Embracing Hellman: A Simple Proof-of-Space
Search consensus algorithm with stable block
times using Logarithmic Embargo

Marijn F. Stollenga

m.stollenga@gmail.com

October 10, 2022

Abstract

Cryptocurrencies have become tremendously popular since the cre-
ation of Bitcoin. However, its central Proof-of-Work consensus mecha-
nism is very power hungry. As an alternative, Proof-of-Space (PoS) was
introduced that uses storage instead of computations to create a consen-
sus. However, current PoS implementations are complex and sensitive
to the Nothing-at-Stake problem, and use mitigations that affect their
permissionless and decentralised nature.

We introduce Proof-of-Space Search (PoSS) which embraces Hellman’s
time-memory trade-off to create a much simpler algorithm that avoids the
Nothing-at-Stake problem. Additionally, we greatly stabilise block-times
using a novel dynamic Logarithmic Embargo (LE) rule. Combined, we
show that PoSSLE is a simple and stable alternative to PoW with many
of its properties, while being an estimated 10 times more energy efficient
and sustaining consistent block times.

1 Introduction

Proof-of-Space (PoS) consensus algorithms [9, 2] are an energy-efficient alterna-
tive to the common Proof-of-Work (PoW) algorithms, that replace commitment
through computations with commitment through persistent storage, greatly re-
ducing energy requirements. Instead of doing computations during the mining
process, PoS pre-computes a large set of challenges and stores the result. Then,
given a challenge, the closest pre-computed challenge can be retrieved in loga-
rithmic time. This essentially reuses the computations done before, instead of
throwing them away as in PoS.

However, current PoS implementations are designed such that every miner
only performs a limited retrievals per block, in an effort to be more efficient. The
result is that the mining process has a negligible cost, and miners don’t have to
commit to one version of the blockchain and can simply mine other versions in
their down time. This is known as the Nothing-at-Stake problem, and current
PoS implementations avoid it by introducing complex voting mechanisms that
should ensure miners are honest. Such voting mechanisms however introduce
complexities and add attack vectors that need to be covered, and negatively
affect the decentralised and permissionless participation to the blockchain.

In this work we introduce a new consensus algorithm called Proof-of-Space
Search with Logarithmic Embargo (PoSSLE), which introduces two innovations:

o A continuous retrieval challenge that embraces the Hellmann time-memory
trade-off |11], instead of avoiding it like other PoS algorithms, avoiding
the Nothing-at-State problem. Since the algorithm is completely bottle-
necked by memory-reading operations this still results in an algorithm
that is orders of magnitude more efficient than traditional PoW mining in
our experiments (see Section .

e A novel Logarithmic Embargo block-acceptance rule which stabilises block-
times greatly to a very consistent time range instead of exponentially dis-
tributed block-times of other blockchains. This greatly improves stability
as network throughput stays consistent and block times are predictable.

2 Related work

2.1 Proof-of~-Work

The publication of the Bitcoin whitepaper [17] introduced Proof-of-Work as a
consensus mechanism, currently reliably securing up to $600 billion at it’s peak
in Bitcoin alone |16, and more than $§1 Trillion including other crypto cur-
rencies. The beauty of PoW lies in its simplicity; the collective commitment
of computational power of a permissionless, decentralised network enforces a
singular history of transactions, without any peer having to ask for permission
to join the network. Omnce a transaction is accepted in the blockchain, it be-
comes exponentially more difficult for an adversary to change the history of the
blockchain as time progresses.

However, it is known that PoW is an energy hungry mechanism [13] due to
the computational mining algorithm performing as many complex computations
as possible. Therefore, researchers have been looking into ways to reduce this
power consumption while retaining the simplicity and security of PoW.

2.2 Proof-of-Space

Proof-of-Space (PoS) introduced the idea of using memory storage instead of
CPU cycles as the main commitment mechanism [9, 2]. Instead of continuously
computing challenges, as in PoW, they are only computed once and then stored
on a storage medium. This set of stored computations is known as a plot.
After plotting, a miner simply looks up the desired result instead of computing
it, essentially reusing the computation. This process is known as farming to
distinguish it from the energy intensive mining (from here on, we will refer to
PoS miners as farmers).

2.3 The Nothing-at-Stake problem

Current implementations of PoS explicitly reduce the amount of times a plot
needs to be searched to a minimum, ideally once per block, to maximise effi-
ciency of the chain. Both in the largest PoS blockchain — Chia [8] — and the
Spacemint blockchain |18] a Verifiable Delay Function (VDF) is introduced. The

PoST POSSLE

—_ bl bl b

Pow
. N

mining farming waiting farming

Figure 1: PoW vs PoST vs PoSSLE. PoW uses a continuous high-energy load during
the mining process. PoST is the most efficient with considerable down time in which
the VDF is evaluated, with causes the Nothing-at-Stake problem. PoSSLE instead
uses a continuous search that doesn’t have the Nothing-at-Stake problem, but relies
solely on retrieval operations which are much more efficient than PoW.

VDF is a function that requires an very large amount of sequential computation,
such that it can’t be evaluated quickly by scaling up through parallelism.

The computation of the VDF functions as a Proof-of-Time; it ensures a
certain amount of time has passed to evaluate this function. Together, this
method is called Proof-of-Space-Time (PoST).

By using the output of the VDF as a challenge, the consensus mechanism
only rarely performs a plot search and is idle most of the time (see Figure .
However, this incentivises farmers to spend their free time on other chains that
fork from the most secure chain, since there is essentially no downside to do so
and it increases their chances to farm a block. This is known as the Nothing-at-
Stake problem , which greatly de-stabilises the protocol and needs to be mit-
igated by an increase in protocol complexity. All methods battling the Nothing-
at-Stake problem introduce some system of walidators that build reputation
and wote on correctly behaving nodes and punish bad ones. These mitigations
greatly increase protocol complexity and decrease permissionless participation
and decentralisation.

2.4 Hellman’s Time-Memory Trade-off

Hellman showed that a deterministic randonﬂ permutation function can be
inverted faster than simple random search, by trading off computation time for
space . In general, Hellman showed that a function permuting in a domain
of size N can be inverted in T'x .S = N, where T is the time requirement, S
the committed space; the more space is committed, the fewer computations are
needed for the inversion.

In this work, we use this trade-off to create a PoS algorithm that combines
the simplicity of PoW with the efficiency of PoS. The insight is that a continuous
search algorithm can be embraced that uses the trade-off to focus time spent on
memory retrieval instead of computation, which is inherently more efficient as
we show in experiments. This is in contrast to current PoST algorithms, which
actively try to avoid Hellman’s trade-off [1 [g].

As part of the algorithm we relax Hellman’s inversion and introduce a novel
dynamic challenge, called the Logarithmic Embargo (LE), which reduces chal-

1Officially ’deterministic’ and ’random’ are mutually exclusive. We use the colloquial
random’ here for simplicity; more accurate would be a cryptographic or chaotic permutation
function.

bud chain head

—
D transactions nonce
slow plant Eﬁfﬁﬂ
hash P /> \\\\\\‘
1
|

1
L__
pre-image send
compare
XOr]
’_\>D on ¢ embargo S'a"ggggg

tlme
logarithmic
best
match\AO dlstance _embargo

verify/
. update

™ receive

blockchalnx

new block

Figure 2: Diagram of Proof-of-Space Search with Logarithmic Embargo (PoSSLE).

lenge requirements as time progresses. This simple addition ties in neatly into
the algorithm and greatly stabilises block-times.

3 Method

We introduce Proof-of-Space-Search with Logarithmic Embargo (PoSSLE), which
combines two techniques in one stable and efficient consensus mechanism:

 Proof-of-Space-Search (PoSS), a novel consensus mechanism that embraces
the Hellman trade-off and trades computational work for memory retrieval.
The algorithm is running a continuous search for the best block like PoW,
and unlike PoST, thus avoiding all complexities arising from the Nothing-
at-Stake problem.

o A Logarithmic Embargo (LE); a dynamic block acceptance rule that re-
duces the challenge over waiting time; greatly increasing stability of the
network by creating consistent block-times (see Section [3.3)).

3.1 Formalisation

We define a cryptographic hash function f : — y, which deterministically
maps an input x € Zy to an output y € Zy where Zy is the set of non-negative
integers modulo N. Typically, N is a dyadic number determined by the bit-size
of the corresponding hash function.

We distinguish between two hashing functions: a fast hashing function f
that is designed to calculate a cryptographic hash as fast as possible, and a
slow hashing function f that is designed to take a considerable amount of com-
puting power. In this work the Blake2 algorithm [3] for f while the Argon2D
algorithm |4] is chosen for f.

We define a plant p to be a pair of values p = {s,b}, where s € Zy is the
seed value, and b = f(s) the bud value. A farmer pre-computes a set, or plot,
of plants P = {po,p1..pam}. The seeds are sampled randomly from a uniform
distribution s ~ U(0, N) and the plot is stored in a memory medium of choice.

We use hpame € Zn to define a certain hash h. All our hashes are in the
domain Zpy.

3.2 Proof-of-Space Search

Any blockchain needs to define a challenge that determines if a block is valid.
The state of the blockchain is embedded into the challenge, and the entity
solving the challenge inherently commits to the validity of this information by
investing resources.

The information included is a block block; is:

o hprev = block;_1, the previous block hash.

e hpew, @ hash based on any new information to include in the block. These
can be new transactions hney = f(fzo, tz1,...) or any other information,
depending on the blockchain.

e hponce, @ nonce value. This value can be changed and allows the farmer to
freely affect the hash of this block without changing the other meaningful
information.

This information is hashed together:
blOCk; - f(hprevAhnewAhnonce) (1)

where block), is a pre-block hash, ~ is the concatenation operatiorﬂ

Retrieval Challenge At this point the challenge for PoW would be:
block’ < 1 (2)

where 7 € Zy is a fixed threshold.

However, this challenge does not allow for any pre-computations. The only
way a pre-computed hash value is applicable is if input to the hash function is
ezactly the hash of the block; a coincidence that is impossibly unlikely.

Instead, we need to loosen the challenge. Given the pre-hash block’, we find
the plant p; = {s;,b;} that minimises a proof distance:

5 — min d(b;, block’ 3
p = min d(b;, block’) (3)
d(b;, block") = b; @ block’ (4)

where d(-,-) is the proof distance and @ is the binary XOR operation. The
output of d(-,-) € Zy lies in the same domain as its inputs. The minimisation
of Formula 3| can be performed in logarithmic time (see Section .

This process can be repeated by changing hyonce, resulting in a new pre-hash
and a new chance to find an even closer match:

in d(b;, block) € Z 5
oy (i, block) € Zy ®)

It is always more beneficial to search for a new challenge than to compute new
plants; a new search efficiently finds a match among a whole plot, which would
cost an enormous amount of energy to compute on the fly. This ensures that

2For simplicity we use concatenation here, in the actual implementation on can use a
Merkle-tree|15]

there is an incentive to use memory lookups instead of spending computational
power.

To compute the final block hash, the prehash block’ and the seed value s are
combined:

block = f(block’”s) (6)

The seed value s forms the non-trivial proof that the user performed work to
find a plant p that minimised the proof distance.

3.3 Dynamic Threshold

The final ingredient we need is a distance threshold 7 for d(b;, block’) that defines
a valid block. A fixed threshold can be used like Formula[2] as is used in Bitcoin,
which would result in a Poisson process with exponentially distributed block
times. This variability has negative implications to the user experience and
stability of the network (the longest block time recorded on Bitcoin was 141
minutes — 14 times the target 10 minutes).

Instead, we introduce a novel dynamic threshold called the Logarithmic Em-
bargo (LE). A block is not valid before a time-embargo is lifted, where the em-
bargo depends on the proof distance d € Zy (Formula . The shorter the
distance, the earlier it becomes valid.

First, we define the work that went in finding the proof using the negative
log-likelihood:

work(d) = — log2(|ZdN|) where: d # 0 (7

where |Zy| is the maximum possible distance. We then calculate the embargo
as follows:

C
tembargo (d) - Ttarget Fk(d) (8)

where Tiarger is the target block time, and C a constant that is adjusted such
that the fraction %k(d) ~ 1.

The calculation of C' depends on the farming speed of the network and needs
to be adjusted as this speed changes over time. We recalculate C' every K blocks,

by observing the embargo values of the last K blocks:

t—1

1 Ttar et
Cr=Ci_x— E B 9
R o)
i—t_ | ~embargo
Where 4 yarg, 15 the embargo of block i.

Final block-chain rule As with any consensus algorithm, several blocks
might be proposed at the same time, which could represent completely different
chains with different parent blocks. Therefore we define the final block-chain
rule: at any time the winning block is the block of which all blocks in its chain
are valid, and the accumulated work is maximised:

max § : 2work(blocki) (10)
block
block; EHistory(block)

where b; € History(block’) is the set of all blocks block’, in the history of block
block’. The work is added in linear space, hence the power of 2.

Once a valid block is published, there is no incentive for a farmer to keep
working on an older block, since their proof would be strictly weaker than when
using the newer block.

3.4 Block Time Distribution

—— Logarithmic Embargo, A = 210
7 A Logarithmic Embargo, A = 22°
—— Logarithmic Embargo, A = 23°
6 —— Exponential Distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3: Probability distribution of block waiting times under Logarithmic Embargo
for mining rates: \ = {210, 220, 230}, Also the exponential distribution is shown. The
block times under Logarithmic Embargo are closely distributed around the target block
time, while the exponential distribution is spread wide with a long tail.

Here we analyse the distribution of block-times under the dynamic threshold.
Firstly, the distance d(b,b’) between a random bud value b and a pre-hash ¥’
are randomly distributed d ~ U(0, N). The chance that this distance is below
a given threshold 7 € Zy is:

-
pd<7)= N (11)

Every time a plot is searched, all plants in the plot are considered, counting

as a repeated search. This happens across the network among many peers, and
these searches are repeated with different hyonce values. To account for this, we
assume a stable mining rate across the network of A\ searches per second. In a
given time of T seconds, AT searches are performed on average. This gives the
following chance a distance below threshold 7 is found in a given time interval

p(Jid; <T30<i<AT)=1—(1— %)AT 12)

Using the embargo formula [§] we can calculate the required 7 to create a
valid block in time 7"

Ttar et
work(d) = C —=8 _ 13
() tembargo(d) ()

By using d = 7 as the required distance, fempargo(d) = T' as the required
embargo, and expanding work(d), we get:

Ttarget

-
—logy & = 14
B2y =7 (14)
Ttarget
r=N2¢"T (15)
We can plug this back in formula
p(3id; < T(T);0<i<AT)=1—(1— g—c@)m (16)

This function is expresses the cumulative chance that a valid block is found
within a time period T'. Since this is a cumulative distribution we can take the
derivative of T to get the probability that the valid block happens at time T
This results in a complex function which we omit, but we plot it for different
values in Figure [3] We can see that the block times are concentrated around a
small period, resulting in stable and predictable block times, while the exponen-
tially distributed times of other block chains are spread out over a large range.
We verify these block times in experiments in Section [5.1

4 Implementation

To validate PoSSLE we create an implementation in the Zig language |12]. We
use the Argon2D algorithm [4] for our slow hash function f, with an input and
output domain of 256 bits: Zg2s6, and parameters time = 1, memory = 128,
parallelism = 1. There parameters were determined to be a good trade-off for
the desired plotting speed, however other parameters could be used to make
plotting faster or slower. We use the Blake2 algorithm [3] for our fast hash
function f, again with an input and output domain of 256 bits: Zs2ss.
The source code is maintained at https://github.com/marijnfs/zig-possle.

4.1 Plotting

Before we can farm, we need to create a plot. For each plant, the seed and
bud need to be stored. Both the seed and bud consist of 256 bits, or 32 bytes.
Thus one plant consists of 64 bytes of information. For our implementation
we use a plot size of 128GB, which can contain 23! plants. This is perfect for
indexing, since we can use 32 bit integers with one bit to spare which we need
to differentiate between leafs and nodes.

To efficiently plot this number of plants, we use the following strategy:

https://github.com/marijnfs/zig-possle

1. Npase plants p; = (s;, b;) are created by sampling seeds from s; ~ (0, 2256)
and calculating bud b; = f(s;).

2. Plants p; are sorted by b; and stored in memory in a set S.

3. Steps 1-2 are repeated creating sets of size Npa.se; consecutive sets are
merged recursively by merge sort [5).

4. Once the set is too large to fit in memory, it is stored to disk, creating a
set of size Npersistent-

5. Steps 3-4 are repeated, creating plots on disk. Consecutive sets are merged
recursively on disk by merge sort.

6. This process is repeated until the required plot size IV is achieved.

Algorithm 1 Find first changing bit in a plot

Require: p = (sg,bp), (s1,b1)..(sn,bn) is a plot sorted by b;

function FINDCHANGINGBIT(I, 7, bit)
while [# r do
m« &r
if by, [bit] then
rm
else
l<m+1
return [

4.2 Indexing

The plotting algorithm results in a set of plants, sorted by their bud value. To
perform lookups in this set in log N time, we need to index the set using a binary
trie |10]. This process is defined in algorithm For our set of 23! plants, we
can create a trie index using 32 bit indices. We can index the nodes and plants
in the trie using 31 bits, and use the 32th bit to distinguish between them. We
need as many indices as there are nodes, and 32 bit index uses 4 bytes, thus we
need 4 x 23! bytes, or 8GB, to store the indices. The result is a 1—16 additional
use in space; well worth the log N lookup time.

4.3 Farming

The farming process consists of creating a block pre-hash block” using Formula
and finding the closest bud using the algorithm described in Algorithm 3] Start-
ing from the first node, the trie structure is descended following the current
search bit to choose between the left and right node. In the case a reference is
empty it means there are no plants in that range with this bit, and the other
reference needs to be taken. Finally a leaf will be found, and the corresponding
plant is returned.

The farmer repeats this process and keeps track of their best block that
builds upon the blockchain, with the shortest embargo (Formula [5)), waiting for
the embargo to lift.

Algorithm 2 Building a binary trie for farming

function BUILDTRIE(p)
trie < L1sT(2)
stack <— STACK(Q)
PusH(stack, {0,{0,N}, @})
while {bit, {L, R}, parentref} < PoPr(stack) do
node + {L = @,R = &}
idz + FINDCHANGINGBIT(bit, L, R)
if idx = L then
node.L < @
else if idz = L + 1 then
node.L < {L, leaf = True}
else
PusH(stack, {bit + 1,{L,idx}, &node.L})
if idx = R then
node.R < @&
else if idz +1 = R then
node.R < {idz, leaf = True}
else
PusH(stack, {bit + 1, {idz, R}, &node.R})
node__idx < INSERT(trie, node)
if parentref # @ then
*xparentref < {node__idz, leaf = False}

return trie

Algorithm 3 Find closest plant in a plot in log(N) time

function SEARCH(pattern, trie, plot)
ide < 0
bit_idx < 0
while True do
if trie[idz].L = @ then
idz < trie[idz].R
else if trieidz].R = @ then
idx + trie[idz].L
else if pattern[bit_idx] then
idz + trie[idz].R
else
idz < trie[idz].L
bit _idr ++
if ISLEAF (idz) then return plot[idz]

10

5 Experiments

The experiments are carried out on an 8-core AMD Ryzen 9 4900H with 64G
memory and a WD Blue SN570 500GB Solid State Disk (SSD) for storage.

5.1 Block-times

We test if the block-times behave as predicted in Section We ran an experi-
ment with 32 peers with target block times of 5 seconds for one day. We plotted
all block times of the experiment in the histogram in Figure[d] For comparison,
all block times of the Bitcoin network until August 2022 are plotted as well.
The graph is normalised to the target block time for comparison.

The block-times clearly follow the predicted distributions in Figure [3} with
PoSSLE showing block times close to the target, while Bitcoin’s PoW shows a
spread out exponential distribution. Bitcoin’s block-times show a small dip in
the very short block-times that don’t follow the exponential distribution. This
is possibly caused by synchronisation issues where a second block is found so
quickly that the previous block is not spread over the network yet and gets
rejected.

Hm Bitcoin Block Times

PoSSLE Block Times
10 A

o]
N

Block Probability
(=)}

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Normalized Block Time T=1

Figure 4: Block time distribution of PoSSLE vs Bitcoin’s Proof-of-Work (PoW). The
block time distribution of all Bitcoin blocks until August 2022 are plotted, versus the
block times of PoSSLE in our experiment. The block times are normalised such that
the target block time is 1, denoted by a black vertical line. The block times of PoOSSLE
are closely distributed around the target, whereas the Bitcoin block times are spread
exponentially with a long tail that extends beyond the graph end.

5.2 Performance

We test individual parts of the algorithm in isolation on a single core, to see
how they contribute to the bottleneck:

11

Calculating the pre-hash block’ On a single core we can compute about
440,000 pre-hashes per second.

Descending the binary trie We index a 128GB plot, and randomly pick a
pattern to search in the resulting trie. We only look at the index lookup
and don’t actually retrieve the corresponding item. This can be done
1,500,000 per second.

Retrieving a plant from memory Loading a plant from memory can be
done quickly. We loaded 32MB of plants into memory and could perform
400 - 10° random reads per second.

Retrieving a plant from SSD Loading random plants from a 128GB plot
directly results in 1,100,000 plants per second.

From this we can conclude that the bottle neck is the random read operations
per second of the SSD. This can be expected due to the farming algorithm; the
CPU is performing hashes and doing memory retrieval to descend the binary
trie and has very little work to do, the memory is in theory continuously used
to retrieve nodes of the binary trie, but it outpaces the lookups of the SSD and
has to wait, resulting in a lower load. Finally, the SSD is the bottleneck because
it can perform only a certain number of random access operations per second.

Note that the throughput of the SSD is still far below it’s maximum load
since only very small 64 byte plants need to be retrieved, and not larger blocks (a
typical SSD can load 4MB blocks at a time). The result is that this bottle-neck
results in none of the components being loaded heavily, making the algorithm
efficient.

Using memory instead of SSD Since memory is much faster than an SSD,
one might think of storing a plot directly in memory. However, the memory
capacity of computer memory is much lower than an SSD for the same price.
A 128GB memory kit costs about the same as a 4TB SSD with 32 times the
capacity. Additionally, the bottleneck of the binary trie means that the speed
of the memory can’t be used fully anyway. Therefore, an SSD is a better choice
for storage medium.

6 Discussion

6.1 Energy Considerations

Mechanism Energy Usage | Protocol Complexity | Decentralisation
Centralised Server Negligible None None
Proof-of-Work High Low Full
Proof-of-Space-Time Low High Moderate
Proof-of-Space-Search Moderate Low Full

Table 1: Comparison of Consensus Mechanism: Efficiency versus Decentralisation.

One of the main selling points of Proof-of-Space is their lower energy usage.
Energy usage estimation is not as simple are recording the energy usage of a

12

mining/farmer server, but greatly depends on the farming/mining rewards and
thus the popularity of a crypto currency. To compare fairly, we compare the
energy usage of PoW, PoST, and PoSSLE by looking at how much energy is
used for every dollar invested in the mining/farming process. We can assume a
miner /farmer wants the most return for their investment and we assume a time
horizon of two years.

For PoW we can look up the best mining hardware, that has been optimised
over years. We use the Antminer S19 Pro for the comparison; one of the most
efficient PoW miners. It uses 3250W and costs $4300. Over two years we would
use about 57mWH, and with a energy cost of 0.20 $/kWH, we would spend
about $11400 in energy, or about 73% of the budget.

For PoST, we look at specialised mining hardware for the Chia blockchain.
A dedicated mining rig with 32 harddisks can be found for $2499 [7]. It is
advertised as using 50W, or 876kWH over two years, costing about $175 or
6.5% in electricity. However, it could be expected that power usage is even
lower given the sparsity of work within PoST.

For PoSS we have to make an estimate as no existing blockchain uses it.
Since the efficiency of the PoSS algorithm is maximised by using the fastest
memory that can search the largest amount of space, the hardware of choice
are solid state disks (SSD) with a high throughput. SSDs have been optimised
for random memory access over many years and are used in essentially any
computer younger than a few years, thus we can treat this as relatively optimised
hardware.

A fast SSD (Western Digital SN750 M.2 2000 GB) costs about $190 and uses
3W at peak load. As shown in the experiments, we are unlikely to use this full
load. However, we also have to account for overhead of the hardware around
the SSDs, including computer memory to store the index. Therefore we use the
full 3W peak load, and estimate an optional 100% overhead. Thus we estimate
about 3W-6W power usage for every $190 invested, or 52-105KWh and $11-$21
in two years; about 5-10% in electricity.

This would make PoSS and PoST approximately 10 times more efficient than
PoW. For perspective, the Bitcoin network used about 80.91TWh in electricity
in 2021 [6]. If PoSSLE would be used as an replacement for PoW in Bitcoin,
it would save about 73TWh in energy; around the electricity consumption of
Belgium.

We summarise the comparison in Table[I} We estimate a lower energy usage
for PoST than our estimates since this is reported for the Chia ,

It is also worth noting that the hardware for PoOSSLE and PoST are general
storage devices that are repurposable for other uses, essentially recycling the
hardware. This is not true for the specialised hardware in PoW which can only
perform one type of computation very fast.

6.2 Embracing Hellman

The PoSS algorithm follows Hellman’s time-memory trade-off [11]. This can be
seen by considering a farmer who allocates M plants to the search, representing
our memory commitment. This user can search this space in log,(M) steps,
but we use a domain of size N = 2256 so we can use the constant upper-bound
log,(225%) = 256, since our domain is finite by design.

13

The chance that the closest distance between a random element and set M

is less than threshold 7 is p = W Given the Bernoulli distribution, the
2N
TM>
2N — TM; up to a constant factor of the Hellman equation N = T'M due to

=
our relaxation of the challenge.

expected number of operations T required is T' = and we get the relation

7 Future Work

Plot Sharing An interesting property of POSS is that peers do not need to
build unique plots. In fact, peers could share their plots such that a large plot is
computed only once and shared after that. This greatly reduces the amount of
energy spent for plotting, which is significant for other POS algorithms. How-
ever, to be fully self reliant, a peer might still want to calculate a plot on its
own to avoid malicious sharing of false plots.

Early Syncing To avoid the bursts of network traffic around the target block-
time, blocks could be shared before their embargo, but without accepting them.
Peers could keep track of the best successor block that is still under embargo,
while mining their own competing block. Then when the embargo is lifted, the
peer can switch to the new chain head, without having to download the block
again, spreading out the network traffic.

Trie Extension Our binary trie datastructure uses 1/16th of the space of the
target plot. This factor can be extended by not just storing a single plants at the
leafs, but groups of them. Since a (small) group can be retrieved and searched
in linear time, we can address a much larger amount of data while keeping the
index small enough to keep it entirely in computer memory for efficiency.

8 Conclusion

We have introduced PoSSLE, a simple and energy efficient proof-of-space con-
sensus algorithm with predictable stable block-times through a novel Logarith-
mic Embargo rule. PoSSLE implements a continuous farming algorithm that
combines the simplicity of PoW with the efficiency of PoS by embracing the Hell-
mann time-memory trade-off instead of avoiding it like other PoS algorithms.
This avoids the Nothing-at-Stake problem and the many complexities that come
with it.

We believe PoSSLE provides the security and simplicity of a PoW, with the
energy efficiency of a PoS. Through our implementation and currently available
hardware, we estimate that PoSSLE would uses a 10th of the energy of a PoW
algorithm — if PoSSLE was used in Bitcoin this would be a savings of 73TWh
in energy; around the electricity consumption of Belgium.

More work is needed to validate PoSSLE at the scale of a typical crypto-
currency.

14

References

[1] Hamza Abusalah et al. “Beyond Hellman’s time-memory trade-offs with
applications to proofs of space”. In: International Conference on the The-
ory and Application of Cryptology and Information Security. Springer.
2017, pp. 357-379.

[2] Giuseppe Ateniese et al. “Proofs of space: When space is of the essence”.
In: International Conference on Security and Cryptography for Networks.
Springer. 2014, pp. 538-557.

[3] Jean-Philippe Aumasson et al. “BLAKE2: simpler, smaller, fast as MD5”.
In: International Conference on Applied Cryptography and Network Secu-
rity. Springer. 2013, pp. 119-135.

[4] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. “Argon2: new
generation of memory-hard functions for password hashing and other ap-
plications”. In: 2016 IEEE European Symposium on Security and Privacy
(EuroSé&P). IEEE. 2016, pp. 292-302.

[5] Coenraad Bron. “Merge sort algorithm”. In: Communications of the ACM
15.5 (1972), pp. 357-358.

[6] Cambridge. Cambridge Bitcoin Electricity Index. 2022. URL: https://
ccaf.io/cbeci/index!.

[7] CHIA (XCH) Mining — Ploting / Farming Rig 2TB/256TB. 2022. URL:
https://xprimeshop.net/chia_mining farming hardware/chia _
XCH_mining},E2%80%93ploting-farming rig_ 2TB-256TB.

[8] Bram Cohen and Krzysztof Pietrzak. The chia network blockchain. 2019.

[9] Stefan Dziembowski et al. “Proofs of space”. In: Annual Cryptology Con-
ference. Springer. 2015, pp. 585-605.

[10] Edward Fredkin. “Trie memory”. In: Communications of the ACM 3.9
(1960), pp. 490-499.

[11] Martin Hellman. “A cryptanalytic time-memory trade-oft”. In: IEEE trans-
actions on Information Theory 26.4 (1980), pp. 401-406.

[12] Andrew Kelley. Zig Programming Language. 2022. URL: https://ziglang.
org/.

[13] Varun Kohli et al. “An Analysis of Energy Consumption and Carbon
Footprints of Cryptocurrencies and Possible Solutions”. In: arXiv preprint
arXiv:2203.03717 (2022).

[14] Wenting Li et al. “Securing proof-of-stake blockchain protocols”. In: Data
privacy management, cryptocurrencies and blockchain technology. Springer,
2017, pp. 297-315.

[15] Ralph C Merkle. “A digital signature based on a conventional encryption
function”. In: Conference on the theory and application of cryptographic
techniques. Springer. 1987, pp. 369-378.

[16] Binance Capital Mgmt. CoinMarketCap. 2022. URL: https://coinmarketcap.
com/\

[17] Satoshi Nakamoto. “Bitcoin whitepaper”. In: URL: https://bitcoin.org/bitcoin.pdf
(: 17.07. 2019) (2008).

15

https://ccaf.io/cbeci/index
https://ccaf.io/cbeci/index
https://xprimeshop.net/chia_mining_farming_hardware/chia_XCH_mining%E2%80%93ploting-farming_rig_2TB-256TB
https://xprimeshop.net/chia_mining_farming_hardware/chia_XCH_mining%E2%80%93ploting-farming_rig_2TB-256TB
https://ziglang.org/
https://ziglang.org/
https://coinmarketcap.com/
https://coinmarketcap.com/

[18] Sunoo Park et al. “Spacemint: A cryptocurrency based on proofs of space”.
In: International Conference on Financial Cryptography and Data Secu-
rity. Springer. 2018, pp. 480-499.

16

	Introduction
	Related work
	Proof-of-Work
	Proof-of-Space
	The Nothing-at-Stake problem
	Hellman's Time-Memory Trade-off

	Method
	Formalisation
	Proof-of-Space Search
	Dynamic Threshold
	Block Time Distribution

	Implementation
	Plotting
	Indexing
	Farming

	Experiments
	Block-times
	Performance

	Discussion
	Energy Considerations
	Embracing Hellman

	Future Work
	Conclusion

