
Anonymous Permutation Routing

Paul Bunn?, Eyal Kushilevitz??, and Rafail Ostrovsky? ? ?

Abstract. The Non-Interactive Anonymous Router (NIAR) model was
introduced by Shi and Wu [SW21] as an alternative to conventional so-
lutions to the anonymous routing problem, in which a set of senders
wish to send messages to a set of receivers. In contrast to most known
approaches to support anonymous routing (e.g. mix-nets, DC-nets, etc.)
which rely on a network of routers communicating with users via interac-
tive protocols, the NIAR model assumes a single router and is inherently
non-interactive (after an initial setup phase). In addition to being non-
interactive, the NIAR model is compelling due to the security it provides:
instead of relying on the honesty of some subset of the routers, the NIAR
model requires anonymity even if the router (as well as an arbitrary sub-
set of senders/receivers) is corrupted.
In this paper, we present a protocol for the NIAR model that improves
upon the results from [SW21] in two ways:

– Improved computational efficiency (quadratic to near linear): Our
protocol matches the communication complexity of [SW21] for each
sender/receiver, while reducing the computational overhead for the
router to polylog overhead instead of linear overhead.

– Relaxation of assumptions: Security of the protocol in [SW21] relies
on the Decisional Linear assumption in bilinear groups; while secu-
rity for our protocol follows from the existence of any rate-1 oblivious
transfer (OT) protocol (instantiations of this primitive are known to
exist under DDH, QR and LWE [DGI+19,GHO20]).

Keywords. Anonymous Routing, Private-Information Retrieval, Permu-
tation Routing, Non-Interactive Protocols.

? Stealth Software Technologies, Inc. Email: paul@stealthsoftwareinc.com.
?? Computer Science Department, Technion, Israel. Email: eyalk@cs.technion.ac.il.

? ? ? Computer Science Department and Department of Mathematics, University of Cal-
ifornia, Los Angeles, CA 90095. Email: rafail@cs.ucla.edu.

1 Introduction

As the collection and access of digital information in our daily lives becomes
ever-more ubiquitous (internet, local networks, mobile networks, IoT), so too
does the need for the development of technologies to protect access and trans-
mission of this data. While protecting the integrity and access to sensitive data
remain important tasks, there has been a growing need for anonymity in pro-
tecting data access and communications between users. Throughout this pa-
per, anonymity will refer to the inability to associate which nodes in a network
are communicating with each other; i.e. the unlinkability between one or more
senders and the associated receiver(s). The conventional approach to provid-
ing such protection (onion routing, mix-nets, and others) relies on a network
of routers relaying messages, where anonymity is only guaranteed if there are
sufficiently many uncorrupted routers. A markedly different approach to this
problem was recently introduced by Shi and Wu [SW21], who proposed using
cryptographic techniques to hide connectivity patterns. Namely, they introduce
the Non-Interactive Anonymous Router (NIAR) model, in which a set of N re-
ceiving nodes wish to receive information from a set of N sending nodes, with
all information passing through a central router. Anonymity in their model is
defined to be the inability to link any sender to the corresponding receiver, even
if the router and (up to N − 2) various (sender, receiver) pairs are susceptible
to attack by an (honest-but-curious) adversary.

Notice that (assuming PKI) an immediate solution to anonymity in the NIAR
model is to have each sending node encrypt their message (under the desired
recipient node’s public key or using a shared secret key with the recipient), send
the encrypted message to the center router, and then simply have the router
flood all N (encrypted) messages to each of the N receivers. While this näıve
approach satisfies anonymity (as well as privacy, in that receivers only receive
messages intended for them), it has the pitfall of excessive communication: O(N)
for each recipient node; O(N2) for the router. Shi and Wu present in [SW21]
a protocol which, under the Decisional Linear assumption (on certain bilinear
groups), achieves anonymity with minimal communication overhead.

Having re-framed the goal of anonymity to the NIAR model and with the
toolbox of cryptographic techniques at hand, a natural observation is that Pri-
vate Information Retrieval (PIR) can be used as a potential solution. In (single
server) PIR [KO97], a server stores a database DB of N elements, and clients
issue queries to the server to retrieve the ith element DB[i]. Security in the PIR
model means that the server does not learn the index i being queried. Thus, if
N senders encrypt their messages and send them to the router, we can view the
router as acting as a PIR server with the N concatenated (encrypted) messages
forming the contents of the PIR database. Each receiver can then issue a PIR
query to fetch the appropriate message, and anonymity follows from the security
of PIR. As with the protocol of [SW21], this solution enjoys both the requisite
security features, as well as having minimal communication overhead (e.g. logN
overhead, depending on the PIR protocol; see survey of PIR results in [OS07]).

2

1.1 Motivation and Technical Challenges

An important metric in determining the feasibility of a protocol in the NIAR
model is the end-to-end message transmission time, which depends on the com-
putational burden on each user, and especially that of the central router. A
significant drawback of both the protocol of [SW21]1 and the näıve PIR solu-
tion described above is that they require quadratic (in terms of the number of
users) computation at the router. As this computation cost is likely prohibitive
(or at least extremely inefficient) when there are a large number of users, we
set out to explore the possibility of a NIAR protocol that maintained the mini-
mal communication burden of the näıve PIR and [SW21] solutions, but reduced
computation overhead (at the router) from O(N2) closer to the optimal O(N).

Our first observation is that the NIAR model is similar to so-called “per-
mutation routing”, but with anonymity. Namely, permutation routing seeks to
connect N senders to N receivers through a network, which (from a communica-
tion standpoint) is what is required in the NIAR model. Our idea was to leverage
the efficient routing (and therefore minimal overhead) of a permutation routing
network, but then to administer PIR at each node to keep each routing decision
hidden, thereby allowing for the anonymity required by the NIAR model. In par-
ticular, we envisioned a solution in which the central router simulates a virtual
permutation routing network by itself, where the actual path the messages take
(from each of the N senders on one end of the network to the N receivers at
the other end) is hidden (from the central router) by using PIR along each edge.
Namely, at each node of the (virtual) network, a PIR query is applied to each
of the node’s outgoing edges, where the PIR query (privately) selects a message
from one of the node’s incoming edges.

While the above idea captures the spirit of our solution (and indeed, the
idea of layering PIR on top of various routing networks/protocols may have
other interesting applications for anonymizing communication), there are several
complications that required additional consideration:

1. (Virtual) Network Size. Since each outgoing edge is assigned a PIR query,
and this PIR query is for a (virtual) database whose size is the number of
incoming edges of the node in question, the computation cost of simulating
routing in a (virtual) permutation network is roughly O(E · I), where E is
the number of edges and I is the number of incoming edges per node. Since
E is necessarily at least O(N), having a NIAR protocol with only polylog
computation overhead requires that E is at most O(N polylog N) and I is
O(polylog N).

2. Standard PIR Won’t Work. Even if network size is small (O(N polylog(N))),
if the depth (number of nodes a message passes through from sender to
receiver) is not constant, then standard PIR schemes will not work, since

1 Router computation is not explicitly measured in the protocol of [SW21], our analysis
of their protocol yields O(N2) computation load on the router: their Multi-Client
Functional Encryption (MCFE) protocol is invoked N times by the router, with each
invocation processing N ciphertexts.

3

each invocation of PIR typically requires O(polylog(N)) bits in the PIR
server’s response, and hence the message size will incur an exponential
blow-up in the depth of the network. For example, even log-depth networks
will have messages of size O(2logN) = O(N) by the time they reach the last
layer of the network, in which case we are no better off than the näıve PIR
approach mentioned above.

3. Correctness Requires Edge-Disjoint Paths. Since PIR is being used to hide
routing decisions made at each node/routing gate in the network, this re-
quires that each outgoing edge forwards the message on (at most) one of
the node’s incoming edges. In particular, if any two paths connecting the
sender-receiver pairs in the permutation network contain a common edge,
then correctness is compromised. Since a random path selection algorithm
will be crucial to proving anonymity, the given (virtual) permutation net-
work must have the property that, with high probability, a random sample
of paths connecting the sender-receiver pairs are edge-disjoint.

4. Edge-Disjoint Property is Insufficient for Anonymity. While having edge-
disjoint paths is necessary for correctness, it is not sufficient to ensure
anonymity. For example, if the central router is colluding with (N − 2)
sender-receiver pairs (and therefore only needs to determine the linkage
amongst the remaining two senders and two receivers), then knowledge
that all paths are edge-disjoint can give the router an advantage in iden-
tifying the linkage between the remaining two senders and two receivers:
Namely, the router knows (via collusion)N−2 paths, and thus can eliminate
available options for the remaining two paths. Indeed, since permutation
routing networks have been studied outside of the context of anonymity,
to our knowledge there has not been any research into understanding how
network properties and path selection protocols impact anonymity, even
in the case where nodes (in the permutation network) do not learn which
outgoing edge each of its received messages is forwarded along.

1.2 Overview of Our Results

Our solution to the NIAR problem, which blends techniques from permuta-
tion routing with techniques for hiding routing decisions made at each node
of the (virtual) permutation network, overcomes the challenges outlined in the
previous section as follows. By using familiar networks from permutation rout-
ing, which are inherently small (O(N · polylog(N))), we are able to ensure the
network size is suitably small, thus addressing the first potential issue. Fur-
thermore, a common (and well-studied) feature of many permutation networks
is the edge-disjoint property, and in particular this inspired our choice to use
an (extended) Beneš permutation Network, thus addressing the third issue. We
observe that there is an inherent tension between network topology (number
of nodes, edges, and depth) in terms of achieving correctness and anonymity
versus low router computation. Our solution includes carefully selecting appro-
priate network parameters to balance these trade-offs. Meanwhile, recent works

4

of [DGI+19,GHO20,CGH+21] present so-called rate-1 PIR protocols, which can
address the second issue of exponential growth of message size per network layer.

Addressing the fourth issue is one of our key technical achievements. In spirit,
the edge-disjoint property is related to anonymity, but as mentioned above, it is
in general insufficient. Identifying a property that is sufficient, and specifically
using such a property to formally argue anonymity, requires some thought and
careful analysis (Definitions 22 and 25 define this property, and using it to prove
security is done in Corollary 26 and in the analysis of (19)).

Assuming rate-1 PIR, we present in Figure 7 a routing protocol for the NIAR
model that achieves O(logN) per-party communication and O(N · polylog(N))
router computation. At a high level, our protocol dictates that the central router
emulates routing in a permutation network, whereby each routing gate is (virtu-
ally) obliviously evaluated using a rate-1 PIR query/response for each outgoing
edge. Our protocol consists of a setup phase in which the PIR queries that cor-
respond to all outgoing edges of every routing gate are prepared, and then an
online routing phase where a stream of (encrypted) messages are injected by the
senders to receivers (re-using the setup).

2 Previous Work

2.1 Permutation Routing

In permutation routing [AKS83,Lei84,Upf89,MS92], messages from a set of N
“input” nodes are routed through a network G to a set of N “output” nodes.
Such works attempt to identify networks G with various desired properties, and
protocols within these networks that can efficiently route these messages, for any
possible permutation σ that dictates which input node is connected to which out-
put node. While our work is partially inspired by the routing networks considered
in this line of work, the NIAR model is sufficiently distinct from the permutation
routing model, both because of the number of routers (one versus Θ(N logN))
and due to the required privacy of the permutation σ. In other words, we do
not route the messages over a physical routing network (which is an iterative
process that depends on the “depth” of the network), but rather use a virtual
sorting network as a mean to design our non-interactive routing protocol.

2.2 PIR

As there has been extensive work done in the original PIR model and its variants,
we discuss here only the works most relevant to us.

Multi-Client PIR As discussed in the introduction, the NIAR model can be
viewed as a special case of multi-client PIR. Indeed, a solution to generic multi-
client PIR in which the PIR server’s work does not scale with the number of
users would imply an efficient solution to the NIAR problem. While no such

5

result exists, we discuss a few relevant areas, and why they are insufficient for
the NIAR model.

In [IP07], it is demonstrated how a single user can efficiently issue multiple
queries to a PIR server. However, their results rely on a single decoding algo-
rithm, whereas the NIAR model would require decoding keys for each of the N
receivers. In [HOWW19], they present a related notion of private anonymous
data access; we note that the results in their model do not scale to the full cor-
ruption threshold (N − 2) required in the NIAR security model. Finally, results
in the related areas of Batch Codes [IKOS04] and Public-Key Encryption with
amortized updates [COS10] address a different model, and consequently do not
seem to be directly applicable to the NIAR model.

Rate-1 PIR A recent line of work [DGI+19,GHO20,CGH+21] has demon-
strated the viability of rate-1 PIR, in which the server response is comparable in
size to the database entry being fetched. Formally, for a database of N elements
each of size B, rate-1 PIR means that the ratio of B to the server response size
approaches 1 as N →∞. Stated differently, a rate-1 PIR scheme has a constant-
stretch term δPIR, such that the server’s response has size B+ δPIR. [CGH+21]
demonstrate a rate-1 PIR scheme based on the SXDH assumption [BGdMM05]
that has λ · logN client communication (for security parameter λ).

3 Preliminaries

3.1 Beneš Network

In a butterfly network (Figure 1), N input nodes are connected to N output
nodes via a leveled network of (1 + logN) levels, each with N nodes. A Beneš
network appends a second (inverted) butterfly network to the first (Figure 3);
and more generally an extended Beneš network appends numerous “blocks” of
butterfly networks together. We further expand the complexity of such networks
by introducing the notion of color, in which each node and edge is replicated c
times (Figure 5). Finally, our protocol will assume wide edges, which means that
each edge can simultaneously route w messages (requiring specification of which
of the w “slots” each message occupies).

6

Fig. 1: Butterfly network with N = 8 input nodes.

Fig. 2:Colored Butterflynetwork withN=8 input nodes and replication factor c=3.

7

Fig. 3: Beneš network with N = 8 input nodes.

Fig. 4: Colored Beneš network withN=8 input nodes and replication factor c=3.

8

Fig. 5: Extended, Colored Beneš network with b blocks, replication factor c = 3,
and N = 8.

3.2 Non-Interactive Anonymous Routing (NIAR)

We adopt the NIAR model of [SW21], in which N senders each have a series of m
(e.g. single-bit) messages they wish to send to a distinct receiver anonymously.
The anonymity guarantee refers to the unlinkability of each sender-receiver pair,
and crucially it must be preserved even if the central router colludes with a
subset of the senders/receivers. Depending on the application, there are various

9

collusion patterns that may be of interest, e.g.:

N -2 Pairs

=⇒ =⇒
Sender Collusion Receiver Collusion

=⇒ =⇒
Arbitrary

where all four scenarios include collusion with router C, with the top scenario
allowing for arbitrary corruption of up to N − 2 (sender, receiver) pairs; the
left scenario allowing for arbitrary corruption of all senders (plus up to N − 2
receivers); the right scenario allowing for arbitrary corruption of all receivers
(plus up to N−2 senders); and the bottom scenario allowing for arbitrary (router
C plus up to 2N−2 of the senders/receivers) corruption. (The implication arrows
above indicate that a protocol that is secure in one model is automatically secure
in the other.) In this paper, we demonstrate our protocol is secure against the
top and left scenario.2 We do not consider the case of arbitrary receiver collusion
in this paper for two reasons: First, one of the main application areas for the
NIAR model is whenN users wish to connect toN servers to retrieve information
from them (e.g. to check email or stream content). In such scenarios, the receivers
already know the senders they wish to connect to, so anonymity of the senders
(in the case that all receivers are colluding) is irrelevant. The second reason we
do not consider the full Receiver Collusion models is because providing such
protection in this model requires additional techniques than those considered in
this paper. For example in [SW21], the protocol description, performance, and
cryptographic hardness assumptions are all made more complex in the Receiver
Collusion scenarios.

Formally, the (reformulated) NIAR model of [SW21] is as follows:

(Trusted) Setup. Upon input security parameters (1λc, 1λs), number of senders/
receivers N , and permutation σ : [N] → [N], the Setup algorithm outputs
sender keys {pki}i∈[N], receiver keys {(ski, κi)}i∈[N], and token q for router C:(
{pki}i∈[N], {(ski, κi)}i∈[N], q

)
← Setup(1λc , 1λs , N, σ).

Once Setup has been run, the Senders {Si} can communicate arbitrary messages
{mi} = {mi,α} with the Receivers {Ri} through router C.

Send Message. Using key pki, each Sender Si encodes message mi = mi,α

(where α denotes the αth bit of message mi), and sends the result to router C:
ci,α ← Encpki(mi,α).

Route Message. Upon inputs {ci}i∈[N] from each Sender Si, and using key
q, router C prepares messages {zi}i∈[N], and sends these to each Receiver Ri:
(z1, z2, . . . , zN) ← Route(q, c1, c2, . . . , cN).

Decode Message. Using keys (ski, κi), each Receiver Ri decodes the message
zi = zi,α received from router C, and outputs m̃i = m̃i,α: m̃i,α ←Decski(κi, zi,α).

2 The emphasis in [SW21] was on the top, right, and bottom scenarios.

10

Correctness. An oblivious permutation routing protocol has:
Perfect Correctness: If each receiverRi outputs message m̃i=mi with probability 1.

λc - Statistical Correctness: If each receiver Ri outputs message m̃i =mi with
probability at least

(
1− 1

2λc

)
for security parameter λc.

Security. Informally, anonymity means that if a subset of players collude (in-
cluding router C), the permutation σ (namely, its restriction to non-colluding
parties) should remain unknown. Formally, let A denote a (computationally
bounded, honest-but-curious) adversary. Consider the following challenge game:

1. On input security parameter λ, Adversary A chooses N , two distinct per-
mutations σ0, σ1 on [N], a set of sender indices SA ⊆ [N] to corrupt, and
a set of receiver indices RA ⊆ [N] to corrupt; subject to constraints:
(a) |RA| ≤ N − 2;
(b) σ0 and σ1 match for all receivers in RA: ∀ i ∈ RA : σ−10 (i) = σ−11 (i).

2. Adversary A sends {σ0, σ1} to a Challenger C.
3. Challenger C chooses σb ∈ {σ0, σ1} for b ∈ {0, 1} (e.g. by flipping a coin).
4. Challenger C chooses router token tkC , encryption keys {pki}i∈[N], and de-

cryption keys {ski}i∈[N], where key ski decrypts ciphertexts created under
key pkσb(i). C sends tkC , {pki}i∈SA , and {ski}i∈RA to A.

5. For each round α:
(a) Based on knowledge of all prior ciphertexts {ci,α′}α′<α (see next step),

Adversary A chooses arbitrary messages {m(0)
i,α}i∈[N] and {m(1)

i,α}i∈[N],
subject to the constraint that all messages bound for a corrupt receiver

match: ∀ i s.t. i = σ−10 (j) for some j ∈ RA: m
(0)
i,α = m

(1)
i,α.

A sends these messages to C.
(b) Challenger C outputs to A ciphertexts {ci,α}i∈[N], where each cipher-

text is computed as (with b as chosen in Step 3):

ci,α = Encpkσb(i)
(m

(b)
i,α)

6. Adversary A outputs a guess b′ ∈ {0, 1} of which permutation {σ0, σ1}
Challenger C chose.

A NIAR protocol is λs-secure if the probability that any computationally bounded
adversary A guesses b correctly is bounded by:

Pr[b′ = b] ≤ 1

2
+

1

2λs
(1)

3.3 Emulating Oblivious Routing in a Virtual Permutation Routing
Network

In this section, we present the main ideas that connect the NIAR model to the
permutation routing problem. At a high level, the idea is to have the NIAR
router emulate message transmission through a (virtual) routing network that
supports permutation routing between N senders and receivers. We begin by
formally defining the functionalities of a pair of protocols that will be required
for evaluation of a routing gate:

11

Definition 1 A routing gate evaluation protocol ΠRGEnc for routing gate µ ∈ G
takes as input a set of values {vj} on each incoming edge of µ and a set of encoded
indices {qj} on each outgoing edge of µ (where each qj encodes the index of an
incoming edge), and outputs a set of values {zj} for each outgoing edge of µ,
where each zj = Enc(vqj) is an encoding of the value on the appropriate input
wire (as specified by qj). A routing gate reconstruction protocol ΠRGDec takes as
input a set of reconstruction keys {κµ,j} and a set of values {zµ,j} (one key-value
pair (κµ,j , zµ,j) for each outgoing edge of µ), and outputs values v̂µ,j for each
outgoing edge of µ.

The key primitive that is required to support anonymity in a virtual permutation
network is the oblivious routing gate, which specifies a procedure for each outgoing
edge to obliviously select an incoming edge and write (a re-encoding of) the
message on this edge to the outgoing edge:

Definition 2 Let µ ∈ G denote a gate in a permutation routing network, and let
Iµ and Oµ denote its incoming and outgoing edges (respectively). The oblivious
routing gate (ORG) paradigm for µ takes as input, for each outgoing edge êµ ∈
Oµ, an associated index jêµ ∈ ⊥ ∪ [1, |Iµ|], and outputs:

i. Encodings {qêµ} of the input indices {jêµ};
ii. Specification of a routing gate evaluation protocol ΠRGEnc ;

iii. Reconstruction keys {κêµ};
iv. Specification of a routing gate reconstruction protocol ΠRGDec protocol;

with the outputs subject to the constraints:

Message Independence. Outputs {qêµ} are defined independently from (later-
specified) messages Mµ.

Reusability. Outputs ({qêµ}, {κêµ}, ΠRGEnc, ΠRGDec) can be reused (indefinitely)
for new messages {Mµ,1,Mµ,2, . . .}, without compromising correctness or se-
curity properties for each subsequent run.

Additionally, the oblivious routing gate paradigm requires correctness and se-
curity properties, which are formally defined in Figure 9, and informally sum-
marized as:

Correctness. Given arbitrary messages Mµ := {mj}j∈[1, |Iµ|] assigned to each
incoming edge, ΠRGEnc(êµ, qêµ ,Mµ) writes a value vêµ on outgoing edge êµ
that is (a re-encoding of) the input message mjêµ

∈Mµ (where jêµ is from the

original input, and in particular is the underlying message that qêµ encodes).
Namely, ΠRGDec(κêµ , vêµ) = mjêµ

reconstructs to the appropriate message.

Security. The output encodings {qêµ} reveal nothing about the inputs {jêµ} that
they are encoding.

Figure 6 depicts a possible instantiation of an oblivious routing gate with subpro-
tocols (ΠRGEnc , ΠRGDec) set as (PIR-server, PIR-client) protocols (with output
values {qêµ} the PIR queries and {κêµ} the client’s reconstruction keys). With
the oblivious routing gate paradigm in hand, we define the emulated permu-
tation routing functionality, which captures how the NIAR router C transmits
messages through a (virtual) permutation routing network:

12

Definition 3 Let G denote a permutation routing network: N pairs of desig-
nated (sender, receiver) nodes and a permutation σ : [N]→ [N] connecting them.
Let {Pi} denote a set of N paths that link each (sender, receiver) pair with a
path through G. For every node µ ∈ G, and for each outgoing edge êµ ∈ Oµ,
define the index jêµ ∈ ⊥ ∪ [1, |Iµ|] as follows:

- If exactly one path Pi traverses outgoing edge êµ: jêµ is the index of Pi’s
incoming edge to µ.

- If either zero or two or more paths Pi,Pj traverse outgoing edge êµ: jêµ is
defined to be ⊥.

Given as input: (i) A set of values {vj} for each outgoing edge ej that emanates
from one of the N source nodes; and (ii) A protocol ΠORG instantiating the
oblivious routing gate paradigm; an emulated permutation routing (EPR) protocol
ΠEPR(ΠORG, {vj}), is defined as:

(One-time) Setup Phase. For each node µ ∈ G, run ΠORG({jêµ}), and let
{qêµ} denote the output encodings (from output (i)) and ΠRGEnc the routing
gate evaluation protocol (from output (ii)).
(Online) Emulation Phase. Iterate through the levels l of routing network G:
• For each outgoing edge êµ of each node µ ∈ G at level l, invoke protocol
ΠRGEnc(êµ, qêµ ,Mµ) on inputs:
- qêµ : From Setup Phase (above).
- Mµ = {mj}j∈[1, |Iµ|]: Values on the input wires of µ (either from input

(i) values {vj} if level l = 1 is the first level, or from the output values
of ΠRGEnc in iteration l-1).

• For each incoming edge eµ,j of each sink node µ, output value zµ,j, where
zµ,j denotes the value assigned to this edge (viewed as an output edge of
some node on the previous level) by ΠRGEnc (from the last iteration).

See Figure 11 for an extended protocol definition of the emulated permutation
routing protocol ΠEPR.

4 Our Protocol

4.1 Overview of Our Solution

Given N pairs of (sender, receiver) nodes and central router C, our protocol
routes messages from the senders to the receivers via a virtual routing network
G that C emulates where, for each node in the network, the router C obliviously
executes a routing gate by simulating the functionality of a (rate-1) PIR query.
Namely, (as part of trusted setup) each outgoing edge of a routing gate will
have an assigned PIR query, and each incoming edge will have a value (which
represents an (encrypted) message from one of the senders), and the router
C obliviously produces a message on each outgoing edge of the routing gate
by running the associated PIR query on this wire against the (virtual) PIR
database of messages (from the incoming wires). The determination of which
incoming edge that a given PIR query (on a routing gate’s outgoing edge) should
specify is established offline during a setup phase, and specifically it is determined

13

Fig. 6: Oblivious routing gate realization via PIR at node µ with 2w incoming
and outgoing edges.

by choosing a random path Pi, for each (senderi, receiveri) pair, through the
(virtual) routing networkG. Notice that once PIR queries are assigned (during an
offline setup phase) as per all chosen paths {Pi}, they may be reused indefinitely
during the online routing phase to continuously route new messages for each
(sender, receiver) pair. The key features of our protocol are:

– Correctness. Ensuring each receiver gets every message reduces to showing
that the paths {Pi} connecting each (sender, receiver) pair are edge-disjoint.

– Privacy. Since each sender encrypts their messages under the intended re-
cipient’s public key, receivers can only decipher messages intended for them.

– Anonymity. This property is obtained so long as the paths {Pi} chosen are
sufficiently edge-disjoint over a sub-graph of G.

– Communication. To limit the expansion of message size through each (vir-
tual) routing gate, we employ rate-1 PIR, which ensures the final message
size is proportional to the length of the chosen path P through the (virtual)
routing network G; and that any such path is small (polylog).

– End-to-End Time. Computation of central router C (which, together with
communication, determines end-to-end transmission time) will depend on the
size of the virtual graph G = (V,E). Thus, in order to minimize computa-
tional overhead, |E| should be close to N (e.g. Npolylog N). Notice that
there is inherent tension in minimizing end-to-end time versus satisfying the
Correctness and Anonymity properties: the former requires small |V | and
|E|, while the latter two are readily achieved for larger |V | and |E|. Our

14

protocol finds appropriate (minimal) parameters to achieve correctness and
anonymity, while introducing minimal end-to-end overhead.

One final point concerning anonymity: while PIR is the main tool that hides
(from central router C and any other parties it colludes with) the linkage between
uncorrupted (sender, receiver) pairs, applying it näıvely will not provide the
desired protection. Namely, if any two of the paths {Pi} through the virtual
routing network have an edge in common, then a PIR query cannot be assigned to
that edge, as there will be conflicting input edge indices (and conflicting messages
on those edges) to select. Since, in proving anonymity, path selection must be a
randomized process (in particular, edge conflicts cannot be deliberately avoided),
our protocol will handle edge conflicts by producing garbage PIR queries for such
edges. While this approach introduces failures in terms of delivering messages
along the conflicting paths that were chosen for any such (sender, receiver) pairs,
the threat to correctness is overcome by ensuring enough redundancy in the
system to account for (the low probability event of) edge conflicts. However,
edge conflicts (and the lack of edge conflicts), also threatens anonymity: for
example, the router C could observe many messages from (sender, receiver)
pairs it has corrupted all pass through a common node, and the router may
also know that the message from an uncorrupted sender has some probability of
passing through this same node. Thus, the presence or absence of an edge conflict
on the set of outgoing edges of this node may give the router an advantage in
determining if the uncorrupted sender’s path goes through this node, and if so,
some probabilistic advantage in knowing which outgoing edge the path used;
and these advantages then threaten anonymity since the router may be able to
have an advantage in guessing the ultimate destination (i.e. receiving node) of
this path. Demonstrating that this approach cannot be used to give the router
a non-negligible advantage in linking uncorrupted (sender, receiver) pairs will
require: (i) Identifying what property a network should have to avoid this attack;
(ii) Generating such a network that also supports the desired computation and
correction requirements; (iii) An appropriate analysis that this property indeed
proves anonymity. For example, the natural candidate property of exhibiting
(with high probability on randomly chosen paths) the edge-disjoint property is
insufficient, as it is susceptible to the above attack.

Figures 7 and 8 below formally describe our protocol.

4.2 Analysis of Our Protocol

Theorem 4 Assuming the existence of rate-1 PIR, following trusted setup,3

the protocol presented in Figure 7 is λs-secure with λc-statistical correctness,
O(logN) per-party communication, and O(N polylog N) router computation.

Remark. Instead of trusted setup, under appropriate cryptographic hardness
assumptions the ideal functionality ΠORG(G, ĉ, r, l,Π1-PIR) could instead be re-
alized via generic secure multiparty computation (MPC) techniques. This would

3 Trusted setup is required for establishing public/secret key pairs for encryption and
for instantiating ideal functionality ΠORG(G, ĉ, r, l,Π1-PIR).

15

Anonymous Permutation Routing Protocol ΠNIAR

Input. Anonymous Permutation Routing parameters:N = 2n, “central router”
party C, “sender” parties {Si}i∈[N]

each with arbitrarily many messages {mi,α},
“receiver” parties {Ri}i∈[N]

, permutation σ : [N]→ [N].

Output. For each party index 1 ≤ i ≤ N , receiver Rσ(i) outputs message m̃i.

Notation. Let λ := max(λc/(2- log 3), 2 logN + max(λs, 2 + log logN). Let

G = B(N̂, b, c,w) denote a wide-edged, extended and colored Beneš network

with parameters N̂ = N , b = λ−1, c = 4 ·aλ, and w = 1.2 ·λ · logN ·(1+logN)
(for aλ := max(2, λ1/(logN−1))); see Figure 5. For each 1 ≤ i ≤ N , the parties
{Si} and {Ri} are assigned to “row” i, associating each sender Si with Ii (the
ith “input” node of G, i.e. the left-most node in row i) and each receiver Ri
with Oi (the ith “output” node of G).

Setup Phase.
1. For each i ∈ [N]: let (pki, ski) denote a public-key/secret-key pair. Output:

Si ← pki and Rσ(i) ← ski.
2. For each 1 ≤ m ≤M = λ:

(a) Choose random paths through G (as per σ). For each i ∈ [N]: let
Pi = Pm,i denote a random path throughG (namely, paths are chosen
as per protocol ΠN,σ,G(i); Figure 14).

(b) Assign rate-1 PIR queries and keys to each edge. For each internal
node µ = µĉ,r,l at position (ĉ, r, l) of G (i.e. color ĉ ∈ [c], row r ∈ [N],
and level l ∈ [0, (b+ (1 + b) · logN)]; see Figure 5), invoke the obliv-
ious routing gate protocol ΠORG(G,ĉ,r,l,Π1-PIR) (Fig. 9) with inputs
{(wi, w′i)}, where:
• wi = ⊥ if µ /∈ Pi; otherwise wi ∈ [1, |Il|] is the incoming wire

index to µ (as specified by Pi).
• w′i=⊥ if µ /∈Pi; otherwisew′i∈[1, |Ol|] is the outgoing wire index

from µ (as specified by Pi).
For each j ∈ [1, |Ol|], let {qµ,j} denote the rate-1 PIR queries and let
{(µ, j, κµ,j)} denote the set of reconstruction keys that are output by
the ΠORG(G,ĉ,r,l,Π1-PIR) protocol (by definition, a reconstruction key
for output wire j of node µ is output by ΠORG if and only if there
exists a unique index i ∈ [N] such that w′i = j).

(c) Aggregate reconstruction keys along each path. For each i ∈ [N]: let
κi = κm,i be either ⊥ (if the reconstruction key for any outgoing
edge (µ, j) ∈ Pi is not output by ΠORG), and otherwise let κi be the
collection of reconstruction keys {(µ, j, κµ,j)}µ∈Pi for each outgoing
edge (µ, j) ∈ Pi.

Output: C ← {qµ,j}, and for each receiver: Ri ← κi.

Fig. 7: Anonymous Permutation Routing protocol ΠNIAR.

contribute O(N2 polylog N) to the asymptotic cost of the protocol (to deal the
O(N polylog N) rate-1 queries and O(N2 polylog N) reconstruction keys), but
because ΠORG(G, ĉ, r, l,Π1-PIR) is utilized only in the Setup Phase, this would
be incurred as a one-time cost and would not impact cost of the Routing Phase.

16

Anonymous Permutation Routing Protocol ΠNIAR (continued)

Routing Phase.
Repeat the following procedure for each successive message {mi,α}:
Senders {Si}.
1. Sender Si encrypts mi=mi,α under pki and sends Encpki(mi) to router C.
Central Router C.
1. For each 1 ≤ m ≤M = λ:

(a) C runs the ΠEPRm protocol with inputs {Encpki(mi)} (from each
sender Si’s Step 1 of the Routing Phase) and {qµ,j} (from the Setup
Phase). Let {zm,i,j}i∈[0,(N-1)],j∈[1,c] denote the output of ΠEPRm.

(b) C sends {zm,i,j}j∈[c] to receiver Rσ(i).
Receivers {Rσ(i)}.
1. Receiver Rσ(i) initializes final output value w̃i = ⊥.
2. For each 1 ≤ m ≤M = λ:

(a) Let Pi = Pm,i, and note that Pi is edge-disjoint (as per Definition 10)
if and only if for every node {µl} in Pi, Rσ(i) received the reconstruc-
tion key for µl (as per Output (ii) of ΠORG).

(b) If Pi is not edge-disjoint, or if w̃i 6= ⊥ (i.e. w̃i was set in a previous
iteration m′ < m): do nothing.

(c) If Pi is edge-disjoint, then Rσ(i) uses the reconstruction keys κm,i
to traverse Pi backwards, starting with the final value zm,i,j that it
received from C (along the appropriate color index j ∈ [c], as specified
by Pi) in Step 1b above. Using the reconstruction keys {κµ}, level by
level Rσ(i) reconstructs to remove one layer of the PIR stretch δPIR
that was added by ΠORG. When Rσ(i) has traversed backwards to
level 0, it will have reconstructed value Encpki(mi). In this case, Rσ(i)
updates w̃i with value w̃m,i = Decski(mi).

3. Rσ(i) outputs w̃i.

Fig. 8: Anonymous Permutation Routing protocol ΠNIAR (continued).

Proof (Proof of Theorem 4).
Cost. The per-party computation costs for each step of the routing phase are:

Party Step Computation

Si 1 Cost(ΠEnc)

Ri 2b Cost(ΠDec) + (1+b) · (1+logN) ·Cost(ΠPIR-Rec)

C 1a M · |E| · Cost(ΠPIR-Query)

and communication costs are:

Party Step Communication

Si 1 c
Enc

Ri 2b c
Enc

+ (1 + b) · δPIR
C 1a N · (2 · c

Enc
+(1+b) ·δPIR)

where:
– |E|= (2 logN+c)·(c·w·N·(1+b)) is the number of edges in networkB(N, b, c, w).

17

– Cost(ΠEnc) is the (computation) cost of encrypting a message m.
– Cost(ΠDec) is the (computation) cost of decrypting a ciphertext Encpki(m).
– c

Enc
is the size of a ciphertext Encpki(m).

– δPIR is the constant stretch of the underlying rate-1 PIR protocol Π1-PIR.
– Cost(ΠPIR-Query) is the PIR server cost of running a query for Π1-PIR(c ·
w, c

Enc
+ (1 + b) · δPIR).

– Cost(ΠPIR-Rec) is the cost of running the reconstruction algorithm (on a
PIR response) for Π1-PIR(c · w, c

Enc
+ (1 + b) · δPIR).

Correctness. The intuition for the proof is as follows: Independent of adversar-
ial presence, we first demonstrate bounds of certain properties of routing in the
Beneš network, as per the protocols described in Figures 7 and 14. Namely, we
demonstrate in Corollary 18 that, with overwhelming probability, for any row
index i ∈ [N] there will exist (at least) one experiment m ∈ [M] for which the
path Pm,i is edge-disjoint from all other paths {Pm,j}j 6=i. Then as per proto-
col ΠNIAR specification (Step 2b of the Output Parties portion of the Routing
Phase; see Figure 7), the existence of an edge-disjoint path Pi means that Rσ(i)
will update w̃i ← w̃m,i. By the correctness property of the ideal functionality of
ΠORG, this value will be correct (i.e. it will equal pi).

Formally, with λ = max(λc/(2- log 3), 2 logN + max(λs, 2 + log logN) ≥
λc

2−log 3 , Corollary 18 states that the probability that there exists some row index

i ∈ [N] for which Pm,i is not edge-disjoint for every experiment m ∈ [M] is
bounded by:

Pr[X = 0] <

(
3

4

)λ
≤

((
3

4

) 1
2−log 3

)λc
=

1

2λc

Security. As with the Correctness proof, we first demonstrate (probability
bounds for) a version of the edge-disjoint property. Namely, we demonstrate
in Corollary 26 that, using the parameters as per ΠNIAR (Figure 7), with over-
whelming probability (in λs), for any pair of row indices i, i′ ∈ [N] and for every
experiment m ∈ [M], there will exist a block in which the chosen paths Pm,i
and Pm,i′ as well as their alternate paths P ′m,i and P ′m,i′ are each edge-disjoint
from all other paths in this block. Effectively, this means that for any two uncor-
rupted receiver nodes i, i′ /∈RA, that for each experiment there exists some block
in which the Adversary will necessarily lose all ability to distinguish between
Pm,i and Pm,i′ by the time these paths cross through this block. We then use
a hybrid argument to show that the existence of an adversary that can distin-
guish between two arbitrary permutations (as per (1)) implies the existence of
an adversary who can distinguish (with a smaller probability) between two per-
mutations that differ only on two points; and then this contradicts the existence
of a block in which any two paths become indistinguishable after that block.

Formally, the proof reduces the NIAR security game (with Challenger invok-
ing the NIAR protocol ΠNIAR of Figure 7) to Challenge Game 2, and then uses
the indistinguishability of Challenge Game 2 (Lemma 28). To match notation
of protocol ΠNIAR with the communication sent to adversary A in the NIAR
security game:

18

For Step 4 of the NIAR security game:
• Encryption keys{pki}: The{pki} from Step 1 of the Setup Phase (Figure 7).
• Decryption keys {ski}: The {ski} from Step 1 of the Setup Phase, together

with the reconstruction keys {κi} = {(µ, j, κµ,j)} from Step 2b of the Setup.
• Router token tkC : The rate-1 PIR queries {qµ,j} from Step 2b of the Setup.

For Step 5b of the NIAR security game:
• Ciphertexts {ci,α}: The encrypted messages {Encpki(mi,α)} from Sender’s

Step 1 of the Routing Phase (Figure 7).

First observe that indistinguishability of the distribution of ciphertexts {ci,α} =
{Encpki(mi,α)} under b = 0 versus b = 1 follows from the security of the encryp-
tion scheme, together with the constraint that all messages bound for a corrupt
receiver must match for b = 0 and b = 1 (see the specified constraint in Step
5a of the NIAR security game). Thus, for any ciphertext ci,α for which Adver-
sary A does not hold the decryption key, the security of the encryption scheme

ensures indistinguishability of this as a ciphertext of m
(0)
i,α versus m

(1)
i,α; and for

any ciphertext ci,α for which Adversary A does hold the decryption key, the
constraint in Step 5a of the NIAR security game dictates that this ciphertext

encodes a common message m
(0)
i,α = m

(1)
i,α.

Next we argue indistinguishability of the encryption keys {pki}i∈SA and the
decryption keys {ski}i∈RA . Notice first that due to the constraint in Step 1b of
the NIAR security game, the distribution of decryption keys {ski}i∈RA looks the
same for b = 0 and b = 1, since σ0 and σ1 necessarily agree here (i.e. they each
map some index j ∈ [N] to i. Meanwhile, for the distribution of encryption keys,
we focus on indices i ∈ [N] for which σ0(i) 6= σ1(i). Fix any such i, and define
j = σ0(i) and j′ = σ1(i), so j 6= j′. Again due to the constraint in Step 1b of the
NIAR security game, we have that neither j nor j′ is in RA. This means that
Adversary A does not hold the corresponding decryption key for pki regardless
of whether b = 0 or b = 1, and thus by the security of the encryption scheme,
the distribution of pki for b = 0 appears identical as the distribution when b = 1.

For indistinguishability of the router token tkC = {qµ,j}: for a given qµ,j for
which Adversary A does not hold the corresponding reconstruction key κµ,j , in-
distinguishability follows from the security of the underlying rate-1 PIR scheme.
Conversely, for a given qµ,j for which Adversary A does hold the corresponding
reconstruction key κµ,j , Adversary A learns the input wire index that qµ,j is
selecting. However, since the paths chosen through G are independent of each
other and depend only on the given (sender, receiver) indices and coin flips of
path selection protocol Π

N,σ,G
(i) (Figure 14), and because Adversary A knows

reconstruction key κµ,j if and only if outgoing edge (µ, j) is on the path leading
to a corrupt receiver i ∈ RA, we again rely on the constraint in Step 1b of the
NIAR security game to argue that σ0 and σ1 must agree on the (sender, receiver)
indices for this path, so the input wire index that qµ,j is selecting is the same.

It remains to argue indistinguishability of the reconstruction keys {κi}i∈RA =
{(µ, j, κµ,j)}. If for a given tuple (µ, j, κµ,j) the last component is a valid recon-
struction key (i.e. κµ,j 6= ⊥), then indistinguishability follows the same argument
as above for the router token. On the other hand, if κµ,j 6= ⊥, then as per the

19

Correctness property of any ΠORG protocol, Adversary A learns that at least
two distinct paths chose outgoing edge (µ, j). Since this is the exact scenario as
Challenge Game 2, the proof now follows from Lemma 28.

5 Subprotocol Definitions and Constructions

5.1 Oblivious Routing Gate (ORG) Paradigm

Ideal Functionality for Oblivious Routing Gate
in Beneš Network G via (rate-1) PIR

Setup (see Figure 6).

– Parameters for a wide-edged, extended and colored Beneš network G =
B(N, b, c, w): N = 2n, b, c, w.

– Color index ĉ∈ [1, c], row index r∈ [N], level index l∈ [0, (b+(1+b)·logN))].
– Let µ = µĉ,r,l denote the node at position (ĉ, r, l) of G (i.e. color ĉ, row r,

and level l; see Figure 5).
– Let I = Il denote the set of input wires to nodeµ, and notice for network G:

|Il| =

 1 if l = 0
c · w if l = j · (1 + logN) (for arbitrary j ∈ [1, b])
2 · w otherwise

(2)

– Let O = Ol denote the set of output wires from node µ, and notice (by
definition of Beneš network G):

|Ol| =

 1 if l = (1 + b) · (1 + logN)− 1
c · w if l = j · (1 + logN)− 1 (for arbitrary j ∈ [1, b])
2 · w otherwise

(3)

– When the ΠORG protocol is invoked, each of the |Il| input wires will have
an associated value on them. Let |v| = |vl| denote the size of each value.a

– Let Π1-PIR = Π1-PIR(|vl|, |Il|) denote a rate-1 PIR protocol for |Il| ele-
ments, each of size |vl|.
• Let βl denote the size of the reconstruct key (used by PIR client to parse

the server’s response).
• Let γ = γl denote the number of bits in a query to Π1-PIR(|vl|, |Il|).
• Let δPIR denote the (additive) stretch constant.

– Parties {S1, . . . , SN} connected via permutation σ to parties {R1, . . . , RN},
and central router C.

Input. For each i ∈ [N], values (wi, w
′
i) with “input wire index” wi ∈ (⊥ ∪

{1, 2, . . . , |Il|}) and “output wire index” w′i ∈ (⊥ ∪ {1, 2, . . . |Ol|}), subject to
constraint: wi = ⊥ ⇔ w′i = ⊥.

Output. For each output wire index 1 ≤ j ≤ |Ol|:
i. Rate-1 PIR query qj = qµ,j ∈ {0, 1}γ .
ii. (µ, j, κµ,j) with κµ,j either ⊥ or a reconstruction key for qj (as per

Correctness requirement below).

a When ΠORG is invoked, |vl|= (cEnc+ l ·δPIR), where cEnc is the ciphertext
size of some scheme Enc.

Fig. 9: Definition of ΠORG functionality via (rate-1) PIR in Beneš Network G.

20

Ideal Functionality for Oblivious Routing Gate
in Beneš Network G via (rate-1) PIR (continued)

Correctness. For each 1 ≤ j ≤ |Ol|, output values (qj , κµ,j) satisfy:

Case 1: j /∈ {w′i}Si . In this case (no output wire index w′i indicated wire
index j), there is no correctness requirement for qj (except that it is a valid
rate-1 PIR query), and κµ,j = ⊥.
Case 2: j = w′i for exactly one i ∈ [N]. In this case (exactly one output

wire index w′i is equal to j), qj is a PIR query corresponding to position wi,
and κµ,j is the corresponding reconstruction key.
Case 3: j = w′i = w′i′ . This case (two or more output wires {w′i, w′i′} equal
j) is the same as Case 1.

Security. Consider the following security game featuring a (polynomially
bounded) adversary A:

1. A sees all output values {qµ,j}j∈[1,|Ol|].
2. A specifies any subset RA ⊂ [N], subject only to the constraint that |RA| ≤

N − 2. Let T := [N] \ RA denote the set of indices in [N] that are not
selected as part of RA, and let OA := {w′i | w′i 6= ⊥}i∈RA denote the set
of (non-⊥) output wire indices for all i ∈ RA. Further partition T as:
(a) T1 ⊆ T = {i | w′i = ⊥}: The subset of T consisting of indices i∈ [N]

whose output wire index w′i =⊥
(b) T2 ⊆ T \ T1 = {i | w′i ∈ OA}: The subset of T consisting of indices

i∈ [N] whose output wire index w′i (is not equal to ⊥ and) equals the
output wire index w′i′ for some index i′ ∈ RA

(c) T3 = T \(T1 ∪ T2): The subset of T consisting of indices i∈ [N] whose
output wire index w′i /∈(OA∪⊥)

3. For each i ∈ (RA ∪ T2), A sees inputs (wi, w
′
i) ∈ (⊥∪ {1, . . . , |Il|})× (⊥∪

{1, . . . |Ol|}).
4. A chooses j /∈ (RA ∪ T2), and outputs guess (wj , w

′
j) for j’s input and

output wire indices.
5. A wins if (at least) one of its guesses {wj , w′j} is both correct and nota the

special value ⊥.

Protocol ΠORG is secure if any (polynomially bounded) adversary A’s proba-
bility of winning the above security game is bounded by:

Pr[A wins via correct wj] ≤
1

|Il|
and

Pr[A wins via correct w′j] ≤
1

|Ol| − |OA|
a Observe that Adversary A cannot win if T3 = ∅.

Fig. 10: Definition of ΠORG via (rate-1) PIR in Beneš Network G (continued).

5.2 Emulated Permutation Routing (EPR)

21

Per-Experiment Emulated Permutation Routing Protocol ΠEPRm

Input. Same parameters as parent protocol ΠNIAR. Also, router C has:
1. For each node µ = µĉ,r,l and each of its 1 ≤ j ≤ |Ol| outgoing wires: A rate-1

PIR query qµ,j .
2. For each sender Si: Ciphertext Encpki(mi).

Output. For each row index 1 ≤ r ≤ N and for each of the c input wires to the
node µr that is on row r of the last level in G, output values {zr,j}r∈[N],j∈[c] ∈
{0, 1}(cEnc+(1+b)·(1+logN)·δPIR).

Protocol. This protocol has central router C simulate traverse graph G, acting
as the (rate-1) PIR server at each node µl on level l. The simulation begins with
router C assigning the values {Encpki(mi)} to each input wire of each node at
row i of level 0. The values that are written on the outgoing wires of any node
µl (for l ≥ 0) are the (rate-1) PIR response that would result from issuing PIR
query qµl . We now formalize the protocol rules:
1. [Level −1]. For each node µ = µĉ,r,0 on level 0 (for any ĉ ∈ [c] and any

r ∈ [N]), C writes value Encpkr (mr) (from Input Step 2) on each of µĉ,r,0’s
input wires (there are |I0| = c) such input wires. Let Aµ denote the virtual
array that holds these |I0|= c values, each of size |v0|= cEnc (see Figure 6).

2. [Levels 0 ≤ l ≤ (b+ (1 + b) · logN)]. For each node µ = µĉ,r,l on level l:
(a) Let Aµ denote the virtual array holding the |Il| values (each value of size
|vl| = cEnc+ l ·δPIR) on each input wire leading to µ. Note that this array
was constructed in Step (2d) of the previous iteration, or in Step 1 if l = 0.

(b) For each output wire 1 ≤ j ≤ |Ol| of µ, C simulates running the (rate-
1) PIR query qµ,j (from Input Step 1) against Aµ. Let zµ,j denote the
PIR response, and notice that (by definition of rate-1) it has size |zµ,j | =
cEnc + (l + 1) · δPIR.

(c) (If l= (b+(1+b)·logN) is the last iteration, skip this step and (2d) below.)
For each of the {zµ,j}, cluster each contiguous set of w values together:

{(zµ,1, . . . , zµ,w︸ ︷︷ ︸), (zµ,1+w, . . . , zµ,2w︸ ︷︷ ︸), . . . , (zµ,1+bw, . . . , zµ,(b+1)w︸ ︷︷ ︸)}
Âµ,1, Âµ,2, Âµ,b+1

where b = 1 if l = j · (1 + logN)− 1 (for any j ∈ [b]; see (3)); else b= c -1.
(d) Construct the PIR input array Aµ′ for each µ′ on the next level by con-

catenating the appropriate numbera of arrays {Âµ,j} (from Step 2c),
choosing the appropriate nodes µ (as dictated by which nodes µ have
output wires that lead to µ′, as per graph G).

3. [Level (1 + b) · (1 + logN)]. From the l = (b + (1 + b) · logN) iteration
of the previous Step 2.b, each node µ′ on level (b + (1 + b) · logN) had
exactly 1 value zµ′,1 that was generated (see e.g. (3)), and this value has size
|zµ′,1| = cEnc + (1 + b) · (1 + logN) · δPIR. For any node µ on the final level
l = (1 + b) · (1 + logN), there are c nodes {µ′j}j∈[c] from the previous level
that each have exactly one output wire leading to µ, and each such output
wire has value zµ′j ,1 of size |zµ′j ,1| = cEnc + (1 + b) · (1 + logN) · δPIR. Output

these {zµ′j ,1} as the final output for each node µ on the final level of G.

a Two arrays (Âµ̂,j , Âµ̃,j) are concatenated if (1 + logN) - l; otherwise c such
arrays are concatenated; see e.g. (2) (Figure 6).

Fig. 11: Per-Experiment Protocol ΠEPRm for Anonymous Permutation Routing.

22

6 Correctness and Security

In this section, we present a series of definitions and lemmas that allow us to
argue our main protocol (Figures 7 and 8) satisfies the correctness and security
properties of the NIAR model (Section 3.2). Due to space limitations, all proofs
can be found in the Supplementary Materials.

6.1 Probabilities in a Beneš Network

Lemma 5 Suppose that for each input node {νi}Ni=1 on the butterfly network of
Figure 1, a random path Pi of logN steps is performed. For any node µl (at
level l ∈ [0, logN]), let Xµl denote the random variable that indicates how many
of the paths {Pi} pass through node µl. Then for any integer k ≥ 1:

Pr[Xµl ≥ k] ≤ 2l

k!
(4)

Proof. Fix an arbitrary node µl at level l ∈ [0, logN]. Notice that a random
path Pi originating at input node νi (for i ∈ [N]) can pass through µl if and
only if νi is one of the 2l ancestors of µl (see Figure 12); and in this case, the
probability that a random path Pi originating at νi passes through µl is exactly
1/2l (see Figure 13). Since each random path is chosen independently from one
another, the random variable Xµl is exactly described by the probability mass
function of the binomial distribution, for Ml := 2l experiments (corresponding to
the Ml ancestors of node µl) and probability of success p = 1/Ml. Furthermore,
since the expected value of Xµl is Ml · p = 1, the probability is maximized when
Xµl = 1. Consequently, for any k ≥ 1:

Pr[Xµ ≥ k] ≤ (Ml − k) · Pr[Xµ = k]

≤ (Ml − k) ·
(
Ml

k

)
· pk · (1− p)Ml−k

≤ (Ml − k) · Ml · (Ml − 1) · · · · · (Ml − k + 1)

k!
· pk

≤ Ml · (Ml − 1) · · · · · (Ml − k)

k!
·
(

1

Ml

)k
≤ Ml

k!
=

2l

k!

23

Fig. 12: Ancestors of a node on some level of a Butterfly network with N = 8.

Fig. 13: Descendants of a node on some level of a Butterfly network with N = 8.

24

Lemma 6 Suppose that for each input node4 {νi}Ni=1 of a colored butterfly
network of Figure 2 (with replication factor c), a random path Pi of (1 + logN)
steps is performed (the first step chooses the color ĉ ∈ [1c]). For any node µl =
µĉ,r,l (at level l ∈ [0, logN], row r ∈ [N], and color ĉ ∈ [c]), let Xµl denote the
random variable that indicates how many of the paths {Pi} pass through node
µl. Then for any integer k ≥ 1:

Pr[Xµl ≥ k] ≤ 2l

k! · ck
(5)

Proof. The argument is analogous to the proof of Lemma 5, with each node µl =
µĉ,r,l (at level l ∈ [0, logN], row r ∈ [N], and color ĉ ∈ [c]) still having Ml = 2l

ancestor nodes (now at level −1), and with each ancestor having probability
p = 1/(c ·Ml) of passing through node µl (e.g. one of c edges are chosen from
level −1 to level 0 that determines the “color”). Therefore, the analysis used in
the proof of Lemma 5 can be followed exactly, plugging in p = 1/(c ·Ml) in the
last step.

Lemma 7 Suppose that for each input node {νi}Ni=1 of a colored butterfly net-
work of Figure 2 (with replication factor c), a random path Pi of (1+logN) steps
is performed (the first step chooses the color ĉ ∈ [c]). For any integer k ≥ 1, let
Xk denote an indicator variable on whether there exists any node µ (in the en-
tire colored butterfly network) that has more than k (of the N total) random
paths {Pi} pass through it. Then:

Pr[Xk = 1] ≤ 2c ·N2

k! · ck
(6)

Proof. Since k ≥ 1, there are clearly no nodes on levels −1 or 0 that have more
than one path pass through it. The corrolary therefore follows immediately from
(5), by applying a union bound over all of the c ·N logN nodes (c ·N nodes on
each of the levels l ∈ [1, logN]):

Pr[Xk = 1] ≤ (c ·N) ·
logN∑
l=1

2l

k! · ck
=

(
c ·N
k! · ck

)
·
logN∑
l=1

2l ≤ 2c ·N2

k! · ck

We now extend a (colored) butterfly network by concatenating several “blocks,”
each block consisting of logN levels, and then finishing with one final level that
is the mirror reflection of a butterfly network:

Definition 8 An extended (colored) Beneš network with b blocks consists of b
butterfly networks concatenated together, followed by a single (reflected) butterfly
network. Additionally, where each pair of blocks are connected, there is a single
level inserted which consists of edges connecting all colors of each node (at each

4 A colored butterfly network can be viewed as c disjoint butterfly networks overlaid on
top of one another. Alternatively, we can view a colored butterfly network as a single
(connected) graph by adding an extra input level (with level index -1) on the far
left, consisting of N input nodes. Then there are c edges emanating from each input
node, connecting it to each of the c colored nodes in level 0 of the corresponding row.

25

“row”) to each other; see Figure 5. A block j, for j ∈ [1, (1 + b)], refers to the
(1+logN) levels (and edges) between levels (j−1) ·(1+logN) and j ·(1+logN).
That is, a block corresponds to a contiguous set of (1 + logN) levels, whose first
logN levels are a butterfly network, and the last level is the “connecting” level
that consists of all edges connecting the different colors of all nodes on the same
“row.”5 The input level of a block j ∈ [1, 1 + b] is level (j − 1) · (1 + logN), and
the output level is j · (1 + logN) (notice the input level of block b is the same as
the output level of block b− 1).

The following is analogous to Lemma 7, but bounds the probability with respect
to each block of an extended, colored Beneš network:

Lemma 9 Let σ : [N]→ [N] be an arbitrary permutation on N items. Suppose
that for each input node {νi}Ni=1 of an extended, colored Beneš network with
replication factor c and b blocks, a random path Pi of (1 + b · (1 + logN)) steps
is performed, and then each such path is extended (from level (b · (1 + logN)) to
level (1+b) ·(1+logN)) by traversing the unique path from the current node (on
level (b · (1 + logN))) to σ(i) (see Figure 5). For any j ∈ [1, (b+ 1)] and for any
integer k ≥ 1, let Xj,k denote an indicator variable on whether there exists any
node µj within block j (i.e. between levels [(j−1) · (1+logN), j · (1+logN)−1]
that has more than k (of the N total) random paths {Pi} pass through it. Then:

Pr[X1,k = 1] = Pr[X1+b,k = 1] ≤ 2c ·N2

k! · ck

∀ j ∈ [2, b] : Pr[Xj,k = 1] ≤ c ·N2 · (1 + logN)

k! · ck
(7)

Proof. For j = 1, (7) follows immediately from Lemma 7. Similarly for j = 1+b,
since σ is a permutation, then the setup (for continuing each path {Pi}Ni=1 from
level (b · logN) through the final output level 1 + (1 + b) · logN) is identical (up
to reflection/mirror image) to the hypotheses of Lemma 7. Thus, it remains to
demonstrate (7) for each j ∈ [2, b].

The argument for all such blocks j is simply a counting argument: since each
path has an equal probability of starting at any of the (c · N) nodes on the
“input” level of block j (namely, on level (j − 1) · (1 + logN)), and from there
a uniformly random path is chosen, we have that for any level l ∈ [(j − 1) · (1 +
logN), j · (1 + logN) − 1] contained in the jth block, each path has an equal
probability of passing through each of the (c·N) nodes on that level. For any node
µj in the jth block, let Xµj denote the random variable that counts the number
of paths passing through µj . Then Xµj is exactly described by the probability
mass function of the binomial distribution, for N experiments (corresponding to
the N paths {Pi}) and probability of success p = 1/(c ·N). Furthermore, since
the expected number of paths passing through µj is N · p = 1/c, the probability

5 In the special case of the (1+b)th block, the first logN levels of this block are a
reflected butterfly network, and the last level of the block is the final “output” level
of the entire network.

26

is maximized when Xµj = 1/c. Consequently, for any k ≥ 1:

Pr[Xµj ≥ k] ≤ (N − k) · Pr[Xµj = k]

≤ (N − k) ·
(
N

k

)
· pk · (1− p)N−k

≤ (N − k) · N · (N − 1) · · · · · (N − k + 1)

k!
· pk

≤ N · (N − 1) · · · · · (N − k)

k!
·
(

1

cN

)k
≤ N

k! · ck
(8)

Thus, applying a union bound on the cN(1 + logN) nodes in block j:

Pr[Xj,k] ≤ (cN(1 + logN)) · Pr[Xµj ≥ k] ≤ c ·N2 · (1 + logN)

k! · ck

6.2 Permutation Routing Problem

We begin with the definitions that are needed to describe the Permutation Rout-
ing Problem and the desired properties that a successful solution must exhibit.

Definition 10 Given a graph G = (V,E) and a collection of paths {Pi} within
the graph, we say that any given path Pi is edge-disjoint from the others if no
edge in Pi is contained/traversed by any other path. We say the entire collection
of paths {Pi} is edge-disjoint if each individual edge is edge-disjoint.

Definition 11 A Permutation Routing Problem(N, σ,G) is defined as follows:
For input integer N ∈ N, permutation σ : [N] → [N], and graph G that has
N designated “input” nodes {I1, I2, . . . , IN} and N designated “output” nodes
{O1, O2, . . . , ON}, construct N edge-disjoint paths through G that connect each
input-output pair (Ii, Oσ(i)).

We extend the notion of the extended, colored Beneš network to a wide-edged
variant, in which each edge has been replicated w times (which can equivalently
be viewed as each edge having capacity w):

Definition 12 A wide-edged, extended, colored Beneš network B(N, b, c, w) is
an extended and colored Beneš network (Figure 5) in which, for each level l ∈
[1, (b+(1+ b) · logN)], each edge connecting levels (l-1, l) is replicated w times.

Notice that the added color and edge-width features serve a similar purpose:
they each reduce the probability of an edge conflict (i.e. increase the probability
of being edge-disjoint, as per Definition 10); but they do so in slightly different
ways: the color feature not only introduces new edges, but also additional nodes,
so that once a path chooses a color for a particular block (which happens only at
the start of each block, when there is a transition between levels in which each
edge connects the various “colors” corresponding to the nodes on a common
“row;” see Figure 5), it will not conflict (on the present block) with paths that
chose another color. In contrast, the edge-width feature reduces the chances that
two paths conflict across a given edge; but those same paths may still end up in
the same node at the far end of this edge, and thus may conflict in a later edge.

27

Definition 13 Given a wide-edged, extended, colored Beneš networkB(N, b, c, w),
and given a routing algorithm Π = ΠN,σ,G=B(N,b,c,w) that attempts to solve the
Permutation Routing Problem (Definition 11), for each i ∈ [N] and for each
block 1 ≤ j ≤ (1 + b), let XΠ(i, j) denote the boolean random variable that indi-
cates whether Π constructs an edge-disjoint path on the jth block for the pair
(Ii, Oσ(i)). That is, XΠ(i, j) = 1 if the path connecting Ii and Oσ(i) within the

jth block (as specified by Π) is edge-disjoint from all other paths specified by Π.

The algorithm in Figure 14 formalizes a näıve solution for the Permutation
Routing Problem in which random paths are chosen in an extended and colored
Beneš network. Namely, this algorithm specifies that each path Pi emanating
from input Ii chooses random edges for each level through the first b blocks
in an extended and colored Beneš network B(N, b, c, w), and then follows the
unique path from its current node on level (b · (1 + logN)) to the destination
node Oσ(i) (by choosing one of the w replicates of each edge along this path).

We now demonstrate several properties that the näıve routing protocol of
Figure 14 satisfies.

Lemma 14 Let Π = Πσ
N

denote the routing algorithm of Figure 14 on a wide-
edged, extended, and colored Beneš network B(N, b, c ≥ 2, w). Then for any
i ∈ [0, N], for any 1 ≤ j ≤ (1 + b), and for any 1 ≤ k ≤ N , the probability that
XΠ(i, j) = 0 (as per Definition 13) is bounded by:

Pr[XΠ(i, j) = 0] ≤ (1 + logN) ·
(
c ·N2(1 + logN)

k! · ck
+

k

2w

)
(9)

Proof. Fix any i ∈ [N], j ∈ [(1+b)], and k ∈ [N]. Let Pidenote the path selected
by Πσ

N
connecting (Ii, Oσ(i)) for a given run of the algorithm in Figure 14. Let

el be an edge in Pi that is in block j; that is, el connects levels (l, l + 1) for
some level l ∈ [(j − 1) · (1 + logN), (j · (1 + logN) − 1)]. We first argue that
the probability that el is not edge-disjoint (that is, that some other path Pi′
specified by Πσ

N
also contains el, for i′ 6= i) is bounded by:

Pr[el ∈ Pi′ for i′ 6= i] ≤ c ·N2(1 + logN)

k! · ck
+

k

2w
(10)

To prove (10), let µl denote the node on level l that lies on Pi (so the left-hand
node of edge el), and let Zk,µl denote the boolean random variable indicating
whether µl has more than k total paths that pass through it (as specified by the
given run of Πσ

N
). Consider:

Pr[el ∈ Pi′ for i′ 6= i] ≤ Pr[el ∈ Pi′ for i′ 6= i | Zk,µl = 1] · Pr[Zk,µl = 1] +

Pr[el ∈ Pi′ for i′ 6= i | Zk,µl = 0] · Pr[Zk,µl = 0]

≤ Pr[Zk,µl = 1] + Pr[el ∈ Pi′ for i′ 6= i | Zk,µl = 0]

≤ c ·N2(1 + logN)

k! · ck
+

k

2w
(11)

28

Routing Algorithm ΠN,σ,G in a Wide-Edged, Extended, and Colored
Beneš NetworkB(N, b, c, w)

Input. Parameters N = 2n, b, c, w ∈ N, and a permutation σN : [N] → [N].
Also, a given wide-edged, extended, and colored Beneš network B(N, b, c, w)
with N designated “input” nodes {I1, I2, . . . , IN} (on level −1) and N desig-
nated “output” nodes {O1, O2, . . . , ON} (on level (1 + b) · (1 + logN)).

Output. The specification of N paths {Pi}Ni=1 connecting each (Ii, Oσ(i)).

Protocol. For each row index 1 ≤ i ≤ N , run the ΠN,σ,G(i) sub-protocol.

Sub-protocol ΠN,σ,G(i): Outputs path Pi connecting input node Ii with out-
put node Oσ(i).

1. [First Step.] Choose a uniformly random value ĉ-1 ∈ [c], and set the first
edge in Pi (which connects node Ii (at level −1) to one of its c neighbors
on level 0) accordingly.

2. [“Internal” Blocks.] For each block 1 ≤ j ≤ b:
(a) Choose a uniformly random node µj on the output level of block j

(level j · (1+logN)). Namely, choose a uniformly random color ĉj ∈ [c]
and uniformly random row rj ∈ [N]. Notice that choice of µj com-
pletely determines the “up/down” specification of path Pi on block
j. It remains only to specify, for each expanded edge, which of the w
duplicates of this edge to traverse.

(b) For each 1 ≤ l ≤ (1 + logN), choose a uniformly random value wj,l ∈
[w], which specifies which duplicated edge Pi will traverse between
levels (j − 1) · (1 + logN) + l − 1 and (j − 1) · (1 + logN) + l.

3. [Final Block.] For each 1 ≤ l ≤ logN, set the edge connecting level (b · (1 +
logN) + l − 1, b · (1 + logN) + l) in Pi as follows:
(a) Choose a uniformly random value wl ∈ [w].
(b) Let rl ∈ {0, 1} be determined by σ(i); namely, rl = 0 iff the (logN −

l − 1) bit of the target node σ(i)’s row is 0. Set the next edge in Pi
according to (wl, rl); i.e. choose the wth duplicate of the “up” edge if
rl = 0, and otherwise choose the wth duplicate of the “down” edge.

4. [Final Level.] For l = (1 + b) · (1 + logN): set the final edge in Pi to be the
unique edge that leads from the current node (on level l) to node Oσ(i).

Fig. 14: Routing algorithm Π
N,σ,G

in a wide-edged, extended and colored Beneš
network B(N, b, c,w).

where the first term of (11) comes from (7), and the second comes from applying
a union bound: since there are at most k other paths that pass through µl (since
Zk,µl = 0 for this term), the probability that any of these (at most k) paths
also traverses edge el is bounded by 1/2w (since there are the two6 choices of
“up/down,” and (expansion factor) w choices for which duplicate of each edge.

6 In the case that el traverses the final level of the block, then instead of two there
are c choices for edge (corresponding to each edge leading to each color node), and
by assumption c ≥ 2.

29

Using(10), we conclude the proof by applying a union bound on the (1+logN)
levels in block j.

We now extend Definition 13 (and in particular the indicator random variable
XΠ(i, j) = 0) to a statement about a path Pi being edge-disjoint across the
entire network G:

Definition 15 Given a routing algorithm Π = ΠN,σ,G that attempts to solve
the Permutation Routing Problem (Definition 11), for each i ∈ [N], let XΠ(i)
denote the boolean random variable that indicates whether Π constructs an edge-
disjoint path for the pair (Ii, Oσ(i)). That is, XΠ(i) = 1 if the path connecting Ii
and Oσ(i) (as specified by Π) is edge-disjoint from all other paths specified by Π.

Lemma 16 Let Π = Πσ
N

denote the routing algorithm of Figure 14 on a wide-
edged, extended, and colored Beneš network B(N, b, c ≥ 2, w). Then for any
i ∈ [N] and for any 1 ≤ k ≤ N , the probability that XΠ(i) = 0 (as per Definition
15) is bounded by:

Pr[XΠ(i) = 0] ≤ (1 + b) · (1 + logN) ·
(
c ·N2 · (1 + logN)

k! · ck
+

k

2w

)
(12)

Proof. This follows immediately from Lemma 14 by applying a union bound on
the (1 + b) blocks of the Beneš network B(N, b, c, w).

We are now ready to present the final definition and corresponding statement
that will be required for the correctness property of protocol 7.

Definition 17 Given an (independent) collection {Πm} of M routing algo-
rithms that attempt to solve the Permutation Routing Problem (see Definition
11) in a wide-edged, extended and colored Beneš network B(N, b, c, w), let X de-
note the boolean random variable that indicates if, for every i ∈ [N], there exists
(at least) one experiment m ∈ [M] in which XΠm(i) = 1 (where XΠm(i) is the
random variable in Definition 15).

Corollary 18 For any security parameter λ and for any input parameters 2n =
N ≥ 64, b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · logN · (1 + logN) (for7

aλ := max(2, λ1/(logN−1))), if the Routing Algorithm of Figure 14 is repeated
M := λ times, then the probability that X = 0 (Definition 17) is bounded by:

Pr[X = 0] <

(
3

4

)λ
(13)

7 Notice aλ = 2 if λ ≤ N/2.

30

Proof. First, we examine the RHS of (12) with the parameter values as specified
and with k = logN :

(1+b)·(1+logN)·
(
cN2·(1+logN)

k!·ck
+

k

2w

)
= λ·

(
4aλN

2·(1+logN)2

(logN)!·alogNλ · 4logN
+

logN

96λlogN

)

= λ·

(
4·(1+logN)2

(logN)!·alogN−1λ

+
1

2.4λ

)

< λ·
(

1

3λ
+

5

12λ

)
=

3

4
(14)

where we have used in the inequality that 4·(1+logN)2

(logN)! < 1/3 (which holds for

any N ≥ 64) and that alogN−1λ ≥ λ (which is immediate by definition of aλ).
Consider:

Pr[X = 0] ≤ Pr[∀ m ∈ [M] : XΠm(i) = 0]

≤
(

(1 + b) · (1 + logN) ·
(
c ·N2 · (1 + logN)

k! · ck
+

k

2w

))M
<

(
3

4

)λ
where the first inequality is Lemma 16 and the second inequality is (14) and
substituting M = λ.

Ultimately, Corollary 18 will demonstrate correctness of our routing protocol
(7). However, for the security property, we will need to consider two sets of
(input, output) node pairs. The following definition (which extends Definition
13, but for two sets of (input, output) pairs of nodes) will be used to capture
the requisite probabilities for our security proof.

Definition 19 Given a wide-edged, extended, colored Beneš network B(N, b, c, w)
and two routing algorithms Π = ΠN,σ,G=B(N,b,c,w) and Π ′ = Π ′N,σ,G=B(N,b,c,w)

that attempt to solve the Permutation Routing Problem (Definition 11), for any
pair of row indices (i, i′) ∈ [N] and for any block 1 ≤ j ≤ (1 + b), let YΠ,Π′(i, i′, j)
denote the boolean random variable that indicates whether each of the four paths
{Pi,Pi′ ,P ′i,P ′i′} are edge-disjoint from all other paths on block j.

Aside. Notice that Definition 19 is only concerned about what happens on a
single block of a wide-edged, extended, and colored Beneš network B(N, b, c, w).
In particular, we do not actually require two routing algorithms Π, Π ′ to be de-
fined on the full network B(N, b, c, w) in order to evaluate whether YΠ,Π′(i, i

′, j)
equals zero or one on a given block j ∈ [1, 1 + b] (as per Definition 19); rather,
we only need to know what each algorithm does on block j. Also notice that
there is no requirement that the four paths be edge-disjoint from each other.

31

Definition 20 Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and a routing algorithm Π = ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 11), and given any pair of row indices
i, i′ ∈ [N] and any block index j ∈ [1, (1 + b)], define the block j alternate routing
algorithm Π′i,i′,j as follows:

– Π ′i,i′,j is identical to Π on the first (j − 1) blocks.

– On the jth block:

• For all î /∈ {i, i′}: Π ′i,i′,j is identical to Π.

• Let µi (respectively µi′) denote the node on the output level (which has level
index j · (1 + logN)) of block j that Pi (respectively Pi′) passes through,
as per Π (see Step 2a of Figure 14). Then Π ′i,i′,j is identical to Π except

that the choice of µi versus µi′ is swapped in Step 2a for i and i′.8

– For all blocks beyond the jth block:

• For all î /∈ {i, i′}: Π ′i,i′,j is identical to Π.

• For i, i′: Π ′i,i′,j is identical to Π, except that it has swapped paths Pi andPi′.9

With these definitions in hand, we provide an analogous probability bound for
YΠ,Π′(i, i

′, j) as Lemma 14 provided for XΠ(i, j).

Lemma 21 Let Π = Πσ
N

denote the routing algorithm of Figure 14 on a wide-
edged, extended, and colored Beneš network B(N, b, c≥ 2, w). Fix any pair of row
indices i, i′ ∈ [N] and any block index j ∈ [1, (1+b)], and let Π ′ = Π ′i,i′,j denote
the “block j alternate routing protocol” (Definition 20). Then for any 1 ≤ k ≤ N ,
the probability that YΠ,Π′(i, i

′, j) = 0 (as per Definition 19) is bounded by:

Pr[YΠ,Π′(i, i
′, j) = 0] ≤ 4 · (1 + logN) ·

(
c ·N2 · (1 + logN)

k! · ck
+

k

2w

)
(15)

Proof. We can use a similar argument as was done for Lemma 14 to bound the
probability that any one of the four paths {Pi,Pi′ ,P ′i,P ′i′} is not edge-disjoint.
Specifically, observe that:

– ∀̂i /∈{i, i′}: Pî =P ′î (by construction ofΠ ′), and hence any of the four paths in
{Pi,Pi′,P ′i,P ′i′} is edge-disjoint fromP ′î if and only if it is edge-disjoint from Pî.

– For any of the four paths in {Pi,Pi′ ,P ′i,P ′i′}, the setup is identical to the
setup in the hypotheses of Lemma 14, except that there are now N + 2 total
paths through block j (instead of just N paths). Namely, N−2 of the N paths
specified by P ′ exactly overlap with the corresponding N − 2 paths specified
by P, plus the (up to) four distinct paths: {Pi,Pi′ ,P ′i,P ′i′}.

8 Notice that if µi =µi′, then Π ′i,i′,j is identical to Π (for all paths {Pi}) on all blocks
through j (including block j).

9 Swapping paths is only necessary for the sake of making sure the paths link up/
connect between blocks (since output node µi and µi′ were swapped in block j).
However, as was noted in the Aside note following Definition 19, the details of what
Π ′i,i′,j does beyond block j will be irrelevant for the context of Lemmas 21 and 24.

32

However, notice that Definition 19 does not require the four paths {Pi,Pi′ ,P ′i,P ′i′}
to be edge-disjoint from each other. Therefore, when counting the number of
paths that pass through a given node (see e.g. the analysis leading to (8)), we
can ignore these four paths. More specifically, the bounds from Lemma 9 (and
more specifically, in (7)) can be used as-is (they still provide an upper-bound,
although they could be slightly tightened to leverage that there are only N − 2
relevant paths instead of the N paths that were used in the analysis leading to
(8)) when bounding Pr[Zk,µl = 1], as per the analysis in the proof of Lemma 14
(see (11)). Consequently, the analysis used in the proof of Lemma 14 remains
valid, and hence, for any of the four paths, the probability that the path is edge-
disjoint (from the N − 2) other paths in {Pî}̂i 6=i,i′ on block j is bounded by

(1 + logN) ·
(
c·N2·(1+logN)

k!·ck + k
2w

)
. We conclude the proof by applying a union

bound on the individual probabilities, for the four paths {Pi,Pi′ ,P ′i,P ′i′}.

Just as XΠ(i, j) (Definition 13) and the corresponding bound for it (Lemma 14)
were extended from variables/statements about blocks to variables/statements
about the entire network (in the corresponding Definition 15 and Lemma 16),
we likewise extend YΠ,Π′(i, i

′, j) (Definition 19) and the corresponding Lemma
21 to variables/statements about the entire network. However, these extensions
differ slightly from before, as ultimately we only need the existence of a block
that satisfies the key property, as opposed to requiring that all blocks satisfy
some property.

Definition 22 Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and given two routing algorithms Π = ΠN,σ,G and Π ′ = Π ′N,σ,G
that attempt to solve the Permutation Routing Problem (Definition 11), for any
pair of row indices (i, i′) ∈ [N], let YΠ,Π′(i, i′) denote the boolean random variable
that indicates whether there exists some block j ∈ [1, (1 + b)] in which the four
paths {Pi,Pi′ ,P ′i,P ′i′} are each edge-disjoint from all other paths on block j.

Definition 23 Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and a routing algorithm Π = ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 11), and given any pair of row indices
i, i′ ∈ [N], define the alternate routing algorithm Π′i,i′ as follows:

1. ∀ j ∈ [1, (1+b)], let Π ′j = Π ′i,i′,j denote the block j alternate routing algorithm
(Definition 20).

2. Construct Π ′i,i′ from the family of alternate routing algorithms {Πj} as follows:

a. If there exists an index j ∈ [1, (1 + b)] such that YΠ,Π′j (i, i
′, j) = 1 (as

per Definition 13), then let Π ′i,i′ = Π ′j (for the minimal j satisfying
YΠ,Π′j (i, i

′, j) = 1).

b. Otherwise, define Π ′i,i′ = Π.

Lemma 24 Let Π = Πσ
N

denote the routing algorithm of Figure 14 on a wide-
edged, extended, and colored Beneš network B(N, b, c ≥ 2, w), let i, i′ ∈ [N] be
any two row indices, and let Π ′ = Π ′i,i′ be the alternate routing algorithm (as

33

per Definition 23). Then for any 1 ≤ k ≤ N , the probability that YΠ,Π′(i, i
′) = 0

(as per Definition 22) is bounded by:

Pr[YΠ,Π′(i, i
′) = 0] ≤

(
4 · (1 + logN) ·

(
c ·N2(1 + logN)

k! · ck
+

k

2w

))(1+b)

(16)

Proof. For any index ĵ ∈ [1, (1 + b)], let Πĵ denote the “block j alternate
routing algorithm” as per Definition 20, with corresponding random variable
YΠ,Π′

ĵ
(i, i′, ĵ) (as per Definition 19). Then by Lemma 21, the probability that

YΠ,Π′
ĵ
(i, i′, ĵ) = 0 is bounded by 4 · (1+logN) ·

(
c·N2·(1+logN)

k!·ck + k
2w

)
. Therefore,

the probability that YΠ,Π′j (i, i
′, j) = 0 for all block indices j ∈ [1, (1 + b)] is

bounded by
(

4 · (1 + logN) ·
(
c·N2·(1+logN)

k!·ck + k
2w

))(1+b)
. The lemma therefore

follows from the observation that YΠ,Π′(i, i
′) = 1 if and only if Π ′ is defined

as per Step (2a) in Definition 23; i.e. if there exists j ∈ [1, (1 + b)] such that
YΠ,Π′j (i, i

′, j) = 1.

We are now ready to present the final definition and corresponding statement
that will be required for the security proof of protocol 7.

Definition 25 Given an (independent) collection {Πm} of M routing algo-
rithms that attempt to solve the Permutation Routing Problem (Definition 11)
in a wide-edged, extended and colored Beneš network B(N, b, c, w), let Y denote
the boolean random variable that indicates if, for every Πm and every pair of row
indices i, i′ ∈ [N], that YΠm ,Π′m(i, i′) = 1 (where Π ′m = Π ′m,i,i′ is the alternate
routing algorithm (Definition 23) and YΠm ,Π′m(i, i′) is the corresponding random
variable (Definition 22)).

Corollary 26 For10 any security parameter λ ≥ 8 and any input parameters
2n = N ≥ 64, b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · logN · (1 + logN) (for
aλ := max(2, λ1/(logN−1))), if the Routing Algorithm of Figure 14 is repeated
M := λ times, then the probability that Y = 0 (Definition 25) is bounded by:

Pr[Y = 0] <
λ ·N2

4λ
(17)

Proof. First, notice that with the parameters as in the hypothesis and with
k = logN , the inner-term (everything except the exponent) on the RHS of (16)

10 Notice that these parameter values all match those in the hypothesis of Corollary 18.

34

becomes:

4·(1+logN)·
(
cN2·(1+logN)

k!·ck
+

k

2w

)
= 4 ·

(
4aλN

2·(1+logN)2

(logN)!·alogNλ · 4logN
+

logN

2.4λlogN

)

= 4 ·

(
4·(1+logN)2

(logN)!·alogN−1λ

+
5

12λ

)

< 4 ·
(

1

3 ·N/2
+

5

96

)
≤ 4 ·

(
1

96
+

5

96

)
=

1

4
(18)

where we have used in the first inequality that 4·(1+logN)2

(logN)! < 1/3 (which holds

for any N ≥ 64), that alogN−1λ ≥ N/2 (which is immediate from the definition of
aλ), and that λ ≥ 8 (by hypothesis); and in the second inequality that N ≥ 64.
Consider:

Pr[Y = 0] = Pr[∃(m, i, i′) ∈ [M]× [N]× [N] : YΠm ,Π′m(i, i′) = 0]

≤ M ·N2 ·
(

4 · (1 + logN) ·
(
c ·N2(1 + logN)

k! · ck
+

k

2w

))(1+b)

≤ λ ·N2 ·
(

1

4

)λ
where the first inequality is from a union bound combined with Lemma 24; and
the second inequality is from (18) and substituting M = λ and b = λ− 1.

6.3 Security

Succinctly, security (anonymity) will follow for the routing protocol of Figure 7
from:

Corollary26 ⇒ (!∃A with non-negligible advantage in Challenge Game 1)

⇒ (!∃A with non-negligible advantage in Challenge Game 2)

⇒ (Routing Protocol of Figure 7 is secure (per Definition 11))
(19)

In this section, we define Challenge Games 1 and 2, and then demonstrate the
first two implications in (19) (the third implication was already presented in the
proof of Theorem 4).

Challenge Game 1

35

Input Parameters:
- Number of input/output nodes 2n = N ≥ 64.
- Security parameter λ ≥ 8.
- A wide-edged, extended and colored Beneš network G = B(N, b, c, w),

with parameters as per Corollaries 18 and 26: b = λ− 1, c = 4 · aλ, and
w = 1.2 · λ · logN · (1 + logN) (for aλ := max(2, λ1/(logN−1))).

- There are N “global input nodes” on level −1 of the Beneš network
G = B(N, b, c, w), which are denoted: I = {I1, I2, . . . , IN}, and N global
output nodes O = {O1, O2, . . . , ON}.

- Set the experiment replication amount M = λ.
Challenge Game:

1. Challenger C chooses a permutation σ on N elements σ : [N]→ [N].
2. For each experiment m ∈ [M]: Challenger C performs the routing algorithm
Πm = Πm,N,σb,G (for G = B(N, b, c, w)) of Figure 14. For each i ∈ [N], let
Pm,i denote the path chosen (by Πm) that connects nodes (Ii, σb(Ii)).

3. Let Y be the boolean random variable from Definition 25. If Y = 0, Chal-
lenger C aborts (Adversary A wins).

4. Challenger C chooses any two distinct indices i, i′∈ [N], and gives11 σ|[N]\{i,i′}
to Adversary A, which is the mapping of σ on all indices except i and i′.
Notice that since σ is a permutation, Adversary A now has complete knowl-
edge of σ, except for what σ does to i and i′. In particular, there are two
range indices σ(i), σ(i′) ∈ [N] that are not mapped to (based on what C
gives to A). Let τ denote the permutation that is identical to σ, except that
it swaps where i and i′ are mapped to (so τ(i) = σ(i′) and τ(i′) = σ(i)).
Notice that after this step, Adversary A knows that the permutation chosen
by Challenger C is either σ or τ .

5. (If this step is reached) Since Y = 1, for each run 1 ≤ m ≤M of the experi-
ment, we have that alternate routing algorithm Π ′m,i,i′ must have been con-
structed as per Step 2a of Definition 23 (as opposed to Step 2b). Therefore,
let jm ∈ [1, (1 + b)] denote the block index for which Π ′m,i,i′ is defined as in
Step 2a; i.e. jm (is the minimal index that) satisfies YΠm,Π′m,jm(i, i′, jm) = 1.
Then, for each experiment m ∈ [M]:
(a) [Block Index]: Challenger C gives Adversary A the block index jm (recall

this is the first block for which YΠm,Π′m,jm(i, i′, jm) = 1).
(b) [All Non-Interesting Paths]: Challenger C gives Adversary A all paths
{Pm,̂i}̂i/∈{i,i′}.

(c) [Interesting Paths Before Block jm]: Challenger C gives Adversary A,
through the first (jm-1) blocks only, paths Pm,i and Pm,i′ .

(d) [Interesting Paths + Alternate Paths for Block jm]: Denote the two
sub-paths of Pm,i and Pm,i′ that are restricted to block jm (i.e. just
the edges of these paths within block jm) and their two alternate sub-
paths (as specified by alternate routing protocol Π ′i,i′ (Definition 23))
as: {Pm,i,jm ,Pm,i′, jm ,P ′m,i,jm ,P ′m,i′, jm}.Then Challenger C gives Adver-
sary A the unordered set {Pm,i,jm ,Pm,i′, jm ,P ′m,i,jm ,P ′m,i′, jm}.

11 Notice that this information is also available indirectly from what C gives to A in
Step 5a below.

36

(e) [(Unordered) Interesting Paths Beyond Block jm]: For each level with
index jm · (1 + logN) ≤ l ≤ (1 + b) · (1 + logN) in G = B(N, b, c, w) that
lies after block jm, Challenger C gives Adversary A the unordered set of
edges {Pm,i,l,Pm,i′,l}l , where Pm,i,l (resp. Pm,i′,l) denotes the lth edge
on the path Pm,i (resp. on the path Pm,i′). In other words, Adversary
A learns the edges (beyond block jm) traversed by the paths Pm,i and
Pm,i′ , but A is not explicitly told which edges belong to which path
(Pm,i versus Pm,i′).

6. Adversary A outputs a guess of whether Challenger’s permutation was σ or
τ (see Step 4).

The Adversary A wins Challenge Game 1 either if Challenger C aborts in Step
3, or if A’s output guess in Step 6 is correct.

The main result for Challenge Game 1 (which is the first implication in (19)) is:

Lemma 27 The probability that an (unbounded) Adversary A wins Challenge
Game 1 is bounded by:

Pr[A wins Challenge Game 1] ≤ 1

2
+
λ ·N2

4λ
(20)

Proof. By Corollary 26, the probability that Adversary A wins in Step 3 is
bounded by 1

2·2λ . Thus, we need only show that the probability that Adversary
A wins in Step 6 (i.e. that A correctly chooses between σ and τ) equals 1/2. This
in turn follows immediately from the definition of YΠ,Π′(i, i

′, j) (Definition 19):
Since AdversaryA was given an unordered set {Pm,i,jm,Pm,i′, jm,P ′m,i,jm,P ′m,i′, jm}
in Step 5d, there is no way for the Adversary A to distinguish the actual path
Pm,i,jm (as per Πm) from its alternate path P ′m,i,jm (as per Π ′m); and ditto for
Pm,i′, jm and its alternate path P ′m,i′, jm . Namely, if we let µm,i, µm,i′ denote the
two (not necessarily distinct) “block jm input level” nodes (i.e. the nodes at
level (jm − 1) · (1 + logN)) that Pm,i and Pm,i′ pass through, and similarly
let νm,i, νm,i′ denote the two (not necessarily distinct) “block jm output level”
nodes (i.e. the nodes at level (jm ·(1+logN))) that Pm,i and Pm,i′ pass through,
then notice:

– Within block jm: Pm,i,jm starts at µm,i and ends at νm,i.

– Within block jm: Pm,i′, jm starts at µm,i′ and ends at νm,i′ .

– Within block jm: P ′m,i,jm starts at µm,i and ends at νm,i′ .

– Within block jm: P ′m,i′, jm starts at µm,i′ and ends at νm,i.

Also, define the two sets of paths: “primary” paths Pm,0 := {Pm,i,jm , Pm,i′, jm}
and “alternate” paths Pm,1 := {P ′m,i,jm , P ′m,i′, jm}. Then notice that the Ad-
versary A can guess the correct permutation σ versus τ in Step 6 if and only
if it can distinguish between Pm,0 versus Pm,1, in terms of which correspond to
the “primary” paths and which is the “alternate” paths. Thus, it is sufficient to
show that this probability is 1/2.

Consider the following facts:

37

F1.a The probability that Challenger C chose Pm,i,jm (and hence P ′m,i,jm was
the “alternate”) equals the probability that Challenger C instead chose
P ′m,i,jm (and hence Pm,i,jm would have been the “alternate”).

F1.b The probability that Challenger C chose Pm,i′, jm (and hence P ′m,i′, jm was
the “alternate”) equals the probability that Challenger C instead chose
P ′m,i′, jm (and hence Pm,i′, jm would have been the “alternate”).

F2.a Amongst the two paths in Pm,0: One starts at µm,i and the other starts
at µm,i′ ; and one ends at νm,i and the other ends at νm,i′ .

F2.b Amongst the two paths in Pm,1: One starts at µm,i and the other starts
at µm,i′ ; and one ends at νm,i and the other ends at νm,i′ .

F3.a Both paths in Pm,0 are edge-disjoint (on block jm) from all other paths
{Pm,̂i}̂i/∈{i,i′}.

F3.b Both paths in Pm,1 are edge-disjoint (on block jm) from all other paths
{Pm,̂i}̂i/∈{i,i′}.

Given the above facts, there is no way for (even an unbounded) Adversary A to
distinguish whether the two paths in Pm,0 are the “primary” paths (selected by
Πm) with Pm,1 as the “alternate” paths (selected by Π ′m), or vice-versa, since:

– A priori, the two paths in Pm,0 are equally likely to be chosen by Πm as the
“primary” paths as the two paths in Pm,1 (Fact F1).

– The information of block index jm (dealt in Step 5a) is no help in distin-
guishing,

– The information of non-interesting paths (dealt in Step 5b) is no help in
distinguishing, since Pm,0 and Pm,1 are similarly edge-disjoint (on block jm)
from all other paths {Pm,̂i}̂i/∈{i,i′} (Fact F3).

– The information of paths Pm,i,jm and Pm,i′, jm before block jm (dealt in Step
5c) is no help in distinguishing, since both Pm,0 and Pm,1 have one path that
starts at µm,i and one that starts at µm,i′ (Fact F2).

– The information dealt in Step 5d is no help in distinguishing, since the pro-
vided list of paths {Pm,i,jm ,Pm,i′, jm ,P ′m,i,jm ,P ′m,i′, jm} is unordered.

– The (unordered) information of which edges lie in Pm,i,jm and Pm,i′, jm beyond
block jm (dealt in Step 5e) is no help in distinguishing, since both Pm,0 and
Pm,1 have one path that ends at νm,i and one that ends at νm,i′ (Fact F2).

Therefore, none of the information provided by the Challenger C (nor any other a
priori bias) provides any information to Adversary A that allows it to distinguish
between Pm,0 and Pm,1 (in terms of which are the “primary” paths and which
are the “alternate” paths). Consequently, the probability that Adversary A can
distinguish between Pm,0 and Pm,1 (in terms of which are the “primary” paths
and which are the “alternate” paths) is 1/2.

Challenge Game 2

Input Parameters:
- Number of input/output nodes 2n = N ≥ 64.

38

- Security parameter λs. Let λ := 2 logN + max(λs, 2 + log logN).
- A wide-edged, extended and colored Beneš network G = B(N, b, c, w),

with parameters as per Corollaries 18 and 26: b = λ− 1, c = 4 · aλ, and
w = 1.2 · λ · logN · (1 + logN) (for aλ := max(2, λ1/(logN−1))).

- There are N “global input nodes” on level −1 of the Beneš network
G = B(N, b, c, w), which are denoted: I = {I1, I2, . . . , IN}, and N global
output nodes O = {O1, O2, . . . , ON}.

- Set the experiment replication amount M = λ.
Challenge Game:

1. On input security parameter λ, Adversary A chooses N , two distinct per-
mutations σ0, σ1 on [N], a set of sender indices SA ⊆ [N] to corrupt, and a
set of receiver indices RA ⊆ [N] to corrupt; subject to constraints:
(a) |RA| ≤ N − 2;
(b) σ0 and σ1 match for all receivers in RA: ∀ i ∈ RA : σ−10 (i) = σ−11 (i).

2. Adversary A sends {σ0, σ1} to a Challenger C.
3. Challenger C chooses b ∈ {0, 1} (e.g. by flipping a coin) and selects permu-

tation σb ∈ {σ0, σ1}.
4. For each experiment m ∈ [M]:

(a) Challenger C performs the routing algorithm Πm = Πm,N,σb,G (for G =
B(N, b, c, w)) of Figure 14. For each i ∈ [N], let Pm,i denote the path
chosen (by Πm) that connects nodes (Ii, Oσb(i)).

(b) Adversary A is given the following information:
– For each i ∈ RA: all edges e ∈ Pm,i that are edge-disjoint from all

other paths Pm,j (for j 6= i).
– The list of edges {e} ∈ G that have at least two distinct paths
Pm,i,Pm,i′ pass through them, with i′ 6= i and i ∈ RA. Notice that
A is given only the identity of the set of edges {e}; in particular, A
is not given the information of which (nor even how many) indices
in [N] \RA traverse each such edge.

5. Let Y be the boolean random variable from Definition 25. If Y = 0, Chal-
lenger C aborts (Adversary A wins).

6. Adversary A outputs a guess b′ ∈ {0, 1} of which permutation {σ0, σ1}
Challenger C chose.

We say that the Adversary wins the above challenge if its output is correct.

The main result for Challenge Game 2 (which is the second implication in(19)) is:

Lemma 28 The probability that an (unbounded) Adversary A wins Challenge
Game 2 is bounded by:

Pr[A wins Challenge Game 2] ≤ 1

2
+

1

2λs
(21)

Proof. (Proof by contradiction.)
Suppose there exists a (computationally unbounded) adversary A that can win
the security challenge game with probability greater than 1

2 + 1
2λs

. We will show

39

this leads to a contradiction.

Reduction. Without loss of generality, we may assume that σ0 and σ1 differ in
exactly two indices i 6= i′, so that σ0(i) = σ1(i′), and σ0(i′) = σ1(i), and for all
other indices j 6= i, i′, σ0(j) = σ1(j) (this reduction gives the adversary an extra
factor of N advantage).

Proof (Proof of Reduction.). Consider the following chain of permutations:

(σ0 =)τ0, τ1, τ2, . . . , τN (= σ1), (22)

where each τi+1 is defined iteratively from τi, starting with τ0 = σ0. Then
given τi, define τi+1 to be the permutation that matches τi at all indices except
(possibly) in positions i and j ≥ i, where j := σ−10 (σ1(i)). Namely, τi+1(i) :=
σ1(i), and τi+1(j) := σ0(i) (= τi(i)). Then it is easy to demonstrate the for any
1 ≤ i ≤ N , permutations τi−1 and τi differ in (at most) two places.

We now apply a standard hybrid argument, to show that the existence of
an Adversary who wins the security challenge game with σ0, σ1 implies the
existence of an Adversary A′ who can distinguish between τi and τi+1 (for some
i ∈ [0, N]), with advantage:

Pr[A outputs b correctly] >
1

2
+

1

2λs
⇒

(23)

Pr[A′ distinguishes between τi and τi+1] >
1

2
+

1

N · 2λs
=

1

2
+

1

2λ

The proof by contradiction is now complete, as the existence of adversaryA′ with
advantage as per (23) violates (20), since for λ = 2 logN+max(λs, 2+log logN),
we have:

λ ·N2

4λ
=

1

2λ
· N2

22 logN
· λ

2α
≤ 1

2λ

where α := max(λs, 2 + log logN), and we have used that 2α ≥ λ since:

If λs ≥ 2 logN : Then λ ≤ 2λs ⇒ log λ ≤ λs ≤ α.
If λs ≤ 2 logN : Then λ ≤ 4 logN ⇒ log λ ≤ 2 + log logN ≤ α.

40

7 Acknowledgements

This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-19-C-0031, DARPA under Cooperative
Agreement HR0011-20-2-0025, the Algorand Centers of Excellence programme
managed by Algorand Foundation, NSF grants CNS-2001096 and CCF-2220450,
US-Israel BSF grant 2015782, ISF grant 2774/20, BSF grant 2018393, Cisco
Research Award, Google Faculty Award, JP Morgan Faculty Award, IBM Fac-
ulty Research Award, Xerox Faculty Research Award, OKAWA Foundation Re-
search Award, B. John Garrick Foundation Award, Teradata Research Award,
Lockheed-Martin Research Award and Sunday Group. Any views, opinions, find-
ings, conclusions or recommendations contained herein are those of the author(s)
and should not be interpreted as necessarily representing the official policies, ei-
ther expressed or implied, of DARPA, the Department of Defense, the United
States Air Force, the Algorand Foundation, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental
purposes not withstanding any copyright annotation therein.

References

AKS83. Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting
network. In Proceedings of the 15th Annual ACM Symposium on Theory
of Computing, 25-27 April, 1983, pages 1–9. ACM, 1983.

BGdMM05. Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose.
Correlation-resistant storage via keyword-searchable encryption. IACR
Cryptol. ePrint Arch., page 417, 2005.

CGH+21. Melissa Chase, Sanjam Garg, Mohammad Hajiabadi, Jialin Li, and Peihan
Miao. Amortizing rate-1 OT and applications to PIR and PSI. In Theory
of Cryptography - 19th Intl. Conference, pages 126–156. Springer, 2021.

COS10. Nishanth Chandran, Rafail Ostrovsky, and William E. Skeith. Public-key
encryption with efficient amortized updates. In Security and Cryptography
for Networks, 7th Intl. Conference, pages 17–35. Springer, 2010.

DGI+19. Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,
and Rafail Ostrovsky. Trapdoor hash functions and their applications. In
Advances in Cryptology - CRYPTO 2019 - 39th Annual Intl. Cryptology
Conference, pages 3–32. Springer, 2019.

GHO20. Sanjam Garg, Mohammad Hajiabadi, and Rafail Ostrovsky. Efficient
range-trapdoor functions and applications: Rate-1 OT and more. In The-
ory of Cryptography - 18th Intl. Conf., pages 88–116. Springer, 2020.

HOWW19. Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private
anonymous data access. In Advances in Cryptology - EUROCRYPT 2019
- 38th Annual Intl. Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 244–273. Springer, 2019.

IKOS04. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch
codes and their applications. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, pages 262–271. ACM, 2004.

IP07. Yuval Ishai and Anat Paskin. Evaluating branching programs on en-
crypted data. In Theory of Cryptography, 4th Theory of Cryptography
Conference, pages 575–594. Springer, 2007.

41

KO97. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SIN-
GLE database, computationally-private information retrieval. In 38th An-
nual Symposium on Foundations of Computer Science, FOCS ’97, October
19-22, 1997, pages 364–373. IEEE Computer Society, 1997.

Lei84. Frank Thomson Leighton. Tight bounds on the complexity of parallel
sorting. In Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, pages 71–80. ACM, 1984.

MS92. Bruce M. Maggs and Ramesh K. Sitaraman. Simple algorithms for routing
on butterfly networks with bounded queues (ext. abstract). In 24th Annual
ACM Symposium on Theory of Computing, pages 150–161. ACM, 1992.

OS07. Rafail Ostrovsky and William E. Skeith. A survey of single-database
private information retrieval: Techniques and applications. In Public Key
Cryptography - PKC 2007, 10th Intl. Conference on Practice and Theory
in Public-Key Cryptography, pages 393–411. Springer, 2007.

SW21. Elaine Shi and Ke Wu. Non-interactive anonymous router. In Advances
in Cryptology - EUROCRYPT 40th Annual Intl. Conf. on the Theory and
Applications of Cryptographic Techniques, pages 489–520. Springer, 2021.

Upf89. Eli Upfal. An o(log N) deterministic packet routing scheme (preliminary
version). In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, pages 241–250. ACM, 1989.

42

	Anonymous Permutation Routing

