
ABE for DFA from LWE against Bounded Collusions, Revisited

Hoeteck Wee

NTT Research, Sunnyvale, CA, USA

Abstract. We present a new public-key ABE for DFA based on the LWE assumption, achieving security against collu-

sions of a-priori bounded size. Our scheme achieves ciphertext size Õ(`+B) for attributes of length ` and collusion

size B . Prior LWE-based schemes has either larger ciphertext size Õ(` ·B), or are limited to the secret-key setting.

Along the way, we introduce a new technique for lattice trapdoor sampling, which we believe would be of indepen-

dent interest. Finally, we present a simple candidate public-key ABE for DFA for the unbounded collusion setting.

1 Introduction

Attribute-based encryption (ABE) [24,19] is a generalization of public-key encryption to support fine-grained access

control for encrypted data. Here, ciphertexts are associated with a description value x and keys with a policy M , and

decryption is possible when M(x) = 1. One important class of policies we would like to support are those specified

using deterministic finite automata (DFA). Such policies capture many real-world applications involving simple com-

putation on data of unbounded size, such as network monitoring and logging, pattern matching in gene sequences,

and processing tax returns. Since the seminal work of Waters [26] introducing ABE for DFA and providing the first in-

stantiation from pairings, substantial progress has been made in the study of pairing-based ABE for DFA [7,8,2,13,4],

culminating in adaptively secure public-key ABE for DFA against unbounded collusions based on the k-Lin assump-

tion [14,21].

In this work, we look at ABE for DFA based on the LWE assumption, which has seen fairly limited progress in spite

of the exciting progress we have made in obtaining expressive ABE for circuits [16,9]. Here, the state of the art is as

follows:

– a public-key scheme secure against collusions of a-prior bounded size (that is, the adversary gets to see a bounded

number of secret keys), by combining the scheme of Agrawal and Singh [5] –henceforth AS17– for collusions of size

one with generic amplification techniques for bounded collusions in [15,20,6];

– a secret-key scheme for DFA (and NFA) secure against unbounded collusions [3].

Henceforth, we focus on the setting studied in AS17, namely public-key ABE for DFA secure against bounded col-

lusions (indeed, most of the ABE literature consider the public-key setting). From a practical stand-point, the bounded

collusion setting already captures a fairly realistic attack scenario. From a theoretical stand-point, it often already re-

quires interesting and insightful techniques. In particular, the core technical novelty in the recent works on ABE for

DFA from k-Lin [13,14,21] –both in the selective and the adaptive settings– lies in solving the problem in the one-

collusion setting; amplification to unbounded collusions is achieved via the dual system encryption methodology

[25,27,7], which unfortunately, we do not know how to instantiate from LWE.

1.1 Our Contributions

Our main result is a new public-key ABE for DFA based on the LWE assumption, in the bounded collusion setting:

– Our scheme achieves ciphertext size Õ(`+B) for attributes of length ` and collusion size B and only requires

a λω(1) modulus-to-noise ratio, whereas the AS17 scheme achieves ciphertext size Õ(` ·B) and requires a larger

λpoly(logλ) modulus-to-noise ratio; see Fig 1 for a comparison.

– As in AS17, our scheme achieves sk-selective security, where all the key queries are made before the adversary sees

the public key or the ciphertext.

reference hardness |ct| |sk| remarks

AS17 [5] λpoly(logλ) B` Q extends to FE

AMY19 [3] λpoly(logλ) poly(`) poly(Q) secret-key, unbounded B

this work λω(1) `+B Q

Fig. 1. Summary of LWE-based ABE schemes for DFA, secure against collusions of size B (cf. Section 2.1). In the table, Q is the

number of states in the DFA M associated with sk and ` is the length of x associated with ct, and Q,` < λω(1). Hardness refers to

the modulus-to-noise ratio for the LWE assumption, for λω(1)-security and λ−ω(1) decryption error. We ignore factors polynomial

in the security parameter λ, |Σ|, and log`.

Our construction and its analysis are inspired by the pairing-based ABE for DFA in [26,13,14,26], and is simpler than

prior LWE-based schemes in [5,3] in that we do not require an ABE for circuits [9,16] as an intermediate building

block. Our construction is very algebraic and entails the use of multiple LWE secrets in the ABE ciphertext, whereas the

prior LWE-based schemes are more combinatorial. Along the way, we introduce a new technique for lattice trapdoor

sampling, which we believe to be of independent interest. Finally, we present a simple candidate public-key ABE

for DFA for the unbounded collusion setting (no such heuristic post-quantum candidate was known before, without

assuming post-quantum iO).

ABE for DFA. Our ABE scheme follows the high-level structure of the pairing-based schemes in [26,13]:

– encryption of x ∈ {0,1}` picks `+1 fresh LWE secrets s0,s1, . . . ,s` (row vectors);

– a secret key for a DFA with Q states is associated with Q random row vectors d̃1, . . . , d̃Q ;

– during decryption, we compute si d̃>
ui

(approximately), where ui denotes the state reached upon the first i bits of

x, for i = 0,1, . . . ,` (i.e., u0 is the DFA start state).

In a bit more detail,

– the master public key specifies a pair of matrices A0,A1 as well as d̃>
u0

;

– the ciphertext contains s0d̃>
u0

and ci ≈ (si−1‖−si)Axi , i = 1, . . . ,`;

– the secret key contains k>
u,σ← A−1

σ

(d̃>u
d̃>v

)
for all state transitions (u,σ) ∈ [Q]× {0,1} 7→ v ∈ [Q], where A−1

σ (·) denotes a

Gaussian pre-image;

– in order to compute si d̃>
ui

, it suffices to compute the successive differences si−1d̃>
ui−1

−si d̃>
ui

as follows1:

ci ·k>
ui ,xi

≈ (si−1‖−si)Axi ·A−1
xi

(
d̃>

ui−1

d̃>
ui

)
= si−1d̃>

ui−1
−si d̃>

ui

In the proof of security, we will modify the ciphertext distribution in a way that traces the DFA computation path

while keeping the secret key distribution unchanged. In contrast, prior ABE for DFA based on k-Lin modifies both the

ciphertext and secret key distribution in the security proof (even for collusions of size one). Our proof strategy requires

knowing the DFA while simulating the challenge ciphertext, and for that reason, we only achieve sk-selective security.

Lattice trapdoor sampling. We introduce a new lattice trapdoor notion and sampling technique for our proof of

security. Given a wide LWE matrix A, the Micciancio-Peikert (MP) trapdoor [22] is a low-norm matrix T such that

A ·T = G, where G is the gadget matrix. Such a matrix T allows us to sample a random Gaussian preimage A−1(z) for all

z, but it also breaks the LWE assumption with respect to A (in fact, we can use T to recover s given sA+e).

1 To facilitate comparison with Waters’ pairing-based scheme, we note that the terms corresponding to ci and ku,σ there-in are

given by:

(g si−1
1 , g

si−1z+si wxi
1 , g si

1), (g−d̃u+zr
2 , g r

2 , g−d̃v+wσr
2)

where g1, g2 are the respective generators the group G1,G2 in a bilinear group e :G1 ×G2 →GT . We can then compute a pairing-

product over these terms to derive e(g1, g2)si−1d̃ui−1−si d̃ui .

2

In this work, we consider a “half trapdoor”, namely a low-norm matrix T1/2 such that

A ·T1/2 =
(

0

G

)
, A ∈Z2n×m

q ,T1/2 ∈Zm×n log q ,G ∈Zn×n log q
q ,m > 2n log q

That is, let A,A ∈Zn×m
q denote the top and bottom halves of A. Then, A ·T1/2 = 0 and A ·T1/2 = G, which means T1/2 is a

MP trapdoor for A. We show that T1/2 satisfies the following properties:

– restricted trapdoor sampling: Given Z ∈ Zn×Q
q ,M ∈ {0,1}Q×Q , we can efficiently sample (using A,T1/2) a random

Gaussian pre-image

A−1

(
D

DM+Z

)
, for random D ←Z

n×Q
q (1)

These Gaussian pre-images appear in the secret keys with D = [d̃>
1 | · · · | d̃>

Q], M ∈ {0,1}Q×Q being a DFA transition

matrix, and Z = 0.

– LWE given T1/2: We also require computational hardness of the form (A,sA+e) is pseudorandom given T1/2. How-

ever, such a statement is false since (sA+e)·T1/2 ≈ 0. Instead, we require that (A,sA+e) is pseudorandom even if the

distinguisher gets adaptive queries to the restricted trapdoor sampling oracle in (1); we refer to this as T1/2-LWE.

As a sanity check for restricted trapdoor sampling, observe that it is easy to sample from each of A
−1

(D) and A−1(DM+
Z), the latter since T1/2 is a MP-trapdoor for A. However, what we need is to sample from the “intersection” of these

two distributions. With regards to T1/2-LWE, prior works [10,18] showed that LWE implies T1/2-LWE for the special

case where the oracle queries are restricted to M = 0; these in turn generalize a classic result in [12] showing pseudo-

randomness of (A,sA+e) given A
−1

(D) for random D.

1.2 Technical Overview I: T1/2

In the first part of the technical overview, we address the properties of T1/2.

Restricted trapdoor sampling. We show how to sample from the distribution in (1) given T1/2. Our sampler combines

two ideas:

Step 1. First, we describe how to use T1/2 to sample from a related distribution, namely:

A−1

(
D

MD +Z

)
, for random D ←Z

n×Q
q (2)

where we replaced DM,M ∈ {0,1}Q×Q with MD ,M ∈ {0,1}n×n . We begin by writing (2) as

A−1

(
D

MD +Z

)
≈s

(
A

A−MA

)−1(
D

Z

)
≈s (A−MA)−1(Z)

where the first ≈s holds for all D, and the second ≈s uses the fact that D is random and a statistical lemma shown in

[10,18]. Next, observe that (A−MA) ·T1/2 = G, which means we can use the MP trapdoor sampling algorithm [22] with

T1/2 as a trapdoor to sample from the distribution (A−MA)−1(Z).

Step 2. We rely on the vectorization operator vec(·) for matrices from linear algebra (see Section 2) to relate the distri-

butions in (2) and (1). The vectorization of a matrix Z, denoted by vec(Z), is the column vector obtained by stacking

the columns of the matrix Z on top off one another. Using a standard vectorization identity vec(XYZ) = (Z>⊗X)vec(Y),

we have

vec(DM) = (M>⊗ In)vec(D)

This basically says that we can sample from the desired distribution in (1) by sampling from the distribution in (2) with

(M>⊗ In)vec(D) in place of MD .

3

LWE implies T1/2-LWE. Next, we sketch a proof of the statement LWE implies T1/2-LWE, that is, (A,sA+e) is pseudo-

random given the restricted trapdoor sampling oracle in (1). In the reduction, we sample A as

A :=
[

A′ | A′R+
(

0

G

)]

where A′ ←Z
2n×(m−n log q)
q ,R ← {0,1}(m−n log q)×n log q .

– Note that T1/2 = (−R
I

)
satisfies A ·T1/2 = (0

G

)
. This means that we can use R to compute T1/2 and to implement the

restricted trapdoor sampling oracle in (1).

– By LWE w.r.t. the public matrix A
′
, we have

sA+e ≈s (sA
′+e′, (sA

′+e′)R+e′′) ≈c (c,cR+e′′), c ←Z
m−n log q
q

This holds even if the distinguisher gets R, which we need to implement the oracle.

– Now, observe that the oracle in (1) leaks no information about R beyond A
′
R. By the left-over hash lemma, cR is

statistically random given c,A
′
,A

′
R. (A similar argument first appeared in [1].)

1.3 Technical Overview II: ABE for DFA

We proceed to provide a technical overview of our ABE for DFA. In this work, it is convenient to specify a DFA using

vector-matrix notation. That is, a DFA M is a tuple (Q,Σ, {Mσ}σ∈Σ,u0, f) where Σ is the alphabet and

Q ∈N; Mσ ∈ {0,1}Q×Q ,∀σ ∈Σ; u0, f ∈ {0,1}1×Q .

The DFA accepts an input x = (x1, . . . , x`) ∈Σ`, denoted by M(x) = 1, if

fMx` · · ·Mx2 Mx1 u>
0 = 1 (3)

ABE for B = 1. We begin with our ABE scheme for collusions of size one:

mpk = (
d0, {Aσ }σ∈Σ ,Aend,dend

)
, Aσ←Z2n×m

q , Aend ←Zn×m
q (4)

ct = (c0︷ ︸︸ ︷
s0d>

0 +e0, {

ci︷ ︸︸ ︷
si−1Axi −si Axi

+ei }i∈[`],

c`+1︷ ︸︸ ︷
s`Aend +e`+1,

c`+2︷ ︸︸ ︷
s`d>

end +e`+2 +µ · b q
2 c

)
skM = (

Kend, {Kσ }σ∈Σ
)
,

where D ←Z
n×Q
q s.t. D ·u>

0 = d0, Kend ← A−1
end(D−d>

end ⊗ f), Kσ← A−1
σ

(D
DMσ

)
In the rest of this overview, we assume Σ= {0,1}, and mostly ignore the error terms e0,ei for notational simplicity. To

see how decryption works, we first let

u>
i := Mxi · · ·Mx2 Mx1 u>

0

That is, u>
i is the characteristic vector for the state reached upon reading x1, . . . , xi . In addition, let d>

i := D ·u>
i denote

the corresponding column in D (denoted by d̃>
ui

in Section 1.1). It is straight-forward (though a little tedious) to verify

that

−
≈ s0d>0︷︸︸︷

c0 + (
∑̀
i=1

≈ si−1d>i−1−si d>i︷ ︸︸ ︷
ci ·Kxi ·u>

i−1) +
≈ s`(d>

`
−M(x)d>end)︷ ︸︸ ︷

c`+1 ·Kend ·u>
` ≈−M(x) ·s`d>

end (5)

In particular, whenever M(x) = 1, we can recover µ from c`+2. Note that the noise growth in (5) grows with `, and since

we can only bound ` by λω(1), we require a λω(1) modulus-to-noise ratio for decryption correctness. The security proof

additionally uses noise smudging, which also requires a λω(1) modulus-to-noise ratio.

4

Security. The main tool we have for the proof of security is T1/2-LWE, which we want to use to replace si−1Axi in ci

with random (while relying the oracle for restricted trapdoor sampling to simulate the corresponding secret keys). We

cannot do so directly, since each si−1 also appears in ci−1 (c0, in the case i = 1). To resolve this issue, we start by using

(5), which tells us that when M(x) = 0 as is the case for unauthorized keys in the proof of security, we have:

−c0 +
(∑`

i=1 ci ·Kxi ·u>
i−1

)+c`+1 ·Kend ·u>
` ≈ 0

This allows us to write c0 as a function of c1, . . . ,c`,c`+1 and K0,K1 from skM , thereby “eliminating” s0 from c0. (Here,

we use the fact that we are in the sk-selective setting.) At this point, we can replace s0Ax1 in c1 with random, and thus

c1 with random. This in “eliminates” s1 from c1, upon which we can replace s1Ax2 in c2 and thus c2 with random. This

continues until we have replaced c` with random. At this point, it suffices to argue that

s`Aend, s`d>
end +µ · b

q
2 c,Kend

hides µ, which can be handled using fairly standard techniques.

Handling B collusions. Our basic scheme extends naturally to handle B collusions by sampling a fresh D per secret

key except one important caveat: the encryptor needs to know d0 = D·u>
0 in order to compute s0d0, and for the security

proof, we need a fresh d0 per secret key. To solve this problem, we modify the scheme as follows:

– during set-up, we sample and publish d0, j , j ∈ [B] in mpk;

– the encryptor includes {c0, j := s0d0, j } j∈[B] in ct, which increases the ciphertext size by an additive factor of B ·
poly(λ) (independent of `);

– when issuing the j ’th key, we sample a random D such that D ·u>
0 = d0, j .

The security proof is similar to that for B = 1, except we start by using (5) to rewrite each c0, j in terms of c1, . . . ,c`+1.

Candidate ABE for DFA against unbounded collusions. We start with our ABE for B = 1 in (4) and make the following

modifications:

– replace d0 in mpk with a random matrix Ast;

– replace s0d>
0 in ct with s0Ast;

– add kst ← A−1
st (Du>

0) to the secret key, where a fresh random D ←Z
n×Q
q is chosen for each key.

Correctness follows as before, except we first compute s0d>
0 using s0Ast ·kst. We believe that our candidate sheds new

insights into both avenues and concrete difficulties for realizing a public-key ABE for DFA against unbounded collu-

sions from LWE.

1.4 Prior works

We provide a brief overview of prior LWE-based scheme, along with a folklore construction based on general circuits.

We will refer to constructions secure against collusions of size 1 as a one-key scheme, and we use Qmax to denote an

upper bound on the number of DFA states.

A folklore construction via general circuits. We can get bounded-collusion ABE for DFA by using bounded-collusion

ciphertext-policy ABE for circuits; the latter can be constructed based on any semantically secure public-key encryp-

tion scheme –and thus LWE with poly(λ) hardness– via garbled circuits [23,15]. Concretely, we encode the DFA M as a

bit string of length O(Q logQ) and the DFA input x ∈ {0,1}` as a circuit of size O(` ·Q) that on input M , outputs M(x).

The main draw-back is that the ciphertext size grows with Qmax, which we want to avoid.

5

The Agrawal-Singh AS17 scheme. The AS17 scheme is a one-key sk-selective functional encryption (FE) scheme for

DFA based on LWE. The construction uses the GKPVZ compact one-key FE cFE for circuits, a symmetric-key encryp-

tion scheme SE, and a PRF PRF (the AS17 scheme uses a pairwise-independent hashing instead of a PRF). We sketch

a simplified variant of the AS17 scheme in the ABE setting:

– Encryption of x ∈ {0,1}` picks ` PRF keys K1, . . . ,K`. During decryption, the decryptor computes PRF(Ki ,ui) for

i = 1, . . . ,`, where ui denotes the state reached upon the first i bits of x.
– In order to go from PRF(Ki ,ui) to PRF(Ki+1,ui+1), the decryptor would need to compute

SE.EncPRF(Ki ,ui)(PRF(Ki+1,ui+1))

To compute the quantity above, the decryptor first computes cFE.Enc(xi ,ui ,Ki ,Ki+1). The ABE secret key then

contains cFE secret keys that decrypts the cFE-ciphertext to SE.EncPRF(Ki ,ui)(PRF(Ki+1,ui+1)). This requires gen-

erating cFE secret keys for circuits of depth O(logQ), and hence a noise-to-modulus ratioλO(logQmax) =λpoly(logλ).2

– One question remains: how does the decryptor compute cFE.Enc(xi ,ui ,Ki ,Ki+1)? Note that the encryptor cannot

compute this quantity because it does not know ui . The naive solution would be for the encryptor to publish in

the ciphertext: {
SE.EncPRF(Ki ,u)(cFE.Enc(xi ,u,Ki ,Ki+1)) : u ∈ [Qmax]

}
However, this would mean that the final ABE ciphertext size grows with Qmax instead of logQmax. Instead, AS17

shows how to compress the above quantity, using the fact that the cFE ciphertext is “decomposable”.

An open problem is whether our techniques extend to functional encryption for DFA, as achieved in AS17.

The Agrawal-Maitra-Yamada AMY19 scheme. The AMY19 scheme is a private-key ABE for NFA based on LWE; the

scheme achieves ct,sk-selective security against unbounded ciphertext queries and against unbounded collusions.

The AMY19 scheme uses two special ABE schemes:

(i) a public-key ABE for the relation M(x)∧ (|x| ?≤ |M |);

(ii) a secret-key ABE for the relation M(x)∧ (|x| ?> |M |).

These two ABE schemes are constructed using the BGGHNSVV ABE for circuits [9] and using the fact that an NFA

M for inputs of length ` can be simulated using a circuit of size O(` · |M |) and depth poly(log`, log |M |). The final

ABE scheme for NFA contains BGGHNSVV ciphertexts into both the ciphertexts and the secret keys, and since the

BGGHNSVV scheme is sk-selective, the AMY19 scheme is ct,sk-selective.

Prior k-Lin based schemes. As mentioned in the first step of our security proof, we essentially embed the DFA com-

putation into the challenge ciphertext. In contrast, prior k-Lin based schemes embed the DFA computation into the

secret key, which in turn requires using a computational assumption over the secret key space.

1.5 Discussion

ABE for DFA and more. In this work, we present new constructions and techniques for LWE-based ABE for DFA,

achieving some improvements over prior works of AS17 and AMY19 along the way. Our techniques are largely com-

plementary to those in AS17 and AMY19, and we believe there is much more to be gained by combining the techniques

and insights from all three works. We conclude with two open problems:

– Find an attack on our candidate ABE against unbounded collusions. Or, use the candidate as a starting point to

design a simple secret-key ABE for DFA against unbounded collusions based on the LWE assumption, possibly by

leveraging additional insights from AMY19.

2 It seems plausible (with some considerable changes to the scheme and the proof) that we can replace cFE for depth O(logQ)

circuits with an ABE for branching programs of size poly(Q). The latter can realized from LWE with a polynomial modulus-to-

noise ratio [16,17].

6

– It seems quite plausible that we can combine our techniques with ideas from [21] to obtain a simple one-collusion

ABE for Turing machines M running in time T and space S, where |ct| = poly(`) ·T ·S ·2S and |sk| =O(|M |). A more

interesting problem is to design a simple and algebraic one-collusion ABE for Turing machines running in time T

where |ct| = poly(`,T) and |sk| = poly(|M |), as achieved in AS17.

LWE-based ABE with multiple LWE secrets. More broadly, we see this work as also taking a first step towards exploring

the use of multiple LWE secrets in LWE-based ABE as well as bringing design ideas from more complex pairing-based

schemes to the LWE setting. While the use of multiple LWE secrets is implicit also in AS17 and AMY19 (where the

ciphertext contains multiple ciphertexts from some existing LWE-based scheme), our construction makes the con-

nection more explicit.

2 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. r) and boldface upper case for matrices (e.g. R). For inte-

gral vectors and matrices (i.e., those over Z), we use the notation |r|, |R| to denote the maximum absolute value over

all the entries. We use v ← D to denote a random sample from a distribution D, as well as v ← S to denote a uni-

formly random sample from a set S. We use ≈s and ≈c as the abbreviation for statistically close and computationally

indistinguishable.

Matrix operations. The vectorization of a matrix Z, denoted by vec(Z), is the column vector obtained by stacking the

columns of the matrix Z on top of one another. For instance, for the 2×2 matrix Z =
(

a b

c d

)
, we have

vec(Z) =


a

c

b

d


We use vec−1(·) to denote the inverse operator so that vec−1(vec(Z)) = Z. For all matrices X,Y,Z of the appropriate

dimensions, we have vec(XYZ) = (Z>⊗X)vec(Y).

The tensor product (Kronecker product) for matrices A = (ai , j) ∈Z`×m , B ∈Zn×p is defined as

A⊗B =

a1,1B, . . . , a1,m B

. . . , . . . , . . .

a`,1B, . . . , a`,m B

 ∈Z`n×mp .

The mixed-product property for tensor product says that

(A⊗B)(C⊗D) = (AC)⊗ (BD)

DFA. We use M = (Q,Σ, {Mσ}σ∈Σ,u0, f) to describe deterministic finite automata (DFA for short), where u0, f ∈ {0,1}Q ,Mσ ∈
{0,1}Q×Q , and both u0 and every column of Mσ contains exactly one 1. For any x = (x1, . . . , x`) ∈Σ`, we have:

M(x) = fMx` · · ·Mx1 u>
0

2.1 Attribute-based encryption

Syntax. An attribute-based encryption (ABE) scheme for some class C consists of four algorithms:

Setup(1λ,C) → (mpk,msk). The setup algorithm gets as input the security parameter 1λ and class description C. It

outputs the master public key mpk and the master secret key msk.

7

Enc(mpk, x,µ) → ctx . The encryption algorithm gets as input mpk, an input x and a message µ ∈ {0,1}. It outputs a

ciphertext ctx . Note that x is public given ctx .

KeyGen(mpk,msk, M) → skM . The key generation algorithm gets as input mpk, msk and M ∈C. It outputs a secret key

skM . Note that M is public given skM .

Dec(mpk,skM ,ctx) → m. The decryption algorithm gets as input skM and ctx such that M(x) = 1 along with mpk. It

outputs a message µ.

Correctness. For all inputs x and M with M(x) = 1 and all µ ∈ {0,1}, we require

Pr

Dec(mpk,skM ,ctx) =µ :

(mpk,msk) ← Setup(1λ,C)

skM ←KeyGen(mpk,msk, M)

ctx ←Enc(mpk, x,µ)

= 1−negl(λ).

Security definition. For a stateful adversary A, we define the advantage function

AdvABE
A (λ) := Pr

β=β′ :

(mpk,msk) ← Setup(1λ,C)

AKeyGen(mpk,msk,·)(1λ)

(x∗,µ0,µ1) ←A(mpk)

β← {0,1}; ctx∗ ←Enc(mpk, x∗,µβ)

β′ ←A(ctx∗)

− 1

2

with the restriction that all queries M that A sent to KeyGen(mpk,msk, ·) satisfy M(x∗) = 0. An ABE scheme is sk-

selectively secure if for all PPT adversaries A, the advantage AdvABE
A (λ) is a negligible function in λ. Note that A only

gets oracle access to KeyGen at the beginning of the experiment before it sees mpk. (The security experiment starts

with (mpk,msk) ← Setup to generate the first two inputs to the KeyGen oracle.)

Bounded-collusion setting. We say that an ABE scheme is B-bounded secure if Setup gets an additional input 1B , and

the adversary is only allowed to make at most B queries to KeyGen. For simplicity, we focus on tag-based B-bounded

security (sometimes referred to as stateful key generation in the literature) where:

– KeyGen takes an additional tag j ∈ [B] and correctness holds for all j ∈ [B];

– In the security game, the queries made to KeyGen must correspond to distinct tags.

It is easy to see that we can construct a tag-based B-bounded scheme from any 1-bounded scheme by running B in-

dependent copies of the 1-bounded scheme; this incurs a factor B blow-up in |mpk|, |ct| while |sk| remains the same.

Furthermore, we can construct a B-bounded scheme from a tag-based O(B)-bounded scheme [15,20,6], with an ad-

ditional O(λ2(logB)2) multiplicative blow-up in |mpk|, |ct|. We sketch a construction from [20] for removing tags with

a bigger blow-up: take a tag-based O(B 2)-bounded scheme and generate secret keys for a random tag. Now, if the ad-

versary gets at most B keys, then by a birthday bound, the advantage of the adversary is bounded by 1/4, and then we

can apply hardness amplification to reduce the advantage to negligible.

2.2 Lattices background

Learning with errors. Given n,m, q,χ ∈N, the LWEn,m,q,χ assumption states that

(A,sA+e) ≈c (A,c)

where

A ←Zn×m
q ,s ←Zn

q ,e ←DZm ,χ,c ←Zm
q

8

Trapdoor and preimage sampling. Given any z ∈ Zn
q , s > 0, we use A−1(z, s) to denote the distribution of a vector y

sampled from DZm ,s conditioned on Ay = z (mod q). We sometimes suppress s when the context is clear.

There is a p.p.t. algorithm TrapGen(1n ,1m , q) that, given the modulus q ≥ 2, dimensions n, m such that m ≥
2n log q , outputs A ≈s U (Zn×m

q) with a trapdoor τ. Moreover, there is a p.p.t. algorithm that for s ≥ 2
√

n log q , given

(A,τ) ←TrapGen(1n ,1m , q), z ∈Zn
q , outputs a sample from A−1(z, s).

3 Trapdoor Sampling with T1/2 and a Computational Lemma

We describe our new computational lemma, which we coin the “T1/2-LWE assumption” and which says that LWE holds

in the presence of some oracle OA(·). Then, we show that the T1/2-LWE assumption follows from the LWE assumption.

3.1 LWE implies T1/2-LWE

Theorem 1 (T1/2-LWE assumption). Fix parameters n,m, q. Under the LWEn,m−n log q,χ assumption, we have that

(A,sA+e) ≈c (A,c)

where

A ←Z2n×m
q ,s ←Zn

q ,e ←DZm ,χ̂,c ←Zm
q , χ̂=χ ·nω(1)

and where the distinguisher gets unbounded, adaptive queries to an oracle OA(·) that on input M ∈ ZQ×Q
q ,Z ∈ Zn×Q

q ,

outputs a sample from �
A−1((D

DM+Z

)
, s

) | D ←Z
n×Q
q

�

where s2 ≥O(m)+ω(logmQ + logn).

Proof. We sample A as

A :=
[

A′ | A′R+
(

0

G

)]
where A′ ←Z

2n×(m−n log q)
q ,R ← {0,±1}(m−n log q)×n log q .3 Setting T1/2 := (−R

I

)
, we have A ·T1/2 =

(0
G

)
. We show in the next

section that using A,T1/2, we can efficiently simulate the oracle OA. We can then complete the current proof in two

steps:

– By the LWE assumption, we have:

(A′,sA′+e′) ≈c (A′,c′)

where c′ ←Z
m−n log q
q ,e′ ←DZm−n log q ,χ. This means that

sA+e ≈s (sA
′+e′+e′′0 , (sA

′+e′)R+e′′) ≈c (c+e′′0 ,cR+e′′), c ←Z
m−n log q
q

even given A,R, where the first ≈s uses noise smudging. We can then use R to simulate OA(·).

– By left-over hash lemma, we can replace c′R with random, even given (A′,c′,A′R). Here, we crucially rely on the

fact that the distribution OA(·) depends only on A (and thus A′,A′R) and leaks no additional information about R.

3 Following [22, Section 5.2], we choose each entry of R to be 0 with probability 1/2, and ±1 each with probability 1/4. This yields

|R| = 1 and s1(R) =O(
p

m) w.h.p. Moreover, (A,AR) ≈s uniform.

9

3.2 Trapdoor Sampling with T1/2

Additional notation. We adopt additional notation from [11]. We use ηε(·) to denote the smoothing parameter of a

lattice, andΛ⊥(·) to denote the q-ary kernel lattice. We use � ·� for probability distributions.

Lemma 1 ([10, Lemma 4.1, 4.2]). Fix parameters ε, s,n,m, q such that m > 18n log q. For all A ∈ Z2n×m
q satisfying A ·

{0,1}m =Z2n
q , and for all z ∈Zn

q and s > ηε(Λ⊥(A)), the distributions:�
A−1

((
d

z

)
, s

)
| d ←Zn

q

�
and

�
A−1(z, s)

�
are 2ε-statistically close.

Note that the difference from the notation in [10] in that we switched the roles of A,A. Also, the condition in A as stated

in [10] is that
{

A ·x | x ∈ {0,1}m ∩Λ⊥(A)
}=Zn

q , which is implied by A · {0,1}m =Z2n
q .

Theorem 2. Fix parameters n, q,m ≥O(n log q). There is an efficient algorithm that on input A ∈Z2n×m
q ,T1/2 ∈Zm×n log q ,M ∈

Z
Q×Q
q ,Z ∈Zn×Q

q , s ∈N such that A ·T1/2 =
(0

G

)
, outputs a sample statistically close to the distribution�
A−1

((
D

DM+Z

)
, s

)
| D ←Z

n×Q
q

�

if the following conditions are satisfied:

A · {0,1}m =Z2n
q , λm(Λ⊥(A)) =O(1), s2 ≥O(1) · s1(T1/2)2 +ω(logmQ + logn)

As shown in [12], the conditions A ·{0,1}m =Z2n
q and λm(Λ⊥(A)) =O(1) are satisfied for all but a 1−2q−2n fraction of A.

Proof. We start by specifying the algorithm:

Algorithm. Output

vec−1((IQ ⊗A−M>⊗A)−1(vec(Z), s))

where (IQ ⊗A−M>⊗A)−1(·) is computed using MP trapdoor sampling [22] with IQ ⊗T1/2 as a trapdoor.

The analysis proceeds in three steps:

Step 1. We show that for all M,Z:�
vec

(
A−1

(
D

DM+Z

))
: D ←Z

n×Q
q

�
≈s (IQ ⊗A−M>⊗A)−1(vec(Z))

To show this, first observe that for all A,D,M,Z and all K, we have:

A ·K =
(

D

DM+Z

)
⇐⇒ AK = D, AK−AKM = Z

⇐⇒
(

IQ ⊗A

IQ ⊗A−M>⊗A

)
·vec(K) =

(
vec(D)

vec(Z)

)
where the second ⇐⇒ uses

vec(AK) = (IQ ⊗A) ·vec(K), vec(AK) = (IQ ⊗A) ·vec(K), vec(AKM) = (M>⊗A) ·vec(K).

This means that for all A,D,M,Z and all s, the two distributions

vec

(
A−1

((
D

DM+Z

)
, s

))
and

(
IQ ⊗A

IQ ⊗A−M>⊗A

)−1 ((
vec(D)

vec(Z)

)
, s

)

10

are identically distributed.

Applying Lemma 1 to

A′ :=
(

IQ ⊗A

IQ ⊗A−M>⊗A

)
we have �(

IQ ⊗A

IQ ⊗A−M>⊗A

)−1(
vec(D)

vec(Z)

)
: D ←Z

n×Q
q

�
≈s

�
(IQ ⊗A−M>⊗A)−1(vec(Z))

�
In Step 3, we check that A′ satisfies the conditions for Lemma 1.

Step 2. Observe that

(IQ ⊗A−M>⊗A) · (IQ ⊗T1/2) = (IQ ⊗G−M>⊗0) = IQ ⊗G

which means that we can use IQ ⊗T1/2 as a MP-trapdoor to sample from the distribution (IQ ⊗A−M>⊗A)−1(vec(Z)).

Step 3. To complete the analysis, we need to bound ηε(A′) and show that A′ · {0,1}mQ = Z
2nQ
q (in order to invoke

Lemma 1). Observe that

A′ =
(

IQ ⊗ In 0

−M>⊗ In IQ ⊗ In

)(
IQ ⊗A

IQ ⊗A

)
This means that Λ⊥(A′) =Λ⊥(IQ ⊗A), and that we can bound ηε(Λ⊥(IQ ⊗A)) using λm(Λ⊥(A)) = O(1). In addition, we

have:

A · {0,1}m =Z2n
q ⇒ (IQ ⊗A) · {0,1}mQ =Z2nQ

q ⇒ A′ · {0,1}mQ =Z2nQ
q

This completes the proof. ut

4 ABE for DFA against Bounded Collusions

In this section, we present our ABE scheme for DFA against bounded collusions.

4.1 Our Scheme

– Setup(1n ,Σ,1B): Sample

(Aσ,τσ) ←TrapGen(12n ,1m , q), σ ∈Σ, (Aend,τend) ←TrapGen(1n ,1m , q), d0, j ,dend ←Zn
q , j ∈ [B]

Output

mpk := (
{d0, j } j∈[B], {Aσ }σ∈Σ ,Aend,dend

)
, msk := (

{τσ }σ∈Σ ,τend
)

– Enc(mpk, (x1, . . . , x`) ∈Σ`,µ ∈ {0,1}). Sample

s0,s1, . . . ,s`←Zn
q , e0, j ,e`+2 ←DZ,χ̂, j ∈ [B], e1, . . . ,e`,e`+1 ←DZm ,χ

Output

ct := (
{

c0, j︷ ︸︸ ︷
s0d>

0, j +e0, j } j∈[B], {

ci︷ ︸︸ ︷
(si−1Axi −si Axi

+ei }i∈[`],

c`+1︷ ︸︸ ︷
s`Aend +e`+1,

c`+2︷ ︸︸ ︷
s`d>

end +e`+2 +µ · b q
2 c

)
– KeyGen(msk, M j , j): Parse M j = (Q j ,Σ,

{
Mσ, j

}
σ∈Σ ,u0, j , f j). Sample

D j ←Z
n×Q j
q s.t. D j ·u>

0, j = d>
0, j , Kend, j ← A−1

end(D j −d>
end ⊗ f j), Kσ, j ← A−1

σ

(
D j

D j Mσ, j

)
, σ ∈Σ

using trapdoors τend, {τσ }σ∈Σ. Output

skM j := (
Kend, j ,

{
Kσ, j

}
σ∈Σ

)
– Dec(sk,ct, j): For i = 1, . . . ,`, compute u>

i , j := Mxi , j · · ·Mx1, j u>
0, j . Output

roundq/2
(

c0, j +
(∑̀

i=1
ci ·Kxi , j ·u>

i−1, j

)+c`+1 ·Kend, j ·u>
`, j +c`+2

)
where roundq/2 :Zq → {0,1} denotes rounding to the nearest multiple of q/2.

11

Parameters. The Gaussians in A−1
σ (·),A−1

end(·) have parameters O(m + logQ). The choice of n,m, q,χ comes from the

LWE assumption subject to

n =O(λ), m =O(n log q), χ̂=χ · (`+1)m ·λω(1), q =O((χ̂+` ·χ) ·m · (m + logQ))

In particular, this means

|ct| =O((B +`)m log q) = Õ((B +`)), |sk| =O(|Σ|Qm log q) = Õ(|Σ|Qλ)

where Õ(·) hides poly(logλ, log`, loglogQ) factors. To handle general a-prior unbounded `,Q as is necessarily the case

in ABE for DFA, we just bound `,Q by λω(1).

Correctness. Fix x, j , M j such that M j (x) = 1. Write di , j := D j ·u>
i , j , for j = 0, . . . ,`. First, we show that

−c0, j +
(∑̀

i=1
ci ·Kxi , j ·u>

i−1, j

)+c`+1 ·Kend, j ·u>
`, j ≈−s`d>

end ⊗ f j u>
`, j (6)

This follows readily from

(si−1Axi −si Axi
) ·Kxi , j ·u>

i−1, j = si−1d>
i , j −si d>

i , j

s`Aend ·Kend, j ·u>
`, j = s`d>

`, j −s`d>
end ⊗ (f j u>

`, j)

which in turns follows from

Axi ·Kxi , j ·ui−1, j =
(

D j

D j Mxi

)
·ui−1, j =

(
di−1, j

di , j

)
Aend ·Kend, j ·u>

`, j = (D j −d>
end ⊗ f j)u>

`, j = d>
`, j −d>

end ⊗ (f j u>
`, j)

Next, since M j (x) = 1, we have f j u>
`, j = 1. It follows from (6) that

−

≈−s`d>end︷ ︸︸ ︷
c0, j +

(∑`

i=1 ci ·Kxi , j ·u>
i−1, j

)+c`+1 ·Kend, j ·u>
`, j +

≈ s`d>end+µ·b
q
2 c︷ ︸︸ ︷

c`+2 ≈µ · b q
2 c

In particular, the error term is bounded by χ̂+ (`+1)χ̇.

4.2 sk-Selective Security

We assume that the adversary always makes exactly B key queries; this is WLOG, since we can always repeat some of

the queries.

Game sequence. The proof of security follows a sequence of games:

– H0: Real game where

ct := (
{

c0, j︷ ︸︸ ︷
s0d>

0, j +e0, j } j∈[B], {

ci︷ ︸︸ ︷
(si−1Axi −si Axi

+ei }i∈[`],

c`+1︷ ︸︸ ︷
s`Aend +e`+1,

c`+2︷ ︸︸ ︷
s`d>

end +e`+2 +µβ · b q
2 c

)
– H′

0: same as H0, except we replace every c0, j with

(∑̀
i=1

ci ·Kxi , j ·u>
i−1, j

)
+c`+1 ·Kend, j ·u>

`, j +e0, j (7)

This game is well-defined because the adversary fixes all key queries (M j , j) before it chooses x in the sk-selective

setting.

12

– H′
i , i = 1, . . . ,`: same as H′

0, except we sample c1, . . . ,ci ← Zm
q . Note that this also changes the distribution of

{c0, j } j∈[B], since they depend on c1, . . . ,ci as defined in (7).
– H`+1: same as H`, except we replace c`+2 in H` with c ′

`+2 ←Zq .

Lemma 2. H0 ≈s H
′
0.

Proof. It suffices to show that The only difference in the two games lies in the distribution of {c0, j } j∈[B]. Since M j (x) =
0, we have f j d>

`, j = 0. It follows from (6) that

c0, j ≈
(∑`

i=1 ci ·Kxi , j ·u>
i−1, j

)+c`+1 ·Kend, j ·u>
`, j

Combined with noise smudging using e0, j , namely

e0, j ≈s e0, j +
(∑̀

i=1
ei ·Kxi , j ·u>

i−1, j

)+e`+1 ·Kend, j ·u>
`, j

which in turn follows from χ̂≥χ · (`+1)m ·λω(1), we have

{c0, j } j∈[B] ≈s {−(∑`

i=1 ci ·Kxi , j ·u>
i−1, j

)−c`+1 ·Kend, j ·u>
`, j +e0, j } j∈[B]

The lemma follows readily. ut

Lemma 3. For i = 1, . . . ,`, H′
i−1 ≈c H

′
i .

Proof. Observe that the only difference between H′
i−1 and H′

i lies in the distribution of ci :

– in H′
i−1, we have ci = si−1Axi −si Axi

+ei ;
– in H′

i , we have ci ←Zm
q .

We show that H′
i−1 ≈c H

′
i follows from the T1/2-LWE assumption.

As a simplifying assumption, we assume that the reduction knows xi from the start. In the more general setting,

the reduction simply guesses xi at random at the beginning of the experiment, and aborts if the guess is wrong; this

incurs a loss of |Σ| in the security reduction.

By the T1/2-LWE assumption applied to secret si−1 and public matrix Axi , we have:

si−1Axi ≈c c , c ←Zm
q

given Axi and oracle access to OAxi
(·).

The reduction on input Axi , c̃ ∈ {si−1Axi ,c},Kxi , j and oracle access to OAxi
(·):

– samples

(Aσ,τσ) ←TrapGen(12n ,1m , q),σ 6= xi (Aend,τend) ←TrapGen(1n ,1m , q), dend ←Zn
q

– when A makes a key query (M j , j) where M j = (Q j ,Σ,
{

Mσ, j
}
σ∈Σ ,u0, j , f j):

• queries OAxi
(Mxi , j ,0) to get Kxi , j ← A−1

xi

(D j
D j Mxi , j

)
;

• computes D j = Axi ·Kxi , j ;
• for all σ 6= xi , uses τσ to compute Kσ, j as in KeyGen;
• uses τend to compute Kend, j as in KeyGen;
• outputs skM j := (

Kend, j ,
{

Kσ, j
}
σ∈Σ

)
– computes mpk= (

{D j u>
0, j } j∈[B], {Aσ }σ∈Σ ,Aend,dend

)
– runs x = (x1, . . . , x`),µ0,µ1 ←A(mpk)
– picks β← {0,1} and computes ct as follows:

• samples random s0, . . . ,s`−1,s` except si−1;
• computes ci := c̃−si Axi

;
• computes the rest of ct as in H′

i−1;

13

– outputs A(ct).

Now, observe that when

– if c̃ = si−1Axi +ei , this matches H′
i−1.

– if c̃ = c, this matches H′
i since c−si Axi

is uniformly random.

This completes the proof. ut

Lemma 4 (final transition). H′
`
≈c H`+1.

Proof. By the LWE assumption, we have

Aend,dend,

c`+1︷ ︸︸ ︷
s`Aend +e`+1, s`d>

end +e`+2

≈c Aend,dend,

c`+1︷ ︸︸ ︷
s`Aend +e`+1,c ′`+2

The reduction on input Aend,dend,c`+2, c̃, where c̃ ∈ {s`d>
end +e`+2,c ′

`+2},

– samples

(Aσ,τσ) ←TrapGen(12n ,1m , q),σ ∈Σ
– when A makes a key query (M j , j) where M j = (Q j ,Σ,

{
Mσ, j

}
σ∈Σ ,u0, j , f j):

• samples Kend, j ←D
Z

m×Q j

• programs D j = AendKend, j +d>
end ⊗ f j ;

• for all σ ∈Σ, computes Kσ, j using τσ as in KeyGen;
• outputs skM j := (

Kend, j ,
{

Kσ, j
}
σ∈Σ

)
– computes mpk= (

{D j u>
0, j } j∈[B], {Aσ }σ∈Σ ,Aend,dend

)
– runs x = (x1, . . . , x`),µ0,µ1 ←A(mpk)
– picks β← {0,1} and computes ct as follows:

• samples random c1, . . . ,c`;
• for all j ∈ [B], compute c0, j using (7) except replacing s`d>

`, j with

c`+1 ·Kend, j ·u>
`, j

• outputs ct := ({c0, j } j∈[B],c1, . . . ,c`,c`+1, c̃ +µβ · b q
2 c).

– outputs A(ct).

Here, we use

D j ←Z
n×Q j
q ,Kend, j ← A−1

end(D j −d>
end ⊗ f j) ≈s AendKend, j +d>

end ⊗ f j ,Kend, j ←D
Z

m×Q j

This completes the proof. ut

5 Candidate ABE for DFA against Unbounded Collusions

In this section, we describe a candidate ABE scheme for DFA against unbounded collusions:

– Setup(1n ,Σ): Sample

(Aσ,τσ) ←TrapGen(12n ,1m , q), σ ∈Σ, (Aend,τend) ←TrapGen(1n ,1m , q), ,

(Ast,τst) ←TrapGen(1n ,1m , q), dend ←Zn
q ,

Output

mpk := (
{Aσ }σ∈Σ ,Aend,Ast,dend

)
, msk := (

{τσ }σ∈Σ ,τend
)

14

– Enc(mpk, (x1, . . . , x`) ∈Σ`,µ ∈ {0,1}). Sample

s0,s1, . . . ,s`←Zn
q , e`+2 ←DZ,χ̂, j ∈ [B], e0,e1, . . . ,e`,e`+1 ←DZm ,χ

Output

ct := (c0︷ ︸︸ ︷
s0Ast +e0, {

ci︷ ︸︸ ︷
(si−1Axi −si Axi

+ei }i∈[`],

c`+1︷ ︸︸ ︷
s`Aend +e`+1,

c`+2︷ ︸︸ ︷
s`d>

end +e`+2 +µ · b q
2 c

)
– KeyGen(msk, M): Parse M = (Q,Σ, {Mσ }σ∈Σ ,u0, f). Sample

D ←Z
n×Q
q , k>

st ← A−1
st (D ·u>

0), Kend ← A−1
end(D−d>

end ⊗ f), Kσ← A−1
σ

(
D

DMσ

)
, σ ∈Σ

using trapdoors τst,τend, {τσ }σ∈Σ. Output

skM := (
kst, Kend, {Kσ }σ∈Σ

)
– Dec(sk,ct): For i = 1, . . . ,`, compute u>

i := Mxi · · ·Mx1 u>
0. Output

roundq/2
(

c0k>
st +

∑̀
i=1

ci ·Kxi ·u>
i−1 +cend ·Kend ·u>

`+c`+2
)

where roundq/2 :Zq → {0,1} denotes rounding to the nearest multiple of q/2.

Preliminary cryptanalysis. We make two small observations:

– Given unbounded keys, the adversary can recover a full short basis for the matrices

[Ast | Aσ],∀σ

This follows from the fact that for each key,

[Ast | Aσ]

(
kst

−Kσu>
0

)
= D ·u>

0 −D ·u>
0 = 0

However, we do not know how to use such a collection of short basis to break security of the scheme.

– Suppose we replace each k>
st with c0k>

st +e′0 for some fresh e′0, then the scheme is indeed sk-selective secure, via

essentially the same analysis as our bounded-collusion scheme. (Recall that the role of k>
st for correctness is indeed

only to compute c0k>
st, so this change does not ruin functionality.) This means that any attack on our candidate

scheme must crucially exploit access to k>
st (beyond approximating c0k>

st), for instance, to recover a short basis as

in the previous bullet.

Acknowledgments. I would like to thank Yilei Chen and Vinod Vaikuntanathan for illuminating discussions on lattice

trapdoor sampling, as well as the reviewers for meticulous and constructive feedback. Most of this work was done at

Pepita Cafe and Sennott Park.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In H. Gilbert, editor, EUROCRYPT 2010,

volume 6110 of LNCS, pages 553–572. Springer, Heidelberg, May / June 2010.

2. S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate encryption schemes. In J. Coron and J. B.

Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 627–656. Springer, Heidelberg, Apr. / May 2017.

15

3. S. Agrawal, M. Maitra, and S. Yamada. Attribute based encryption (and more) for nondeterministic finite automata from LWE.

In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 765–797. Springer, Heidelberg,

Aug. 2019.
4. S. Agrawal, M. Maitra, and S. Yamada. Attribute based encryption for deterministic finite automata from DLIN. In D. Hofheinz

and A. Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 91–117. Springer, Heidelberg, Dec. 2019.
5. S. Agrawal and I. P. Singh. Reusable garbled deterministic finite automata from learning with errors. In I. Chatzigiannakis,

P. Indyk, F. Kuhn, and A. Muscholl, editors, ICALP 2017, volume 80 of LIPIcs, pages 36:1–36:13. Schloss Dagstuhl, July 2017.
6. P. Ananth and V. Vaikuntanathan. Optimal bounded-collusion secure functional encryption. In D. Hofheinz and A. Rosen,

editors, TCC 2019, Part I, volume 11891 of LNCS, pages 174–198. Springer, Heidelberg, Dec. 2019.
7. N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure functional encryption for reg-

ular languages, and more. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 557–577.

Springer, Heidelberg, May 2014.
8. N. Attrapadung. Dual system encryption framework in prime-order groups via computational pair encodings. In J. H. Cheon

and T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–623. Springer, Heidelberg, Dec. 2016.
9. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and D. Vinayagamurthy. Fully key-

homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In P. Q. Nguyen and E. Oswald, editors, EU-

ROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.
10. Y. Chen, V. Vaikuntanathan, and H. Wee. GGH15 beyond permutation branching programs: Proofs, attacks, and candidates. In

H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607. Springer, Heidelberg, Aug.

2018.
11. N. Genise, D. Micciancio, C. Peikert, and M. Walter. Improved discrete gaussian and subgaussian analysis for lattice cryptog-

raphy. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 623–651.

Springer, Heidelberg, May 2020.
12. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In R. E. Ladner

and C. Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008.
13. J. Gong, B. Waters, and H. Wee. ABE for DFA from k-Lin. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II,

volume 11693 of LNCS, pages 732–764. Springer, Heidelberg, Aug. 2019.
14. J. Gong and H. Wee. Adaptively secure ABE for DFA from k-Lin and more. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020,

Part III, volume 12107 of LNCS, pages 278–308. Springer, Heidelberg, May 2020.
15. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded collusions via multi-party computation. In

R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer, Heidelberg, Aug. 2012.
16. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In D. Boneh, T. Roughgarden, and

J. Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.
17. S. Gorbunov and D. Vinayagamurthy. Riding on asymmetry: Efficient ABE for branching programs. In T. Iwata and J. H. Cheon,

editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 550–574. Springer, Heidelberg, Nov. / Dec. 2015.
18. R. Goyal, V. Koppula, and B. Waters. Collusion resistant traitor tracing from learning with errors. In I. Diakonikolas, D. Kempe,

and M. Henzinger, editors, 50th ACM STOC, pages 660–670. ACM Press, June 2018.
19. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted data.

In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press, Oct. / Nov. 2006.

Available as Cryptology ePrint Archive Report 2006/309.
20. G. Itkis, E. Shen, M. Varia, D. Wilson, and A. Yerukhimovich. Bounded-collusion attribute-based encryption from minimal

assumptions. In S. Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 67–87. Springer, Heidelberg, Mar. 2017.
21. H. Lin and J. Luo. Compact adaptively secure ABE from k-Lin: BeyondNC1 and towardsNL. In A. Canteaut and Y. Ishai, editors,

EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 247–277. Springer, Heidelberg, May 2020.
22. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In D. Pointcheval and T. Johansson, editors,

EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, Apr. 2012.
23. A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with public keys. In E. Al-Shaer, A. D. Keromytis, and

V. Shmatikov, editors, ACM CCS 2010, pages 463–472. ACM Press, Oct. 2010.
24. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,

pages 457–473. Springer, Heidelberg, May 2005.
25. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In S. Halevi, editor,

CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer, Heidelberg, Aug. 2009.
26. B. Waters. Functional encryption for regular languages. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417

of LNCS, pages 218–235. Springer, Heidelberg, Aug. 2012.
27. H. Wee. Dual system encryption via predicate encodings. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 616–637.

Springer, Heidelberg, Feb. 2014.

16

	ABE for DFA from LWE against Bounded Collusions, Revisited

