a
corresponding id, where idℓ = 1 if p̂Di,ℓ > (p + q)/2 else idℓ = 0 for ℓ ∈ [κ]. Then, for every
(i, p, q) ∈ Tindex, the tracing algorithm outputs an identity. Hence, if Tindex ̸= ϕ⇒ T ̸= ϕ, where
T is defined as in the tracing algorithm. So,

Pr[T ̸= ϕ] ≥Pr[T ̸= ϕ ∧ Good-Decoder]
≥(1− negl2(λ))Pr[Good-Decoder]
≥Pr[Good-Decoder]− negl(λ)

for some negligible function negl(·). Combining this with the false trace guarantee, we have

Pr[Cor-Tr] ≥ Pr[Good-Decoder]− negl(λ).

9 Bounded Trace and Revoke with Embedded identity

In this section we show how to construct a bounded (secret/public tracing)-EITR scheme from
an indexed (secret/public tracing)-EITR scheme. The construction and security analysis in this
section is an adaptation of ([GKW19], Section 9) with appropriate modifications to incorporate
the revocation list L. We present the construction and proofs for the secret trace setting primarily
and also outline the differences in the public trace setting simultaneously.

9.1 Construction

Let Ind-TR = (Ind.Setup, Ind.KeyGen, Ind.Enc, Ind.Dec, Ind.Trace) be an indexed (secret/public
tracing)-EITR system. Let Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify) be a signature scheme that
satisfies unforgeability with signature space {0, 1}ℓs . We let nbd denote the bound on the number
of key queries that the adversary can make. For our purpose, we can assume nbd ≤ 2λ. We
construct a bounded (secret/public tracing)-EITR scheme as follows:

Setup(1λ, 1κ, nbd)→ (mpk,msk). The setup algorithm does the following:

1. Set nindex = 2nbd
2.

2. For j = 1 to λ, sample (Ind.mpkj , Ind.mskj) ← Ind.Setup(1λ, 1κ
′
, nindex), where κ′ is

κ+ ℓs .

3. Sample (sig.sk, sig.vk)← Sig.KeyGen(1λ).

4. Output mpk = (sig.vk, {Ind.mpkj}j∈[λ]) and msk = (sig.vk, sig.sk,
{Ind.mpkj , Ind.mskj}j∈[λ]).

KeyGen(msk, lb, id)→ sklb,id. The key generation algorithm does the following:

1. Parse msk as (sig.vk, sig.sk, {Ind.mpkj , Ind.mskj}j∈[λ]).
2. Compute σ = Sig.Sign(sig.sk, id) and let id′ = (id, σ).

3. For j = 1 to λ, do the following:

(a) Sample ij ← [2nbd
2].

(b) Ind.sklb,id,j ← Ind.KeyGen(Ind.mskj , lb, id
′, ij).

82

4. Return sklb,id = {Ind.sklb,id,j}j∈[λ].

Enc(mpk,m,L)→ ct. The encryption algorithm does the following:

1. Parse mpk as (sig.vk, {Ind.mpkj}j∈[λ]).
2. For j = 1 to λ− 1, randomly sample rj ←M and set rλ = m⊕ r1 ⊕ . . .⊕ rλ−1.

3. For j = 1 to λ, compute Ind.ctj ← Ind.Enc(Ind.mpkj , rj , L).

4. Return ct = {Ind.ctj}j∈[λ].

Dec(sklb,id, ct, L)→ m′. The decryption algorithm does the following:

1. Parse sklb,id = {Ind.sklb,id,j}j∈[λ] and ct = {Ind.ctj}j∈[λ].
2. For j = 1 to λ, compute r′j = Ind.Dec(Ind.sklb,id,j , Ind.ctj , L).

3. If any of the decryption fails then output ⊥, else output m′ = r′1 ⊕ · · · ⊕ r′λ.

TraceD(tk, y,m0,m1, L)→ T final. The trace algorithm uses two algorithms Bnd-isGoodDecoder
and Bnd-Subtrace defined in Figures 10 and 11, respectively as subroutines and is defined
as follows:

1. Parse tk as msk = (sig.vk, sig.sk, {Ind.mpkj , Ind.mskj}j∈[λ]) and let Ind.tkj = Ind.mskj
for j ∈ [λ]. (In the public trace setting, tk = mpk and Ind.tkj = Ind.mpkj).

2. Set j = 1.

3. Set flag = 0. For itr = 1 to λ · y, do the following

(a) Choose a random message r ←M.
(b) Run Bnd-isGoodDecoder as flag← Bnd-isGoodDecoderD({Ind.mpkj}j∈[λ],

1y,m0,m1, r, L, j).
(c) If flag = 1, break. Else, continue.

4. If flag = 1, run Bnd-Subtrace as T ← Bnd-SubtraceD({Ind.mpkj , Ind.tkj}j∈[λ],
1y,m0,m1, r, L, j). Else, set T = ϕ.

5. If T = ϕ and j < λ, set j = j + 1 and go to step 3. Otherwise do the following:

• Set T temp = ϕ. For each id′ = (id, σ) ∈ T , if Sig.Verify(sig.vk, id, σ) = 1, add id to
T temp. Concretely,

T temp = {id : ∃σ s.t. (id, σ) ∈ T and Sig.Verify(sig.vk, id, σ) = 1}.

• Recall the function map : ID → L, that maps a given identity id to its
corresponding label lb (Remark 7.4). For each id ∈ T temp,
if map(id) ∈ L, then set T temp = T temp \ {id}.

• Set T final = T temp.
• If T final = ϕ and j < λ, set j = j + 1 and go to step 3. Otherwise exit and return
T final.

Correctness. We prove that the above construction of bounded (secret/public tracing)-EITR
scheme satisfies correctness (Def. 7.1) via the following theorem.

Theorem 9.1. Assume Ind-TR is a correct indexed (secret/public tracing)-EITR scheme then the above
construction of bounded (secret/public tracing)-EITR scheme is correct.

83

Algorithm Bnd-isGoodDecoderD(key, 1y,m0,m1, r, L, i)

Inputs: keys key = {Ind.mpkj}j∈[λ], parameter y, messages m0,m1, r, revocation list L and
position-index i ∈ [λ].
Output : 0/1.

1. Set count = 0. Let ϵ = 1/y.

2. For j = 1 to λ · y:

• Split r in λ − 1 shares. That is, randomly sample λ − 1 messages,
r1, . . . , ri−1, ri+1, . . . , rλ such that ⊕k∈[λ]\{i}rk = r.

• Sample b ← {0, 1}. For k ∈ [λ] \ {i}, compute Ind.ctk ← Ind.Enc(Ind.mpkk, rk, L).
Compute Ind.cti ← Ind.Enc(Ind.mpki, r ⊕mb, L).

• Query D on ct = (Ind.ct1, . . . , Ind.ctλ). Let b′ be D’s response.

• If b′ = b, set count = count+ 1.

3. If count/(λ · y) ≥ 1/2 + ϵ/3, then output 1, else output 0.

Figure 10: Algorithm Bnd-isGoodDecoder

Algorithm Bnd-SubtraceD(key, 1y,m0,m1, r, L, i)

Inputs: keys key = {Ind.mpkj , Ind.tkj}j∈[λ], parameter y, messages m0,m1, r, revocation list L
and index-position i ∈ [λ].
Output : T ⊆ {0, 1}κ

1. Define oracle D̃[{Ind.mpkj}j∈[λ], r, L, i] as in Figure 12.

2. Output T ← Ind.TraceD̃(Ind.tki, 4y,m0 ⊕ r,m1 ⊕ r, L).

Figure 11: Algorithm Bnd-Subtrace

84

Algorithm D̃D[key, r, L, i]

Hardwired values: keys key = {Ind.mpkj}j∈[λ], message r, revocation list L and index-position
i ∈ [λ].
Inputs: Ind.ct.
Output : 0/1
Upon input Ind.ct, the D̃ oracle does the following:

• Shares r in λ − 1 components as follows: it chooses λ − 1 random messages rk for
k ∈ [λ] \ {i}, such that ⊕k∈[λ]\{i}rk = r.

• For k ∈ [λ] \ {i}, computes Ind.ctk = Ind.Enc(Ind.mpkk, rk, L) .

• Sets ctbd = (Ind.ct1, . . . , Ind.cti−1, Ind.ct, Ind.cti+1, . . . , Ind.ctλ).

• Queries oracle D as b′ ← D(ctbd).

• Outputs b′.

Figure 12: Oracle D̃

Proof. We have, as per the construction, that any message m is split in λ components r1, . . . , rλ
such that r1 ⊕ · · · ⊕ rλ = m. Then, from the correctness of Ind.TR, we get r′k = rk for all k ∈ [λ],
where r′k ← Ind.Dec(Ind.sklb,id,k, Ind.ctk, L), as long as lb ̸∈ L. Hence, the decryption algorithm
correctly outputs m as r1 ⊕ · · · ⊕ rλ.

Efficiency. We can instantiate the above construction by the indexed public/secret tracing-EITR
scheme in Sec. 8.1. The above construction is basically λ times repetition of the underlying
indexed EITR scheme. Additional overhead is induced due to the usage of the signature
scheme, where identity becomes longer by ℓs = poly(λ) bit and the master public key is longer
by |sig.vk| = poly(λ) bit.26 These changes do not alter the dependency on |id| and |lb| of the
parameter size. Therefore, the parameter size is as follows.

Secret Tracing Setting. In the secret tracing setting, we have

|mpk|, |ct|, |sk| = poly(λ, |id|, |lb|).

Public Tracing Setting. In the public tracing setting, we have

|mpk|, |ct| = poly(λ, |lb|), |sk| = poly(λ, |id|, |lb|).

9.2 Security

In this section, we prove that our construction of bounded (secret/public tracing)-EITR scheme
is secure.

IND-CPA security.
26Parameter sizes of most signature schemes depend on the length of the message space, which is |id| in our case.

However, this dependency can be removed by hashing the message before signing using the collision resistant hash
functions.

85

Theorem 9.2. If Ind-TR is a (very selective/adaptive)-IND-CPA secure indexed (secret/public tracing)-
EITR scheme, then the above construction of bounded (secret/public tracing)-EITR scheme is (very
selective/adaptive)-IND-CPA secure.

Proof. We show that if there exists a PPT adversary that breaks the IND-CPA security of the
bounded EITR scheme, then we can use A to build a PPT algorithm B that breaks IND-CPA
security of the underlying Ind-TR scheme.

The reduction is as follows:

1. B gets 1κ, 1nbd , L and key queries {(lbi, idi)}i∈[Q], where Q is the number of key queries
issued, from the adversary A. (In the public trace setting, A can make adaptive key
queries and outputs L adaptively along with the challenge messages in Step 6).

2. B generates (sig.sk, sig.vk)← Sig.KeyGen(1λ).

3. For the i-th key query (lbi, idi), i ∈ [Q], B samples i1 ← [nindex]. It sets nindex = 2nbd
2 and

sends 1κ+ℓs , 1nindex , L and {(lbi, id′i, i1)}i∈[Q], where id′ is computed as in the construction,
to the Ind-TR challenger. The Ind-TR challenger returns Ind.mpk and {Ind.sklbi,idi}i∈[Q]

where Ind.sklbi,idi ← Ind.KeyGen(Ind.msk, lbi, id
′
i, i1).

4. B sets Ind.mpk1 = Ind.mpk, generates (Ind.mpkj , Ind.mskj) ← Ind.Setup(1λ, 1κ+ℓs , nindex)
for j ∈ {2, · · · , λ}. It sends mpk = (sig.vk, {Ind.mpkj}j∈[λ]) to A.

5. For each key query (lbi, idi), B sets Ind.sklbi,idi,i1 = Ind.sklbi,idi and computes Ind.sklbi,idi,ij
for j ∈ {2, · · · , λ} itself and returns sklb,id = {Ind.sklbi,idi,ij}j∈λ to A.

6. When A sends the challenge messages (m0,m1) for the challenge query, B samples
rj ← M for j ∈ {2, · · · , λ}, sets m′

b =
⊕

j>1 rj ⊕ mb, sends (m′
0,m

′
1) for the challenge

query to the Ind-TR challenger and gets back Ind.ct. B sets ct1 = Ind.ct, computes
ctj ← Ind.Enc(Ind.mpkj , rj , L) for j ∈ {2, · · · , λ} and sends ct = {ctj}j∈λ to A.

7. A outputs a bit b′, B returns b′ to the challenger.

Observe that B issues key queries to the Ind-TR challenger only when there is a key query from
A. From the admissibility of A, for any key query of the form (lbi, idi, i1) that B issues lb ∈ L.
So,Awins the IND-CPA security game of the BD-TR scheme with advantage ϵ, then B also wins
the IND-CPA security game of the underlying Ind-TR scheme with the same advantage.

Secure Tracing Analysis. Now we show that our construction satisfies false trace and correct
trace guarantees.

False Trace Guarantee. First, we show that the probability of false trace in our scheme is
negligible in the security parameter via the following theorem.

Theorem 9.3. Assume that Sig is unforgeable, then our construction of bounded (secret/public tracing)-
EITR scheme satisfies the (very selective/adaptive) false trace guarantee (Def. 7.8/Def. 7.9), even if the
adversary makes unbounded polynomial number of key queries.

Proof. Let us first setup some notations. For lb ∈ L, id ∈ ID and a revocation list L, let

SID = {id : (lb, id) ∈ S},
LID = {id : (lb, id) ∈ S ∧ lb ∈ L}, ,

86

T final
lb = {map(id) : id ∈ T final}

where map is as defined in Remark 7.4 and T final is as in the construcion.
False trace happens when T final ̸⊆ SID or T final

lb ∩ L ̸= ϕ. Observe that T final
lb ∩ L = ϕ by

definition. So, all we need to argue is that T final ⊆ SID.

Recall that the tracing algorithm uses Bnd-Subtrace algorithm to find a set T = {(idk, σk)}k.
Identity idk is added to the set T temp and then to set T final only if Sig.Verify(sig.vk, idk, σk) = 1.
Next we show that if there is an adversary Awho outputs a decoder D along with messages
m0,m1 and revocation list L such that the tracing algorithm outputs T final where T final ̸⊆ SID,
then there exists a reduction B against unforgeability of signature scheme Sig. The reduction is
defined as follows:

Upon receiving sig.vk from the Sig challenger, B does the following:

1. Run A on input 1λ to obtain 1κ, 1nbd , L and key queries {(lbi, idi)}i∈[Q], where Q is the
number of key queries issued. (In the public trace setting, A can make adaptive key
queries and output L adaptively along with the challenge messages).

2. Samples (Ind.mpkj , Ind.mskj) ← Ind.Setup(1λ, 1κ
′
, nindex) for j ∈ [λ] and sends mpk =

(sig.vk, {mpkj}j∈[λ]) to A.

3. For each key query (lbi, idi), i ∈ [Q], B sends idi to the Sig challenger for signature.
The Sig challenger returns σi = Sig(sig.sk, idi). B generates the secret key sklbi,idi using
id′i = (idi, σi) as in the construction and sends sklbi,idi to A.

4. In the end, A outputs a decoder D, messages m0,m1.

5. B runs the trace algorithm with the help of the decoder D and gets a set T final.

6. If there exists an id∗ ∈ T final such that id∗ ̸∈ SID, then B returns a forgery for id∗ to Sig
challenger as follows: id∗ ∈ T final implies that there exists σ∗, such that (id∗, σ∗) ∈ T , and
Sig.Verify(sig.vk, id∗, σ∗) = 1. B returns (id∗, σ∗) as a forgery to the Sig challenger.

Note that since id∗ ̸∈ SID, B must not have queried a signature on id∗ to the Sig challenger
and hence (id∗, σ∗) is a valid forgery. If the false tracing happens with non-negligible
probability ϵ, then B also wins the unforgeability game with probability ϵ.

Correct Trace Guarantee. Recall that in the experiment for correct tracing, the adversary first
sends (1κ, 1nbd), a revocation list L (in the public trace setting, it outputs L adaptively), and at
most nbd key queries. Let S = {(lb, id)} be the set of label-identity pairs for which the adversary
issues key queries. Next, the challenger sends the public key to the adversary. At the end,
the adversary outputs a decoder box D along with two messages m0 and m1. If D is a good
decoder then for correct tracing we want that the tracing algorithm outputs non empty set of
traitors T final ⊆ SID \LID. We prove the correct trace guarantee of our scheme via the following
theorem.

Theorem 9.4. Assume that the underlying (secret/public tracing)-Ind-TR scheme satisfies (very
selective/adaptive) correct trace guarantee (Def. 7.6 /Def. 7.5) and let nbd be the bound on the number
of key queries for an admissible adversary, then our bounded (secret/public tracing)-EITR scheme also
satisfies the (very selective/adaptive) correct trace guarantee (Def. 7.9 /Def. 7.8).

87

Proof. Similar to [GKW19] we begin with defining some events of interest. We modify the
definition of some events to take into account the constraint that T final ⊆ SID \ LID. We drop
the subscripts A, ϵ and security parameter λ in the following to keep the notations simple.

- Event Admissible-Adversary: It is defined as the event that the adversary Amakes at most nbd
key queries.

- Event Tr (Tracing without correctness): Similar to Corr-Tr, except that we don’t need T final ⊆
SID \ LID, i.e., Tr is the event that T final ̸= ϕ occurs. Denote Pr -Tr := Pr[Tr].

- Event Dist-Indx (Position with distinct indices for each key): Defined as the event that there
exists i ∈ [λ] such that the i-th index of each key is distinct.

- Event Dist-Indxi: It is defined as the event that i ∈ [λ] is the first position such that the i-th
index of each key is distinct. By definition, Dist-Indxi are disjoint events for all i ∈ [λ] and
∪i∈[λ]Dist-Indxi = Dist-Indx.

- Event Tri (Tracing without correctness in i-th iteration): Let Ti denote the set of (identity,
signature) pairs traced in the i-th iteration. The event Tri happens if Ti is non-empty.

- Event Corr-Tr-Sigi (Tracing with same signature as that received in key): The event that Ti is not
empty and for all (id, σ) ∈ Ti, (lb, id) was queried for a key and lb ̸∈ L, i.e. id ∈ SID \ LID
and that the key generation oracle output Ind.sklb,id,i ← Ind.KeyGen(Ind.mski, lb, (id, σ), j)
for some j.

- Event Found-Good-ri: This event occurs if flag is set to 1 in the i-th iteration of the tracing
algorithm.

- Event Good-D̃i (Good decoder D̃ during the Bnd-Subtrace routine execution in i-th iteration):
It is defined as the event that in the i-th iteration, the execution reaches step 3 (that is,
it found a ‘good’ r in the i-th iteration), and the decoder D̃ constructed is an ϵ/4 good
decoder for distinguishing messages m0 ⊕ r and m1 ⊕ r. Note that if no good r is found
in step 3, Good-D̃i is said to not have happened.

With the above events, the correctness of tracing is argued via the following series of inequalities:

Pr -Corr-Tr(λ) ≥Pr -Tr − negl (9.1)
≥Pr[Tr ∧ Dist-Indx]− negl (9.2)

=
∑
i∈[λ]

Pr[Tr ∧ Dist-Indxi]− negl (9.3)

≥
∑
i∈[λ]

Pr[Corr-Tr-Sigi ∧ Dist-Indxi]− negl (9.4)

≥
∑
i∈[λ]

Pr[Good-D̃i ∧ Admissible-Adversary ∧ Dist-Indxi]− negl (9.5)

≥
∑
i∈[λ]

Pr[Good-D̃i ∧ Found-Good-ri ∧ Good-Decoder

∧ Admissible-Adversary ∧ Dist-Indxi]− negl (9.6)

≥
∑
i∈[λ]

Pr[Found-Good-ri ∧ Good-Decoder ∧ Admissible-Adversary

∧ Dist-Indxi]− negl (9.7)

88

≥
∑
i∈[λ]

Pr[Good-Decoder ∧ Admissible-Adversary ∧ Dist-Indxi]− negl (9.8)

=Pr[Good-Decoder ∧ Admissible-Adversary ∧ Dist-Indx]− negl (9.9)
≥Pr[Good-Decoder ∧ Admissible-Adversary]− negl (9.10)

Explanation for each of the inequalities is the same as in [GKW19] and is omitted. Here, we
argue the transitions from equations (9.3) to (9.4) and (9.4) to (9.5) only, since our definition
of event Corr-Tr-Sigi is slightly modified.

• Transition from (9.3) to (9.4) follows from the observation that the event Corr-Tr-Sigi
implies the event Tr because by definition, if Corr-Tr-Sigi happens then Ti is non empty
and for each (id, σ) pair in Ti, Sig.Verify(sig.vk, id, σ) verifies and id ∈ SID \ LID. Hence,
the set of traitors T final obtained from Ti will also be non empty.

• Transition from (9.4) to (9.5) is argued via the following claim:

Claim 9.5. Assume that the underlying Ind-TR scheme satisfies correct trace guarantee. Then for all
i ∈ [λ]

Pr[Corr-Tr-Sigi ∧ Dist-Indxi] ≥ Pr[Good-D̃i ∧ Admissible-Adversary ∧ Dist-Indxi]− negl .

Proof. We prove the claim by contradiction. We assume that there exists an adversary A
who outputs a good decoder D along with messages m0, m1 and a revocation list L such that
Pr[Good-D̃i ∧ Admissible-Adversary ∧ Dist-Indxi]− Pr[Corr-Tr-Sigi ∧ Dist-Indxi] is non-negligible.
Then we use A to build an adversary B against correct trace guarantee of Ind-TR, defined as
follows:

1. Run A on input 1λ to obtain 1κ, 1nbd , L and key queries {(lbk, idk)}k∈[Q], where Q is the
number of key queries issued. (In the public trace setting,A can make adaptive key queries
and output L adaptively along with the challenge messages). It sets nindex = 2nbd

2.

2. Samples (sig.sk, sig.vk) ← Sig.KeyGen(1λ), computes σk ← Sig.Sign(sig.sk, idk) and sets
id′k = (idk, σk) for k ∈ [Q].

3. For each k ∈ [Q] and j ∈ [λ], it randomly samples kj ← nindex. It sends 1κ+ℓs , 1nindex , L
and key queries {(lbk, idk, ki)}k∈[Q] to the Ind-TR challenger and gets back Ind.mpk and
{Ind.sklbk,idk,ki}k∈[Q].

4. B sets Ind.mpki = Ind.mpk and does the following:

• For j ∈ [λ] \ {i}, sample (Ind.mpkk, Ind.mskk)← Ind.Setup(1κ+ℓs , 1nindex).

• Set mpk = (sig.vk, {Ind.mpkk}k∈[λ]) and sends mpk to A.

5. For each key query (lbk, idk) by A, B does the following:

• For j ∈ [λ] \ {i}, it computes Ind.sklbk,idk,kj ← Ind.KeyGen(Ind.mskk, lbk, id
′
k, kj).

• Sends sklb,id = (Ind.sklbk,idk,k1 , . . . , Ind.sklbk,idk,kλ) to A.

6. If i is not the first position for which the i-th position indices (ki’s) are distinct for all the
key queries, then B outputs a random decoder and quits the game.

7. In the end, A outputs a decoder D along with messages m0,m1.

89

8. B runs Bnd-isGoodDecoder({Ind.mpkj}j∈[λ], 1y,m0,m1, L, r) for uniformly and indepen-
dently sampled r until it finds a r for which Bnd-isGoodDecoder algorithm outputs 1. If
Bnd-isGoodDecoder algorithm does not output 1 even after λ · y attempts, then B outputs
a random decoder and quits.

9. B constructs decoder D̃ as defined in Figure 12 and sets m̃b = mb ⊕ r for b ∈ {0, 1} and
sends (D̃, m̃0, m̃1, L) to the Ind-TR challenger.

Now let us analyze the probability that B outputs a 1/4y good decoder box. This happens if (i)
i is the first position such that the i-th position indices are different for all the key queries (ii)
Bnd-isGoodDecoder outputs 1 for some r and D̃ is ϵ/4 = 1/4y good decoder for distinguishing
m0 ⊕ r, m1 ⊕ r. First event is same as Dist-Indxi and second event is same as Good-D̃i. Hence,
the probability that B outputs a 1/4y good decoder box is Pr[Good-D̃i ∧ Dist-Indxi]. Then, by
correct trace guarantee of Ind-TR,

Pr[Corr-Tr-Sigi ∧ Dist-Indxi] ≥ Pr[Good-D̃i ∧ Dist-Indxi]− negl

≥ Pr[Good-D̃i ∧ Admissible-Adversary ∧ Dist-Indxi]− negl .

This contradicts our assumption that Pr[Good-D̃i ∧ Admissible-Adversary ∧ Dist-Indxi] −
Pr[Corr-Tr-Sigi ∧ Dist-Indxi] is non-negligible, hence the proof.

10 Unbounded Trace and Revoke with Embedded Identities

In this section we show how to construct unbounded (secret/public tracing)-EITR scheme
from a bounded (secret/public tracing)-EITR scheme. The transformation technique and the
security analysis in this section is adapted from [GKW19] with modifications to incorporate the
revocation list. We present the construction and proofs for secret-key trace setting primarily and
also outline the differences in the public-key trace setting simultaneously.

10.1 Construction

Let BD-TR = (BD.Setup,BD.KeyGen,BD.Enc,BD.Dec,BD.Trace) be a bounded (secret/public
tracing)-EITR scheme for identity space ID = {0, 1}κ. We construct an unbounded
(secret/public tracing)-EITR scheme as follows.

Setup(1λ, 1κ)→ (mpk,msk). The setup algorithm does the following:

1. For j = 1 to λ, sample (BD.mpkj ,BD.mskj)← BD.Setup(1λ, 1κ, nbd = 2j).

2. Output mpk = {BD.mpkj}j∈[λ] and msk = {BD.mpkj ,BD.mskj}j∈[λ].

KeyGen(msk, lb, id)→ sklb,id. The KeyGen algorithm does the following:

1. Parse msk = {BD.mpkj ,BD.mskj}j∈[λ].
2. For j = 1 to λ, it computes BD.skj ← BD.KeyGen(BD.mskj , lb, id).

3. Returns sklb,id = {BD.skj}j∈[λ].

Enc(mpk,m,L)→ ct. The encryption algorithm does the following:

90

1. Parse mpk = {BD.mpkj}j∈[λ].
2. Secret share m in λ shares as follows. For j = 1 to λ− 1, randomly sample rj ←M

and set rλ = m⊕ r1 ⊕ . . .⊕ rλ−1.
3. For j = 1 to λ, compute BD.ctj = BD.Enc(BD.mpkj , rj , L).
4. Output ct = {BD.ctj}j∈[λ].

Dec(sklb,id, ct, L)→ m′. The decryption algorithm does the following:

1. Parse sklb,id = {BD.skj}j∈[λ] and ct = {BD.ctj}j∈[λ].
2. For j = 1 to λ, compute r′j = BD.Dec(BD.skj ,BD.ctj , L).
3. If any of the decryption fails then output m′ = ⊥, else output m′ =

⊕
j∈[λ] r

′
j .

TraceD(tk, y,Qbd,m0,m1, L)→ T. The trace algorithm uses two algorithms isGoodDecoder and
SubTrace defined in Figures 13 and 14, respectively as subroutines. The tracing algorithm
is as follows.

1. Parse tk as msk = {BD.mpkj ,BD.mskj}j∈[λ] and let BD.tkj = BD.mskj for j ∈ [λ].
(For the public trace setting tk = mpk and BD.tkj = BD.mpkj)

2. Set j = ⌈logQbd⌉.
3. Set flag = 0. For itr = 1 to λ · y, do the following

(a) Choose a random message r ←M.
(b) Run isGoodDecoder as

flag← isGoodDecoderD({BD.mpkj}j∈[λ], 1y,m0,m1, r, L, j)

(c) If flag = 1, break. Else, continue.
4. If flag = 1, run SubTrace as T ← SubTraceD({BD.mpkj ,BD.tkj}j∈[λ], 1y,
m0,m1, r, L, j). Else, set T = ϕ.

5. Output T .

Correctness. We show that the above construction of bounded (secret/public tracing)-EITR
satisfies correctness (Def. 7.1) via the following theorem.

Theorem 10.1. Assume BD-TR is a correct bounded (secret/public tracing)-EITR scheme then the above
construction of unbounded (secret/public tracing)-EITR scheme is correct.

Proof. For all k ∈ [λ], if BD.ctk ← BDEnc(BD.mpkk, rk, L) and BD.skk ←
BDKeyGen(BD.mskk, (lb, id)), we have rk ← BD.Dec(BD.skk,BD.ctk, L), as long as
id ̸∈ L, from the correctness of the underlying BD-TR scheme. Hence, the decryption
of ct = (BD.ct1, . . . ,BD.ctλ) correctly outputs m as r1 ⊕ · · · ⊕ rλ.

Efficiency. We can instantiate the above construction by the bounded public/secret tracing-EITR
scheme in Sec. 9. Since the above construction is simple λ times repetition of the underlying
bounded EITR scheme, the parameter size of the scheme is as follows.

Secret Tracing Setting. In the secret tracing setting, we have

|mpk|, |ct|, |sk| = poly(λ, |id|, |lb|).

Public Tracing Setting. In the public tracing setting, we have

|mpk|, |ct| = poly(λ, |lb|), |sk| = poly(λ, |id|, |lb|).

91

Algorithm isGoodDecoderD(key, 1y,m0,m1, r, L, i)

Inputs: keys key = {BD.mpkj}j∈[λ], parameter y, messages m0,m1, r, revocation list L and a
position-index i ∈ [λ].
Output : 0/1.

1. Set count = 0. Let ϵ = 1/y.

2. For j = 1 to λ · y:

• Sample λ− 1 messages, r1, . . . , ri−1, ri+1, . . . , rλ randomly such that ⊕k∈[λ]\{i}rk = r.

• Sample b ← {0, 1}, and compute ciphertexts BD.ctk = BD.Enc(BD.mpkk, rk, L) for
k ∈ [λ] \ {i} and BD.cti = BD.Enc(BD.mpki, r ⊕mb, L).

• Query D on ct = (BD.ct1, . . . ,BD.ctλ). Let b′ be the response of D.

• If b′ = b, set count = count+ 1.

3. If count/(λ · y) ≥ 1/2 + ϵ/3, then output 1, else output 0.

Figure 13: Algorithm isGoodDecoder for Unbounded EITR

Algorithm SubTraceD(key, 1y,m0,m1, r, L, i)

Inputs: keys key = {BD.mpkj ,BD.tkj}j∈[λ], parameter y, messages m0,m1, r, revocation list L
and a position-index i ∈ [λ].

Output : T ⊆ {0, 1}κ.

1. Define oracle D̃[{BD.mpkj}j∈[λ], r, L, i] as in Figure 15.

2. Output T ← BD.TraceD̃(BD.tki, 4y,m0 ⊕ r,m1 ⊕ r, L).

Figure 14: Algorithm: SubTrace for Unbounded EITR

92

Algorithm D̃D[key, r, L, i]

Hardwired values: keys key = {BD.mpkj}j∈[λ], message r, revocation list L and a position-
index i ∈ [λ].
Inputs: BD.ct.
Output : 0/1
On input BD.ct, the D̃ oracle does the following:

• It first shares r in λ− 1 components as follows: it chooses λ− 1 random messages rk for
k ∈ [λ] \ {i}, such that ⊕k∈[λ]\{i}rk = r.

• It computes BD.ctk = BD.Enc(BD.mpkk, rk, L) for k ∈ [λ] \ {i}.

• Sets ct = (BD.ct1, . . . ,BD.cti−1,BD.ct,BD.cti+1, . . . ,BD.ctλ).

• Outputs b′ ← D(ct).

Figure 15: Oracle D̃ for Unbounded EITR

10.2 Security

In this section, we prove that our construction of unbounded (secret/public tracing)-EITR
scheme is secure.

IND-CPA security.

Theorem 10.2. If the underlying BD-TR scheme is (very selective/adaptive) IND-CPA secure bounded
(secret/public tracing)-EITR scheme, then the above construction of unbounded (secret/public tracing)-
EITR is (very selective/adaptive) IND-CPA secure.

Proof. We show that if there exists a PPT adversary that breaks the IND-CPA security of
unbounded EITR scheme, then we can use A to build a PPT algorithm B that breaks IND-CPA
security of the underlying BD-TR scheme.

The reduction is defined as follows:

1. B first gets 1κ, L and key queries {(lbk, idk)}k∈[Q], where Q is the number of key queries
issued, from the adversary A . (In the public trace setting, A can make adaptive key
queries and output L adaptively along with the challenge messages).

2. It sets nbd = 2 and sends 1κ, 1nbd , L and key queries {(lbk, idk)}k∈[Q] to the BD-TR
challenger. The BD-TR challenger returns BD.mpk and {BD.skk}k∈[Q].

3. B sets BD.mpk1 = BD.mpk, generates ((BD.mpkj ,BD.mskj) ← BD.Setup(1λ, 1κ, 2j)) for
j ∈ {2, · · · , λ} and sends mpk = {BD.mpkj}j∈[λ] to A.

4. For each key query (lbk, idk), B sets BD.skk,1 = BD.skk, computes BD.skk,j ←
BD.KeyGen(BD.mskj , lbk, idk) for j ∈ {2, · · · , λ} and sends sklbk,idk = {BD.skk,j}j∈λ to A.

5. When A sends the challenge query (m0,m1), B samples rj ← M for j ∈ {2, · · · , λ},
sets m′

b =
⊕

j>1 rj ⊕mb for b ∈ {0, 1} and sends (m′
0,m

′
1) as challenge query to the BD

93

challenger and and sets the returned ciphertext as BD.ct1. B then computes BD.ctj ←
BD.Enc(BD.mpkj , rj , L) for j ∈ {2, · · · , λ} and sends ct = {BD.ctj}j∈[λ] to A.

6. A outputs a bit b′, B sends b′ to the BD-TR challenger.

We observe that B issues a key query (lb, id) to the BD-TR challenger only when Amakes a
key query on (lb, id). So , by the admissibility of A, we have lb ∈ L and thus B is admissible in
the IND-CPA game of BD-TR. Also, if A has an advantage ϵ in distinguishing the encryptions of
m0,m1, then clearly B has the same advantage in distinguishing the encryptions of m′

0,m
′
1 and

thus breaking the IND-CPA security of BD-TR.

Secure Tracing Analysis. Now we show that our construction satisfies false trace and correct
trace guarantees.

False Trace Guarantee.

Theorem 10.3. Assume that the underlying (secret/public tracing)-BD-TR scheme satisfies (selec-
tive/adaptive) false trace guarantee, then our construction of unbounded (secret/public tracing)-EITR
satisfies (selective/adaptive) false trace guarantee as defined in Def. 7.12/Def. 7.11.

Proof. Suppose there exists a PPT adversary A, polynomial p(λ) and non-negligible functions
ϵ(·), δ(·) such that Pr[Fal-Tr]A,ϵ,p ≥ δ(λ), then we can build a PPT reduction B that can break the
false trace guarantee of BD-TR. The reduction is as follows:

1. B first gets 1κ, L and key queries {(lbk, idk)}k∈[Q], where Q is the number of key queries
issued, from the adversary A . (In the public trace setting, A can make adaptive key
queries and output L adaptively along with the challenge messages).

2. It sets i = ⌈log p(λ)⌉, sends 1κ, 12
i
, L and and key queries {(lbk, idk)}k∈[Q] to the BD-TR

challenger. The BD-TR challenger returns BD.mpk and {BD.skk}k∈[Q].

3. B sets BD.mpki = BD.mpk, generates ((BD.mpkj ,BD.mskj) ← BD.Setup(1λ, 1κ, 2j)) for
j ∈ [λ] \ {i} and sends mpk = {BD.mpkj}j∈[λ] to A.

4. For each key query (lbk, idk), B sets BD.skk,i = BD.skk, computes BD.skk,j ←
BD.KeyGen(BD.mskj , lbk, idk) for j ∈ [λ] \ {i} and sends sklbk,idk = {BD.skk,j}j∈λ to A.

5. Finally, when A outputs a decoder box D and messages m0,m1 , B runs
isGoodDecoder((BD.mpkj)j∈[λ], 1

1/ϵ,m0,m1, r, L, i) as defined in Figure 13, for λ · y
many choices of r, until it finds an r s.t isGoodDecoder outputs 1.

6. B constructs a decoding box D̃ as defined in Figure 14, sends (D̃,m0 ⊕ r,m1 ⊕ r) to the
BD-TR challenger.

We observe that D̃ uses the decoder D as a subroutine and it returns the response of D as its
output. So, if A outputs (D,m0,m1, L) such that the false trace guarantee does not hold with
non-negligible probability, then B breaks the false trace guarantee of the underlying BD-TR
scheme.

94

Correct Trace Guarantee.

Theorem 10.4. Assume that the underlying (secret/public tracing)-BD-TR scheme satisfies (very
selective/adaptive) correct trace guarantee, then our construction of unbounded (secret/public tracing)-
EITR satisfies (very selective/adaptive) correct trace guarantee as defined in Def. 7.12/Def. 7.11.

Proof. Let i = ⌈log p(λ)⌉ and let S, SID, Tlb be as defined in Def. 7.11. Consider the following
events

Event Cor-Tri : is defined as the event that the SubTrace algorithm, when run for position i
outputs a correct traitor set T , i.e. |T | > 0, (T ⊆ SID) ∧ (Tlb ∩ L = ϕ).

Event Good-D̃i: is defined as the event that the flag is set to 1 in step 3 and the decoder D̃
defined in Fig 15 is ϵ/4 good decoder.

Event Found-Good-ri: is defined as the event that the isGoodDecoder algorithm, when run for
position i outputs 1.

With these definitions, the correctness is argued via following series of inequalities:

Pr -Corr-Tr(λ) = Pr[Corr-Tri] (10.1)
≥ Pr[Corr-Tri ∧ Found-Good-ri] (10.2)

≥ Pr[Good-D̃i ∧ Found-Good-ri ∧ p(λ) ≥ |SID|]− negl(λ) (10.3)

≥ Pr[Good-D̃i ∧ Found-Good-ri ∧ Good-Decoder ∧ p(λ) ≥ |SID|]− negl(λ) (10.4)
≥ Pr[Found-Good-ri ∧ Good-Decoder ∧ p(λ) ≥ |SID|]− negl(λ) (10.5)
≥ Pr[Good-Decoder ∧ p(λ) ≥ |SID|]− negl(λ) (10.6)

Equation (10.1) and (10.2) follow directly from the definition of the events involved.
Equation (10.3) follows from the following claim:

Claim 10.4.1. If BD-TR guarantees correct tracing then

Pr
[
Good-D̃i ∧ Found-Good-ri ∧ p(λ) ≥ |SID|

]
− Pr[Corr-Tri ∧ Found-Good-ri] ≤ negl(λ).

Proof. We show that if there exists an adversary A who outputs a good decoder along with
messages m0,m1 and a revocation list L such that Pr[Good-D̃i∧Found-Good-ri∧ p(λ) ≥ |SID|]−
Pr[Cor-Tri] is non negligible then we can use A to construct an adversary B against correct trace
guarantee of the underlying BD-TR. The reduction is defined as follows:

It sets i = ⌈log p(λ)⌉,

1. B first gets 1κ, L and key queries {(lbk, idk)}k∈[Q], where Q is the number of key queries
issued, from the adversary A . (In the public trace setting, A can make adaptive key
queries and output L adaptively along with the challenge messages).

2. It sends 1κ, 12
i
, L and and key queries {(lbk, idk)}k∈[Q] to the BD-TR challenger. The

BD-TR challenger returns BD.mpk and {BD.skk}k∈[Q].

3. B sets BD.mpki = BD.mpk, generates ((BD.mpkj ,BD.mskj) ← BD.Setup(1λ, 1κ, 2j)) for
j ∈ [λ] \ {i} and sends mpk = {BD.mpkj}j∈[λ] to A.

95

4. For each key query (lbk, idk), B sets BD.skk,i = BD.skk, computes BD.skk,j ←
BD.KeyGen(BD.mskj , lbk, idk) for j ∈ [λ] \ {i} and sends sklbk,idk = {BD.skk,j}j∈λ to A.

5. In the end, A outputs a decoder D along with messages m0,m1.

6. B does the following:

• If Q > p(λ), then B outputs a random decoder and quits.

• Else, B runs isGoodDecoder({BD.mpkj}j∈[λ], 1y,m0,m1, r, L, i) for uniformly and
independently sampled r until it finds a r for which isGoodDecoder algorithm outputs
1. If isGoodDecoder algorithm does not output 1 even after λ · y attempts, then B
outputs a random decoder and quits.

• Else, B constructs decoder D̃ as defined in Figure 15 and sets m̃b = mb ⊕ r for
b ∈ {0, 1}.

7. B sends (D̃, m̃0, m̃1) to the BD-TR challenger.

Now we analyze the probability that B outputs a good decoder. Observe that B does not
abort and outputs a genuine decoder when both Found-Good-ri and |SID| ≤ p(λ) happens. Since
the decoder returned by B is the same decoder as defined in the SubTrace algorithm, we get that
the probability that B outputs a good decoder is Pr[Good-D̃i ∧ Found-Good-ri ∧ p(λ) ≥ |SID|].
Furthermore, the probability that the BD.Trace algorithm outputs correct set of traitors T (using
the decoder returned by B) is same as Pr[Corr-Tri ∧ Found-Good-ri]. Hence, if Pr[Good-D̃i ∧
Found-Good-ri ∧ p(λ) ≥ |SID|] − Pr[Corr-Tri ∧ Found-Good-ri] is non negligible, then it breaks
the security of correct trace guarantee of the underlying BD-TR scheme.

Equation (10.4) again follows directly from the definition. Argument for transition from
equation (10.4) to (10.5) and (10.5) to (10.6) is same as that of transition from (9.8) to (9.9) and
(9.9) to (9.10), respectively. This completes the proof.

11 Extension to Super-Polynomial Size Revocation List

While our main focus in the paper is on the case where the revocation list L is of polynomial size,
we can consider an extension where it is of super-polynomial size. In particular, we consider
the setting where L has efficient representation by a circuit CL of polynomial size. Namely,
we have CL(lb) = 0 for revoked label lb and CL(lb) = 1 for non-revoked label lb. We assume
that the depth of CL is bounded by some polynomial d̄. Namely, CL ∈ C|lb|,d̄. This assumption
is necessary because we will use kpABE (resp., cpABE) with the same restriction to generate a
secret key (resp., a ciphertext) associated with CL.

EITR scheme for this setting can be obtained both in the secret and the public tracing settings
very similarly to the case where the revocation list is of polynomial size. Namely, we first
construct (secret key/public key) RPE with super-polynomial revocation list and then apply the
chain of conversions (Sec. 8, 9, and 10). The conversions work almost without change with the

natural adaptation of replacing Lwith CL and the membership check lb
?
∈ Lwith C(lb)

?
∈ 0. The

constructions of (pubic key/secret key) RPE are also almost the same as those in (Sec. 4/Sec. 5
and 6) with the natural adaptation of generating kpABE secret key for CL

27 in Sec. 4 and 5
and replacing the condition lb ̸∈ L in Eq. (6.1) defining CL,RMFE.ct with CL(lb) = 1. The main

27Originally, we start from the revocation list L and then construct the circuit CL that hardwires L into it. Here,
we directly use the circuit CL that efficiently represents the super-polynomial set L.

96

difference is that we have to assume sub-eponential LWE assumption instead of (polynomial)
LWE assumption for both secret key and public key settings here, because we need adaptive
security for the underlying kpABE. We give further details in the following.

• In the public key setting, indistinguishability of Hybrid6,a and Hybrid7 shown in Claim 4.2.7,
where post-challenge key queries are dealt with, cannot be proven any more if we only
assume selective security for kpABE. The reason why the original proof does not go
through is that we have to deal with the kpABE queries in the order of key first and
ciphertext later. With polynomial size L, this does not pose a problem because when
the adversary chooses L, all the labels for which we use kpABE security are in L and
we can perform a hybrid argument over these labels. However, this is not possible for
super-polynomial size L. To deal with the queries in this order, we assume adaptive
security (as per Definition 2.17) for kpABE. Then, the indistinguishability of the games
can easily be shown by changing the post-challenge kpABE ciphertexts associated with lb
with CL(lb) = 0 one by one.

• In the secret key setting, we also encounter similar difficulty. In particular, indistinguisha-
bility of Hybrid1 and Hybrid2 shown in Claim 5.8.2 cannot be proven any more if we only
assume selective security for kpABE by exactly the same reason. We can overcome the
problem by assuming adaptive security for kpABE.

Finally, we briefly discuss the parameter size of the resulting EITR scheme. The parameter size
of the resulting scheme is the same as the case of polynomial size revocation list except that they
rely on d̄. Notably, they are independent from the size of the circuits being supported inheriting
the succinctness properties of the underlying kpABE and cpABE.

Acknowledgements. We thank the reviewers of Eurocrypt 2023 for helpful comments, especially
for suggesting the alternative construction of RPE based on FE and laconic OT. This work
was supported in part by the DST “Swarnajayanti” fellowship, Cybersecurity Center of
Excellence, IIT Madras, National Blockchain Project and the Algorand Centres of Excellence
programme managed by Algorand Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of sponsors. The fourth author is partially supported by JST AIP Acceleration
Research JPMJCR22U5 and JSPS KAKENHI Grant Number 19H01109, Japan.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In CRYPTO, 2015.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
techniques for bootstrapping and instantiation. In Eurocrypt, 2019.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In CRYPTO, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness
generically: Indistinguishability obfuscation from non-compact functional
encryption. IACR Cryptology ePrint Archive, 2015:730, 2015.

97

[ALP11] Nuttapong Attrapadung, Benoı̂t Libert, and Elie de Panafieu. Expressive key-
policy attribute-based encryption with constant-size ciphertexts. In PKC. Springer,
2011.

[AM18] Shweta Agrawal and Monosij Maitra. Fe and io for turing machines from minimal
assumptions. In TCC. Springer, 2018.

[APM20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear fe. In Eurocrypt, 2020.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In TCC, 2019.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryption
from lwe and pairings in the standard model. In TCC, 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings
and lwe. In EUROCRYPT, 2020.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, 2014.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In CRYPTO, 2005.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional
encryption in the private-key setting: Stronger security from weaker assumptions.
In EUROCRYPT. Springer, 2016.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan.
Anonymous ibe, leakage resilience and circular security from new assumptions. In
Advances in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May
3, 2018 Proceedings, Part I, pages 535–564. Springer, 2018.

[BS18] Zvika Brakerski and Gil Segev. Function-private functional encryption in the
private-key setting. Journal of Cryptology, 31(1):202–225, 2018.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. FOCS, 2015.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based
encryption (without random oracles). In CRYPTO, 2006.

[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption
from multilinear maps. In CRYPTO, 2014.

98

[BZ17] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. Algorithmica, 79(4):1233–1285,
2017.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In
CRYPTO, 2017.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, 1994.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth,
and Giuseppe Persiano. On the achievability of simulation-based security for
functional encryption. In CRYPTO, 2013.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In CRYPTO, 2013.

[CVW+18] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs.
Traitor-tracing from lwe made simple and attribute-based. In TCC, 2018.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-hellman
assumption. In Advances in Cryptology–CRYPTO 2017: 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part
I, pages 537–569. Springer, 2017.

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New
constructions of identity-based and key-dependent message secure encryption
schemes. In Public-Key Cryptography–PKC 2018: 21st IACR International Conference
on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29,
2018, Proceedings, Part I 21, pages 3–31. Springer, 2018.

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel
Wichs. Succinct lwe sampling, random polynomials, and obfuscation. In TCC,
2021.

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor,
CRYPTO, 1993.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In EUROCRYPT, 2013.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In FOCS,
2017.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor
tracing from learning with errors. In STOC, 2018.

[GKW19] Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to traitor
tracing with embedded identities. In TCC, 2019.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular
security. In STOC, 2021.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the
cryptographic hardness of finding a nash equilibrium. In CRYPTO, 2016.

99

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry.
Breaking the sub-exponential barrier in obfustopia. In EUROCRYPT, 2017.

[GQWW19] Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs. Broadcast and trace
with nϵ ciphertext size from standard assumptions. In Crypto, 2019. https:
//eprint.iacr.org/2019/636.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional
encryption with polynomial loss. In TCC, 2016.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute based
encryption for circuits. In STOC, 2013.

[GVW19] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion resistant
broadcast and trace from positional witness encryption. In PKC, 2019.

[JLLS23] Aayush Jain, Huijia Lin, Paul Lou, and Amit Sahai. Polynomial-time cryptanalysis
of the subspace flooding assumption for post-quantum io. In EUROCRYPT, 2023.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In STOC, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
lpn over large fields, dlin, and constant depth prgs. In EUROCRYPT, 2022.

[KS20] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key
functional encryption. Journal of Cryptology, 33(2):406–458, 2020.

[KW20] Sam Kim and David J Wu. Collusion resistant trace-and-revoke for arbitrary
identities from standard assumptions. In ASIACRYPT, 2020.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing
randomized encodings and applications. In TCC, 2016.

[NP10] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. International
Journal of Information Security, 9(6):411–424, 2010.

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing:
how to embed arbitrary information in a key. In EUROCRYPT, 2016.

[Tak14] Katsuyuki Takashima. Expressive attribute-based encryption with constant-size
ciphertexts from the decisional linear assumption. In SCN, 2014.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE. In
CRYPTO, 2019.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Crypto,
2022.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and
null-io from evasive LWE. In Asiacrypt, 2022.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and cp-abe from evasive lattice
assumptions. In Eurocrypt, 2022.

100

https://eprint.iacr.org/2019/636
https://eprint.iacr.org/2019/636

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling.
In EUROCRYPT. Springer, 2021.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In FOCS, 2017.

[Zha20] Mark Zhandry. New techniques for traitor tracing: Size N1/3 and more from
pairings. In CRYPTO, 2020.

101

	Introduction
	Prior Work: Embedded Identity Trace and Revoke.
	Our Results
	Technical Overview

	Preliminaries
	Functional Encryption
	Attribute Based Encryption
	Key-Policy ABE by Boneh et al. BGG+14
	Lockable Obfuscation
	Laconic Oblivious Transfer

	Revocable Predicate Encryption
	Public-key RPE from FE and LWE
	Construction
	Security
	Alternate Construction using LOT

	Revocable Mixed Functional Encryption
	Definition
	Construction
	Security

	Secret Key RPE from Evasive and Tensor LWE
	Construction
	Security

	Embedded Identity Trace and Revoke
	Indexed Trace and Revoke with Embedded Identity
	Bounded Trace and Revoke with Embedded Identity
	Unbounded Trace and Revoke with Embedded Identity

	Indexed Trace and Revoke with Embedded Identity
	Construction
	Security

	Bounded Trace and Revoke with Embedded identity
	Construction
	Security

	Unbounded Trace and Revoke with Embedded Identities
	Construction
	Security

	Extension to Super-Polynomial Size Revocation List

