
HyperPlonk: Plonk with Linear-Time Prover and High-Degree

Custom Gates

Binyi Chen
Espresso Systems

Benedikt Bünz
Stanford University,

Espresso Systems

Dan Boneh
Stanford University

Zhenfei Zhang
Espresso Systems

October 10, 2022

Abstract

Plonk is a widely used succinct non-interactive proof system that uses univariate polynomial
commitments. Plonk is quite flexible: it supports circuits with low-degree “custom” gates as well
as circuits with lookup gates (a lookup gate ensures that its input is contained in a predefined
table). For large circuits, the bottleneck in generating a Plonk proof is the need for computing
a large FFT.

We present HyperPlonk, an adaptation of Plonk to the boolean hypercube, using multilin-
ear polynomial commitments. HyperPlonk retains the flexibility of Plonk but provides several
additional benefits. First, it avoids the need for an FFT during proof generation. Second, and
more importantly, it supports custom gates of much higher degree than Plonk without harming
the running time of the prover. Both of these can dramatically speed up the prover’s running
time. Since HyperPlonk relies on multilinear polynomial commitments, we revisit two elegant
constructions: one from Orion and one from Virgo. We show how to reduce the Orion opening
proof size to less than 10kb (an almost factor 1000 improvement) and show how to make the
Virgo FRI-based opening proof simpler and shorter.

1

Contents

1 Introduction 3
1.1 Technical overview . 6
1.2 Additional related work . 10

2 Preliminaries 10
2.1 Proofs and arguments of knowledge. 11
2.2 Multilinear polynomial commitments. 13
2.3 PIOP Compilation . 15

3 A toolbox for multivariate polynomials 16
3.1 SumCheck PIOP for high degree polynomials . 16
3.2 ZeroCheck PIOP . 19
3.3 ProductCheck PIOP . 20
3.4 Multiset Check PIOP . 21
3.5 Permutation PIOP . 23
3.6 Lookup PIOP . 24
3.7 Batch openings . 27

3.7.1 A more efficient batching scheme in a special setting 29

4 HyperPlonk: Plonk on the boolean hypercube 31
4.1 Constraint systems . 31
4.2 The PolyIOP protocol . 32

5 HyperPlonk+: HyperPlonk with Lookup Gates 34
5.1 Constraint systems . 34
5.2 The PolyIOP protocol . 35

6 Instantiation and evaluation 37
6.1 Implementation . 37
6.2 Evaluation . 38
6.3 MultiThreading Performance . 39
6.4 High degree gates . 40
6.5 Comparisons . 40

7 Orion+: a linear-time multilinear PCS with constant proof size 41

A Zero Knowledge PIOPs and zk-SNARKs 57
A.1 Definition . 57
A.2 Polynomial Masking . 57
A.3 Zero Knowledge SumCheck . 58
A.4 Zero Knowledge Compilation for SumCheck-based PIOPs 59
A.5 zk-SNARKs from PIOPs . 61

B The FRI-based multilinear polynomial commitment 61

2

C Unrolled and optimized Hyperplonk 63

1 Introduction

Proof systems [47, 6] have a long and rich history in cryptography and complexity theory. In recent
years, the efficiency of proof systems has dramatically improved and this has enabled a multitude of
new real-world applications that were not previously possible. In this paper, we focus on succinct
non-interactive arguments of knowledge, also called SNARKs [16]. Here, succinct refers to the fact
that the proof is short and verification time is fast, as explained below. Recent years have seen
tremendous progress in improving the efficiency of the prover [73, 60, 77, 2, 12, 82, 33, 25, 42, 66,
22, 48, 78].

Let us briefly review what a (preprocessing) SNARK is. We give a precise definition in Section 2.
Fix a finite field F, and consider the relation R(C,x,w) that is true whenever x ∈ Fn, w ∈ Fm, and
C(x,w) = 0, where C is the description of an arithmetic circuit over F that takes n+m inputs. A
SNARK enables a prover P to non-interactively and succinctly convince a verifier V that P knows
a witness w ∈ Fm such that R(C,x,w) holds, for some public circuit C and x ∈ Fn.

In more detail, a SNARK is a tuple of four algorithms (Setup, I,P,V), where Setup(1λ) is a
randomized algorithm that outputs parameters gp, and I(gp, C) is a deterministic algorithm that
pre-processes the circuit C and outputs prover parameters pp and verifier parameters vp. The
prover P(pp,x,w) is a randomized algorithm that outputs a proof π, and the verifier V(vp,x, π) is
a deterministic algorithm that outputs 0 or 1. The SNARK must be complete, knowledge sound,
and succinct, as defined in Section 2. Here succinct means that if C contains s gates, and x ∈ Fn,
then the size of the proof should be Oλ(log s) and the verifier’s running time should be Õλ(n+log s).
A SNARK is often set in the random oracle model where all four algorithms can query the oracle. If
the Setup algorithm is randomized, then we say that the SNARK requires a trusted setup; otherwise,
the SNARK is said to be transparent because Setup only has access to public randomness via the
random oracle. Optionally, we might want the SNARK to be zero-knowledge, in which case it is
called a zkSNARK.

Modern SNARKs are constructed by compiling an information-theoretic object called an Inter-
active Oracle Proof (IOP) [13] to a SNARK using a suitable cryptographic commitment scheme.
There are several examples of this paradigm. Some SNARKs use a univariate polynomial commit-
ment scheme to compile a Polynomial-IOP to a SNARK. Examples include Sonic [60],Marlin [33],
and Plonk [42]. Other SNARKs use a multivariate linear (multilinear) commitment scheme to
compile a multilinear-IOP to a SNARK. Examples include Hyrax [73], Libra [77], Spartan [66],
Quarks [67], and Gemini [22]. Yet other SNARKs use a vector commitment scheme (such as a
Merkle tree) to compile a vector-IOP to a SNARK. The STARK system [10] is the prime example
in this category, but other examples include Aurora [12], Virgo [82], Brakedown [48], and Orion [78].
While STARKs are post-quantum secure, require no trusted setup, and have an efficient prover,
they generate a relatively long proof (tens of kilobytes in practice). The paradigm of compiling
an IOP to a SNARK using a suitable commitment scheme lets us build universal SNARKs where
a single trusted setup can support many circuits. In earlier SNARKs, such as [50, 45, 18], every
circuit required a new trusted setup.

The Plonk system. Among the IOP-based SNARKs that use a Polynomial-IOP, the Plonk
system [42] has emerged as one of the most widely adopted in industry. This is because Plonk

3

proofs are very short (about 400 bytes in practice) and fast to verify. Moreover, Plonk supports
custom gates, as we will see in a minute. An extension of Plonk, called PlonKup [64], further
extends Plonk to incorporate lookup gates using the Plookup IOP of [42].

One difficulty with Plonk, compared to some other schemes, is the prover’s complexity. For a
circuit C with s arithmetic gates, the Plonk prover runs in time Oλ(s log s). The primary bottlenecks
come from the fact that the prover must commit to and later open several degree O(s) polyno-
mials. When using the KZG polynomial commitment scheme [54], the prover must (i) compute a
multi-exponentiation of size O(s) in a pairing-friendly group where discrete log is hard, and (ii)
compute several FFTs and inverse-FFTs of dimension O(s). When using a FRI-based polynomial
commitment scheme [9, 55, 82], the prover computes an O(cs)-sized FFT and O(cs) hashes, where
1/c is the rate of a certain Reed-Solomon code. The performance further degrades for circuits that
contain high-degree custom gates, as some FFTs and multi-exponentiations have size proportional
to the degree of the custom gates.

In practice, when the circuit size s is bigger than 220, the FFTs become a significant part of the
running time. This is due to the quasi-linear running time of the FFT algorithm, while other parts
of the prover scale linearly in s. The reliance on FFT is a direct result of Plonk’s use of univariate
polynomials. We note that some proof systems eliminate the need for an FFT by moving away
from Plonk altogether [66, 22, 48, 78, 39].

Hyperplonk. In this paper, we introduce HyperPlonk, an adaptation of the Plonk IOP and its
extensions to operate over the boolean hypercube Bµ := {0, 1}µ. We present HyperPlonk as a
multilinear-IOP, which means that it can be compiled using a suitable multilinear commitment
scheme to obtain a SNARK (or a zkSNARK) with an efficient prover.

HyperPlonk inherits the flexibility of Plonk to support circuits with custom gates, but presents
several additional advantages. First, by moving to the boolean hypercube we eliminate the need for
an FFT during proof generation. We do so by making use of the classic SumCheck protocol [59],
and this reduces the prover’s running time from Oλ(s log s) to Oλ(s). The efficiency of SumCheck
is the reason why many of the existing multilinear SNARKs [73, 77, 66, 67, 22] use the boolean
hypercube. Here we show that Plonk can similarly benefit from the SumCheck protocol.

Second, and more importantly, we show that the hypercube lets us incorporate custom gates
more efficiently into HyperPlonk. A custom gate is a function G : Fℓ → F, for some ℓ. An arithmetic
circuit C with a custom gate G, denoted C[G], is a circuit with addition and multiplication gates
along with a custom gate G that can appear many times in the circuit. The circuit may contain
multiple types of custom gates, but for now, we will restrict to one type to simplify the presentation.
These custom gates can greatly reduce the circuit size needed to compute a function, leading to a
faster prover. For example, if one needs to implement the S-box in a block cipher, it can be more
efficient to implement it as a custom gate.

Custom gates are not free. Let G : Fℓ → F be a custom gate that computes a multivariate poly-
nomial of total degree d. Let C[G] be a circuit with a total of s gates. In the Plonk IOP, the circuit
C[G] results in a prover that manipulates univariate polynomials of degree O(s · d). Consequently,
when compiling Plonk using KZG [54], the prover needs to do a group multi-exponentiation of
size O(sd) as well as FFTs of this dimension. This restricts custom gates in Plonk to gates of low
degree.

We show that the prover’s work in HyperPlonk is much lower. Let G : Fℓ → F be a custom gate
that can be evaluated using k arithmetic operations. In HyperPlonk, the bulk of the prover’s work

4

when processing C[G] is only O(sk log2 k) field operations. Moreover, when using KZG multilinear
commitments [63], the total number of group exponentiations is only O(s+ d log s), where d is the
total degree of G. This is much lower than Plonk’s O(sd) group exponentiations. It lets us use
custom gates of much higher degree in HyperPlonk.

Making Plonk and its Plonkup extension work over the hypercube raises interesting challenges,
as discussed in Section 1.1. In particular, adapting the Plookup IOP [42], used to implement table
lookups, requires changing the protocol to make it work over the hypercube (see Section 3.6). The
resulting version of HyperPlonk that supports lookup gates is called HyperPlonk+ and is described
in Section 5. There are also subtleties in making HyperPlonk zero knowledge. In Appendix A, we
describe a general compiler to transform a multilinear-IOP into one that is zero knowledge.

Batch openings and commit-and-prove SNARKs. The prover in HyperPlonk needs to open
several multilinear polynomials at random points. We present a new sum-check-based batch opening
protocol (Section 3.7) that can batch many openings into one, significantly reducing the prover
time, proof size, and verifier time. Our protocol takes O(k · 2µ) field operations for the prover
for batching k polynomials, compared to O(k2µ · 2µ) for the previously best protocol [71]. Under
certain conditions, we also obtain a more efficient batching scheme with complexity O(2µ), which
yields a very efficient commit-and-prove protocol.

Improved multilinear commitments. Since HyperPlonk relies on a multilinear commitment
scheme, we revisit two approaches to constructing multilinear commitments and present significant
improvements to both.

First, in Section 7 we use our commit-and-prove protocol to improve the Orion multilinear com-
mitment scheme [78]. Orion is highly efficient: the prover time is strictly linear, taking only O(2µ)
field operations and hashes for a multilinear polynomial in µ variables (no group exponentiations
are used). The proof size is O(λµ2) hash and field elements, and the verifier time is proportional
to the proof size. In Section 7 we describe Orion+, that has the same prover complexity, but has
O(µ) proof size and O(µ) verifier time, with good constants. In particular, for security parameter
λ = 128 and µ = 25 the proof size with Orion+ is only about 7 KBs, compared with 5.5 MB with
Orion, a nearly 1000x improvement. Using Orion+ in HyperPlonk gives a strictly linear time prover.

Second, in Appendix B, we show how to generically transform a univariate polynomial commit-
ment scheme into a multilinear commitment scheme using the tensor-product univariate Polynomial-
IOP from [22]. This yields a new construction for multilinear commitments from FRI [9] by applying
the transformation to the univariate FRI-based commitment scheme from [55]. This approach leads
to a more efficient FRI-based multilinear commitment scheme compared to the prior construction
in [82], which uses recursive techniques. Using this commitment scheme in HyperPlonk gives a
quantum-resistant quasilinear-time prover.

Evaluation results. When instantiated with the pairing-based multilinear commitment scheme
of [63], the proof size of Hyperplonk is 2µ + 8 group elements and 4µ + 33 field elements1. Using
BLS12-381 as the pairing group, we obtain 6KB proofs for µ = 20 and 7KB proofs for µ = 25.
For comparison, Kopis [67] and Gemini [22], which also have linear-time provers, report proofs of

1The constants depend linearly on the degree of the custom gates. These numbers are for simple degree 2 arithmetic
circuits.

5

Application RR1CS Spartan RPLONK+ Jellyfish HyperPlonk

3-to-1 Rescue Hash 288 [1] 279 ms 144 [69] 20 ms 24 ms

Zexe’s recursive circuit 222 [79] 2.4 min 217 [79] 5.83 s 4.66 s

Rollup of 50 private tx 225 20 min 220 [69] 52.7 s 34.9 s

Table 1: The prover runtime of Hyperplonk, Spartan [66], and the Jellyfish Plonk implementa-
tion, for popular applications. The first column shows the number of R1CS constraints for each
application. The third column shows the corresponding number of constraints in HyperPlonk+.

size 39KB and 18KB respectively for µ = 20. In Table 1 and Figure 8 we show that our proto-
type HyperPlonk implementation outperforms an optimized commercial-strength Plonk system for
circuits with more than 214 gates. It also shows the effects of PLONK arithmetization compared
to R1CS by comparing the prover runtime for several important applications. Hyperplonk outper-
forms Spartan [66] for these applications by a factor of over 20. We discuss the evaluation further
in Section 6.

1.1 Technical overview

In this section we give a high level overview of how to make Plonk and its extensions work over the
hybercube. We begin by describing Plonk in a modular way, breaking it down into a sequence of
elementary components shown in Figure 1. In Section 3 we show how to instantiate each component
over the hybercube.

Some components of Plonk in Figure 1 rely on the simple linear ordering of the elements of a
finite cyclic group induced by the powers of a generator. On the hypercube there is no natural
simple ordering, and this causes a problem in the Plookup protocol [42] that is used to implement
a lookup gate. To address this we modify the Plookup argument in Section 5 to make it work over
the hypercube. We give an overview of our approach below.

A review of Plonk. Let us briefly review the Plonk SNARK. Let C[G] : Fn+m → F be a circuit
with a total of s gates, where each gate has fan-in two and can be one of addition, multiplication,
or a custom gate G : F2 → F. Let x ∈ Fn be a public input to the circuit. Plonk represents the
resulting computation as a sequence of n+ s+ 1 triples2:

M̂ :=
{(

Li, Ri, Oi

)
∈ F3

}
i=0,...,n+s

. (1)

This M̂ is a matrix with three columns and n+s+1 rows. The first n rows encode the n public
input; the next s rows represent the left and right inputs and the output for each gate; and the
final row enforces that the final output of the circuit is zero. We will see how in a minute.

In basic (univariate) Plonk, the prover encodes the cells of M̂ using a cyclic subgroup Ω ⊆ F
of order 3(n + s + 1). Specifically, let ω ∈ Ω be a generator. Then the prover interpolates and
commits to a polynomial M ∈ F[X] such that

M(ω3i) = Li, M(ω3i+1) = Ri, M(ω3i+2) = Oi for i = 0, . . . , n+ s.

2A more general Plonkish arithmetization [81] supports wider tuples, but triples are sufficient here.

6

Now the prover needs to convince the verifier that the committed M encodes a valid computation
of the circuit C. This is the bulk of Plonk system.

Hyperplonk. In HyperPlonk we instead use the boolean hypercube to encode M̂ . From now on,
suppose that n + s + 1 is a power of two, so that n + s + 1 = 2µ. The prover interpolates and
commits to a multilinear polynomial M ∈ F[Xµ+2] = F[X1, . . . , Xµ+2] such that

M
(
0, 0, ⟨i⟩

)
= Li, M

(
0, 1, ⟨i⟩

)
= Ri, M

(
1, 0, ⟨i⟩

)
= Oi, for i = 0, . . . , n+ s. (2)

Here ⟨i⟩ is the µ-bit binary representation of i. Note that a multilinear polynomial on µ+2 variables
is defined by a vector of 2µ+2 = 4×2µ coefficients. Hence, it is always possible to find a multilinear
polynomial that satisfies the 3 × 2µ constraints in (2). Next, the prover needs to convince the
verifier that the committed M encodes a valid computation of the circuit C. To do so, we need to
adapt Plonk to work over the hypercube.

Let us start with the pre-processing algorithm I(gp, C) that outputs prover and verifier pa-
rameters pp and vp. The verifier parameters vp encode the circuit C[G] as a commitment to four
multilinear polynomials (S1, S2, S3, σ), where S1, S2, S3 ∈ F[Xµ] and σ ∈ F[Xµ+2]. The first three
are called selector polynomials and σ is called the wiring polynomial. We will see how they are
defined in a minute. There is one more auxiliary multilinear polynomial I ∈ F[Xµ] that encodes
the input x ∈ Fn. This polynomial is defined as I(⟨i⟩) = xi for i = 0, . . . , n− 1, and is zero on the
rest of the boolean cube Bµ. The verifier, on its own, computes a commitment to the polynomial I
to ensure that the correct input x ∈ Fn is being used in the proof. Computing a commitment to I
can be done in time Oλ(n), which is within the verifier’s time budget.

With this setup, the Plonk prover P convinces the verifier that the committed M satisfies two
polynomial identities:

The gate identity: Let S1, S2, S3 : Fµ → {0, 1} be the three selector polynomials that the pre-
processing algorithm I(gp, C) committed to in vp. To prove that all gates were evaluated correctly,
the prover convinces the verifier that the following identity holds for all x ∈ Bµ := {0, 1}µ:

0 = S1(x) ·
(
M(0, 0,x)︸ ︷︷ ︸

L[x]

+M(0, 1,x)︸ ︷︷ ︸
R[x]

)
+ S2(x) ·M(0, 0,x)︸ ︷︷ ︸

L[x]

·M(0, 1,x)︸ ︷︷ ︸
R[x]

+ S3(x) ·G
(
M(0, 0,x)︸ ︷︷ ︸

L[x]

, M(0, 1,x)︸ ︷︷ ︸
R[x]

)
− M(1, 0,x)︸ ︷︷ ︸

O[x]

+ I(x)

(3)

where [x] =
∑µ−1

i=0 xi2
i is the integer whose binary representation is x ∈ Bµ. For each i = 0, . . . , n+

s, the selector polynomials S1, S2, S3 are defined to do the “right” thing:
• for an addition gate: S1(⟨i⟩) = 1, S2(⟨i⟩) = S3(⟨i⟩) = 0 (so Oi = Li +Ri)

• for a multiplication gate: S1(⟨i⟩) = S3(⟨i⟩) = 0, S2(⟨i⟩) = 1 (so Oi = Li ·Ri)

• for a G gate: S1(⟨i⟩) = S2(⟨i⟩) = 0, S3(⟨i⟩) = 1 (so Oi = G(Li, Ri))

• when i < n or i = n+ s: S1(⟨i⟩) = S2(⟨i⟩) = S3(⟨i⟩) = 0 (so Oi = I(⟨i⟩)).

The last bullet ensures that Oi is equal to the i-th input for i = 0, . . . , n − 1, and that the final
output of the circuit, On+s, is equal to zero.

7

The wiring identity: Every wire in the circuit C induces an equality constraint on two cells in the
matrix M̂ . In HyperPlonk, the wiring constraints are captured by a permutation σ̂ : Bµ+2 → Bµ+2.
The prover needs to convince the verifier that

M(x) = M(σ̂(x)) for all x ∈ Bµ+2 := {0, 1}µ+2. (4)

To do so, the pre-processing algorithm I(gp, C) commits to a multilinear polynomial σ : Fµ+2 → F
that satisfies σ(x) = [σ̂(x)] for all x ∈ Bµ+2 (recall that [σ̂(x)] is the integer whose binary repre-
sentation is σ̂(x) ∈ Bµ+2). The prover then convinces the verifier that the following two sets are
equal (both sets are subsets of F2):{(

[x],M(x)
)}

x∈Bµ+2

=
{(

[σ̂(x)],M(x)
)}

x∈Bµ+2

. (5)

This equality of sets implies that (4) holds.

Proving the gate identity. The prover convinces the verifier that the Gate identity holds by
proving that the polynomial defined by the right hand side of (3) is zero for all x ∈ Bµ. This is
done using a ZeroCheck IOP, defined in Section 3.2. If the custom gate G has total degree d and
there are s gates in the circuit, then the total degree of the polynomial in (3) is (d+ 1)(s+ n+ 1)
which is about (d · s). If this were a univariate polynomial, as in Plonk, then a ZeroCheck would
require a multi-exponentiation of dimension (d · s) and an FFT of the same dimension. When
the polynomial is defined over the hypercube, the ZeroCheck is implemented using the SumCheck
protocol in Section 3.1, which requires no FFTs. In that section we describe two optimizations to
the SumCheck protocol for the settings where the multivariate polynomial has a high degree d in
every variable:

• First, in every round of SumCheck the prover sends a polynomial commitment to a univariate
polynomial of degree d, instead of sending the polynomial in the clear as in regular SumCheck.
This greatly reduces the proof size.

• Second, in standard SumCheck, the prover opens the univariate polynomial commitment at
three points: at 0, 1, and at a random r ∈ F. We optimize this step by showing that opening
the commitment at a single point is sufficient. This further shortens the final proof.

The key point is that the resulting ZeroCheck requires the prover to do only about s+ d · µ group
exponentiations, which is much smaller than d · s in Plonk. The additional arithmetic work that
the prover needs to do depends on the number of multiplication gates in the circuit implementing
the custom gate G, not on the total degree of G, as in Plonk. As such, we can support much larger
custom gates than Plonk.

In summary, proof generation time is reduced for two reasons: (i) the elimination of the FFTs,
and (ii) the better handling of high-degree custom gates.

Proving the wiring identity. The prover convinces the verifier that the Wiring identity holds
by proving the set equality in (5). We describe a set equality protocol over the hypercube in
Section 3.4. Briefly, we use a technique from Bayer and Groth [8], that is also used in Plonk, to
reduce this problem to a certain ProductCheck over the hypercube (Section 3.3). We then use an
idea from Quarks [67] to reduce the hypercube ProductCheck to a ZeroCheck, which then reduces
to a SumCheck. This sequence of reductions is shown in Figure 1. Again, no FFTs are needed.

8

SumCheck

ZeroCheck

ProductCheck

MultiSetEquality

Wiring Identity PlookupGate Identity

HyperPlonk

HyperPlonk+

Figure 1: The multilinear polynomial-IOPs that make up HyperPlonk.

Table lookups. An important extension to Plonk supports circuits with table lookup gates. The
table is represented as a fixed vector t ∈ F2µ−1. A table lookup gate ensures that a specific cell in
the matrix M̂ is contained in t. For example, one can set t to be the field elements in {0, 1, . . . , B}
for some B (padding the vector by 0 as needed). Now, checking that a cell in M̂ is contained in t
is a simple way to implement a range check.

Let f, t : Bµ → F be two multilinear polynomials. Here the polynomial t encodes the table
t, where the table values are t(Bµ). The polynomial f encodes the cells of M̂ that need to be
checked. An important step in supporting lookup gates in Plonk is a way for the prover to convince
the verifier that f(Bµ) ⊆ t(Bµ), when the verifier has commitments to f and t. The Plookup proof
system by Gabizon and Williamson [42] is a way for the prover to do just that. Caulk [80, 65] is a
more recent alternative to Plookup.

The problem is that Plookup is designed to work when the polynomials are defined over a cyclic
subgroup G ⊆ F∗ of order q with generator ω ∈ G. In particular, Plookup requires a function
next : F → F that induces an ordering of G. This function must satisfy two properties: (i) the
sequence

ω, next(ω), next
(
next(ω)

)
, . . . , next(q−1)(ω) (6)

should traverse all of G, and (ii) the function next should be a linear function. This is quite easy
in a cyclic group: simply define next(x) := ωx.

To adapt Plookup to the hypercube we need a linear function next : Fµ → Fµ that traverses
all of Bµ as in (6), starting with some element x0 ∈ Bµ. However, such an F-linear function
does not exist. Nevertheless, we construct in Section 3.6 a quadratic function from Fµ to Fµ that
traverses Bµ. We then show how to linearize it by modifying some of the building blocks that
Plookup uses. This gives an efficient Plookup protocol over the hypercube. Finally, in Section 5 we
use this hypercube Plookup protocol to support lookup gates in HyperPlonk. The resulting protocol
is called HyperPlonk+.

9

1.2 Additional related work

The origins of SNARKs date back to the work of Kilian [56] and Micali [62] based on the PCP
theorem. Many of the SNARK constructions cited in the previous sections rely on techniques
introduced in the proof of the PCP theorem.

Recursive SNARKs [72] are an important technique for building a SNARK for a long com-
putation. Early recursive SNARKs [35, 17, 14, 34] built a prover for the entire SNARK cir-
cuit and then repeatedly used this prover. More recent recursive SNARKs rely on accumulation
schemes [24, 27, 19, 26, 57] where the bulk of the SNARK verifier runs outside of the prover.

Many practical SNARKs rely on the random oracle model and often use a non-falsifiable as-
sumption. Indeed, a separation result due to Gentry and Wichs [46] suggests that a SNARK
requires either an idealized model or a non-falsifiable assumption. An interesting recent direction
is the construction of batch proofs [36, 37, 74] in the standard model from standard assumptions.
These give succinct proofs for computations in P, namely succinct proofs for computations that do
not rely on a hidden witness. SNARKs give succinct proofs for computations in NP.

2 Preliminaries

Notation: We use λ to denote the security parameter. For n ∈ N let [n] be the set {1, 2, . . . , n};
for a, b ∈ N let [a, b) denote the set {a, a+ 1, . . . b− 1}. A function f(λ) is poly(λ) if there exists a
c ∈ N such that f(λ) = O(λc). If for all c ∈ N, f(λ) is o(λ−c), then f(λ) is in negl(λ) and is said
to be negligible. A probability that is 1− negl(λ) is overwhelming. We use F to denote a field
of prime order p such that log(p) = Ω(λ).

A multiset is an extension of the concept of a set where every element has a positive multiplicity.
Two finite multisets are equal if they contain the same elements with the same multiplicities.

Recall that a relation is a set of pairs (x,w). An indexed relation is a set of triples (i,x;w).
The index i is fixed at setup time.

In defining the syntax of the various protocols, we use the following convention concerning public
values (known to both the prover and the verifier) and secret ones (known only to the prover). In
any list of arguments or returned tuple (a, b, c; d, e), those variables listed before the semicolon are
public, and those listed after it are secret. When there is no secret information, the semicolon is
omitted.

Useful facts. We next list some facts that will be used throughout the paper.

Lemma 2.1 (Multilinear extensions). For every function f : {0, 1}µ → F, there is a unique
multilinear polynomial f̃ ∈ F[X1, . . . , Xµ] such that f̃(b) = f(b) for all b ∈ {0, 1}µ. We call f̃ the
multilinear extension of f , and f̃ can be expressed as

f̃(X) =
∑

b∈{0,1}µ
f(b) · eq(b,X)

where eq(b,X) :=
∏µ

i=1

(
biXi + (1− bi)(1−Xi)

)
.

Lemma 2.2 (Schwartz-Zippel Lemma). Let f ∈ F[X1, . . . , Xµ] be a non-zero polynomial of total
degree d over field F. Let S be any finite subset of F, and let r1, . . . , rµ be µ field elements selected

10

independently and uniformly from set S. Then

Pr [f(r1, . . . , rµ) = 0] ≤ d

|S|
.

Linear codes. We review the definition of linear code.

Definition 2.1 (Linear Code). An (n, k, δ)-linear error-correcting code E : Fk → Fn is an injective
mapping from Fk to a linear subspace C in Fn, such that (i) the injective mapping can be computed
in linear time in k; (ii) any linear combination of codewords is still a codeword; and (iii) the relative
hamming distance ∆(u, v) between any two different codewords u, v ∈ Fk is at least δ. The rate of
the code E is defined as k/n.

2.1 Proofs and arguments of knowledge.

We define interactive proofs of knowledge, which consist of a non-interactive preprocessing phase
run by an indexer as well as an interactive online phase between a prover and a verifier.

Definition 2.2 (Interactive Proof and Argument of Knowledge). An interactive protocol Π =
(Setup, I,P,V) between a prover P and verifier V is an argument of knowledge for an indexed
relation R with knowledge error δ : N→ [0, 1] if the following properties hold, where given an index
i, common input x and prover witness w, the deterministic indexer outputs (vp, pp) ← I(i) and
the output of the verifier is denoted by the random variable ⟨P(pp,x,w),V(vp,x)⟩:

• Perfect Completeness: for all (i,x,w) ∈ R

Pr

[
⟨P(pp,x,w),V(vp,x)⟩ = 1

∣∣∣∣ gp← Setup(1λ)
(vp, pp)← I(gp, i)

]
= 1

• δ-Soundness (adaptive): Let L(R) be the language corresponding to the indexed relation R
such that (i,x) ∈ L(R) if and only if there exists w such that (i,x,w) ∈ R. Π is δ-sound
if for every pair of probabilistic polynomial time adversarial prover algorithm (A1,A2) the
following holds:

Pr

⟨A2(i,x, st),V(vp,x)⟩ = 1 ∧ (i,x) ̸∈ L(R)

∣∣∣∣∣∣
gp← Setup(1λ)

(i,x, st)← A1(gp)
(vp, pp)← I(gp, i)

 ≤ δ(|i|+ |x|) .

We say a protocol is computationally sound if δ is negligible. If A1,A2 are unbounded and
δ is negligible, then the protocol is statistically sound. If A = (A1,A2) is unbounded, the
soundness definition becomes for all (i,x) ̸∈ L(R)

Pr

[
⟨A2(i,x, gp),V(vp,x)⟩ = 1

∣∣∣∣ gp← Setup(1λ)
(vp, pp)← I(gp, i)

]
≤ δ(|i|+ |x|)

• δ-Knowledge Soundness: There exists a polynomial poly(·) and a probabilistic polynomial-time
oracle machine E called the extractor such that given oracle access to any pair of probabilistic

11

polynomial time adversarial prover algorithm (A1,A2) the following holds:

Pr

 ⟨A2(i,x, st),V(vp,x)⟩ = 1
∧

(i,x,w) ̸∈ R

∣∣∣∣∣∣∣∣
gp← Setup(1λ)

(i,x, st)← A1(gp)
(vp, pp)← I(gp, i)
w← EA1,A2(gp, i,x)

 ≤ δ(|i|+ |x|)

An interactive protocol is “knowledge sound”, or simply an “argument of knowledge”, if the
knowledge error δ is negligible in λ. If the adversary is unbounded, then the argument is called
an interactive proof of knowledge.

• Public coin An interactive protocol is considered to be public coin if all of the verifier messages
(including the final output) can be computed as a deterministic function given a random public
input.

• Zero knowledge: An interactive protocol ⟨P,V⟩ is considered to be zero-knowledge if there is

a PPT simulator S such that for every PPT adversary A, auxiliary input z ∈ {0, 1}poly(λ), it
holds that∣∣∣∣∣∣Pr

 ⟨P(pp,x,w),A(st, i,x)⟩ = 1 ∧ (i,x,w) ∈ R

∣∣∣∣∣∣
gp← Setup(1λ)

(i,x,w, st)← A1(z, gp)
(vp, pp)← I(gp, i)

 −
Pr

 ⟨S(σ, z, pp,x),A(st, i,x)⟩ = 1 ∧ (i,x,w) ∈ R

∣∣∣∣∣∣
(gp, σ)← S(1λ)

(i,x,w, st)← A1(z, gp)
(vp, pp)← I(gp, i)

∣∣∣∣∣∣ ≤ negl(λ) .

We say that ⟨P,V⟩ is statistically zero knowledge if A is unbounded; and say it perfectly zero
knowledge if negl(λ) is replaced with zero. ⟨P,V⟩ is honest-verifier zero knowledge (HVZK)
if the adversary A honestly follows the verifier algorithm.

We introduce both notions of soundness and knowledge soundness. Knowledge soundness im-
plies soundness, as the existence of an extractor implies that (i,x) ∈ L(R). Furthermore, we show
in Lemma 2.3 that soundness directly implies knowledge soundness for certain oracle relations and
oracle arguments.

PolyIOPs. SNARKs can be constructed from information-theoretic proof systems that give the
verifier oracle access to prover messages. The information-theoretic proof is then compiled using a
cryptographic tool, such as a polynomial commitment. We now define a specific type of information-
theoretic proof system called polynomial interactive oracle proofs.

Definition 2.3. A polynomial interactive oracle proof (PIOP) is a public-coin interactive proof for
a polynomial oracle relation R = {(i,x;w)}. The relation is an oracle relation in that i, and x can
contain oracles to µ-variate polynomials over some field F. The oracles specify µ and the degree in
each variable. These oracles can be queried at arbitrary points in Fµ to evaluate the polynomial at
these points. The actual polynomials corresponding to the oracles are contained in the pp and the
w, respectively. We denote an oracle to a polynomial f by [[f]]. In every protocol message, the P
sends multi-variate polynomial oracles. The verifier in every round sends a random challenge.

We measure the following parameters for the complexity of a PIOP:

12

• The prover time measures the runtime of the prover.
• The verifier time measures the runtime of the verifier.
• The query complexity is the number of queries the verifier performs to the oracles.
• The round complexity measures the number of rounds. In our protocols, it is always equivalent
to the number of oracles sent.

• The size of the proof oracles is the length of the transmitted polynomials.
• The size of the witness is the length of the witness polynomial.

Proof of Knowledge. As a proof system, the PIOP satisfies perfect completeness and unbounded
knowledge-soundness with knowledge-error δ. Note that the extractor can query the oracle at
arbitrary points to efficiently recover the entire polynomial.

Non-interactive arguments Interactive public-coin arguments can be made non-interactive
using the Fiat-Shamir transform. The Fiat-Shamir transform replaces the verifier challenges with
hashes of the transcript up to that point. The works by [5, 76] show that this is secure for multi-
round special-sound protocols and multi-round oracle proofs.

Soundness and knowledge soundness

Lemma 2.3 (Sound PIOPs are knowledge sound). Consider a δ-sound PIOP for oracle relations
R such that for all (i,x,w) ∈ R, w consists only of polynomials such that the instance contains
oracles to these polynomials. The PIOP has δ knowledge-soundness, and the extractor runs in time
O(|w|)

Proof. We will show that we can construct an extractor E that can producew∗ such that (i,x,w∗) ∈
R if and only if (i,x) ∈ L(R). This implies that the soundness error exactly matches the knowledge
soundness error. For each oracle of a µ-variate polynomial with degree d in each variable, the
extractor queries the polynomial at (d + 1)µ distinct points to extract the polynomial inside the
oracle and thus w∗. If (i,x,w∗) ∈ R then by definition (i,x) ∈ L(R). Additionally assume that
(i,x) ∈ L(R) but (i,x,w∗) ̸∈ R. Then there must exists w′ ̸= w

∗ such that (i,x,w′) ∈ R. Since
the relation only admits polynomials as witnesses and these polynomials are degree d and µ-variate,
then there cannot be two distinct witnesses that agree on (d+1)µ oracle queries. Therefore w′ = w

∗

which leads to a contradiction. The extractor, therefore, outputs the unique, valid witness for every
(i,x) in the language, and thus, the soundness and knowledge soundness error are the same.

2.2 Multilinear polynomial commitments.

Definition 2.4 (Commitment scheme). A commitment scheme Γ is a tuple Γ = (Setup,Commit,
Open) of PPT algorithms where:

• Setup(1λ)→ gp generates public parameters gp;

• Commit(gp;x) → (C; r) takes a secret message x and outputs a public commitment C and
(optionally) a secret opening hint r (which might or might not be the randomness used in the
computation).

• Open(gp, C, x, r)→ b ∈ {0, 1} verifies the opening of commitment C to the message x provided
with the opening hint r.

13

A commitment scheme Γ is binding if for all PPT adversaries A:

Pr

b0 = b1 ̸= 0 ∧ x0 ̸= x1 :

gp← Setup(1λ)
(C, x0, x1, r0, r1)← A(gp)
b0 ← Open(gp, C, x0, r0)
b1 ← Open(gp, C, x1, r1)

 ≤ negl(λ)

A commitment scheme Γ is hiding if for any polynomial-time adversary A:∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

gp← Setup(1λ)
(x0, x1, st)← A(gp)
b←$ {0, 1}
(Cb; rb)← Commit(gp;xb)
b′ ← A(gp, st, Cb)

− 1/2

∣∣∣∣∣∣∣∣∣∣
= negl(λ) .

If the adversary is unbounded, then we say the commitment is statistically hiding. We addi-
tionally define polynomial commitment schemes for multi-variate polynomials.

Definition 2.5. (Polynomial commitment) A polynomial commitment scheme is a tuple of protocols
Γ = (Setup,Commit,Open,Eval) where (Setup, Commit,Open) is a binding commitment scheme for
a message space R[X] of polynomials over some ring R, and

• Eval((vp, pp), C, z, y, d, µ; f)→ b ∈ {0, 1} is an interactive public-coin protocol between a PPT
prover P and verifier V. Both P and V have as input a commitment C, points z ∈ Fµ

and y ∈ F, and a degree d. The prover has prover parameters pp, and the verifier has
verifier parameters vp. The prover additionally knows the opening of C to a secret polynomial

f ∈ F (≤d)
µ . The protocol convinces the verifier that f(z) = y.

A polynomial commitment scheme is correct if an honest committer can successfully convince

the verifier of any evaluation. Specifically, if the prover is honest, then for all polynomials f ∈ F (≤d)
µ

and all points z ∈ Fµ,

Pr

b = 1 :

gp← Setup(1λ)
(C; r)← Commit(gp, f)
y ← f(z)
b← Eval(gp, c, z, y, d, µ; f, r)

 = 1 .

We require that Eval is an interactive argument of knowledge and has knowledge soundness, which
ensures that we can extract the committed polynomial from any evaluation.

Multi-variate polynomial commitments can be instantiated from random oracles using the FRI
protocol [82], bilinear groups [63], groups of unknown order [28] and discrete logarithm groups. We
give a table of polynomial commitments with their different properties in Table 2:

Virtual oracles and commitments Given multiple polynomial oracles, we can construct vir-
tual oracles to the functions of these polynomials. An oracle to g([[f1]], . . . , [[fk]]) for some function
g is simply the list of oracles {[[f1]], . . . , [[fk]]} as well as a description of g. In order to evaluate
g([[f1]], . . . , [[fk]]) at some point x we compute yi = fi(x)∀i ∈ [k] and output g(y1, . . . yk). Equiv-
alently given commitments to polynomials, we can construct a virtual commitment to a function
of these polynomials in the same manner. If g is an additive function and the polynomial com-
mitment is additively homomorphic, then we can use the homomorphism to do the evaluation. A

14

Scheme
Prover time:

Commit+ Eval Verifier time Proof size n = 225 Setup Add.
KZG-based [63] BL n G1 log(n) P log(n) G1 0.8KB Univ. Yes
Dory [58] BL nG1+

√
nP log(n) GT 6 log(n) GT 30KB Trans. Yes

Bulletproofs [25] DL n G n G 2 log(n) G 1.6KB Trans. Yes

FRI-based (§B) RO n log(n)ρF+ nρH log2(n) λ
log ρ H log2(n) λ

log ρ H 250KB Trans. No

Orion RO nH + n
k + k rec. λ log2 nH λ log2 n H 5.5MB Trans. No

Orion + (§7) BL
n/kG1 + nH+
(kλH + n

kF) rec.
log(n)P 4 log n G1 7KB Univ. No

Table 2: Multi-linear polynomial commitment schemes for µ-variate linear polynomials and n = 2µ.
The prover time measures the complexity of committing to a polynomial and evaluating it once.
The commitment size is constant for all protocols. Unless constants are mentioned, the metrics
are assumed to be asymptotic. The 6th column measures the concrete proof size for n = 225, i.e.
µ = 25. Legend: BL=Bilinear Group, DL=Discrete Logarithm, RO=Random Oracle, H= Hashes,
P= pairings, G= group scalar multiplications, rec.= Recursive circuit size, univ.= universal setup,
trans.= transparent setup, Add.=Additive

common example is that given additive commitments Cf , Cg to polynomials f(X), g(X), we want
to construct a commitment to (1− Y)f + Y g. Then (Cf , Cg) serves as such a commitment and we
can evaluate it at (y,x) by evaluating (1− y)Cf + y · Cg at x.

2.3 PIOP Compilation

PIOP compilation transforms the interactive oracle proof into an interactive argument of knowledge
(without oracles) Π. The compilation replaces the oracles with polynomial commitments. Every
query by the verifier is replaced with an invocation of the Eval protocol at the query point z. The
compiled verifier accepts if the PIOP verifier accepts and if the output of all Eval invocations is 1.
If Π is public-coin, then it can further be compiled to a non-interactive argument of knowledge (or
NARK) using the Fiat-Shamir transform.

Theorem 2.4 (PIOP Compilation [28, 33]). If the polynomial commitment scheme Γ has witness-
extended emulation, and if the t-round Polynomial IOP for R has negligible knowledge error, then
Π, the output of the PIOP compilation, is a secure (non-oracle) argument of knowledge for R. The
compilation also preserves zero knowledge. If Γ is hiding and Eval is honest-verifier zero-knowledge,
then Π is honest-verifier zero-knowledge. The efficiency of the resulting argument of knowledge Π
depends on the efficiency of both the PIOP and Γ:

• Prover time The prover time is equal to the sum of (i) prover time of the PIOP, (ii) the oracle
length times the commitment time, and (iii) the query complexity times the prover time of Γ.

• Verifier time The verifier time is equal to the sum of (i) the verifier time of the PIOP and
(ii) the verifier time for Γ times the query complexity of the PIOP.

• Proof size The proof size is equal to sum of (i) the message complexity of the PIOP times the
commitment size and (ii) the query complexity times the proof size of Γ. If the proof size is
O(logc(|w|)), then we say the proof is succinct.

Batching The prover time, verifier time, and proof size can be significantly reduced using batch
openings of the polynomial commitments. After batching, the proof size only depends on the number

15

of oracles plus a single polynomial commitment opening.

3 A toolbox for multivariate polynomials

We begin by reviewing several important PolyIOPs that will serve as building blocks for Hyper-
Plonk. Some are well-known, and some are new. Figure 1 serves as a guide for this section: we
define the PolyIOPs listed in the figure following the dependency order.

Notation. From here on, we let Bµ := {0, 1}µ ⊆ Fµ be the boolean hypercube. We use F (≤d)
µ to

denote the set of multivariate polynomials in F[X1, . . . , Xµ] where the degree in each variable is at

most d; moreover, we require that each polynomial in F (≤d)
µ can be expressed as a virtual oracle

to c = O(1) multilinear polynomials. that is, with the form f(X) := g(h1(X), . . . , hc(X)) where

hi ∈ F (≤1)
µ (1 ≤ i ≤ c) is multilinear and g is a c-variate polynomial of total degree at most d.

For polynomials f, g ∈ F (≤d)
µ , we denote merge(f, g) ∈ F (≤d)

µ+1 as

merge(f, g) := h(X0, . . . ,Xµ) := (1−X0) · f(X1, . . . ,Xµ) +X0 · g(X1, . . . ,Xµ) (7)

so that h(0,X) = f(X) and h(1,X) = g(X). In the following definitions, we omit the pub-

lic parameters gp := (F, µ, d) when the context is clear. We use δd,µXXX to denote the sound-
ness error of the PolyIOP for relation RXXX with public parameter (F, d, µ), where XXX ∈
{sum, zero,prod,mset, perm, lkup}.

Scheme P time V time Num of queries Num of rounds Proof oracle size Witness size

SumCheck O(2µd log2 d) O(µ) µ+ 1 µ dµ O(2µ)

ZeroCheck O(2µd log2 d) O(µ) µ+ 1 µ dµ O(2µ)

ProdCheck O(2µd log2 d) O(µ) µ+ 2 µ+ 1 O(2µ) O(2µ)

MsetEqChk O(2µd log2 d) O(µ) µ+ 2 µ+ 1 O(2µ) O(k2µ)

PermCheck O(2µd log2 d) O(µ) µ+ 2 µ+ 1 O(2µ) O(2µ)

Plookup O(2µd log2 d) O(µ) µ+ 3 µ+ 2 O(2µ) O(2µ)
BatchEval O(2µk) O(kµ) 1 µ+ log k O(µ+ log k) O(k2µ)

Table 3: The complexity of PIOPs. d and µ denote the degree and the number of variables of
the multivariate polynomials; k in MsetCheck is the length of each element in the multisets; k in
BatchEval is the number of evaluations.

3.1 SumCheck PIOP for high degree polynomials

In this section, we describe a PIOP for the sumcheck relation using the classic sumcheck proto-
col [59]. However, we modify the protocol and adapt it to our setting of high-degree polynomials.

Definition 3.1 (SumCheck relation). The relation RSUM is the set of all tuples (x;w) =
(
(s, [[f]]); f

)
where f ∈ F (≤d)

µ and
∑

x∈Bµ
f(x) = s.

16

Construction. The classic SumCheck protocol [59] is a PolyIOP for the relation RSUM. When

applying the protocol to a polynomial f ∈ F (≤d)
µ , the protocol runs in µ rounds where in every

round, the prover sends a univariate polynomial of degree at most d to the verifier. The verifier
then sends a random challenge point for the univariate polynomial. At the end of the protocol, the
verifier checks the consistency between the univariate polynomials and the multi-variate polynomial
using a single query to f .
Given a tuple (x;w) = (v, f ; [[f]]) for µ-variate degree d polynomial f such that

∑
b∈Bµ

f(b) = v:

• For i = µ, µ− 1, . . . , 1:

– The prover computes ri(X) :=
∑

b∈Bi−1
f(b, X, αi+1, . . . , αµ) and sends the oracle [[ri]]

to the verifier. ri is univariate and of degree at most d.

– The verifier checks that v = ri(0) + ri(1), samples αi ← F, sends αi to the prover, and
sets v ← ri(αi).

• Finally, the verifier accepts if f(α1, . . . , αµ) = v.

Theorem 3.1. The PIOP for RSUM is perfectly complete and has knowledge error δd,µsum := dµ/|F|.

We refer to [71] for the proof of the theorem.

Sending r as an oracle. Unlike in the classic sumcheck protocol, we send an oracle to ri, in
each round, instead of the actual polynomial. This does not change the soundness analysis, as
the soundness is still proportional to the degree of the univariate polynomials sent in each round.
However, it reduces the communication and verifier complexity, especially if the degree of r is large,
as in our application of Hyperplonk with custom gates.

Moreover, the verifier has to evaluate ri at three points: 0, 1, and αi. As a useful optimization,
the prover can instead send an oracle for the degree d− 2 polynomial

r′i(X) :=
ri(X)− (1−X) · ri(0)−X · ri(1)

X · (1−X)
,

along with ri(0). The verifier then computes ri(1)← v − ri(0) and

ri(αi)← r′i(α) · (1− αi) · αi + (1− αi) · ri(0) + αi · ri(1).

This requires only one query to the oracle of r′i at αi and one field element per round.

Computing sumcheck for high-degree polynomials. Consider a multi-variate polynomial
f(X) := h(g1(X), . . . , gc(X)) such that h is degree d and can be evaluated through an arithmetic
circuit with O(d) gates. In the sumcheck protocol, the prover has to compute a univariate polyno-
mial ri(X) in each round using the previous verifier messages α1, . . . , αi−1. We adapt the algorithm
by [70, 77] that showed how the sumcheck prover can be run in time linear in 2µ using dynamic
programming. The algorithm takes as input a description of f as well as the sumcheck round
challenges α1, . . . , αµ. It outputs the round polynomials r1, . . . , rµ. The sumcheck prover runs the
algorithm in parallel to the sumcheck protocol, taking each computed ri as that rounds message:

In [70, 77], r(b)(X) := h(r(1,b)(X), . . . , r(c,b)(X)) is computed by evaluating h on d distinct
values for X, e.g. X ∈ {0, . . . , d} and interpolating the output. This works as h is a degree d

17

Algorithm 1 Computing r1, . . . , rµ [70, 77]

1: procedure SumCheck prover(h, g1(X), . . . , gc(X))
2: For each gj build table Aj : {0, 1} → F of all evaluations over Bµ

3: for i← µ, 1 do
4: For each b ∈ Bi−1 and each j ∈ [c], define r(j,b)(X) := (1−X)Aj [b, 0] +XAj [b, 1].
5: Compute r(b)(X)← h(r(1,b)(X), . . . , r(c,b)(X)) for all b ∈ Bi−1 using Algorithm 2 .
6: ri(X)←

∑
b∈Bi−1

rb(X).
7: Send ri(X) to V.
8: Receive αi from V.
9: Set Aj [b]← r(j,b)(αi) for each b ∈ Bi−1.

10: end for
11: end procedure

polynomial and each rj,b is linear. Evaluating rj,b on d points can be done in d steps. So the total
time to evaluate all rj,b for j ∈ [c] is c · d. Furthermore, the circuit has O(d) gates, and evaluating
it on d inputs, takes time O(d2). Assuming that c ≈ d the total time to compute r(b) with this
algorithm is O(d2) and the time to run Algorithm 1 is O(2µd2).

We show how this can be reduced to O(2µ · d log2 d) for certain low depth circuits, such as
h :=

∏
c rc(X). The core idea is that evaluating the circuit for h symbolically, instead of at d

individual points, is faster if fast polynomial multiplication algorithms are used.
We will present the algorithm for computing h(X) :=

∏d
j=1 rj(X), then we will discuss how to

extend this for more general h. Assume w.l.o.g. that d is a power of 2.

Algorithm 2 Evaluating h :=
∏d

j=1 rj

Require: r1, . . . , rd are linear functions
1: procedure h(r1(X), . . . , rd(X))
2: t1,j ← rj for all j ∈ [d].
3: for i← 1, log d do
4: ti+1,j(X)← ti,2j−1(X) · ti,2j(X) ▷ Using fast polynomial multiplication
5: end for
6: return h = tlog2(d),1
7: end procedure

In round i there are d/2i polynomial multiplications for polynomials of degree 2i−1. In FFT-
friendly3 fields, polynomial multiplication can be performed in time O(d log(d)).4 The total running

time of the algorithm is therefore
∑log2(d)

i=1
d
2i
2i−1 log(2i) =

∑log2(d)
i=1 O(d · i) = O(d log2(d)).

Algorithm 2 naturally extends to more complicated, low-depth circuits. Addition gates are
performed directly through polynomial addition, which takes O(d) time for degree d polynomials.
As long as the circuit is low-depth and has O(d) multiplication gates, the complexity remains
O(d log2(d)). Furthermore, we can compute rk(X) for k ≤ d using only a single FFT of length

3These are fields where there exists an element that has a smooth order of at least d.
4Recent breakthrough results have shown that polynomial multiplication is O(d log(d)) over arbitrary finite

fields [52] and there have been efforts toward building practical, fast multiplication algorithms for arbitrary fields [11].
In practice, and especially for low-degree polynomials, using Karatsuba multiplication might be faster.

18

deg(r) · k for an input polynomial r. The FFT evaluates r at deg(r) · k points. Then we raise each
point to the power of k. This takes time O(deg(r) · k(log(deg(r)) + log(k))) and saves a factor of
log(k) over a repeated squaring implementation.

Batching. Multiple sumcheck instances, e.g. (s, [[f]]) and (s′, [[g]]) can easily be batched together.
This is done using a random-linear combination, i.e. showing that (s+αs′, [[f]]+α[[g]]) ∈ L(RSUM)
for a random verifier-generated α [73, 32]. The batching step has soundness 1

F .

Complexity. Overall, Algorithm 1 calls Algorithm 2 for each point in the boolean hypercube
and then on each point in a cube of half the size. The total runtime of Algorithm 1 is, therefore,
O(2µd log2 d) if h is degree d and low-depth. We summarize the complexity of the PIOP for RSUM

with respect to f ∈ F (≤d)
µ , below:

• The prover time is tpfsum = O(2µ · d log2 d) F-ops (for low-depth f that can be evaluated in
time O(d)).

• The verifier time is tvfsum = O(µ).
• The query complexity is qfsum = µ+1, µ queries to univariate oracles, one to multi-variate f .
• The round complexity and the number of proof oracles is rcfsum = µ.
• The number of field elements sent by P is µ.
• The size of the proof oracles is plfsum = d · µ; the size of the witness is c · 2µ.

3.2 ZeroCheck PIOP

In this section, we describe a PIOP showing that a multivariate polynomial evaluates to zero
everywhere on the boolean hypercube. The PIOP builds upon the sumcheck PIOP in Section 3.1
and is a key building block for product-check PIOP in Section 3.3. The zerocheck PIOP is also
helpful in HyperPlonk for proving the gate identity.

Definition 3.2 (ZeroCheck relation). The relation RZERO is the set of all tuples (x;w) =
(
([[f]]); f

)
where f ∈ F (≤d)

µ and f(x) = 0 for all x ∈ Bµ.

We use an idea from [66] to reduce a ZeroCheck to a SumCheck.

Construction. Given a tuple (x;w) =
(
([[f]]); f

)
, the protocol is the following:

• V sends P a random vector r←$ Fµ

• Let f̂(X) := f(X) · eq(X, r) where eq(x,y) :=
∏µ

i=1

(
xiyi + (1− xi)(1− yi)

)
.

• Run a sumcheck PolyIOP to convince the verifier that
(
(0, [[f̂]]); f̂

)
∈ RSUM.

Batching It is possible to batch two instances
(
([[f]]); f

)
∈ RZERO and

(
([[g]]); g

)
∈ RZERO by

running a zerocheck on
(
([[f + αg]]); f + αg

)
for a random α ∈ F. The soundness error of the

batching protocol 1
F .

Theorem 3.2. The PIOP for RZERO is perfectly complete and has knowledge error δd,µzero := dµ/|F|+
δd+1,µ
sum = O(dµ/|F|).

19

Proof. Completeness. For every
(
([[f]]); f

)
∈ RZERO, f̂ is also zero everywhere on the boolean

hypercube, thus the sumcheck of f̂ is zero, and completeness follows from sumcheck’s completeness.

Knowledge soundness. By Lemma 2.3, it is sufficient to argue the soundness error of the protocol.
We note that [[f]] ∈ L(RZERO) (i.e.,

(
([[f]]); f

)
∈ RZERO) if and only if the following auxiliary

polynomial

g(Y) :=
∑
x∈Bµ

f(x) · eq(x,Y)

is identically zero. This is because eq(x, y) for a x,y ∈ Bµ is 1 if x = y and 0 otherwise. So
g(y) = f(y) for all y ∈ Bµ. Therefore, for any [[f]] /∈ L(RZERO), the corresponding g is a non-zero
polynomial and by Lemma 2.2,

g(r) =
∑
x∈Bµ

f(x) · eq(x, r) = 0

with probability dµ/|F| over the choice of r, thus the probability that the verifier accepts is at most
dµ/|F| plus the probability that the SumCheck PIOP verifier accepts when

(
(0, [[f̂]]); f̂

)
/∈ RSUM,

which is dµ/|F|+ δd+1,µ
sum as desired.

Complexity. We analyze the complexity of the PIOP for RZERO with respect to f ∈ F (≤d)
µ .

• The prover time is tpfzero = tpf̂sum = O(d log2 d · 2µ) F-ops.
• The verifier time is tvfzero = O(µ).
• The query complexity is qfzero = qf̂sum = µ+ 1.

• The round complexity and the number of proof oracles is rcfzero = rcf̂sum = µ.

• The number of field elements sent by P is nffzero = nf f̂sum = µ.

• The size of the proof oracles is plfzero = plf̂sum = dµ; the size of the witness is O(2µ).

3.3 ProductCheck PIOP

We describe a PIOP for the product check relation, that is, for a rational polynomial (where both
the nominator and the denominator are multivariate polynomials), the product of the evaluations
on the boolean hypercube is a claimed value s. The PIOP uses the idea from the Quark system [67,
§5], we adapt it to build upon the zerocheck PIOP in Section 3.2. Product check PIOP is a key
building block for the multiset equality check PIOP in Section 3.4.

Definition 3.3 (ProductCheck relation). The relation RPROD is the set of all tuples (x;w) =(
(s, [[f1]], [[f2]]); f1, f2

)
where f1 ∈ F (≤d)

µ , f2 ∈ F (≤d)
µ \ {0} and

∏
x∈Bµ

f ′(x) = s, where f ′ is the

rational polynomial f ′ := f1/f2. In the case that f2 = c is a constant polynomial, we directly set
f := f1/c and write (x;w) =

(
(s, [[f]]); f

)
.

Construction. The Quark system [67, §5] constructs a proof system for the RPROD relation.
The proof system uses an instance of the RZERO PolyIOP on µ + 1 variables. Given a tuple
(x;w) =

(
(s, [[f1]], [[f2]]); f1, f2

)
, we denote by f ′ := f1/f2. The protocol is the following:

• P sends an oracle ṽ ∈ F (≤1)
µ+1 such that for all x ∈ Bµ,

ṽ(0,x) = f ′(x) , ṽ(1,x) = ṽ(x, 0) · ṽ(x, 1) .

20

• Define ĥ := merge(f̂ , ĝ) ∈ F (≤max(2,d+1))
µ+1 where

f̂(X) := ṽ(1,X)− ṽ(X, 0) · ṽ(X, 1) , ĝ(X) := f2(X) · ṽ(0,X)− f1(X) .

Run a ZeroCheck PolyIOP for
(
[[ĥ]]; ĥ

)
∈ RZERO, i.e., the polynomial ṽ is computed correctly.

• V queries [[ṽ]] at point (1, . . . , 1, 0) ∈ Fµ+1, and checks that the evaluation is s.

Theorem 3.3. Let d′ := max(2, d + 1). The PIOP for RPROD is perfectly complete and has

knowledge error δd,µprod := δd
′,µ+1

zero = O(d′µ/|F|).

Proof. Completeness. First, if the prover honestly generates ṽ, it holds that
(
([[ĥ]]); ĥ

)
∈

RZERO, and the verifier accepts in the sub-PIOP, given that ZeroCheck is complete. Second, if(
(s, [[f1]], [[f2]]); f1, f2

)
∈ RPROD, the evaluation ṽ(1, . . . , 1, 0) is exactly the product of f ’s evalua-

tions on the boolean hypercube Bµ (c.f. [67, §5]), which is s as desired.

Knowledge soundness. By Lemma 2.3, it is sufficient to argue the soundness error of the protocol.
For any (s, [[f1]], [[f2]]) /∈ L(RPROD) and any ṽ sent by a malicious prover, it holds that either ṽ
is not computed correctly (i.e.,

(
([[ĥ]]); ĥ

)
/∈ RZERO), or the evaluation ṽ(1, . . . , 1, 0) ̸= s and V

rejects. Hence the probability that V accepts is at most max
(
δd

′,µ+1
zero , 0

)
= δd

′,µ+1
zero as claimed.

Complexity. Let ĥ be the polynomials described in the construction, we analyze the complexity

of the PIOP for RPROD with respect to f ′ := f1/f2 where f1, f2 ∈ F (≤d)
µ .

• The prover time is tpf
′

prod = tpĥzero+2µ = O(d log2 d · 2µ) F-ops. The term 2µ is for computing
the product polynomial ṽ.

• The verifier time is tvf
′

prod = tvĥzero = O(µ).
• The query complexity is qf

′

prod = qĥzero + 1 = µ+ 2, the additional query is for ṽ(1, . . . , 1, 0).

• The round complexity and the number of proof oracles is rcf
′

prod = rcĥzero + 1 = µ+ 1.

• The number of field elements sent by P is nff
′

prod = nf ĥzero = µ.

• The size of the proof oracles is plfprod = 2µ + plĥzero = O(2µ); the size of the witness is O(2µ).

3.4 Multiset Check PIOP

We describe a multivariate PIOP checking that two multisets are equal. The PIOP builds upon
the product-check PIOP in Section 3.3. The multiset check PIOP is a key building block for the
permutation PIOP in Section 3.5 and the lookup PIOP in Section 3.6. A similar idea has been
proposed in the univariate polynomial setting by Gabizon in a blogpost [41].

Definition 3.4 (Multiset Check relation). For any k ≥ 1, the relation Rk
MSET is the set of all

tuples
(x;w) =

(
([[f1]], . . . , [[fk]], [[g1]], . . . , [[gk]]); (f1, . . . , fk, g1, . . . , gk)

)
where fi, gi ∈ F (≤d)

µ (1 ≤ i ≤ k) and the following two multisets of tuples are equal:{
fx :=

[
f1(x), . . . , fk(x)

]}
x∈Bµ

=
{
gx :=

[
g1(x), . . . , gk(x)

]}
x∈Bµ

21

Basic construction. We start by describing a PolyIOP forR1
MSET. The protocol can be obtained

from a protocol for RPROD. Given a tuple
(
([[f]], [[g]]); (f, g)

)
, the protocol is the following:

• V samples and sends P a challenge r ←$ F.

• Set f ′ := r + f and g′ := r + g, run a ProductCheck PolyIOP for
(
(1, [[f ′]], [[g′]]); f ′, g′

)
∈

RPROD.

Theorem 3.4. The PIOP for R1
MSET is perfectly complete and has knowledge error δd,µmset,1 :=

2µ/|F|+ δd,µprod = O
(
(2µ + dµ)/|F|

)
.

Proof. Completeness. For any
(
([[f]], [[g]]); (f, g)

)
∈ R1

MSET, it holds that∏
x∈Bµ

(
r + f(x)

)
=

∏
x∈Bµ

(
r + g(x)

)
,

thus
∏

x∈Bµ

(
r+ f(x)

)
/
(
r+ g(x)

)
= 1, i.e.,

(
(1, [[r+ f]], [[r+ g]]); r+ f, r+ g

)
∈ RPROD. Therefore

completeness holds given that the PolyIOP for RPROD is complete.

Knowledge soundness. By Lemma 2.3, it is sufficient to argue the soundness error of the protocol.
For any ([[f]], [[g]]) /∈ L(R1

MSET) (i.e.,
(
([[f]], [[g]]); (f, g)

)
/∈ R1

MSET), it holds that

F (Y) :=
∏

x∈Bµ

(Y + f(x)) ̸= G(Y) :=
∏

x∈Bµ

(Y + g(x)) .

By Lemma 2.2, F (r) ̸= G(r) with probability at least 1 − (2µ/|F|). Conditioned on F (r) ̸= G(r),
it holds that

(
(1, [[r + f]], [[r + g]]); r + f, r + g

)
/∈ RPROD. Hence the probability that V accepts

conditioned on F (r) ̸= G(r) is at most δd,µprod. In summary, the probability that V accepts is at most

2µ/|F|+ δd,µprod as claimed.

The final construction. Next we describe the protocol for Rk
MSET for any k ≥ 1. Given a tuple(

([[f1]], . . . , [[fk]], [[g1]], . . . , [[gk]]); (f1, . . . , fk, g1, . . . , gk)
)
,

the protocol is the following:

• V samples and sends P challenges r2, . . . , rk ←$ F.

• Run a Multiset Check PolyIOP for
(
([[f̂]], [[ĝ]]); (f̂ , ĝ)

)
∈ R1

MSET, where f̂ , ĝ ∈ F (≤d)
µ are

defined as f̂ := f1 + r2 · f2 + · · ·+ rk · fk and ĝ := g1 + r2 · g2 + · · ·+ rk · gk.

Theorem 3.5. The PIOP for Rk
MSET is perfectly complete and has knowledge error δd,µmset,k :=

2µ/|F|+ δd,µmset,1 = O
(
(2µ + dµ)/|F|

)
.

Proof. Completeness. Completeness holds since the PolyIOP for
(
([[f]], [[g]]); (f, g)

)
∈ R1

MSET is
complete.

Knowledge soundness. By Lemma 2.3, it is sufficient to argue the soundness error of the protocol.
Given any (

[[f1]], . . . , [[fk]], [[g1]], . . . , [[gk]]
)
/∈ L

(
Rk

MSET

)
,

22

let
U :=

{
fx := [f1(x), . . . , fk(x)]

}
x∈Bµ

, V :=
{
gx := [g1(x), . . . , gk(x)]

}
x∈Bµ

denote the corresponding multisets. Let W be the maximal multiset such that W ⊆ U and W ⊆ V .
We set U ′ := U \W , V ′ := V \W .5 We observe that |U ′| = |V ′| > 0 as U ̸= V , and U ′ ∩ V ′ = ∅ by
definition of W . Thus there exists an element x ∈ Fk where x ∈ U ′ but x /∈ V ′. It is well-known
that the map ϕr : (x1, . . . , xk)→ x1 + r2x2 + · · ·+ rkxk is a universal hash family [31, 75, 68], that
is, for any x,y ∈ Fk, x ̸= y, it holds that

Pr
r
[ϕr(x) = ϕr(y)] ≤

1

|F|
.

Thus by union bound, the probability (over the choice of r) that

ϕr(x) ∈
{
ϕr(y) : y ∈ V ′}

is at most |V ′|/|F| ≤ 2µ/|F|. Conditioned on that above does not happen, we have that
(
([[f̂]], [[ĝ]])

)
/∈

L(R1
MSET) and the probability that V accepts in the PolyIOP for R1

MSET is at most δd,µmset,1. In

summary, the soundness error is at most 2µ/|F|+ δd,µmset,1 as claimed.

Complexity. We analyze the complexity of the PIOP for RMSET with respect to

F := (f1, . . . , fk, g1, . . . , gk) ∈
(
F (≤d)
µ

)2k
.

• The prover time is tpFk,mset = tpf̂ ,ĝ1,mset = tp
f ′/g′

prod = O
(
d log2 d · 2µ

)
F-ops (for k where f̂ :=

f1 + r2 · f2 + · · ·+ rk · fk and ĝ := g1 + r2 · g2 + · · ·+ rk · gk can be evaluated in time O(d)).

• The verifier time is tvFmset = tv
f ′/g′

prod = O(µ).
• The query complexity is qFmset = q

f ′/g′

prod = µ+ 2.

• The round complexity and the number of proof oracles is rcFmset = rc
f ′/g′

prod = µ+ 1.

• The number of field elements sent by P is nfFmset = nf
f ′/g′

prod = µ.

• The size of the proof oracles is plFmset = pl
f ′/g′

prod = O(2µ); the size of the witness is O(k · 2µ).

3.5 Permutation PIOP

We describe a multivariate PIOP showing that for two multivariate polynomials f, g ∈ F (≤d)
µ , the

evaluations of g on the boolean hypercube is a predefined permutation σ of f ’s evaluations on the
boolean hypercube. The permutation PIOP is a key building block of HyperPlonk for proving the
wiring identity.

Definition 3.5 (Permutation relation). The indexed relation RPERM is the set of tuples

(i;x;w) =
(
σ; ([[f]], [[g]]); (f, g)

)
, where σ : Bµ → Bµ is a permutation, f, g ∈ F (≤d)

µ , and g(x) = f(σ(x)) for all x ∈ Bµ.

5E.g., if k = 1 and U =
{
1, 1, 1, 2

}
and V =

{
1, 1, 2, 2

}
, then W =

{
1, 1, 2

}
, U ′ =

{
1
}
and V ′ =

{
2
}
.

23

Construction. Gabizon et. al. [44] construct a permutation argument. We adapt their scheme
into a multivariate PolyIOP. The construction uses a PolyIOP instance for RMSET. Given a tuple(
σ; ([[f]], [[g]]); (f, g)

)
where σ is the predefined permutation, the indexer generates two oracles

[[sid]], [[sσ]] such that sid ∈ F
(≤1)
µ maps each x ∈ Bµ to [x] :=

∑µ
i=1 xi · 2i−1 ∈ F, and sσ ∈ F (≤1)

µ

maps each x ∈ Bµ to [σ(x)].6 The PolyIOP is the following:

• Run a Multiset Check PolyIOP for(
([[sid]], [[f]], [[sσ]], [[g]]); (sid, f, sσ, g)

)
∈ R2

MSET .

Theorem 3.6. The PIOP for RPERM is perfectly complete and has knowledge error δd,µperm :=

δd,µmset,2 = O
(
(2µ + dµ)/|F|

)
.

Proof. Completeness. For any
(
σ; ([[f]], [[g]]); (f, g)

)
∈ RPERM, it holds that the multiset {([x], f(x))}x∈Bµ

is identical to the multiset {([σ(x)], g(x))}x∈Bµ . Thus(
([[sid]], [[f]], [[sσ]], [[g]]); (sid, f, sσ, g)

)
∈ R2

MSET

and completeness follows from the completeness of the PolyIOP for R2
MSET.

Knowledge soundness. By Lemma 2.3, it is sufficient to argue the soundness error of the protocol.
The PolyIOP has soundness error δd,µmset,2 as the permutation relation holds if and only if the above
multiset check relation holds.

Complexity. The complexity of the PIOP for RPERM with respect to f, g ∈ F (≤d)
µ is identical to

the complexity of the PIOP for R2
MSET with respect to (sid, f, sσ, g).

3.6 Lookup PIOP

This section describes a multivariate PIOP checking the table lookup relation. The PIOP builds
upon the multiset check PIOP (Section 3.4) and is a key building block for HyperPlonk+ (Section 5).
Our construction is inspired by a univariate PIOP for the table lookup relation called Plookup [42].
However, it is non-trivial to adapt Plookup to the multivariate setting because their scheme requires
the existence of a subdomain of the polynomial that is a cyclic subgroup G with a generator ω ∈ G.
Translating to the multilinear case, we need to build an efficient function g that generates the entire
boolean hypercube; moreover, g has to be linear so that the degree of the polynomial does not blow
up. However, such a linear function does not exist. Fortunately, we can construct a quadratic
function from Fµ to Fµ that traverses Bµ. We then show how to linearize it by modifying some of
the building blocks that Plookup uses. This gives an efficient Plookup protocol over the hypercube.

Definition 3.6 (Lookup relation). The indexed relation RLOOKUP is the set of tuples

(i;x;w) =
(
t; [[f]]; (f, addr)

)
where t ∈ F2µ−1, f ∈ F (≤d)

µ , and addr : Bµ → [1, 2µ) is a map such that f(x) = taddr(x) for all
x ∈ Bµ.

Before presenting the PIOP for RLOOKUP, we first show how to build a quadratic function that
generates the entire boolean hypercube.

6Here we further require |F| ≥ 2µ so that [x] never overflow.

24

A quadratic generator in F2µ. For every µ ∈ N, we fix a primitive polynomial pµ ∈ F2[X]
where pµ := Xµ +

∑
s∈S Xs + 1 for some set S ⊆ [µ − 1], so that F2[X]/(pµ) ∼= Fµ

2 [X] ∼= F2µ . By
definition of primitive polynomials, X ∈ Fµ

2 [X] is a generator of Fµ
2 [X]\{0}. This naturally defines

a generator function gµ : Bµ → Bµ as

gµ(b1, . . . , bµ) = (bµ, b
′
1, . . . , b

′
µ−1)

, where b′i = bi ⊕ bµ (i ≤ 1 < µ) if i ∈ S, and b′i = bi otherwise. Essentially, for a polynomial
f ∈ Fµ

2 [X] with coefficients b, gµ(b) is the coefficient vector of X ·f(X). Hence the following lemma
is straightforward.

Lemma 3.7. Let gµ : Bµ → Bµ be the generator function defined above. For every x ∈ Bµ \ {0µ},
it holds that {g(i)µ (x)}i∈[2µ−1] = Bµ \ {0µ}, where g

(i)
µ (·) denotes i repeated application of gµ.

Directly composing a polynomial f with the generator g will blow up the degree of the resulting
polynomial; moreover, the prover needs to send the composed oracle f(g(·)). Both of which affect
the efficiency of the PIOP. We address the issue by describing a trick that manipulates f in a
way that simulates the behavior of f(g(·)) on the boolean hypercube, but without blowing up the
degree.

Linearizing the generator. For a multivariate polynomial f ∈ F (≤d)
µ , we define f∆µ ∈ F

(≤d)
µ

as
f∆µ(X1, . . . ,Xµ) := Xµ · f(1,X′

1, . . . ,X
′
µ−1) + (1−Xµ) · f(0,X1, . . . ,Xµ−1)

where X′
i := 1−Xi (i ≤ 1 < µ) if i ∈ S, and X′

i := Xi otherwise.

Lemma 3.8. For every µ ∈ N, let gµ : Bµ → Bµ be the generator function defined in Lemma 3.7.

For every d ∈ N and polynomial f ∈ F (≤d)
µ , it holds that f∆µ(x) = f(gµ(x)) for every x ∈ Bµ.

Moreover, f∆µ has individual degree d and one can evaluate f∆µ from 2 evaluations of f .

Proof. By definition, f∆µ has individual degree d and an evaluation of f∆µ can be derived from 2
evaluations of f . Next, we argue that f∆µ(x) = f(gµ(x)) for every x ∈ Bµ.

First, f∆µ(0
µ) = f(gµ(0

µ)) because f∆µ(0
µ) = f(0µ) and gµ(0

µ) = 0µ by definition of f∆µ , gµ.
Second, for every x ∈ Bµ \ {0µ}, by definition of gµ,

f(gµ(x1, . . . ,xµ)) = f(xµ,x
′
1, . . . ,x

′
µ−1),

where x′
i = xi ⊕ xµ (i ≤ 1 < µ) for every i in the fixed set S, and x′

i = xi otherwise. We observe
that xi ⊕ xµ = 1− xi when xµ = 1 and xi ⊕ xµ = xi when xµ = 0, thus we can rewrite

f(xµ,x
′
1, . . . ,x

′
µ−1) = xµ · f(1,x∗

1, . . . ,x
∗
µ−1) + (1− xµ) · f(0,x1, . . . ,xµ−1)

= f∆µ(x1, . . . ,xµ)

where x∗
i = 1 − xi (i ≤ 1 < µ) for every i in the fixed set S, and x∗

i = xi otherwise. The last
equality holds by definition of f∆µ . In summary, f(gµ(x1, . . . ,xµ)) = f∆µ(x1, . . . ,xµ) for every Bµ

and the lemma holds.

25

Construction. Now we are ready to present the PIOP for RLOOKUP, which is an adaptation of
Plookup [42] in the multivariate setting. The PIOP invokes a protocol for R2

MSET. We introduce a
notation that embeds a vector to the hypercube while still preserving the vector order with respect

to the generator function. For a vector t ∈ F2µ−1, we denote by t← emb(t) ∈ F (≤1)
µ the multilinear

polynomial such that t(0µ) = 0 and t
(
g
(i)
µ (1, 0µ−1)

)
= ti for every i ∈ [2µ − 1]. By Lemma 3.7, t is

well-defined and embeds the entire vector t onto Bµ \ {0µ}.
For an index t ∈ F2µ−1, the indexer generates an oracle [[t]] where t ← emb(t). For a tuple(

t; [[f]]; (f, addr)
)
where f(Bµ) ⊆ t(Bµ) \ {0}, let (a1, . . . ,a2µ−1) be the vector where ai ∈ N is the

number of appearance of ti in f(Bµ). Note that
∑2µ−1

i=1 ai = 2µ. Denote by h ∈ F2µ+1−1 the vector

h :=
(
t1, . . . , t1︸ ︷︷ ︸

1+a1

, t2, . . . , ti−1, ti, . . . , ti︸ ︷︷ ︸
1+ai

, ti+1, . . . , t2µ−2, t2µ−1, . . . t2µ−1︸ ︷︷ ︸
1+a2µ−1

)
.

We present the protocol below:

• P sends V oracles [[h]], where h← emb(h) ∈ F (≤1)
µ+1 .

• Define g1 := merge(f, t) ∈ F (≤d)
µ+1 and g2 := merge(f, t∆µ) ∈ F

(≤d)
µ+1 , where merge is defined in

equation (7). Run a multiset check PIOP (Section 3.4) for(
([[g1]], [[g2]], [[h]], [[h∆µ+1]]); (f, t, h)

)
∈ R2

MSET .

• V queries h(0µ+1) and checks that the answer equals 0.

Theorem 3.9. The PIOP for RLOOKUP is perfectly complete and has knowledge error δd,µlkup :=

δd,µ+1
mset,2 = O

(
(2µ + dµ)/|F|

)
.

Proof. Completeness. Denote by n := 2µ. For any
(
t; [[f]]; (f, addr)

)
∈ RLOOKUP, let h ∈ F2n−1

be the vector defined in the construction. Gabizon and Williamson [42] observed that{
[fi, fi]

}
i∈[n] ∪

{[
ti, t(i mod (n−1))+1

]}
i∈[n−1]

=
{[
hi,h(i mod (2n−1))+1

]}
i∈[2n−1]

,

equivalently, by definition of t, h and by Lemma 3.8, the following two multisets of tuples are equal{
[f(x), f(x)]

}
x∈Bµ

∪
{[
t(x), t∆µ(x)

]}
x∈Bµ\{0µ} =

{[
h(x), h∆µ+1(x)

]}
x∈Bµ+1\{0µ+1} .

By adding element [0, 0] =
[
t(0µ), t∆µ(0

µ)
]
=

[
h(0µ+1), h∆µ+1(0

µ+1)
]
on both sides, we have{

[f(x), f(x)]
}
x∈Bµ

∪
{[

t(x), t∆µ(x)
]}

x∈Bµ
=

{[
h(x), h∆µ+1(x)

]}
x∈Bµ+1

.

Hence the verifier accepts in the multiset check by completeness of the PIOP for R2
MSET.

Knowledge soundness. By Lemma 2.3, to argue knowledge soundness, it is sufficient to argue
the soundness error of the protocol. Fix n := 2µ, for any

(
t; [[f]]

)
/∈ L(RLOOKUP), denote by f ∈ Fn

the evaluations of f on Bµ. Gabizon et. al. [42] showed that for any h ∈ F2n−1, it holds that{
[fi, fi]

}
i∈[n] ∪

{[
ti, t(i mod (n−1))+1

]}
i∈[n−1]

̸=
{[
hi,h(i mod (2n−1))+1

]}
i∈[2n−1]

,

since t(0µ) = 0 and V checks that h(0µ+1) = 0, with a similar argument as in the completeness
proof, we have{

[f(x), f(x)]
}
x∈Bµ

∪
{[
t(x), t∆µ(x)

]}
x∈Bµ

̸=
{[
h(x), h∆µ+1(x)

]}
x∈Bµ+1

and the multiset check relation does not hold. Therefore, the probability that V accepts is at most
δd,µ+1
mset,2 as claimed.

26

Complexity. Let f , F := (g1, g2, h, h∆µ+1) ∈
(
F (≤d)
µ+1

)2 × (
F (≤1)
µ+1

)2
be the polynomials defined in

the construction. We analyze the complexity of the PIOP for RLOOKUP with respect to f ∈ F (≤d)
µ .

• The prover time is tpflkup = tpFmset = O
(
d log2 d · 2µ

)
F-ops.

• The verifier time is tvflkup = tvFmset = O(µ).
• The query complexity is qflkup = 1 + qFmset = µ+ 3.

• The round complexity and the number of proof oracles is rcflkup = 1 + rcFmset = µ+ 2.

• The number of field elements sent by P is nfflkup = nfFmset = µ.

• The size of the proof oracles is plflkup = 2µ+1 + plFmset = O(2µ) where 2µ+1 is the oracle size of
h. The size of the witness is O(2µ).

3.7 Batch openings

This section describes a batching protocol proving the correctness of multiple multivariate polyno-
mial evaluations. Essentially, the protocol reduces multiple oracle queries to different polynomials
into a single query to a multivariate oracle. The batching protocol is helpful for HyperPlonk to
enable efficient batch evaluation openings. In particular, the SNARK prover only needs to compute
a single multilinear PCS evaluation proof, even if there are multiple PCS evaluations.

We note that Thaler [71, §4.5.2] shows how to batch two evaluations of a single multilinear
polynomial. The algorithm can be generalized for multiple evaluations of different multilinear
polynomials. However, the prover time complexity is O(k2µ · 2µ) where k is the number of evalua-
tions, and µ is the number of variables. In comparison, our algorithm achieves complexity O(k ·2µ)
which is kµ-factor faster. Note that O(k ·2µ) is already optimal as the prover needs to take O(k ·2µ)
time to evaluate {fi(zi)}i∈[k] before batching.

Definition 3.7 (BatchEval relation). The relation Rk
BATCH is the set of all tuples (x;w) =(

(zi)i∈[k], (yi)i∈[k],
(
[[fi]]

)
i∈[k]; (fi)i∈[k]

)
where zi ∈ Fµ, yi ∈ F, fi ∈ F (≤d)

µ and fi(zi) = yi for

all i ∈ [k].

Remark 3.1. The polynomials {fi}i∈[k] are not necessarily distinct. E.g., to evaluate a single
polynomial f at k distinct points, we can set f1 = f2 = · · · = fk = f .

Remark 3.2. The polynomials {fi}i∈[k] are all µ-variate. This is without loss of generality. E.g.,
suppose one of the evaluated polynomial f ′

j has only µ − 1 variable, we can define fj(Y,X) =
Y · f ′

j(X) + (1 − Y) · f ′
j(X) which is essentially f ′

j but with µ variables. The same trick easily
extends to f ′

j with arbitrary µ′ < µ variables.

Construction. For ease of exposition, we consider the case where f1, . . . , fk are multilinear. We
emphasize that the same techniques can be extended for multi-variate polynomials.

Assume w.l.o.g that k = 2ℓ is a power of 2. We observe that Rk
BATCH is essentially a ZeroCheck

relation over the set Z := {zi}i∈[k] ⊆ Fµ, that is, for every i ∈ [k], fi(zi)− yi = 0. Nonetheless, Z
is outside the boolean hypercube, and we cannot directly reuse the ZeroCheck PIOP.

The key idea is to interpret each zero constraint as a sumcheck via multilinear extension, so that
we can work on the boolean hypercube later. In particular, for every i ∈ [k], we want to constrain
fi(zi) − yi = 0. Since fi is multilinear, by definition of multilinear extension, this is equivalent to

27

constraining that

ci :=

 ∑
b∈Bµ

fi(b) · eq(b, zi)

− yi = 0 . (8)

Note that equation (8) holds for every i ∈ [k] if and only if the polynomial∑
i∈[k]

eq(Z, ⟨i⟩) · ci

is identically zero, where ⟨i⟩ is ℓ-bit representation of i− 1. By Lemma 2.2, it is sufficient to check
that for a random vector t←$ Fℓ, it holds that

∑
i∈[k]

eq(t, ⟨i⟩) · ci =
∑
i∈[k]

eq(t, ⟨i⟩) ·

 ∑
b∈Bµ

fi(b) · eq(b, zi)

− yi

 = 0 . (9)

Next, we arithmetize equation (9) and make it an algebraic formula. For every (i, b) ∈ [k]×Bµ,
we set value gi,b := eq(t, ⟨i⟩) · fi(b), and define an MLE g̃ for (gi,b)i∈[k], b∈Bµ

such that g̃(⟨i⟩, b) =
gi,b∀(i, b) ∈ [k] × Bµ; similarly, we define an MLE ẽq for (eq(b, zi))i∈[k], b∈Bµ

where ẽq(⟨i⟩, b) =
eq(b, zi)∀(i, b) ∈ [k]×Bµ. Let s :=

∑
i∈[k] eq(t, ⟨i⟩) · yi, then equation (9) can be rewritten as∑

i∈[k],b∈Bµ

g̃(⟨i⟩, b) · ẽq(⟨i⟩, b) = s .

This is equivalent to prove a sumcheck claim for the degree-2 polynomial g∗ := g̃(Y,X)·ẽq(Y,X)
over set Bℓ+µ. Hence we obtain the following PIOP protocol in Algorithm 3. Note that g∗ = g̃ · ẽq
is only with degree 2. Thus we can run a classic sumcheck without sending any univariate oracles.

Algorithm 3 Batch evaluation of multi-linear polynomials

1: procedure BatchEval([fi ∈ F (≤1)
µ , zi ∈ Fµ, yi ∈ F]ki=1)

2: V sends P a random vector t←$ Fℓ.
3: Define sum s :=

∑
i∈[k] eq(t, ⟨i⟩) · yi.

4: Let g̃ be the MLE for (gi,b)i∈[k], b∈Bµ
where

gi,b := eq(t, ⟨i⟩) · fi(b) .

5: Let ẽq be the MLE for (eq(b, zi))i∈[k], b∈Bµ
such that ẽq(⟨i⟩, b) = eq(b, zi).

6: P and V run a SumCheck PIOP for
(
s, [[g∗]]; g∗

)
∈ RSUM, where g∗ := g̃ · ẽq.

7: Let (a1,a2) ∈ Fℓ+µ be the sumcheck challenge vector. P answers the oracle query g̃(a1,a2).
8: V evaluates ẽq(a1,a2) herself, and checks that

g̃(a1,a2) · ẽq(a1,a2)

is consistent with the last message of the sumcheck.
9: end procedure

28

Remark 3.3. If the SNARK is using a homomorphic commitment scheme, to answer query
g̃(a1,a2) the prover only needs to provide a single PCS opening proof for a µ-variate polynomial

g′(X) := g̃(a1,X) =
∑
i∈[k]

eq(⟨i⟩,a1) · eq(t, ⟨i⟩) · fi(X)

on point a2. The verifier can evaluate {eq(⟨i⟩,a1)·eq(t, ⟨i⟩)}i∈[k] in time O(k), and homomorphically
compute g′’s commitment from the commitments to {fi}i∈[k], and checks the opening proof against
g′’s commitment. Finally, the verifier checks that g′(a2) matches the claimed evaluation g̃(a1,a2).

Analysis. The PIOP for RBATCH is complete and knowledge-sound given the completeness and
knowledge-soundness of the sumcheck PIOP.

Next, we analyze the complexity of the protocol: The prover time is O(k · 2µ) as it runs a
sumcheck PIOP for a polynomial g∗ := g̃ · ẽq of degree 2 and µ + log k variables, where g̃ and
ẽq can both be constructed in time O(k · 2µ). Note that this is already optimal as the prover
anyway needs to take O(k · 2µ) time to evaluate {fi(zi)}i∈[k] before batching. The verifier takes
time O(µ + log k) in the sumcheck; the sum s can be computed in time O(k); the evaluation
ẽq(a1,a2) =

∑
i∈[k] eq(a1, ⟨i⟩)·ẽq(⟨i⟩,a2) can be derived from a1 and the k evaluations {ẽq(⟨i⟩,a2) =

eq(a2, zi)}i∈[k] where each evaluation eq(a2, zi) takes time O(µ). In summary, the verifier time is
O(kµ).

3.7.1 A more efficient batching scheme in a special setting

Sometimes one only needs to open a single multilinear polynomial at multiple points, where each
point is in the boolean hypercube. In this setting, we provide a more efficient algorithm with
complexity O(2µ) which is k times faster than Algorithm 3. We also note that the technique can be
used to construct an efficient Commit-and-Prove SNARK scheme from multilinear commitments.

Recall the sumcheck equation (9) in the general batch opening scheme, when there is only one
polynomial f and assume for simplicity that yi = 0∀i ∈ [k]7, we can rewrite it as

∑
i∈[k]

eq(t, ⟨i⟩) ·

 ∑
b∈Bµ

f(b) · eq(b, zi)

 =
∑
b∈Bµ

f(b)

∑
i∈[k]

eq(t, ⟨i⟩) · eq(b, zi)

 .

Denote by di = eq(t, ⟨i⟩). The above is essentially a sumcheck for polynomial f · ˜eq∗ on set Bµ,
where

˜eq∗(X) :=
∑
i∈[k]

di · eq(X, zi) .

Thus we can reduce the batching argument to a PCS opening on polynomial f .
In the sumcheck protocol, in each round µ− i+1 ∈ [µ], the prover needs to evaluate a degree-2

polynomial ri(X) on point xi ∈ {0, 1, 2}, where

ri(X) :=
∑

b∈Bi−1

f(b, X,α) · ˜eq∗(b, X,α) (10)

7The algorithm can be easily extended when yi are non-zero.

29

and α = (αi+1, . . . , αµ) are the round challenges. Note that the evaluation f(b, xi,α) is easy to
obtain by maintaining a table f(Bi−1, {0, 1, 2},α) as in Algorithm 1. Next we argue that the
evaluation ri(xi) can be computed in time O(k) given the evaluations f(Bi−1, {0, 1, 2},α). Since
there are µ rounds and the complexity for maintaining the table is O(2µ), the total complexity is
O(2µ + kµ).

We observe that in equation (10), since {zi}i∈[k] are in the boolean hypercube, and

˜eq∗(b, X,α) =
∑
j∈[k]

di · eq((b, X,α), zj)

=
∑
j∈[k]

dj · eq(b, zj [1..i− 1]) · eq(X, zj [i]) · eq(α, zj [i+ 1..]) ,

by definition of eq, there are at most k choices of b where ˜eq∗(b, X,α) is non-zero. In particular,
the ℓ-th (1 ≤ ℓ ≤ k) such vector is cℓ := zℓ[1..i− 1] such that

˜eq∗(cℓ, X,α) =
∑
j∈[k]

dj · eq(zℓ[1..i− 1], zj [1..i− 1]) · eq(X, zj [i]) · eq(α, zj [i+ 1..]) .

we note that for each j ∈ [k], the value eq(α, zj [i + 1..]) can be maintained dynamically; the
value eq(X, zj [i]) can be computed in time O(1). Moreover, eq(zℓ[1..i − 1], zj [1..i − 1]) equals 1 if
zℓ[1..i−1] = zj [1..i−1] and equals 0 otherwise. In summary, all non-zero values { ˜eq∗(cℓ, X,α)}ℓ∈[k]
can be computed in a batch in time O(k). Therefore for each xi ∈ {0, 1, 2}, one can evaluate
ri(xi) from evaluations {f(cℓ, xi,α)}ℓ∈[k] in time O(k), by evaluating { ˜eq∗(cℓ, xi,α)}ℓ∈[k] first and
computing the inner product between (˜eq∗(cℓ, xi,α))ℓ∈[k] and (f(cℓ, xi,α))ℓ∈[k].

Applications to Commit-and-Prove SNARKs. Our batching scheme is helpful for building
Commit-and-Prove SNARKs (CP-SNARKs) from multilinear commitments. In the setting of CP-
SNARKs, given two commitments Cf , Cg that commit to vectors f ∈ Fn, g ∈ Fm (m ≤ n), and
given two sets If ⊆ [n], Ig ⊆ [m], one needs to prove that the values of f(If) is consistent with
g(Ig). This problem can be solved using a variant of our special batching scheme with complexity
O(n).

For simplicity suppose that n = m,8 and we assume w.l.o.g that n = 2µ. The idea is to

view f ,g as the evaluations of polynomials f, g ∈ F (≤1)
µ on the boolean hypercube Bµ. Then

the commitments Cf , Cg can be instantiated with multilinear commitments to polynomials f, g
respectively. The relation that f(If) = g(Ig) is a slightly more general version of the batching
relation: let k = |If | = |Ig|, it is equivalent to prove that f(zi) = g(ui) for all i ∈ [k], where
zi,ui ∈ Bµ map to the i-th index of set If , Ig respectively.

Similar to equation (9), we can define a sumcheck relation

∑
i∈[k]

eq(t, ⟨i⟩) ·

 ∑
b∈Bµ

f(b) · eq(b, zi)

−
 ∑

b∈Bµ

g(b) · eq(b,ui)

=

∑
b∈Bµ

f(b)

∑
i∈[k]

eq(t, ⟨i⟩) · eq(b, zi)

− ∑
b∈Bµ

g(b)

∑
i∈[k]

eq(t, ⟨i⟩) · eq(b,ui)

 = 0 ,

8the same technique applies for n ̸= m

30

which is essentially a sumcheck for the degree-2 polynomial h := f · ˜eqf − g · ˜eqg on set Bµ, where

˜eqf (X) :=
∑
i∈[k]

eq(t, ⟨i⟩) · eq(X, zi) , ˜eqg(X) :=
∑
i∈[k]

eq(t, ⟨i⟩) · eq(X,ui) .

We can use the same sumcheck algorithm underlying the special batching scheme. The complexity
is O(2µ). The CP-SNARK proving is then reduced to two PCS openings, one for commitment Cf

and one for Cg.

4 HyperPlonk: Plonk on the boolean hypercube

Equipped with the building blocks in Section 3, we now describe the Polynomial IOP for Hyper-
Plonk. In Section 4.1, we introduce RPLONK — an indexed relation on the boolean hypercube that
generalizes the vanilla Plonk constraint system [44]. We present a Polynomial IOP protocol for
RPLONK and analyze its security and efficiency in Section 4.2.

4.1 Constraint systems

Notation. For any m ∈ Z and i ∈ [0, 2m), we use ⟨i⟩m = v ∈ Bm to denote the m-bit binary
representation of i, that is, i =

∑m
j=1 vj · 2j−1.

Definition 4.1 (HyperPlonk indexed relation). Fix public parameters gp :=
(
F, ℓ, n, ℓw, ℓq, f

)
where

F is the field, ℓ = 2ν is the public input length, n = 2µ is the number of constraints, ℓw = 2νw , ℓq =
2νq are the number of witnesses and selectors per constraint9, and f : Fℓq+ℓw → F is an algebraic
map with degree d. The indexed relation RPLONK is the set of all tuples

(i;x;w) = ((q, σ); (p, [[w]]);w) ,

where σ : Bµ+νw → Bµ+νw is a permutation, q ∈ F (≤1)
µ+νq , p ∈ F

(≤1)
µ+ν , w ∈ F

(≤1)
µ+νw , such that

• the wiring identity is satisfied, that is,
(
σ; ([[w]], [[w]]);w

)
∈ RPERM (Definition 3.5);

• the gate identity is satisfied, that, is,
(
([[f̃]]); f̃

)
∈ RZERO (Definition 3.2), where the virtual

polynomial f̃ ∈ F (≤d)
µ is defined as

f̃(X) := f(q(⟨0⟩νq ,X), . . . , q(⟨ℓq − 1⟩νq ,X), w(⟨0⟩νw ,X), . . . , w(⟨ℓw − 1⟩νw ,X)); (11)

• the public input is consistent with the witness, that is, the public input polynomial p ∈ F (≤1)
ν

is identical to w(0µ+νw−ν ,X) ∈ F (≤1)
ν .

RPLONK is general enough to capture many computational models. In the introduction, we
reviewed how RPLONK captures simple arithmetic circuits. RPLONK can be used to capture higher
degree circuits with higher arity and more complex gates, including state machine computations.

State machines. RPLONK can model state machine computations, as shown by Gabizon and
Williamson [43]. A state machine execution with n− 1 steps starts with an initial state state0 ∈ Fk

where k is the width of the state vector. In each step i ∈ [0, n− 1), given input the previous state
statei and an online input inpi ∈ F, the state machine executes a transition function f and outputs

9We can pad zeroes if the actual number is not a power of two.

31

statei+1 ∈ Fw. Let T := (state0, . . . , staten−1) be the execution trace and define inpn−1 := ⊥,
we say that T is valid for input (inp0, . . . , inpn−1) if and only if (i) staten−1[0] = 0k, and (ii)
statei+1 = f(statei, inpi) for all i ∈ [0, n− 1).

We build a HyperPlonk indexed relation that captures the state machine computation. W.l.o.g
we assume that n = 2µ for some µ ∈ N.10 Let νw be the minimal integer such that 2νw > 2k. We
also assume that there is a low-depth algebraic predicate f∗ that captures the transition function
f, that is, f∗(state

′, state, inp) = 0 if and only if state′ = f(state, inp). For each i ∈ [0, n):

• the online input at the i-th step is inpi := w(⟨0⟩νw , ⟨i⟩µ);

• the input state of step i is statein,i :=
[
w (⟨1⟩νw , ⟨i⟩µ) , . . . , w (⟨k⟩νw , ⟨i⟩µ)

]
;

• the output state of step i is stateout,i :=
[
w (⟨k + 1⟩νw , ⟨i⟩µ) , . . . , w (⟨2k⟩νw , ⟨i⟩µ)

]
;

• the selector for step i is qi := q
(
⟨i⟩µ

)
;

• the transition and output correctness are jointly captured by a high-degree algebraic map f ′,

f ′(inpi, statein,i, stateout,i;qi) := (1− qi) · f∗(stateout,i, statein,i, inpi) + qi · statein,i[0] .

For all i ∈ [0, n− 1), we set qi = 0 so that statei+1 = fi(statei, inpi) if and only if

f ′(inpi, statein,i, stateout,i;qi) = f∗(stateout,i, statein,i, inpi) = 0 ;

we set qn−1 = 1 so that statein,n−1[0] = 0 if and only if

f ′(inpn−1, statein,n−1, stateout,n−1;qn−1) = statein,n−1[0] = 0 .

Note that we also need to enforce equality between the i-th input state and the (i − 1)-th output
state for all i ∈ [n− 1]. We achieve it by fixing a permutation σ and constraining that the witness
assignment is invariant after applying the permutation.

Remark 4.1. We can halve the size of the witness and remove the permutation check by using
the polynomial shifting technique in Section 3.6. Specifically, we can remove output state columns
stateout,i and replace it with statein,i+1 for every i ∈ [0, n).

4.2 The PolyIOP protocol

In this Section, we present a multivariate PIOP for RPLONK that removes expensive FFTs.

Construction. Intuitively, the PIOP for RPLONK builds on a zero-check PIOP (Section 3.2) for
custom algebraic gates and a permutation-check PIOP (Section 3.5) for copy constraints; consis-
tency between the public input and the online witness is achieved via a random evaluation check
between the public input polynomial and the witness polynomial.

Let gp :=
(
F, ℓ, n, ℓw, ℓq, f

)
be the public parameters and let d := deg(f). For a tuple (i;x;w) =(

(q, σ); (p, [[w]]);w
)
, we describe the protocol in Figure 2.

10We can pad with dummy states if the number of steps is not a power of two.

32

Indexer. I(q, σ) calls the permutation PIOP indexer ([[sid]], [[sσ]]) ← Iperm(σ). The oracle

output is ([[q]], [[sid]], [[sσ]]), where q ∈ F (≤1)
µ+νq , sid, sσ ∈ F

(≤1)
µ+νw .

The protocol. P(gp, i, p, w) and V(gp, p, [[q]], [[sid]], [[sσ]]) run the following protocol.

1. P sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νw .

2. P and V run a PIOP for the gate identity, which is a zero-check PIOP (Section 3.2) for(
[[f̃]]; f̃

)
∈ RZERO where f̃ ∈ F (≤d)

µ is as defined in Equation 11.

3. P and V run a PIOP for the wiring identity, which is a permutation PIOP (Section 3.5) for(
σ; ([[w]], [[w]]); (w,w)

)
∈ RPERM.

4. V checks the consistency between witness and public input. It samples r←$ Fν , queries [[w]]

on input (⟨0⟩µ+νw−ν , r), and checks p(r)
?
= w(⟨0⟩µ+νw−ν , r).

Figure 2: PIOP for RPLONK.

Theorem 4.1. Let gp :=
(
F, ℓ, n, ℓw, ℓq, f

)
be the public parameters where ℓw, ℓq = O(1) are some

constants. Let d := deg(f). The construction in Figure 2 is a multivariate PolyIOP for relation
RPLONK (Definition 4.1) with soundness error O

(2µ+dµ
|F|

)
and the following complexity:

• the prover time is tpgpplonk = O
(
nd log2 d

)
;

• the verifier time is tvgpplonk = O(µ+ ℓ);

• the query complexity is qgpplonk = 2µ+4+ log ℓw, that is, 2µ+ log ℓw univariate oracle queries,

3 multilinear oracle queries, and 1 query to the virtual polynomial f̃ .

• the round complexity and the number of proof oracles is rcgpplonk = 2µ+ 1 + νw;

• the number of field elements sent by the prover is nfgpplonk = 2µ;

• the size of the proof oracles is plgpplonk = O
(
n
)
; the size of the witness is nℓw.

Remark 4.2. Two separate sumcheck PIOPs are underlying the HyperPlonk PIOP. We can batch
the two sumchecks into one by random linear combination. The optimized protocol has round
complexity µ + 1 + log ℓw, and the number of field elements sent by the prover is µ. The query
complexity µ+3+ log ℓw, that is, µ+log ℓw univariate queries, 2 multilinear queries, and 1 queries
to the virtual polynomial f̃ .

Remark 4.3. The prover’s memory consumption is linear to the number of constraints. For space-
bounded provers, we can split the proving work to multiple parallel parties or apply the techniques
from [22] to obtain a space-efficient prover with quasilinear proving time. We leave concrete speci-
fications of space-efficient HyperPlonk provers as future work.

Lemma 4.2. The PIOP in Figure 2 is perfectly complete.

Proof. For any
(
(q, σ); (p, [[w]]);w

)
∈ RPLONK, by Definition 4.1, it holds that

33

•
(
[[f̃]]; f̃

)
∈ RZERO, thus V passes the check in Step 2 as the ZeroCheck PIOP is complete;

•
(
σ; ([[w]], [[w]]);w

)
∈ RPERM, thus V passes the check in Step 3 as the permutation PIOP is

complete;

• the public input polynomial p ∈ F (≤1)
ν is identical to w(0µ+νw−ν ,X) ∈ F (≤1)

ν , thus their
evaluations are always the same, and V passes the check in Step 4.

In summary, the lemma holds as desired.

Lemma 4.3. Let gp :=
(
F, ℓ = 2ν , n = 2µ, ℓw = 2νw , ℓq, f

)
be the public parameters and let

d := deg(f) The PIOP in Figure 2 has soundness error

δgpplonk := max

{
δd,µzero, δ

1,µ+νw
perm ,

ν

|F|

}
.

Proof. For any
(
(q, σ); (p, [[w]])

)
/∈ L(RPLONK), that is,

(
(q, σ); (p, [[w]]);w

)
/∈ RPLONK, at least

one of the following conditions holds:

•
(
[[f̃]]; f̃

)
/∈ RZERO;

•
(
σ; ([[w]], [[w]]);w

)
/∈ RPERM;

• p(X) ̸= w(0µ+νw−ν ,X);

In the first condition, the probability that V passes the ZeroCheck in Step 2 is at most δd,µzero; in the
second condition, the probability that V passes the permutation check in Step 3 is at most δ1,µ+νw

perm ;
in the last condition, by Lemma 2.2, V passes the evaluation check in Step 4 with probability at
most ν/|F|. In summary, for any

(
(q, σ); (p, [[w]]);w

)
/∈ RPLONK, the probability that V accepts is

at most max{δd,µzero, δ
1,µ+νw
perm , ν/|F|} as claimed.

Zero knowledge. We refer to Appendix A for the zero-knowledge version of the HyperPlonk
PIOP.

5 HyperPlonk+: HyperPlonk with Lookup Gates

This section illustrates how to integrate lookup gates into the HyperPlonk constraint system. Then
we present and analyze a Polynomial IOP protocol for the extended relation.

5.1 Constraint systems

The HyperPlonk+ indexed relation RPLONK+ is built on RPLONK (Definition 4.1). The difference is
that RPLONK+ further enables a set of non-algebraic constraints enforcing that some function over
the witness values belongs to a preprocessed table. We illustrate via a simple example. Suppose
we capture a fan-in-2 circuit with n addition/multiplication gates using relation RPLONK. We need
to further constrain that for a subset of gates, the sum of two input wires should be in the range
[0, . . . , B). What we can do is to set up a preprocessed table table = {0, 1, . . . , B} and a selector
qlk ∈ Fn so that for every i ∈ [n], qlk(i) = 1 if the i-th gate has a range-check, and qlk(i) = 0

34

otherwise. Then we prove a lookup relation that for all i ∈ [n], the value qlk(i) ·
(
w1(i) + w2(i)

)
is

in table, where w1(i), w2(i) are the first and the second input wire of gate i.
We generalize the idea above and enable enforcing arbitrary algebraic functions (over the selec-

tors and witnesses) to be in the table. Namely, the index further setups an algebraic functions flk.
Each constraint is of the form

flk (qlk(⟨0⟩, ⟨i⟩), . . . , qlk(⟨ℓlk − 1⟩, ⟨i⟩), w(⟨0⟩, ⟨i⟩), . . . , w(⟨ℓw − 1⟩, ⟨i⟩)) ∈ table

where ℓlk is the number of selectors, ℓw is the number of witness wires and ⟨i⟩ is the binary
representation of i. Note that the constraint in the previous paragraph is a special case where
flk = qlk(i) ·

(
w1(i) + w2(i)

)
. We formally define the relation below.

Definition 5.1 (HyperPlonk+ indexed relation). Let gp1 :=
(
F, ℓ, n, ℓw, ℓq, f

)
be the public param-

eters for relation RPLONK (Definition 4.1). Let gp2 := (ℓlk, flk) be the additional public parameters
where ℓlk = 2νlk is the number of lookup selectors and flk : Fℓlk+ℓw → F is an algebraic map. The
indexed relation RPLONK+ is the set of all triples

(i;x;w) = ((i1, i2); (p, [[w]]);w)

where i2 :=
(
table ∈ Fn−1, qlk ∈ F

(≤1)
µ+νlk

)
such that

• (i1;x;w) ∈ RPLONK;

• there exists addr : Bµ → [1, 2µ) such that
(
table; [[g]]; (g, addr)

)
∈ RLOOKUP (Definition 3.6),

where g ∈ F (≤deg(flk))
µ is defined as

g(X) := flk (qlk(⟨0⟩νlk ,X), . . . , qlk(⟨ℓlk − 1⟩νlk ,X), w(⟨0⟩νw ,X), . . . , w(⟨ℓw − 1⟩νw ,X)) . (12)

Remark 5.1 (Supporting vector lookups). We can generalize RPLONK+ to support vector lookups
where each “element” in the table is a vector rather than a single field element. Let k ∈ N be the
length of the vector. The lookup table is table ∈ Fk×(n−1); the lookup function flk : F2νlk+2νw → Fk

is an algebraic map that outputs k field elements.

Remark 5.2 (Supporting multiple tables). We can generalize RPLONK+ to support multiple lookup
tables. In particular, the index i2 can specify k > 1 lookup tables table1, . . . , tablek and k lookup

functions f
(1)
lk , . . . , f

(k)
lk ; and we require that all of the k lookup relations hold.

5.2 The PolyIOP protocol

Construction. The PIOP for RPLONK+ is a combination of the PIOP for RPLONK and the
PIOP for a lookup relation (Section 3.6). Let gp := (gp1, gp2) be the public parameters where
gp1 :=

(
F, ℓ, n, ℓw, ℓq, f

)
and gp2 := (ℓlk, flk). We denote dlk := deg(flk). For a tuple (i;x;w) =

((i1, i2); (p, [[w]]);w) where i2 :=
(
table ∈ Fn−1, qlk ∈ F

(≤1)
µ+νlk

)
we describe the protocol in Figure 3.

Theorem 5.1. Let gp := (gp1, gp2) be the public parameters, where gp1 :=
(
F, ℓ, n, ℓw, ℓq, f

)
and ℓw, ℓq = O(1) are some constants; gp2 := (ℓlk, flk) and ℓlk = O(1) is some constant. Let
d′ := max

(
deg(f),deg(flk)

)
and let g be the polynomial defined in Equation 12. The construction

in Figure 3 is a multivariate PolyIOP for relation RPLONK+ with soundness error O
(2µ+d′µ

|F|
)
and

the following complexity:

35

Indexer. I(i1, i2 = (table, qlk)) calls the HyperPlonk PIOP indexer vpplonk ← Iplonk(i1), and
calls the Lookup PIOP indexer vpt ← Ilkup(table). The oracle output is vp := ([[qlk]], vpt, vpplonk).

The protocol. P(gp, i, p, w) and V(gp, p, vp) run the following protocol.

1. P sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νw .

2. Run a HyperPlonk PIOP (Section 4.2) for (i1;x;w) ∈ RPLONK.

3. Run a lookup PIOP (Section 3.6) for
(
table; [[g]]

)
∈ L(RLOOKUP) where g ∈ F (≤dlk)

µ is as
defined in Equation 12.

Figure 3: PIOP for RPLONK+.

• The prover time is tpgpplonk+ = tp
gp1
plonk + tpglkup = O

(
nd′ log2 d′

)
F-ops.

• The verifier time is tvgpplonk+ := tv
gp1
plonk + tvglkup = O(µ+ ℓ) F-ops.

• The query complexity is qgpplonk+ = q
gp1
plonk+qglkup = 3µ+7+log ℓw, that is, 3µ+log ℓw univariate

oracle queries, 5 multilinear oracle queries, 1 query to the virtual polynomial f̃ , and 1 query
to the virtual polynomial g defined in Equation 12.

• The round complexity and the number of proof oracles is rcgpplonk+ = rc
gp1
plonk + rcglkup = 3µ+3+

log ℓw.

• The number of field elements sent by P is 3µ.

• The size of the proof oracles is O
(
n
)
; the size of the witness is nℓw.

Remark 5.3. Similar to Remark 4.2, there are 3 separate sumcheck PIOPs underlying the Hy-
perPlonk+ PIOP. By random linear combination, we can batch the 3 sumchecks into a single one.
The optimized protocol has query complexity µ + 7 + log ℓw, round complexity µ + 3 + log ℓw, and
the number of field elements sent by the prover is µ.

Remark 5.4. We emphasize that the PolyIOP for RPLONK+ naturally works for the more general
versions of RPLONK+ that involve vector lookups (Remark 5.1) or multiple tables (Remark 5.2).
Because we can transform the problem of building PIOPs for the more general relations to the
problem of building PIOPs for RPLONK+ by applying the randomization and domain separation
techniques in Section 4 of [42].

Lemma 5.2. The PIOP in Figure 3 is perfectly complete.

Proof. For any
(
(i1, table, qlk); (p, [[w]]);w

)
∈ RPLONK+, by Definition 5.1, it holds that

• (i1;x;w) ∈ RPLONK, thus V passes the check in Step 2 as the HyperPlonk PIOP is complete;

•
(
table; [[g]]

)
∈ L(RLOOKUP), thus V passes the check in Step 3 as the lookup PIOP is complete.

In summary, the lemma holds as desired.

36

Lemma 5.3. Let gp := (gp1, gp2) be the public parameters. Let n = 2µ ∈ gp1 denote the number
of constraints. Let flk ∈ gp2 be the lookup gate map and set dlk := deg(flk). The PIOP in Figure 3
has soundness error

δgpplonk+ := max
{
δ
gp1
plonk, δ

dlk,µ
lkup

}
.

Proof. For any
(
(i1, table, qlk); (p, [[w]])

)
/∈ L(RPLONK+), that is,

(
(i1, table, qlk); (p, [[w]]);w

)
/∈

RPLONK, at least one of the following conditions holds:

•
(
i1;x;w

)
/∈ RPLONK;

•
(
table; [[g]]

)
/∈ L(RLOOKUP), where g ∈ F (≤dlk)

µ is as defined in Equation 12.

For the first case, the probability that V accepts in the HyperPlonk PIOP is at most δ
gp1
plonk; for

the second case, the probability that V passes the lookup check is at most δdlk,µlkup . Thus for every

instance not in L(RPLONK+), the probability that V accepts is at most max
(
δ
gp1
plonk, δ

dlk,µ
lkup

)
.

Zero knowledge. We refer to Appendix A for the zero-knowledge version of the HyperPlonk+
PIOP.

6 Instantiation and evaluation

6.1 Implementation

We implement HyperPlonk as a library using about 5500 lines of RUST. Figure 4 highlights the
building blocks contributing to our HyperPlonk code base. Our backend is built on top of the
Arkworks [4]. Specifically, we adopted the finite field, elliptic curve, and polynomial libraries from
this project. We then build our PIOP libraries, including our core zero and permutation checks,
and use merlin transcript [38] to turn it into a non-interactive protocol. We also implement a
multilinear KZG commitment scheme variant that is compatible with our batch-evaluation PIOP.

Our implementation is highly modular: one may switch between different elliptic curves, other
multilinear polynomial commitment schemes and various circuit frontends within our framework.

The current version of our code base has a few limitations, which do not affect the benchmarks
reported in this section. Firstly, it is built for benchmarking purposes with mock circuits, but
we aim to support Halo2 and Jellyfish arithmetization as frontends. Secondly, we are not yet
supporting lookup tables and thus HyperPlonk+.

37

ark-ec

ark-bls12-381

ark-ff ark-poly

mle

SumCheck/PermCheck

merlin

transcript

NI-multilinear-IOP

Halo2 Jellyfish

multilinear-KZG Arithmetization

Hyperplonk

Figure 4: Stack of libraries comprising HyperPlonk. The components in grey we implemented
ourselves.

6.2 Evaluation

We benchmark HyperPlonk on an AMD 5900x CPU with 12 cores and 24 threads 3.2 GHZ and 32
GB of RAM, running Ubuntu 20.04 for all tests except for the multi-threading benchmark, which
we conducted over an AWS EC2 instance with 32 cores (AMD EPYC 7R13 at 2.65 GHz) and 128
GB of RAM.

Cost breakdown We present a cost breakdown of HyperPlonk’s prover cost. As we see in Figure
5a, the majority of the computation is spent on committing and (batch) opening the commitment;
the actual time spent on the information-theoretic PIOPs (ZeroCheck::IOP and PermCheck::IOP)
is less than 10%. We note that our implementation only batches polynomial openings with the same
number of variables. Implementing batching across a different number of variables should lead to a
further increase in prover performance. Figure 5b gives another breakdown which shows that around
50% of the time is spent on multi-exponentiations for both committing and evaluating multi-linear
polynomials, while the next largest subroutine is SumCheck which uses 25% of the time. We note
that both multi-exponentiations and sumchecks are highly parallelizable and hardware-friendly,
thus we expect further performance improvement on special-purpose hardware (e.g. GPUs).

It is also worth noting that HyperPlonk never requires the explicit multiplication of polynomials.
This enables high-degree custom gates for HyperPlonk.

38

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20

t
i
m
e

(
m
s
)

#variables

IOP proving time
Sum Check

Zero Check
Prod Check
Perm Check

Figure 6: PIOP proving cost

(a) In terms of building blocks (b) In terms of computations

Figure 5: Cost breakdown for vanilla RPLONK with 218 constraints.

Figure 6 presents the performance of our non-interactive PIOPs, the core cost of the HyperPlonk
PIOP, whereas the rest are PCS related and vary drastically with the actual commitment scheme.
Here we see that the proving time (as a log-log plot) grows almost linearly with the number of
variables. Overall, for 19 variables, the PIOP prover time is still less than 1 second.

6.3 MultiThreading Performance

A key advantage of HyperPlonk is that it does not rely on FFT algorithms that are less parallelizable.
Indeed, in Figure 7a we observe an almost linear improvement when num of threads is small. We
also observe that with low parallelization, the prover’s run time is linear in the number of gates.
For example, increase from a single thread to two threads, the prover time is reduced by 40% on
average. In contrast, for high parallelization, we are only able to get marginal improvement. We
assume this is mainly a limitation of the implementation.

39

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 2 4 6 8 10 12 14 16 18 20 22

t
i
m
e

(
u
s
)

#threads

Multi-threading
 performance

1 thread
2 threads
4 threads
8 threads
16 threads
32 threads

(a) Prover time vs. number of constraints for
different number of threads

 800000

 850000

 900000

 950000

 1x10
6

 1.05x10
6

 0 5 10 15 20 25 30 35

t
i
m
e

(
u
s
)

degree d

qLw1 + qRw2 + qMw1
d-1

w2 + qC = 0

(b) Prover time vs. custom gate degree.

Figure 7

6.4 High degree gates

It has been shown in VeriZexe [79] that custom gates, even at degree 5, allow for significant
improvement of circuit size and prover time. For example, one may perform an elliptic curve group
addition with just two gates; while a naive version may require 10+ gates. The better expressibility
of high-degree gates enables VeriZexe to improve 9x of prover time over the previous state-of-the-art
[23].

However, in a univariate Plonk system, such as [42, 64], high-degree custom gates increase the
size of the required FFTs as well as the number of group operations. This limits their utility as they
get larger. In comparison, in HyperPlonk, high-degree only affects the number of field operations.
Our benchmark result in Figure 7b validates this observation and shows that the prover time
from a degree 2 gate to a degree 32 gate only increases by 30%. These more expressive gates can
significantly reduce the number of gates in the circuit which more than offsets the added cost.

6.5 Comparisons

We compare our scheme with both Jellyfish Plonk [69], and Spartan [66]. We have presented data
points for a few typical applications in Table 4. Figure 8 additionally gives a detailed comparison
for various constraint sizes.

Jellyfish is a highly optimized implementation of Plonk with lookup arguments. It is the state-
of-the-art plonk prove system that uses Arkworks as the backend. Note that there are other imple-
mentations of Plonk, such as Halo2 [24]. The comparisons with those libraries are less illustrative
as they use a different arithmetic backend.

Spartan is a multilinear ZKP system. Spartan’s statements are written in Rank-1-Constraint-
System (RR1CS), which is, in general, faster to prove but less expressive. As shown in Table 4, it
requires more constraints in RR1CS than in RPLONK to express a same statement. E.g., a proof of
knowledge of exponent for a 256-bits elliptic curve group element requires 3315 RR1CS constraints
[61], while it reduces to 1870 and 783 for RPLONK and RPLONK+, respectively [79].

Note that a specific instantiation of Spartan uses inner product argument (IPA) for polynomial
commitment. This removes the requirement for a universal setup, and allows for faster, non-

40

 0.01

 0.1

 1

 10

 100

 10 12 14 16 18 20

t
i
m
e

(
s
e
c
)

log # constraits

spartan
jellyfish plonk

hyperplonk

(a) Prover time

 0

 1

 2

 3

 4

 5

 6

 10 12 14 16 18 20

r
a
t
i
o

log # constraits

Jellyfish/Hyperplonk
Spartan/Hyperplonk

(b) Relative ratio

Figure 8: Comparison: Spartan vs Plonk vs HyperPlonk

pairing-friendly curves, such as curve25519 [15], with the tradeoff of larger verification time. For
a fair comparison, we benchmarked a variant of Spartan, whose backend depends on Arkwork’s
BLS12-381.

Application RR1CS Spartan RPLONK+ Jellyfish HyperPlonk

3-to-1 Rescue Hash 288 [1] 279 ms 144 [69] 20 ms 24 ms

PoK of Exponent 3315 [61] 681 s 783 [61] 69 ms 74 ms

ZCash circuit 217 [53] 6.75 s 215 [40] 1.40 s 1.23 s

Zexe’s recursive circuit 222 [79] 2.4 minb 217 [79] 5.83 s 4.66 s

Rollup of 50 private tx 225 20 minb 220 [69] 52.7 s 34.9 s

zkEVM circuita N/A N/A 227 2 hoursb,c 1.3 hoursb,c

Table 4: Prover runtime of Hyperplonk vs. Spartan[66] and the Jellyfish Plonk implementation for
popular applications
a So far, there have been no approaches to express zkEVM as an R1CS circuit. Common approaches rely heavily on
lookup tables which require plonk+. b Estimations. c This assumes a linear scaling factor that is in favor of Jellyfish
since we already observe a linear growth for log degree from 20 to 23.

Regarding prover time, our benchmark shows that HyperPlonk outperforms Jellyfish at 214

constraints; the advantage grows when circuit size increases. This is mainly because FFTs scale
worse than multi-exponentiations. HyperPlonk is faster than Spartan when constraint size is small
and has similar performance when circuit size grows. We stress again that plonk+ is more expressive
than RR1CS , and thus a fair comparison should be over the same application rather than the
same size of constraints. Table 4 shows that HyperPlonk is 5 ∼ 25x faster than Spartan in those
applications.

7 Orion+: a linear-time multilinear PCS with constant proof size

Recently, Xie et al. [78] introduced a highly efficient multilinear polynomial commitment scheme
called Orion. The prover time is strictly linear, that is, O(2µ) field operations and hashes where µ

41

is the number of variables. For µ = 27, it takes only 115 seconds to commit to a polynomial and
compute an evaluation proof using a single thread on a consumer-grade desktop. The verifier time
and proof size is Oλ(µ

2), which also improves the state-of-the-art [21, 48]. However, the concrete
proof size is still unsatisfactory, e.g., for µ = 27, the proof size is 6 MBs. In this section, we describe
a variant of Orion PCS that enjoys similar proving complexity but has O(µ) proof size and verifier
time, with good constants. In particular, for security parameter λ = 128 and µ = 27, the proof size
is less than 10KBs, which is 600× smaller than Orion for µ = 27.

This section is organized as follows. We start by reviewing the linear-time PCS from tensor
product arguments [21, 48], which Orion builds upon, then we describe our techniques for shrinking
the proof size. Finally, we analyze the security and complexity of the construction.

Linear-time PCS from tensor-product argument [21, 48]. Bootle, Chiesa, and Groth [21]
propose an elegant scheme for building PCS with strictly linear-time provers. Golovnev et al. [48]

later further simplify the scheme. Let f ∈ F (≤1)
µ be a multilinear polynomial where fb ∈ F is the

coefficient of Xb := Xb1
1 · · ·X

bµ
µ for every b ∈ Bµ. Denote by n = 2µ, k = 2ν < 2µ and m = n/k,

one can view the evaluation of f as a tensor product, that is,

f(X) = ⟨w, t0 ⊗ t1⟩ (13)

where w = (f⟨0⟩, . . . , f⟨n−1⟩), t0 =
(
X⟨0⟩,X⟨1⟩, . . . ,X⟨k−1⟩

)
and t1 =

(
X⟨0⟩,X⟨k⟩, . . . ,X⟨(m−1)·k⟩

)
.

Here ⟨i⟩ denotes the µ-bit binary representation of i. Let E : Fm → FM be a linear encoding
scheme, that is, a linear function whose image is a linear code (Definition 2.1). Golovnev et al. [48,
§4.2] construct a PCS scheme as follows:

• Commitment: To commit a multilinear polynomial f with coefficients w ∈ Fn, the prover
P interprets w as a k ×m matrix, namely w ∈ Fk×m, encodes w’s rows, and obtains matrix
W ∈ Fk×M such that W [i, :] = E(w[i, :]) for every i ∈ [k]. Then P computes a Merkle tree
commitment for each column of W and builds another Merkle tree T on top of the column
commitments. The polynomial commitment Cf is the Merkle root of T .

• Evaluation proof: To prove that f(z) = y for some point z ∈ Fµ and value y ∈ F, the prover
P translates z to vectors t0 ∈ Fk and t1 ∈ Fm as above and proves that ⟨w, t0 ⊗ t1⟩ = y
(where w ∈ Fk×m is the message encoded and committed in Cf). To do so, P does two things:

– Proximity check: The prover shows that the matrix W ∈ Fk×M committed by Cf is
close to k codewords. Specifically, the verifier sends a random vector r ∈ Fk, the prover
replies with a vector yr := r · w ∈ Fm which is the linear combination of w’s rows
according to r. The verifier checks that the encoding of yr, namely E(yr) ∈ FM , is close
to r ·W , the linear combination of W ’s rows. This implies that the k rows of W are all
close to codewords [48, §4.2].

– Consistency check: The prover shows that ⟨w, t0 ⊗ t1⟩ = y where w ∈ Fk×m is the
k error-decoded messages from W ∈ F committed in Cf . The scheme is similar to the
proximity check except that we replace the random vector r with t0. After receiving the
linearly combined vector y0 ∈ Fm, the verifier further checks that ⟨y0, t1⟩ = y.

We describe the concrete PCS evaluation protocol below.

Protocol 1 (PCS evaluation [48]): The goal is to check that ⟨w, t0 ⊗ t1⟩ = y (where w ∈ Fk×m is
the message encoded and committed in Cf).

42

1. V sends a random vector r ∈ Fk.
2. P sends vector yr,y0 ∈ Fm where

yr =

k∑
i=1

ri ·w[i, :], and y0 =

k∑
i=1

t0,i ·w[i, :] ,

where w ∈ Fk×m is the message matrix being encoded and committed.
3. V sends P a random subset I ⊆ [M] with size |I| = Θ(λ).
4. P opens the entire columns {W [:, j]}j∈I using Merkle proofs, where W ∈ Fk×M is the row-

wise encoded matrix. That is, P outputs the column commitment hj for every column j ∈ I,
and provide the Merkle proof for hj w.r.t. to Merkle root Cf .

5. V checks that (i) the Merkle openings are correct w.r.t. Cf , and (ii) for all j ∈ I, it holds
that

E(yr)j = ⟨r,W [:, j]⟩ and E(y0)j = ⟨t0,W [:, j]⟩ .

6. V checks that ⟨y0, t1⟩ = y.
Note that by sampling a subset I with size Θ(λ) and checking that r ·W , t0 ·W are consistent with
the encodings E(yr), E(y0) on set I, the verifier is confident that r ·W , t0 ·W are indeed close
to the encodings E(yr), E(y0) with high probability. By setting k =

√
n, the prover takes O(n)

F-ops and hashes; the verifier time and proof size are both Oλ(
√
n). Orion describes an elegant

code-switching scheme that reduces the proof size and verifier time down to Oλ(log
2(n)). However,

the concrete proof size is still large. Next, we describe a scheme that has much smaller proof.

Linear-time PCS with small proofs. Similar to Orion (and more generally, the proof com-
position technique [20, 21, 48]), instead of letting the verifier check the correctness of yr, y0 and
the openings of the columns W [:, j]∀j ∈ I, the prover can compute another (succinct) outer proof
validating the correctness of yr,y0,W [:, j]. However, we need to minimize the outer proof’s circuit
complexity, which is non-trivial. Orion builds an efficient SNARK circuit that removes all of the
hashing gadgets, with the tradeoff of larger proof size. We describe a variant of their scheme that
minimizes the proof size without significantly increasing the circuit complexity.

Specifically, after receiving challenge vector r ∈ Fk, P instead sends V commitments Cr, C0 to
the messages yr,y0; after receiving V’s random subset I ⊂ [M], P computes a SNARK proof for
the following statement:

Statement 1 (PCS Eval verification):

• Witness: yr,y0 ∈ Fm, {W [:, j]}j∈I .

• Circuit statements:

– Cr, C0 are the commitments to yr, y0 respectively.

– For all j ∈ I, it holds that

∗ hj = H(W [:, j]) where H is a fast hashing scheme;

∗ E(yr)j = ⟨r,W [:, j]⟩ and E(y0)j = ⟨t0,W [:, j]⟩.
– ⟨y0, t1⟩ = y.

• Public output: {hj}j∈I , and Cr, C0.

43

Besides the SNARK proof, the prover also provides the openings of {hj}j∈I with respect to the
commitments Cf . Intuitively, the new protocol is “equivalent” to Protocol 1, because the SNARK
witness {W [:, j]}j∈I and yr,y0 are identical to those committed in Cf , Cr, C0 by the binding prop-
erty of the commitments; and the SNARK does all of the verifier checks. Unfortunately, the scheme
has the following drawbacks:

• Instantiating the commitments with Merkle trees leads to a large overhead on the proof size.
In particular, the proof contains |I| Merkle proofs, each with length O(log n). For 128-bit
security, we need to set |I| = 1568, and the proof size is at least 1 MBs for µ = 20.

• The random subset I varies for different evaluation instances. It is non-trivial to efficiently
lookup the witness {E(yr)j , E(y0)j}j∈I in the circuit if the set I is dynamic (i.e. we need an
efficient random access gadget).

• The circuit complexity is huge. In particular, the circuit is dominated by the commitments to
yr,y0 and the hash commitments to {W [:, j]}j∈I . This leads to 2m+k|I| hash gadgets in the
circuit. Note that we can’t use circuit-friendly hash functions like Rescue [1] or Poseidon [49]
because their running time is too slow to obtain a fast PCS prover. For µ = 26, k = m =

√
n

and 128-bit security (where |I| = 1568), this leads to 13 millions hash gadgets where each
hash takes hundreds to thousands of constraints, which is unaffordable.

We resolve the above issues via the following observations.
First, a large portion of the multilinear PCS evaluation proof is Merkle opening paths. We

can shrink the proof size by replacing Merkle trees with multilinear PCS that enable efficient
batch openings (Section 3.7). Specifically, in the committing phase, after computing the hashes of
W ’s columns, instead of building another Merkle tree T of size M = O(n/k) and set the Merkle
root as the commitment, the prover can commit to the column hashes using a multilinear PCS
(e.g. KZG). Though the KZG committing is more expensive, the problem size has been reduced to
O(n/k), thus for sufficiently large k, the committing complexity is still approximately O(n) F-ops.
A great advantage is that the batch opening proof for {hj}j∈I consists of only O(log n) group/field
elements, with good constant. Even better, when instantiating the outer proof with HyperPlonk(+),
the openings can be batched with those in the outer SNARK and thus incur almost no extra cost
in proof size.

Second, with Plookup, we can efficiently simulate random access in arrays in the SNARK circuit.
For example, to extract witness {Yr,j = E(yr)j}j∈I , we can build an (online) table T where each
element of the table is a pair (i, E(yr)i) (1 ≤ i ≤M). Then for every j ∈ I, we build a lookup gate
checking that (j,Yr,j) is in the table T , thus guarantee that Yr,j is identical to E(yr)j . The circuit
description is now independent of the random set I and we only need to preprocess the circuit once
in the setup phase.

Third, with the help of Commit-and-Prove-SNARKs (CP-SNARK) [29, 30, 3], there is no need
to check the consistency between commitments Cr, C0 and yr,y0 in the circuit. Instead, we can
commit (yr,y0) to a multilinear commitment C, and build a CP-SNARK proof showing that the
vector underlying C is identical to the witness vector (yr,y0) in the circuit. We further observe
that C can be a part of the witness polynomials, which further removes the need of an additional
CP-SNARK proof.

After applying previous optimizations, the proof size is dominated by the |I| field elements
{hj}j∈I . We can altogether remove them by applying the CP-SNARK trick again. In particular,
since {hj}j∈I are both committed in the polynomial commitment Cf and the SNARK witness
commitment, it is sufficient to construct a CP-SNARK proving that they are consistent in the two

44

commitments with respect to set I. We refer to Section 3.7 for constructing CP-SNARK proofs
from multilinear commitments.

Since the bulk of verification work is delegated to the prover, there is no need to set k =
√
n.

Instead, we can set an appropriate k = Θ(λ/ log n) to minimize the outer circuit size. In particular,
the circuit is dominated by 2 linear encodings (of length n/k) and |I| hashes (of length k). If we use
vanilla HyperPlonk+ as the outer SNARK scheme and use Reinforced Concrete [7] as the hashing
scheme that has a similar running time to SHA-256, for µ = 30, k = 64 and 128-bit security (where
|I| = 1568), the circuit complexity is only ≈ 226 constraints. And we can expect the running time
of the outer proof to be Oλ(n).

The resulting multilinear polynomial commitment scheme is shown in Figure 9.

Remark 7.1 (CP-SNARKs instantiation.). We can use the algorithm in Section 3.7.1 to instanti-
ate the CP-SNARK in Figure 9 from any multilinear PIOP-based SNARKs with minimal overhead.
First, we can split the witness polynomial into two parts: one includes the vector (yr,y0) while the
other includes the rest. The witness polynomial commitment to (yr,y0) is essentially the commit-
ment Cpy in Figure 9, so that we don’t need to additionally commit to (yr,y0) and provide a proof.
We emphasize that Cpy is sent before the prover receives the challenge set I, which is essential for
knowledge soundness.

Second, the CP-proof generation between the multilinear commitment Cf and the SNARK wit-
ness polynomial commitment (w.r.t. set I) consists of a sumcheck with O(logm) rounds and 2
PCS openings (one for Cf and one for the witness polynomial). If we instantiate the SNARK with
HyperPlonk+, we can batch the proving of the CP-proof and the SNARK proof so that the CP-proof
adds no extra cost to the proof size beyond the original SNARK proof.

45

Building blocks: A CP-SNARK scheme OSNARK; an (extractable) polynomial commitment
scheme PC; a hash commitment scheme HCom; and a linear encoding scheme E with minimum
distance δ.

Setup(1λ, µ∗)→ gp: Given security parameter λ, upper bound µ∗ on the number of variables, set
m∗ so that the running time of OSNARK (and PC) is Oλ(2

µ∗
) for circuit size (and degree) m∗. Run

gpo ← OSNARK.Setup(1λ,m∗), gppc ← PC.Setup(1λ,m∗), run the indexing phase of OSNARK for
the circuit statement in Figure 10 and obtain (vpo, ppo). Output gp := (gpo, gppc, vpo, ppo).

Commit(gp; f) → Cf : Given polynomial f ∈ F (≤1)
µ with coefficients w = (f⟨0⟩, . . . , f⟨n−1⟩), set

m = n/k so that the running time of OSNARK (and PC) is Oλ(2
µ) for circuit size (and degree)

m. Interpret w as a k ×m matrix (i.e. w ∈ Fk×m):
• Compute matrix W ∈ Fk×M such that W [i, :] = E(w[i, :])∀i ∈ [k]. Here E : Fm → FM is
the linear encoding.

• For each column j ∈ [M], compute hash commitment hj ← HCom(W [:, j]), where W [:, j] ∈
Fk is the j-th column of W .

• Let ph be the polynomial that interpolates vector (hj)j∈[M]. Output commitment Cf ←
PC.Commit(gppc, ph).

Open(gp, Cf , f): Given polynomial f ∈ F (≤1)
µ with coefficients w ∈ Fk×m, run the committing

algorithm and check if the output is consistent with Cf .

Eval(gp;Cf , z, y; f): Given public parameter gp, point z ∈ Fµ and commitment Cf to polynomial

f ∈ F (≤1)
µ with coefficients w ∈ Fk×m, transform z to vectors t0 ∈ Fk and t1 ∈ Fm as in

Equation (13) such that f(z) = ⟨w, t0 ⊗ t1⟩. The prover P and the verifier V run the following
protocol:

1. V sends P a random vector r ∈ Fk.
2. Define vectors

yr =
k∑

i=1

ri ·w[i, :], y0 =
k∑

i=1

t0,i ·w[i, :] .

Let pr be the polynomial that interpolates (yr,y0). P sends V commitment Cpy ←
PC.Commit(gppc, py).

3. V sends a random subset I ⊆ [M] with size t := −λ
log(1−δ) .

4. P sends V, a CP-SNARK proof πo showing that

• the statement in Figure 10 holds true;

• the SNARK witness (yr,y0) is identical to the vector committed in Cpy ;

• the SNARK witness (hj)j∈I is consistent with that in the polynomial commitment Cf

w.r.t. set I.

5. V checks πo with public input (α, r, y, z), and commitments Cpy , Cf .

Figure 9: The multilinear polynomial commitment scheme.

46

Witness:
• messages yr,y0 ∈ Fm, encodings Yr,Y0 ∈ FM , and evaluation vectors t0 ∈ Fk, t1 ∈ Fm;
• the columns of W in subset I, that is, W ′ = (W [:, j])j∈I ∈ Fk×|I|;
• the values of Yr,Y0 in subset I, that is Y′

r = (Yr,j)j∈I ∈ F|I|, and Y′
0 = (Y0,j)j∈I ∈ F|I|;

• column hashes h = (h1, . . . , h|I|) ∈ F|I|.
Public input:

• challenge vector r ∈ Fk;
• random subset I ⊆ [M];
• evaluation point z ∈ Fµ and claimed evaluation y ∈ F.

Circuit statements:
• t0, t1 is the correct transformation from z as in Equation (13).
• Yr = E(yr) and Y0 = E(y0).
• For i = 1 . . . |I|, let ji ∈ I be the i-th element in I, it holds that

– Y′
r,i = Yr,ji , that is, (ji,Y

′
r,i) is in the table {(k,Yr,k)}k∈[M], and

– Y′
0,i = Y0,ji , that is, (ji,Y

′
0,i) is in the table {(k,Y0,k)}k∈[M].

• For i = 1 . . . |I|, it holds that
– hi = HCom(W ′[:, i]) where HCom : Fk → F is the hash commitment scheme;

– Y′
r,i = ⟨r,W ′[:, i]⟩ and Y′

0,i = ⟨t0,W ′[:, i]⟩.
• ⟨y0, t1⟩ = y.

Figure 10: The outer SNARK circuit statement. The circuit configuration is independent of the
random set I.

Theorem 7.1. The multilinear polynomial commitment scheme in Figure 9 is correct and binding.
The PCS evaluation protocol is knowledge-sound.

Proof. Correctness and binding. Correctness holds obviously by inspection of the protocol. We
prove the binding property by contradiction. Suppose an adversary finds a commitment Cf and
two polynomials f1, f2 with different coefficients w1,w2 ∈ Fk×m such that Cf can open to both w1

and w2. There are two cases:

1. Cf can open to two different vectors of column hash commitments h1,h2 ∈ FM , which
contradicts the binding property of the PCS PC.

2. Cf binds to a single vector h ∈ FM , but encoding w1,w2 lead to two different encoded
matrices W1,W2 ∈ Fk×M . This contradicts the collision resistance of the hash function.

In summary, the binding property holds.

Knowledge soundness. We use a similar technique as in [48] that enables extracting polynomials
even if the linear code E is not efficiently decodable. For any adversary A that can pass the PCS
evaluation check with probability more than ϵ, the extractor EA works as follows:

1. Run A and obtain commitment Cf , point z ∈ Fµ, and evaluation y ∈ F. Run the extractors
of the PCS and the hash function to recover the matrix W ′ ∈ Fk×M underlying Cf . Abort if
the extraction fails.

47

2. Set S ← ∅, repeat the following procedures until |S| ≥ k or the number of r being sampled is
more than 8k/ϵ:

• Sample and send A a random vector r←$ Fk.

• Obtain the PCS commitments Cpy . Use the PCS extractor to extract the vector (yr,y0) ∈
F2m. Abort and rerun with another r if the extraction fails.

• Sample and send A a random subset I ⊆ [M].

• Obtain the CP-SNARK proof πo. Add the pair (r,yr) into set S if the proof correctly
verifies.

3. If |S| ≥ k and the random vectors {r} in S are linearly independent, run the Gaussian
elimination algorithm to extract the witness w from S = {(r,yr)}, otherwise abort.

The extractor runs in polynomial time as Step 2 runs in polynomial time, and the extractor executes
Step 2 for at most 8k/ϵ times. Next, we argue that the extractor’s success probability is non-
negligible. Since A succeeds with probability at least ϵ, with probability at least ϵ/2 over the choice
of (Cf , z, y), the adversary passes the PCS evaluation protocol Eval(gp;Cf , z, y) with probability
at least ϵ/2. We denote by B the event that the above happens.

Conditioned on event B, we first argue that with high probability, E can add k pairs to S, and
the r’s in S are linearly-independent. Note that for each run of PCS evaluation (with a freshly
sampled vector r), the probability that the extractor adds a pair to S is at least ϵ/2−negl(λ) ≥ ϵ/4.
This is because A passes the checks with probability at least ϵ/2, and thus with probability at
least ϵ/2− negl(λ), A passes all the checks, and the PCS extractor suceeds. Therefore, by Chernoff
bound, the probability that E adds k pairs to S within 8k/ϵ runs of Step 2 is at least 1−exp(−k/8).
Moreover, as noted by Lemma 2 of [48], the random vectors {r} in set S are linearly independent
with overwhelming probability.

Next, still conditioned on event B, we argue that with probability 1 − negl(λ), there exists a
coefficient matrix w ∈ Fk×m that is consistent with the commitment Cf , such that ⟨w, t0 ⊗ t1⟩ = y

(i.e. the evaluation is correct) and yr =
∑k

i=1 ri ·wi for every pair (r,yr) in set S. Let W ′ ∈ Fk×M

be the matrix extracted by E at Step 1, note that W ′ commits to Cf . Consider each run of PCS
evaluation where the extractor adds a pair (r,yr) to S. Since Cf , Cpy are binding, and the SNARK

proofs verify, it holds that w.h.p over the choice of I, E(yr) is close to
∑k

i=1 ri ·W ′
i . By Lemma

1 in [48], w.h.p. over the choice of r, it also holds that W ′
i is close to a codeword for all i ∈ [k].

Therefore, there exists a matrix w ∈ Fk×m such that (i) W ′
i is close to E(wi) for all i ∈ [k], and

(ii) yr =
∑k

i=1 ri ·wi. Moreover, by the uniqueness of encoding, w is identical for every challenge

vector r in set S. Similarly, we can argue that y0 =
∑k

i=1 t0,i ·wi and thus ⟨w, t0 ⊗ t1⟩ = y.
Given the above, we conclude that with high probability, it holds that (i) E adds k pairs to

S where the r’s in S are linearly independent; and (ii) there exists w ∈ Fk×m that is consistent
with Cf and ⟨w, t0 ⊗ t1⟩ = y and yr =

∑k
i=1 ri · wi for every pair (r,yr) in set S. In summary,

conditioned on event B, the extractor can extract the coefficient matrix w via Gaussian elimination
with high probability, which completes the proof.

Theorem 7.2. When instantiating the outer SNARK with HyperPlonk+, the multilinear PCS
in Figure 9 has committing and evaluation opening complexity Oλ(n); the proof size and verifier
time is Oλ(log n).

48

Proof. Fix k = Θ(λ/ log n) and letm = n/k. The committing algorithm takes O(n) F-ops to encode
the coefficients w ∈ Fk×m to W ∈ Fk×M , O(n) hashes to compute the column commitments, and
an O(m)-sized MSM to commit to the vector of column commitments. The total complexity is
Oλ(n).

The evaluation proving mainly consists of the following steps:

• compute a HyperPlonk+ SNARK proof for the statement in Figure 10;

• compute a CP-SNARK proof between the commitment Cf and the SNARK witness polyno-
mial commitment with respect to a set I.

By the linear algorithm specified in Section 3.7.1, the CP-SNARK proof generation is dominated
by a multi-group-exponentiations with size s, where s is the circuit size; similarly, the HyperPlonk+
SNARK proving is also dominated by a few multi-group-exponentiations with size s. Next, we
prove that the outer circuit complexity is s = O(m), Hence the evaluation opening complexity is
also Oλ(n).

Lemma 7.3. The number of constraints in the circuit in Figure 10 is O(m) + |H| · O(kλ), where
|H| is the number of constraints for a hash instance.

Proof. The circuit for computing t0, t1 from z takes O(k) and O(m) constraints, respectively; the
circuit for encoding yr, y0 takesO(m) constraints; the extraction ofY′

r,Y
′
0 from {E(yr)j , E(y0)}j∈I ,

takes 2|I| lookup gates; the computation of Y′
r, Y

′
0 takes O(k|I|) constraints; the computation of

y takes O(m) constraints; the computation of hashes {hi} takes k|I| = O(kλ) hash gadgets as
|I| = Θ(λ), thus the number of constraints is O(m) + |H| ·O(kλ).

The evaluation verifier checks the the CP-SNARK proof πo which takes time Oλ(log n).
The evaluation proof consists of a single CP-SNARK proof πo. As noted by Remark 7.1, the

proof size is no more than that of a single HyperPlonk+ proof for circuit size s = O(m). In
summary, the proof size is Oλ(log n).

Remark 7.2. We stress that the CP-SNARK proving time (between Cf and the SNARK witness)
for set I is independent of the size of I, as the complexity of the special batching algorithm in Sec-
tion 3.7.1 is independent of the number of evaluations. This is highly important because |I| can be
as large as thousands in practice.

Remark 7.3. If we instantiate the linear code with the generalized Spielman code proposed in [78],
and instantiate the outer SNARK with vanilla HyperPlonk+, for 128-bit security and µ = 30, the
outer circuit size is approximately 226, thus the proof is less than 10 KBs.

Remark 7.4. In practice, to minimize the outer circuit complexity, we choose k such that 2 ·
ℓ(n/k) = k|I| · |H|, where ℓ(n/k) is the circuit size for encoding a message with length n/k. Note
that |I| = 1568 for 128-bit security and |I| = 980 for 80-bit security.

Remark 7.5. In contrast with Orion, Orion+ requires using a pairing-friendly field. We leave the
construction of linear-time PCS with succinct proofs/verifier that supports arbitrary fields as future
work.

49

Conclusions and open problems

We presented a SNARK with a fast prover that is an adaption of Plonk to the boolean hypercube.
We also present Orion+, a significantly improved multi-linear commitment scheme with short proofs
and fully-linear prover time. There are several open questions:

• Higher degree shifts: We show how to build a generator for the boolean hypercube that enables
a next function that shifts points in the hypercube by 1. This is critical for building a lookup
protocol. In some versions of the Halo 2 arithmetization, the proof system accesses machine
states from more than the previous step. To implement this, we need higher degree shifts.
This can be done by composing the next function multiple times, but this has an exponential
blow-up in verifier time. Implementing higher degree next functions efficiently remains an
open problem.

• Better codes and hash functions for Orion+: The utility of Orion+ for smaller polynomials
is limited by the use of recursion. Only for large multilinear polynomials (approximately
with more than 24 variables), does the recursive circuit size become less than the original
polynomial size. The keys to improving this are linear codes with better distance and more
efficient and circuit-friendly hash functions.

• Automatic custom gate design: HyperPlonk+ supports high-degree custom gates efficiently.
Currently, designing suitable custom gates for specific applications is a task left to the circuit
designer. It remains an open problem to have a more principled approach that automates
and optimizes the design of the custom gates for any given application.

Acknowledgments. We want to thank Ben Fisch and Alex Oezdemir for helpful discussions and
Tiancheng Xie for answering many questions regarding Orion and Virgo. This work was partially
funded by NSF, DARPA, the Simons Foundation, UBRI, and NTT Research. Opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

References

[1] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design of symmetric-key
primitives for advanced cryptographic protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45,
2020.

[2] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight sublinear
arguments without a trusted setup. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, Oct. / Nov. 2017.

[3] D. F. Aranha, E. M. Bennedsen, M. Campanelli, C. Ganesh, C. Orlandi, and A. Takahashi.
ECLIPSE: Enhanced compiling method for pedersen-committed zkSNARK engines. Cryptol-
ogy ePrint Archive, Report 2021/934, 2021. https://eprint.iacr.org/2021/934.

[4] arkworks contributors. arkworks zksnark ecosystem, 2022.

50

https://eprint.iacr.org/2021/934

[5] T. Attema, S. Fehr, and M. Klooß. Fiat-shamir transformation of multi-round interactive
proofs. Cryptology ePrint Archive, Report 2021/1377, 2021. https://eprint.iacr.org/

2021/1377.

[6] L. Babai and S. Moran. Arthur-merlin games: A randomized proof system, and a hierarchy of
complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[7] M. Barbara, L. Grassi, D. Khovratovich, R. Lueftenegger, C. Rechberger, M. Schofnegger, and
R. Walch. Reinforced concrete: Fast hash function for zero knowledge proofs and verifiable
computation. Cryptology ePrint Archive, Report 2021/1038, 2021. https://eprint.iacr.

org/2021/1038.

[8] S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a shuffle. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
263–280. Springer, Heidelberg, Apr. 2012.

[9] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Fast reed-solomon interactive oracle
proofs of proximity. In I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella, editors,
ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.

[10] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum
secure computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018. https:

//eprint.iacr.org/2018/046.

[11] E. Ben-Sasson, D. Carmon, S. Kopparty, and D. Levit. Elliptic curve fast fourier transform
(ecfft) part ii: Scalable and transparent proofs over all large fields. 2022.

[12] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Trans-
parent succinct arguments for R1CS. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 103–128. Springer, Heidelberg, May 2019.

[13] E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In M. Hirt and A. D.
Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg,
Oct. / Nov. 2016.

[14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via cycles of
elliptic curves. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 276–294. Springer, Heidelberg, Aug. 2014.

[15] D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207–228. Springer,
Heidelberg, Apr. 2006.

[16] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In S. Goldwasser, editor,
ITCS 2012, pages 326–349. ACM, Jan. 2012.

[17] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping
for SNARKs and proof-carrying data. Cryptology ePrint Archive, Report 2012/095, 2012.
https://eprint.iacr.org/2012/095.

51

https://eprint.iacr.org/2021/1377
https://eprint.iacr.org/2021/1377
https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2012/095

[18] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive
arguments via linear interactive proofs. In A. Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 315–333. Springer, Heidelberg, Mar. 2013.

[19] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Halo infinite: Proof-carrying data from additive
polynomial commitments. In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part I, volume
12825 of LNCS, pages 649–680, Virtual Event, Aug. 2021. Springer, Heidelberg.

[20] J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K. Jakobsen. Linear-time
zero-knowledge proofs for arithmetic circuit satisfiability. In T. Takagi and T. Peyrin, editors,
ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 336–365. Springer, Heidelberg,
Dec. 2017.

[21] J. Bootle, A. Chiesa, and J. Groth. Linear-time arguments with sublinear verification from
tensor codes. In R. Pass and K. Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 19–46. Springer, Heidelberg, Nov. 2020.

[22] J. Bootle, A. Chiesa, Y. Hu, and M. Orrù. Gemini: Elastic SNARKs for diverse environments.
In O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 427–457. Springer, Heidelberg, May / June 2022.

[23] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. ZEXE: Enabling decentralized
private computation. In 2020 IEEE Symposium on Security and Privacy, pages 947–964. IEEE
Computer Society Press, May 2020.

[24] S. Bowe, J. Grigg, and D. Hopwood. Halo: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/

2019/1021.

[25] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

[26] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. Proof-carrying data without succinct
arguments. In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part I, volume 12825 of
LNCS, pages 681–710, Virtual Event, Aug. 2021. Springer, Heidelberg.

[27] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. Recursive proof composition from accumula-
tion schemes. In R. Pass and K. Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 1–18. Springer, Heidelberg, Nov. 2020.

[28] B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers. In
A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages
677–706. Springer, Heidelberg, May 2020.

[29] M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodŕıguez. Lunar: A toolbox for more
efficient universal and updatable zkSNARKs and commit-and-prove extensions. In M. Tibouchi
and H. Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 3–33.
Springer, Heidelberg, Dec. 2021.

52

https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021

[30] M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular design and composition of
succinct zero-knowledge proofs. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors,
ACM CCS 2019, pages 2075–2092. ACM Press, Nov. 2019.

[31] J. L. Carter and M. N. Wegman. Universal classes of hash functions. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pages 106–112, 1977.

[32] A. Chiesa, M. A. Forbes, and N. Spooner. A zero knowledge sumcheck and its applications.
Cryptology ePrint Archive, Report 2017/305, 2017. https://eprint.iacr.org/2017/305.

[33] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Preprocessing
zkSNARKs with universal and updatable SRS. In A. Canteaut and Y. Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May
2020.

[34] A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and transparent recursive proofs
from holography. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020.

[35] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature cards.
In A. C.-C. Yao, editor, ICS 2010, pages 310–331. Tsinghua University Press, Jan. 2010.

[36] A. R. Choudhuri, A. Jain, and Z. Jin. Non-interactive batch arguments for NP from standard
assumptions. In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 394–423, Virtual Event, Aug. 2021. Springer, Heidelberg.

[37] A. R. Choudhuri, A. Jain, and Z. Jin. SNARGs for P from LWE. Cryptology ePrint Archive,
Report 2021/808, 2021. https://eprint.iacr.org/2021/808.

[38] H. de Valence. Merlin transcript, 2022.

[39] J. Drake. Plonk-style SNARKs without FFTs. link, 2019.

[40] EspressoSystems. Specifications: Configurable asset privacy. Github, 2022.

[41] A. Gabizon. Multiset checks in plonk and plookup. https://hackmd.io/@arielg/ByFgSDA7D.

[42] A. Gabizon and Z. J. Williamson. plookup: A simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, Report 2020/315, 2020. https://eprint.iacr.org/2020/315.

[43] A. Gabizon and Z. J. Williamson. Proposal: The turbo-plonk program syntax for specify-
ing snark programs. https://docs.zkproof.org/pages/standards/accepted-workshop3/

proposal-turbo_plonk.pdf, 2020.

[44] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report
2019/953, 2019. https://eprint.iacr.org/2019/953.

[45] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

53

https://eprint.iacr.org/2017/305
https://eprint.iacr.org/2021/808
https://notes.ethereum.org/DLRqK9V7RIOsTZkab8Hm_Q?view
https://hackmd.io/@arielg/ByFgSDA7D
https://eprint.iacr.org/2020/315
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2019/953

[46] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM
Press, June 2011.

[47] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[48] A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S. Wahby. Brakedown: Linear-time and post-
quantum SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/1043, 2021. https:

//eprint.iacr.org/2021/1043.

[49] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon: A new
hash function for zero-knowledge proof systems. In M. Bailey and R. Greenstadt, editors,
USENIX Security 2021, pages 519–535. USENIX Association, Aug. 2021.

[50] J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin and J.-S.
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer,
Heidelberg, May 2016.

[51] U. Haböck. A summary on the fri low degree test. Cryptology ePrint Archive, 2022.

[52] D. Harvey and J. Van Der Hoeven. Polynomial multiplication over finite fields in time. Journal
of the ACM (JACM), 69(2):1–40, 2022.

[53] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol specification. version 2022.3.8.
Online, 2022. https://zips.z.cash/protocol/protocol.pdf.

[54] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and
their applications. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–
194. Springer, Heidelberg, Dec. 2010.

[55] A. Kattis, K. Panarin, and A. Vlasov. RedShift: Transparent SNARKs from list polynomial
commitment IOPs. Cryptology ePrint Archive, Report 2019/1400, 2019. https://eprint.

iacr.org/2019/1400.

[56] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732. ACM Press, May 1992.

[57] A. Kothapalli, S. Setty, and I. Tzialla. Nova: Recursive zero-knowledge arguments from
folding schemes. Cryptology ePrint Archive, Report 2021/370, 2021. https://eprint.iacr.
org/2021/370.

[58] J. Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial
commitments. In K. Nissim and B. Waters, editors, TCC 2021, Part II, volume 13043 of
LNCS, pages 1–34. Springer, Heidelberg, Nov. 2021.

[59] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

54

https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2021/1043
https://zips.z.cash/protocol/protocol.pdf
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370

[60] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge SNARKs from
linear-size universal and updatable structured reference strings. In L. Cavallaro, J. Kinder,
X. Wang, and J. Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, Nov. 2019.

[61] S. Masson, A. Sanso, and Z. Zhang. Bandersnatch: a fast elliptic curve built over the BLS12-
381 scalar field. Cryptology ePrint Archive, Report 2021/1152, 2021. https://eprint.iacr.
org/2021/1152.

[62] S. Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer
Society Press, Nov. 1994.

[63] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In A. Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 222–242. Springer, Heidelberg, Mar. 2013.

[64] L. Pearson, J. Fitzgerald, H. Masip, M. Bellés-Muñoz, and J. L. Muñoz-Tapia. PlonKup:
Reconciling PlonK with plookup. Cryptology ePrint Archive, Report 2022/086, 2022. https:
//eprint.iacr.org/2022/086.

[65] J. Posen and A. A. Kattis. Caulk+: Table-independent lookup arguments. Cryptology ePrint
Archive, Report 2022/957, 2022. https://eprint.iacr.org/2022/957.

[66] S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In D. Mic-
ciancio and T. Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
704–737. Springer, Heidelberg, Aug. 2020.

[67] S. Setty and J. Lee. Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology ePrint
Archive, Report 2020/1275, 2020. https://eprint.iacr.org/2020/1275.

[68] D. R. Stinson. Universal hashing and authentication codes. Designs, Codes and Cryptography,
4(3):369–380, 1994.

[69] E. System. Jellyfish jellyfish cryptographic library, 2022.

[70] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In R. Canetti and J. A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 71–89. Springer, Heidelberg,
Aug. 2013.

[71] J. Thaler. Proofs, arguments, and zero-knowledge, 2020.

[72] P. Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In R. Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer,
Heidelberg, Mar. 2008.

[73] R. S. Wahby, I. Tzialla, a. shelat, J. Thaler, and M. Walfish. Doubly-efficient zkSNARKs
without trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–943.
IEEE Computer Society Press, May 2018.

[74] B. Waters and D. J. Wu. Batch arguments for NP and more from standard bilinear group
assumptions. Cryptology ePrint Archive, Report 2022/336, 2022. https://eprint.iacr.

org/2022/336.

55

https://eprint.iacr.org/2021/1152
https://eprint.iacr.org/2021/1152
https://eprint.iacr.org/2022/086
https://eprint.iacr.org/2022/086
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2022/336
https://eprint.iacr.org/2022/336

[75] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set
equality. Journal of computer and system sciences, 22(3):265–279, 1981.

[76] D. Wikström. Special soundness in the random oracle model. Cryptology ePrint Archive,
Report 2021/1265, 2021. https://eprint.iacr.org/2021/1265.

[77] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct zero-knowledge
proofs with optimal prover computation. In A. Boldyreva and D. Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 733–764. Springer, Heidelberg, Aug.
2019.

[78] T. Xie, Y. Zhang, and D. Song. Orion: Zero knowledge proof with linear prover time. Cryp-
tology ePrint Archive, Report 2022/1010, 2022. https://eprint.iacr.org/2022/1010.

[79] A. L. Xiong, B. Chen, Z. Zhang, B. Bünz, B. Fisch, F. Krell, and P. Camacho. VERI-ZEXE:
Decentralized private computation with universal setup. Cryptology ePrint Archive, Report
2022/802, 2022. https://eprint.iacr.org/2022/802.

[80] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin. Caulk:
Lookup arguments in sublinear time. Cryptology ePrint Archive, Report 2022/621, 2022.
https://eprint.iacr.org/2022/621.

[81] Zcash. PLONKish arithmetization. link, 2022.

[82] J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent polynomial delegation and its appli-
cations to zero knowledge proof. In 2020 IEEE Symposium on Security and Privacy, pages
859–876. IEEE Computer Society Press, May 2020.

56

https://eprint.iacr.org/2021/1265
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2022/802
https://eprint.iacr.org/2022/621
https://zcash.github.io/halo2/concepts/arithmetization.html

A Zero Knowledge PIOPs and zk-SNARKs

In this Section, we describe a compiler that transforms a class of sumcheck-based multivariate
PolyIOPs into ones that are zero knowledge. The general framework consists of two parts. The
first part is to mask the oracle polynomials so that their oracle query answers do not reveal the
information of the original polynomial; moreover, we require that the masking do not change
evaluations over the boolean hypercube, thus the correctness of PIOPs still holds. The second part
is making the underlying sumcheck PIOPs zero knowledge. For this we reuse the ZK sumchecks
described in [77].

We note that in contrast with univariate PIOPs, there is a subtlety in compiling multivariate
PIOPs: the zero-knowledge property is hard to achieve if the set of query points is highly structural.
E.g., suppose f is 2-variate and there are are 4 query points (r1, r2), (r1, r1), (r2, r1), (r2, r2).
Though all of the 4 points are distinct, each dimension has at least 2 points that share the same
value. This makes the adversary much easier to cancel out the masking randomness and obtain a
correlation between the evaluations of f on the 4 points. We resolve the issue by restricting the set
of query points to be less structured. In particular, we require that there is at least one dimension
where each point has a distinct value. We also slightly modify the underlying sumcheck protocols
to satisfy the restriction while the soundness is not affected.

The Section is organized as follows. We define zero knowledge PIOPs in Section A.1. In Sec-
tion A.2, we describe a scheme masking the multivariate polynomials. Section A.3 reviews the ZK
sumchecks in [77]. We describe the ZK compiler for PIOPs in Section A.4 and explain how to
obtain a zk-SNARK from a zk-PIOP and a PCS in Section A.5.

A.1 Definition

We follow [33] and define the (honest verifier) zero-knowledge property of PIOPs. Since the provers
in sumcheck PIOPs also send field elements, we slightly adapt the definition in [33].

Definition A.1. A PIOP ⟨P,V⟩ has perfect zero-knowledge with query bound t and query checker
C if there is a PPT simulator S such that for every field F, index i, instance x, witness w, and
every (t, C)-admissable verifier V∗, the following transcripts are identically distributed:

View (P(F, i;x;w),V∗) ≈ SV∗
(F, i;x) .

Here the view consists of V∗’s randomness, the non-oracle messages sent by P, and the list of
answers to V∗’s oracle queries. A verifier is (t, C)-admissible if it makes no more than t queries,
and each query is accepted by the checker C. We say that ⟨P,V⟩ is honest-verifier-zero-knowlege
(HVZK) if there is a simulator for V.

A.2 Polynomial Masking

Definition A.2. A randomized algorithm msk is a (t, C, µ)-masking if

1. for every d ∈ N and every polynomial f ∈ F (≤d)
µ , the masked polynomial f∗ ←$ msk(f, t, C)

does not change evaluations over the boolean hypercube Bµ;

2. for every d ∈ N and every polynomials f ∈ F (≤d)
µ , and every list of queries q := (q1, . . . , qt)

that is accepted by the checker C, let f∗ ←$ msk(f, t, C). It holds that
(
f∗(q1), . . . , f

∗(qt)
)
is

uniformly distributed over Ft.

57

Lemma A.1. There is a (t, Cℓ, µ)-masking algorithm msk(f, t, ℓ) for every µ, t ∈ N and ℓ ∈ [µ],
where checker Cℓ accepts a list of queries (q1, . . . , qt) if and only if bi,ℓ /∈ {0, 1, b1,ℓ, . . . , bi−1,ℓ} for

every query qi := (bi,1, . . . , bi,µ) ∈ Fµ (1 ≤ i ≤ t). For any f ∈ F (≤d)
µ and ℓ ∈ [µ], the degree of the

masked polynomial f∗ ← msk(f, t, ℓ) is max(d, t+ 1).

Proof. Given a polynomial f ∈ F (≤d)
µ , query bound t, and checker Cℓ, the algorithm does follow:

• Sample a univariate polynomial R(X) := c0 + c1X + . . . ct−1X
t−1 where c0, . . . , ct−1 ←$ F.

• Output f∗ := f + Z(Xℓ) ·R(Xℓ), where Z(Xℓ) := Xℓ · (1−Xℓ).

It is clear that f∗ has degree max(d, t + 1); f∗ does not change f ’s evaluations over Bµ as Z
evaluates to zero over Bµ. Next, we argue that f

∗ :=
(
f∗(q1), . . . , f

∗(qt)
)
∈ Ft is uniformly random.

Denote query qi := (bi,1, . . . , bi,µ) (1 ≤ i ≤ t), we define R to be

R :=
(
Z(b1,ℓ) ·R(b1,ℓ), . . . , Z(bt,ℓ) ·R(bt,ℓ)

)
.

Since the queries satisfy bi,ℓ /∈ {0, 1} for every i ∈ [t], it holds that zi := Z(bi,ℓ) are non-zero
and thus invertible. Moreover, since R is a random univariate polynomial with degree t − 1 and
{b1,ℓ, . . . , bt,ℓ} are distinct, it holds that {R(b1,ℓ), . . . , R(bt,ℓ)} are uniformly random. Therefore R is
uniformly random, and thus f∗ = f +q is also uniformly random where f :=

(
f(q1), . . . , f(qt)

)
.

A.3 Zero Knowledge SumCheck

Construction. Xie et al. [77] described an efficient ZK compiler for sumchecks. For reader’s
convenience, we adapt Construction 1 in [77] to a PIOP.

Zero knowledge SumCheck PIOP ⟨P,V⟩:

• Input: polynomial f ∈ F (≤d)
µ and claimed sum H ∈ F.

• P samples a polynomial g := c0+g1(x1)+ · · ·+gµ(xµ) where gi(xi) := ci,1xi+ · · ·+ci,dx
d
i and

ci,1, . . . , ci,d are uniformly random. P sends oracle g and a claimed sum G :=
∑

x∈Bµ
g(x).

• V sends a challenge ρ←$ F∗.

• P and V run SumCheck PIOP (Section 3.1) over polynomial f+ρg and claimed sum H+ρG.

• V queries g and f at point r where r ∈ Fµ is the vector of sumcheck’s challenges. V then
checks that f(r) + ρg(r) is consistent with the last message of the sumcheck.

The completeness of the ZK PIOP holds obviously, it was shown in [32] that the PIOP also
preserves soundness. The zero knowledge property is proved in [77] and we state it below.

Lemma A.2 (Theorem 3 of [77]). For every field F, verifier V∗ and multivariate polynomial f ∈
F (≤d)
µ , there is a simulator Ssum(F, µ, d,H) that perfectly simulates P’s oracle answers except for

f(r). Here H :=
∑

x∈Bµ
f(x).

58

A.4 Zero Knowledge Compilation for SumCheck-based PIOPs

A general description to the sumcheck-based PIOPs. The multivariate PIOPs considered
in this paper can all be adapted to the following format.

General sumcheck-based PIOPs:

1. Both P and V have oracle access to a public multilinear polynomial p0 ∈ F (≤1)
µ0 .

2. For every i ∈ [k1], P sends a multilinear polynomial pi ∈ F (≤1)
µi , and V sends some random

challenges. pi is a function of p0, . . . , pi−1 and verifier’s previous challenges.

3. P and V sequentially run k2 sumcheck PIOPs. The i-th (1 ≤ i ≤ k2) sumcheck is over a

polynomial fi := hi(g1, . . . , gci) ∈ F
(≤di)
νi , where hi is public information and each multilinear

polynomial gj ∈ F (≤1)
νi (1 ≤ j ≤ ci) is gj := v|XS=b for some boolean vector b and some

v ∈ {p1, . . . , pk1}, that is, gj is a partial polynomial of v where the variables in S are set to b.

4. For every i ∈ [k2], V queries a random point ri ∈ Fνi to the oracle fi, where ri are the round
challenges in the i-th sumcheck. V then checks that fi(ri) is consistent with the last message
in the i-th sumcheck.

5. For every i ∈ [k3], the verifier queries a point ci ∈ Fµji to an oracle pji (0 ≤ ji ≤ k1) and
checks that the evaluation is yi. We emphasize that the evaluations {yi}i∈[k3] can be efficiently
and deterministically derived from {ci, ji}i∈[k3] and the public oracle p0.

We note that the above description captures all of the multivariate PIOPs in this paper because

• for the case where P sends an oracle f := h(g1, . . . , gc) ∈ F (≤d)
µ for d > 1, we can instead let

P send g1, . . . , gc ∈ F (≤1)
µ as h is public information;

• for the case where P sends multiple multilinear oracles in a round, we can merge the polyno-
mials into a single polynomial;

• the PIOPs we consider are all finally reduced to one or more sumcheck PIOPs.

Construction. We present a generic framework that transforms any (sumcheck-based) multi-
variate PIOPs into zero knowledge PIOPs. For a PIOP ⟨P,V⟩, let

(
{pi}i∈[0,k1], {fi}i∈[k2]

)
be the

polynomials denoted in the above protocol. For every i ∈ [k1], let ti ∈ N be the number of pi’s par-
tial polynomials that appear in the sumcheck polynomials f1, . . . , fk2 , and let t∗ := max{ti}i∈[k1].
For every i ∈ [k1], we assume that there exists index ℓi ∈ [µi] such that for every pi’s partial
polynomial v|XS=b that appears in some sumcheck (where pi’s variables in set S are boolean), it
holds that ℓi is not in the set S. Let msk be the masking algorithm described in Lemma A.1. The
compiled zero knowledge PIOP ⟨P̂, V̂⟩ works as follows.

The ZK-compiler for sumcheck-based PIOPs:

1. For every i ∈ [k1], P̂ sends an oracle [[p∗i]] where p∗i ←
$ msk(pi, ti, ℓi). V̂ sends the same

challenges as V does.

59

2. P̂ and V̂ sequentially run k2 zero knowledge sumcheck PIOPs (Section A.3). The i-th (1 ≤
i ≤ k2) sumcheck is over the polynomial f∗

i := hi(g
∗
1, . . . , g

∗
ci) ∈ F

(≤dit
∗)

νi , where hi is the same

as in ⟨P,V⟩; each g∗j ∈ F
(≤t∗)
νi (1 ≤ j ≤ ci) is g∗j := v∗|XS=b for some boolean vector b and

some v∗ ∈ {p∗1, . . . , p∗k1}.

3. For every i ∈ [k2], V̂ queries a random point ri ∈ Fνi to the oracle fi, where ri are the round
challenges in the i-th ZK sumcheck. V̂ then checks that fi(ri) is consistent with the last
message of the i-th ZK sumcheck. We emphasize a slight modification over the original PIOP
⟨P,V⟩: in the i-th sumcheck, V̂ samples each round challenge ri,j (1 ≤ j ≤ µi) in the set
F \ {0, 1, r1,j , . . . , ri−1,j} rather than in F.

4. V̂ simulates V, i.e., for all i ∈ [k3], queries points ci to oracle p∗ji and checks the evaluation.

Theorem A.3. Given any PIOP ⟨P,V⟩ for some relation over the boolean hypercube, the compiled
PIOP ⟨P̂, V̂⟩ is HVZK. Moreover, ⟨P̂, V̂⟩ preserves perfect completeness and negligible soundness.

Proof. Completeness. Completeness holds because the sumcheck relations are over boolean hy-
percubes and the masked polynomials’ evaluations do not change over the boolean hypercubes by
the property of msk.

Soundness. Compared to the sumchecks in ⟨P,V⟩, the following changes of the sumchecks in
⟨P̂, V̂⟩ affect soundness error:

1. The degrees of the sumcheck polynomials are increased by a factor t∗.

2. The challenge space of j-th round in the i-th (1 ≤ i ≤ k2) sumcheck is F\{0, 1, r1,j , . . . , ri−1,j}
rather than F.

3. The sumcheck protocols are replaced with ZK sumchecks.

Since t∗ and k2 are constants and ZK sumchecks preserves soundness [32], the compiled protocol
preserves negligible soundness.

HVZK. We describe the simulator as follows.

The simulator S V̂(F, i;x):

1. Honestly generate the public polynomial p0 ∈ F (≤1)
µ0 .

2. Pick arbitrary polynomial {p̃i}i∈[k1] conditioned on that the sumcheck relations over f1, . . . , fk2
hold. Send V̂ polynomials {p̃∗i }i∈[k1] where p̃∗i ←

$ msk(p̃i, ti, ℓi), obtain from V̂ the challenges
in the first k1 rounds.

3. Run the next k2 ZK sumcheck PIOPs using p0 and the sampled polynomials {p̃∗i }i∈[k1].

4. For every i ∈ [k2], answer query f∗
i (ri) honestly using {p̃∗i }i∈[k1].

5. For every i ∈ [k3], answer query ci with value yi, where {yi}i∈[k3] are deterministically derived
from {ci, ji}i∈[k3] and the public polynomial p0.

Next we show that S V̂(F, i;x) ≈ View(P̂(F, i;x;w), V̂). We set H0 := S V̂(F, i;x) and consider
following hybrid games.

60

• Game H1: identical to H0 except that step 3 is replaced with the ZK sumcheck simulator’s
output. We note that H1 ≈ H0 by the ZK property of the ZK sumchecks.

• Game H2: identical to H1 except that the queries in step 4 are answered with random values.
(Note that f∗

i (ri)’s answer is a random value consistent with the last message of the i-th
sumcheck.) We argue that H2 ≈ H1: for every i ∈ [k1], the number of queries to oracle
p̃∗i ← msk(p̃i, ti, ℓi) is no more than ti and the ℓi-th element in each of the query point are
distinct and non-boolean, by Lemma A.1, the answers to the queries are uniformly random.

• Game H3: identical to H2 except that the polynomials {p̃i}i∈[k1] in step 2 are replaced with
{pi}i∈[k1]. Note that H3 ≈ H2 as the verifier’s view does not change at all.

• Game H4 := View(P̂(F, i;x;w), V̂): identical to H3 except that the queries in step 4 are an-
swered honestly and the ZK sumchecks are run honestly using p0 and the sampled polynomials
{p∗i }i∈[k1]. With similar arguments (for H1 and H2) we have H4 ≈ H3.

Given above, it holds that S V̂(F, i;x) ≈ View(P̂(F, i;x;w), V̂) and we complete the proof.

A.5 zk-SNARKs from PIOPs

In the ZK PIOP of Section A.4, the masked polynomials sent by the prover are with the form

f∗ := f + Z(xℓ) ·R(xℓ) where f ∈ F (≤1)
µ is multilinear and Z(xℓ) := xℓ · (1− xℓ) is univariate and

with degree t+ 1. It is shown in Theorem 10 of [19] that every additive and m-spanning PCS can
be compiled into a hiding PCS with a zero-knowledge Eval protocol, where m-spanning means that
commitments to polynomials of degree at most m can already generate the commitment space G.
Thus we can construct a hiding PCS for f∗ with ZK evaluations from any additive and spanning
polynomial commitment schemes (e.g., KZG and FRI). In particular, one instantiation is to set the
commitment of f∗ to be (C1, C2) ∈ G where C1 is the multilinear commitment to f and C2 is the
univariate commitment to Z(X) ·R(X), then apply the ZK transformation in [19].

By combining Theorem 2.4 and Theorem A.3 we obtain the following corollary.

Corollary A.4. Given any (non-hiding) additive and spanning polynomial commitment schemes,
we can transform any (non-ZK) sumcheck-based PIOP (Section A.4) for relation R to a zk-SNARK
for R.

B The FRI-based multilinear polynomial commitment

In this Section, we construct a simple multilinear polynomial commitment scheme (PCS) from
FRI [9]. Along the way, we also show how to generically transform a univariate PCS to a multilinear
PCS using the tensor-product univariate PIOP from [22], which might be of independent interest.
We note that Virgo [82, §3] describes another scheme constructing multilinear PCS from FRI. The
main idea is to build the evaluation opening proof from a univariate sumcheck [12], which in turn
uses FRI. However, the naive scheme incurs linear-time overhead for the verifier. Virgo [82, §3]
resolves the issue by delegating the verifier computation to the prover. To this end, the prover
needs to compute another GKR proof convincing that the linear-time verifier will accept the proof.
This complicates the scheme and adds additional concrete overhead on prover time and proof size.

61

We refer to [9, 55] and [51] for background of FRI low-degree testing and the approach to build
univariate PCS from FRI. We note that the FRI-based univariate PCS supports batch opening.
The evaluation opening protocol for multiple points on multiple polynomials invokes only a single
call to the FRI protocol. Below we present a generic approach to transforming any univariate PCS
into a multilinear PCS.

Generic transformation from univariate PCS to multilinear PCS. Bootle et al. built a
univariate PIOP for the tensor-product relation in Section 5 of [22]. The tensor-product relation
(x,w) =

(
(F, n, z1, . . . , zµ, y), f

)
states that f ∈ Fn satisfies that ⟨f ,⊗j(1, zj)⟩ = y, where ⟨·, ·⟩

denotes an inner product, and⊗ denotes a tensor product. The PIOP naturally implies an algorithm
that transforms univariate polynomial commitment schemes to multilinear polynomial commitment
schemes.

• The commitment to a multilinear polynomial f̃ with monomial coefficients, f is the commit-
ment to a univariate polynomial f with the same coefficients.

• To open f̃ at point (z1, . . . , zµ) that evaluates y, the prover and the verifier runs the univariate
PIOP for the relation (x,w) =

(
(F, n, z1, . . . , zµ, y), f

)
, which reduces to a batch evaluation

on a set of µ+ 1 univariate polynomials.

We provide the concrete construction below. Let PCu = (Setup,Commit,BatchOpen,BatchVfy) be
a univariate PCS, we construct a multilinear PCS PCm as follows.

• PCm.Setup(1λ, µ) → (ck, vk). On input security parameter λ and the number of variables µ,
output PCu.Setup(1

λ, n) where n = 2µ.

• PCm.Commit(ck, f̃) → c. On input committer key ck, multilinear polynomial f̃ with coeffi-
cients f ∈ Fn, output PCu.Commit(ck, f) where f has the same coefficients as f .

• PCm.Open(ck, f̃ , z, y) → π. On input committer key ck, multilinear polynomial f̃ , point
z ∈ Fµ and evaluation y ∈ F, the prover computes the proof as follows. Let f0(X) := f(X)
be the committed univariate polynomial that has the same coefficients as f̃ , consider the
following PIOP for the tensor-product relation (x,w) =

(
(F, n, z, y), f

)
:

– The prover sends the verifier univariate polynomials f1, . . . , fµ such that for all i ∈ [µ],

fi(X) = gi−1(X) + zi · hi−1(X) ,

where gi−1, hi−1 satisfies that fi−1(X) = gi−1(X
2) +X · hi−1(X

2).

– The verifier samples a random challenge β ←$ F× (where F× is a multiplicative subgroup
of F), and queries the oracles to obtain evaluations {ai, bi, ci}i∈{0,...,µ} such that

ai := fi(β), bi := fi(−β), ci := fi+1(β
2) .

Note that we skip fµ+1(β
2) and set cµ := y.

– The verifier checks that for all i ∈ {0, . . . , µ},

ci =
ai + bi

2
+ zi ·

ai − bi
2β

.

62

The opening proof π comprises (i) the univariate commitments to f1, . . . , fµ, (ii) the evalua-
tions {ai, bi, ci}i∈{0,...,µ}, and (iii) the batch opening proof for polynomials (f0, f1, . . . , fµ) at
points (β,−β, β2), where the random challenge β is derived via the Fiat-Shamir transform.

• PCm.Vfy(vk, c, z, y, π) ∈ {0, 1}. On input verifier key vk, commitment c, point z, evaluation
y, and proof π, parse π to commitments (c1, . . . , cµ), evaluations evals, and the batch opening
proof π∗. Derive random challenge β via the Fiat-Shamir transform, perform the verification
check in the above PIOP, and run PCu.BatchVfy(vk, (c, c1, . . . , cµ), (β,−β, β2), evals, π∗).

Efficiency. We emphasize that when instantiated PCu with the FRI-based PCS, the multilinear
polynomial commitment scheme has approximately the same complexity as that in the univariate
setting. In particular, the committing phase takes only a Merkle root computation with tree depth
log(n); the opening phase takes (i) µ Merkle commitment computation where the i-th (1 ≤ i ≤ µ)
Merkle tree is with size 2µ−i, and (ii) a univariate PCS batch evaluation protocol that is simply a
single call to the FRI protocol.

C Unrolled and optimized Hyperplonk

In Figure 11, we present an optimized and batched version of HyperPlonk. The protocol batches
the zerochecks and additionally batches all evaluations using RBATCH.

Proof size analysis of compiled protocol We analyze the concrete proof size of the batched
PIOP. We analyze the proof size after compilation, i.e., where the prover sends commitments and
performs evaluation proofs. The analysis assumes that there are more wires than selectors, i.e.,
ℓw ≥ ℓq. The prover sends the following elements in each round:

1. 1 multi-linear commitment to w

2. 1 multi-linear commitment to ṽ

3. µ+ νw +1 commitments to univariate degree d− 2 polynomials. 2(µ+ νw +1) field elements
(claimed evaluation of the polynomial) from the first sumcheck.

4. 8 + ℓw + ℓq claimed evaluations.

5. 1 univariate evaluation of a batched degree d polynomial.

6. 2 · (µ+ νw +1+ ⌈log2(8 + ℓw + ℓq)⌉) ≤ 2µ+4νw +6 field elements (claimed evaluation of the
polynomial) from the second sumcheck.

7. 1 multi-linear evaluation of a batched µ+ νw + 1-variate polynomial.

The total proof size is thus bounded by 2 multi-linear commitments, µ+ νw+1 univariate commit-
ments, 1 multi-linear evaluation proof (for a µ+νw+1-variate polynomial) and 4µ+ℓw+ℓq+6νw+16
field elements. For KZG-based commitments, this is proportional to 2µ group elements and 4µ field
elements. Concretely, for arithmetic circuits we have ℓw = ℓq = 3. Thus the proof size is 2µ+9 G1

elements and 4µ + 34 field elements. Using BLS12-381, where G1 elements are 48 bytes and field
elements are 32 bytes the proof size becomes 224 · µ+ 1520 bytes. For µ = 20, this is exactly 6000
bytes.

63

Indexer. I on an input circuit C the indexer computes the ([[sid]], [[sσ]]) ← Iperm(σ). The

oracle output is ([[q]]1, [[sσ]], [[sid]]), and q ∈ F (≤1)
µ+νq , sid ∈ F

(≤1)
µ+νw , sσ ∈ F

(≤1)
µ+νw .

The protocol. P(gp, i, p, w) and V(gp, p, [[q]], [[sid]], [[sσ]]) run the following protocol.

1. P sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νw .

2. V sends input challenge rIO ←$ Fν

3. V sends R2
MSET challenges rmset,2 to reduce the instance to an R1

MSET instance (See Section
3.4).

4. V sends R1
MSET challenge rM,1

5. P computes the product polynomial ṽ ∈ F (≤1)
µ+νw+1 from w, sσ, sid and the challenges rM,2,

and rM,1 and sends [[ṽ]] to V (See Section 3.3)

6. Verifier sends challenge α to batch two zerochecks, one resulting from the gate identity (see
Section 4.2) and one from the productcheck.

7. V send zerocheck challenge rZ ←$ Fµ

8. P and V run sumcheck resulting from batched zerocheck. The sumcheck of size µ+ νw + 1
and has degree d + 1. In each round, the prover sends an oracle to the univariate round
polynomial as well as the claimed evaluation. The verifier delays querying the oracles.
Similarly, in the last round, the verifier sends the claimed evaluations of all the multilinear
polynomials. There are 8 + ℓw + ℓq total evaluations:

• 2 + ℓw of w (one for the permutation check, 3 from the gate check, one to check the
outputs)

• 5 of ṽ from the product check

• ℓq of q (one per selector)

• 1 of sσ (from the product check, the verifier can evaluate sid efficiently herself)

9. V uses the claimed evaluations to verify all previous protocols.

10. P and V run the univariate batch-opening algorithm from [19] to reduce all the round
polynomial queries to one.

11. P and V runRBATCH on all 8+ℓw+ℓq evaluations using a degree 2, µ+νw+1+⌈log2(8+ℓw+
ℓq)⌉ round sum-check. In the protocol, the prover directly transmits the round polynomial
using 2 field elements. The verifier can compute the third from the claimed sum.

Figure 11: Combined and batched PIOP for RPLONK.

64

	Introduction
	Technical overview
	Additional related work

	Preliminaries
	Proofs and arguments of knowledge.
	Multilinear polynomial commitments.
	PIOP Compilation

	A toolbox for multivariate polynomials
	SumCheck PIOP for high degree polynomials
	ZeroCheck PIOP
	ProductCheck PIOP
	Multiset Check PIOP
	Permutation PIOP
	Lookup PIOP
	Batch openings
	A more efficient batching scheme in a special setting

	HyperPlonk: Plonk on the boolean hypercube
	Constraint systems
	The PolyIOP protocol

	HyperPlonk+: HyperPlonk with Lookup Gates
	Constraint systems
	The PolyIOP protocol

	Instantiation and evaluation
	Implementation
	Evaluation
	MultiThreading Performance
	High degree gates
	Comparisons

	Orion+: a linear-time multilinear PCS with constant proof size
	Zero Knowledge PIOPs and zk-SNARKs
	Definition
	Polynomial Masking
	Zero Knowledge SumCheck
	Zero Knowledge Compilation for SumCheck-based PIOPs
	zk-SNARKs from PIOPs

	The FRI-based multilinear polynomial commitment
	Unrolled and optimized Hyperplonk

