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Abstract. The Non-Interactive Anonymous Router (NIAR) model was
introduced by Shi and Wu [SW21] as an alternative to conventional solu-
tions to the anonymous routing problem, in which a set of senders wish
to send messages to a set of receivers. In contrast to most known ap-
proaches to support anonymous routing (e.g. mix-nets, DC-nets, etc.),
which rely on a network of routers communicating with users via interac-
tive protocols, the NIAR model assumes a single router and is inherently
non-interactive (after an initial setup phase). In addition to being non-
interactive, the NIAR model is compelling due to the security it provides:
instead of relying on the honesty of some subset of the routers, the NIAR
model requires anonymity even if the router (as well as an arbitrary sub-
set of senders/receivers) is corrupted by an honest-but-curious adversary.

In this paper, we present a protocol for the NIAR model that improves
upon the results from [SW21] in two ways:
– Improved computational efficiency (quadratic to near linear): Our

protocol matches the communication complexity of [SW21] for each
sender/receiver, while reducing the computational overhead for the
router to polylog overhead instead of linear overhead.

– Relaxation of assumptions: Security of the protocol in [SW21] relies
on the Decisional Linear assumption in bilinear groups; while secu-
rity for our protocol follows from the existence of any rate-1 oblivious
transfer (OT) protocol (instantiations of which are known to exist
under the DDH, QR and LWE assumptions [DGI+19,GHO20]).
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1 Introduction

As the collection and access of digital information in our daily lives becomes
ever-more ubiquitous (internet, local networks, mobile networks, IoT), so too
does the need for the development of technologies to protect access and trans-
mission of this data. While protecting the integrity and access to sensitive data
remain important tasks, there has been a growing need for anonymity in pro-
tecting data access and communications between users. Throughout this pa-
per, anonymity will refer to the inability to associate which nodes in a network
are communicating with each other; i.e. the unlinkability between one or more
senders and the associated receiver(s). The conventional approach to provid-
ing such protection (onion routing, mix-nets, and others) relies on a network
of routers relaying messages, where anonymity is only guaranteed if there are
sufficiently many uncorrupted routers. A markedly different approach to this
problem was recently introduced by Shi and Wu [SW21], who proposed using
cryptographic techniques to hide connectivity patterns. Namely, they introduce
the Non-Interactive Anonymous Router (NIAR) model, in which a set of N re-
ceiving nodes wish to receive information from a set of N sending nodes, with
all information passing through a central router. Anonymity in their model is
defined to be the inability to link any sender to the corresponding receiver, even
if the router and (up to N − 2) various (sender, receiver) pairs are susceptible
to attack by an (honest-but-curious1) adversary.

There are a number of real-world scenarios in which the NIAR model as de-
scribed above is relevant. The important characteristics of any such application
is that a number of (sender, receiver) pairs wish to anonymously communicate
with each other through a central server, where the messages to be transmit-
ted are large and/or the communication channels are non-ephemeral/indefinite.
These conditions are exhibited, for example, in the following scenarios:

Anonymous Peer-to-Peer Communication. Relevant in settings where a
large set of users wish to communicate anonymously through a central server,
e.g. for a Messaging app, where every communication link is established as a
separate pair of (anonymous) virtual users.

Pub/Sub with Privacy. Because our solution is quasi-linear in message size,
the additional overhead of storing all messages is minimal. We can therefore view
the central router of the NIAR model as delivering each stream of messages it
receives from the N senders into N storage units, rather than delivering them
directly to receivers. In this way, the set of receivers can (privately) subscribe
to an information service/source, and periodically receive updates. Furthermore,
our protocol allows receivers to (privately) subscribe to multiple services at the

1 Our limitation to HBC adversaries is only needed to ensure Correctness of our pro-
tocol - that receivers get the correct messages. We note that requiring HBC for
correctness is unavoidable, as a malicious router can, for example, not forward any
message (like in PIR and other related primitives). In terms of Security (privacy
of the senders-receivers permutation): so long as the one-time Setup is performed
properly, then security of our protocol will hold in the Malicious adversary setting.
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same time, without revealing which services they are subscribed to.

Multi-Client PIR/PIW. In a similar spirit as the previous point, viewing the
receivers as storage units, the messages being streamed from the senders can
accumulate (or update previous messages), thus implementing a form of Private
Information Writing (PIW). Depending on the application (in terms of which
users will ultimately access/read the PIW server), hiding the linkage between
which location each sender writes to versus which location each receiver reads
from may require stronger security requirements, e.g. for our protocol, any re-
ceiver colluding with the central router will learn which sender it is reading from.

Oblivious Shuffle. A common scenario encountered in MPC protocols is when
two or more parties are secret sharing a list of values, and need to obliviously
permute the list, so that no party knows the permutation. Our protocol can be
used to implement this oblivious shuffle, by viewing one party as acting as all N
senders (for its list of N secret shared values), and sending the permuted shares
via the “central router” (also being simulated by the sending party) to the other
party (who is acting as all N receivers). This process is then reversed, with the
other party sending its shares to the first party, via the same permutation. There
are subtleties that need to be specified, such as ensuring that the permutation
remains unknown to each party (which can be handled as part of the Setup
procedure), and how to amortize the process to ensure efficiency (so the Setup
does not dominate overall cost), but in general a solution in the NIAR model
can be viewed as an instantiation of oblivious shuffle.

Permutation Routing with Anonymity. There has been substantial work
in researching permutation routing (e.g. [AKS83,Lei84,Upf89,MS92]), which was
inspired due to its relevance to parallel computing (for timing the connections
between processors and memory) and fault tolerant routing. Since the NIAR
model is essentially permutation routing with anonymity, any applications of
permutation routing that stand to benefit from hiding the permutation are rel-
evant to our work.

1.1 Technical Challenges

Notice that (assuming PKI) an immediate solution to anonymity in the NIAR
model is to have each sender encrypt their message (under the desired receiver’s
public key or using a shared secret key with the recipient), send the encrypted
message to the center router, and then simply have the router flood all N (en-
crypted) messages to each of the N receivers. While this näıve approach satisfies
anonymity (as well as privacy, in that receivers only receive messages intended for
them), it has the pitfall of excessive communication: O(N) for each receiver, and
O(N2) for the router. Shi and Wu [SW21] present a protocol which, under the
Decisional Linear assumption (on certain bilinear groups), achieves anonymity
with minimal communication overhead.

Having re-framed the goal of anonymity to the NIAR model and with the
toolbox of cryptographic techniques at hand, a natural observation is that Pri-
vate Information Retrieval (PIR) can be used as a potential solution. In a (single
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server) PIR protocol [KO97], a server stores a database DB of N elements, and
a client issues a query to the server to retrieve the ith element DB[i], for i of
its choice. Security in the PIR model means that the server does not learn any
information about the index i being queried. Thus, if N senders encrypt their
messages and send them to the router, we can let the router act as a PIR server
with the N concatenated (encrypted) messages forming the contents of the PIR
database. Each receiver can then issue a PIR query to fetch the appropriate
message, and anonymity follows from the security of PIR. As with the proto-
col of [SW21], this solution enjoys both the requisite security features, as well
as having minimal communication overhead (e.g. logN overhead, depending on
the PIR protocol; see survey of PIR results in [OS07]).

An important metric in determining the feasibility of a protocol in the NIAR
model is the end-to-end message transmission time, which depends on the com-
putational burden on each user, and especially that of the central router. A
significant drawback of both the protocol of [SW21]2 and the näıve PIR solu-
tion described above is that they require quadratic (in terms of the number of
users) computation at the router. As this computation cost is likely prohibitive
(or at least extremely inefficient) when there are a large number of users, we
set out to explore the possibility of a NIAR protocol that maintained the mini-
mal communication burden of the näıve PIR and [SW21] solutions, but reduced
computation overhead (at the router) from O(N2) closer to the optimal O(N).

Our first observation is that the NIAR model is similar to so-called “permu-
tation routing” (see Section 2.1), but with an additional anonymity requirement.
Namely, permutation routing seeks to connect N senders to N receivers through
a network, which (from a communication standpoint) is what is required in the
NIAR model. Our main idea was to leverage the efficient routing (and therefore
minimal overhead) of a permutation-routing network, but then to administer
PIR at each node to keep each routing decision hidden, thereby allowing for the
anonymity required by the NIAR model. In particular, we envisioned a solution
in which the central router simulates a virtual permutation-routing network by
itself, where the actual path the messages take (from each of the N senders on
one end of the network to the N receivers at the other end) is hidden (from
the central router) by using PIR along each edge. Namely, at each node of the
(virtual) network, a PIR query is applied to each of the node’s outgoing edges,
where the PIR query (privately) selects a message from one of the node’s incom-
ing edges.

While the above idea captures the spirit of our solution (and indeed, the
idea of layering PIR on top of various routing networks/protocols may have
other interesting applications for anonymizing communication), there are several
complications that required additional consideration:

2 Router computation is not explicitly measured in the protocol of [SW21], our analysis
of their protocol yields O(N2) computation load on the router: their Multi-Client
Functional Encryption (MCFE) protocol is invoked N times by the router, with each
invocation processing N ciphertexts.
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1. (Virtual) Network Size. Since each outgoing edge in the routing network is
assigned a PIR query, and this PIR query is applied to a (virtual) database
whose size is the number of incoming edges of the node in question, the
computation cost of simulating routing in a virtual network is roughly O(E ·
I), where E is the number of edges and I is the number of incoming edges
per node. Since E is necessarily at least Ω(N), having a NIAR protocol
with only polylog computation overhead requires that E is at most O(N ·
polylog N) and I is O(polylog N).

2. Standard PIRWon’t Work. Even if network size is small (O(N ·polylog(N))),
if the depth (number of nodes a message passes through from sender to re-
ceiver) is not constant, then standard PIR schemes will not work, since each
invocation of PIR typically has O(polylog(N)) bits in the PIR server’s re-
sponse, and hence the message size will incur an exponential blow-up with
network depth. For example, even log-depth networks will have messages of
size O(2logN ) = O(N) by the time they reach the last layer of the network,
which is no better than the näıve PIR approach mentioned above.

3. Correctness Requires Edge-Disjoint Paths. Since PIR is being used to hide
routing decisions made at each node/routing gate in the network, this re-
quires that each outgoing edge forwards the message on (at most) one of
the node’s incoming edges. In particular, if any two paths connecting two
different sender-receiver pairs in the permutation network contain a com-
mon edge, then correctness is compromised. Since a random path selection
algorithm will be crucial to proving anonymity, the given (virtual) permuta-
tion network must have the property that, with high probability, a random
sample of paths connecting the sender-receiver pairs are edge-disjoint.

4. Edge-Disjoint Property is Insufficient for Anonymity. While having edge-
disjoint paths is necessary for correctness, it is not sufficient to ensure
anonymity. For example, if the central router is colluding with (N -2) sender-
receiver pairs (and therefore only needs to determine the linkage amongst
the remaining two senders and two receivers), then knowledge that all paths
are edge-disjoint can give the router an advantage in identifying the link-
age between the remaining two senders and two receivers. Namely, the
router knows (via collusion) N -2 paths, and thus can eliminate available
options for the remaining two paths. For example, this attack is viable in
the Beneš network (which is commonly used in permutation routing litera-
ture; see Section 3.1) making it unsuitable when anonymity is required, and
justifying our usage of a more complex network. Indeed, since permutation-
routing networks have been studied outside of the context of anonymity,
to our knowledge there has not been any research into understanding how
network properties and path selection protocols impact anonymity.

1.2 Overview of Our Results

Our solution to the NIAR problem, which blends techniques from permutation
routing with techniques for hiding routing decisions made at each node of the
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(virtual) permutation network, overcomes the challenges outlined in the previ-
ous section as follows. By using familiar permutation-routing networks, which
are inherently small (O(N · polylog(N))), we ensure the network size is suitably
small, thus addressing the first potential issue. Furthermore, a common (and
well-studied) feature of many permutation-routing networks is the edge-disjoint
property, which inspired our choice to use an (extended) Beneš permutation
Network, thus addressing the third issue. We observe that there is an inherent
tension between network topology (number of nodes, edges, and depth) in terms
of achieving correctness and anonymity versus low router computation. Our solu-
tion includes carefully selecting appropriate network parameters to balance these
trade-offs. Meanwhile, recent works [DGI+19,GHO20,CGH+21] present so-called
rate-1 PIR protocols, which can address the second issue of exponential growth
of message size per network layer.

Addressing the fourth issue is one of our key technical achievements. In spirit,
the edge-disjoint property is related to anonymity, but as mentioned above, it
is in general insufficient. Identifying a property that is sufficient (and simulta-
neously not over-cumbersome in terms of network size), and then using such a
property to formally argue anonymity, requires some thought and careful anal-
ysis. Informally, this property states that not only are N randomly chosen per-
mutation paths through the network edge-disjoint (w.h.p), but even if the per-
mutation swaps the output nodes of any two input nodes and two new paths are
created to join these, then the collection of the old edges plus the two new sets
of edges are still edge disjoint (w.h.p); see Definition 2.

Assuming rate-1 PIR, we present in Figure 3 a routing protocol for the NIAR
model that achieves O(logN) per-party communication and O(N · polylog(N))
router computation. At a high level, our protocol dictates that the central router
emulates routing in a permutation network, whereby each routing gate is (virtu-
ally) obliviously evaluated using a rate-1 PIR query/response for each outgoing
edge. Our protocol consists of a setup phase in which the PIR queries that cor-
respond to all outgoing edges of every routing gate are prepared, and then an
online routing phase where a stream of (encrypted) messages are injected by the
senders and routed to the receivers (re-using the setup).

A succinct comparison of our results to other relevant works is in §2.3.

2 Previous Work

2.1 Permutation Routing

In permutation routing [AKS83,Lei84,Upf89,MS92], messages from a set of N
“input” nodes are routed through a network G to a set of N distinct “out-
put” nodes. Such works attempt to identify networks G with various desired
properties, and protocols within these networks that can efficiently route these
messages, for any possible permutation σ that dictates which input node is con-
nected to which output node. While our work is partially inspired by the routing
networks considered in this line of work, the NIAR model is quite different than
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the permutation routing model, both because of the number of routers (one ver-
sus Θ(N logN)) and due to the required privacy of the permutation σ. In other
words, we do not route the messages over a physical routing network (which is
an iterative process that depends on the “depth” of the network), but rather we
design our non-interactive routing protocol using a virtual sorting network.

2.2 PIR

There has been an extensive amount of work done on the original PIR prob-
lem [CGKS95,KO97] and its variants. Here, we discuss only a few of these works
that are most relevant to us.

Multi-Client PIR As discussed in the introduction, the NIAR problem can
be solved using multi-client PIR. Indeed, a solution to generic multi-client PIR
in which the PIR server’s work does not scale with the number of users would
imply an efficient solution for NIAR. While no such result is known, we discuss
a few relevant works and why they are insufficient for the NIAR model.

In [IP07], it is demonstrated how a single user can efficiently issue multiple
queries to a PIR server. However, their results rely on a single decoding algo-
rithm, whereas the NIAR model would require distinct decoding keys for each
of the N receivers. [HOWW19] present a related notion of private anonymous
data access; we note that the results in their model do not scale to the full cor-
ruption threshold (N − 2) required in the NIAR security model. Finally, results
in the related areas of Batch Codes [IKOS04] and Public-Key Encryption with
amortized updates [COS10] address a different model, and consequently do not
seem to be directly applicable to the NIAR model.

Rate-1 PIR A recent line of work [DGI+19,GHO20,CGH+21] has demon-
strated the viability of rate-1 PIR, in which the server response is compara-
ble in size to the database entry being fetched. Formally, for a database of N
elements each of size B, rate-1 PIR means that the ratio of B to the server
response size approaches 1 as N → ∞. Stated differently, a rate-1 PIR scheme
has an additive constant-stretch term δPIR, such that the server’s response has
size B + δPIR. Rate-1 PIR is known to exist under the DDH, QR and LWE
assumptions [DGI+19,GHO20].

Doubly Efficient PIR (DEPIR) In a recent result of Lin et al. [LMW22],
they demonstrate a PIR protocol that, after a pre-processing phase that costs
O(N1+ϵ) in server computation, enjoys polylog N communication and compu-
tation for each PIR query. If this DEPIR protocol were to be used to solve the
NIAR problem (as per the straightforward application described in Section 1.1),
the resulting protocol would have O(N1+ϵ) computation at the router for each
new message packet/bit of the senders (since each database update would trigger
a new “pre-processing” phase of the PIR server).
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N -2 Pairs

=⇒ =⇒
Sender Collusion Receiver Collusion

(and N − 2 Receivers) (and N − 2 Senders)

=⇒ =⇒
Arbitrary

Fig. 1: Various security requirements/settings relevant to the NIAR model. All
four scenarios include collusion with router C, plus:
- Top Setting (N -2 Pairs): Corruption of up to N -2 (sender, receiver) pairs;
- Left Setting (Sender Collusion): Corruption of all senders (and N -2 receivers);
-Right Setting(ReceiverCollusion):Corruption of all receivers(andN -2 senders);
-Bottom Setting (Arbitrary): Corruption of any 2N − 2 senders/receivers.

The implication arrows indicate that a protocol that is secure in one setting is
automatically secure in the other.

2.3 Comparison with Other Results in NIAR Model

The NIAR model was introduced in [SW21], which included several variants
of the security requirement, and offered solutions for these variants. As men-
tioned, our results improve upon those of [SW21] in three main ways: (i) Reduced
router overhead (O(N · polylogN) versus O(N2)); (ii) Seemingly simpler proto-
col based on weaker/more standard cryptographic assumptions; (iii) Improved
practical/observed efficiency (not empirically verified). On the other hand, the
protocol of [SW21] provides protection in different scenarios of security require-
ments. Namely, in terms of Figure 1, our protocol focuses on the top and left
settings, while [SW21] covers the top, right, and bottom settings. However, for
all of the motivating examples discussed in the Introduction, security in the top
and left settings (which our protocol provides) is sufficient.

A recent work of Fernando et al. [FSSV22] improves upon the work of [SW21],
by reducing router computation to O(N · polylogN), which (asymptotically)
matches our result. However, the other comparisons between our work and that
of [SW21] are still valid; namely, our protocol benefits from simpler assumptions
and protocol complexity (e.g. we do not require obfuscation) as well as practical
efficiency, but ours does not offer protection against full receiver collusion.
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A summary of the comparison of our results to other relevant results can be
found in the table below, where Ñ = O(N · polylogN) denotes quasi-linear:

Protocol
Anonymity Crypto

Comm.
Router

Level2 Assumptions Comp.

Permutation Routing None N/A Ñ Ñ

Näıve PIR Sender Collusion PIR Ñ N2

DEPIR [LMW22]3 Sender Collusion Ring LWE Ñ N1+ϵ

Original NIAR [SW21] Arbitrary Obfuscation Ñ N2

Improved NIAR [FSSV22] Arbitrary Obfuscation Ñ Ñ

Our Results Sender Collusion DDH or QR or LWE Ñ Ñ

3 Preliminaries

3.1 Beneš Network

(Each figure referenced here can be found in Section A, and the networks men-
tioned here are common in the permutation routing literature, see for example
[AKS83,Lei84,Upf89,MS92]). In a butterfly network (Fig. 8), N input nodes are
connected to N output nodes via a leveled network of (1 + logN) levels, each
with N nodes. A Beneš network appends a second (inverted) butterfly network
to the first (Fig. 10); and more generally an extended Beneš network appends
many “blocks” of butterfly networks together. We continue expanding on this
model by replicating each node and edge c times, which can be conceptualized as
coloring them with c distinct colors (Fig. 12). Finally, our protocol will assume
wide edges, which means that each edge can simultaneously route w messages
(requiring specification of which of the w “slots” each message occupies).

3.2 Non-Interactive Anonymous Routing (NIAR)

We adopt the NIAR model of [SW21], in which N senders each has a series of m
(e.g. single-bit) messages they wish to send to a distinct receiver anonymously.
The anonymity guarantee refers to the unlinkability of each sender-receiver pair,
and crucially it must be preserved even if the central router colludes with a
subset of the senders/receivers. Depending on the application, there are various
collusion patterns that may be of interest, see e.g. Figure 1.

2 Anonymity terminology as defined in Figure 1. Namely, “Sender Collusion” refers
to potential corruption of the central router, all senders, and up to N − 2 receivers;
and “Arbitrary” refers to potential corruption of the central router and any set of
up to 2N − 2 senders/receivers.

3 Analysis of [LMW22] in the context of the NIAR model is not done by Lin et al.,
and the stated characteristics of their protocol in the NIAR setting are ours.
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In this paper, we demonstrate our protocol is secure against the top and left
settings (in Figure 1). We do not consider the right and bottom settings (Re-
ceiver Collusion and Arbitrary) in this paper for two reasons: First, in the main
application areas for the NIAR model (see Introduction above), the receivers
already know the senders they wish to connect to, so anonymity of the senders
(in the case that all receivers are colluding) is irrelevant. The second reason we
do not consider the Receiver Collusion setting is because providing protection in
this setting requires additional techniques than those considered in this paper.
For example in [SW21] and [FSSV22], the protocol description, performance,
and cryptographic hardness assumptions are all more complex in the Receiver
Collusion setting.

Formally, the (reformulated) NIAR model of [SW21] is as follows:

(Trusted) Setup. Upon input security parameters (1λc, 1λs), number of senders/
receivers N , and permutation σ : [N ] → [N ], the Setup algorithm outputs
sender keys {pki}i∈[N ], receiver keys4 {(ski, κi)}i∈[N ], and token q for router

C:
(
{pki}i∈[N ], {(ski, κi)}i∈[N ], q

)
← Setup(1λc , 1λs , N, σ).

Once Setup has been run, the Senders {Si} can communicate arbitrary messages
{mi} = {mi,α} with the Receivers {Ri} through router C.

Send Message. Using key pki, each Sender Si encodes message mi = mi,α

(where α denotes the αth bit of message mi), and sends the result to router C:
ci,α ← Encpki

(mi,α).

Route Message. Upon inputs {ci}i∈[N ] from each Sender Si, and using key
q, router C prepares messages {zi}i∈[N ], and sends these to each Receiver Ri:
(z1, z2, . . . , zN ) ← Route(q, c1, c2, . . . , cN ).

Decode Message. Using keys (ski, κi), each Receiver Ri decodes the message
zi = zi,α received from router C, and outputs m̃i = m̃i,α: m̃i,α ←Decski

(κi, zi,α).

Correctness. An oblivious permutation routing protocol has:

PerfectCorrectness: If each receiverRi outputs message m̃i=mi with probability 1.

λc - Statistical Correctness: If each receiver Ri outputs message m̃i =mi with
probability at least

(
1− 1

2λc

)
, for security parameter λc.

Security. Informally, anonymity means that if a subset of parties collude (in-
cluding router C), the permutation σ (namely, its restriction to non-colluding
parties) should remain unknown. Formally, let A denote a (computationally
bounded, honest-but-curious) adversary. Consider the following challenge game:

1. On input security parameter λ, Adversary A chooses N , two distinct permu-
tations σ0, σ1 on [N ], a set of sender indices SA ⊆ [N ] to corrupt, and a set
of receiver indices RA ⊆ [N ] to corrupt, subject to the following constraints:

(a) |RA| ≤ N − 2;
(b) σ0 and σ1 match for all receivers in RA: ∀ i ∈ RA : σ−1

0 (i) = σ−1
1 (i).

4 The sender keys {pki} are associated with the receiver keys {ski} via the permutation
σ; namely, secret key skσ(i) can decrypt messages encrypted under pki.
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2. Adversary A sends {σ0, σ1} to Challenger C.
3. Challenger C chooses σb ∈ {σ0, σ1} for b← {0, 1} (e.g. by flipping a coin).
4. Challenger C chooses router token q, encryption keys {pki}i∈[N ], and de-

cryption keys {ski}i∈[N ]. C sends q, {pki}i∈SA , and {ski}i∈RA to A.
5. For each round α:

(a) Based on knowledge of all prior ciphertexts {ci,α′}α′<α (see next step),

Adversary A chooses messages {m(0)
i,α}i∈[N ] and {m

(1)
i,α}i∈[N ], subject to

the constraint that all messages bound for a corrupt receiver match: ∀i
s.t. i= σ-10 (j) for some j∈RA: m

(0)
i,α=m

(1)
i,α. A sends {m(0)

i,α}, {m
(1)
i,α} to C.

(b) Challenger C outputs to A ciphertexts {ci,α}i∈[N ], where each ciphertext

is computed as (with b as chosen in Step 3): ci,α = Encpki(m
(b)
i,α).

6. Adversary A outputs a guess b′ ∈ {0, 1} of which permutation {σ0, σ1}
Challenger C chose.

A NIAR protocol is λs-secure if the probability that any computationally bounded
adversary A guesses b correctly is bounded by:

Pr[b′ = b] ≤ 1

2
+

1

2λs
(1)

3.3 Emulating Oblivious Routing in a Virtual Routing Network

In this section, we present the main ideas that connect the NIAR model to the
permutation routing problem. At a high level, the idea is to have the NIAR
router emulate message transmission through a (virtual) routing network that
supports permutation routing between N senders and receivers. In particular, we
view the N senders as input nodes in the routing network, and the N receivers as
the output nodes, and then choose paths through the routing network connecting
each sender to its receiver. The NIAR router then passes messages from each
sender to the designate receiver by routing messages along this path. Note that
this entire network, except the input nodes (corresponding to the senders) and
output nodes (corresponding to the receivers), together with message routing
within it, is entirely simulated by the NIAR router.

In order to preserve anonymity in terms of linkage between each (sender,
receiver) pair, the paths that each message takes through this (virtual) routing
network must remain hidden to the NIAR router. The key primitive that we
utilize to achieve this is called an oblivious routing gate.This notion is defined
formally in Definition 28, but intuitively this describes a process in which the
message written on each outgoing wire of a gate is (a re-encoding of) a message
from one of the input wires to that gate, such that knowledge of which incoming
wire’s message was selected for each outgoing wire is unknown to the router that
is instantiating the gate (see Figure 2).

Using a protocol ΠORG that instantiates the oblivious routing gate paradigm
at every node, the NIAR router can emulate routing each of the sender’s mes-
sages through a virtual permutation network, finally delivering the (re-encoded)
messages to the output nodes (receivers). Formally, we define this process via
an ideal functionality we refer to as an Emulated Permutation Routing protocol
ΠEPR (see Definition 29).
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Fig. 2: Oblivious routing gate (ΠORG) realization via PIR at node µ with 2w
incoming and outgoing edges (used in Step (2b) of our main protocol in Fig. 3).

4 Our Protocol

4.1 Overview of Our Solution

Given N pairs of (sender, receiver) nodes and central router C, our protocol
routes messages from the senders to the corresponding receivers via a virtual
routing network G that C emulates where, for each node in the network, the
router C obliviously executes a routing gate by simulating the functionality of a
(rate-1) PIR query. Namely, (as part of trusted setup) each outgoing edge of a
routing gate will have an assigned PIR query, and each incoming edge will have
a value (which represents an encrypted message from one of the senders). Then
the router C obliviously produces a message on each outgoing edge of the routing
gate by running the associated PIR query on this wire against the (virtual) PIR
database of messages (from the incoming wires). The determination of which
incoming edge that a given PIR query (on a routing gate’s outgoing edge) should
specify is established offline during a setup phase, and specifically it is determined
by choosing a random path Pi, for each (senderi, receiveri) pair, through the
(virtual) routing networkG. Notice that once PIR queries are assigned (during an
offline setup phase) as per all chosen paths {Pi}, they may be reused indefinitely
during the online routing phase to continuously route new messages for each
(sender, receiver) pair. The main features of our solution are as follows:
– Correctness. Ensuring each receiver gets every message reduces to showing

that the paths {Pi} connecting each (senderi, receiveri) pair are edge-disjoint.
– Privacy. Since each sender encrypts their messages under the intended re-

ceiver’s public key, receivers can only decipher messages intended for them.
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– Anonymity. This property is obtained so long as the paths {Pi} chosen are
“sufficiently edge-disjoint” (for details see Definition 20).

– Communication. To limit the expansion of message size through each (vir-
tual) routing gate, we employ rate-1 PIR, which ensures the final message
size is proportional to the length of the chosen path P through the (virtual)
routing network G; and that any such path is short (i.e. of polylogN length).

– End-to-End Time. Computation of central router C (which, together with
communication, determines end-to-end transmission time) will depend on the
size of the virtual graph G = (V,E). Thus, in order to minimize computa-
tional overhead, |E| should be close to N (e.g. N · polylogN). Notice that
there is inherent tension in minimizing end-to-end time versus satisfying the
Correctness and Anonymity properties: the former requires small |V | and
|E|, while the latter two are readily achieved for larger |V | and |E|. Our
protocol finds appropriate (minimal) parameters to achieve correctness and
anonymity, while introducing minimal end-to-end overhead.

We stress that some relaxed approaches to the NIAR problem actually fail to pro-
vide anonymity. Specifically, the approach of deploying an arbitrary permutation-
routing network (without the extra features that we require), and the approach
of just replacing each gate in the routing network (even a properly selected
network) with PIR, do not seem sufficient, which we argue as follows.

While PIR is the main tool that hides (from central router C and any other
parties it colludes with) the linkage between uncorrupted (sender, receiver) pairs,
applying it näıvely will not provide the desired protection. Namely, if any two
of the paths {Pi} through the virtual routing network have an edge in common,
then a PIR query cannot be assigned to that edge, as there will be conflicting
input edge indices (and conflicting messages on those edges) to select. Since, in
proving anonymity, path selection must be a randomized process (in particular,
edge conflicts cannot be deliberately avoided), our protocol will handle edge
conflicts by producing garbage PIR queries for such edges. While this approach
introduces failures in terms of delivering messages along the conflicting paths
that were chosen for any such (sender, receiver) pairs, the threat to correctness
is overcome by ensuring enough redundancy in the system to account for (the
low probability event of) edge conflicts. However, edge conflicts (and the lack
of edge conflicts), also threatens anonymity: for example, the router C could
observe many messages from (sender, receiver) pairs it has corrupted all pass
through a common node, and the router may also know that the message from
an uncorrupted sender has some probability of passing through this same node.
Thus, the presence or absence of an edge conflict on the set of outgoing edges of
this node may give the router an advantage in determining if the uncorrupted
sender’s path goes through this node, and if so, some probabilistic advantage in
knowing which outgoing edge the path used; and these advantages then threaten
anonymity since the router may be able to have an advantage in guessing the
ultimate destination (i.e. receiving node) of this path. Demonstrating that this
approach cannot be used to give the router a non-negligible advantage in linking
uncorrupted (sender, receiver) pairs will require: (i) Identifying what property a
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network should have to avoid this attack; (ii) Generating such a routing network
that also supports the desired complexity and correctness requirements; (iii) An
appropriate analysis that this property indeed proves anonymity. For example,
the natural candidate property of exhibiting (with high probability on randomly
chosen paths) the edge-disjoint property is insufficient, as it is susceptible to the
above attack.

Figures 3 and 4 below formally describe our protocol.

4.2 Analysis of Our Protocol

Theorem 1 Assuming the existence of rate-1 PIR, following trusted setup,5

the protocol presented in Figure 3 is λs-secure with λc-statistical correctness,
O(logN) per-party communication, and O(N polylog N) router computation.

Remark. Instead of trusted setup, under appropriate cryptographic hardness
assumptions the ideal functionality ΠORG(G, ĉ, r, l,Π1-PIR) could instead be re-
alized via generic secure multiparty computation (MPC) techniques. This would
contribute O(N2 polylog N) to the asymptotic cost of the protocol (to deal the
O(N polylog N) rate-1 queries and O(N2 polylog N) reconstruction keys), but
because ΠORG(G, ĉ, r, l,Π1-PIR) is utilized only in the Setup Phase, this would
be incurred as a one-time cost and would not impact cost of the Routing Phase.

Proof (Proof of Theorem 1).

Cost.Per-party computation and communication costs for the routing phase are:

Party Computation Communication

Si Cost(ΠEnc) c
Enc

Ri Cost(ΠDec)+(1+b)·(1+logN)·Cost(ΠPIR-Rec) N/A

C M · |E| · Cost(ΠPIR-Query) N · (2 · c
Enc

+(1+b) ·δPIR)

where:

– |E|= (2 logN+c)·(c·w·N·(1+b)) is the number of edges in networkB(N, b, c, w).
– Cost(ΠEnc) is the (computation) cost of encrypting a message m.
– Cost(ΠDec) is the (computation) cost of decrypting a ciphertext Encpki

(m).
– c

Enc
is the size of a ciphertext Encpki

(m).
– δPIR is the constant stretch of the underlying rate-1 PIR protocol Π1-PIR.
– Cost(ΠPIR-Query) is the PIR server cost of Π1-PIR(c·w, cEnc

+(1+b)·δPIR).
– Cost(ΠPIR-Rec) is the cost of running the reconstruction algorithm (on a

PIR response) for Π1-PIR(c · w, cEnc
+ (1 + b) · δPIR).

Correctness. The intuition for the proof is as follows: Independent of adversar-
ial presence, we first demonstrate bounds of certain properties of routing in the
Beneš network, as per the protocols described in Figures 3 and 5. Namely, we
demonstrate in Corollary 16 that, with overwhelming probability, for any row

5 Trusted setup is required for establishing public/secret key pairs for encryption and
for instantiating ideal functionality ΠORG(G, ĉ, r, l,Π1-PIR).
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Anonymous Permutation Routing Protocol ΠNIAR

Input. Anonymous Permutation Routing parameters:N = 2n, “central router”
party C, “sender” parties {Si}i∈[N]

each with arbitrarily many messages {mi,α},
“receiver” parties {Ri}i∈[N]

, permutation σ : [N ]→ [N ].

Output. For each party index 1 ≤ i ≤ N , receiver Rσ(i) outputs message m̃i.

Notation. Let λ := max(λc/(2- log 3), 2 logN + max(λs, 2 + log logN). Let

G = B(N̂, b, c,w) denote a wide-edged, extended and colored Beneš network

with parameters N̂ = N , b = λ−1, c = 4 ·aλ, and w = 1.2 ·λ · logN ·(1+logN)
(for aλ := max(2, λ1/(logN−1))); see Figure 12 in Section A. For each 1 ≤ i ≤
N , the parties {Si} and {Ri} are assigned to “row” i, associating each sender
Si with Ii (the ith “input” node of G, i.e. the left-most node in row i) and
each receiver Ri with Oi (the ith “output” node of G).

Setup Phase.
1. For each i ∈ [N ]: let (pki, ski) denote a public-key/secret-key pair. Output:

Si ← pki and Rσ(i) ← ski.
2. For each 1 ≤ m ≤M = λ:

(a) Choose random paths through G (as per σ). For each i ∈ [N ]: let
Pi = Pm,i denote a random path throughG (namely, paths are chosen
as per protocol ΠN,σ,G(i); Figure 5).

(b) Assign rate-1 PIR queries and keys to each edge. For each internal
node µ = µĉ,r,l at position (ĉ, r, l) of G (i.e. color ĉ ∈ [c], row r ∈ [N ],
and level l ∈ [0, (b+ (1+ b) · logN)]; see Fig. 12 in Section A), invoke
the oblivious routing gate protocol ΠORG(G,ĉ,r,l,Π1-PIR) (Fig. 6, §6)
with inputs {(wi, w

′
i)}i∈[N ], where:

• wi = ⊥ if µ /∈ Pi; otherwise wi ∈ [1, |Il|] is the incoming wire
index to µ (as specified by Pi).

• w′
i=⊥ if µ /∈Pi; otherwisew′

i∈[1, |Ol|] is the outgoing wire index
from µ (as specified by Pi).

For each j ∈ [1, |Ol|], let {qµ,j} denote the rate-1 PIR queries and let
{(µ, j, κµ,j)} denote the set of reconstruction keys that are output by
the ΠORG(G,ĉ,r,l,Π1-PIR) protocol (by definition, a reconstruction key
for output wire j of node µ is output by ΠORG if and only if there
exists a unique index i ∈ [N ] such that w′

i = j).
(c) Aggregate reconstruction keys along each path. For each i ∈ [N ]: let

κi = κm,i be either ⊥ (if the reconstruction key for any outgoing
edge (µ, j) ∈ Pi is not output by ΠORG), and otherwise let κi be the
collection of reconstruction keys {(µ, j, κµ,j)}µ∈Pi for each outgoing
edge (µ, j) ∈ Pi.

Output: C ← {qµ,j}, and for each receiver: Ri ← κi.

Fig. 3: Anonymous Permutation Routing protocol ΠNIAR.

index i ∈ [N ] there will exist (at least) one experiment m ∈ [M ] for which the
path Pm,i is edge-disjoint from all other paths {Pm,j}j ̸=i. Then as per proto-
col ΠNIAR specification (Step 2b of the Output Parties portion of the Routing
Phase; see Figure 3), the existence of an edge-disjoint path Pi means that Rσ(i)
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Anonymous Permutation Routing Protocol ΠNIAR (continued)

Routing Phase.
Repeat the following procedure for each successive message {mi,α}:
Senders {Si}.
1. Sender Si encrypts mi=mi,α under pki and sends Encpki(mi) to router C.
Central Router C.
1. For each 1 ≤ m ≤M = λ:

(a) C runs the ΠEPRm protocol (Fig. 7 in §6) with inputs {Encpki(mi)}
(from each sender Si’s Routing Phase Step 1) and {qµ,j} (from Setup
Phase). Let {zm,i,j}i∈[0,(N-1)],j∈[1,c] denote the output of ΠEPRm.

(b) C sends {zm,i,j}j∈[c] to receiver Ri.
Receivers {Rσ(i)}.
1. Receiver Rσ(i) initializes final output value w̃i = ⊥.
2. For each 1 ≤ m ≤M = λ:

(a) Let Pi = Pm,i, and note that Pi is edge-disjoint (as per Definition 8) if
and only if for every node {µl} in Pi, Rσ(i) received the reconstruction
key for µl (as per Output (ii) of ΠORG).

(b) If Pi is not edge-disjoint, or if w̃i ̸= ⊥ (i.e. w̃i was set in a previous
iteration m′ < m): do nothing.

(c) If Pi is edge-disjoint, then Rσ(i) uses the reconstruction keys κm,i

to traverse Pi backwards, starting with the final value zm,i,j that it
received from C (along the appropriate color index j ∈ [c], as specified
by Pi) in Step 1b above. Using the reconstruction keys {κµ}, level by
level Rσ(i) reconstructs to remove one layer of the PIR stretch δPIR

that was added by ΠORG. When Rσ(i) has traversed backwards to
level 0, it will have reconstructed value Encpki(mi). In this case, Rσ(i)

updates w̃i with value w̃m,i = Decski(mi).
3. Rσ(i) outputs w̃i.

Fig. 4: Anonymous Permutation Routing protocol ΠNIAR (continued).

will update w̃i ← w̃m,i. By the correctness property of the ideal functionality of
ΠORG, this value will be correct (i.e. it will equal pi).

Formally, with λ = max( λc

2- log 3 , 2 logN +max(λs, 2 + log logN)) ≥ λc

2−log 3 ,

Lemma 16 states that the probability that there exists some row index i ∈ [N ]
for which Pm,i is not edge-disjoint for every experiment m ∈ [M ] is bounded by:

Pr[X = 0] <

(
3

4

)λ

≤

((
3

4

) 1
2−log 3

)λc

=
1

2λc
.

Security. As with the Correctness proof, we first demonstrate (probability
bounds for) a version of the edge-disjoint property in the Beneš graph G (Section
3.1) used in Figure 3. Namely, we demonstrate in Corollary 24 that, using the
parameters as per ΠNIAR (Figure 3), with overwhelming probability (in λs), for
any pair of row indices i, i′ ∈ [N ] and for every experiment m ∈ [M ], there will
exist a block in which the chosen paths Pm,i and Pm,i′ as well as their alternate
paths P ′

m,i and P ′
m,i′ are each edge-disjoint from all other paths in this block.

Effectively, this means that for any two uncorrupted receiver nodes i, i′ /∈ RA,
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that for each experiment there exists some block in which the Adversary will
necessarily lose all ability to distinguish between Pm,i and Pm,i′ by the time
these paths cross through this block. We then use a hybrid argument to show
that the existence of an adversary that can distinguish between two arbitrary
permutations (as per (1)) implies the existence of an adversary who can distin-
guish (with a smaller probability) between two permutations that differ only on
two points; and then this contradicts the existence of a block in which any two
paths become indistinguishable after that block.

Formally, the proof reduces the NIAR security game (with Challenger in-
voking the protocol ΠNIAR of Fig. 3) to Challenge Game 2, and then uses
the indistinguishability of Challenge Game 2 (Lemma 26). To match notation of
ΠNIAR with the communication sent to adversaryA in the NIAR security game:

For Step 4 of the NIAR security game:

• Encryption keys{pki}: The{pki} from Step1 of the Setup Phase (Figure 3).
• Decryption keys {ski}: The {ski} from Step 1 of the Setup Phase, together
with the reconstruction keys {κi} = {(µ, j, κµ,j)} from Step 2b of the Setup.

• Router token q: The rate-1 PIR queries {qµ,j} from Step 2b of the Setup.

For Step 5b of the NIAR security game:

• Ciphertexts {ci,α}: The encrypted messages {Encpki(mi,α)} from Sender’s
Step 1 of the Routing Phase (Figure 3).

First observe that indistinguishability of the distribution of ciphertexts {ci,α} =
{Encpki

(mi,α)} under b = 0 versus b = 1 follows from the security of the encryp-
tion scheme, together with the constraint that all messages bound for a corrupt
receiver must match for b = 0 and b = 1 (see the specified constraint in Step
5a of the NIAR security game). Thus, for any ciphertext ci,α for which Adver-
sary A does not hold the decryption key, the security of the encryption scheme

ensures indistinguishability of this as a ciphertext of m
(0)
i,α versus m

(1)
i,α; and for

any ciphertext ci,α for which Adversary A does hold the decryption key, the
constraint in Step 5a of the NIAR security game dictates that this ciphertext

encodes a common message m
(0)
i,α = m

(1)
i,α.

Next we argue indistinguishability of the encryption keys {pki}i∈SA and the
decryption keys {ski}i∈RA . Notice first that due to the constraint in Step 1b of
the NIAR security game, the distribution of decryption keys {ski}i∈RA looks the
same for b = 0 and b = 1, since σ0 and σ1 necessarily agree here (i.e. they each
map some index j ∈ [N ] to i. Meanwhile, for the distribution of encryption keys,
we focus on indices i ∈ [N ] for which σ0(i) ̸= σ1(i). Fix any such i, and define
j = σ0(i) and j′ = σ1(i), so j ̸= j′. Again due to the constraint in Step 1b of the
NIAR security game, we have that neither j nor j′ is in RA. This means that
Adversary A does not hold the corresponding decryption key for pki regardless
of whether b = 0 or b = 1, and thus by the security of the encryption scheme,
the distribution of pki for b = 0 appears identical as the distribution when b = 1.

For indistinguishability of the router token q = {qµ,j}: for a given qµ,j for
which Adversary A does not hold the corresponding reconstruction key κµ,j , in-
distinguishability follows from the security of the underlying rate-1 PIR scheme.
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Conversely, for a given qµ,j for which Adversary A does hold the correspond-
ing reconstruction key κµ,j , A learns the input wire index that qµ,j is selecting.
However, notice that the paths chosen through G are independent of each other
and depend only on the given (sender, receiver) indices and coin flips of path
selection protocol Π

N,σ,G
(i) (Figure 5), and also that A knows reconstruction key

κµ,j if and only if outgoing edge (µ, j) is on the path leading to a corrupt receiver
i ∈ RA. Therefore, we again rely on the constraint in Step 1b of the NIAR secu-
rity game to argue that σ0 and σ1 must agree on the (sender, receiver) indices
for this path, so the input wire index that qµ,j is selecting is the same.

It remains to argue indistinguishability of the reconstruction keys {κi}i∈RA =
{(µ, j, κµ,j)}. If for a given tuple (µ, j, κµ,j) the last component is a valid recon-
struction key (i.e. κµ,j ̸= ⊥), then indistinguishability follows the same argument
as above for the router token. On the other hand, if κµ,j ̸= ⊥, then as per the
Correctness property of any ΠORG protocol, Adversary A learns that at least
two distinct paths chose outgoing edge (µ, j). Since this is the exact scenario as
Challenge Game 2, the proof now follows from Lemma 26.

5 Correctness and Security

In this section, we present a series of definitions and lemmas that allow us to
argue our main protocol (Figures 3 and 4) satisfies the correctness and security
properties of the NIAR model (Section 3.2). The main technical work lies in
proving Security; this requires first defining a key property that networks can
exhibit (Definition 20), then demonstrating that the Beneš Network we use sat-
isfies this property (Corollary 24), and finally demonstrating how this property
ensures security (see Challenge Games 1 and 2 in Section 5.3). As there are a
number of lemmas and definitions to go through, to preserve the flow and focus
on the main ideas, all proofs appear at the end of the paper.

5.1 Probabilities in a Beneš Network

The main goal of this section is to define a property of graphs that will allow us
to formally argue that anonymity is achieved. As mentioned in the Introduction,
this property is a stronger variant of edge-disjointness, which we call “local
reversal edge-disjoint.” Informally:

Definition 2 (Informal). Given any permutation on N sets of (sender, receiver)
pairs, a pairwisei,j reversal refers to swapping the receivers of senders i and j.
When viewing a “block” of a permutation network (which also has N input nodes
and N output nodes), a local pairwisei,j reversal refers to swapping the output
nodes of two input nodes. A set of N + 2 paths through a block, which include
one path for each (sender, receiver) pair plus two extra paths connecting sender
i to receiver j (and sender j to receiver i) is said to be local pairwisei,j reversal
edge-disjoint if these N + 2 paths are edge-disjoint. A permutation network is
said to enjoy the local reversal edge-disjoint property if, for any pair of indices
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(i, j), w.h.p. there exists a block that is local pairwisei,j reversal edge-disjoint for
N + 2 randomly chosen paths.

Formally, Definitions 20 and 23 define the “local reversal edge-disjoint” property,
and it is used to prove security via Corollary 24 and in the analysis of (12)).

Lemma 3 Suppose that for each input node {νi}Ni=1 on the butterfly network of
Figure 8 (see Section A), a random path Pi of logN steps is performed. For any
node µl (at level l ∈ [0, logN ]), let Xµl

denote the random variable that indicates
how many of the paths {Pi} pass through node µl. Then for any integer k ≥ 1:

Pr[Xµl
≥ k] ≤ 2l

k!
(2)

Lemma 4 Suppose that for each input node6 {νi}Ni=1 of a colored butterfly
network (with replication factor c) of Figure 9 (see Section A), a random path
Pi of (1+ logN) steps is performed (the first step chooses the color ĉ ∈ [c]). For
any node µl = µĉ,r,l (at level l ∈ [0, logN ], row r ∈ [N ], and color ĉ ∈ [c]), let
Xµl

denote the random variable that indicates how many of the paths {Pi} pass
through node µl. Then for any integer k ≥ 1:

Pr[Xµl
≥ k] ≤ 2l

k! · ck
(3)

Lemma 5 Suppose that for each input node {νi}Ni=1 of a colored butterfly net-
work (with replication factor c) of Figure 9 (see Section A), a random path Pi of
(1 + logN) steps is performed (the first step chooses the color ĉ ∈ [c]). For any
integer k ≥ 1, let Xk denote an indicator variable on whether there exists any
node µ (in the entire colored butterfly network) that has more than k (of the N
total) random paths {Pi} pass through it. Then:

Pr[Xk = 1] ≤ 2c ·N2

k! · ck
(4)

We now extend a (colored) butterfly network by concatenating several “blocks,”
each block consisting of logN levels, and then finishing with one final level that
is the mirror reflection of a butterfly network:

Definition 6 An extended (colored) Beneš network with b blocks consists of b
butterfly networks concatenated together, followed by a single (reflected) butterfly
network. Additionally, where each pair of blocks are connected, there is a single

6 A colored butterfly network can be viewed as c disjoint butterfly networks overlaid on
top of one another. Alternatively, we can view a colored butterfly network as a single
(connected) graph by adding an extra input level (with level index -1) on the far
left, consisting of N input nodes. Then there are c edges emanating from each input
node, connecting it to each of the c colored nodes in level 0 of the corresponding row.
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level inserted which consists of edges connecting all colors of each node (at each
“row”) to each other; see Figure 12 in §A. A block j, for j ∈ [1, (1 + b)], refers
to the (1 + logN) levels (and edges) between levels (j − 1) · (1 + logN) and
j · (1 + logN). That is, a block corresponds to a contiguous set of (1 + logN)
levels, whose first logN levels are a butterfly network, and the last level is the
“connecting” level that consists of all edges connecting the different colors of
all nodes on the same “row.”7 The input level of a block j ∈ [1, 1 + b] is level
(j − 1) · (1 + logN), and the output level is j · (1 + logN) (notice the input level
of block b is the same as the output level of block b− 1).

The following is analogous to Lemma 5, but bounds the probability with respect
to each block of an extended, colored Beneš network:

Lemma 7 Let σ : [N ]→ [N ] be an arbitrary permutation on N items. Suppose
that for each input node {νi}Ni=1 of an extended, colored Beneš network with
replication factor c and b blocks, a random path Pi of (1+ b · (1+ logN)) steps is
performed, and then each such path is extended (from level (b·(1+logN)) to level
(1+b) ·(1+logN)) by traversing the unique path from the current node (on level
(b·(1+logN))) to σ(i) (see Figure 12 in §A). For any j ∈ [1, (b+1)] and for any
integer k ≥ 1, let Xj,k denote an indicator variable on whether there exists any
node µj within block j (i.e. between levels [(j−1) · (1+logN), j · (1+logN)−1]
that has more than k (of the N total) random paths {Pi} pass through it. Then:

Pr[X1,k = 1] = Pr[X1+b,k = 1] ≤ 2c ·N2

k! · ck

∀ j ∈ [2, b] : Pr[Xj,k = 1] ≤ c ·N2 · (1 + logN)

k! · ck
(5)

5.2 Permutation Routing Problem

We begin with the definitions that are needed to describe the Permutation Rout-
ing Problem and the desired properties that a successful solution must exhibit.

Definition 8 Given a graph G = (V,E) and a collection of paths {Pi} within
the graph, we say that any given path Pi is edge-disjoint from the others if no
edge in Pi is contained/traversed by any other path. We say the entire collection
of paths {Pi} is edge-disjoint if each individual edge is edge-disjoint.

Definition 9 A Permutation Routing Problem(N, σ,G) is defined as follows:
For input integer N ∈ N, permutation σ : [N ] → [N ], and graph G that has
N designated “input” nodes {I1, I2, . . . , IN} and N designated “output” nodes
{O1, O2, . . . , ON}, construct N edge-disjoint paths through G that connect each
input-output pair (Ii, Oσ(i)).

7 In the special case of the (1+b)th block, the first logN levels of this block are a
reflected butterfly network, and the last level of the block is the final “output” level
of the entire network.
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We extend the notion of the extended, colored Beneš network to a wide-edged
variant, in which each edge has been replicated w times (which can equivalently
be viewed as each edge having capacity w):

Definition 10 A wide-edged, extended, colored Beneš network B(N, b, c, w) is an
extended and colored Beneš network (Figure 12 in §A) in which, for each level
l∈ [1, (b+(1+b)·logN)], each edge connecting levels (l-1, l) is replicated w times.

Notice that the added color and edge-width features serve a similar purpose:
they each reduce the probability of an edge conflict (i.e. increase the probability
of being edge-disjoint, as per Definition 8); but they do so in slightly different
ways: the color feature not only introduces new edges, but also additional nodes,
so that once a path chooses a color for a particular block (which happens only at
the start of each block, when there is a transition between levels in which each
edge connects the various “colors” corresponding to the nodes on a common
“row;” see Figure 12 in §A), it will not conflict (on the present block) with paths
that chose another color. In contrast, the edge-width feature reduces the chances
that two paths conflict across a given edge; but those same paths may still end
up in the same node at the far end of this edge, and thus may conflict in a later
edge.

Definition 11 Given a wide-edged, extended, colored Beneš networkB(N, b, c, w),
and given a routing algorithm Π = ΠN,σ,G=B(N,b,c,w) that attempts to solve the
Permutation Routing Problem (Definition 9), for each i ∈ [N ] and for each
block 1 ≤ j ≤ (1 + b), let XΠ(i, j) denote the boolean random variable that indi-
cates whether Π constructs an edge-disjoint path on the jth block for the pair
(Ii, Oσ(i)). That is, XΠ(i, j) = 1 if the path connecting Ii and Oσ(i) within the

jth block (as specified by Π) is edge-disjoint from all other paths specified by Π.

The algorithm in Figure 5 formalizes a näıve solution for the Permutation Rout-
ing Problem in which random paths are chosen in an extended and colored
Beneš network. Namely, this algorithm specifies that each path Pi emanating
from input Ii chooses random edges for each level through the first b blocks
in an extended and colored Beneš network B(N, b, c, w), and then follows the
unique path from its current node on level (b · (1 + logN)) to the destination
node Oσ(i) (by choosing one of the w replicates of each edge along this path).

We now demonstrate several properties that the näıve routing protocol of
Figure 5 satisfies.

Lemma 12 Let Π = Πσ
N
denote the routing algorithm of Figure 5 on a wide-

edged, extended, and colored Beneš network B(N, b, c ≥ 2, w). Then for any
i ∈ [0, N ], for any 1 ≤ j ≤ (1 + b), and for any 1 ≤ k ≤ N , the probability that
XΠ(i, j) = 0 (as per Definition 11) is bounded by:

Pr[XΠ(i, j) = 0] ≤ (1 + logN) ·
(
c ·N2(1 + logN)

k! · ck
+

k

2w

)
(6)

We now extend Definition 11 (and in particular the indicator random variable
XΠ(i, j) = 0) to a statement about a path Pi being edge-disjoint across the
entire network G:
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Routing Algorithm ΠN,σ,G in aWide-Edged, Extended, and Colored
Beneš NetworkB(N, b, c, w)

Input. Parameters N = 2n, b, c, w ∈ N, and a permutation σN : [N ] → [N ].
Also, a given wide-edged, extended, and colored Beneš network B(N, b, c, w)
with N designated “input” nodes {I1, I2, . . . , IN} (on level −1) and N desig-
nated “output” nodes {O1, O2, . . . , ON} (on level (1 + b) · (1 + logN)).

Output. The specification of N paths {Pi}Ni=1 connecting each (Ii, Oσ(i)).

Protocol. For each row index 1 ≤ i ≤ N , run the ΠN,σ,G(i) sub-protocol.

Sub-protocol ΠN,σ,G(i): Outputs path Pi connecting input node Ii with out-
put node Oσ(i).

1. [First Step.] Choose a uniformly random value ĉ-1 ∈ [c], and set the first
edge in Pi (which connects node Ii (at level −1) to one of its c neighbors
on level 0) accordingly.

2. [“Internal” Blocks.] For each block 1 ≤ j ≤ b:
(a) Choose a uniformly random node µj on the output level of block j

(level j · (1+logN)). Namely, choose a uniformly random color ĉj ∈ [c]
and row rj ∈ [N ]. Notice that choice of µj completely determines the
up/down (see Fig. 12 in §A, which shows each node in a Beneš network
has just two nodes – “up” or “down” – on the next layer it is connected
to) specification of path Pi on block j. It remains only to specify, for
each expanded edge, which of the w duplicates of this edge to traverse.

(b) For each 1 ≤ l ≤ (1 + logN), choose a uniformly random value wj,l ∈
[w], which specifies which duplicated edge Pi will traverse between
levels (j − 1) · (1 + logN) + l − 1 and (j − 1) · (1 + logN) + l.

3. [Final Block.] For each 1 ≤ l ≤ logN, set the edge connecting level (b · (1+
logN) + l − 1, b · (1 + logN) + l) in Pi as follows:
(a) Choose a uniformly random value wl ∈ [w].
(b) Let rl ∈ {0, 1} be determined by σ(i); namely, rl = 0 iff the (logN −

l − 1) bit of the target node σ(i)’s row is 0. Set the next edge in Pi

according to (wl, rl); i.e. choose the wth duplicate of the “up” edge if
rl = 0, and otherwise choose the wth duplicate of the “down” edge.

4. [Final Level.] For l = (1+ b) · (1+ logN): set the final edge in Pi to be the
unique edge that leads from the current node (on level l) to node Oσ(i).

Fig. 5: Routing algorithm in a wide-edged, extended and colored Beneš network.

Definition 13 Given a routing algorithm Π =ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 9), for each i ∈ [N ], let XΠ(i) denote
the boolean random variable that indicates whether Π constructs an edge-disjoint
path for the pair (Ii, Oσ(i)). That is, XΠ(i) = 1 if the path connecting Ii and Oσ(i)

(as specified by Π) is edge-disjoint from all other paths specified by Π.

Lemma 14 Let Π = Πσ
N
denote the routing algorithm of Figure 5 on a wide-

edged, extended, and colored Beneš network B(N, b, c ≥ 2, w). Then for any i ∈
[N ] and for any 1 ≤ k ≤ N , the probability that XΠ(i) = 0 (as per Definition 13)
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is bounded by:

Pr[XΠ(i) = 0] ≤ (1 + b) · (1 + logN) ·
(
c ·N2 · (1 + logN)

k! · ck
+

k

2w

)
(7)

Proof. This follows immediately from Lemma 12 by applying a union bound on
the (1 + b) blocks of the Beneš network B(N, b, c, w).

We are now ready to present the final definition and corresponding statement
that will be required for the correctness property of the protocol in Figure 3.

Definition 15 Given an (independent) collection {Πm} of M routing algo-
rithms that attempt to solve the Permutation Routing Problem (see Definition 9)
in a wide-edged, extended and colored Beneš network B(N, b, c, w), let X denote
the boolean random variable that indicates if, for every i ∈ [N ], there exists (at
least) one experiment m ∈ [M ] in which XΠm

(i) = 1 (where XΠm
(i) is the

random variable in Definition 13).

Corollary 16 For any security parameter λ and for any input parameters 2n =
N ≥ 64, b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · logN · (1 + logN) (for8

aλ := max(2, λ1/(logN−1))), if the Routing Algorithm of Figure 5 is repeated
M := λ times, then the probability that X = 0 (Definition 15) is bounded by:

Pr[X = 0] <

(
3

4

)λ

(8)

Ultimately, Corollary 16 will demonstrate correctness of our routing protocol (3).
However, for the security property, we will need to consider two sets of (input,
output) node pairs. The following definition (which extends Definition 11, but for
two sets of (input, output) pairs of nodes) will be used to capture the requisite
probabilities for our security proof.

Definition 17 Given a wide-edged, extended, colored Beneš network B(N, b, c, w)
and two routing algorithms Π = ΠN,σ,G=B(N,b,c,w) and Π ′ = Π ′

N,σ,G=B(N,b,c,w)

that attempt to solve the Permutation Routing Problem (Definition 9), for any
pair of row indices (i, i′) ∈ [N ] and for any block 1 ≤ j ≤ (1+ b), let YΠ,Π′(i, i′, j)
denote the boolean random variable that indicates whether each of the four paths
{Pi,Pi′ ,P ′

i,P ′
i′} are edge-disjoint from all other paths on block j.

Aside. Notice that Definition 17 is only concerned about what happens on a
single block of a wide-edged, extended, and colored Beneš network B(N, b, c, w).
In particular, we do not actually require two routing algorithms Π, Π ′ to be de-
fined on the full network B(N, b, c, w) in order to evaluate whether YΠ,Π′(i, i′, j)
equals zero or one on a given block j ∈ [1, 1 + b] (as per Definition 17); rather,
we only need to know what each algorithm does on block j. Also notice that
there is no requirement that the four paths be edge-disjoint from each other.

8 Notice aλ = 2 if λ ≤ N/2.
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Definition 18 Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and a routing algorithm Π = ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 9), and given any pair of row indices
i, i′ ∈ [N ] and any block index j ∈ [1, (1 + b)], define the block j alternate routing
algorithm Π′

i,i′,j as follows:

– Π ′
i,i′,j is identical to Π on the first (j − 1) blocks.

– On the jth block:
• For all î /∈ {i, i′}: Π ′

i,i′,j is identical to Π.
• Let µi (respectively µi′) denote the node on the output level (which has level
index j · (1+ logN)) of block j that Pi (respectively Pi′) passes through, as
per Π (see Step 2a of Figure 5). Then Π ′

i,i′,j is identical to Π except that

the choice of µi versus µi′ is swapped in Step 2a for i and i′.9

– For all blocks beyond the jth block:
• For all î /∈ {i, i′}: Π ′

i,i′,j is identical to Π.
• For i, i′: Π ′

i,i′,j is identical to Π, except that it has swapped paths Pi and
Pi′.10

With these definitions in hand, we provide an analogous probability bound for
YΠ,Π′(i, i′, j) as Lemma 12 provided for XΠ(i, j).

Lemma 19 Let Π = Πσ
N
denote the routing algorithm of Figure 5 on a wide-

edged, extended, and colored Beneš network B(N, b, c≥ 2, w). Fix any pair of row
indices i, i′ ∈ [N ] and any block index j ∈ [1, (1+b)], and let Π ′ = Π ′

i,i′,j denote
the “block j alternate routing protocol” (Definition 18). Then for any 1 ≤ k ≤ N ,
the probability that YΠ,Π′(i, i′, j) = 0 (as per Definition 17) is bounded by:

Pr[YΠ,Π′(i, i′, j) = 0] ≤ 4 · (1 + logN) ·
(
c ·N2 · (1 + logN)

k! · ck
+

k

2w

)
(9)

Just as XΠ(i, j) (Definition 11) and the corresponding bound for it (Lemma 12)
were extended from variables/statements about blocks to variables/statements
about the entire network (in the corresponding Definition 13 and Lemma 14), we
likewise extend YΠ,Π′(i, i′, j) (Definition 17) and the corresponding Lemma 19 to
variables/statements about the entire network. However, these extensions differ
slightly from before, as ultimately we only need the existence of a block that
satisfies the key property, as opposed to requiring that all blocks satisfy some
property.

Definition 20 Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and given two routing algorithms Π = ΠN,σ,G and Π ′ = Π ′

N,σ,G

that attempt to solve the Permutation Routing Problem (Definition 9), for any

9 Notice that if µi =µi′, then Π ′
i,i′,j is identical to Π (for all paths {Pi}) on all blocks

through j (including block j).
10 Swapping paths is only necessary for the sake of making sure the paths link up/

connect between blocks (since output node µi and µi′ were swapped in block j).
However, as was noted in the Aside note following Definition 17, the details of what
Π ′

i,i′,j does beyond block j will be irrelevant for the context of Lemmas 19 and 22.
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pair of row indices (i, i′) ∈ [N ], let YΠ,Π′(i, i′) denote the boolean random variable
that indicates whether there exists some block j ∈ [1, (1 + b)] in which the four
paths {Pi,Pi′ ,P ′

i,P ′
i′} are each edge-disjoint from all other paths on block j.

Definition 21 Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and a routing algorithm Π = ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 9), and given any pair of row indices
i, i′ ∈ [N ], define the alternate routing algorithm Π′

i,i′ as follows:

1. ∀ j ∈ [1, (1+b)], let Π ′
j = Π ′

i,i′,j denote the block j alternate routing algorithm
(Definition 18).

2. Construct Π ′
i,i′ from the family of alternate routing algorithms {Πj} as follows:

a. If there exists an index j ∈ [1, (1 + b)] such that YΠ,Π′
j
(i, i′, j) = 1 (as

per Definition 11), then let Π ′
i,i′ = Π ′

j (for the minimal j satisfying
YΠ,Π′

j
(i, i′, j) = 1).

b. Otherwise, define Π ′
i,i′ = Π.

Lemma 22 Let Π = Πσ
N
denote the routing algorithm of Figure 5 on a wide-

edged, extended, and colored Beneš network B(N, b, c ≥ 2, w), let i, i′ ∈ [N ] be
any two row indices, and let Π ′ = Π ′

i,i′ be the alternate routing algorithm (as
per Definition 21). Then for any 1 ≤ k ≤ N , the probability that YΠ,Π′(i, i′) = 0
(as per Definition 20) is bounded by:

Pr[YΠ,Π′(i, i′) = 0] ≤
(
4 · (1 + logN) ·

(
c ·N2(1 + logN)

k! · ck
+

k

2w

))(1+b)

(10)

We are now ready to present the final definition and corresponding statement
that will be required for the security proof of the protocol in Figure 3.

Definition 23 Given an (independent) collection {Πm} of M routing algo-
rithms that attempt to solve the Permutation Routing Problem (Definition 9)
in a wide-edged, extended and colored Beneš network B(N, b, c, w), let Y denote
the boolean random variable that indicates if, for every Πm and every pair of row
indices i, i′ ∈ [N ], that YΠm ,Π′

m
(i, i′) = 1 (where Π ′

m = Π ′
m,i,i′ is the alternate

routing algorithm (Definition 21) and YΠm ,Π′
m
(i, i′) is the corresponding random

variable (Definition 20)).

Corollary 24 For11 any security parameter λ ≥ 8 and any input parameters
2n = N ≥ 64, b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · logN · (1 + logN)
(for aλ := max(2, λ1/(logN−1))), if the Routing Algorithm of Figure 5 is repeated
M := λ times, then the probability that Y =0 (Definition 23) is bounded by:

Pr[Y = 0] <
λ ·N2

4λ
(11)

11Notice that these parameter values all match those in the hypothesis of Corollary 16.
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5.3 Security

Succinctly, security (anonymity) will follow for the routing protocol of Figure 3
from:

Corollary24 ⇒ (!∃A with non-negligible advantage in Challenge Game 1)

⇒ (!∃A with non-negligible advantage in Challenge Game 2)

⇒ (Routing Protocol of Figure 3 is secure (per Definition 9)) (12)

In this section, we define Challenge Games 1 and 2, and then demonstrate the
first two implications in (12) (the third implication was already presented in the
proof of Theorem 1).

Challenge Game 1

Input Parameters:
- Number of input/output nodes 2n = N ≥ 64.
- Security parameter λ ≥ 8.
- A wide-edged, extended and colored Beneš network G = B(N, b, c, w),
with parameters as per Corollaries 16 and 24: b = λ− 1, c = 4 · aλ, and
w = 1.2 · λ · logN · (1 + logN) (for aλ := max(2, λ1/(logN−1))).

- There are N “global input nodes” on level −1 of the Beneš network
G = B(N, b, c, w), which are denoted: I = {I1, I2, . . . , IN}, and N global
output nodes O = {O1, O2, . . . , ON}.

- Set the experiment replication amount M = λ.
Challenge Game:

1. Challenger C chooses a permutation σ on N elements σ : [N ]→ [N ].
2. For each experiment m ∈ [M ]: Challenger C performs the routing algorithm

Πm = Πm,N,σb,G (for G = B(N, b, c, w)) of Figure 5. For each i ∈ [N ], let
Pm,i denote the path chosen (by Πm) that connects nodes (Ii, σb(Ii)).

3. Let Y be the boolean random variable from Definition 23. If Y = 0, Chal-
lenger C aborts (Adversary A wins).

4. Challenger C chooses any two distinct indices i, i′∈ [N ], and gives12 σ|[N ]\{i,i′}
to Adversary A, which is the mapping of σ on all indices except i and i′.
Notice that since σ is a permutation, Adversary A now has complete knowl-
edge of σ, except for what σ does to i and i′. In particular, there are two
range indices σ(i), σ(i′) ∈ [N ] that are not mapped to (based on what C
gives to A). Let τ denote the permutation that is identical to σ, except that
it swaps where i and i′ are mapped to (so τ(i) = σ(i′) and τ(i′) = σ(i)).
Notice that after this step, Adversary A knows that the permutation chosen
by Challenger C is either σ or τ .

5. (If this step is reached) Since Y = 1, for each run 1 ≤ m ≤M of the experi-
ment, we have that alternate routing algorithm Π ′

m,i,i′ must have been con-
structed as per Step 2a of Definition 21 (as opposed to Step 2b). Therefore,

12 This information is also available indirectly from what C gives to A in Step 5a below.
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let jm ∈ [1, (1 + b)] denote the block index for which Π ′
m,i,i′ is defined as in

Step 2a; i.e. jm (is the minimal index that) satisfies YΠm,Π′
m,jm(i, i′, jm) = 1.

Then, for each experiment m ∈ [M ]:
(a) [Block Index]: Challenger C gives Adversary A the block index jm (recall

this is the first block for which YΠm,Π′
m,jm(i, i′, jm) = 1).

(b) [All Non-Interesting Paths]: Challenger C gives Adversary A all paths
{Pm,̂i}̂i/∈{i,i′}.

(c) [Interesting Paths Before Block jm]: Challenger C gives Adversary A,
through the first (jm-1) blocks only, paths Pm,i and Pm,i′ .

(d) [Interesting Paths + Alternate Paths for Block jm]: Denote the two
sub-paths of Pm,i and Pm,i′ that are restricted to block jm (i.e. just
the edges of these paths within block jm) and their two alternate sub-
paths (as specified by alternate routing protocol Π ′

i,i′ (Definition 21))
as: {Pm,i,jm ,Pm,i′, jm ,P ′

m,i,jm ,P ′
m,i′, jm}.Then Challenger C gives Adver-

sary A the unordered set {Pm,i,jm ,Pm,i′, jm ,P ′
m,i,jm ,P ′

m,i′, jm}.
(e) [(Unordered) Interesting Paths Beyond Block jm]: For each level with

index jm · (1+ logN) ≤ l ≤ (1+ b) · (1+ logN) in G = B(N, b, c, w) that
lies after block jm, Challenger C gives Adversary A the unordered set of
edges {Pm,i,l,Pm,i′,l}l , where Pm,i,l (resp. Pm,i′,l) denotes the lth edge
on the path Pm,i (resp. on the path Pm,i′). In other words, A learns the
edges (beyond block jm) traversed by paths Pm,i and Pm,i′ , but A is not
explicitly told which edges belong to which path (Pm,i versus Pm,i′).

6. Adversary A outputs a guess whether Challenger’s permutation was σ or τ .

The Adversary A wins Challenge Game 1 either if Challenger C aborts in Step 3,
or if A’s output guess in Step 6 is correct.

The main result for Challenge Game 1 (which is the first implication in (12)) is:

Lemma 25 The probability that an (unbounded) Adversary A wins Challenge
Game 1 is bounded by:

Pr[A wins Challenge Game 1] ≤ 1

2
+

λ ·N2

4λ
(13)

Challenge Game 2

Input Parameters:
- Number of input/output nodes 2n = N ≥ 64.
- Security parameter λs. Let λ := 2 logN +max(λs, 2 + log logN).
- A wide-edged, extended and colored Beneš network G = B(N, b, c, w),
with parameters as per Corollaries 16 and 24: b = λ − 1, c = 4 · aλ, and
w = 1.2 · λ · logN · (1 + logN) (for aλ := max(2, λ1/(logN−1))).

- There are N “global input nodes” on level −1 of the Beneš network
G = B(N, b, c, w), which are denoted: I = {I1, I2, . . . , IN}, and N global
output nodes O = {O1, O2, . . . , ON}.

- Set the experiment replication amount M = λ.
Challenge Game:
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1. On input security parameter λ, Adversary A chooses N , two distinct
permutations σ0, σ1 on [N ], a set of sender indices SA ⊆ [N ] to corrupt,
and a set of receiver indices RA ⊆ [N ] to corrupt; subject to constraints:

(a) |RA| ≤ N − 2;
(b) σ0 and σ1 match for all receivers in RA: ∀ i ∈ RA : σ−1

0 (i) = σ−1
1 (i).

2. Adversary A sends {σ0, σ1} to a Challenger C.
3. Challenger C chooses b ∈ {0, 1} and selects σb ∈ {σ0, σ1}.
4. For each experiment m ∈ [M ]:

(a) Challenger C performs the routing algorithm Πm = Πm,N,σb,G (for
G = B(N, b, c, w)) of Figure 5. For each i ∈ [N ], let Pm,i denote the
path chosen (by Πm) that connects nodes (Ii, Oσb(i)).

(b) Adversary A is given the following information:

– For each i ∈ RA: all edges e ∈ Pm,i that are edge-disjoint from
all other paths Pm,j (for j ̸= i).

– The list of edges {e} ∈ G that have at least two distinct paths
Pm,i,Pm,i′ pass through them, with i′ ̸= i and i ∈ RA. Notice
that A is given only the identity of the set of edges {e}; in par-
ticular, A is not given the information of which (nor even how
many) indices in [N ] \RA traverse each such edge.

5. Let Y be the boolean random variable from Definition 23. If Y = 0,
Challenger C aborts (Adversary A wins).

6. Adversary A outputs a guess b′ ∈ {0, 1} of which permutation {σ0, σ1}
Challenger C chose.

We say that the Adversary wins the above challenge if its output is correct.

The main result for Challenge Game 2 (which is the second implication in(12)) is:

Lemma 26 The probability that an (unbounded) Adversary A wins Challenge
Game 2 is bounded by: Pr[A wins Challenge Game 2] ≤ 1

2 + 1
2λs

.

6 Subprotocol Definitions and Constructions

In this section, we present the formal definitions of the two subprotocols refer-
enced in our main NIAR protocol: An oblivious routing gate protocol ΠORG,
and an emulated permutation routing protocol ΠEPR. We begin by formally
defining the input and output requirements of an oblivious routing gate:

Definition 27 A routing gate evaluation protocol ΠRGEnc
for routing gate µ ∈ G

takes as input values {vj} on each incoming edge of µ and encoded indices {qj}
on each outgoing edge of µ (where each qj encodes the index of an incoming edge),
and outputs values {zj} for each outgoing edge of µ, where each zj = Enc(vqj )
is an encoding of the value on the appropriate input wire (as specified by qj).
A routing gate reconstruction protocol ΠRGDec

takes as input reconstruction keys
{κµ,j} and values {zµ,j} (one key-value pair (κµ,j , zµ,j) for each outgoing edge
of µ), and outputs values v̂µ,j for each outgoing edge of µ.
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Definition 28 Let µ ∈ G denote a gate in a permutation-routing network, and
let Iµ and Oµ denote its incoming and outgoing edges (respectively). An oblivious
routing gate (ORG) protocol for µ ∈ G takes as input, for each outgoing edge
êµ ∈ Oµ, an associated index jêµ ∈ ⊥ ∪ [1, |Iµ| ], and outputs:

i. Encodings {qêµ} of the input indices {jêµ};
ii. Specification of a routing gate evaluation protocol ΠRGEnc

;
iii. Reconstruction keys {κêµ};
iv. Specification of a routing gate reconstruction protocol ΠRGDec

protocol;

with the outputs subject to the constraints:

Message Independence. Outputs {qêµ} are defined independently from (later-
specified) messagesMµ.

Reusability.Outputs ({qêµ}, {κêµ}, ΠRGEnc
, ΠRGDec

) can be reused (indefinitely)
for new messages {Mµ,1,Mµ,2, . . .}, without compromising correctness or se-
curity properties for each subsequent run.

Additionally, the oblivious routing gate paradigm requires correctness and se-
curity properties:

Correctness. For each 1 ≤ j ≤ |Ol|, output values (qj , κµ,j) satisfy:

Case 1: j /∈ {w′
i}Si

. In this case (no output wire index w′
i indicated wire index

j), there is no correctness requirement for qj (except that it is a valid rate-1
PIR query), and κµ,j = ⊥.
Case 2: j =w′

i for exactly one i∈ [N ]. In this case (exactly one output wire

index w′
i is equal to j), qj is a PIR query corresponding to position wi, and

κµ,j is the corresponding reconstruction key.
Case 3: j = w′

i = w′
i′ . This case (two or more output wires {w′

i, w
′
i′} both equal

j) is the same as Case 1.

Security.Consider the following security game featuring a (polynomially bounded)
adversary A:
1. A sees all output values {qµ,j}j∈[1,|Ol|].
2. A specifies any subset RA ⊂ [N ], subject only to the constraint that |RA| ≤

N−2. Let T := [N ]\RA denote the set of indices in [N ] that are not selected
as part of RA, and let OA := {w′

i | w′
i ̸= ⊥}i∈RA denote the set of (non-⊥)

output wire indices for all i ∈ RA. Further partition T as:

(a) T1 ⊆T = {i | w′
i = ⊥}: The subset of T consisting of indices i∈[N ] whose

output wire index w′
i =⊥

(b) T2 ⊆ T \ T1 = {i | w′
i ∈ OA}: The subset of T consisting of indices i∈[N ]

whose output wire index w′
i (is not equal to ⊥ and) equals the output wire

index w′
i′ for some index i′ ∈ RA

(c) T3 = T \(T1 ∪ T2): The subset of T consisting of indices i ∈ [N ] whose
output wire index w′

i /∈(OA∪⊥)
3. ∀i ∈ (RA ∪ T2), A sees (wi, w

′
i) ∈ (⊥ ∪ {1, . . . , |Il|})× (⊥ ∪ {1, . . . |Ol|}).

4. A chooses j /∈ (RA ∪T2), and outputs guess (wj , w
′
j) for j’s input and output

wire indices.
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5. A wins if (at least) one of its guesses {wj , w
′
j} is both correct and not13 the

special value ⊥.

A ΠORG protocol is secure if any (polynomially bounded) adversary A’s proba-
bility of winning the above security game is bounded by:

Pr[A wins via correct wj ] ≤
1

|Il|
and

Pr[A wins via correct w′
j ] ≤

1

|Ol| − |OA|

Succinctly, aΠORG protocol is secure if the outputs{qêµ} reveal nothing about the
inputs {jêµ} they encode; and it is correct if the message written on each outgoing
edge gets decoded to the correct message from the appropriate incoming edge.

Figure 6 depicts a possible instantiation of an oblivious routing gate with
subprotocols (ΠRGEnc

, ΠRGDec
) set as (PIR-server, PIR-client) protocols (with

output values {qêµ} the PIR queries and {κêµ} the client’s reconstruction keys).
Correctness and Security of the resulting ΠORG protocol follow from the cor-
rectness and security of the underlying PIR protocol.

13 Observe that Adversary A cannot win if T3 = ∅.
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Oblivious Routing Gate in Beneš Network G via rate-1 PIR

Setup (see Figure 2).

– Parameters for a wide-edged, extended and colored Beneš network G =
B(N, b, c, w): N = 2n, b, c, w.

– Color index ĉ∈ [1, c], row index r∈ [N ], level index l∈ [0, (b+(1+b)·logN))].
– Let µ = µĉ,r,l denote the node at position (ĉ, r, l) of G (i.e. color ĉ, row r,

and level l; see Figure 12 in §A).
– Let I = Il denote the set of input wires to nodeµ, and notice for network G:

|Il| =

 1 if l = 0
c · w if l = j · (1 + logN) (for arbitrary j ∈ [1, b])
2 · w otherwise

(14)

– Let O = Ol denote the set of output wires from node µ, and notice (by
definition of Beneš network G):

|Ol| =

 1 if l = (1 + b) · (1 + logN)− 1
c · w if l = j · (1 + logN)− 1 (for arbitrary j ∈ [1, b])
2 · w otherwise

(15)

– When the ΠORG protocol is invoked, each of the |Il| input wires will have
an associated value on them. Let |v| = |vl| denote the size of each value.a

– Let Π1-PIR = Π1-PIR(|vl|, |Il|) denote a rate-1 PIR protocol for |Il| ele-
ments, each of size |vl|.
• Let βl denote the size of the reconstruct key (used by PIR client to parse

the server’s response).
• Let γ = γl denote the number of bits in a query to Π1-PIR(|vl|, |Il|).
• Let δPIR denote the (additive) stretch constant.

– Parties {S1, . . . , SN} connected via σ to parties {R1, . . . , RN} and C.

Input. For each i ∈ [N ], values (wi, w
′
i) with “input wire index” wi ∈ (⊥ ∪

{1, 2, . . . , |Il|}) and “output wire index” w′
i ∈ (⊥ ∪ {1, 2, . . . |Ol|}), subject to

constraint: wi = ⊥ ⇔ w′
i = ⊥.

Output. For each output wire index 1 ≤ j ≤ |Ol|:
i. Rate-1 PIR query qj = qµ,j ∈ {0, 1}γ .
ii. (µ, j, κµ,j) with κµ,j either ⊥ or a reconstruction key for qj (as per

Correctness requirement below).

a When ΠORG is invoked, |vl|= (cEnc+ l ·δPIR), where cEnc is the ciphertext
size of some scheme Enc.

Fig. 6: Instantiation of ΠORG functionality via rate-1 PIR in Beneš Network G.
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With the oblivious routing gate paradigm in hand, we define the emulated
permutation routing functionality, which captures how the NIAR router C trans-
mits messages through a (virtual) permutation-routing network:

Definition 29 Let G denote a permutation-routing network: N pairs of desig-
nated (sender, receiver) nodes and a permutation σ : [N ]→ [N ] connecting them.
Let {Pi} denote a set of N paths that link each (sender, receiver) pair with a
path through G. For every node µ ∈ G, and for each outgoing edge êµ ∈ Oµ,
define the index jêµ ∈ ⊥ ∪ [1, |Iµ| ] as follows: If exactly one path Pi traverses
outgoing edge êµ, then jêµ is the index of Pi’s incoming edge to µ. Otherwise, jêµ
is defined to be ⊥. Given as input: (i) A set of values {vj} for each outgoing edge
ej that emanates from one of the N source nodes; and (ii) A protocol ΠORG in-
stantiating the oblivious routing gate paradigm; an emulated permutation routing
(EPR) protocol ΠEPR(ΠORG, {vj}), is defined as:

(One-time) Setup Phase. For each node µ ∈ G, run ΠORG({jêµ}), and let
{qêµ} denote the output encodings (from output (i)) and ΠRGEnc

the routing
gate evaluation protocol (from output (ii)).
(Online) Emulation Phase. Iterate through the levels l of routing network G:
• For each outgoing edge êµ of each node µ ∈ G at level l, invoke protocol
ΠRGEnc

(êµ, qêµ ,Mµ) on inputs:
- qêµ : From Setup Phase (above).
- Mµ = {mj}j∈[1, |Iµ| ]: Values on the input wires of µ (either from input
(i) values {vj} if level l = 1 is the first level, or from the output values
of ΠRGEnc

in iteration l-1).
• For each incoming edge eµ,j of each sink node µ, output value zµ,j, where
zµ,j denotes the value assigned to this edge (viewed as an output edge of
some node on the previous level) by ΠRGEnc

(from the last iteration).

Figure 7 formally describes an emulated permutation routing protocol through
the routing network G used in our NIAR protocol (Figures 3 and 4), based on
the rate-1 PIR ΠORG protocol of Figure 6. Namely, it specifies precisely what
output values to write on every (virtual) edge of G.
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Per-Experiment Emulated Permutation Routing Protocol ΠEPRm

Input. Same parameters as parent protocol ΠNIAR. Also, router C has:
1. For each node µ = µĉ,r,l and each of µ’s 1 ≤ j ≤ |Ol| outgoing wires:

A rate-1 PIR query qµ,j .
2. For each sender Si: Ciphertext Encpki(mi).

Output. For each row index 1 ≤ r ≤ N and for each of the c input wires to the
node µr that is on row r of the last level in G, output values {zr,j}r∈[N ],j∈[c] ∈
{0, 1}(cEnc

+(1+b)·(1+logN)·δPIR).

Protocol. This protocol has central router C simulate sending messages through
graph G, using an oblivious routing gate protocol ΠORG (instantiated by rate-1
PIR, as per Figure 6) to implement oblivious routing at each gate. Namely, the
simulation begins with router C assigning the values {Encpki(mi)} to each input
wire of each node at row i of level 0. The values that are written on the outgoing
wires of any node µl (for l ≥ 0) are the (rate-1) PIR response that would result
from issuing PIR query qµl . We now formalize the protocol rules:
1. [Level −1]. For each node µ = µĉ,r,0 on level 0 (for any ĉ ∈ [c] and any

r ∈ [N ]), C writes value Encpkr (mr) (from Input Step 2) on each of µĉ,r,0’s
input wires (there are |I0| = c) such input wires. Let Aµ denote the virtual
array that holds these |I0|= c values, each of size |v0|= cEnc (see Figure 2).

2. [Levels 0 ≤ l ≤ (b+ (1 + b) · logN)]. For each node µ = µĉ,r,l on level l:
(a) Let Aµ denote the virtual array holding the |Il| values (each value of size
|vl| = cEnc+ l ·δPIR) on each input wire leading to µ. Note that this array
was constructed in Step (2d) of the previous iteration, or in Step 1 if l = 0.

(b) For each output wire 1 ≤ j ≤ |Ol| of µ, C simulates running the PIR query
qµ,j (from Input Step 1) against Aµ. Let zµ,j denote the PIR response, and
notice that (by definition of rate-1) it has size |zµ,j | = cEnc +(l+1) ·δPIR.

(c) (If l=(b+(1+b)·logN) is the last iteration, skip this step and (2d) below.)
For each of the {zµ,j}, cluster each contiguous set of w values together:

{( zµ,1, . . . , zµ,w︸ ︷︷ ︸), ( zµ,1+w, . . . , zµ,2w︸ ︷︷ ︸), . . . , ( zµ,1+bw, . . . , zµ,(b+1)w︸ ︷︷ ︸)}
Âµ,1, Âµ,2, Âµ,b+1

where b = 1 if l = j · (1+logN)−1 (for any j ∈ [b]; see (15)); else b= c -1.
(d) Construct the PIR input array Aµ′ for each µ′ on the next level by con-

catenating the appropriate numbera of arrays {Âµ,j} (from Step 2c),
choosing the appropriate nodes µ (as dictated by which nodes µ have
output wires that lead to µ′, as per graph G).

3. [Level (1 + b) · (1 + logN)]. From the l = (b + (1 + b) · logN) iteration
of the previous Step 2.b, each node µ′ on level (b + (1 + b) · logN) had
exactly 1 value zµ′,1 that was generated (see e.g. (15)), and this value has size
|zµ′,1| = cEnc + (1 + b) · (1 + logN) · δPIR. For any node µ on the final level
l = (1 + b) · (1 + logN), there are c nodes {µ′

j}j∈[c] from the previous level
that each have exactly one output wire leading to µ, and each such output
wire has value zµ′

j ,1
of size |zµ′

j ,1
| = cEnc +(1+ b) · (1+ logN) · δPIR. Output

these {zµ′
j ,1
} as the final output for each node µ on the final level of G.

a Two arrays (Âµ̂,j , Âµ̃,j) are concatenated if (1+ logN) ∤ l; otherwise c such
arrays are concatenated; see e.g. (14) in Figure 6.

Fig. 7: Per-Experiment Protocol ΠEPRm for Anonymous Permutation Routing.
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Supplementary Material

A Supplementary Figures

A.1 Butterfly and Beneš Networks

Fig. 8: Butterfly network with N = 8 input nodes.

Fig. 9:ColoredButterflynetworkwithN=8 input nodes and replication factor c=3.



Anonymous Permutation Routing 37

Fig. 10: Beneš network with N = 8 input nodes.

Fig. 11:ColoredBeneš networkwithN=8 input nodes and replication factor c=3.
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Fig. 12: Extended, Colored Beneš network with b blocks, replication factor c = 3,
and N = 8.
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Fig. 13: Ancestors of a node on some level of a Butterfly network with N = 8.

Fig. 14: Descendants of a node on some level of a Butterfly network with N = 8.
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B Proofs

Proof (Proof of Lemma 3). Fix an arbitrary node µl at level l ∈ [0, logN ].
Notice that a random path Pi originating at input node νi (for i ∈ [N ]) can
pass through µl if and only if νi is one of the 2l ancestors of µl (see Figure 13);
and in this case, the probability that a random path Pi originating at νi passes
through µl is exactly 1/2l (see Figure 14). Since each random path is chosen
independently from one another, the random variable Xµl

is exactly described
by the probability mass function of the binomial distribution, for Ml := 2l

experiments (corresponding to the Ml ancestors of node µl) and probability of
success p = 1/Ml. Furthermore, since the expected value of Xµl

is Ml · p = 1,
the probability is maximized when Xµl

= 1. Consequently, for any k ≥ 1:

Pr[Xµ ≥ k] =

Ml∑
i=k

(
Ml

i

)
· pi · (1− p)Ml−i

≤ (Ml − k + 1) ·
(
Ml

k

)
· pk · (1− p)Ml−k

≤ (Ml − k + 1) · Ml · (Ml − 1) · · · · · (Ml − k + 1)

k!
· pk

≤ Ml

k!
·Mk

l · pk =
Ml

k!
=

2l

k!

Proof (Proof of Lemma 4). The argument is analogous to the proof of Lemma 3,
with each node µl = µĉ,r,l (at level l ∈ [0, logN ], row r ∈ [N ], and color ĉ ∈ [c])
still having Ml = 2l ancestor nodes (now at level −1), and with each ancestor
having probability p = 1/(c ·Ml) of passing through node µl (e.g. one of c edges
are chosen from level −1 to level 0 that determines the “color”). Therefore,
the analysis used in the proof of Lemma 3 can be followed exactly, plugging in
p = 1/(c ·Ml) in the last step.

Proof (Proof of Lemma 5). Since k ≥ 1, there are clearly no nodes on levels −1 or
0 that have more than one path pass through it. The corollary therefore follows
immediately from (3), by applying a union bound over all of the c·N logN nodes
(c ·N nodes on each of the levels l ∈ [1, logN ]):

Pr[Xk = 1] ≤ (c ·N) ·
logN∑
l=1

2l

k! · ck
=

(
c ·N
k! · ck

)
·
logN∑
l=1

2l ≤ 2c ·N2

k! · ck

Proof (Proof of Lemma 7). For j = 1, (5) follows immediately from Lemma 5.
Similarly for j = 1 + b, since σ is a permutation, then the setup (for continuing
each path {Pi}Ni=1 from level (b · logN) through the final output level 1+(1+b) ·
logN) is identical (up to reflection/mirror image) to the hypotheses of Lemma 5.
Thus, it remains to demonstrate (5) for each j ∈ [2, b].

The argument for all such blocks j is simply a counting argument: since each
path has an equal probability of starting at any of the (c · N) nodes on the
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“input” level of block j (namely, on level (j − 1) · (1 + logN)), and from there
a uniformly random path is chosen, we have that for any level l ∈ [(j − 1) · (1 +
logN), j · (1 + logN) − 1] contained in the jth block, each path has an equal
probability of passing through each of the (c·N) nodes on that level. For any node
µj in the jth block, let Xµj

denote the random variable that counts the number
of paths passing through µj . Then Xµj is exactly described by the probability
mass function of the binomial distribution, for N experiments (corresponding to
the N paths {Pi}) and probability of success p = 1/(c ·N). Furthermore, since
the expected number of paths passing through µj is N · p = 1/c, the probability
is maximized when Xµj

= 1/c. Consequently, for any k ≥ 1:

Pr[Xµj ≥ k] ≤ (N − k) · Pr[Xµj = k]

≤ (N − k) ·
(
N

k

)
· pk · (1− p)N−k

≤ (N − k) · N · (N − 1) · · · · · (N − k + 1)

k!
· pk

≤ N · (N − 1) · · · · · (N − k)

k!
·
(

1

cN

)k

≤ N

k! · ck
(16)

Thus, applying a union bound on the cN(1 + logN) nodes in block j:

Pr[Xj,k] ≤ (cN(1 + logN)) · Pr[Xµj
≥ k] ≤ c ·N2 · (1 + logN)

k! · ck

Proof (Proof of Lemma 12). Fix any i ∈ [N ], j ∈ [(1 + b)], and k ∈ [N ]. Let
Pi denote the path selected by Πσ

N
connecting (Ii, Oσ(i)) for a given run of the

algorithm in Figure 5. Let el be an edge in Pi that is in block j; that is, el connects
levels (l, l + 1) for some level l ∈ [(j − 1) · (1 + logN), (j · (1 + logN)− 1)]. We
first argue that the probability that el is not edge-disjoint (that is, that some
other path Pi′ specified by Πσ

N
also contains el, for i

′ ̸= i) is bounded by:

Pr[el ∈ Pi′ for i
′ ̸= i] ≤ c ·N2(1 + logN)

k! · ck
+

k

2w
(17)

To prove (17), let µl denote the node on level l that lies on Pi (so the left-hand
node of edge el), and let Zk,µl

denote the boolean random variable indicating
whether µl has more than k total paths that pass through it (as specified by the
given run of Πσ

N
). Consider:

Pr[el ∈ Pi′ for i
′ ̸= i] ≤ Pr[el ∈ Pi′ for i

′ ̸= i | Zk,µl
= 1] · Pr[Zk,µl

= 1] +

Pr[el ∈ Pi′ for i
′ ̸= i | Zk,µl

= 0] · Pr[Zk,µl
= 0]

≤ Pr[Zk,µl
= 1] + Pr[el ∈ Pi′ for i

′ ̸= i | Zk,µl
= 0]

≤ c ·N2(1 + logN)

k! · ck
+

k

2w
(18)

where the first term of (18) comes from (5), and the second comes from applying
a union bound: since there are at most k other paths that pass through µl (since
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Zk,µl
= 0 for this term), the probability that any of these (at most k) paths

also traverses edge el is bounded by 1/2w (since there are the two14 choices of
“up/down,” and (expansion factor) w choices for which duplicate of each edge.

Using(17), we conclude the proof by applying a union bound on the (1+logN)
levels in block j.

Proof (Proof of Lemma 14). This follows immediately from Lemma 12 by ap-
plying a union bound on the (1 + b) blocks of the Beneš network B(N, b, c, w).

Proof (Proof of Corollary 16). First, we examine the RHS of (7) with the pa-
rameter values as specified and with k = logN :

(1+b)·(1+logN)·
(
cN2·(1+logN)

k!·ck
+

k

2w

)
= λ·

(
4aλN

2·(1+logN)2

(logN)!·alogNλ · 4logN
+

logN

96λlogN

)

= λ·

(
4·(1+logN)2

(logN)!·alogN−1
λ

+
1

2.4λ

)

< λ·
(

1

3λ
+

5

12λ

)
=

3

4
(19)

where we have used in the inequality that 4·(1+logN)2

(logN)! < 1/3 (which holds for

any N ≥ 64) and that alogN−1
λ ≥ λ (which is immediate by definition of aλ).

Consider:

Pr[X = 0] ≤ Pr[∀ m ∈ [M ] : XΠm
(i) = 0]

≤
(
(1 + b) · (1 + logN) ·

(
c ·N2 · (1 + logN)

k! · ck
+

k

2w

))M

where the inequality is from Lemma 14. We then use (19) and substituting
M = λ to conclude the proof.

Proof (Proof of Lemma 19). We can use a similar argument as was done for
Lemma 12 to bound the probability that any one of the paths {Pi,Pi′ ,P ′

i,P ′
i′}

is not edge-disjoint. Specifically, observe that:

– ∀̂i /∈{i, i′}: Pî =P
′
î (by construction ofΠ ′), and hence any of the four paths in

{Pi,Pi′,P ′
i,P ′

i′} is edge-disjoint fromP ′
î if and only if it is edge-disjoint from Pî.

– For any of the four paths in {Pi,Pi′ ,P ′
i,P ′

i′}, the setup is identical to the
setup in the hypotheses of Lemma 12, except that there are now N + 2 total
paths through block j (instead of just N paths). Namely, N−2 of the N paths
specified by P ′ exactly overlap with the corresponding N − 2 paths specified
by P, plus the (up to) four distinct paths: {Pi,Pi′ ,P ′

i,P ′
i′}.

14 In the case that el traverses the final level of the block, then instead of two there
are c choices for edge (corresponding to each edge leading to each color node), and
by assumption c ≥ 2.
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However, notice that Definition 17 does not require the four paths {Pi,Pi′ ,P ′
i,P ′

i′}
to be edge-disjoint from each other. Therefore, when counting the number of
paths that pass through a given node (see e.g. the analysis leading to (16)), we
can ignore these four paths. More specifically, the bounds from Lemma 7 (and
more specifically, in (5)) can be used as-is (they still provide an upper-bound,
although they could be slightly tightened to leverage that there are only N − 2
relevant paths instead of the N paths that were used in the analysis leading to
(16)) when bounding Pr[Zk,µl

= 1], as per the analysis in the proof of Lemma 12
(see (18)). Consequently, the analysis used in the proof of Lemma 12 remains
valid, and hence, for any of the four paths, the probability that the path is edge-
disjoint (from the N − 2) other paths in {Pî}̂i ̸=i,i′ on block j is bounded by

(1 + logN) ·
(

c·N2·(1+logN)
k!·ck + k

2w

)
. We conclude the proof by applying a union

bound on the individual probabilities, for the four paths {Pi,Pi′ ,P ′
i,P ′

i′}.

Proof (Proof of Lemma 22). For any index ĵ ∈ [1, (1 + b)], let Πĵ denote the
“block j alternate routing algorithm” as per Definition 18, with corresponding
random variable YΠ,Π′

ĵ
(i, i′, ĵ) (as per Def. 17). Then by Lemma 19, the proba-

bility that YΠ,Π′
ĵ
(i, i′, ĵ) = 0 is bounded by 4 · (1+ logN) ·

(
c·N2·(1+logN)

k!·ck + k
2w

)
.

Therefore, the probability that YΠ,Π′
j
(i, i′, j) = 0 for all block indices j ∈ [1, (1+b)]

is bounded by
(
4 · (1 + logN) ·

(
c·N2·(1+logN)

k!·ck + k
2w

))(1+b)

. The lemma there-

fore follows from the observation that YΠ,Π′(i, i′) = 1 if and only if Π ′ is defined
as per Step (2a) in Definition 21; i.e. if there exists j ∈ [1, (1 + b)] such that
YΠ,Π′

j
(i, i′, j) = 1.

Proof (Proof of Corollary 24). First, notice that with the parameters as in the
hypothesis and with k = logN , the inner-term (everything except the exponent)
on the RHS of (10) becomes:

4·(1+logN)·
(
cN2·(1+logN)

k!·ck
+

k

2w

)
= 4 ·

(
4aλN

2·(1+logN)2

(logN)!·alogNλ · 4logN
+

logN

2.4λlogN

)

= 4 ·

(
4·(1+logN)2

(logN)!·alogN−1
λ

+
5

12λ

)

< 4 ·
(

1

3 ·N/2
+

5

96

)
≤ 4 ·

(
1

96
+

5

96

)
=

1

4
(20)

where we have used in the first inequality that 4·(1+logN)2

(logN)! < 1/3 (which holds

for any N ≥ 64), that alogN−1
λ ≥ N/2 (which is immediate from the definition of
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aλ), and that λ ≥ 8 (by hypothesis); and in the second inequality that N ≥ 64.
Consider:

Pr[Y = 0] = Pr[∃(m, i, i′) ∈ [M ]× [N ]× [N ] : YΠm ,Π′
m
(i, i′) = 0]

≤ M ·N2 ·
(
4 · (1 + logN) ·

(
c ·N2(1 + logN)

k! · ck
+

k

2w

))(1+b)

≤ λ ·N2 ·
(
1

4

)λ

where the first inequality is from a union bound combined with Lemma 22; and
the second inequality is from (20) and substituting M = λ and b = λ− 1.

Proof (Proof of Lemma 25). By Corollary 24, the probability that Adversary A
wins in Step 3 is bounded by 1

2·2λ . Thus, we need only show that the proba-
bility that Adversary A wins in Step 6 (i.e. that A correctly chooses between
σ and τ) equals 1/2. This in turn follows immediately from the definition of
YΠ,Π′(i, i′, j) (Definition 17): Since Adversary A was given an unordered set
{Pm,i,jm,Pm,i′, jm,P ′

m,i,jm,P ′
m,i′, jm} in Step 5d, there is no way for the Adver-

sary A to distinguish the actual path Pm,i,jm (as per Πm) from its alternate
path P ′

m,i,jm (as per Π ′
m); and ditto for Pm,i′, jm and its alternate path P ′

m,i′, jm .
Namely, if we let µm,i, µm,i′ denote the two (not necessarily distinct) “block jm
input level” nodes (i.e. the nodes at level (jm − 1) · (1 + logN)) that Pm,i and
Pm,i′ pass through, and similarly let νm,i, νm,i′ denote the two (not necessarily
distinct) “block jm output level” nodes (i.e. the nodes at level (jm · (1+ logN)))
that Pm,i and Pm,i′ pass through, then notice:

– Within block jm: Pm,i,jm starts at µm,i and ends at νm,i.
– Within block jm: Pm,i′, jm starts at µm,i′ and ends at νm,i′ .
– Within block jm: P ′

m,i,jm starts at µm,i and ends at νm,i′ .
– Within block jm: P ′

m,i′, jm starts at µm,i′ and ends at νm,i.

Also, define the two sets of paths: “primary” paths Pm,0 := {Pm,i,jm , Pm,i′, jm}
and “alternate” paths Pm,1 := {P ′

m,i,jm , P ′
m,i′, jm}. Then notice that the Ad-

versary A can guess the correct permutation σ versus τ in Step 6 if and only
if it can distinguish between Pm,0 versus Pm,1, in terms of which correspond to
the “primary” paths and which is the “alternate” paths. Thus, it is sufficient to
show that this probability is 1/2.

Consider the following facts:

F1.a The probability that Challenger C chose Pm,i,jm (and hence P ′
m,i,jm was

the “alternate”) equals the probability that Challenger C instead chose
P ′
m,i,jm (and hence Pm,i,jm would have been the “alternate”).

F1.b The probability that Challenger C chose Pm,i′, jm (and hence P ′
m,i′, jm was

the “alternate”) equals the probability that Challenger C instead chose
P ′
m,i′, jm (and hence Pm,i′, jm would have been the “alternate”).

F2.a Amongst the two paths in Pm,0: One starts at µm,i and the other starts
at µm,i′ ; and one ends at νm,i and the other ends at νm,i′ .
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F2.b Amongst the two paths in Pm,1: One starts at µm,i and the other starts
at µm,i′ ; and one ends at νm,i and the other ends at νm,i′ .

F3.a Both paths in Pm,0 are edge-disjoint (on block jm) from all other paths
{Pm,̂i}̂i/∈{i,i′}.

F3.b Both paths in Pm,1 are edge-disjoint (on block jm) from all other paths
{Pm,̂i}̂i/∈{i,i′}.

Given the above facts, there is no way for (even an unbounded) Adversary A to
distinguish whether the two paths in Pm,0 are the “primary” paths (selected by
Πm) with Pm,1 as the “alternate” paths (selected by Π ′

m), or vice-versa, since:

– A priori, the two paths in Pm,0 are equally likely to be chosen by Πm as the
“primary” paths as the two paths in Pm,1 (Fact F1).

– The information of block index jm (dealt in Step 5a) is no help in distin-
guishing,

– The information of non-interesting paths (dealt in Step 5b) is no help in
distinguishing, since Pm,0 and Pm,1 are similarly edge-disjoint (on block jm)
from all other paths {Pm,̂i}̂i/∈{i,i′} (Fact F3).

– The information of paths Pm,i,jm and Pm,i′, jm before block jm (dealt in
Step 5c) is no help in distinguishing, since both Pm,0 and Pm,1 have one
path that starts at µm,i and one that starts at µm,i′ (Fact F2).

– The information dealt in Step 5d is no help in distinguishing, since the pro-
vided list of paths {Pm,i,jm ,Pm,i′, jm ,P ′

m,i,jm ,P ′
m,i′, jm} is unordered.

– The (unordered) information of which edges lie in Pm,i,jm and Pm,i′, jm beyond
block jm (dealt in Step 5e) is no help in distinguishing, since both Pm,0 and
Pm,1 have one path that ends at νm,i and one that ends at νm,i′ (Fact F2).

Therefore, none of the information provided by the Challenger C (nor any other a
priori bias) provides any information to Adversary A that allows it to distinguish
between Pm,0 and Pm,1 (in terms of which are the “primary” paths and which
are the “alternate” paths). Consequently, the probability that Adversary A can
distinguish between Pm,0 and Pm,1 (in terms of which are the “primary” paths
and which are the “alternate” paths) is 1/2.

Proof (Proof of Lemma 26). (Proof by contradiction.)
Suppose there exists a (computationally unbounded) adversary A that can win
the security challenge game with probability greater than 1

2 +
1

2λs
. We will show

this leads to a contradiction.

Reduction. Without loss of generality, we may assume that σ0 and σ1 differ in
exactly two indices i ̸= i′, so that σ0(i) = σ1(i

′), and σ0(i
′) = σ1(i), and for all

other indices j ̸= i, i′, σ0(j) = σ1(j) (this reduction gives the adversary an extra
factor of N advantage).

Proof (Proof of Reduction.). Consider the following chain of permutations:

(σ0 =)τ0, τ1, τ2, . . . , τN (= σ1), (21)
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where each τi+1 is defined iteratively from τi, starting with τ0 = σ0. Then
given τi, define τi+1 to be the permutation that matches τi at all indices except
(possibly) in positions i and j ≥ i, where j := σ−1

0 (σ1(i)). Namely, τi+1(i) :=
σ1(i), and τi+1(j) := σ0(i) (= τi(i)). Then it is easy to demonstrate the for any
1 ≤ i ≤ N , permutations τi−1 and τi differ in (at most) two places.

We now apply a standard hybrid argument, to show that the existence of
an Adversary who wins the security challenge game with σ0, σ1 implies the
existence of an Adversary A′ who can distinguish between τi and τi+1 (for some
i ∈ [0, N ]), with advantage:

Pr[A outputs b correctly] >
1

2
+

1

2λs
⇒

(22)

Pr[A′ distinguishes between τi and τi+1] >
1

2
+

1

N · 2λs
=

1

2
+

1

2λ

The proof by contradiction is now complete, as the existence of adversaryA′ with
advantage as per (22) violates (13), since for λ = 2 logN+max(λs, 2+log logN),
we have:

λ ·N2

4λ
=

1

2λ
· N2

22 logN
· λ
2α
≤ 1

2λ

where α := max(λs, 2 + log logN), and we have used that 2α ≥ λ since:

If λs ≥ 2 logN : Then λ ≤ 2λs ⇒ log λ ≤ λs ≤ α.
If λs ≤ 2 logN : Then λ ≤ 4 logN ⇒ log λ ≤ 2 + log logN ≤ α.
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