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Abstract. The celebrated LLL algorithm for Euclidean lattices is central to cryptanalysis of well-
known and deployed protocols as it provides approximate solutions to the Shortest Vector Problem
(SVP). Recent interest in algebrically structured lattices (e.g., for the efficient implementation of lattice-
based cryptography) has prompted adapations of LLL to such structured lattices, and, in particular, to
module lattices, i.e., lattices that are modules over algebraic ring extensions of the integers. One of these
adaptations is a quantum algorithm proposed by Lee, Pellet-Mary, Stehlé and Wallet (Asiacrypt 2019).
In this work, we dequantize the algorithm of Lee et al., and provide a fully classical LLL-type algorithm
for arbitrary module lattices that achieves same SVP approximation factors, single exponential in the
rank of the input module. Just like the algorithm of Lee et al., our algorithm runs in polynomial time
given an oracle that solves the Closest Vector Problem (CVP) in a certain, fixed lattice LK that depends
only on the number field K.

1 Introduction

The security of (public key) cryptographic protocols has always relied on the hardness of a variety of different
mathematical problems. These problems are not only chosen for their presumed complexity, but often also
selected for their usability and efficiency to achieve cryptographic purposes. The more recent necessity for
these problems to guarantee quantum hardness has pushed cryptographers to deviate from traditional math-
ematical problems such as factoring and computation of discrete logarithms and focus on new mathematical
objects and related computational problems. Euclidean lattices (in their general and structured versions)
have emerged as a very interesting candidate due to their average-case complexity properties [2, 6, 32, 40]
and support for a wide range of applications, including fully homormorphic encryption (e.g., see [5, 7, 16]).
While basing cryptography on general Euclidean lattices [2, 6, 32, 40] provides a high level of security, the
resulting protocols are usually quite inefficient due to their large key sizes. So, in practice, cryptographic
protocols make frequent use of lattices that exhibit some (typically algebraic) structure [26,31] that allows for
more compact representation of key material, as well as substantially faster operations. Widely-used math-
ematical problems related to these objects are for example the NTRU problem [17], RingSIS [23, 24, 31, 38],
RingLWE [25,42], and their generalizations ModuleSIS and ModuleLWE [5,20] which interpolate between the
standard and ring versions of the SIS (Short Integer Solution) and LWE (Learning With Errors) problems.
The winner of the NIST post-quantum competition (Crystals-Kyber) for public-key encryption [1] and two
out of three of the winners for digital signatures (Crystals-Dilithium and Falcon) rely on problems related
to structured-lattices, such as the ones mentioned above or variants of them.

In order to assess the security of cryptographic schemes based on ideal/module variants of lattice prob-
lems, an important question to consider is whether the added algebraic structure impacts the security of
these schemes. Over the past several years, significant effort has been given to understanding whether adding
extra algebraic structure to a lattice introduces fundamental weaknesses, or lowers the security level by im-
proving the performance of not only the intended cryptographic applications, but also the algorithms used
for cryptanalysis.

A main research direction towards understanding the effect of added algebraic structure on the security of
lattice-based protocols is to evaluate the hardness of solving the Short Vector Problem (SVP) in structured
lattices. This question is crucial in cryptography as the hardness of Ring/Module- LWE or Ring/Module-SIS
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is linked to the difficulty of finding short vectors in the lattice. A natural approach is to look at basis reduction
algorithms. These are algorithms that transform a lattice basis in order to progressively produce a new basis
of the same lattice with relatively short vectors. The best-known basis reduction algorithms are the LLL
(Lenstra, Lenstra, Lovasz) algorithm [22] and its block BKZ (Block Korkine-Zolotarev) variant [41] given
for arbitrary integer lattices. These algorithms are crucial for cryptanalysis as they provide approximate
solutions to SVP, and still run in polynomial time (when the BKZ block size is sufficiently small.)

As of today, significant work has been put into adapting the LLL algorithm to structured lattices. First
generalizations were proposed by Napias [35] and Fieker and Pohst [12] in 1996. It was already observed at the
time that reduction algorithms obtained in specific frameworks were more efficient. The search for a module-
LLL algorithm continued with Lee, Pellet-Mary, Stehlé and Wallet [21] who introduced two algorithms: an
oracle-based generalization of LLL to modules which reduces the general basis reduction problem (on rank-n
modules over the ring of integers of a number field K) to the problem of finding short vectors in module
lattices of rank 2, and a quantum algorithm1 that efficiently realizes the required rank-2 SVP oracle given
black-box access to a Closest Vector Problem (CVP) solver for a fixed lattice LK that depends only on the
number field K. Taken together, these two components give an LLL-type quantum algorithm to find short
vectors in arbitrary module lattices, assuming CVP on LK can be efficiently solved. Due to the use of quantum
computation and the need to solve CVP on LK , the resulting algorithm is not quite usable in practice, except
for fields K of very small degree. However, the algorithm of [21] is still an important theoretical step forward
in understanding the potential weaknesses introduced by module lattices. On a different front, in 2019,
Kirchner, Espitau and Fouque [19] proposed a general framework for lattice reduction algorithms applied to
module lattices along with a usable implementation that can be used to break cryptographic schemes, such as
those based on graded encodings. (See [19] for details.) This gives a very efficient variant of LLL for module
lattices defined over the ring of integers of cyclotomic fields that can actually be run in practice. However,
their algorithms are only heuristic and have worse approximation factors than the classical LLL. The focus of
our work is to improve our understanding of algorithms (and the role of quantum computation) for module
lattices that admit a rigorous theoretical analysis, and improve on the approximation factor achieved by
LLL. An adaption of BKZ for module lattices based on slide-reduction was also suggested in [34]. However,
their work rely on similar oracle calls when considering SVP in rank-2 modules.

One last, somehow related, line of research is that exemplified by Cramer, Ducas and Wesolowski [10]
who showed that lattice problems restricted to principal ideals of some cyclotomic number fields can be
quantumly solved more efficiently than for arbitrary lattices. This was generalized to all number fields with
not too large discriminant (using preprocessing) by Pellet-Mary, Hanrot and Stehlé [39]. Differently from
these works, which focus on the special class of principal ideal lattices, our paper deals with arbitrary
ideals and (possibly non-free) modules. In fact, the primary obstacle we need to overcome to avoid quantum
computation is directly related to the distinction between principal ideals, and arbitrary ideals, which in a
Dedekind domain can be expressed using not one, but two generators.

Contribution and Techniques In this work, we build on the work of Lee, Pellet-Mary, Stehlé and Wallet [21]
and show how essentially the same results can be obtained without using any quantum computation. The
need for quantum computation in the algorithm of [21] comes from a step known as divide-and-swap which
is part of their solution of SVP for rank-2 module lattices. This divide-and-swap step requires, in particular,
the knowledge of the decomposition of an ideal as a product of a subset of fixed ideals. As noted in [21], if
the input module is free, trivial decompositions of the input ideals are known and thus the algorithm runs
in classical polynomial time. However, the same is not true for arbitrary input module lattices.

In this work, we modify their algorithm, which we call Module-LLL, in order for it to run classically,
with no quantum operations, regardless of the input module. Note that their algorithm could already be

dequantized using the results of [4] but at the cost of more heuristics and a classical running time of 2Õ(
√
d)

(superpolynomial in the degree d of the number field) to find short vectors in rank-2 modules, even in the

1 This is described as a heuristic in [21], but the heuristic assumptions are very mild, essentially just (plausible)
mathematical conjectures on the geometric properties of a certain lattice LK that depends only on the number
field.
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presence of an efficient CVP solver for LK . Our algorithm on the other hand only requires a polynomial
number of calls to CVP on the fixed lattice LK .

In order to remove the quantum computations involved in Module-LLL, we transform the input rank-2
module to the divide-and-swap algorithm into a free rank-4 module using properties of Dedekind domains,
thus allowing to run the divide-and-swap step classically. We then show how to generalize the divide-and-
swap algorithm to rank-4 modules by recursively calling Module-LLL on a free module of fixed, constant
rank 4, which, as already shown in [21], does not require any quantum computation.

We remark that our algorithm, fully-classical Module-LLL, does not make any new heuristic assumption,
and only requires some very mild assumptions (inherited from [21] and [39]) on the geometric properties
of LK . It maintains a polynomial running-time and the same approximation factor as the one obtained in
Module-LLL. Our main result is presented in the informal theorem below.

Theorem 1. Let γ ≥ 1 and K be a number field of degree d with discriminant ∆K and ring of integers
OK . There is an algorithm (Fully classical Module-LLL) that solves γ′-SVP for rank-n modules in Kn (with

respect to the Euclidean norm) for approximation factor γ′ =
(

2γ∆
1/d
K

)2n−1
running in classical polynomial

time (in log∆K and the bit-length of the input pseudo-basis) and with polynomially many calls to CVP in
the fixed lattice LK .

Just as in [21], in comparing this approximation factor to LLL, it should be kept in mind that the
dimension of the lattice is nd. So, LLL (or even BKZ with small enough block size to run in polynomial
time) would achieve an approximation factor exponential in Õ(nd). By contrast, for ∆K = dO(d), Module
LLL achieves an asymptotically smaller factor, exponential in O(n log d).

At this point, the only obstacle to running Module LLL in practice remains the implementation of the
CVP solver for LK . We remark that this lattice has fairly high dimension O(d2), where d is the degree of
K. So, using a generic CVP algorithm (for abitrary lattices) would still require time exponential in d2. This
should not be too much of a surprise if one notices (as explained in Section 3) that module LLL is essentially a
structured version of Rankin reduction [14], and that the LK CVP oracle is used to solve a densest sublattice

problem in dimension d [11], a problem which in general seems to require even more than 2d
2

time. (See
Section 3 for a more detailed explaination.) It is also known that there are sequences of fixed lattices (one per
dimension) for which CVP is NP-hard [18,30]. So, just the fact that LK is fixed does not imply the existence
of an efficient CVP algorithm. On the other hand, there are many important and non-trivial families of
lattices [27–29] for which CVP can be efficiently solved. So, the existence of an efficient CVP algorithm for
LK is an interesting possibility, and finding such algorithm is an important open problem.

2 Preliminaries

We recall in this section some necessary background on algebraic number theory and modules over Dedekind
domains useful to the comprehension of this paper. We refer the reader to [8, 36], and [37, Chapter VIII ]
for more details on algebraic number theory, computational aspects of algebraic number theory and modules
over Dedekind domains.

2.1 Algebraic background

A number field K is a finite extension of the field of rational numbers usually defined as K = Q[x]/(f(x))
for an irreducible polynomial f ∈ Q[x] of degree d, the dimension of K as a vector space over Q.

Let (r1, r2) be the signature of K, corresponding to the number r1 of real roots, and number 2r2 of
complex roots of f . (Complex roots always come in conjugate pairs.) All roots are distinct, so we have
r1 + 2r2 = d. Each root αi ∈ C defines an embedding σi from K to C corresponding to the evaluation of
polynomials at αi. The canonical embedding allows to embed a number field K of degree d into Cd and is
defined for any x ∈ K as

σ(x) = (σ1(x), · · · , σd(x)) ∈ Cd.
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Since r1 of the embeddings map K to R, and the remaining ones come in conjugate pairs, the image of σ(K)
is actually contained in a real subspace H ⊂ Cd of dimension d over R. Moreover, the standard Hermitian
product of Cd induces a real inner product on H. So, the embedding of K into H ⊂ Cd endows K with a
geometry, defined by the inner product of Cd.

Let KR = K⊗R be the ring defined as the tensor product between K and the real numbers. The canonical
embedding also gives a ring isomorphism between KR and H.

LetOK denote the ring of integers of K. It is a free Z-module of rank d. Through the canonical embedding,
this free Z-module can also be seen as a lattice of rank d. The absolute value of the discriminant of K is
given by ∆K = |det((σi(xj))i,j)|2 where the (xi)i≤d form a basis of OK .

The algebraic trace and norm of an element α ∈ K can be defined respectively as Tr(α) =
∑
i≤d σi(α) and

N (α) =
∏
i≤d σi(α). They correspond to the trace and determinant of the endomorphism x 7→ αx of K. The

algebraic trace induces a Hermitian inner product over KR where for any x ∈ KR, the associated Euclidean
norm is defined as ||x||2 =

∑
1≤i≤d |σi(x)|2. The algebraic norm is multiplicative, i.e., N (xy) = N (x)N (y)

for x, y ∈ K. Note that the algebraic norm also extends to elements of KR with the same definition.
A fractional ideal I of K is an additive subgroup of K which is stable under multiplication by any element

of OK and such that xI ⊆ OK for some x ∈ OK \ {0}. (It may be assume without loss of generality that
x ∈ Z.) A non-zero ideal is a free Z-module of rank d and can thus be seen as a lattice using the canonical
embedding. These lattices are known as ideal lattices. The algebraic norm of a non-zero fractional ideal I is
the determinant of the ideal I seen as a lattice in Rd divided by the determinant of OK . (i.e., the determinant
is normalized so that the algebraic norm of OK is 1.) We have N (I) = N (xI)/|N (x)| for any x ∈ OK \ {0}
such that xI ⊆ OK . Moreover, for any x ∈ I, we have |N (x)| =

∏
i≤d |σi(x)|.

The ring OK of algebraic integers of K is a Dedekind domain. A useful result on Dedekind domains
which we will exploit in this work is the following theorem.

Theorem 2. Let R be a Dedekind domain and let a be a non-zero element in an ideal I of R. Then there
is an element b ∈ R such that I = (a, b). In particular, every ideal in R can be generated by two elements.
Moreover, given a fractional ideal I ∈ R and a non-zero element a ∈ I, there exists a probabilistic algorithm
that computes b ∈ I such that I = (a, b) in expected polynomial time.

Proof. It is a known fact that every non-zero ideal I in a Dedekind domain can be expressed uniquely as a
product of prime ideals, i.e., there exists prime ideals pi and ni ∈ Z such that I =

∏
i p
ei
i .

Consider a ∈ I \ {0}. Then, one can write (a) =
∏
i p
fi
i

∏
j q

gj
j and since (a) ⊆ I, we have ei ≤ fi for

all i. Note that the prime ideals qj are disjoint from the prime ideals pi. Now, consider b ∈ R such that

(b) =
∏
i p
ei
i

∏
k l
hk

k where the ideals
∏
j q

gk
j and

∏
k l
hk

k are coprime. The existence of this element comes

from the Chinese Remainder Theorem (CRT). Indeed, consider an element bi ∈ pei \pei+1. Then CRT allows
us to find the element b ∈ R such that for each i, we have b ≡ bi (mod pei+1

i ) and b ≡ 1 (mod
∏
j q

gj
j ). We

finally have

(a, b) = (a) + (b) = gcd((a), (b)) =
∏
i

p
min(ei,fi)
i = I.

Finally, we refer to [3, Algorithm 6.15] as an example of a probabilistic algorithm that finds two-element
representations of ideals in expected polynomial time. The general idea is to arbitrarly take a ∈ I and then
to uniformly choose b ∈ I mod (a).

Concerning the size of the generators. Whereas the algorithm proposed in [3, Algorithm 6.15] succeeds with
a high probability, it comes with the downside that the representation of the ideal I = (a, b) might not be
necessarily small. In [13, Theorem 3], the authors propose a modification of [3, Algorithm 6.15] where the
norms of the elements a, b remain small. More particularly, they give the following result.

Theorem 3 (From [13, Theorem 3]). Let (si)i be a Z-basis of the ring of integers OK of a number
field K. There exists a probabilistic polynomial time algorithm that takes as inputs a Z-basis of a non-zero
fractional ideal I ⊂ OK and a success parameter t and returns a, b ∈ I such that I = (a, b) holds with
probability 1− 2−t and

||a||, ||b|| ≤ 4d2γ8∆
4/d
K max ||si||4 · N (I)4/d,
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where γ is the approximation factor of the lattice reduction algorithm considered (say LLL).
As a result, the bit-size representation of the ideal I is O(logN (I)+log∆K +d(d+log k+log max ||si||)),

where k is the smallest integer such that kI is integral and the si’s are assumed LLL-reduced.

Remark 1. One can bound the quantity max ||si||2 ≤ dγd∆K , where (si)i is a reduced integral basis of K
for any lattice-based reduction algorithm with approximation factor γ, see [13, Lemma 1]. Hence, the bound
on a, b ∈ I becomes

||a||, ||b|| ≤ 4d4γ8+2d∆
(4/d)+2
K · N (I)4/d.

2.2 Module lattices

In [21], the authors consider basis vectors with coefficients in KR and not just in K. This choice is motivated
by the use of QR-factorisation and the fact that when computing the QR decomposition of a matrix with
coefficients in K, the coefficients of the new matrix do not necessarily remain in K. Hence, they consider the
basis vectors bj ∈ KR and the OK modules are thus defined to be in KR as well.

In order to define such modules, we will need a notion of linear independence for the basis vectors. Note
that because KR is not an integral domain, the definition of linear independance does not directly derive
from the usual equivalences between the following three statements: the determinant of the bj matrix is
invertible, there exist no ai such that

∑
aibi = 0 and for all j, the vector bj is not in the span of the other

bi. Hence, the strongest of these statements is used as definition, as in [21].

Definition 1 (KR-linear independence). The vectors bj for j = 1, · · · , n are said to be KR-linearly
independent if and only if there is no non-trivial way to write the zero vector as a KR-linear combination of
the bj.

Now, consider a set of KR-linearly independent vectors b1, · · · ,bn ∈ Km
R for m > 0 and I1, · · · In,

fractional ideals of OK . An OK-module is a finitely generated set of elements closed under addition and
multiplication by elements in OK . It can be defined as the set M =

∑
i≤n Iibi and the tuple of pairs

((Ii,bi))i≤n is refered to as the pseudo-basis of M of rank n. The existence of such bases results from the
fact that OK is a Dedekind domain, see for example [37, Theorem 81:3]. In the particular case of free modules,
the ideals in the pseudo-basis are all the trivial ideal OK . Let B denote the matrix formed by concatenating

the basis vectors bi for i < n. As defined in [21], let detKR M = det(B
T
B)1/2 ·

∏
i Ii which is an OK-module

of rank 1 in KR (as the vectors bj ∈ KR, the term det(B
T
B)1/2 is also an element of KR and

∏
i Ii is a

non-zero fractional ideal).
The canonical embedding map from K to Cd also provides some geometrical structure to modules and

thus any module in Kn can be seen as a lattice in Cnd. Seen as a lattice L of dimension n× d, one can also

define the notion of volume of a module M as detM = detL = ∆
n/2
K · N (detKR M). Following the notations

from [21], we define the following inner product for a,b ∈ Km
R

〈a,b〉KR =
∑
i∈[m]

aibi ∈ KR.

This inner product is then used to extend the notion of norm to vectors v ∈ Km
R . For any vector v ∈ Km

R ,

the following norm can thus be defined: ||v||KR =
√
〈v,v〉KR . Similarly, the notion of algebraic norm defined

above can be extended to vectors v ∈ Km
R as N (v) = N (||v||KR). The algebraic norm N (v) can be seen as

the volume of the module of rank-1 in Km
R generated by v.

Whereas the notion of minimum distance in a Euclidean lattice usually refers to the shortest non-zero
vector with respect to the Eucidean norm, in the case of module lattices, we will be interested in both the
Euclidean norm and the algebraic norm. Hence, one can define the module minimum as λ1(M) = min{||v|| :
v ∈M \ {0}} with respect to the Euclidean norm or λN1 (M) = inf{N (v) : v ∈M \ {0}} with respect to the
algebraic norm. The relation between both quantities is given by the following lemma.
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Lemma 1 (From [21, Lemma 2.2]). For any rank-n module M , we have:

d−d/2λ1(M)d∆
−1/2
K ≤ λN1 (M) ≤ d−d/2λ1(M) ≤ nd/2∆1/2

K N (det
KR

M)1/n.

We also recall the arithmetic-geometric inequality. For s ∈M \ {0}, we have N (s) ≤ d−d/2||s||d.

In [21], the authors also extend the Gram-Schmidt Orthogonalization and the QR-factorization to ma-
trices over KR. Using the same notations, let b1, · · · ,bn ∈ Km×n

R be KR-linearly independent vectors and
let b∗i be the result of the extended Gram-Schmidt Orthogonalization presented in [21] for 1 ≤ i ≤ n.
Moreover, let rii = ||b∗i ||KR for i ≤ n, rij = µijrii when i < j and rii = 0 when i > j. The coefficients µij
are the Gram-Schmidt coefficients (we refer to [21] for details). Then B = Q · R where Q ∈ Km×n

R is the
matrix defined by the column vectors b∗i /||b

∗
i ||KR and R = (rij)ij . These notations also allow to re-write

detKR M =
∏
i riiIi, see [21, Lemma 2.6]. The aforementioned lemma also provides a lower bound on the

shortest non-zero module element, i.e., λN1 (M) ≥ miniN (riiIi).

3 A classical LLL algorithm for modules

In this section we define the notion of reduced basis for module lattices, review the module LLL algorithm
of [21], and describe our modification. We begin with an informal description and justification for the notion
of reduced basis. Let [b1, . . . ,bn] be a basis and [b∗1, . . . ,b

∗
n] its Gram-Schmidt orthogonalization. The goal

of the LLL basis reduction algorithm is, given an arbitrary basis for a lattice, find an equivalent basis such
that the length of the orthogonalized vectors ‖b∗i ‖ does not decrease too fast, say ‖b∗i ‖ ≤ α · ‖b∗i+1‖ for
some factor α ≥ 1. This technical property is key to prove that the vectors in an LLL reduced basis are not
too long, relative to the successive minima of the lattice. For example, since mini ‖b∗i ‖ is a lower bound on
the first minimum λ1 (the length of the shortest nonzero lattice vector), it follows that ‖b‖ ≤ αn−1 · λ1,
i.e., the first vector in an LLL reduced basis is an approximately shortest lattice vector, with approximation
factor γ = αn−1.

There are various generalizations of the notion of LLL reduced basis, which consider blocks of consecutive
basis vectors, rather than single vectors. The one that is most relevant to the reduction of module lattices is
Rankin reduction [14]. The idea is to split the lattice basis into n/d blocks [B1, . . . ,Bn/d], each consisting
of d vectors,2 and require that3 det(B∗i ) ≤ αd · det(B∗i+1), where B∗i be the projection of the ith block Bi

orthogonal to the previous vectors [B1, . . . ,Bi−1]. In other words, the determinants of the orthogonalized
blocks should not decrease too quickly. Similarly to LLL reduction, this allows to show, for example, that the
first block B1 = B∗1 is a relatively dense d-dimensional sublattice, and (by Minkowski’s theorem) will contain
a relatively short nonzero lattice vector. Notice how in the case of 1-dimensional blocks, the determinant of
the lattice generated by b∗i equals precisely the length of the vector. So, Rankin reduction generalizes the
standard notion of LLL reduction to blocks of size larger than 1.

Now, moving to module lattices over a number field K degree d, we recall that each ring element c ∈ OK
(or more generally, any fractional ideal of OK) can be regarded (via the canonical embedding) as a d-
dimensional lattice. Similarly, a module lattice of rank n over K can be seen as a lattice in dimension nd,
which each coordinate (corresponding to a ring element) describing a d-dimensional sublattice. Moreover,
the determinant of this sublattice is precisely the algebraic norm of the ring element (or associated fractional
ideal in the cases of a pseudo-basis). So, the reduction condition requires the (orthogonalized) basis vectors
(over the ring) to have algebraic norms that do not decrease too quickly. This is made more precise in the
definitions given in the following subsection.

2 More generally, one may consider blocks of different size, often alternating between two values d0, d1, d0, d1, . . .,
e.g., as in the case of slide reduction [15].

3 The name “Rankin reduction” is motivated by this condition, as the worst case (over all lattices) of the normalized
ratio between det(B∗i ) and det(B∗i+1) is the so-called Rankin constant, a generalization of Hermite constant to
larger block sizes.
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We remark that the problem of finding the d-dimensional sublattice with smallest determinant (the so-
called “densest sublattice problem”) is a very hard computational problem in general. In fact, the fastest
known algorithm to solve it in general has running time dO(dn) [11]. When n = 2d (as in the case of Rankin
reduction with block size d, or module LLL on rings of rank d), this is exponential in d2, much slower than
the single exponential time 2O(d) required to solve other more standard lattice problems, like SVP and CVP.
Interestingly, in the case of module lattices, the (quantum) lattice reduction algorithm of [21] only requires
to make a polynomial number of calls to an oracle that solves CVP in a fixed lattice in dimension d2. This
is interesting on two fronts: first, this allows to solve the problem in time 2O(d2) (e.g., using the single
exponential time algorithm of [33]), which is already slightly faster than general solutions to the densest

sublattice problem requiring time dO(d2). More importantly, the fact that the CVP lattice is fixed (and
depends only on the number field K) leaves open the possibility that CVP in this lattice may be solvable in

time much faster than 2O(d2), perhaps even in polynomial time.
The goal of the algorithm presented in this section is to show that an efficient solution to CVP in this

fixed lattice leads not just to a quantum algorithm to compute reduced bases of module lattices (as given
in [21]), but a fully classical algorithm.

3.1 A quick overview of the LLL algorithm for modules in [21]

In [21], the authors present an algorithm that efficiently finds short vectors in modules of rank n when given
access to an oracle which finds short vectors in modules of rank 2. Their algorithm, which we refer to as
Module-LLL in this paper, closely follows the structure of the well known LLL algorithm for classical lattices
adapting the latter to the more complex algebraic structure of module lattices. A major obstacle addressed
in their work is adapting Gauss’ algorithm to modules of rank 2. Indeed, the classical LLL algorithm operates
on 2-dimensional lattices by iteratively using a divide-and-swap algorithm to shorten basis vectors. A similar
strategy is used in Module-LLL which we recall in Algorithm 1.

Algorithm 1 Module-LLL from [21]

Input: a scaled size-reduced pseudo-basis ((Ii,bi))i≤n of a module M ⊆ Km.
Output: an LLL-reduced pseudo-basis of M .

1: while there exists i < n such that αKN (ri+1,i+1Ii+1) < N (ri,iIi) do
2: Define Mi a rank-2 module spanned by the pseudo-basis ((Ii,ai), (Ii+1,ai+1)) where ai = (ri,i, 0)T and

ai+1 = (ri,i+1, ri+1,i+1)T .
3: Find si ∈Mi \ {0} such that N (si) ≤ γdN · λN1 (Mi). . Oracle-based Divide-and-swap
4: Set si+1 = ai if it is linearly independent with si and si+1 = ai+1 othewise.
5: Call the algorithm of [21, Lemma 2.8] with inputs ((Ii,ai), (Ii+1,ai+1)) and (si, si+1). Let ((I ′i,a

′
i), (I

′
i+1,a

′
i+1))

denote the output.
6: Update the basis ideals Ii ← I ′i, Ii+1 ← I ′i+1 and the basis vectors [bi|bi+1] ← [bi|bi+1]A−1A′ where

A = [ai|ai+1] and A′ = [a′i|a′i+1].
7: Update the current pseudo-basis by scaling the ideals (algorithm 3.2 in [21]) and size-reducing the pseudo-basis

(algorithm 3.3 in [21]).
8: end while
9: return ((Ii,bi))i≤n.

We recall the notion of LLL-reduced basis for module lattices given in [21].

Definition 2 (LLL-reducedeness of a pseudo-basis from [21, Definition 3.1]). A module pseudo-
basis ((Ii, bi))i≤n is called LLL-reduced with respect to a parameter αK ≥ 1 if, for all i < n, we have

N (ri+1,i+1Ii+1) ≥ 1

αK
· N (ri,iIi),
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where R = (ri,j)i,j refers to the R-factor of the matrix basis B defined previously.

Similar results than for the classical LLL algorithm on the length of the shortest vector in an LLL-reduced
basis can be given.

Lemma 2 (From [21, Lemma 3.2]). Assume that ((Ii, bi))i≤n is an LLL-reduced pseudo-basis of a module
M . Then

N (I1)N (b1) ≤ α(n−1)/2
K · (N (det

KR
M))1/n

and

N (I1)N (b1) ≤ αn−1K · λN1 (M).

Step 7 of Algorithm 1 scales and size-reduces the intermediate pseudo-bases during the execution of the
algorithm. We recall these definitions.

Definition 3 (From [21, Definition 3.5]). A pseudo-basis ((Ii, bi))i≤n with Ii ⊂ K and bi ∈ Km
R for all

i 6= n is said scaled if, for all i ≤ n,

OK ⊂ Ii, N (Ii) ≥ 2−d
2

∆
−1/2
K and ||rii|| ≤ 2d∆

1/2d
K N (riiIi)

1/d.

It is said size-reduced if ||rij/rii|| ≤ (4d)d∆
1/2
K for all i < j < n.

We refer to Algorithm 3.2 and Algorithm 3.3 in [21] for details.

Under the assumption there is an oracle that solves CVP in lattices LK during the call to the divide-
and-swap algorithm, Module-LLL runs in polynomial time in the input bit-length.

Theorem 4 (Adapted from [21, Theorem 3.8]). Assume the existence of an oracle O used in the im-
plementation of the divide-and-swap algorithm for some parameter γN . Assume that αK > γ2dN 2d∆K . Given
as input a scaled and size-reduced pseudo-basis of a module M ⊆ Km, Module-LLL presented in Algorithm
3.4 in [21] outputs an LLL-reduced pseudo-basis of M in time polynomial in log∆K , 1/ log(αK/(γ

2d
N 2d∆K))

and the input bit-length

Module-LLL relies on quantum operations, more precisely in the divide-and-swap algorithm. The algo-
rithm can be dequantized if a decomposition of every input ideal is known, see [21, Section 5]. In particular,
if the input module is free, then all the ideals of the pseudo-basis are the trivial ideal OK and thus a decom-
position of them is trivially known. Hence, in this particular case, Module-LLL runs in classical polynomial
time.

Because the only potentially quantum part of Module-LLL is the divide-and-swap algorithm it is actually
sufficient that the input to the divide-and-swap algorithm is a free module in order to dequantize the entire
algorithm. In the following section, we show how to transform a rank-2 module, input to step 3 of Algorithm 1,
into a free rank-4 module and adapt Module-LLL to obtain a fully classical algorithm regardless of the initial
input module.

3.2 Obtaining a free module of rank-4

Whereas OK is not necessarily a Euclidean domain, it is however a Dedekind domain and thus given a
pseudo-basis ((Ii,bi))i≤n, every ideal Ii ⊂ OK can be generated by two elements, i.e., Ii = (αi, βi) by
Theorem 2 for αi, βi ∈ OK . Assume we are given a pseudo-basis ((I1,b1), (I2,b2)) of a rank-2 module M2.
Moreover, we know that there exist α1, α2, β1, β2 ∈ OK such that I1 = (α1, β1) and I2 = (α2, β2). We want
to use the representation of these ideals to construct a rank-4 free module M4.
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What is a pseudo-basis of M4? A basis of a free module is given by a pseudo-basis ((Ii,bi)) where all the
ideals Ii are the trivial ideal OK . We construct a rank-4 free module with the following pseudo-basis for an
integer ε > 0 which we discuss later. The pseudo-basis is given by the tuple of pairs

{(OK , (α1b1, 0, 0)), (OK , (α2b2, 0, 0)), (OK , (β1b1, ε, 0)), (OK , (β2b2, 0, ε))}.

The basis can be represented by the following 4× 4 matrix (row-vectors):

B4 =


α1b1 0 0
α2b2 0 0
β1b1 ε 0
β2b2 0 ε


It remains to prove that the vectors are indeed KR-linearly independant in Km

R for m > 0 and for ε > 0.
Recall that because KR is a ring and not a field, the vectors are said to be KR-linearly independant if and
only if there is no non-trivial way to write the zero vector as a KR-linear combination of the vectors. Consider
xi ∈ KR and the sum

x1(α1b1, 0, 0) + x2(α2b2, 0, 0) + x3(β1b1, ε, 0) + x4(β2b2, 0, ε) = 0

The vectors b1 and b2 are non-zero by construction. Indeed, the vectors b1,b2 are exactly the vectors
given as inputs to the divide-and-swap algorithm in Algorithm 1 and are equal to b1 = (rii, 0) and b2 =
(ri,i+1, ri+1,i+1). We thus directly have x3 = x4 = 0 as ε > 0. We are left with the equation x1α1b1+x2α2b2 =
0. We also know that ((I1,b1), (I2,b2)) is a pseudo-basis for M2 and thus the vectors b1 and b2 are KR-
linearly independent. As the generators α1, α2 6= 0, we then have x1 = x2 = x3 = x4 = 0.

3.3 A fully-classical LLL algorithm

Module-LLL runs in classical polynomial time only if the input module has known ideal decomposition (and
in particular if the input module is free). We present in this section a classical polynomial-time algorithm
that takes as input any module without the restriction that one must know the ideal decomposition of it
to run classically. In order to remove the quantum computations performed in Module-LLL, we substitute
the (potentially quantum) divide-and-swap algorithm implemented in step 3 of Algorithm 1 with a call to
Module-LLL itself but with a free (rank-4) module as input.

Indeed, because the rank-4 module M4 constructed in Section 3.2 is free, one can run the Module-LLL
algorithm classically with input the pseudo-basis of M4 in order to extract a short vector si ∈M2 \ {0}, see
Section 4.1. The output of this call to Module-LLL is an LLL-reduced pseudo-basis of M4. We provide the
pseudo-code for our fully-classical Module-LLL algorithm in Algorithm 2 which heavily relies on Algorithm
3.4 in [21]. The main differences are steps 3-4 where we expand the rank-2 module Mi to a free rank-4 module
M̃i and call Module-LLL classically instead of using [21, Algorithm 4.3], i.e., divide-and-swap (for which we
do not know a generalization to rank-4 modules).

4 Analysis of fully-classical Module-LLL

In this section, we provide an analysis of our algorithm. In particular we discuss technicalities related to the
ouptut basis of Module-LLL ran on our free rank-4 module and the relation between short vectors in rank-4
modules and rank-2 modules. We also discuss the approximation factor and the running time of our fully
classical Module-LLL algorithm.
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Algorithm 2 Fully-classical Module-LLL

Input: a scaled size-reduced pseudo-basis ((Ii,bi))i≤n of a module M ⊆ Km.
Output: an LLL-reduced pseudo-basis of M .

1: while there exists i < n such that αKN (ri+1,i+1Ii+1) < N (ri,iIi) do
2: Define Mi a rank-2 module spanned by the pseudo-basis ((Ii,ai), (Ii+1,ai+1)) where ai = (ri,i, 0)T and

ai+1 = (ri,i+1, ri+1,i+1)T .
3: Expand Mi into a rank-4 free module M̃i as explained in Section 3.2.
4: Call Module-LLL (classically) with input the pseudo-basis of M̃i to extract a short vector si ∈M2 \ {0}.
5: Set si+1 = ai if it is linearly independent with si and si+1 = ai+1 otherwise.
6: Obtain a better basis by using the algorithm presented in [13, Theorem 4] with inputs ((Ii,ai), (Ii+1,ai+1))

and (si, si+1). Let ((I ′i,a
′
i), (I

′
i+1,a

′
i+1)) denote the output.

7: Update the basis ideals Ii ← I ′i, Ii+1 ← I ′i+1 and the basis vectors [bi|bi+1] ← [bi|bi+1]A−1A′ where
A = [ai|ai+1] and A′ = [a′i|a′i+1].

8: Update the current pseudo-basis by scaling the ideals (algorithm 3.2 in [21]) and size-reducing the pseudo-basis
(algorithm 3.3 in [21]).

9: end while
10: return ((Ii,bi))i≤n.

4.1 Module-LLL with input a pseudo-basis of a free rank-4 module

Let us start by discussing Step 4 of Algorithm 2 in which we call Module-LLL (Algorithm 1) with input a
pseudo-basis of a free rank-4 module. For ease of comprehension, let us consider one iteration of Algorithm 2
by fixing i and let M2 denote the rank-2 module defined in Step 2 and M4 the rank-4 module defined in
Step 3. The module M2 defined in Step 2 is spanned by the pseudo-basis {(I1, (rii, 0)), (I2, (ri,i+1, ri+1,i+1))}.
Because M4 is free, we know there exists a pseudo-basis for which all the ideals are equal to OK and we
provided such a basis in Section 3.2. The vectors of this basis are given by the lower-triangular matrix

B4 =


α1rii 0 0 0
α2ri,i+1 α2ri+1,i+1 0 0
β1rii 0 ε 0
β2ri,i+1 β2ri+1,i+1 0 ε


with determinant detB4 = α1α2riiri+1,i+1ε

2 for a small value of ε > 0 which we will discuss in Section 4.2.
Let us now consider the output of Module-LLL. The algorithm outputs a reduced pseudo-basis of M4

of the form {(Ji,bredi)}i≤4 where the ideals Ji are most likely not all equal to OK anymore. Indeed, the
operations occuring during the execution of Module-LLL on the ideals are likely to result in a pseudo-basis
where some, if not most, of the ideals are not equal to OK anymore. This is the case for example in an
HNF computation (and note that Module-LLL performs a BCP-HNF computation (a generalization of the
Hermite Normal Form, HNF, to OK-modules contained in Km, see [9, Chapter 1.4]) in Step 6 by calling the
algorithm of [13, Theorem 4].)

Moreover, as we will argue in Section 4.2, there exists an upper bound on the value of ε for which we
can predict the nature of the two first vectors of the reduced pseudo-basis. Indeed, we will see that for ε > 0
small enough, the expected reduced pseudo-basis will have reduced basis vectors Bred = (bredi

)i≤4 of the
form

Bred =


0 0 εα1 0
0 0 0 εα2

c0 c1 εc2 εc3
c4 c5 εc6 εc7


for coefficients ci ≥ 0. Seeing that the vectors (0, 0, εα1, 0) and (0, 0, 0, εα2) belong to the lattice spanned
by B4 is easy. Indeed, multiplying the first vector of B4 by −β1 and adding to it α1 times the third one
produces the vector (0, 0, εα1, 0). Similarly, adding −β2 times the second vector of B4 to α2 times the fourth
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produces the vector (0, 0, 0, εα2). Both these vectors will appear in the output pseudo basis of Module-LLL
if ε is small enough. Again, the value of ε for which we are garanteed that these two vectors appear as the
two shortest vectors in the reduced pseudo-basis will be discussed in the next section.

Extracting a short vector of M2. In order for Module-LLL to proceed, one needs to extract from the reduced
pseudo-basis of M4 a short vector of M2. Indeed, Module-LLL finds a vector si ∈ M2 \ {0} such that
N (si) ≤ γdN · λN1 (M2) (in step 3 of Algorithm 1) and our algorithm requires a similar short vector. We will
now argue that running Module-LLL on M4 actually finds a similar vector si. As we will see in the next
section, for a small enough value of ε, the sublattice spanned by

B′red =

(
0 0 εα1 0
0 0 0 εα2

)
appears in the reduced pseudo-basis (as shortest vectors) of M4. It is easy to see that if one considers the
shortest vector in M4 outputted by Module-LLL, then its projection on the rank-2 module M2 corresponds
to the zero vector (the first two coordinates). One possibility would be to choose the third vector in the
reduced pseudo-basis of M4, say v3 = (c0, c1, εc2, εc3) and consider its projection si = (c0, c1) ∈M2 \ {0}. If
this projected vector can be shown to be a short vector in M2 (by setting an appropriate value of ε), then
the algorithm can proceed with this choice of si. This would result in a classical Module-LLL with a slightly
worst approximation factor.

However, one does not necessarily need to consider the third vector in the output pseudo-basis of Module-
LLL on input M4. Indeed, directly from the construction of M4, one can note that M2 can be obtained by
projection of M4. Moreover, we know from the properties of LLL-reduced pseudo-bases that if a pseudo-basis
is LLL-reduced, then so is a projection of it. Hence running Module-LLL (classically) on M4 will then find
a short vector in M2 as expected.

4.2 Discussion on the choice of ε

In this section, we provide an upper bound on the value of ε introduced in the construction of the free
module M4 such that for ε smaller than this bound, the vectors (0, 0, εα1, 0) and (0, 0, 0, εα2) appear as the
two shortest vectors in the Module-LLL reduced pseudo-basis of M4.

First, recall that the pseudo-basis of M4 is given by the basis vectors represented by the matrix B4 along
with the coefficient ideals OK :

B4 =


α1b1 0 0
α2b2 0 0
β1b1 ε 0
β2b2 0 ε


OK
OK
OK
OK

When running Module-LLL classically on M4, we expect to obtain the reduced pseudo-basis {(Ji,bredi
)}i≤4

explicited in Section 4.1 for a small enough value of ε, i.e.,

Bred =


0 0 εα1 0
0 0 0 εα2

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


J1
J2
J3
J4

Let us assume instead that the reduced pseudo-basis of M4 has a vector basis of the form

Bred =


v11 v12 ∗ ∗
v21 v22 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


J1
J2
J3
J4
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with vectors wi = (vi1, vi2, ∗, ∗) for i = 1, 2 and vi = (vi1, vi2) is the projection of wi on the first two
coordinates. In this case, the upper-left quadrant is not equal to zero. We want to provide a bound on ε
for which this situation is not possible and we necessarily obtain an upper-left quadrant with coefficients all
equal to 0.

Consider the two sublattices Pv and Pw of M4 spanned respectively by the pseudo-bases {(Ji,vi)}i=1,2

and {(Ji,wi)}i=1,2 explicited just above. We know that

N (det
KR

(Pv)) ≤ N (det
KR

(Pw)),

where the algebraic norm of these determinants can be seen as the volume of the rank-1 modules detKR(Pv)
and detKR(Pw). The goal is to show that N (detKR Pv) = 0, and thus prove that the coefficients in the
upper-left quadrant are all equal to 0. Indeed, this would show that our sublattice Pv has volume equal to
zero, and thus could only be spanned by zero-vectors.

Let us know prove that using the properties of Module-LLL, if Pw corresponds to the sublattice spanned
by the two shortest vectors in the Module-LLL reduced pseudo-basis, then we have

N (det
KR

(Pw)) ≤ α2
KN (det

KR
(M4))1/2.

Proof. Recall that considering the QR-decomposition, one can write detKR M4 =
∏4
i=1 riiIi. We would like

to bound the algebraic norm of the determinant of Pw, the sublattice spanned by the first two vectors. Let
∆ = N (detKR(M4)) = N (

∏
i riiIi) and ∆i = N (riiIi) such that we have ∆ =

∏
i∆i. From the properties

of Module-LLL, we know that

∆1 = N (w1)N (J1) ≤ α3/2
K ∆1/4.

If we project and remove the first vector w1, the pseudo-basis remains Module-LLL reduced. The first vector
of this new basis is w2 with coefficient ideal J2. Then again by the properties of Module-LLL, we have that

∆2 ≤ αK
(
∆

∆1

)1/3

.

Hence, by multiplying powers of these two equations we obtain

∆2
1∆

3
2 ≤ α3

Kα
3
K∆

1/2

(
∆

∆1

)
,

which results in the bound

∆1∆2 = N (det
KR

Pw) ≤ α2
KN (det

KR
M4)1/2.

Recall that M2 is the rank-2 module with pseudo-basis with vectors (b1,b2). Let us consider different
cases depending on the rank of Pv.

– If the rank is equal to 2: note that Pv ⊆ M2 is also a sublattice of M2 of same rank in this case.
Hence, we have that

N (det
KR

Pv) ≥ N (det
KR

M2).

Now, suppose we enforce the condition N (detKR M2) > α2
KN (detKR(M4))1/2. Then, since by the prop-

erties of Module-LLL, we know that N (detKR(Pw)) ≤ α2
KN (detKR(M4))1/2, this would imply that

N (detKR(Pw)) < N (detKR M2). This last inequality leads to a contradiction since we already know
that N (detKR(Pv)) ≤ N (detKR(Pw)) and N (detKR Pv) ≥ N (detKR M2). Thus, setting the condition
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N (detKR M2) > α2
KN (detKR(M4))1/2 implies Pv cannot be of rank 2. This condition can be re-written

(recalling that b1 = (rii, 0) and b2 = (ri,i+1, ri+1,i+1)) as

N (det
KR

(M2)) = |N (rii)||N (ri+1,i+1)|N (I1)N (I2)

> α2
KN (det

KR
M4)1/2

= α2
K

√
|N (α1)| · |N (α2)| · |N (rii)| · |N (ri+1,i+1)| · ε2d.

which translates into the following upper bound for ε:

ε <

(
1

α2
K

√
|N (ri,iri+1,i+1)|
|N (α1α2)|

N (I1)N (I2)

)1/d

It remains to eliminate the case where Pv could be of rank 1.
– If the rank is equal to 1: In thise case, we know that Pv ⊆M2 is defined by a single non-zero vector

v 6= 0 along with a coefficient ideal J . We start by considering the first vector of the Module-LLL reduced
pseudo-basis. We assume this first vector is of the form v1 = (v11, v12) and we want to give a bound on
ε such that v11 = v12 = 0. We know that v1 ∈M2. We set the following bound on ε by imposing

γdN · N ((0, 0, εα1, 0)) = γdN · εd|N (α1)| ≤ λN1 (M2) ≤ N (v1),

where γdN is the approximation factor with respect to the algebraic norm. This would necessarily imply
that v1 = (0, 0). Recall that we have the lower bound λN1 (M2) ≥ mini=1,2N (riiIi). We can thus bound
ε using the following inequality:

γdN · εd|N (α1)| ≤ min (N (r11I1),N (r22I2)) .

This results in the following bound for ε:

ε ≤
(

min (N (r11I1),N (r22I2))

γdN · |N (α1)|

)1/d

.

Let us know focus on the second vector v2. Similarly as before, we start by assuming that v2 6= (0, 0). We
want to show that the sublattice Pε with pseudo-basis {(J1, (0, 0, εα1, 0)), (J2, (0, 0, 0, εα2))} constitute
the upper part of the reduced pseudo-basis of M4. Let us assume by contradiction that Pw with pseudo-
basis {(J1, (0, 0, εα1, 0)), (J2, (v21, v22, ∗, ∗))} is instead (assuming the previous bound on ε for the shortest
vector). Both Pw and Pε are sublattices of M4 of rank-2. Moreover, we can lower-bound the volume of
Pw by ignoring the ∗ coordinates and thus have

N (det
KR

Pw) = ∆1∆2 ≥ εd|N (α1)||N (v2)||N (J1)||N (J2)|.

Additionally, we have
N (det

KR
Pε) = ε2d|N (α1)||N (α2)||N (J1)||N (J2)|.

By contradiction we assumed that N (detKR Pw) < N (detKR Pε). This implies the following inequalities

εd|N (α1)||N (v2)||N (J1)||N (J2)| ≤ ∆1∆2 ≤ ε2d|N (α1)||N (α2)||N (J1)||N (J2)|.

This inequality is then equivalent to
|N (v2)|
|N (α2)|

≤ εd.

Recall that we have the bound N (v2) ≥ λN1 (M2) ≥ mini(N (riiIi)). It then suffices to set

ε ≤
(

min(N (r11I1),N (r22I2))

|N (α2)|

)1/d

to reach a contraction. We then necessarily have N (detKR Pε) ≤ N (detKR Pw) and thus v21 = v22 = 0.
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We provided an upper bound on the ε value necessary for our algorithm to succeed. In order for Module-
LLL to run in polynomial time not only do we need to make sure the ε value remains polynomially bounded,
but it also has to be chosen not too small.

4.3 Approximation factor of fully-classical Module-LLL

Module-LLL from [21] gives a polynomial-time algorithm to find LLL-reduced basis of a (scaled and size-
reduced) pseudo-basis for a module M assuming that step 3 (divide-and-swap) is implemented with some
algorithm O and approximation factor γ. This algorithm O makes use of an oracle that solves γ-SVP in
rank-2 modules. The approximation factor of Module-LLL is then given in the following result.

Theorem 5 (From [21, Theorem 3.9]). Let γ ≥ 1 and assume that an LLL-reduced Z-basis of OK is
known. Then there exists a polynomial-time reduction from solving γ′-SVP in rank-n modules (w.r.t ||.||) in
Kn to solving γ-SVP in rank-2 modules in K2 where

γ′ =
(

2γ∆
1/d
K

)2n−1
.

This reduction runs in time polynomial in log∆K and the bit-length of the input pseudo-basis.

Remark 2. The above theorem is given with respect to the Euclidean norm. If expressed using the algebraic

norm, the oracle computes a γdN =
(
γ ·∆1/2d

K

)d
approximation factor of λN1 (M) as can be seen using

Lemma 1 and the arithmetic-geometric inequality. This results in a γ
′d
N = γ

′d∆
1/2
K = (2γ)

d(2n−1)
∆

2n− 1
2

K

approximation factor for Module-LLL with respect to the algebraic norm.

In fully-classical Module-LLL presented in Algorithm 2, Step 4 is implemented using Module-LLL with
a rank-4 module as input. However, this step of the algorithm still finds a short vector si ∈M2 \ {0}, more
precisely such that N (si) ≤ γdN ·λN1 (M2), as explained in Section 4.1. Hence the approximation factor of our
fully-classical Module-LLL remains the same.

4.4 Running time of fully-classical Module-LLL

As stated in Theorem 4, the algorithm Module-LLL runs in polynomial time in log∆K , 1/ log(αK/γ
2d
N 2d∆K)

and the input bit-length given an oracle-based algorithm for the divide-and-swap algorithm and a sufficiently
large αK . In order for our algorithm to maintain a polynomial running time, one must make sure that the
bitsize of the quantities introduced in fully-classical Module-LLL remain polynomially bounded. We have seen
in Section 2 that the size of the generators a, b or equivalently the representation of the ideals I = (a, b) have
indeed bitsize polynomially bounded in terms of log∆K , logN (I) and log k, where k is the smallest positive
integer such that kI ⊂ OK , see Theorem 3. Similarly, the bitsize of the value ε introduced in the construction
of the basis of the free module is polynomially bounded in terms of logN (I) and logN (αi), logN (ri,j).

The rest of the analysis remains the same as in [21] and our algorithm runs in polynomial time in
log∆K , 1/ log(αK/γ

2d
N 2d∆K) and the input bit-length, just like Module-LLL.

5 Open questions and directions

In this work, we have replaced Step 3 of Module-LLL presented in [21, Algorithm 3.4] by a call to Module-LLL
itself with a free module of rank 4 as input in order to run the entire algorithm classically. In Module-LLL,
step 3 corresponds to the divide-and-swap algorithm which takes as input a pseudo-basis for a rank-2 module
M ⊂ K2

R. Unfortunately, no generalization of this algorithm to higher rank modules is provided. Generalizing
divide-and-swap as presented in Algorithm 3.4 in [21] to higher rank modules, for example modules of rank
4, would require among other modifications to adapt the construction of the lattice LK .
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Moreover, note that the divide-and-swap algorithm both in classical and module lattices rely on Euclidean
division. In the case of modules however the ring OK may not necessarily be a Euclidean domain and thus
there are no trivial generalization of the Euclidean division of the integers. Algorithm 4.1 in [21] thus adapts
the Euclidean division over Z to a Euclidean division over OK . The latter (heuristic) algorithm however relies
on solving a CVP instance in a specific lattice LK which only depends on the number field K, as already
mentioned in the paper. Finding an efficient CVP solver for the specific lattices presented in [21] is an open
question which would allow our classical Module-LLL to be run in practice.

Another interesting direction would be to obtain a fully proven LLL algorithm for modules. Indeed, both
our algorithm and Module-LLL rely on heuristics (the same ones). Obtaining a fully proven algorithm would
require in particular a much better understanding of particular lattices involved in the algorithm such as the
log-unit lattice and the lattice of class group relations between ideals of small algebraic norms both used to
construct the lattice LK .

Finally, we know that cryptanalysis of lattice-based schemes usually rely on the block-variant of LLL,
namely BKZ, for which we have trade-offs between the quality of the output and the running time. Having
a module-version of BKZ would highly contribute to better analysing the security of schemes relying on
structured lattices. It is however unclear whether a Module-BKZ would output a basis of same quality as
classical BKZ for a fixed block-size given the constraint brought by the algebraic structure. Work in that
direction was suggested in [34] where the authors propose a block-variant of Module-LLL based on slide-
reduction. However, similarly as for Module-LLL, theoretical constraints still prevents the algorithm to be
implemented and run for cryptographic relevant instances.
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