
Rai-Choo! Evolving Blind Signatures
to the Next Level

Lucjan Hanzlik1, Julian Loss1, and Benedikt Wagner?1,2

1 CISPA Helmholtz Center for Information Security
{hanzlik,loss,benedikt.wagner}@cispa.de

2 Saarland University

Abstract. Blind signatures are a fundamental tool for privacy-preserving
applications. Known constructions of concurrently secure blind signa-
ture schemes either are prohibitively inefficient or rely on non-standard
assumptions, even in the random oracle model. A recent line of work
(ASIACRYPT ‘21, CRYPTO ‘22) initiated the study of concretely effi-
cient schemes based on well-understood assumptions in the random oracle
model. However, these schemes still have several major drawbacks: 1)
The signer is required to keep state; 2) The computation grows linearly
with the number of signing interactions, making the schemes impractical;
3) The schemes require at least five moves of interaction.

In this paper, we introduce a blind signature scheme that elimi-
nates all of the above drawbacks at the same time. Namely, we show
a round-optimal, concretely efficient, concurrently secure, and stateless
blind signature scheme in which communication and computation are
independent of the number of signing interactions. Our construction also
naturally generalizes to the partially blind signature setting.

Our scheme is based on the CDH assumption in the asymmetric pairing
setting and can be instantiated using a standard BLS curve. We obtain
signature and communication sizes of 9 KB and 36 KB, respectively. To
further improve the efficiency of our scheme, we show how to obtain a
scheme with better amortized communication efficiency. Our approach
batches the issuing of signatures for multiple messages.
Keywords. Blind Signatures, Standard Assumptions, Random Oracle
Model, Cut-and-Choose, Computation Complexity, Round Complexity.

1 Introduction

Blind signatures, introduced by David Chaum in 1982 [17] are an interactive type
of signature scheme with special privacy features. Informally, in a blind signature
scheme, a Signer, holding a secret key sk, and a User, holding a corresponding
public key pk and a message m, engage in a two-party protocol. At the end of
the interaction, the user obtains a signature on m that can be verified using pk.
Blindness ensures that the Signer learns no information about m. On the other
? Main author

mailto:mail here
mailto:mail here

2 L. Hanzlik, J. Loss, B. Wagner

hand, unforgeabillity guarantees that the User cannot obtain valid signatures
without interacting with the Signer. These properties make blind signatures
a useful building block for privacy-sensitive applications, e.g. e-cash [17,37],
anonymous credentials [11,12], e-voting [26], and blockchain-based systems [29].

Unfortunately, even in the random oracle model, existing constructions of blind
signatures either rely on non-standard assumptions [8,6,20], or have parameters
(e.g. communication and signature sizes) that grow linearly in the number of
concurrent signing interactions [40,27,34]. Very recently, Chairattana-Apirom et
al. [14] gave the first blind signature schemes from standard assumptions in the
random oracle model that are simultaneously size and communication efficient.
Even so, their schemes cannot be considered practical. For one, they require
many rounds of interaction, which may be problematic if network conditions are
poor. Second, they still require computation that grows linearly in the number of
signatures that the server has already issued. This can become a heavy burden as
the number of signatures grows large, say 230. In this work, we propose a novel
construction of a blind signature scheme that overcomes all of these limitations.
Concretely, our scheme has the following properties:

– Our scheme can be instantiated from the (co)-CDH assumption in type-3
pairings in the random oracle model (to get a proof from plain CDH, we can
easily use type-2 or type-1 pairings).

– It has compact signatures and communication complexity.
– Signing and verifying are computationally efficient and require only a few

hundred hash and group operations per signature; we provide a prototypical
implementation to demonstrate practicality.

– Our scheme is round-optimal, i.e., it requires only a single message from both
the signer and the user.

1.1 Background and Limitations of Existing Constructions

A long line of work [40,2,1,27,28] has explored constructions of blind signatures
from witness indistinguishable linear identification schemes such as the Okamoto-
Schnorr and Okamoto-Guillou-Quisquater schemes [35]. The resulting blind
signature schemes are secure under well-understood assumptions, such as RSA,
factoring, or discrete logarithm. On the downside, some these schemes admit an
efficient attack [41,44,7] if the number of (concurrent) singing interactions ever
exceeds a polylogarithmic bound.

Inspired by an early work by Pointcheval [39], Katz, Loss, and Rosenberg [34]
recently introduced a boosting transform that turns linear blind signature schemes
into fully secure ones (i.e., admitting a polynomial number of concurrent signing
interactions). Applying their transform, one obtains schemes that rely on well-
studied assumptions and have short signatures. Unfortunately, the resulting
communication and computational complexity renders them impractical. This
is because in the Nth interaction between Signer and User, the communication
and computation depend linearly on N . To ameliorate some of these drawbacks,
Chairattana-Apirom et al. [14] introduced a more compact version of Katz et

Rai-Choo! 3

al.’s generic transform in which the communication only depends logarithmically
on N . Their work also presents two more optimized blind signature schemes
which do not follow from their transform generically. We focus here on their
BLS-based [9,8] construction (called ‘PI-Cut-Choo’) which can be instantiated
from CDH.

We briefly highlight the remaining drawbacks of PI-Cut-Choo. The idea of
the boosting transform fundamentally relies on a 1-of-N cut-and-choose where
N , the number of signing interactions, grows over time. This requires to execute
N copies of the base scheme and has the following implications:

– The Signer is stateful, as it has to keep track of the current value of N .
– The computation grows linearly in N for both the Signer and the User. To

issue N ≈ 230 signatures, this would require prohibitive computational effort
(roughly

∑230

i=1 i ≈ 259 operations).
– Issuing a signature requires five moves of interaction between Signer and

User which is a far cry from the theoretical one-round limit achieved by some
schemes [8].

Thus, even though PI-Cut-Choo significantly improves over prior schemes, it can
still not be considered useful for practical deployment.

1.2 Our Contribution

In this work, we eliminate all of the aforementioned drawbacks.
Our Scheme.We construct a practical blind signature scheme using a new variant
of the cut-and-choose technique, that is polynomially secure and does not require
the signer to keep a state. This eliminates the dependency on a counter N as in
[34,14] entirely, thereby also significantly reducing the computational complexity,
see Table 1. Additionally, in contrast to schemes in [34,14], our scheme is round-
optimal. Our scheme is statistically blind against malicious signers. We show
one-more unforgeability based on the (co)-CDH assumption in asymmetric pairing
groups. One-more unforgeability holds for any (a priori unbounded) polynomial
number of signing interactions. We obtain several parameter settings for our
scheme. This leads to a trade-off between signature and communication size, see
Table 2. For example, we can instantiate parameters to obtain 9 KB signature
size and 36 KB communication complexity. To demonstrate that our scheme is
computationally efficient, we implemented a prototype over the BLS12–381 curve.
Our experiments show that signing takes less than 0.2 seconds, see Table 2.
Partial Blindness and Batching. We show that our scheme naturally general-
izes to the setting of partially blind signatures. Additionally, we show how we can
batch multiple signing interactions to improve communication complexity (see
also Table 2), and provide the first formal model and analysis for that. Batching
has been used in many other contexts as well, e.g. in oblivious transfer [30,10].
We believe that batching blind signatures has a lot of natural use-cases. As an
example, consider an e-cash scenario. Here, parties withdraw coins from a bank
by getting blind signature for a random message. Later, the coin can be deposited

4 L. Hanzlik, J. Loss, B. Wagner

Boosting [34] Compact Boosting [14] Our Work
Moves 7 7 or 5 2

Communication Θ(N) Θ(logN) Θ(1)
Computation Θ(N) Θ(N) Θ(1)

Table 1. Comparison of number of moves, communication and computation for the
line of work [34,14] and our work in the Nth signing interaction.

Communication with batch size L Running Time
|pk| |σ| L = 1 L = 4 L = 16 L = 256 Sign Verify

(I) 0.14 13.98 33.20 16.98 12.92 11.65 163 54
(II) 0.14 9.41 36.21 20.11 16.08 14.82 169 36
(III) 0.14 5.71 72.79 43.97 36.77 34.52 333 22

Table 2. Efficiency of different parameter settings of our scheme. Sizes and times
are given in kilobytes and milliseconds, respectively. Communication is amortized per
message. Details can be found in Section 5.

by presenting the message-signature pair. Blindness ensures that the process of
withdrawal is not linkable to the process of depositing. This approach is also
used to do enhance the anonymity in electronic payment systems [29]. We remark
that it is crucial that all issued coins are of equal amount to guarantee a large
anonymity set. Therefore, any user that wants to retrieve more than one coin has
to interact with the bank multiple times to get multiple coins (i.e. signatures).
Using batch blind signatures, these interactions can all happen in parallel, leading
to improved communication and computational efficiency, as well as reduced
overhead to initiate interactions.
Remark on Assumptions. In our construction, we use the asymmetric type-3
pairing setting, as standard in practical pairing-based schemes. This also means
that we need to use the standard variant of CDH in this setting, sometimes called
co-CDH [15]. We emphasize that this variant is even needed to prove unforgeability
of standard BLS signatures in the asymmetric type-3 setting [9]. On the other
hand, it is straight-forward to instantiate our scheme in the symmetric pairing
setting, or the asymmetric type-2 pairing setting based on plain CDH. We refer
to Section 5 for more details.

1.3 Technical Overview

We give an intuitive overview of our techniques. For full formal details, we refer
to the main body.
Boosting and PI-Cut-Choo. We start this overview by recalling the boosting
transform [34] and its parallel instance variant [14]. Let BS be a blind signature
scheme which is secure against an adversary that queries the signer for a small

Rai-Choo! 5

number of signatures (we will give a suitable definition of “small” below). The
boosting transform results in a new scheme which is secure for any number of
signing interactions between signer and adversary. In the Nth signing interaction,
the User and the Signer behave as follows.

1. The user commits to its message m using randomness ϕj , j ∈ [N], thereby
obtaining N commitments µj . It also samples random coins ρj , j ∈ [N] for
the user algorithm of BS. Then, it commits to each pair (µj , ρj) using a
random oracle, and sends the resulting commitments comj to the Signer.

2. Signer and User run the underlying scheme BS N times in parallel. We refer
to these N parallel runs as sessions. More precisely, the Signer uses its secret
key sk, and the User uses the public key pk, µi as the message, and ρj as the
random coins in the jth session, for j ∈ [N].

3. Before the final messages sj , j ∈ [N] are sent from the Signer to the User,
the Signer selects a random session J ∈ [N]. The user now has to open all
the commitments comj for j ∈ [N] \ {J} by sending (µj , ρj). The Signer can
now verify that the User behaved honestly for all but the Jth session. In case
the User behaved dishonestly in one session, the Signer aborts.

4. The Signer completes the Jth session by sending the final message sJ . Finally,
the User derives a signature σJ from that session as in BS, and outputs
σ = (σJ , ϕJ) as its final signature.

Katz, Loss, and Rosenberg [34] show that the above scheme is secure for polyno-
mially many signing interactions, given that the underlying scheme BS is secure
for logarithmically many signing interactions. In more detail, they provide a
reduction that simulates a signer oracle for the new scheme, given a logarithmic
number of queries to the signer oracle for BS. Their reduction distinguishes the
following cases for the Nth signing interaction.

1. If the adversary (i.e. the User) is dishonest in at least two sessions, then the
adversary is caught. Hence, no response has to be provided and no secret key
is needed.

2. If the adversary is honest in all sessions, the reduction can extract all (µj , ρj)
by inspecting random oracle queries. Using a special property of the under-
lying scheme BS, this allows the reduction to simulate the response, e.g. by
programming the random oracle.

3. If the adversary is dishonest in exactly one session j∗, then either J 6= j∗ and
the reduction works as in the previous case, or J = j∗, and the reduction has
to use the signer oracle of BS to provide the response sJ . In this case, we say
that there is a successful cheat.

It is clear that the probability of a successful cheat is at most 1/N in the Nth
signing interaction. Therefore, the expected number of successful cheats over
q signing interactions is at most

∑q+1
N=2 1/N ≤ O(log q). Using an appropriate

concentration bound, it therefore can be argued that the underlying signer oracle
for BS is called logarithmically many times.

Unfortunately, the above transform yields impractical parameter sizes for
the resulting signature scheme, which results from a relatively loose reduction

6 L. Hanzlik, J. Loss, B. Wagner

to BS. To overcome these issues, recent work introduced a parallel instance
version of the boosting transform (hereafter PI-Cut-Choo) [14]. The primary
goal of this version is to work for key-only secure schemes BS, i.e. such that the
reduction can simulate signing queries in the transformed scheme entirely without
accessing the signing oracle of BS. First, N is scaled by some constant, such that
the expected number of successful cheats is less than 13. Thus, in expectation,
the reduction does not need access to a signer oracle for BS. To ensure that
this is true with overwhelming probability, the entire boosting transform is
repeated with K = Θ(n) instances in parallel. These instances use independent
public keys pk1, . . . , pkK and independent random coins4. This implies that with
overwhelming probability, there will be an instance i∗ ∈ [K], such that there is
no successful cheat in instance i∗ over the entire runtime of the reduction. The
reduction can now guess i∗ and embed the target public key of BS in pki∗ . If the
guess was correct, the reduction to key-only security of BS goes through.

The above discussion highlights the importance of growing the parameter N as
a function of the number of signing interactions over time. In summary, it allows
to bound the expected number of successful cheats, which is the central idea of
prior work [34,14]. Thus, keeping N fixed presents several technical challenges
that we discuss in the next paragraph.
Strawman One: Fixed Cut-and-Choose. We are now ready to describe our
central ideas to avoid a growing cut-and-choose parameter N . As explained above,
the key idea of PI-Cut-Choo is to ensure that for one of the parallel instances i∗,
the adversary never cheats in any of its interactions with the signer. This argument
fails if we set N to be constant, e.g. N = 2. However, by keeping the number
of parallel instances K the same, we can still argue that with overwhelming
probability in each signing interaction, there is a non-cheating instance i∗. We
highlight the reversed role of quantifiers: The non-cheating instance i∗ could now
be different for every signing interaction. Unfortunately, the reduction approach
presented in PI-Cut-Choo only allows to embed the target public key of the
underlying scheme BS in a fixed key among the keys pk1, . . . , pkK corresponding
to the K parallel instances. Once this key is fixed, the reduction fails if ever there
is a successful cheat with respect to this instance.
Strawman Two: Dynamic Key Structure (Naively). The above discussion
shows that we have to support a dynamic embedding of the target public key
into one of the keys pk1, . . . , pkK . The first (naive) idea would be to use a fresh
set of public keys pk1, . . . , pkK and secret keys sk1, . . . , skK in each interaction.
Observe that in PI-Cut-Choo, the base scheme BS is a two-move scheme, in
which the first message c (challenge) sent from user to signer does not depend
on the public key. Thus, our reduction for the resulting scheme can identify the
non-cheating instance i∗ after seeing the commitments comi,j and the challenges
3 This assumes an upper known bound on the number of signing interactions, which is
a minor limitation. Alternatively, one could instead increase N as N2 to achieve an
expected constant number of successful cheats.

4 In PI-Cut-Choo, this parallel repetition comes almost for free due to a lot of opti-
mizations that we do not cover in this overview.

Rai-Choo! 7

ci,j . Using this observation, we could let the Signer send the (fresh) public keys
pk1, . . . , pkK that will be used in the current signing interaction after receiving
commitments and challenges. This way, the reduction knows in which key pki∗ to
embed the target public key in each signing interaction. To do so, the reduction
first identifies the non-cheating instance i∗, and then samples (pki, ski) for i 6= i∗

honestly, while setting pki∗ to (a rerandomization of) the target public key.
Finally, the reduction can use ski to simulate all instances except i∗, while using
random oracle programming in instance i∗.

We can use random-self reducibility of the underlying signature scheme to
ensure blindness of this construction. Namely, the User re-randomizes the keys
and signatures it receives from the user. (Otherwise, it would be trivial to
link signatures to signing interactions). The final signature then contains the
rerandomized set of keys and signatures. Fortunately, the BLS scheme [8], which
serves as the basis of PI-Cut-Choo, has such a property.

However, the above scheme is insecure. Since a fresh set of keys pk1, . . . , pkK
is used in every interaction, there is nothing tying signatures to the Signer’s
actual public and secret key. In particular, there is no way from preventing the
adversary from (trivially) creating a forgery containing a set of keys of its own
choice. In the security proof, the reduction can not extract a forgery for BS with
respect to the target public key in this scenario.
Our Solution: PI-Cut-Choo evolves to Rai-Choo. To overcome the remain-
ing issues of the above strawman approach, we fix one public key pk and one secret
key sk for our scheme. Instead of using independent public keys pk1, . . . , pkK for
each interaction, we instead use a sharing

(pk1, sk1), . . . , (pkK , skK) such that
∑
i

ski = sk and
∏
i

pki = pk.

By setting pk to be the target public key of the underlying scheme BS and
carefully working out the details, our reduction is now able to extract a forgery
as required. It remains to sketch why the simulation of the signing oracle is still
possible with this new structure of the pk1, . . . , pkK . Note that the reduction
can define the pk1, . . . , pkK in a way that allows it to know all but one ski.
Concretely, after identifying the non-cheating instance i∗ in an interaction with
the adversary, the reduction first samples (pki, ski) for all i ∈ [K]\{i∗}, and then
sets pki∗ := pk ·

∏
i6=i∗ pk−1

i . This is identically distributed to the real sharing.
In summary, we have successfully transformed a key-only secure scheme BS

into a fully secure one, while using a constant cut-and-choose parameter N . We
can further optimize the scheme using many minor tricks, some of them similar to
[14]. In the process we also manage to reduce the number of moves to two, which
is optimal. This is because in our new scheme, we can make the cut-and-choose
step completely non-interactive using a random oracle, and the signer does not
need to send N anymore, as it is fixed.

1.4 More on Related Work

We discuss related work in more detail.

8 L. Hanzlik, J. Loss, B. Wagner

Impossibility. There are several impossibility results about the construction of
blind signatures in the standard model [19,38,4]. Fischlin and Schröder showed
that statistically blind three-move schemes can not be constructed from non-
interactive assumptions under certain conditions [19]. Pass showed that unique
round-optimal blind signatures can not be based on a class of interactive assump-
tions [38]. Baldimtsi and Lysyanskaya showed that schemes with a unique secret
key and a specific structure can not be proven secure, even under interactive
assumptions [4].
Sequential vs. Concurrent Security. In terms of unforgeability, one distin-
guishes concurrent and sequential security. For sequential security, the adversary
has to finish one interaction with the signer before initiating the following inter-
action. In contrast, concurrent security allows the adversary to interact with the
signer in an arbitrarily interleaved way. In practice, restricting communication
with the signer to sequential access opens a door for denial of service attacks.
Therefore, concurrent security is the widely accepted notion.
Generic Constructions. One can build blind signatures generically from stan-
dard signatures and secure two-party computation (2PC), as shown by Juels,
Luby and Ostrovsky [31]. Unfortunately, this construction only achieves sequen-
tial security. Contrary to that, Fischlin [18] gave a (round-optimal) generic
construction that is secure even in the universal composability framework [13].
However, it turns out that instantiating these generic constructions efficiently
is highly non-trivial. For example, instantiating Fischlin’s construction requires
to prove statements in zero-knowledge about a combination of commitment and
signature scheme. If we instantiate the signature scheme efficiently in the random
oracle model, we end up treating the random oracle as a circuit. This leads to
unclear implications in terms of security. Additionally, schemes based on Fischlin’s
construction inherently require strong decisional assumptions due to the use
of zero-knowledge proofs and encryption. The recent work by Katsumata and
del Pino [33] makes significant progress in this direction. By carefully choosing
building blocks and slightly tweaking the construction, they give an instantia-
tion of Fischlin’s paradigm in the lattice setting. However, the communication
complexity of their protocol is still far from being practical.
Efficiency from Strong Assumptions. In addition to the generic constructions
mentioned above, there are direct constructions of blind signatures. While some
constructions make use of complexity leveraging [24,23], others are proven secure
under non-standard q-type or interactive assumptions [36,24,20,25]. Notably,
there are efficient and round-optimal schemes based on the full-domain-hash
paradigm [8,6,3]. For example, Boldyreva [8] introduces a blinded version of
the BLS signature scheme [9]. To prove security, one relies on the non-standard
one-more variant of the underlying assumption (e.g. one-more CDH for BLS).
Idealized Models. In addition to the works in the standard and random
oracle model mentioned before, there are also constructions [22,32,43] that are
proven secure in more idealized models, such as the algebraic or generic group
model [21,42]. While it leads to efficient schemes, we want to avoid using such a
model, as it is non-standard.

Rai-Choo! 9

2 Preliminaries

We denote the security parameter by n ∈ N, and assume that all algorithms get
1n implicitly as input. Let S be a finite set and D be a distribution. We write
x←$S to indicate that x is sampled uniformly at random from S. We write
x← D if x is sampled according to D. Let A be a (probabilistic) algorithm. We
write y ← A(x), if y is output from A on input x with uniformly sampled random
coins. To make these random coins ρ explicit, we write y = A(x; ρ) The notation
y ∈ A(x) means that y is a possible output of A(x). As always, an algorithm is
said to be PPT if its running time T(A) is bounded by a polynomial in its input
size. A function f : N→ R+ is negligible in its input n, if f ∈ n−ω(1). Let G be a
security game. We write G⇒ b to indicate that G outputs b. The first K natural
numbers are denoted by [K] := {1, . . . ,K}. Next, we define the cryptographic
primitive of interest and the computational assumption that we use.

Definition 1 (Blind Signature Scheme). A blind signature scheme is a
quadruple of PPT algorithms BS = (Gen,S,U,Ver) with the following syntax:

– Gen(1n) → (pk, sk) takes as input the security parameter 1n and outputs a
pair of keys (pk, sk). We assume that the public key pk defines a message
spaceM =Mpk implicitly.

– S and U are interactive algorithms, where S takes as input a secret key sk
and U takes as input a key pk and a message m ∈M. After the execution, U
returns a signature σ and we write (⊥, σ)← 〈S(sk),U(pk,m)〉.

– Ver(pk,m, σ)→ b is deterministic and takes as input public key pk, message
m ∈M, and a signature σ, and returns b ∈ {0, 1}.

We require that BS is complete in the following sense. For all (pk, sk) ∈ Gen(1n)
and all m ∈Mpk it holds that

Pr [Ver(pk,m, σ) = 1 | (⊥, σ)← 〈S(sk),U(pk,m)〉] = 1.

Definition 2 (One-More Unforgeability). Let BS = (Gen,S,U,Ver) be a
blind signature scheme and ` : N → N. For an algorithm A, we consider the
following game `-OMUFABS(n):

1. Sample keys (pk, sk)← Gen(1n).
2. Let O be an interactive oracle simulating S(sk). Run

((m1, σ1), . . . , (mk, σk))← AO(pk),

where A can query O in an arbitrarily interleaved way and complete at most
` = `(n) of the interactions with O.

3. Output 1 if and only if all mi, i ∈ [k] are distinct, A completed at most k − 1
interactions with O and for each i ∈ [k] it holds that Ver(pk,mi, σi) = 1.

We say that BS is `-one-more unforgeable (`-OMUF), if for every PPT algorithm
A the following advantage is negligible:

Adv`-OMUF
A,BS (n) := Pr

[
`-OMUFABS(n)⇒ 1

]
.

10 L. Hanzlik, J. Loss, B. Wagner

We say that BS is one-more unforgeable (OMUF), if it is `-OMUF for all polyno-
mial `.

Definition 3 (Blindness). Consider a blind signature scheme BS = (Gen, S,U,
Ver). For an algorithm A and bit b ∈ {0, 1}, consider the following game
BLINDAb,BS(n):

1. Run (pk,m0,m1, St)← A(1n).
2. Let O0 be an interactive oracle simulating U(pk,mb) and O1 be an interactive

oracle simulating U(pk,m1−b). Run A on input St with arbitrary interleaved
one-time access to each of these oracles, i.e. St′ ← AO0,O1(St).

3. Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or
σ1 = ⊥, then run b′ ← A(St′,⊥,⊥). Else, obtain a bit b′ from A on input
σ0, σ1, i.e. run b′ ← A(St′, σ0, σ1).

4. Output b′.

We say that BS satisfies malicious signer blindness, if for every PPT algorithm
A the following advantage is negligible:

Advblind
A,BS(n) :=

∣∣∣Pr
[
BLINDA0,BS(n)⇒ 1

]
− Pr

[
BLINDA1,BS(n)⇒ 1

]∣∣∣ .
We make use of the natural variant of the CDH assumption in the asymmetric
pairing setting [15].
Definition 4 (CDH Assumption). Let PGGen(1n) be a bilinear group genera-
tion algorithm that outputs cyclic groups G1,G2 of prime order p with generators
g1 ∈ G1, g2 ∈ G2, and a pairing e : G1 × G2 → GT into some target group
GT . We say that the CDH assumption holds relative to PGGen, if for all PPT
algorithms A, the following advantage is negligible:

AdvCDH
A,PGGen(n) := Pr

z = xy

∣∣∣∣∣∣
(G1,G2, g1, g2, p, e)← PGGen(1n),
x, y←$ Zp, X1 := gx1 , X2 := gx2 , Y := gy1
gz1 ← A(G1,G2, g1, g2, p, e,X1, Y,X2)

3 Our Blind Signature Scheme

In this section, we present our blind signature scheme.

3.1 Construction

Let PGGen(1n) be a bilinear group generation algorithm that outputs cyclic
groups G1,G2 of prime order p with generators g1 ∈ G1, g2 ∈ G2, and a pairing
e : G1 × G2 → GT into some target group GT . We assume that these system
parameters are known to all algorithms. Note that their correctness can be verified
efficiently. Our scheme BSR = (Gen,S,U,Ver) is parameterized by integers K =
K(n), N(n) ∈ N. These do not depend on the number of previous interactions.
We only need that N−K is negligible in n. Our scheme does not require the
signer to hold a state. The scheme makes use of random oracles Hr,Hµ : {0, 1}∗ →
{0, 1}n,Hα : {0, 1}∗ → Zp,Hcc : {0, 1}∗ → [N]K , and H : {0, 1}∗ → G1.

Rai-Choo! 11

Key Rerandomization. Our scheme makes use of an algorithm ReRa, that takes
as input tuples (pki, hi)i∈[K] and an element σ̄ ∈ G1, where pki = (pki,1, pki,2) ∈
G1 ×G2, and hi ∈ G1 for all i ∈ [K]. The algorithm is as follows:

1. Choose r1, . . . , rK−1←$ Zp and set rK := −
∑K−1
i=1 ri.

2. For all i ∈ [K], set pk′i :=
(
pk′i,1, pk′i,2

)
:=
(
pki,1 · gri1 , pki,2 · gri2

)
.

3. Set σ̄′ := σ̄ ·
∏K
i=1 h

ri
i and return ((pk′i)i∈[K], σ̄

′).

It is easy to see that
∏
i∈K pki,j =

∏
i∈K pk′i,j for both j ∈ {1, 2}. Further, if we

assume that the inputs satisfy e (σ̄, g2) =
∏K
i=1 e

(
hi, pki,2

)
and e

(
pki,1, g2

)
=

e
(
g1, pki,2

)
for all i ∈ [K], then the outputs satisfy e (σ̄′, g) =

∏K
i=1 e

(
hi, pk′i,2

)
and e

(
pk′i,1, g2

)
= e

(
g1, pk′i,2

)
for all i ∈ [K]. Additionally, the output does

not reveal anything about the input, except what is already revealed by these
properties. We will make this more formal in Lemma 1 when we analyze the
blindness property of our scheme.

Key Generation. To generate keys algorithm Gen(1n) does the following:

1. Sample sk←$ Zp, set pk1 := gsk
1 and pk2 := gsk

2 .
2. Return public key pk = (pk1, pk2) and secret key sk.

Signature Issuing. The algorithms S,U and their interaction are formally given
in Figures 1 and 2.

Verification. The resulting signature σ := ((pki, ϕi)K−1
i=1), ϕK , σ̄) for a message

m is verified by algorithm Ver(pk,m, σ) as follows:

1. Write pki = (pki,1, pki,2) for each i ∈ [K − 1].
2. Compute pkK,1 := pk1 ·

∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 .
3. If there is an i ∈ [K] with e

(
pki,1, g2

)
6= e

(
g1, pki,2

)
, return 0.

4. For each instance i ∈ [K], compute µi := Hµ(m, ϕi).
5. Return 1 if and only if

e (σ̄, g2) =
K∏
i=1

e
(
H(µi), pki,2

)
.

3.2 Security Analysis

Completeness of the scheme follows by inspection. We show blindness and one-
more unforgeability. Before we give the proof of blindness, we first show a lemma
that is needed. Intuitively, it states that algorithm ReRa perfectly rerandomizes
the key shares.

12 L. Hanzlik, J. Loss, B. Wagner

S(sk) U(pk,m)

for i ∈ [K − 1] : for (i, j) ∈ [K]× [N] :
ski←$ Zp ϕi,j←$ {0, 1}n, µi,j := Hµ(m, ϕi,j)

skK := sk−
K−1∑
i=1

ski γi,j←$ {0, 1}n, αi,j := Hα(γi,j)

for i ∈ [K] : ri,j := (µi,j , γi,j), comi,j := Hr(ri,j)

pki,1 = gski
1 ci,j := H(µi,j) · g

αi,j
1

pki,2 = gski
2 com := (com1,1, . . . , comK,N)

pki := (pki,1, pki,2) c := (c1,1, . . . , cK,N)
J := Hcc(com, c)

if Check(open) = 0 : open open :=
(

J,
(
(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

)
abort

for i ∈ [K] : si := cski
i,Ji

s̄ :=
K∏
i=1

si (pki)K−1
i=1 , s̄ pkK,1 := pk1 ·

K−1∏
i=1

pk−1
i,1

pkK,2 := pk2 ·
K−1∏
i=1

pk−1
i,2

pkK := (pkK,1, pkK,2)
for i ∈ [K] :

if e
(
pki,1, g2

)
6= e
(
g1, pki,2

)
: abort

if e (s̄, g2) 6=
K∏
i=1

e
(
ci,Ji , pki,2

)
: abort

σ̄ := s̄ ·
K∏
i=1

pk−αi,Jii,1

((pk′i)i, σ̄
′)← ReRa((pki,H(µi,Ji))i, σ̄)

return σ := ((pk′i, ϕi,Ji)
K−1
i=1 , ϕK,JK , σ̄

′)

Fig. 1. Signature issuing protocol of the blind signature scheme BSR, where algorithm
Check is defined in Figure 2.

Rai-Choo! 13

Alg Check
(

open =
(

J,
(
(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

))
01 for i ∈ [K] :
02 for j ∈ [N] \ {Ji} :
03 parse ri,j = (µi,j , γi,j) ∈ {0, 1}n × {0, 1}n
04 αi,j := Hα(γi,j), ci,j := H(µi,j) · g

αi,j
1 , comi,j := Hr(ri,j)

05 com := (com1,1, . . . , comK,N), c := (c1,1, . . . , cK,N)
06 if J 6= Hcc(com, c) : return 0
07 return 1

Fig. 2. The algorithm Check used in the signature issuing protocol of blind signature
scheme BSR.

Lemma 1. For any pk1 ∈ G1 and pki,1 ∈ G1, i ∈ [K] such that
∏K
i=1 pki,1 = pk,

the following distributions D1 and D2 are identical:

D1 :=
{(

pk1, (pki,1)i∈[K], (pk′i,1)i∈[K]
) ∣∣∣∣ r1, . . . , rK−1←$ Zp, rK := −

∑K−1
i=1 ri

∀i ∈ [K] : pk′i,1 := pki,1 · gri1

}
D2 :=

{(
pk1, (pki,1)i∈[K], (pk′i,1)i∈[K]

) ∣∣∣∣∀i ∈ [K] : pk′i,1←$ G
pk′K,1 := pk1 ·

∏K−1
i=1 pk′−1

i,1

}

We give a formal proof of the lemma in Supplementary Material Section A.

Theorem 1. Let Hr,Hµ : {0, 1}∗ → {0, 1}n and Hα : {0, 1}∗ → Zp be random
oracles. Then BSR satisfies malicious signer blindness.

Concretely, for any algorithm A that makes at most QHr , QHµ , QHα queries
to Hr,Hµ,Hα respectively, we have

Advblind
A,BS(n) ≤

KNQHµ
2n−2 + KQHr

2n−2 + KQHα
2n−2 .

Proof. We set BS := BSR and let A be an adversary against the blindness of BS.
Our proof is presented as a sequence of games Gi,b for i ∈ [8] and b ∈ {0, 1}. We
set G0,b := BLINDAb,BS(n). Then, our goal is bound the distinguishing advantage

Advblind
A,BS(n) = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

To do that, we will change our game to end up at a game G8,b for which we have

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

Game G0,b: Game G0,b is defined as G0,b := BLINDAb,BS(n). We recall this
game to fix some notation. First, A outputs a public key pk and two messages
m0,m1. Second, A is run with access to two interactive oracles O0 and O1.
These simulate U(pk,mb) and U(pk,m1−b), respectively. To distinguish variables

14 L. Hanzlik, J. Loss, B. Wagner

used in the two oracles, we use superscripts L and R. That is, variables with
superscript L (resp. R) are part of the interaction between A and O0 (resp.
O1). For example, JL := Hcc(comL, cL) denotes the cut-and-choose vector that
O0 computes, and openR denotes the first message that O1 sends to A. For
descriptions with variables without a superscript, the reader should understand
them as applying to both oracles.

Game G1,b: This game is as G0,b, but we let the game abort on a certain event.
Namely, the game aborts if A ever makes a query of the form Hµ(·, ϕi,j) for
some i ∈ [K] and j ∈ [N] \ {Ji}. Note that for these values (i, j), A obtains no
information about ϕi,j throughout the entire game. Thus, the probability that a
query is of this form is at most 1/2n. A union bound over all such (i, j), the two
oracles, and the random oracle queries leads to

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤
KNQHµ

2n−1 .

Game G2,b: This game is as G1,b, but with another abort event. Concretely,
the game aborts if A ever makes a query Hr(ri,Ji), or a query Hα(γi,Ji) for some
i ∈ [K]. Note that ri,Ji has the form ri,Ji = (µi,Ji , γi,Ji), where γi,Ji is sampled
uniformly at random from {0, 1}n. Further, A obtains no information about γi,Ji
throughout the entire game. Therefore, taking a union bound over all instances
i ∈ [K], the two user oracles, and the random oracle queries for both random
oracles Hr and Hα, we get

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ KQHr

2n−1 + KQHα
2n−1 .

Game G3,b: In this game, we change how the final signatures are computed.
Specifically, suppose that the user oracle does not abort due to the condition
e (s̄, g2) 6=

∏K
i=1 e

(
ci,Ji , pki,2

)
and does not abort due to condition e

(
pki,1, g2

)
6=

e
(
g1, pki,2

)
for any i ∈ [K]. Then, in previous games, the user oracle first

computed σ̄, and then executed ((pk′i)i, σ̄′) ← ReRa((pki,H(µi,Ji))i, σ̄). The
value σ̄′ is part of the final signature. In game G3,b, we instead let the user
oracle run a brute-force search to compute the unique σ̄′′ such that e (σ̄′′, g2) =∏K
i=1 e

(
H(µi,Ji), pk′i,2

)
. Then, we include σ̄′′ in the final signature instead of σ̄′.

We claim that this does not change the view of A. To see this, first note that we
did not change any verification or abort condition of the user oracles. Therefore,
we can first consider the case where one of the user oracles locally outputs ⊥.
In this case, A gets ⊥,⊥ as its final input in both G2,b and G3,b. It remains to
analyze the case where both user oracles do not abort. We claim that σ̄′ and σ̄′′
are the same. To see this, assume e (s̄, g2) =

∏K
i=1 e

(
ci,Ji , pki,2

)
, and multiply

Rai-Choo! 15

both sides by
∏K
i=1 e

(
pk−αi,Jii,1 , g2

)
. We obtain

e (s̄, g2) ·
K∏
i=1

e
(

pk−αi,Jii,1 , g2

)
=

K∏
i=1

e
(
ci,Ji , pki,2

)
·
K∏
i=1

e
(

pk−αi,Jii,1 , g2

)
=⇒ e

(
s̄ ·

K∏
i=1

pk−αi,Jii,1 , g2

)
=

K∏
i=1

e
(
ci,Ji , pki,2

)
· e
(
g
−αi,Ji
1 , pki,2

)
=⇒ e (σ̄, g2) =

K∏
i=1

e
(
H(µi,Ji), pki,2

)
,

where we used e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K] on the right-hand side.

Using the definition of algorithm ReRa, it is easy to see that this implies

e (σ̄′, g2) =
K∏
i=1

e
(
H(µi,Ji), pk′i,2

)
.

By definition, σ̄′′ satisfies the same equation. As their is a unique solution to this
equation for given pk′i,2 and µi,Ji , i ∈ [K], we see that σ̄′ = σ̄′′. We have

Pr [G2,b ⇒ 1] = Pr [G3,b ⇒ 1].

Game G4,b: We make another change to the computation of the final signatures.
Again, suppose that the user oracle does not abort. In this gameG4,b, we no longer
run algorithm ReRa in this case. Instead, we compute the pk′i = (pk′i,1, pk′i,2) as
a fresh sharing via

sk′i←$ Zp, pk′i,1 := gski
1 , pk′i,2 := gski

2 for i ∈ [K − 1],

pk′K,1 := pk1 ·
K−1∏
i=1

pk′−1
i,1 , pk′K,2 := pk2 ·

K−1∏
i=1

pk′−1
i,2 .

Note that the other output σ̄′ of algorithm ReRa is no longer needed due to the
previous change. To analyze this change, we first argue that the pk′i,2 are uniquely
determined by the pk′i,1. Namely, if the user oracle does not abort, we know that
e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K], and e (pk1, g2) = e (g1, pk2). It is easy to

see that property is preserved by algorithm ReRa, i.e. e
(
pk′i,1, g2

)
= e

(
g1, pk′i,2

)
for all i ∈ [K]. One can verify that our new definiton of the pk′i,1, pk′i,2 also
satisfies this. It remains to analyze the distribution of the pk′i,1. By Lemma 1 the
distribution of the pk′i,1 stays the same. This implies that

Pr [G3,b ⇒ 1] = Pr [G4,b ⇒ 1].

Game G5,b: In game G5,b, we first sample random vectors ĴL←$ [N]K and
ĴR←$ [N]K . Then, we let the game abort, if later we do not have ĴL = JL and

16 L. Hanzlik, J. Loss, B. Wagner

ĴR = JR. As the view of A is independent of ĴL, ĴR until a potential abort, we
have

Pr [G5,b ⇒ 1] = 1
N2K · Pr [G4,b ⇒ 1].

Game G6,b: In game G6,b, we change how the values µi,j for i ∈ [K] and
j ∈ [N] \ {Ĵi} are computed. Recall that before, they were computed as µi,j =
Hµ(m, ϕi,j). In G6,b, we sample µi,j←$ {0, 1}n for i ∈ [K] and j ∈ [N] \ {Ĵi}
instead. We highlight that the game still samples the values ϕi,j to determine
when it has to abort according toG1,b. Due to the changes introduced inG1,b and
G5,b, we can assume that Ĵ = J and A never queries Hµ(m, ϕi,j), and therefore
this change does not influence the view of A. We have

Pr [G5,b ⇒ 1] = Pr [G6,b ⇒ 1].

Game G7,b: In game G7,b, we change how the values αi,Ĵi and comi,Ĵi are
computed for all i ∈ [K]. Concretely, in this game, αi,Ĵi is sampled uniformly
at random as αi,Ĵi←$ Zp. Further, comi,Ĵi←$ {0, 1}n is sampled uniformly at
random. Assuming that the game does not abort, we argue that the view of A
does not change. This follows directly from the changes in G5,b and G2,b. Namely,
we can assume that Ĵ = J and that A never makes a query Hr(ri,Ĵi). We have

Pr [G6,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G8,b: In game G8,b, we change how the values ci,Ĵi for i ∈ [K] are
computed. First, recall that in the previous games, these are computed as
ci,Ĵi = H(µi,Ĵi) · g

αi,Ĵi
1 . Now, we sample it at random using ci,Ĵi←$ G1. We argue

indistinguishability as follows. Due to the change introduced in G5,b, we can
assume that Ĵ = J. Then, we know that in this case αi,Ĵi is only used to define
ci,Ĵi and nowhere else. In particular, it is not used to derive the final signatures
from the interaction, due to the change introduced in G3,b, and it is not used
to define comi,Ĵi due to the change in G7,b. As αi,Ĵi is sampled uniformly at
random due to the change in G7,b, we know that ci,Ĵi is distributed uniformly at
random in G7,b. This shows that

Pr [G7,b ⇒ 1] = Pr [G8,b ⇒ 1].

Finally, it can be observed that the view of A does not depend on the bit b
anymore. This is because the messages m0,m1 are not used in the user oracles.
Instead, the user oracles use random µi,j , independent of the messages, for all
opened sessions j 6= Ji, and the final signatures σ0, σ1 that A gets are computed
using brute-force independent of the interactions, assuming that both interactions
accept. This shows that

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

Rai-Choo! 17

To conclude, we upper bound Advblind
A,BS(n) = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| by

|Pr [G4,0 ⇒ 1]− Pr [G4,1 ⇒ 1]|+ 2
(
KNQHµ

2n−1 + KQHr

2n−1 + KQHα
2n−1

)
= N2K |Pr [G5,0 ⇒ 1]− Pr [G5,1 ⇒ 1]|+

KNQHµ
2n−2 + KQHr

2n−2 + KQHα
2n−2

= N2K |Pr [G8,0 ⇒ 1]− Pr [G8,1 ⇒ 1]|+
KNQHµ

2n−2 + KQHr

2n−2 + KQHα
2n−2

=
KNQHµ

2n−2 + KQHr

2n−2 + KQHα
2n−2 .

ut

Theorem 2. Let Hr,Hµ : {0, 1}∗ → {0, 1}n, and Hcc : {0, 1}∗ → [N]K , and H :
{0, 1}∗ → G be random oracles. If CDH assumption holds relative to PGGen, then
BSR is one-more unforgeable.

Concretely, for any polynomial ` and any PPT algorithm A that makes at
most QHcc , QHr , QHµ , QH queries to Hcc,Hr,Hµ,H respectively, there is a PPT
algorithm B with T(B) ≈ T(A) and

Adv`-OMUF
A,BSR (n) ≤

Q2
Hµ +Q2

Hr
+QHrQHcc +QHQHµ

2n + `

NK

+ 4` · AdvCDH
B,PGGen(n).

Proof. We set BS := BSR and let A be an adversary against the one-more
unforgeability of BS. We show the statement by presenting a sequence of games.
Before we go into detail, we explain the overall strategy of the proof. In our final
step, we give a reduction that breaks the CDH assumption. This reduction works
similar to the reduction for the BLS signature scheme [9]. Namely, it embeds one
part of the CDH instance in the public key, and one part in some of the random
oracle queries for oracle H. In the first part of our proof, we prepare simulation
of the signer oracle without using the secret key. Here, the strategy is to extract
the users randomness using the cut-and-choose technique. With overwhelming
probability, in a fixed interaction, we can extract the randomness for one of the
K instances, say instance i∗. Then, we compute the public key shares pki in a
way that allows us to know all corresponding secret keys except ski∗ . For instance
i∗, we can simulate the signing oracle by programming random oracle H. In the
second part of our proof, we prepare the extraction of the CDH solution from the
forgery that A returns. Here, it is essential that the scheme uses random oracle
Hµ to compute commitments µi,j . This allows us to embed the part of the CDH
input in H in a consistent way. We will now proceed more formally.
Game G0: Game G0 is the real one-more unforgeability game, i.e. G0 :=
`-OMUFABS. Let us recall this game. First, the game samples (pk, sk)← Gen(1n).
Then, A is executed on input pk, and gets concurrent access to signer oracle O,

18 L. Hanzlik, J. Loss, B. Wagner

simulating S(sk). Additionally, A gets access to random oracles H,Hµ,Hr,Hcc.
These are simulated by the game in the standard lazy way. Finally, A outputs
pairs (m1, σ1), . . . , (mk, σk). Denote the number of completed interactions (i.e.
interactions in which O sent s̄ to A) by `. If all mi are distinct, all σi are valid
signatures for mi with respect to pk, and k > `, the game outputs 1. By definition,
we have

Adv`-OMUF
A,BS (n) = Pr [G0 ⇒ 1].

Game G1: Game G1 is as G0, but it aborts if a collision for one of the random
oracles Hr,Hµ occurs. More precisely, let ∗ ∈ {r, µ} and consider a query H∗(x)
for which the hash value is not yet defined. The game samples H∗(x) as in game
G0. Then, the game aborts if there is another x′ 6= x such that H∗(x′) is already
defined and H∗(x) = H∗(x′). As the outputs of H∗ are sampled uniformly from
{0, 1}n, we can use a union bound over all pairs of queries and get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
Q2

Hµ
2n +

Q2
Hr

2n .

Game G2: Game G2 is as game G1, but we introduce a bad event and let
the game abort if this bad event occurs. Concretely, consider any fixed query
to oracle Hcc of the form Hcc(com, c) = J for com = (com1,1, . . . , comK,N) and
c = (c1,1, . . . , cK,N). For such queries and all (i, j) ∈ [K] × [N], the game now
tries to extract values r̄i,j such that comi,j = Hr(̄ri,j). To do that, it searches
through the random oracle queries for random oracle Hr. For those (i, j) for
which such a value can not be extracted, we write r̄i,j = ⊥. Due to the change
introduced in G1, there can be at most one extracted value for each (i, j). The
game now aborts, if in such a query, there is some (i, j) ∈ [K]× [N] such that
r̄i,j = ⊥, but later oracle Hr is queried and returns comi,j . Clearly, for a fixed pair
of queries to Hcc and Hr, respectively, this bad event can only with probability
1/2n. By a union bound we get

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ QHrQHcc
2n .

Before we continue, we summarize what we established so far and introduce some
terminology. For that, we fix an interaction between A and the signer oracle O.
Consider the first message

open =
(

J,
(

(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

)
that is sent by A. Recall that after receiving this message, algorithm Check uses
open to compute values com = (com1,1, . . . , comK,N) and c = (c1,1, . . . , cK,N).
Then, it also checks if J = Hcc(com, c). Also, consider the values r̄i,j related
to the query Hcc(com, c), as defined in G2. Assuming Check outputs 1 (i.e.
J = Hcc(com, c)), we make two observations for any instance i ∈ [K].

1. If for some j ∈ [N] we have r̄i,j = ⊥, then j = Ji. This is due to the bad
event introduced in G2.

Rai-Choo! 19

2. If for some j ∈ [N] we have r̄i,j = (µ, γ) 6= ⊥ but ci,j 6= H(µ) · gα1 for
α := Hα(γ), then Ji = j. This is because we ruled out collisions for Hr in
G1. Namely, as there are no collisions, we know that r̄i,j = ri,j for all j 6= Ji.
Therefore, ci,j = H(µ) · gα1 by definition of Check.

If one of these two events occur for some i, we say that there is a successful cheat
in instance i. Note that the game can efficiently check if there is a successful cheat
in an instance once it received open. Also note that the values r̄i,j are fixed in
the moment A queries Hcc(com, c) for the first time. In particular, they are fixed
before A obtains any information about the uniformly random J = Hcc(com, c).
Therefore, using the two observations above, the probability of a successful cheat
in instance i is at most 1/N . Further, as the components of J are sampled
independently, the probability that there is a successful cheat in all K instances
(in this fixed interaction) is at most 1/NK .
Game G3: In game G3, we introduce another abort. Namely, the game aborts, if
in some interaction between A and the signer oracle O, there is a successful cheat
in every instance i ∈ [K], and that interaction is completed. By the discussion
above, we have

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ `

NK
.

Game G4: In game G4, we change the way the signer oracle computes the shares
ski. Recall that before, these were computed as

ski←$ Zp for i ∈ [K − 1], skK := sk−
K−1∑
i=1

ski.

Then, the corresponding public key shares were computed as pki = (gski
1 , gski

2) for
all i ∈ [K]. In game G4, the game instead defines the ski after it received the
first message open from A in the following way. If Check outputs 0 or there is a
successful cheat in every instance, the game behaves as before (i.e. it aborts the
interaction, or the entire execution). Otherwise, let i∗ ∈ [K] be the first instance
in which there is no successful cheat. Then, the game computes

ski←$ Zp for i ∈ [K] \ {i∗}, ski∗ := sk−
∑

i∈[K]\{i∗}

ski.

The game defines pki for all i ∈ [K] as before. It is clear that this change is only
conceptual, as a uniformly random additive sharing of sk is computed in both
G3 and G4. Therefore, we have

Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

Game G5: In game G5, we introduce an abort related to the random oracles
H and Hµ. Namely, the game aborts if the following occurs. The adversary A
first queries H(µ) for some µ ∈ {0, 1}∗, and after that a hash value Hµ(x) is
defined for some x ∈ {0, 1}∗, and we have Hµ(x) = µ. Clearly, once µ is fixed,
the probability that a previously undefined hash value Hµ(x) is equal to µ is at

20 L. Hanzlik, J. Loss, B. Wagner

most 1/2n. Therefore, we can use a union bound over the random oracle queries
and get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤
QHQHµ

2n .

Game G6: In this game, we introduce a purely conceptual change. To do that,
we introduce maps b[·] and b̂[·]. Then, on a query Hµ(m, ϕ) for which the hash
value is not yet defined, the game samples bit b̂[m] ∈ {0, 1} from a Bernoulli
distribution, such that the probability that b̂[m] = 1 is 1/(`+ 1). Additionally,
on a query H(µ) for which the hash value is not yet defined, the game first
searches for a previous query (mµ, ϕ) to Hµ such that Hµ(mµ, ϕ) = µ. Then, it
sets b[µ] := b̂[mµ]. If no such query can be found, it sets b[µ] := 0. Note that due
to the change in G1, the game can find at most one such query and mµ is well
defined. The view of A does not change, and we have

Pr [G5 ⇒ 1] = Pr [G6 ⇒ 1].

Game G7: In this game, we introduce an initially empty set L and an abort
related to it. In each interaction between A and the signer oracle O, the game
simulates the oracle as in G6. Additionally, if the game has to provide the final
message (pki)K−1

i=1 , s̄, then we know that Check output 1 and the game did not
abort. Therefore, there is at least one instance i∗ ∈ [K] such that A did not
cheat successfully in instance i∗. Fix the first such instance. This means that the
game could extract r̄i∗,Ji∗ = (µ, γ) before (see the discussion after G2). In game
G7, the game tries to extract mµ as defined in G6 from µ using Hµ, and inserts
(µ,mµ) into set L if it could extract. Also, the game aborts if b[µ] = 1. Otherwise,
it computes and sends (pki)K−1

i=1 , s̄ as before. We highlight that the size of L is at
most the number of completed interactions `.

Next, consider the final output (m1, σ1), . . . , (mk, σk) of A, write σr =
((pkr,i, ϕr,i)K−1

i=1), ϕr,K , σ̄r), and set µr,i := Hµ(mr, ϕr,i) for all r ∈ [k], i ∈ [K]. If
A is successful, we know that k > `. Therefore, by the pigeonhole principle, there
is at least one (r̃, ĩ) ∈ [k]× [K] such that (µr̃,̃i,mr̃) /∈ L. Game G7 finds the first
such µr̃,̃i, sets µ∗ := µr̃,̃i and aborts if b[µ∗] = 0. Note that we can assume that
b[µ∗] is defined, as verification of A’s output involves computing H(µ∗). For the
sake of analysis, G7 also appends further entries of the form (µ,mµ) to L such
that |L| = ` and all entries in L ∪ {µ∗} have distinct components mµ. It queries
H(µ) for all (µ,mµ) ∈ L. Then, it aborts if for some (µ,mµ) ∈ L it holds that
b[µ] = 1.

To analyze the change we introduced, note that G6 and G7 only differ if
b[µ∗] = 0 or b[µ] = 1 for some (µ,mµ) ∈ L. This is because if the game could not
extract mµ in some interaction, then due to the changes in G5 and G6, we know
that b[µ] = 0. The view of A is independent of these bits until a potential abort
occurs. This implies that

Pr [G7 ⇒ 1] = Pr [G6 ⇒ 1] · Pr [b[µ∗] = 1 ∧ ∀(µ,mµ) ∈ L : b[µ] = 0].

Rai-Choo! 21

By definition of the bits b[·], and the change in G5, we can rewrite the latter
term in the product as

Pr
[
b̂[mr̃] = 1 ∧ ∀(µ,mµ) ∈ L : b̂[mµ] = 0

]
= 1
`+ 1

(
1− 1

`+ 1

)`
= 1
`

(
1− 1

`+ 1

)`+1
≥ 1

4` ,

where we used the fact (1− 1/x)x ≥ 1/4 for all x ≥ 2, and that all bits b̂[·] are
independent. Thus, we have

Pr [G7 ⇒ 1] ≥ 1
4` · Pr [G6 ⇒ 1].

Game G8: In this game, we change how random oracle H is simulated. Namely,
in the beginning of the game, the game samples Y ←$ G1 and initiates a map
t[·]. Then, on a query H(µ) for which the hash value is not yet defined, the
game first determines bit b[µ] as before. Then, it samples t[µ]←$ Zp and sets
H(µ) := Y b[µ] · gt[µ]

1 . Clearly, all hash values are still uniformly random and
independent. Therefore, we have

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

Game G9: In this game, we change how the signing oracle computes public keys
(pki)i and the values si, i ∈ [K] used to compute the final message (pki)K−1

i=1 , s̄.
Consider an interaction between A and the signer oracle and recall the definition
of the instance i∗ as in game G4. This is the first instance for which there is no
successful cheat in this interaction, i.e. r̄i∗,Ji∗ = (µ, γ) 6= ⊥ could be extracted
and ci∗,Ji∗ = H(µ) · gα1 for α := Hα(γ). In G9, the public keys pki = (pki,1, pki,2)
are computed via

pki,1 = gski
1 for i ∈ [K] \ {i∗}, pki∗,1 := pk1 ·

∏
i∈[K]\{i∗}

pk−1
i,1 ,

pki,2 = gski
2 for i ∈ [K] \ {i∗}, pki∗,2 := pk2 ·

∏
i∈[K]\{i∗}

pk−1
i,2 .

Further, due to the aborts introduced in previous games, we know that the
game only has to send (pki)K−1

i=1 , s̄ if i∗ is defined and b[µ] = 0, where µ is as
above. In this case, game G8 would compute

si∗ = cski∗
i∗,Ji∗ = H(µ)ski∗ · gα·ski∗1 =

(
Y b[µ] · gt[µ]

1

)ski∗
· pkαi∗,1 = pkα+t[µ]

i∗,1 .

Game G9 computes si∗ directly as pkα+t[µ]
i∗,1 , and all other si, i 6= i∗ as before

using ski. Both changes are only conceptual and allow the game to provide the
signer oracle without using the secret key sk at all. We have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

22 L. Hanzlik, J. Loss, B. Wagner

Finally, we give a reduction B against the CDH assumption that is successful if
G9 outputs 1. We argue that

Pr [G9 ⇒ 1] ≤ AdvCDH
B,PGGen(n).

The reduction B is as follows.

– Reduction B gets as input g1, g2, e, p, X1, Y ∈ G1, and X2 ∈ G2. It sets
pk1 := X1, pk2 := X2 and uses Y as explained in G8.

– Reduction B simulates G9 for A. Note that it can do that efficiently, as sk is
not needed.

– When A terminates with its final output (m1, σ1), . . . , (mk, σk), the reduction
B writes σr = ((pkr,i, ϕr,i)K−1

i=1), ϕr,K , σ̄r), pkr,i = (pkr,i,1, pkr,i,2), sets µr,i :=
Hµ(mr, ϕr,i) for all r ∈ [k], i ∈ [K] and pkr,K,1 := pk1 ·

∏K−1
i=1 pk−1

r,i,1 and
pkr,K,2 := pk2 ·

∏K−1
i=1 pk−1

r,i,2 for all r ∈ [k]. It performs all checks as in G9.
If G9 outputs 1, we know that B defined µ∗ := µr̃,̃i as G9 does. Then, B
outputs

Z := σ̄r̃ ·
K∏
i=1

pk−t[µr̃,i]r̃,i,1 .

It is clear that B perfectly simulates G9 and the running time of B is dominated
by the running time of A. Thus, it remains to argue that if G9 outputs 1, the Z
is a valid CDH solution. To this end, assume that G9 outputs 1. It is sufficient
to show that e (Y,X2) = e (Z, g2).

First, note that due to the abort that we introduced in G5, we know that
for all i ∈ [K], the query Hµ(mr̃, ϕr̃,i) was made before bit b[µr̃,i] was defined.
Therefore, due to the change in G6, we obtain for all i ∈ [K]

b[µr̃,i] = b̂[mr̃] = b[µr̃,r̃] = b[µ∗] = 1.

Second, we know that we have
∏K
i=1 pkr̃,i,2 = X2, and by definition of the

verification algorithm we have

e (σ̄r̃, g2) =
K∏
i=1

e
(
H(µr,i), pkr̃,i,2

)
=

K∏
i=1

e
(
Y · gt[µr̃,i], pkr̃,i,2

)
=

K∏
i=1

e
(
Y, pkr̃,i,2

)
· e
(

pkt[µr̃,i]r̃,i,1 , g2

)
= e (Y,X2) · e

(
K∏
i=1

pkt[µr̃,i]r̃,i,1 , g2

)
.

In the third equation we used e
(
pkr̃,i,1, g2

)
= e

(
g1, pkr̃,i,2

)
for all i ∈ [K]. This

implies that

e (Z, g2) = e

(
σ̄r̃ ·

K∏
i=1

pk−t[µr̃,i]r̃,i,1 , g2

)
= e (Y,X2) .

ut

Rai-Choo! 23

4 Extension: Partial Blindness and Batching

In this section, we present a batching technique for our blind signature scheme,
which leads to a significant efficiency improvement in terms of communication.
At the same time, we show how to make our scheme partially blind. We first give
an informal overview. In the second part of the section, we present the formal
model for batching (partially) blind signatures. Then, we present our scheme and
its analysis.

4.1 Overview

We give an overview of the extensions we present in this section. These cover
partial blindness, and batching to further improve the communication complexity.
Partially Blind Signatures. Recall that a partially blind signature scheme
allows to sign messages with respect to some public information string info,
that the signer knows. This string acts as a form of domain separator. Namely,
one-more unforgeability now guarantees that the user can output at most `
valid message signature pairs with respect to any public information string info,
for which it interacted at most ` times with the signer oracle. It turns out
that we can extend our blind signature scheme into a partially blind signature
scheme, by changing the definition of the values ci,j from ci,j = H(µi,j) · g

αi,j
1 to

ci,j = H(info, µi,j) · gαi,j1 . Intuitively, the cut-and-choose technique now ensures
that the user uses the correct info to compute the ci,j ’s.
Batching. We show how we can batch multiple signing interactions. Namely,
we observe that if we sign multiple messages in one interaction, the (amortized)
communication complexity decreases. Batching has been subject of study for
other primitives, e.g. in oblivious transfer [30,10]. Let us briefly sketch how we
can apply batching to our blind signature scheme. For that, consider one signing
interaction in which a batch m1, . . . ,mL of L messages should be signed. Recall
that in our scheme, cut-and-choose ensured that there is an instance i∗ ∈ [K],
such that the user does not cheat successfully in instance i∗. Then, the purpose
of sending a fresh public key sharing pk1, . . . , pkK was to dynamically embed
the unknown share of the secret key in instance i∗. For this strategy, it is not
relevant that we cover one message per instance. Therefore we can use the same
public key sharing pk1, . . . , pkK , and the same cut-and-choose index for every
instance, leading to our batched scheme.

4.2 Model for Batched (Partially) Blind Signatures

In this section, we sketch the definition of batched (partially) blind signatures
and their security. For formal definitions, we refer to Supplementary Material
Section B. The reader should observe that batched partially blind signatures
imply partially blind signatures by fixing the batch size L = 1. Further, the
partial blindness can be lifted to standard blindness by fixing a default public
information string. We start with the syntax of batched partially blind signatures.

24 L. Hanzlik, J. Loss, B. Wagner

Recall that in partially blind signatures, the signer gets the public information
string info, while the user gets info and the message m. Here, we generalize the
syntax of partially blind signatures to the setting, where both user and signer get
the batch size L as input, and multiple pairs (infol,ml) are signed. This models
that the batch size is not fixed, but instead it can be chosen dynamically. More
precisely, while the syntax of key generation and verification is as for partially
blind signatures, an interaction between S and U can now be described as

(⊥, (σ1, . . . , σL))← 〈S(sk, L, (infol)l∈[L]),U(pk, L, (ml, infol)l∈[L]〉.

Completeness requires that for all l ∈ [L], it holds that Ver(pk, infol,ml, σl) = 1.
In terms of security, we require the same security guarantees, as if we just

run a normal (partially) blind signature scheme L times in parallel. We let the
adversary determine the batch size in each interaction separately. This leads to a
natural definition of batch one-more unforgeability.

As for unforgeability, blindness should give the same guarantees as if we just
run a normal (partially) blind signature scheme L times in parallel. Especially, it
should not be possible to tell if two signatures result from the same interaction
or not. In our security game, we let the malicious signer choose two batches of
(potentially different) sizes L0 and L1. The signer also points to one element for
each batch. Then, the game either swaps these two elements, or not, and the
signer has to distinguish these two cases. Via a hybrid argument, this implies
that the signer does not know which message is signed in which interaction.

4.3 Construction

As for BSR, we let PGGen(1n) be a bilinear group generation algorithm that
outputs cyclic groups G1,G2 of prime order p with generators g1 ∈ G1, g2 ∈ G2,
and a pairing e : G1 ×G2 → GT into some target group GT . Again, we assume
that these system parameters are known to all algorithms and note that their
correctness can be verified efficiently. Our scheme BPBSR = (Gen,S,U,Ver) is
parameterized by integers K = K(n), N(n) ∈ N, where we need that N−K is
negligible in n. We assume that the space I contains bitstrings of bounded length 5.
The scheme makes use of random oracles Hr,Hµ : {0, 1}∗ → {0, 1}n,Hα : {0, 1}∗ →
Zp,Hcc : {0, 1}∗ → [N]K , and H : {0, 1}∗ → G1.

We verbally describe the signature issuing protocol (S,U) and verification of
scheme BPBSR. Key generation (algorithm Gen) is exactly as in BSR.

Signature Issuing. The interactive signature issuing protocol between algorithms
S(sk, L, (infol)l∈[L]) and U(pk, L, (ml, infol)l∈[L] is given as follows.

1. User U does the following.
(a) Preparation. First, for each instance i ∈ [K] and session j ∈ [N], U

commits to all L messages via

ϕi,j,l←$ {0, 1}n, µi,j,l := Hµ(m, ϕi,j,l) for all (i, j, l) ∈ [K]× [N]× [L].
5 This is without loss of generality, using a collision-resistant hash function.

Rai-Choo! 25

(b) Commitments. Next, for each instance i ∈ [K] and session j ∈ [N], U
samples a seed γi,j←$ {0, 1}n. It then defines

ri,j := (γi,j , µi,j,1, . . . , µi,j,L) , comi,j := Hr(ri,j) for all (i, j) ∈ [K]×[N].

Then, U sets com := (com1,1, . . . , comK,N).
(c) Challenges. Now, U derives randomness αi,j,l and computes challenges

ci,j,l via αi,j,l := Hα(γi,j , l) and

ci,j,l := H(infol, µi,j,l) · g
αi,j,l
1 for all (i, j, l) ∈ [K]× [N]× [L].

Then, U sets c := (c1,1,1, . . . , cK,N,L).
(d) Cut-and-Choose. Next, U derives a cut-and-choose vector J ∈ [N]K as

J := Hcc(com, c). It then defines an opening

open :=
(

J,
(

(ri,j)j 6=Ji , (ci,Ji,l)l∈[L], comi,Ji

)
i∈[K]

)
.

Finally, U sends open to S.
2. Signer S does the following.

(a) Key Sharing. First, S samples ski←$ Zp for i ∈ [K−1]. It computes skK :=
sk−

∑K−1
i=1 ski and pki := (pki,1, pki,2) := (gski

1 , gski
2) for all i ∈ [K].

(b) Cut-and-Choose Verification. To verify the opening, S runs algorithm
Check(L, (infol)l∈[L], open) (see Figure 3). If this algorithm returns 0, S
aborts the interaction.

(c) Responses. For each instance i ∈ [K] and each l ∈ [L], S computes
responses si,l := cski

i,Ji,l. Then, it aggregates them for each l ∈ [L] by
computing s̄l :=

∏K
i=1 si,l. Finally, S sends (pki)K−1

i=1 , s̄1, . . . , s̄L to U.
3. User U does the following.

(a) Key Sharing Verification. First, U recomputes key pkK as pkK := (pkK,1,
pkK,2) for pkK,1 := pk1 ·

∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 . Next,
U checks validity of the pki by checking if

e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K].

If any of these equations does not hold, U aborts the interaction.
(b) Response Verification. Then, U verifies the responses s̄l by checking

e (s̄l, g2) =
K∏
i=1

e
(
ci,Ji,l, pki,2

)
for all l ∈ [L].

If any of these equations does not hold, U aborts the interaction. Other-
wise, it computes

σ̄l := s̄l ·
K∏
i=1

pk−αi,Ji,li,1 for all l ∈ [L].

26 L. Hanzlik, J. Loss, B. Wagner

(c) Key Rerandomization. Next, U computes rerandomized key sharings via

((pk′i,l)i, σ̄′l)← ReRa((pki,H(infol, µi,Ji,l))i, σ̄l) for all l ∈ [L].

It then defines signatures

σl := ((pk′i,l, ϕi,Ji,l)K−1
i=1 , ϕK,JK ,l, σ̄

′
l) for all l ∈ [L].

(d) Finally, U outputs the signatures σ1, . . . , σL.

Verification. The resulting signature σ := ((pki, ϕi)K−1
i=1), ϕK , σ̄) for a message

m and string info is verified by algorithm Ver(pk, info,m, σ) as follows:

1. Write pki = (pki,1, pki,2) for each i ∈ [K − 1].
2. Compute pkK,1 := pk1 ·

∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 .
3. If there is an i ∈ [K] with e

(
pki,1, g2

)
6= e

(
g1, pki,2

)
, return 0.

4. For each instance i ∈ [K], compute µi := Hµ(m, ϕi).
5. Return 1 if and only if

e (σ̄, g2) =
K∏
i=1

e
(
H(info, µi), pki,2

)
.

Alg Check
(
L, (infol)l∈[L], open =

(
J,
(
(ri,j)j 6=Ji , (ci,Ji,l)l∈[L], comi,Ji

)
i∈[K]

))
01 for i ∈ [K] :
02 for j ∈ [N] \ {Ji} :
03 comi,j := Hr(ri,j)
04 parse ri,j = (γi,j , µi,j,1, . . . , µi,j,L) ∈ ({0, 1}n)L+1

05 for l ∈ [L] : αi,j,l := Hα(γi,j , l), ci,j,l := H(infol, µi,j,l) · g
αi,j,l
1

06 com := (com1,1, . . . , comK,N), c := (c1,1,1, . . . , cK,N,L)
07 if J 6= Hcc(com, c) : return 0
08 return 1

Fig. 3. The algorithm Check used in the signature issuing protocol of batched blind
signature scheme BPBSR.

4.4 Security Analysis

Completeness of the scheme follows by inspection. The proofs and concrete
security bounds for blindness and one-more unforgeability are almost identical to
the proofs of the corresponding theorems in Section 3. Due to space limitation,
we postpone the formal analysis to Supplementary Material Section C.

Rai-Choo! 27

5 Concrete Parameters and Efficiency

In this section, we discuss concrete parameters and efficiency of our scheme.
Instantiating Parameters. We instantiate our scheme over the BLS12-381
curve, using SHA-256 as a hash function. It remains to determine appropriate
choices for parameters K and N . To do that, we first fix some choice of N and a
bit security level κ = 128. Then, we assume a maximum number of ` = 230 signing
interactions with the same key. Following the security bound in Theorem 4, we can
now set K := d(κ+ log `)/logNe+ 1. This approach leads to the instantiations

(I) K = 80, N = 4, (II) K = 54, N = 8, (III) K = 33, N = 32.

For these, we compute the sizes of signatures and communication in a Python
script (see Supplementary Material Section D). Our results are presented in
Table 2.
Implementation. To demonstrate computational practicality, we prototypi-
cally implemented our scheme in C++ using above parameter settings. Our
implementation uses the MCL library6 and can be found at

https://github.com/b-wagn/Raichoo

Although our scheme is highly parallelizable, we did not implement any paral-
lelization. To evaluate the efficiency of our implementation, we determined the
average running time over 100 runs of the signing interaction (i.e. running U1,
then S, then U2), and the verification algorithm. For our tests, we used a Intel
Core i5-7200U processor @2,5 GHz with 4 cores and 8 GB of RAM, running
Ubuntu 20.04.4 LTS 64-bit. Our results are presented in Table 2. In general, the
table shows a tradeoff between signature size, communication complexity, and
computational efficiency.
Other Pairing Settings. We could also instantiate our scheme in the type-2
or type-1 pairing setting. To recall, in the type-2 setting, there is an efficient
isomorphism ψ from G2 to G1. In the type-1 setting, we have G1 = G2. In both
cases, the public keys pki in our scheme only have to be sent in G2. Type-1
pairing-friendly curves are usually constructed from supersingular curves over
a field with small characteristics (2 or 3). They were shown to be insecure [5].
The alternative are supersingular curves over a larger field, but we only know
how to construct them with an embedding degree 3. Assuming the same target
group size as for BLS12-381 (4572 bits), we get impractical group element sizes of
1525 bits. For type-2 pairings, we can start with the BLS12-381 parameters, and
replace the curve G2 with a curve G′2 defined over a larger extension field[16]. The
most efficient way to represent elements in G′2 is to represent them as an element
of G1 ×G2. For more details, see [16]. Therefore, by sending all keys in G′2, we
obtain the same communication and signature sizes as in the type-3 setting. The
security of such a variant of our scheme will solely rely on the computational
Diffie-Hellman assumption in the group G′2.
6 See https://github.com/herumi/mcl

https://github.com/b-wagn/Raichoo
https://github.com/herumi/mcl

28 L. Hanzlik, J. Loss, B. Wagner

Concrete Bit Security. In contrast to [14], we compute our parameters using
standardized curves and hash functions instead of estimating parameters based
on the security loss. The reason for this is twofold. First, we want our numbers be
consistent with our implementation and therefore have to rely on standardized
components. Second, the estimations in [14] assume a generic mapping from the
bit security of CDH to the size of an appropriate group. This is not always given.
To discuss the effect of the security loss, we now assume all components are
roughly 128 bit secure. Then, the guaranteed security for our scheme is roughly
128− log ` = 98 bit. This is the same for the PI-Cut-Choo scheme [14], and the
standard BLS signature scheme [9].

References

1. Abe, M.: A secure three-move blind signature scheme for polynomially many
signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
136–151. Springer, Heidelberg (May 2001)

2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (Aug
2000)

3. Agrawal, S., Kirshanova, E., Stehle, D., Yadav, A.: Can round-optimal lattice-based
blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565 (2021),
https://eprint.iacr.org/2021/1565

4. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 82–99. Springer, Heidelberg (Dec 2013)

5. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (May 2014)

6. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology 16(3), 185–215 (Jun 2003)

7. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS,
vol. 12696, pp. 33–53. Springer, Heidelberg (Oct 2021)

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(Dec 2001)

10. Brakerski, Z., Branco, P., Döttling, N., Pu, S.: Batch-OT with optimal rate. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol.
13276, pp. 157–186. Springer, Heidelberg (May / Jun 2022)

11. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008. pp. 345–356. ACM Press (Oct
2008)

https://eprint.iacr.org/2021/1565

Rai-Choo! 29

12. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May 2001)

13. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal
of Cryptology 13(1), 143–202 (Jan 2000)

14. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: Pi-cut-
choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In: CRYPTO 2022. LNCS, Springer, Heidelberg (2022)

15. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Cryptology ePrint Archive, Report 2009/060
(2009), https://eprint.iacr.org/2009/060

16. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings – the role of Ψ revisited. Cryptology ePrint Archive, Report 2009/480
(2009), https://eprint.iacr.org/2009/480

17. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.,
Sherman, A.T. (eds.) CRYPTO’82. pp. 199–203. Plenum Press, New York, USA
(1982)

18. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (Aug 2006)

19. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (May / Jun 2010)

20. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (Aug 2015)

21. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018)

22. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95. Springer, Heidelberg
(May 2020)

23. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (May 2014)

24. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind
signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (Aug 2011)

25. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 455–473. Springer, Heidelberg
(Apr 2017)

26. Grontas, P., Pagourtzis, A., Zacharakis, A., Zhang, B.: Towards everlasting privacy
and efficient coercion resistance in remote electronic voting. In: Zohar, A., Eyal, I.,
Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018 Workshops.
LNCS, vol. 10958, pp. 210–231. Springer, Heidelberg (Mar 2019)

27. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from
identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 345–375. Springer, Heidelberg (May 2019)

https://eprint.iacr.org/2009/060
https://eprint.iacr.org/2009/480

30 L. Hanzlik, J. Loss, B. Wagner

28. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revisited.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171,
pp. 500–529. Springer, Heidelberg (Aug 2020)

29. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions. In: Clark, J., Meiklejohn, S.,
Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff, K. (eds.) FC 2016 Workshops.
LNCS, vol. 9604, pp. 43–60. Springer, Heidelberg (Feb 2016)

30. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (Aug 2003)

31. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 150–164.
Springer, Heidelberg (Aug 1997)

32. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the alge-
braic group model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key
Cryptography - PKC 2022 - 25th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Virtual Event, March 8-11, 2022, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 13178, pp. 468–497. Springer
(2022), https://doi.org/10.1007/978-3-030-97131-1_16

33. Katsumata, S., del Pino, R.: A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In: CRYPTO 2022.
LNCS, Springer, Heidelberg (2022)

34. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093,
pp. 468–492. Springer, Heidelberg (Dec 2021)

35. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (Aug 1993)

36. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (Mar 2006)

37. Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.)
CRYPTO’91. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (Aug 1992)

38. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L.,
Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 109–118. ACM Press (Jun 2011)

39. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.)
EUROCRYPT’98. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (May / Jun
1998)

40. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of Cryptology 13(3), 361–396 (Jun 2000)

41. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 01. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (Nov 2001)

42. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997)

43. Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential security.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS,
vol. 13276, pp. 782–811. Springer, Heidelberg (May / Jun 2022)

44. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (Aug 2002)

https://doi.org/10.1007/978-3-030-97131-1_16

Rai-Choo! 31

Supplementary Material

A Postponed Proofs from Section 3

Proof (of Lemma 1). It is sufficient to look at the distributions in terms of their
exponents. To this end, let pk = gx1 , pki,1 = gxi1 , and pk′i,1 = g

x′i
1 for all i ∈ [K].

Consider the homomorphism f : ZKp → Zp with f(y) := (1, . . . , 1) · y. Note
that in distribution D2, the vector x′ = (x′1, . . . , x′K)t is distributed uniformly
over all vectors in f−1(x). Further, note that in distribution D1, the vector x′
is distributed as x + r, where r is uniform in the kernel of f . This gives us the
same distribution for x′. Therefore, the distributions are the same. ut

32 L. Hanzlik, J. Loss, B. Wagner

B Formal Definitions for Batch Partially Blind Signatures

Definition 5 (Batched Partially Blind Signature Scheme). A batched
partially blind signature scheme is a quadruple of PPT algorithms BPBS =
(Gen,S,U,Ver) with the following syntax:

– Gen(1n) → (pk, sk) takes as input the security parameter 1n and outputs a
pair of keys (pk, sk). We assume that the public key pk defines a message
spaceM =Mpk, and a public information space I = Ipk implicitly.

– S and U are interactive algorithms, where S takes as input a secret key sk,
a batch size L ∈ N, and L strings info1, . . . , infoL ∈ I, and U takes as input
a key pk, a batch size L ∈ N, and L pairs of messages m1, . . . ,mL ∈ M
and strings info1, . . . , infoL ∈ I. After the execution, U returns L signatures
σ1, . . . , σL and we write

(⊥, (σ1, . . . , σL))← 〈S(sk, L, (infol)l∈[L]),U(pk, L, (ml, infol)l∈[L]〉.

– Ver(pk, info,m, σ) → b is deterministic and takes as input public key pk, a
string info ∈ I, message m ∈M, and a signature σ, and returns b ∈ {0, 1}.

We require that BPBS is complete in the following sense. For all (pk, sk) ∈ Gen(1n),
all L = poly(n), all m1, . . . ,mL ∈Mpk, and all info1, . . . , infoL ∈ Ipk it holds that

Pr

∀l ∈ [L] : bl = 1

∣∣∣∣∣∣
(⊥, (σ1, . . . , σL))
← 〈S(sk, L, (infol)l∈[L]),U(pk, L, (ml, infol)l∈[L]〉,
∀l ∈ [L] : bl := Ver(pk, infol,ml, σl)

 = 1.

Definition 6 (Batch One-More Unforgeability). Let BPBS = (Gen,S,U,
Ver) be a batched partially blind signature scheme and ` : N→ N. For an algorithm
A, we consider the following game `-OMUFABPBS(n):

1. Sample keys (pk, sk)← Gen(1n).
2. Let O be an interactive oracle, taking a batch size L ∈ N and L strings

info1, . . . , infoL ∈ I as input, and then simulating S(sk, L, (infol)l∈[L]). Run

((info1,m1, σ1), . . . , (infok,mk, σk))← AO(pk),

where A can query O in an arbitrarily interleaved way. Let C denote the list
of all tuples (i, L, (infol)l∈[L]) such that A submitted batch size L and strings
(infol)l∈[L] in the ith completed interaction with O. It is required to hold that∑

(i,L,(infol)l∈[L])∈C L ≤ `.
3. For each info ∈ I, define the sets completed interactions and outputs

Compl[info] := {(i, l0) | ∃(i, L, (infol)l∈[L]) ∈ C : infol0 = info}
Out[info] := {i ∈ [k] | infoi = info}.

Output 1 if and only if there is some info∗ ∈ I such that all mi, i ∈ Out[info∗]
are distinct, |Compl[info∗]| < |Out[info∗]|, and for each i ∈ Out[info∗] it holds
that Ver(pk, infoi,mi, σi) = 1.

Rai-Choo! 33

We say that BPBS is `-batch-one-more unforgeable (`-BOMUF), if for every PPT
algorithm A the following advantage is negligible:

Adv`-BOMUF
A,BPBS (n) := Pr

[
`-BOMUFABPBS(n)⇒ 1

]
.

We say that BPBS is batch one-more unforgeable (BOMUF), if it is `-BOMUF for
all polynomial `.

Definition 7 (Batch Partial Blindness). Consider a batch partially blind
signature scheme BPBS = (Gen, S,U,Ver). For an algorithm A and bit b ∈ {0, 1},
consider the following game BBLINDAb,BPBS(n):

1. Run
(
pk, (infol,0,ml,0)l∈[L0], (infol,1,ml,1)l∈[L1], l∗,0, l∗,0, St

)
← A(1n). Then,

if infol∗,0,0 6= infol∗,1,1, then return 0.
2. If b = 1, then swap ml∗,0,0 and ml∗,0,1. That is, set m′ := ml∗,0,0,ml∗,0,0 :=

ml∗,1,1,ml∗,1,1 := m′.
3. Let O0 and O1 be interactive oracles simulating

U(pk, L0, (ml,0, infol,0)l∈[L0]) and U(pk, L1, (ml,1, infol,1)l∈[L1]),

respectively. Run A on input St with arbitrary interleaved one-time access to
each of these oracles, i.e. St′ ← AO0,O1(St).

4. Let

σ1,0, . . . , σl∗,0−1,0, σl∗,b,b, σl∗,0+1,0, . . . , σL0 and
σ1,1, . . . , σl∗,1−1,1, σl∗,1−b,1−b, σl∗,1+1,1, . . . , σL1

be the local outputs of O0,O1, respectively. If σi,0 = ⊥ or σi′,1 = ⊥
for some i ∈ [L0] or some i′ ∈ [L1], then run b′ ← A(St′,⊥). Else, ob-
tain a bit b′ from A on input (σl,0)l∈[L0], (σl,1)l∈[L1]. That is, run b′ ←
A
(
St′, (σl,0)l∈[L0], (σl,1)l∈[L1]

)
.

5. Output b′.

We say that BPBS satisfies malicious signer batch partial blindness, if for every
PPT algorithm A the following advantage is negligible:

Advbblind
A,BPBS(n) := |Pr

[
BBLINDA0,BPBS(n)⇒ 1

]
−Pr

[
BBLINDA1,BPBS(n)⇒ 1

]
|.

34 L. Hanzlik, J. Loss, B. Wagner

C Security Analysis for the Batched Construction

C.1 Batch Partial Blindness

Theorem 3. Let Hr,Hµ : {0, 1}∗ → {0, 1}n and Hα : {0, 1}∗ → Zp be random
oracles. Then BPBSR satisfies malicious signer batch partial blindness.

Concretely, for any algorithm A that makes at most QHr , QHµ , QHα queries
to Hr,Hµ,Hα respectively, we have

Advbblind
A,BPBSR(n) ≤

KNQHµ
2n−2 + KQHr

2n−2 + KQHα
2n−2 .

Proof (of Theorem 3). The proof is almost identical to the proof of Theorem 1,
and we encourage the reader to read the proof of Theorem 1 first. Here, we only
sketch the differences. Set BPBS := BPBSR and let A be an adversary against
the batch partial blindness of BPBS. As in the proof of Theorem 1, we prove the
statement using games Gi,b for i ∈ [8] and b ∈ {0, 1} such that

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

Game G0,b: We set G0,b as G0,b := BBLINDAb,BPBS(n). Recall that in this
game, A outputs a public key pk, lists (infoLl ,mL

l)l∈[LL] and (infoRl ,mR
l)l∈[LR],

and indices lL∗ and lR∗ . The game outputs 0 if infoLlL∗ 6= infoRlR∗ . For the rest of the
proof, we can assume that infoLlL∗ = infoRlR∗ . Then, if b = 1, the messages mL

lL∗
and

mR
lR∗

are swapped. Adversary A gets access to oracles O0 and O1 simulating

U(pk, LL, (mL
l , infoLl)l∈[LL]) and U(pk, LR, (mR

l , infoRl)l∈[LR]),

respectively. As in the proof of Theorem 1, we use superscripts L and R to dis-
tinguish variables used in these oracles. If no superscript is given, the description
refers to both oracles.
Game G1,b: Game G1,b is as G0,b, but we add an abort on a certain event.
Namely, the game aborts if A ever queries Hµ(·, ϕi,j,l∗) for some i ∈ [K] and
j ∈ [N] \ {Ji}. As A obtains no information about ϕi,j,l∗ over the entire game,
we have

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤
KNQHµ

2n−1 .

Game G2,b: Game G2,b is as G1,b, but with another abort event. The game
aborts, if A ever makes a query Hr(ri,Ji), or a query Hα(γi,Ji , l∗) for some i ∈ [K].
As in the proof of Theorem 1, the probability of such an abort is negligible due
to the entropy of γi,Ji , and we get

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ KQHr

2n−1 + KQHα
2n−1 .

Rai-Choo! 35

Games G3,b-G4,b: The changes we introduce in these games are exactly as in
the proof of Theorem 1, but it is sufficient to apply them to the final signatures
for messages mL

lL∗
and mR

lR∗
. As in the proof of Theorem 1, we have

Pr [G2,b ⇒ 1] = Pr [G4,b ⇒ 1].

Game G5,b: This change is exactly as in the proof of Theorem 1, i.e. we let the
game sample random vectors ĴL←$ [N]K and ĴR←$ [N]K , and later the game
aborts if we do not have ĴL = JL and ĴR = JR. We have

Pr [G5,b ⇒ 1] = 1
N2K · Pr [G4,b ⇒ 1].

Game G6,b: In this game, we change how the values µi,j,l∗ for i ∈ [K] and j ∈
[N]\{Ĵi} are computed. Namely, while they were defined as µi,j,l := Hµ(m, ϕi,j,l)
before, we now sample them at random, i.e. µi,j,l←$ {0, 1}n. We can argue using
the change we introduced in G1,b, and similar to the proof of Theorem 1, to get

Pr [G5,b ⇒ 1] = Pr [G6,b ⇒ 1].

Game G7,b: We change how the values αi,Ĵi,l∗ and comi,Ĵi are computed for all
i ∈ [K]. Namely we sample αi,Ĵi,l∗←$ Zp and comi,Ĵi←$ {0, 1}n. We can argue
using the changes in G5,b and G2,b, and similar to the proof of Theorem 1, to get

Pr [G6,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G8,b: We change how the values ci,Ĵi,l∗ are computed. Namely, we now
sample these at random, i.e. ci,Ĵi,l∗←$ G1. We can argue as in the proof of
Theorem 1, to get

Pr [G7,b ⇒ 1] = Pr [G8,b ⇒ 1].

Finally, it can be observed that the view of A is independent of the bit b. The
statement follows as in the proof of Theorem 1. ut

C.2 Batch One-More Unforgeability

Theorem 4. Let Hr,Hµ : {0, 1}∗ → {0, 1}n, and Hcc : {0, 1}∗ → [N]K , and H :
{0, 1}∗ → G be random oracles. If CDH assumption holds relative to PGGen, then
BPBSR is batch one-more unforgeable.

Concretely, for any polynomial ` and any PPT algorithm A that makes at
most QHcc , QHr , QHµ , QH queries to Hcc,Hr,Hµ,H respectively, there is a PPT
algorithm B with T(B) ≈ T(A) and

Adv`-BOMUF
A,BPBSR(n) ≤

Q2
Hµ +Q2

Hr
+QHrQHcc +QHQHµ

2n + `

NK

+ 4` · AdvCDH
B,PGGen(n).

36 L. Hanzlik, J. Loss, B. Wagner

Proof (of Theorem 4). The proof is a direct generalization of the proof of Theo-
rem 2. The reader should read the proof of Theorem 2 first. We only sketch the
differences.

Set BPBS := BPBSR and let A be an adversary against the batch one-more
unforgeability of BPBS. As in the proof of Theorem 2, we prove the theorem
using a sequence of games Gi, i ∈ [9].
Game G0: Game G0 is defined to be G0 := `-BOMUFABPBS. That is, first a
pair of keys (pk, sk)← Gen(1n) is sampled. Then, A can access a signer oracle
O. In each interaction this oracle takes as input a batch size L ∈ N and L
strings info1, . . . , infoL ∈ I, and then simulates S(sk, L, (infol)l∈[L]). Further, C
denotes the list of all tuples (i, L, (infol)l∈[L]) such that A submitted batch
size L and strings (infol)l∈[L] in the ith completed interaction with O. We
have

∑
(i,L,(infol)l∈[L])∈C L ≤ `. In the end, A outputs tuples (info1,m1, σ1), . . . ,

(infok,mk, σk). Adversary A wins, if there is some info∗, such that, considering
only the tuples with first component info∗, all messages mi are distinct, all
signatures σi are valid, and there are more tuples of this form than completed
interactions with this info∗. We have

Adv`-BOMUF
A,BPBS (n) = Pr [G0 ⇒ 1].

Games G1-G5: These games are exactly as in the proof of Theorem 2. Namely,
we rule out collisions for random oracles Hµ,Hr, let the game extract values
r̄i,j during queries to Hcc, and establish that there is at least one instance i∗
per interaction, for which the adversary does not cheat successfully. Recall
that this means that the game can extract r̄i∗,Ji∗ = (γ, µ1, . . . , µL) 6= ⊥ and
ci∗,Ji∗ ,l = H(infol, µl)·gαl1 for αl := Hα(γ, l) and all l ∈ [L]. Here, L and (infol)l∈[L]
denote the batch size and the public strings that the adversary submitted to
oracle O in this interaction. Also, in this sequence of games we change the way
the secret keys ski are sampled, and introduce an abort related to the order of
queries for H and Hµ All of this is done exactly as in the proof of Theorem 2. We
have

|Pr [G0 ⇒ 1]− Pr [G6 ⇒ 1]| ≤
Q2

Hµ
2n +

Q2
Hr

2n + QHrQHcc
2n + `

NK
+
QHQHµ

2n .

Game G6: Game G6 is as G5, but we introduce a conceptual change. Namely,
the game now holds maps b[·] and b̂[·]. On a query of the form H(info, µ), the
game first searches for a previous query (mµ, ϕ) to Hµ such that Hµ(mµ, ϕ) = µ.
If no such query is found, the game sets b[info, µ] := 0. If such a query (mµ, ϕ) is
found, and b̂[info,mµ] is not yet defined, the game samples b̂[info,mµ] ∈ {0, 1}
from a Bernoulli distribution, such that the probability that b̂[info,mµ] = 1 is
1/(` + 1). The game then sets b[info, µ] := b̂[info,mµ]. Note that the game can
find at most one mµ for a given µ, due to the change introduced in G1. Clearly,
the view of the adversary A does not change, and we have

Pr [G5 ⇒ 1] = Pr [G6 ⇒ 1].

Rai-Choo! 37

Game G7: As in the proof of Theorem 2, we introduce an initially empty set L in
this game, and add a new abort event. To this end, consider an interaction between
the adversary A and the signer oracle. In this interaction, we know that there is at
least one instance i∗ for which the adversary does not cheat successfully. That is,
the game can extract r̄i∗,Ji∗ = (γ, µ1, . . . , µL) 6= ⊥ and ci∗,Ji∗ ,l = H(infol, µl) · gαl1
for αl := Hα(γ, l) and all l ∈ [L]. Additionally, in G7, the game now tries to
extract queries (mµl , ϕl) for all l ∈ [L] such that µl = Hµ(mµl , ϕl). For those
l ∈ [L] for which it can extract, it inserts (infol, µl,mµl) into L. It is clear that
the size of L is at most

∑
(i,L,(infol)l∈[L])∈C L ≤ `. Additionally, if there is some

l ∈ [L] such that b[infol, µl] = 1, the game aborts.
Further, consider the final output (info1,m1, σ1), . . . , (infok,mk, σk) of A.

Write σr = ((pkr,i, ϕr,i)K−1
i=1), ϕr,K , σ̄r), and set µr,i := Hµ(mr, ϕr,i) for all

r ∈ [k], i ∈ [K]. If A is successful, we know that there is some info∗ such
that |Compl[info∗]| < |Out[info∗]|, where

Compl[info∗] := {(i, l0) | ∃(i, L, (infol)l∈[L]) ∈ C : infol0 = info∗}
Out[info∗] := {i ∈ [k] | infoi = info∗}.

It is easy to see that |Compl[info∗]| is an upper bound for the number of tuples
(info, µ,mµ) in L with info = info∗. Therefore, by the pigeonhole principle, we know
that there is at least one (r̃, ĩ) ∈ Out[info∗]× [K] such that (infor̃, µr̃,̃i,mr̃) /∈ L.
Here we have infor̃ = info∗. Game G7 finds the first such (r̃, ĩ), sets µ∗ := µr̃,̃i
and aborts if b[info∗, µ∗] = 0. As in the proof of Theorem 2, we can assume that
b[info∗, µ∗] is defined. Also, as in the proof of Theorem 2, the game adds further
entries (info, µ,mµ) to L such that |L| = `, and aborts if b[info, µ] = 1.

The analysis of this change is as in the proof of Theorem 2. Namely, we first
see that G7 outputs 1 if G6 outputs 1 and

b[info∗, µ∗] = 1 ∧ ∀(info, µ,mµ) ∈ L : b[info, µ] = 0.

Then, we use the same calculation and arguments as in the proof of Theorem 2
to get

Pr [G7 ⇒ 1] ≥ 1
4` · Pr [G6 ⇒ 1].

Game G8: As in the proof of Theorem 2, we change how random oracle H is
simulated. In the beginning of the game, the game samples Y ←$ G1 and initiates
an empty map t[·]. On a query H(info, µ) for which the hash value is not yet
defined, the game first determines b[info, µ] as explained in G6. Then, it samples
t[info, µ]←$ Zp and sets H(µ) := Y b[info,µ] · gt[info,µ]

1 . This does not change the view
of the adversary. We have

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

Game G9: This change is as in the proof of Theorem 2. Namely, we change how
the public key sharing (pki)i∈[K] and the values si∗,l for all l ∈ [L] are computed
in an interaction. The sharing (pki)i∈[K] is computed exactly as in the proof of

38 L. Hanzlik, J. Loss, B. Wagner

Theorem 2, and the values si∗,l are now computed as si∗,l = pkαl+t[infol,µl]
i∗,1 , where

αl := Hα(γ, l), and (γ, µ1, . . . , µL) has been extracted by the game. Due to this
change, sk is no longer needed. As in the proof of Theorem 2, we have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

Finally, as in the proof of Theorem 2, we can give a reduction B against the
CDH assumption that is successful if G9 outputs 1. This reduction gets as input
g1, g2, e, p, X1, Y ∈ G1, and X2 ∈ G2. It sets pk1 := X1, pk2 := X2 and uses Y
as explained in G8. Then, it simulates G9 for A. Finally, it outputs

Z := σ̄r̃ ·
K∏
i=1

pk−t[info∗,µr̃,i]
r̃,i,1 .

Analysis of B is as in the proof of Theorem 2, and we conclude with

Pr [G9 ⇒ 1] ≤ AdvCDH
B,PGGen(n).

ut

Rai-Choo! 39

D Script for Parameter Computation

Listing 1.1. Python Script to compute the parameters for our scheme. A discussion is
given in Section 5.
#!/ usr/bin/env python

import math
from tabulate import tabulate

Fixed paramters , e.g. group element size
size_group_one_element = 48*8 #use BLS12 -381
size_group_two_element = 96*8 #use BLS12 -381
secpar = 256 #use SHA -256
level = 128
log_q = 30

###
Functions to determine the bit sizes of
signatures , keys , and communication for
given parameters
###

def size_pk (K, N):
return size_group_one_element + size_group_two_element

def size_sig (K, N):
size_comm_rand = K* secpar
size_pks = (K -1) *(size_group_one_element + size_group_two_element)
size_aggregate_sig = size_group_one_element
return size_comm_rand + size_pks + size_aggregate_sig

def size_communication_batched (K, N, L):
size_cc_index = K*math.ceil(math.log(N ,2))
size_opening = K*((N -1) *(secpar + L* secpar)+L* size_group_one_element + secpar)
size_pks = (K -1) *(size_group_one_element + size_group_two_element)
size_response = L* size_group_one_element
return (size_cc_index + size_opening + size_pks + size_response)/ float (L)

###

Determine a minimum value K for given security level ,
number of queries and N, such that the term in the omuf
bound q/N^K becomes small enough
Setting K smaller would lead to no solution at all
def min_plausible_K (N):

return math.ceil ((level + log_q) / math.log(N ,2))+ 1

Compute a row of the table , i.e. efficiency measures for given
parameters K, N, and batch sizes
def table_row (K, N, logLs):

pk = size_pk (K, N)
sig = size_sig (K, N)

row = [level ,log_q ,K,N,pk /8000.0 , sig /8000.0]
for logL in logLs :

L = 2** logL
comm = size_communication_batched (K, N, L)
row. append (comm /8000.0)

return row

#HERE you can insert the combinations you want to try.
logNs = [2 ,3 ,5]
logLs = [0 ,2 ,4 ,8]

tabulate preparation
data = [[" Level ", " log_q ", "K", "N", "|pk|", "| sigma |"] + ["Comm L = " + str (2** logL) for logL in logLs]]
print ("")

for logN in logNs :
N = 2** logN
K = min_plausible_K (N)
row = table_row (K,N, logLs)
data. append (row)

print (tabulate (data , headers =’firstrow ’,tablefmt =’fancy_grid ’))

	 Rai-Choo! Evolving Blind Signatures to the Next Level

