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Abstract

Differential obliviousness (DO) is a privacy notion which guarantees that the access patterns
of a program satisfies differential privacy. Differential obliviousness was studied in a sequence of
recent works as a relaxation of full obliviousness. Earlier works showed that DO not only allows
us to circumvent the logarithmic-overhead barrier of fully oblivious algorithms, in many cases,
it also allows us to achieve polynomial speedup over full obliviousness, since it avoids “padding
to the worst-case” behavior of fully oblivious algorithms.

Despite the promises of differential obliviousness (DO), a significant barrier that hinders its
broad application is the lack of composability. In particular, when we apply one DO algorithm
to the output of another DO algorithm, the composed algorithm may no longer be DO (with
reasonable parameters). More specifically, the outputs of the first DO algorithm on two neigh-
boring inputs may no longer be neighboring, and thus we cannot directly benefit from the DO
guarantee of the second algorithm.

In this work, we are the first to explore a theory of composition for differentially oblivious
algorithms. We propose a refinement of the DO notion called (ϵ, δ)-neighbor-preserving-DO, or
(ϵ, δ)-NPDO for short, and we prove that our new notion indeed provides nice compositional
guarantees. In this way, the algorithm designer can easily track the privacy loss when composing
multiple DO algorithms.

We give several example applications to showcase the power and expressiveness of our new
NPDO notion. One of these examples is a result of independent interest: we use the com-
positional framework to prove an optimal privacy amplification theorem for the differentially
oblivious shuffle model. In other words, we show that for a class of distributed differentially
private mechanisms in the shuffle-model, one can replace the perfectly secure shuffler with a DO
shuffler, and nonetheless enjoy almost the same privacy amplification enabled by a shuffler.

∗Author order is randomized. This paper subsumes part of the results in an unpublished manuscript [ZS22] written
by a subset of the authors.



1 Introduction
Differential Obliviousness (DO), defined by Chan, Chung, Maggs, and Shi [CCMS19], is a privacy
notion for hiding a program’s memory access patterns. In comparison with the classical notion
of full obliviousness [GO96,Gol87,SCSL11], DO is a relaxation which requires that the program’s
access patterns satisfy only differential privacy (DP) [DMNS06], as opposed to a simulation-based
notion like in full obliviousness [GO96, Gol87, SCSL11]. Several recent works [CCMS19, BKK+21,
CZSC21,BNZ19,GKLX22] explored DO and illustrated its benefits:

• Chan et al. [CCMS19] showed a fundamental separation in terms of efficiency between DO and
full obliviousness. Specifically, for a class of common tasks such as compaction, merging, and
range query data structures, while full obliviousness is inherently subject to at least Ω(logN)
multiplicative overhead [LSX19, JLN19, AFKL19, FHLS19] (in comparison with the insecure
baseline), using DO allows us to reduce the overhead to only O(log logN) where N denotes the
data size.

• Not only does DO allow us to overcome the logarithmic barrier for fully oblivious algorithms,
another important aspect that is sometime overlooked is that DO allows us to overcome the
“worst-case barrier” of fully oblivious algorithms [CZSC21], which leads to polynomial speedup
over full obliviousness in many applications. Specifically, to achieve full obliviousness, we must
pad the running time and output length to the worst case over all possible inputs (of some fixed
length), whereas DO algorithms may reveal the noisy running time or output length. In many
real-world scenarios such as database joins [CZSC21], the common case enjoys much shorter
runtime and output length than the worst case. For exactly this reason, there is an entire line
of work that focuses on designing algorithms optimized for the common rather than the worst
case [Rou20]. In such cases, prior works showed that DO can achieve polynomial speedup over
any fully oblivious algorithm [CCMS19,CZSC21]!

Vanilla DO does NOT lend to composition. Given the promises of DO, we would like to
apply DO to more applications. Unfortunately, the status quo of DO hinders its broad applicability
due to the lack of compositional guarantees. Specifically, when designing algorithms, it is customary
to compose several algorithmic building blocks together. In such cases, it would be nice to say that
the composed algorithm also satisfies DO with reasonable parameters as long as the underlying
algorithmic building blocks also satisfy DO. Similarly, in some applications, we may need to apply
a DO algorithm to the outcome of another (e.g., the SQL database application below). In such cases,
we also want to be able to track the privacy loss over time. While the original full obliviousness
notion indeed allows such composition, unfortunately, the standard DO notion [CCMS19] does not!

As an explicit example of composition, imagine that we want to build a differentially oblivious
database supporting SQL queries. Consider the following natural SQL query where we want to
select entries from a table which in itself is the result of a previous Select operation1:

Select (id, position) from

(Select (id, dept, position) from Employees where salary > 200K)

where dept = "CS"

To support this query in a differentially oblivious manner, the most natural idea is to use the
DO stable compaction algorithm of Chan et al. [CCMS19] to realize each Select operator. In stable

1Here we write the two Select statements in a single query for convenience, although in a practical interactive
database, it could be that the first Select query is interactively issued and its result stored as a temporary table,
and then the second Select query is interactively issued.
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compaction, we obtain an input array where each element is either a real element or a filler, and we
want to output an array containing all the real elements of the input and preserving the order they
appear in the input. Unfortunately, this approach completely fails since Chan et al. [CCMS19]’s
DO compaction algorithm does NOT compose.

To understand why, we will introduce some basic notation. Let M : X → Y denote an algorithm,
which takes in an input x ∈ X , and produces an output y ∈ Y . Consider some neighboring notion
∼X defined over the input domain X . For example, let x, x′ ∈ X be two input arrays/tables where
each entry corresponds to an individual user. One example is Hamming-distance neighboring: we
say that x ∼X x′ iff the Hamming distance of x and x′ is at most 1 — this is also the neighboring
notion adopted by the DO compaction algorithm of Chan et al. [CCMS19]. The standard DO
notion requires the following.

Definition 1.1 (Vanilla differential obliviousness [CCMS19]). We say that an algorithm M satisfies
(ϵ, δ)-DO w.r.t. some symmetric relation ∼X iff for any x, x′ ∈ X such that x ∼X x′, for any subset
S,

Pr[ViewM(x) ∈ S] ≤ eϵ · Pr[ViewM(x′) ∈ S] + δ, (1)

where ViewM(x) is a random variable denoting the the memory access patterns observed when
running the algorithm M over the input x.

Now, imagine that we have two DO mechanisms M1 : X1 → X2 and M2 : X2 → Y (e.g., think
of M1 and M2 as Chan et al.’s DO compaction algorithm). We want to apply M2 to the output
of M1, and hope that the composed mechanism M2 ◦ M1(·) satisfies DO. By the DO definition,
we know that M2 offers indistinguishability for two neighboring inputs from X2. Now, consider
two neighboring inputs x ∼X1 x′ from X1, and consider running the mechanism M1 over x and x′,
respectively. Unfortunately, the vanilla DO notion (of M1) does not guarantee that the outputs
M1(x) and M1(x

′) are also neighboring. Therefore, we may not be able to benefit from the DO
property of M2!

We stress that this is not just a deficiency of the vanilla DO definition. Natural designs of DO
algorithms often do not guarantee that the outputs obtained from two neighboring inputs must be
neighboring too. For example, consider the stable compaction algorithm of Chan et al. [CCMS19].
Given two input arrays x = (1, 2,⊥, 3, 4) and x′ = (⊥, 2,⊥, 3, 4) with Hamming distance 1 where
⊥ denotes a filler, the compacted outputs will be (1, 2, 3, 4) and (2, 3, 4), respectively. Obviously,
the outputs have Hamming distance more than 1. One observation is while the outputs have
large Hamming distance, the edit distance is only one — unfortunately, Chan et al.’s compaction
algorithm provides privacy only for Hamming-distance neighboring and the guarantees do not
generalize to edit-distance neighboring.

DP composition theorems do not work for DO. Since DO is essentially DP applied to the
memory access patterns, a natural question is: can we simply use DP composition theorems to
reason about the composition DO mechanisms? The answer is no because DP composition and
composition of DO mechanisms are of different nature. In DP composition, we have multiple
mechanisms M1, . . . ,Mk where Mi satisfies (ϵi, δi)-DP. The basic DP composition theorem says
that the composed mechanism M(x) := (M1(x), . . . ,Mk(x)) satisfies (

∑k
i=1 ϵi,

∑k
i=1 δi)-DP. Here,

all these mechanisms are applied to the same input x. In DO composition, we want to apply M2

to the output of of M1 instead. More generally, if there are k DO mechanisms M1, . . . ,Mk, we want
to know whether the composed mechanism Mk ◦Mk−1 ◦ . . . , ◦M1(x) = Mk(Mk−1(. . .M1(x))) is also
DO.

Given the status quo, we ask the following natural question:
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Can we have suitable and useful refinements of differential obliviousness (DO) that lend to com-
position?

1.1 Main Contribution: A Theory of Composition for Differential Obliviousness
We are the first to initiate a formal exploration of the composability of differential obliviousness.
In this sense, we make an important conceptual contribution: by laying the groundwork for the
composition of DO algorithms. we hope that our work can allow DO to have wider applicability.

A new, composable DO notion. Our first contribution is to introduce a new, composable
DO notion called Neighbor-Preserving Differential Obliviousness (NPDO) that can be viewed as
a strengthening of the vanilla DO by Chan et al. [CCMS19]. Our NPDO notion is composition
friendly in the following senses:

C1. If M1 satisfies (ϵ1, δ1)-NPDO, and M2 satisfies (ϵ2, δ2)-DO (the vanilla version), then the com-
posed mechanism M2 ◦M1 satisfies (ϵ1 + ϵ2, δ1 + δ2)-DO.

C2. If M1 satisfies (ϵ1, δ1)-NPDO, and M2 satisfies (ϵ2, δ2)-NPDO, then the composed mechanism
M2 ◦M1 satisfies (ϵ1 + ϵ2, δ1 + δ2)-NPDO.

In the above, the first property allows us to apply any vanilla-DO algorithm M2 to the output
of an NPDO algorithm M1, and the composed algorithm M2 ◦M1 would satisfy vanilla DO. The
second property allows us to perform composition repeatedly. In particular, if both M1 and M2 are
NPDO, then the composed algorithm M2 ◦M1 also satisfies NPDO, i.e., it can be further composed
with other DO or NPDO algorithms.

Finding the right notion turned out to be non-trivial. We want to capture the intuition that
“the algorithm should produce neighboring outputs for neighboring inputs”. However, it is not
obvious how to formally capture this idea of “neighbor-preserving” especially when the outputs of
the DO algorithm may be randomized. Indeed, naïve ways to define “neighbor-preserving” turned
out to be too stringent and preclude many natural and interesting algorithms (see Section 3.1). We
instead suggest a more general version that allows us to capture a probabilistic notion of neighbor-
preserving. More specifically, our NPDO notion requires that when one applies the algorithm M on
two neighboring inputs x and x′, the joint distribution of the adversary’s view and the output must
be distributionally close in some technical sense, where closeness is parametrized by some output
neighboring relation. The formal definition is presented below:

Definition 1.2 ((ϵ, δ)-NPDO). We say that an algorithm M : X → Y with view space V satisfies
(ϵ, δ)-NPDO w.r.t. input relation ∼X and output relation ∼Y , if for any x, x′ ∈ X such that
x ∼X x′, for any subset S ⊆ V × Y ,

Pr[ExecM(x) ∈ S] ≤ eϵ · Pr[ExecM(x′) ∈ N (S)] + δ.

In the above, ExecM(x) samples a random execution of M on the input x, and returns the view (i.e.,
access patterns) as well as the algorithm’s output. Further, the notation N (S), i.e., the neighboring
set of S, is defined as follows:

N (S) = {(v, y)|∃(v, y′) ∈ S s.t. y ∼Y y′}
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Expressiveness of our notion. We give various natural examples to demonstrate the expres-
siveness and power of our notion. We believe that our NPDO notion is indeed the right notion,
given the simplicity in form and its broad applicability. Besides the motivating SQL database ex-
ample mentioned earlier in this section, other notable examples include the design of a differentially
oblivious subsampling algorithm, a stable compaction algorithm that is DO w.r.t. edit distance,
and finally, proving an optimal privacy amplification theorem in the differentially oblivious shuffle
model. Since the last application is of independent interest even as a standalone result, we will
discuss the context and the implifications of this result separately in Section 1.2.

Proof of composition theorem. Our second contribution is to prove the composition theorem:

Theorem 1.3 (Composition theorem). The aforementioned compositional properties C1 and C2
hold, as long as the algorithm M1’s view space and output space are finite or countably infinite.

The proof of the composition theorem is rather non-trivial. A key step in the proof is to show
the following equivalence (see Lemma 4.1). An algorithm M : X → Y (with at most countably
infinite view space V and output space Y) satisfies (ϵ, δ)-NPDO w.r.t. ∼X and ∼Y , if and only
if for any neighboring inputs x ∼X x′, there exists an (ϵ, δ)-matching between the the probability
spaces of the random variables ExecM(x) ∈ V × Y and ExecM(x′) ∈ V × Y . In an (ϵ, δ)-matching,
imagine that we have a (possibly countably infinitely large) bipartite graph where one side has
the sources, and the other side has the destinations. Both sources and destinations come from
the space V × Y . If there is an edge of weight w between some source and some destination, we
may imagine that the source wants to send w amount of commodity to the destination. Now,
each source (v, y) ∈ V × Y produces an amount of commodity equal to Pr

[
ExecM(x) = (v, y)

]
,

and each destination (v, y′) can receive at most eϵ · Pr
[
ExecM(x′) = (v, y′)

]
amount of commodity.

Furthermore, a source (v, y) can be matched with a desitination (v′, y′) only if they are neighboring,
i.e., v = v′ and y ∼Y y′. We want to find a matching such that all but δ amount of commodity is
delivered to the destinations. To prove this key equivalence lemma, we are inspired by techniques
used to prove the Hall’s marriage theorem [Hal35,HJ48]. Once we prove the key equivalence lemma,
we then rely on it to prove the composition theorem.

In the main body, we primarily focus on proving the composition theorem for statistical notions
of DO. In Appendix A, we further extend our composition theorem to support suitable, computa-
tional notions of differential obliviousness as well.

Finally, in our composition theorem, we assume that the view and output spaces of M1 are at
most countably infinitely large. This assumption is reasonable given that we primarily focus on the
standard word-RAM model of execution. However, it is indeed an interesting open question whether
we can remove this restriction and prove the composition theorem for uncountably large view and
output spaces — this is useful if we consider RAM machines that can handle real arithmetic.
In Appendix C, we discuss the additional technicalities that one might encounter if we wish to
remove the countable restriction.

1.2 Additional Result: Optimal Privacy Amplification in the DO-Shuffle Model
As an application of our composition framework, we use it to prove an optimal privacy amplifica-
tion theorem in the differentially oblivious shuffle (DO-shuffle) model. Since this result can be of
independent interest on its own, we explain the motivation and context below.

Background: privacy amplification in the shuffle model. To understand the DO-shuffle
model, let us first review some background on the so-called shuffle model. Imagine that a set of
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clients each hold some private data, and an untrusted server wants to perform some analytics over
the union of the clients’ data, while preserving each individual client’s privacy. Specifically, we
want to guarantee that for two neighboring input configurations of the clients denoted x and x′

respectively, the distributions of the server’s view are “close”.
The shuffle model, first proposed by Bittau et al. [BEM+17] in an empirical work, has become

a popular model for implementing distributed differentially private mechanisms. In this model, we
assume the existence of a trusted shuffler that takes the union of all clients’ messages, randomly
permutes them, and presents the shuffled result to the server. The server then performs some
computation and outputs the analytics result. The trusted shuffler guarantees the anonymity of all
messages, such that the server can only see the union of all messages, without knowing the source
of an individual message. Numerous earlier works [BBGN19,CSU+19,Che21,GGK+21,GKMP20]
have shown that the shuffle model often enables differentially private mechanisms whose utility
approximates the best known algorithms in the central model (where the server is trusted and we
only need privacy on the outcome of the analytics). Moreover, several works have shown that
the trusted shuffler can be efficiently implemented either using trusted hardware [BEM+17] or us-
ing cryptographic protocols [Cha81,Abe99,BG12,Cha88,CGF10,APY20,CBM15,SW21,AKTZ17,
OS97,GIKM00,ZZZR05,EB,GRS99,DS18,CL05]. This makes the shuffle model a compelling ap-
proach not just in theory, but also in practical applications such as federated learning [GDD+21].

A particular useful type of theorem in the shuffle model is called a privacy amplification theorem,
which we explain below. Henceforth, let R(xi) be some differentially private mechanism each
client i applies to randomize its own private input xi (often called a locally differentially private
(LDP) randomizer). Roughly speaking, a privacy amplification theorem makes a statement of
the following nature where S(·) denotes the shuffler that outputs a random permutation of the
inputs: if each client’s LDP mechanism R consumes ϵ0 privacy budget, then shuffler’s outcome
S(R(x1), . . . ,R(xn)) satisfies (ϵ, δ)-DP for ϵ = ϵ(ϵ0, δ) ≪ ϵ0, i.e., privacy is amplified for the
overall shuffle-model mechanism. A line of work [CSU+19,EFM+19,BBGN19] focused on proving
privacy amplification theorems for the shuffle model, culminating in the recent work by Feldman
et al. [FMT21], who proved a privacy amplification theorem for any LDP mechanism with optimal
parameters.

Connection between the shuffle model and our DO composition framework. We realize
that shuffle model can be expressed under our DO composition framework. Consider the composed
mechanism S ◦ M1. M1 : X n → Yn is the local randomization mechanism that takes n clients’
inputs (x1, . . . , xn) and outputs the message sequence (y1, . . . , yn) where yi = R(xi). S : Yn → Yn

is the shuffling mechanism that takes the message sequence (y1, . . . , yn) and outputs a random
permutation of the sequence. Since all computation in M1 are done by the clients locally, we define
ViewM1 := ∅. Also, we define the view in S as the same as its output: a random permutation of
(y1, . . . , yn). Then, the view of the server in the shuffle model is exactly the same as the view of
the adversary in S ◦M1. Thus, (ϵ, δ)-shuffle-DP guarantee can be expressed as S ◦M1 is (ϵ, δ)-DO
w.r.t the input neighboring notion ∼X such that x ∼X x′ iff the Hamming distance is at most 1.

Can we replace the shuffler with a DO-shuffler? A couple very recent works [GKLX22,
BHMS, ALU18] have suggested a relaxed shuffler model called the differentially oblivious shuffle
model (or DO-shuffle model for short). Unlike the traditional shuffle model which provides full
anonymity on the clients’ messages, the DO-shuffle model permutes the clients’ messages but possi-
bly allowing some differentially private leakage. More concretely, a DO-shuffle protocol guarantees
that for two neighboring input vectors xH and x′

H corresponding to the set of honest parties, the
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adversary’s views in the protocol execution are computationally or statistically close. The recent
works by Gordon et al. [GKLX22] and Bünz et al. [BHMS] both show that the relaxed DO-shuffle
can be asymptotically more efficient to cryptographically realize than a fully anonymous shuffle. It
would therefore be desirable to use a DO-shuffler as a drop-in replacement of the perfectly secure
shuffle. This raises a couple very natural question:

• If we were to replace the shuffler in shuffle-model differentially private (DP) mechanisms with
a DO-shuffler, can we still get comparable privacy-utility tradeoff?

• More specifically, can we prove an optimal privacy amplification theorem for the DO-shuffle
model, matching the parameters of Feldman et al. [FMT21]?

The pioneering work of Gordon et al. [GKLX22] was the first to explore how to use a DO
shuffler to design distributed differentially private mechanisms. Gordon et al. [GKLX22] showed
two novel results. First, they prove an optimal privacy amplification theorem for the randomized
response mechanism in the DO-shuffle model, with parameters that tightly match the shuffle-model
counterpart. Next, they generalize their first result, and prove a privacy amplification theorem for
any local differentially private (LDP) mechanism — however, this more general result is non-
optimal, since they rely on the non-optimal shuffle-model amplification theorem from Balle et
al. [BBGN19].

Our results. We prove a privacy amplification theorem for any LDP mechanism that achieves
optimal parameters, tightly matching Feldman et al. [FMT21]’s privacy amplification parameters
for the shuffle model. This result improves work of Gordon et al. [GKLX22] in the following senses:
1) we asymptotically improve their privacy amplification theorem for any general LDP mechanism;
and 2) their privacy amplification theorem for the specific randomized response mechanism can be
viewed as a special case of our general theorem. More interestingly, we can prove our result fully
under our DO composition framework. The curx of the proof is to show that the local randomization
mechanism M1 is (ϵ, δ)-NPDO w.r.t the output neighboring notion being exactly the DO-shuffler’s
input neighboring notion. Then, when M1 composes with an (ϵ1, δ1)-DO shuffler, the composed
mechanism will be (ϵ+ ϵ1, δ + δ1)-DO.

Below, we give a more formal statement of our result. Let Φ denote a DO-shuffling protocol.
Given an LDP-randomizer R(·), we use the notation Π(x1, . . . , xn) := Φ(R(x1), . . . ,R(xn)) to
denote the composed protocol where each of the n parties first applies the local randomizer R(·) to
its own private data, and then invokes an instance of the DO-shuffling protocol Φ on the outcome
R(xi).

Theorem 1.4 (Optimal privacy amplification for any LDP mechanism in the DO-shuffle model).
Suppose ϵ0 ≤ log

(
n

16 log(2/δ)

)
. Given n copies of an ϵ0-LDP randomizer R and an (ϵ1, δ1)-DO shuf-

fler Φ resilient to t corrupted parties, the composed protocol Π(x1, . . . , xn) := Φ(R(x1), . . . ,R(xn))
is (ϵ+ ϵ1, δ + δ1)-DO against up to t corrupted parties where

ϵ = O

(
(1− eϵ0)eϵ0/2

√
log(1/δ)√

n− t

)
.

Furthermore, if the DO-shuffler satisfies computational (or statistical, resp.) DO, then the composed
protocol satisfies computation (or statistical, resp.) DO.
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Further, if the underlying DO-shuffle protocol satisfies semi-honest security [GKLX22,ALU18],
then the composed protocol is also secure in a semi-honest corruption model. Similarly, if the un-
derlying DO-shuffle satisfies malicious security (e.g., [ALU18,BHMS]), then the composed protocol
is also secure in a malicious model.

2 Model and Preliminaries
2.1 Model of Computation
We consider a standard Random Access Machine (RAM) model of computation. We assume that
the adversary can observe the memory access patterns of the algorithm, including which locations
are read or written and in which time steps. The adversary cannot see the contents of the memory
tape themselves, which also means that the adversary cannot see the contents of the input and
output.

Format of input and output tape. We explain the format of the input and output tape —
the modeling technicalities are without loss of generality, and matter if we want to mask the true
input and output lengths.

In the most general model, the algorithm may or may not be able to observe the input and output
length, depending on the algorithm. More specifically, we may assume that the input is written
on an input tape — the input tape itself has unbounded length and the actual length of the input
is written on some dedicated location, e.g., address 0, of the input tape. The algorithm can then
read address 0 to learn the actual input length. During the execution, the algorithm may read a
random number of extraneous locations on the input tape, such that the adversary may not be able
to observe the exact input length. Without loss of generality, we may assume that every extraneous
location on the input tape stores a filler symbol ⊥.

Similarly, the algorithm must write the output on an output tape. Again, the algorithm, may
write a random number of extraneous locations on the output tape. For example, if the actual
output length is m, the algorithm may actually write write m′ > m locations on the output tape
where m′ is a random variable, to mask the true output length. To indicate the actual output
length, the algorithm can write the actual output length m on some dedicated location of the
output tape. Therefore, if the algorithm writes to a random number of extraneous locations on the
input tape, the adversary may not be able to observe the exact output length.

2.2 Preliminaries
Mathematical tools. We introduce some basic mathematical tools.

Definition 2.1 (Symmetric geometric distribution). Let α > 1. The symmetric geometric distri-
bution Geom(α) takes integer values such that the probability mass function at k is α−1

α+1 · α
−|k|.

In designing DO algorithms, we often pad the true output length with random fillers such that
the adversary observes a randomized output length. Below, we define a shifted and truncated
geometric distribution which is often used to sample the number of fillers used for padding. In
particular, this distribution always gives non-negative and bounded random variables.

Definition 2.2 (Shifted and truncated geometric distribution). Let ϵ > 0 and δ ∈ (0, 1) and ∆ ≥ 1.
Let k0 be the smallest positive integer such that Pr[|Geom(e

ϵ
∆ )| ≥ k0] ≤ δ, where k0 = ∆

ϵ ln 2
δ+O(1).
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The shifted and truncated geometric distribution G(ϵ, δ,∆) has support [0, 2(k0 + ∆ − 1)], and is
defined as:

min{max{0, k0 +∆− 1 + Geom(eϵ)}, 2(k0 +∆− 1)}

For the special case ∆ = 1, we write G(ϵ, δ) := G(ϵ, δ, 1).

Common distance notions. We will also use a couple common distance notions in our examples,
including Hamming distance and edit distance.

Definition 2.3 (Hamming distance neighboring ∼H). We say that two arrays x, x′ are neighboring
by the Hamming distance iff 1) they have the same length; and 2) they differ in at most one position.

Definition 2.4 (Edit distance neighboring ∼E). We say that two arrays x, x′ are neighboring by
the edit distance iff x′ can be obtained from x through either one insertion, one deletion, or one
substitution. Note that x and x′ need not have the same length.

Notations for randomized execution. Given randomized mechanisms M1 : X → Y and M2 :
Y × Z, the composed mechanism M2 ◦ M1 : X → Z works as follows: for input x ∈ X , we first
apply M1(x) to produce an intermediate y ∈ Y , and then we apply M2(y).

Henceforth, given an algorithm M : X → Y, and an input x ∈ X , we often use the following
random variables:

• The random variable ViewM(x) : X → V denotes the memory access patterns (also called the
view) observed by the adversary when M receives the input x, where V is the view space for M.

• The notation ExecM(x) : X → V × Y is a random variable that outputs the view and the output
over a random execution of M(x).

3 A Composition Framework for DO
In this section, we explore what kind of DO notions are composition-friendly. As a warmup, we
first suggest a simple notion called strongly neighbor-preserving (or strongly NP for short), and
show that any DO algorithm that is strongly NP lends to composition. The strong NP notion,
however, is too stringent. We then propose a more general notion called (ϵ, δ)-neighbor-preserving
differential obliviousness or (ϵ, δ)-NPDO for short, which captures a probabilistically approximate
notion of neighbor-preserving. We then present our main composition theorem which states that
any algorithm that satisfies NPDO lends to composition. Along the way, we give several simple
motivating examples to demonstrate the usefulness our compositional framework.

3.1 Strongly Neighbor-Preserving
3.1.1 Definition and Composition Theorem

Earlier, in Section 1, we argued why vanilla DO algorithms do not lend to composition, because
neighboring inputs may lead to very dissimilar outputs. One (somewhat imprecise) intuition is the
following: if a DO mechanism is additionally neighbor-preserving, i.e., neighboring inputs lead to
neighboring outputs, then it should lend to composition.

We first define a strong notion of neighbor-preserving, which requires that running the algorithm
over two neighboring inputs produces neighboring outputs with probability 1.
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Definition 3.1 (Strongly neighbor-preserving). We say that a randomized algorithm M : X → Y is
strongly neighbor-preserving w.r.t. ∼X and ∼Y , iff for any two inputs x, x′ ∈ X such that x ∼X x′,

Pr[y ← M(x), y′ ← M(x′) : y ∼Y y′] = 1.

We can prove that if an algorithm satisfies both DO and strongly neighbor-preserving, then it
is composable, formally stated below.

Theorem 3.2 (Strongly neighbor-preserving + DO gives composition). Suppose that M1 : X → Y
is (ϵ1, δ1)-DO w.r.t. ∼X and strongly neighbor-preserving w.r.t. ∼X and ∼Y , and moreover, suppose
that M2 : Y → Z is (ϵ2, δ2)-DO w.r.t. ∼Y , then M2 ◦M1 satisfies (ϵ1 + ϵ2, δ1 + δ2)-DO w.r.t. ∼X .

Furthermore, if M2 is additionally strongly neighbor-preserving w.r.t. ∼Y and ∼Z , then M2 ◦M1

is also strongly neighbor-preserving w.r.t. ∼X and ∼Z .

Proof. Later in Lemma 3.7 of Section 3.4, we will prove that (ϵ1, δ1)-DO plus strongly neighbor-
preserving is a special case of our more general notion (ϵ1, δ1)-NPDO. In this sense, this composition
theorem can be viewed as a special case of our main composition theorem for NPDO (Theorem 3.6).

3.1.2 Composition Examples

Example 1. Earlier in Section 1, we pointed out that two sequential instances of Chan et al.’s
DO compaction algorithm [CCMS19] do not give (tight) composable guarantees. In Example 1,
we will see that if we replace the second instance with a modification of Chan et al.’s compaction
algorithm such that it is DO w.r.t. edit distance (as opposed to Hamming distance), then the two
instances would compose nicely.

Specifically, let M1 be Chan et al.’s DO compaction algorithm [CCMS19]. Recall that the
algorithm receives an input array where each element is either a real element or a filler, and outputs
an array containing all the real elements in the input and preserving the order they appear in the
input. M1 is (ϵ1, δ1)-DO w.r.t. ∼H (i.e., Hamming distance). Now, suppose we can construct
another compaction algorithm denoted M2 that is (ϵ2, δ2)-DO w.r.t. to ∼E (i.e., edit distance).
How to construct such an M2 while preserving efficiency turns out to be non-trivial, and we defer
the construction to Section 5 — interestingly, designing M2 itself demonstrates the usefulness of
our composition framework, too.

Observe that given a fixed input array x, the output of M1(x) must be an ordered list of
real elements contained in x plus an appropriate number of fillers, and the total length of the
output2 is the same as the input x. Thus, for any neighboring inputs x ∼H x′, it must be that
M1(x) ∼E M2(x

′). Therefore, we conclude that M1 is strongly neighbor-preserving w.r.t. the input
relation ∼H and the output relation ∼E . Applying Theorem 3.2, we conclude that the composed
mechanism M2 ◦M1 satisfies (ϵ1 + ϵ2, δ1 + δ2)-DO.

Example 2. Let M1 be an algorithm that merges two sorted input arrays (x0, x1), where each
element in the input array has a payload besides the sort-key. Suppose that M1 satisfies (ϵ1, δ1)

differential obliviousness w.r.t. 2∼E , i.e., two inputs (x0, x1) and (x′0, x
′
1) are considered neighboring

iff for b ∈ {0, 1}, |xb| = |x′b|, and xb and x′b have edit distance at most 2 (i.e., xb
2∼E x′b). Such an

2Even though the algorithm M1 itself is randomized, the output of M1 is deterministic and unique given the input.
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DO merge algorithm was proposed by Chan et al. [CCMS19], and moreover, their algorithm always
outputs an array whose length is the sum of the input arrays. Notice that for neighboring inputs,
M1 always produces outputs that have edit distance at most 4.

Let M2 be a stable tight compaction algorithm that selects elements from the input array whose
payload string satisfies a certain predicate (e.g., entries corresponding to students in the computer
science department). Suppose that M2 satisfies (ϵ2, δ2)-DO w.r.t. 4∼E , i.e., where neighboring inputs
are those with edit distance at most 4 — such an M2 is described in Section 5.

By Theorem 3.2, we conclude that the composed mechanism M2◦M1 satisfies (ϵ1+ϵ2, δ1+δ2)-DO
w.r.t. 2∼E .

Remark 3.3 (Capturing k-neighboring relations). Recall that our strongly neighbor-preserving
definition (i.e., Definition 3.1) is parametrized with the input and output relations. Example 2
is used to illustrate the case when the these input/output relations are parametrized with a k-
neighboring notion (rather than 1-neighboring) — this shows the generality of the approach. For
example, later in Section 5 , we will construct an efficient stable compaction algorithm that is
(ϵ, δ)-DO w.r.t. to 1∼E neighboring. Applying the standard group privacy theorem of differen-
tial privacy [DR14], we can get a a compaction algorithm that is (4ϵ, 4e4ϵδ)-DO w.r.t. to 4∼E

neighboring.

3.1.3 Limitations

The strong neighbor-preserving requirement (i.e., Definition 3.1) is natural and directly captures
our intuition that if a DO mechanism maps neighboring inputs to neighboring outputs, then it is
composable. In particular, the strongly neighbor-preserving requirement is often suitable when the
output computed by the algorithm is deterministic (i.e., uniquely determined by the inputs), even
though the algorithm itself may be randomized — Examples 1 and 2 fit this case.

However, the strongly neighbor-preserving requirement may be too stringent especially when the
output of the algorithm may be randomized. For example, consider the following DO subsampling
algorithm.

Example 3. We consider the task of subsampling, which is widely used in private data analyt-
ics [BBG18,WBK19]: given an input array x, we want to sample each entry with probability p, and
generate a new array that contains only the sampled elements. Consider the following subsampling
algorithm where n denotes the length of the input array x:

1. Call M1(x) := InPlaceSample(x) which is defined as follows: Scan the input array x. For each
real element encountered, append it to the output tape with probability p and append a filler
element otherwise. For each filler element encountered, just append a filler to the output tape.

2. Apply M2, a compaction algorithm that is (ϵ′, δ′)-DO w.r.t. ∼H to the output of the above step.

We want to prove that the above algorithm satisfies DO w.r.t. ∼H through composition —
intuitively, this should be true. In particular, the first subroutine M1 := InPlaceSample has deter-
ministic access patterns. We explicitly denote M1(·; ρ) to fix the random tape ρ consumed by M1.
For any fixed random tape ρ, and any neighboring inputs x ∼H x′, M1(x; ρ) and M1(x

′; ρ) output
two arrays with Hamming distance 1. Therefore, intuitively, as long as the compaction algorithm
in the second step is (ϵ′, δ′)-DO w.r.t. Hamming distance, the entire subsampling algorithm should
be (ϵ′, δ′)-DO as well. Unfortunately, we cannot directly use strong neighbor-preserving to prove
this composition here, since a random execution of M1(x) and a random execution of M1(x

′) are
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not guaranteed to always output Hamming-distance-neighboring outputs — it depends on which
subset of elements are selected.

This motivates us to relax the strongly neighbor-preserving to make it more general, such that
our compositional framework can be more expressive. However, before we do so, we introduce an-
other more general example, Example 4, which is a variation of Example 3. Specifically, in Example
3, although the output of M1 := InPlaceSample is randomized, the view of M1 is deterministic. In
Example 4, both the view and the output of the first algorithm are randomized.

Example 4. The main difference between Examples 3 and 4 is that Example 4 aims to have a
subsampling algorithm that is DO w.r.t. edit distance, whereas Example 3 aims to be DO w.r.t.
Hamming distance. To achieve this, in Example 4, we need to mask the true length of the input and
output by reading/writing a random number of extraneous locations on the input tape, Further,
the compaction algorithm we call must now be DO w.r.t. edit distance too. The detailed algorithm
is described below, where the key differences are highlighted in blue.

1. Call M1(x) := InPlaceSampleϵ,δ(x) which is defined as follows:

• Sample r
$←G(ϵ, δ,∆ = 1), let n′ = n+ r be the noisy input length.

• Scan n′ locations on the input tape. For each real element encountered, append it to the
output tape with probability p and append a filler element otherwise. For each filler element
encountered, just append a filler to the output tape.

• The output array is defined to be the first n elements of the output tape. Write down its
length n at a fixed dedicated location (e.g., location 0) on the output tape.

2. Apply M2, a compaction algorithm that is (ϵ′, δ′)-DO w.r.t. ∼E to the output of the above step,
i.e., the compaction algorithm treats the output tape of M1 as its own input tape.

We shall later prove that Examples 3 and 4 satisfy DO using our new compositional framework.

3.2 (ϵ, δ)-Neighbor-Preserving Differential Obliviousness (NPDO)
Recognizing the limitations of strongly neighbor-preserving (Definition 3.1), we would like to make
the compositional framework more general. In particular, the above Examples 3 and 4 can serve
as simple motivating examples.

Given a mechanism M whose view space is V and output space is Y, given some symmetric
relation ∼Y over the output space, and given a set S ⊆ V ×Y , we define the following notation for
denoting neighbor sets:

N (S) :=
{
(v, y′)|∃(v, y) ∈ S s.t. y′ ∼Y y

}
Definition 3.4 ((ϵ, δ)-NPDO). Given a mechanism M : X → Y whose view space is V, we say
that it satisfies (ϵ, δ)-neighbor-preserving differential obliviousness, or (ϵ, δ)-NPDO for short, w.r.t.
symmetric relations ∼X and ∼Y , respectively, iff for all x ∼X x′, for every S ⊆ V × Y ,

Pr[ExecM(x) ∈ S] ≤ eϵ · Pr[ExecM(x′) ∈ N (S)] + δ (2)
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Our NPDO definition looks similar in form as the standard differential privacy notion, with
a couple important observations: 1) the notion is defined over the Cartesian product of the view
and the output of the mechanism, which is important for composition to hold; 2) on the right-
hand-side of Equation (2), we consider the probability of M(x′) landing in the neighboring set
N (S) on a neighboring input x′ ∼X x — this is important for capturing a probabilistic notion of
neighbor-preserving.

It is not hard to see that if an algorithm satisfies (ϵ, δ)-NPDO, it must satisfy (ϵ, δ)-DO, as
stated in the following fact.

Fact 3.5. Suppose that M : X → Y satisfies (ϵ, δ)-NPDO w.r.t. X and Y. Then, M satisfies
(ϵ, δ)-DO w.r.t. X .

Proof. Let V be the sample space of ViewM. Consider all those Sv ⊆ V . We know N (Sv × Y) =
Sv × Y . Therefore,

Pr[ViewM(x) ∈ Sv] = Pr[ExecM(x) ∈ Sv × Y ]
≤eϵ Pr[ExecM(x′) ∈ N (Sv × Y)] + δ = eϵ Pr[ViewM(x′) ∈ Sv] + δ.

3.3 Main Composition Theorem
One main technical contribution of our paper is to prove a composition theorem for our NPDO
notion, as stated below.

Theorem 3.6 (Main composition theorem). Suppose that an algorithm M1 : X → Y satisfies
(ϵ1, δ1)-NPDO w.r.t. ∼X and ∼Y . Further, suppose that the algorithm M1’s view space V and the
output space Y are finite or countably infinite. Then, the following composition statements hold:

1. Suppose that M2 : Y → Z satisfies (ϵ2, δ2)-DO w.r.t. ∼Y . Then, the composed mechanism
M2 ◦M1 : X → Z satisfies (ϵ1 + ϵ2, δ1 + δ2)-DO.

2. Suppose that M2 : Y → Z satisfies (ϵ2, δ2)-NPDO w.r.t. ∼Y and ∼Z . Then, the composed
mechanism M2 ◦M1 : X → Z satisfies (ϵ1 + ϵ2, δ1 + δ2)-NPDO.

The proof of Theorem 3.6 is non-trivial and presented in Section 4. We can use Theorem 3.6
to prove that the algorithms in the earlier Examples 1 to 4 satisfy DO. Before doing so, let us first
introduce some helpful tools for proving an algorithm NPDO.

3.4 Helpful Tools for Proving NPDO
To use our main composition theorem, we need to prove that some algorithm satisfies NPDO. The
following couple lemmas can often lend to this purpose.

Strongly NP + DO =⇒ NPDO. First, it is not hard to see that if an algorithm satisfies
the earlier strongly neighbor-preserving notion (Definition 3.1) as well as DO, then it also satisfies
NPDO as stated below:

Lemma 3.7 (Strongly NP and DO imply NPDO). Suppose that an algorithm M : X → Y is
strongly neighbor-preserving w.r.t. ∼X and ∼Y , as well as (ϵ, δ)-DO w.r.t. ∼X . Then, M satisfies
(ϵ, δ)-NPDO.
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Proof. Fix a pair of neighboring input x, x′. By the strongly neighbor-preserving definition, for any
y, y′ ∈ Y such that Pr[M(x) = y] > 0 and Pr[M(x′) = y′] > 0, it must be that y ∼Y y′. For any
subset S ⊆ V × Y , define the partial set V (S) := {v|∃(v, y) ∈ S}. Then, we have

Pr[ExecM(x) ∈ S] ≤ Pr[ViewM(x) ∈ V (S)]

≤eϵ Pr[ViewM(x′) ∈ V (S)] + δ = eϵ Pr[ExecM(x′) ∈ N (S)] + δ.

(ϵ, δ)-NP. Next, we define another notion that captures the idea of “probabilistically approximate
neighbor-preserving” called (ϵ, δ)-neighbor-preserving, or (ϵ, δ)-NP for short. We show that if an
algorithm satisfies (ϵ, δ)-NP as well as (ϵ′, δ′)-DO, then it also satisfies (ϵ+ ϵ′, δ + δ′)-NPDO.
Definition 3.8 ((ϵ, δ)-NP). Given a mechanism M : X → Y whose view space is V, we say that
it satisfies (ϵ, δ)-neighbor-preserving, or (ϵ, δ)-NP for short, w.r.t. ∼X and ∼Y , iff for all x ∼X x′,
for every view v∗ ∈ V that happens with non-zero probability in ExecM(x) as well as ExecM(x′), for
every Y ⊆ Y ,

Pr[(v, y)← ExecM(x) : y ∈ Y |v = v∗]

≤ eϵ · Pr[(v′, y′)← ExecM(x′) : y′ ∈ N (Y )
∣∣v′ = v∗ ] + δ (3)

where N (Y ) contains all y′ such that y′ ∼Y y for all y ∈ Y .
Intuitively, (ϵ, δ)-NP captures the idea that conditioned on any view, the algorithm, on neigh-

boring inputs, must output probabilistically approximately close outputs.
Lemma 3.9 ((ϵ, δ)-NP and DO imply NPDO). Suppose that an algorithm M : X → Y is (ϵ1, δ1)-
DO and (ϵ2, δ2)-neighbor-preserving w.r.t. ∼X and ∼Y . Then, M satisfies (ϵ1 + ϵ2, δ1 + δ2)-NPDO
w.r.t ∼X and ∼Y .
Proof. We slightly abuse the notation of N (·) to denote the “neighbor set” for Y and also the
V × Y , as defined in Definition 3.8 and Definition 3.4. Fix a pair of neigboring input x, x′. For
any S ⊆ V × Y , denote the partial set Sv = {y |∃(v, y) ∈ S}. Let µ(v) = min(Pr[ViewM(x) =
v], eϵ1 Pr[ViewM(x′) = v]). It’s trivial that

∑
v∈V µ(v) ≤ 1. Also, since M is (ϵ1, δ1)-DO, we have∑

v∈V µ(v) ≥ 1− δ1. Then,

Pr[ExecM(x) ∈ S]

=
∑
v∗∈V

Pr[ViewM(x) = v∗] Pr[(v, y)← ExecM(x) : y ∈ Sv∗ |v = v∗]

≤δ1 +
∑
v∗∈V

µ(v∗) Pr[(v, y)← ExecM(x) : y ∈ Sv∗ |v = v∗]

≤δ1 +
∑
v∗∈V

µ(v∗)(eϵ Pr[(v′, y′)← ExecM(x′) : y′ ∈ N (Sv∗)
∣∣v′ = v∗

]
+ δ2)

≤δ1 + δ2 +
∑
v∗∈V

µ(v∗)(eϵ Pr[(v′, y′)← ExecM(x′) : y′ ∈ N (Sv∗)
∣∣v′ = v∗

]
)

≤δ1 + δ2 +
∑
v∗∈V

eϵ1 Pr[ViewM(x′) = v∗]eϵ2 Pr[(v′, y′)← ExecM(x′) : y′ ∈ N (Sv∗)
∣∣v′ = v∗

]
=δ1 + δ2 + eϵ1+ϵ2 Pr[ExecM(x′) ∈ N (S)].
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3.5 Our Composition Theorem in Action
Using the simple motivating examples introduced so far, we can see our composition theorems in
action.

Examples 1 and 2. As mentioned earlier, the first algorithm M1 in either Example 1 or Example
2 satisfies strongly neighbor-preserving as well as (ϵ1, δ1)-DO. Therefore, they can be viewed as
a special case of (ϵ, δ)-NPDO. Since M2 in Example 1 or 2 satisfies (ϵ2, δ2)-DO, by our main
composition theorem, we immediately reach the conclusion that the composed algorithm M2 ◦M1

satisfies (ϵ1 + ϵ2, δ1 + δ2)-DO.

Example 3. We can use Theorem 3.6 to prove that the subsampling algorithm of Example 3
satisfies (ϵ′, δ′)-DO w.r.t. ∼H . To accomplish this, it suffices to show that the first algorithm,
M1 := InPlaceSample, satisfies (0, 0)-NPDO w.r.t. ∼H and ∼H . Observe that in Example 3, two
inputs are neighboring if their Hamming distance is at most 1, which implies that neighboring
inputs must have the same length. Also, M1 always generates a deterministic view that depends
only on the length of the input. Therefore, to prove that M1(x) satisfies (0, 0)-NPDO, it suffices to
show that for any pair of neighboring inputs x ∼H x′, for any subset of outputs Y ⊆ Y where Y is
the output space of M1,

Pr[M1(x) ∈ Y ] ≤ Pr[M1(x
′) ∈ N (Y )], (4)

where N (Y ) denotes the set of all output arrays that are neighboring to some array in Y . Observe
also that for any possible output y of M1(x), let ρ be the random coins used for subsampling that
led to the result y, then, if the same random coins ρ is encountered in an execution of M1(x

′) on
some neighboring x′ ∼H x, the outcome must be neighboring to y. Therefore, Equation (4) holds.

Example 4. Similarly, we can use Theorem 3.6 to prove that the subsampling algorithm of
Example 4 satisfies (ϵ + ϵ′, δ + δ′)-DO w.r.t. ∼E . By Theorem 3.6, it suffices to show that the
M1 := InPlaceSampleϵ,δ algorithm in Example 4 satisfies (ϵ, δ)-NPDO w.r.t. ∼E being both of the
input and output neighboring notion. Recall that M1 pads the input array with a random number
of elements, such that the noisy length is n′. Then, it simply scans through the n′ elements and
either writes down the element if it is a real element and has been sampled, or writes down ⊥.
To show that M1 satisfies (ϵ, δ)-NPDO, we will prove that M1 satisfies (0, 0)-NP and (ϵ, δ)-DO,
respectively, and then the conclusion follows from Lemma 3.9. It is easy to prove that M1 satisfies
(ϵ, δ)-DO. To see this, observe that the view depends only on the noisy input length where the
noise is sampled according to a truncated geometric distribution.

Therefore, we focus on showing that M1 satisfies (0, 0)-NP. Observe that in M1, the random
coins that determine the view and those that determine the output are independent. Therefore, it
suffices to show that for any x ∼E x′, for any Y ⊆ Y where Y is the output space of M1,

Pr[M1(x) ∈ Y ] ≤ Pr[M1(x
′) ∈ N (Y )].

Since x ∼E x′, there can be at most one element in x that is not in x′ (e.g., the element that is
added or modified in x), and vice versa. Henceforth, we use Common(x, x′) to denote the list of
common elements that appear both in x and x′. Let G(Y ) be the event that there exists some
y ∈ Y , such that the elements in Common(x, x′) receive the same sampling decision as in y. We also
say that G(Y ) represents the event that Common(x, x′) receive coins compatible with Y . Therefore,
we have that

Pr[M1(x) ∈ Y ] ≤ Pr[M1(x) : G(Y )] ≤ Pr[M1(x
′) ∈ N (Y )].
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In the above, the second inequality holds since conditioned on Common(x, x′) receiving coins com-
patible with Y in a random execution of M1(x

′), the outcome must be neighboring to some element
in Y with probability 1.

Additional applications. Later in Section 5 , we use our composition framework to design a
differentially oblivious stable compaction algorithm w.r.t. the edit distance — this building block
was needed in Examples 1, 2, 4. Last but not the least, in Section 6 , we use our composition
framework to prove an optimal privacy amplification theorem for the DO-shuffle model.

4 Proof of Main Composition Theorem
In this section, we shall prove our main composition theorem, that is, Theorem 3.6. A key stepping
stone is the following equivalence lemma.

Lemma 4.1 (Equivalence of (ϵ, δ)-NPDO and existence of an (ϵ, δ)-matching). Assume the axiom
of choice. Given a finite or countable infinite sample space Ω and a symmetric relation ∼ on Ω,
consider two random variables A,B ∈ Ω. The following statements are equivalent:

1. For every S ⊆ Ω, Pr[A ∈ S] ≤ eϵ · Pr[B ∈ N (S)] + δ, where the neighbor set N (S) is defined as
N (S) := {b ∈ Ω|∃a ∈ S, a ∼ b}.

2. There exists an (ϵ, δ)-matching w : Ω× Ω→ [0, 1] satisfying the following conditions:

(a) For all a, b ∈ Ω, w(a, b) > 0 only if a ∼ b;
(b) For all a ∈ Ω,

∑
b∈Ω,b∼aw(a, b) ≤ Pr[A = a];

(c) For all b ∈ Ω,
∑

a∈Ω,a∼bw(a, b) ≤ eϵ · Pr[B = b];
(d)

∑
a,b∈Ωw(a, b) ≥ 1− δ.

Graph interpretation. Lemma 4.1 has a similar flavor as the Hall’s theorem for bipartite graphs.
The Hall’s theorem says that if for each subset S of one component of a bipartitie graph, the size
of its neighbor set satisfies |N (S)| ≥ |S|, then we can find a perfect matching in the graph. The
proof of Lemma 4.1 is also inspired by the proof of the Hall’s theorem.

We think of a bipartite graph where vertices on the left and right both come from the set Ω,
and w(a, b) defines the weight on edge (a, b). Imagine that each vertex a ∈ Ω on the left is factory
that produces Pr[A = a] amount of produce, and each vertex b ∈ Ω on the right is a warehouse that
can store up to eϵ ·Pr[B = b] amount of produce. Condition (a) says that a factory is only allowed
to route its produce to neighboring warehouses. The function w effectively defines a fractional flow
such that almost all, i.e., 1−δ amount of produce is routed to some warehouse, and moreover, none
of the warehouses exceed their capacity. For this reason, we also call w an (ϵ, δ)-matching.

Below, we prove our main composition theorem assuming that Lemma 4.1 holds.

Proof of Theorem 3.6. We directly prove the more general case when M2 is (ϵ2, δ2)-NPDO. When
M2 is only (ϵ2, δ2)-DO, we can prove M2◦M1 is (ϵ1+ϵ2, δ1+δ2)-DO with nearly the same argument.

Fix any neighboring input x, x′. By Lemma 4.1, there exists an (ϵ1, δ1)-matching w : (V1×Y)×
(V1×Y)→ [0, 1] w.r.t the natural neighbor notion ∼ in the product space V1×Y : (v1, y) ∼ (v′1, y

′)
when v1 = v′1 and y ∼Y y′. We want to prove that, for any subset S ⊆ V1 × V2 ×Z,

Pr[ExecM2◦M1(x) ∈ S] ≤ eϵ1+ϵ2 Pr[ExecM2◦M1(x′) ∈ N (S)] + δ1 + δ2.
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Define the partial set Sv1 := {(v2, z)|∃(v1, v2, z) ∈ S} for any v1 ∈ V1. Then,

Pr[ExecM2◦M1(x) ∈ S]

=
∑

(v1,y)∈V1×Y

Pr[ExecM1(x) = (v1, y)] · Pr[ExecM2(y) ∈ Sv1 ]

(Use condition (a), (b) and (d) of the matching)

≤
∑

(v1,y)∈V1×Y,y′∼Yy

w
(
(v1, y), (v1, y

′)
)
· Pr[ExecM2(y) ∈ Sv1 ] + δ1

≤
∑

(v1,y)∈V1×Y,y′∼Yy

w
(
(v1, y), (v1, y

′)
)
·
(
eϵ2 Pr[ExecM2(y′) ∈ N (Sv1)] + δ2

)
+ δ1

(Use condition (b) of the matching)

≤
∑

(v1,y)∈V1×Y,y′∼Yy

w
(
(v1, y), (v1, y

′)
)
·
(
eϵ2 Pr[ExecM2(y′) ∈ N (Sv1)]

)
+ δ2 + δ1

(Use condition (c) of the matching)

≤
∑

(v1,y′)∈V1×Y

eϵ1 Pr[ExecM1(x′) = (v1, y
′)] ·

(
eϵ2 Pr[ExecM2(y′) ∈ N (Sv1)]

)
+ δ2 + δ1

=eϵ1+ϵ2 Pr[ExecM2◦M1(x′) ∈ N (S)] + δ2 + δ1.

Proof of Lemma 4.1. For any matching w, we use the notation of the partial sum of the matching:
for any a ∈ Ω, w(a, ·) :=

∑
b∼aw(a, b). Similarly, for any b ∈ Ω, we have w(·, b) :=

∑
a∼bw(a, b).

We also define the size of a matching w as |w| :=
∑

a,b,a∼bw(a, b).
We first prove that if there is an (ϵ, δ)-matching, the first statement holds. We prove it by

contradiction. Suppose there is a set S violates the first condition, i.e., Pr[A ∈ S] > eϵ Pr[B ∈
N (S)] + δ, while there is an (ϵ, δ)-matching w. We have that Pr[A ∈ S] −

∑
a∈S,b∼xw(a, b) ≥

Pr[A ∈ S]− eϵ Pr[B ∈ N (S)] > δ. Then, 1−
∑

a,b,a∼bw(a, b) =
(
Pr[A ∈ S]−

∑
a∈S,b∼aw(a, b)

)
+(

Pr[A ∈ Ω/S]−
∑

a∈Ω/S,b∼aw(a, b)
)

> δ + 0. So
∑

a,bw(a, b) < 1 − δ, which contradicts the
condition (d) of the matching.

Now, we prove that if the first statement holds, we can find an (ϵ, δ)-matching w. This direction
is more challenging. We first prove it assuming Ω is finite. Let w∗ be the “max legal” matching.
When we say w∗ is legal, we mean that it satisfies the condition (a)-(c) for (ϵ, δ)-matching. Also, the
maximality of w∗ means the the size of w∗ is more than or equal to any other leagl matching w. We
prove that, if |w∗| < 1−δ, then we can find a set S that violates the condition in the first statement.
Let S0 be the set of all those a ∈ Ω that are not “saturated”, i.e.,

∑
b∼aw

∗(a, b) < Pr[A = a]. Now,
for each iteration, we keep expanding the set Si to Si+1. Define Ti := {a ∈ A|∃b ∈ N (Si), w

∗(a, b) >
0}. Let Si+1 = Si ∪ Ti. We keep expanding the set. Since Ω is finite, there exists a maximal Si

that cannot be expanded, i.e., Si ∪ Ti = Si. Notice that for i, all b ∈ N (Si+1) are saturated.
Otherwise, we can find a pair of unsaturated vertices a0, bi, such that there exists an alternating
path a0, b0, a1, b1, · · · , ai, bi where for all j ∈ [i − 1], aj ∼ bj and w∗(aj+1, bj) > 0. Now, let
∆ = min{Pr[A = a]−w∗(a, ·), eϵ Pr[B = b]−w∗(·, b),minj∈[i]{w∗(aj+1, bj)}}. We know ∆ > 0. For
each j ∈ [i − 1], we simply raise w∗(aj , bj) by ∆ and decrease w∗(aj+1, bj) by ∆. This procedure
raises the size of w∗ by ∆ while preserving all legal conditions, which breaks the maximality of w∗.
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Now, we argue that this maximal set Si violates the first statement. We first notice that
all a ∈ Ω/Si are saturated. So Pr[A ∈ Ω/Si] −

∑
a∈Ω/Si

w∗(a, ·) = 0. Then, Pr[A ∈ Si] −∑
a∈Si

w∗(a, ·) = (Pr[A ∈ Si] −
∑

a∈Si
w(a, ·)) + (Pr[A ∈ Ω/Si] −

∑
a∈Ω/Si

w(a, ·)) = 1 − |w∗| > δ.
Now, we know that all b ∈ N (Si) are saturated. Also, N (Si) are only saturated by the vertices in
Si, otherwise we can expand Si more. So we have that Pr[A ∈ Si] − eϵ Pr[B ∈ N (Si)] = Pr[A ∈
Si]−

∑
a∈Si,b∈N (Si),a∼bw(a, b) > δ. Therefore, Si violates the condition in the first statement.

Now we discuss the case when Ω is countable infinite. We will try to use the same argument
as the finite case, but we need to handle a few additional details. First, is the maximal matching
w∗ well-defined and attainable in the infinite case? This turns out to be non-trivial. Luckily, our
matching problem can be seen as a “locally finite” network flow problem in a countable inifinite
graph. Due to the Theorem 5.1 in Aharoni et al. [ABG+11]3, the maximum flow is attainable
for any countable infinite and locally finite graph, which implies the maximum matching in our
setting is well-defined and attainable in our case. Notice that the axiom of choice is assumed in
the proof from Aharoni et al. Also, the expanding procedure could take infintie number of steps
to stop. Now, we can simply define the set Sfinal that violates the condition as the union of all Si

for i ∈ 0, 1, 2 . . .. This maximal set Sfinal is well-defined by Zorn’s Lemma. Next, we know that
all y ∈ N (Sfinal) are saturated. Although the number of vertices in N (Sfinal) could be infinite,
there exists a finite-length alternative path from an unsaturated x to each y in N (Sfinal), since our
expanding prodcedure goes in round i ∈ 0, 1, 2 · · ·. So if there is any unsaturated y ∈ N (Sfinal),
the maximality of w∗ are broken. Every other parts of the proof still hold in the countable infinite
case.

5 Application: DO Compaction w.r.t. Edit Distance
Earlier in our Examples 1, 2, and 4, we assumed a stable compaction algorithm that is differ-
entially oblivious w.r.t. the edit distance. Chan et al. [CCMS19] showed how to construct a
stable compaction algorithm that is (ϵ, δ)-DO w.r.t. the Hamming distance [CCMS19], taking
O(n(log log n + log log 1

δ )) time to compact an array of size n (assuming that ϵ is a constant).
However, we are not aware of any straightforward way to modify their algorithm to work for edit
distance. Another naïve approach is to use oblivious sorting directly but this would incur Θ(n log n)
runtime which is asymptotically worse. In this section, we fill in this missing piece that is needed
by Examples 1, 2, and 4. We will describe a stable compaction algorithm that works for edit
distance and it preserves the runtime of Chan et al. [CCMS19]. Intriguingly, the design of our
new compaction algorithm turns out to be a great example that demonstrates the power of our
compositional framework.

5.1 Additional Preliminaries
Stable compaction. Recall that in stable compaction, we are given an input array which is
written on an input tape. Some elements in the input array are real elements, and others are fillers.
We want to output an array that contains only the real elements, and moreover, they must appear
in the same order as the input array. We assume that the input array is written on the input
tape, and its true length is written on some designated location on the input tape. Similarly, the

3A followup paper by Lochbihler [Loc22] pointed out and fixed some technical issues of the proof in Aharoni et
al. [ABG+11].
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algorithm should write the output array to an output tape, and the true length of the output array
should be written to some dedicated location on the output array.

Stable Oblivious Sorting. Suppose we are given an input array I containing a list of m elements
with a key attached to each element. Earlier works [CGLS18,LSX19] showed how to oblivious sort
the array according to the keys in O(m logm) runtime while maintaining the stable property: the
elements will be ordered by their relative order in the original array when their keys are the same.

Differentially private prefix sum. Given an input array I containing a list of m integers,
we want to its prefix sums. We say that two inputs I, and I ′ are neighboring iff 1) they have
the same length and 2) they differ in at most one position j, and |I[j] − I ′[j]| ≤ 1. Earlier
works [DNPR10, CSS10, CSS11] showed how to construct a prefix sum mechanism that satisfies
(ϵ, δ)-differential privacy, and moreover, the mechanism satisfies the following properties: 1) The
access patterns (i.e., view) of the algorithm depend only on the input length; 2) The additive error
is upper bounded by O

(
1
ϵ (log |I|)

1.5 log 1
δ

)
with probability 1.

5.2 Roadmap and Intuition
Our algorithm Compact is the composition of the following two algorithms, i.e., Compact(·) =
CompactBin ◦ RandBin(·). Suppose we can prove that RandBin is (ϵ1, δ1)-NPDO and prove that
CompactBin is (ϵ2, δ2)-NPDO, we have Compact is (ϵ1 + ϵ2, δ1 + δ2)-NPDO due to our main com-
position theorem 3.6.

1. RandBin: Given an input array I containing real elements and fillers, and whose true length
is stored in a dedicated location on the input tape, RandBin outputs a list of B bins denoted
(Bin

(Z)
i : i ∈ [B]), each of capacity Z. Each bin contains a random number of real elements and

the rest are fillers. Furthermore, the ordered list of all real elements in all bins is the same as
the ordered list of real elements in the input. The algorithm should output the parameters B
and Z to some dedicated location on the output tape.

2. CompactBin: Given a list of B bins denoted (Bin
(Z)
i : i ∈ [B]) each of capacity Z, where the

parameters B and Z are stored in some dedicated location on the input tape, the CompactBin
algorithm outputs a compacted array containing only the real elements in the input bins, and
preserving the same order they appear in the input bins. The algorithm outputs the true output
length to some dedicated location on the output tape.

In short, RandBin is a pre-processing step that takes the input array and converts it into bin
format, and CompactBin takes the bin representation, and performs the actual compaction. The
informal intuition is as follows. From earlier work [CCMS19], we know how to construct an efficient
DO stable compaction algorithm for Hamming distance. However, in our case, we have two inputs I
and I ′ that have edit distance 1. The difficulty with edit distance is when I is obtained by inserting
an extra element into I ′ at position j, the two inputs I and I ′ will differ in every position after j. Our
idea is to leverage RandBin to “probabilistically localize” this difference caused by a single insertion
operation. In particular, if some bin representation occurs for input I with some probability p, we
want that under the neighboring input I ′, with probability close to p, we should encounter a similar
bin representation where the difference is localized to only one or two bins. If we can accomplish
this, then hopefully we can adapt ideas that worked for Hamming distaince [CCMS19] to compact
the resulting bin representation.
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Below, we will define an appropriate neighboring notion ∼B on the bin representation. We
want to show that the RandBin pre-processing step satisfies NPDO w.r.t. the input relation ∼E

and output relation ∼B for the bin representation. Further, we want to show that CompactBin
satisfies NPDO w.r.t. ∼B and ∼H . Then, the composed algorithm should be NPDO by our
composition theorem.

Neighboring relation for bin representation ∼B. Specifically, the neighboring relation ∼B

is defined as below. Two lists of bins (Bin
(Z)
i : i ∈ [B]) and (Bin

′(Z′)
i : i ∈ [B′]) are said to be

neighboring, iff the following all hold:

• they have compatible dimensions, i.e., B = B′ and Z = Z ′;
• After removing all fillers and concatenating the real elements in the list of bins, the resulting

outcomes have edit distance at most one;
• There are at most two bins that have different bin loads (defined to be the number of real

elements in the bin), further, for both of them, the difference in load is at most one.

5.3 RandBin Algorithm
We now describe the RandBin algorithm, which preprocesses the input array into a bin representa-
tion.

RandBinϵ,δ(I): // Let ϵ1 = ϵ2 = ϵ3 =
ϵ
3 , and δ1 = δ2 = δ3 =

δ
3 .

• Sample G
$←G(ϵ1, δ1). Let L = |I| +G be the noisy input length. Let s = Θ(1ϵ log

2 L log 1
δ )

be an upper bound on the support of G(ϵ2, δ2) and also the additive error of PrefixSumϵ3,δ3

on at most L integers. Let the maximum bin load be Z = 2s and B = ⌈2LZ ⌉ + 1 be the
number of bins.

• For i = 1 to B, let ρi
$←s+ G(ϵ2, δ2) ∈ [Z2 . . . Z]. Let ρ := (ρ1, ρ2, . . . , ρB).

• Let cnt := PrefixSumϵ3,δ3(ρ) ∈ ZB. Let Buf := ∅ be a working buffer.
• For i = 1 to B:

– fetch the unvisited elements in the input array up to indexa cnt[i] + s and add them to
Buf; mark them as visited.

– if the current length of Buf is less than Z, append enough fillers such that its length is
at least Z;

– perform stable oblivious sorting on Buf such that the first Z positions contains only
the real elements coming from the first

∑
j≤i ρi positions in the input and fillers; all

remaining elements are moved to the end of Buf.
– pop the first Z elements of Buf to Bini.
– perform stable oblivious sorting on Buf to move all the fillers to the end, if necessary,

truncate Buf such that its length is at most 2s.

• Output the bin representation (Bin
(Z)
i : i ∈ [B]), and store the parameters B and Z in some

dedicated location on the output tape.
aWe may assume that any location in the input array beyond the original length |I| is occupied by a filler.

19



Roughly speaking, the RandBin algorithm generates a list of random counts ρ := (ρ1, . . . , ρB).
Then, all real elements contained in the first ρ1 positions of the input are moved into Bin1, all
real elements contained in the next ρ2 positions of the input are moved into Bin2, and so on. To
guarantee differential obliviousness, the algorithm cannot directly reveal the vector ρ — instead, it
reveals only the noisy prefix sum of ρ. Specifically, we apply an (ϵ3, δ3)-differentially private prefix
sum algorithm to the vector y, i.e., cnt := PrefixSumϵ3,δ3(Y ). In other words, cnt[i] stores a noisy
version of

∑
j≤i ρi, and it is guaranteed that the estimation error is at most s. Now, in each step i

of the algorithm, we want to populate Bini. To do so, we simply fetch the next batch of elements
in the input array upto position cnt[i] into a poly-logarithmically sized working buffer Buf. Buf
also contains previously fetched elements that have not been placed into any bin yet. We can now
obliviously sort Buf to create the next Bini. At the end of each step i, it is guaranteed that there
are at most 2s real elements remaining in Buf. Therefore, we can obliviously sort Buf and compact
its length to 2s. This makes sure that Buf is always poly-logarithmic in size. Finally, to make
the algorithm secure, we also need to mask the true input length, and we can accomplish this by
adding a truncated geometric random noise to the true length, and reveal only the noisy length.
Note that the number of bins B is a random variable that depends only on the noisy input length.

Theorem 5.1. The RandBin algorithm outputs the correct bin representation with probability 1.
That is, for every i ∈ [B], all real elements from I

[∑
j<i ρj + 1

]
to I

[∑
j≤i ρj

]
are moved to Bini.

Also, all real elements in the input array will be moved to the bins.

Proof. We prove the correctness statement by induction. We assume that for the first i−1 iteration,
Bin1 . . .Bini−1 have the correct real elements and also, no real elements have been truncated.

Now, in the i-th iteration, we will read the input array up to index cnt[i] + s. Since s is the
upper bound on the additive error of the prefix-sum mechanism. we have |cnt[i] −

∑
j≤i ρj | ≤ s

and thus, cnt[i] + s ≥
∑

j≤i ρj . Then, we know the real elements between I
[∑

j<i ρj + 1
]

to

I
[∑

j≤i ρj

]
will be visited. By the assumption, they are not moved to the bins before, so they

must still be in the buffer. Then, the algorithm obliviously sort the buffer and correctly move those
real elements to Bini. Now, the real elements from I[

∑
j≤i ρj +1] to I[cnt[i] + s] are in Buf. Again,

since |cnt[i] −
∑

j≤i ρj | ≤ s, we have cnt[i] + s −
∑

j≤i ρj ≤ 2s. So there will be no more than 2s
real elements and after another round of oblivious sorting, no real elements will be truncated.

Finally, we have ρi ≥ Z/2, so
∑

i≤B ρi ≥ BZ/2 ≥ L ≥ |I|. Thus, we will visit the whole input
and all the real elements will be moved to the correct bins.

Theorem 5.2. Assuming |I| = Ω(1ϵ log
1
δ ), RandBin has a worst-case runtime of

O
(
|I|
(
log log |I|+ log 1

ϵ + log log 1
δ

))
.

Proof. Before each iteration, Buf has size at most 2s. For each iteration i, we will move at most
cnt[i]−cnt[i−1]+s elements to the buffer. Since |cnt[i]−

∑
j≤i ρj | ≤ s and |cnt[i−1]−

∑
j≤i−1 ρj | ≤ s,

we have cnt[i] − cnt[i − 1] ≤ ρi + 2s. Then, cnt[i] − cnt[i − 1] + s ≤ ρi + 2s ≤ Z + 2s ≤ 4s. Thus,
we know the buffer size cannot be more than 6s, which implies that each oblivious sorting on Buf
takes O(s log s) time. Also, we know Z = 2s, so we have B = ⌈Ls ⌉+ 1. The total time complexity
will be O(Bs log s) = O(L log s). Since |I| = Ω

(
1
ϵ log

1
δ

)
, we have that L ≤ |I|+O

(
1
ϵ log

1
δ

)
= O(I).

Finally, since s = Θ(1ϵ log
2 L · log 1

δ ), the time complexity is O
(
|I|
(
log log |I|+ log 1

ϵ + log log 1
δ

))
.

Theorem 5.3. RandBin is (ϵ, δ)-NPDO w.r.t. the input neighboring notion ∼E and the output
neighboring notion ∼B.
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Proof. Recall that we need to prove the following statement: for any subset S of (view, output)
pairs, for any neighboring input pair I, I ′, it holds that

Pr[ExecRandBin(I) ∈ S] ≤ eϵ Pr[ExecRandBin(I ′) ∈ N (S)] + δ. (5)

where ExecRandBin returns the view and the output bin representation, and the neighboring set N
is defined w.r.t. the relation ∼B (i.e., neighboring of bin representation).

First, observe that the adversary’s view is fully determined knowing the noisy input length L
and the noisy bin loads cnt. Therefore, henceforth, we may use (L, cnt) to denote the view. Second,
observe that the output of the algorithm is fully determined by the input I, the noisy input length
L (which determines the parameters Z and B), and the actual random bin load vector ρ. Now, we
define the notation Exec(I) to output L, cnt, as well as ρ — notice that here, we have switched the
output to just the bin load vector ρ rather than the actual bin representation output. Henceforth,
let Y be the support of the variable ρ, and we abuse notation slightly and use V to denote the
support of the pair (L, cnt). For any given subset S ⊆ V×Y , we define the neighboring set notation
N (parametrized by I and I ′) as follows:

N (S) = {(L, cnt,ρ′) | ∃ρ′ s.t. (L, cnt,ρ) ∈ S and out(I, L,ρ) ∼B out(I ′, L,ρ′)}

where out(I, L,ρ) outputs the unique bin representation that is fully determined by the input I,
the noisy input length L, and the bin load vector ρ.

Now, proving Equation (5) is equivalent to proving that for any S ⊆ V × Y , any neighboring
inputs I, I ′, it holds that

Pr[Exec(I) ∈ S] ≤ eϵ Pr[Exec(I ′) ∈ N (S)] + δ.

We consider these following cases.
Case 1. A substitution transforms I to I ′. This is an easy case. Fix any (L, cnt,ρ) ∈ V × Y such
that Pr[Exec(I) = (L, cnt,ρ)] > 0. Let’s assume that the substituted elements x are placed in Bini
in the bin representation out(I, L,ρ). Since I and I ′ only differ by a substitution, x will be in Bin′i in
the bin representation out(I ′, L,ρ) with the same index i. All other bins are exactly the same. Also,
the i-th bin will have real bin loads differ at most one. Therefore, by the definition of neighboring
relation for bin representation, we know out(I, L,ρ) ∼B out(I ′, L,ρ). Thus, in this case, given any
S ⊆ V×Y , S ⊆ N (S). Moreover, the equation Pr[Exec(I) = (L, cnt,ρ)] = Pr[Exec(I ′) = (L, cnt,ρ)]
trivially holds in this case because |I| = |I ′|.
Case 2. An insertion or deletion transforms I to I ′.

Fix any (L, cnt,ρ) ∈ V × Y such that Pr[Exec(I) = (L, cnt,ρ)] > 0.
(i) Suppose an element x is deleted from I to form I ′. Suppose i is the index of the bin in out(I, L,ρ)
that contains x; observe the choice of B ensures that i < B. We write ρ = (ρ1, . . . , ρB). We consider
a ρ′ = (ρ′1, . . . , ρ

′
B), such ρ′i+1 = ρi+1−1 and ρ′j = ρj for j ̸= i+1. We first prove that out(I, L,ρ) ∼B

out(I ′, L,ρ′). We only need to check the bin load condition and the other two conditions are
naturally satisfied. We write out(I, L,ρ) = (Bini : i ∈ [B]) and out(I ′, L,ρ′) = (Bin′i : i ∈ [B]). It is
easy to see that Bin1 = Bin′1, . . . ,Bini−1 = Bin′i−1. Also, Bini+2 = Bin′i+2, . . . ,BinB = Bin′B, because
ρ′i+1 = ρi+1 − 1 offsets the influence of the deletion of x for all following bins. Thus, only bin i
and i + 1 will be different in out(I, L,ρ) and out(I, L,ρ′). For example, suppose I = a⊥bcd⊥ . . . ,
I ′ = abcd⊥ . . . where a, b, c, d are the real elements and ⊥ denotes the filler elements. Assuming
ρ = (3, 3, . . . ) and ρ′ = (3, 2, . . . ), the corresponding bin representation will be a⊥b cd⊥ and
abc d⊥⊥, where the first two bins will have different bin loads and the differences are at most
one for each bin. More formally, since ρi = ρ′i and I ′ is missing the element x, Bini has the
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particular element x, while Bin′i has the element I[
∑

j≤i yj + 1] instead (which will be the same as
I ′[
∑

j≤i yj ]). Thus, the real element numbers in Bini and Bin′i may differ by at most one. Also,
Bin′i+1 simply misses the first element in Bini+1 and every other elements are the same. So the
real element numbers in Bini+1 and Bin′i+1 may differ by at most one. Henceforce, we prove that
out(I, L,ρ) ∼B out(I ′, L,ρ′). For convenience, we define a mapping φL : Y → Y , such that it maps
every ρ to ρ′ as the construction above. Notice that φL relies on L because the bin size Z and the
bin number B relies on a fixed L, and then we restrict dom(φL) to those ρ that have exactly B
bins of size Z.

We then prove φL(ρ) is injective by contradiction. Suppose there are ρ0,ρ1 ∈ dom(φL) such
that ρ0 ̸= ρ1 but φL(ρ

0) = φL(ρ
1). Assume x is in Bini0 in out(I, L,ρ0) and in Bini1 in out(I, L,ρ1),

and i0 < i1 without loss of generality. We know that the prefix ρ0
1...i0

are the same as the pre-
fix φL(ρ

0)1,...,i0 by the construction of φL. Also, the prefix ρ1
1,...,i1

are the same as the prefix
φL(ρ

1)1,...,i1 . Thus, the prefix ρ0
1,...,i0

are the same as the prefix ρ1
1,...,i0

and by the definition of out,
x should be in Bini0 of out(I, L,ρ1). This is a contradiction.
(ii) Suppose an element x is inserted into I to from I ′. Consider the bin representation out(I, L, ρ).
Suppose x is in Bini. We can define an injective mapping φ similarly as the mapping in part (i):
φL(ρ) = ρ′ such that ρ′i+1 = ρi+1 + 1 and ρ′j = ρj for j ̸= i+ 1. We can prove φL is injective and
the correponding bin representation are neighbors by similar arguments in part (i).

It remains to show the (ϵ, δ)-differentially private inequality. We can use the same proof for
insertion and deletion, because ∥ρ− φL(ρ)∥1 = 1 in both cases.

We abused the notation before and now we make a clear distinction: the notations L, cnt,ρ
denote the random variables, while the notations ℓ, cnt, ρ denote the particular point in the sample
space.

For any measurable S ⊆ V × Y and ℓ ∈ Z+, ρ ∈ Y , denote Sℓ,ρ := {cnt : (ℓ, cnt, ρ) ∈ S}. We
also denote φ(S) = {(ℓ, cnt, φℓ(ρ)) |(ℓ, cnt, ρ) ∈ S }.

Observe that following properties:

1. First, since dE(I, I
′) ≤ 1, for all ℓ ∈ Z+, Pr[L = ℓ] ≤ eϵ1 Pr[L′ = ℓ] + δ1.

2. Because of the truncated geometric distribution Geom(ϵ2, δ2) and the choice of Z, we have
Pr[ρ /∈ dom(φℓ)|L = ℓ] ≤ δ2.

3. For ρ ∈ dom(φℓ), since ρ and ρ′ in both executions have the same distribution, we have
Pr[ρ = ρ|L = ℓ] ≤ eϵ2 · Pr[ρ′ = φℓ(ρ)|L′ = ℓ], noting that ∥ρ− φℓ(ρ)∥1 = 1.

4. For ρ ∈ dom(φℓ), again we have ∥ρ − φℓ(ρ)∥ = 1. Then, the (ϵ3, δ3)-differentially private
prefix sum mechanism implies that Pr[cnt ∈ Sℓ,y|ρ = ρ, L = ℓ] ≤ eϵ3 · Pr[cnt′ ∈ Sℓ,ρ|ρ′ =
φℓ(ρ), L

′ = ℓ] + δ3.
Then, we have the following inequalities:
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Pr[Exec(I) = (L, cnt,ρ) ∈ S|L = ℓ]

≤
∑

ρ∈dom(φℓ)

Pr[ρ = ρ|L = ℓ] · Pr[cnt ∈ Sℓ,ρ|ρ = ρ, L = ℓ] + δ2

≤
∑

ρ∈dom(φℓ)

Pr[ρ = ρ|L = ℓ] · (eϵ3 · Pr[cnt′ ∈ Sℓ,ρ|ρ′ = φℓ(ρ), L
′ = ℓ] + δ3) + δ2

≤
∑

ρ∈dom(φℓ)

eϵ3+ϵ2 Pr[ρ′ = φℓ(ρ)|L′ = ℓ] · Pr[cnt′ ∈ Sℓ,ρ|ρ′ = φℓ(ρ), L
′ = ℓ] + δ3 + δ2

=
∑

ρ′∈range(φℓ)

eϵ3+ϵ2 Pr[ρ′ = ρ′|L′ = ℓ] · Pr[cnt′ ∈ Sℓ,φ−1
ℓ (ρ′)|ρ

′ = ρ′, L′ = ℓ] + δ3 + δ2

= eϵ3+ϵ2 · Pr[Exec(I ′) = (L′, cnt′,ρ′) ∈ φ(S)|L′ = ℓ] + δ3 + δ2,

where the last equality holds because for all ρ′ ∈ range(φℓ), cnt′ ∈ Sφ−1
ℓ (ρ′) iff (ℓ, cnt′, ρ′) ∈

φ(S).

Since Pr[L = ℓ] ≤ eϵ1 · Pr[L′ = ℓ] + δ1 for all ℓ, using a standard DP-composition argument, we
have

Pr[Exec(I) = (L, cnt,ρ) ∈ S] ≤ eϵ1+ϵ2+ϵ3 · Pr[Exec(I ′) = (L′, cnt′,ρ′) ∈ φ(S)] + δ3 + δ2 + δ1.

Finally, since φℓ is injective and we know for all (ℓ, cnt, ρ) ∈ S, (ℓ, cnt, φℓ(ρ)) ∈ N (S), we have that

Pr[Exec(I ′) = (L′, cnt′,ρ′) ∈ φ(S)] ≤ Pr[Exec(I ′) = (L′, cnt′,ρ′) ∈ N (S)],

and we finish the proof.

5.4 CompactBin Algorithm
We now describe the CompactBin algorithm which takes in a bin representation, outputs a com-
pacted array, and writes the true length of the output to some dedicated location on the output
tape.

CompactBinϵ,δ
(
(Bin

(Z)
i : i ∈ [B])

)
: // Let ϵ1 = ϵ

2 , δ1 = δ
2(1+eϵ1 ) .

• Let s = Θ( 1
ϵ1
log2B · log 1

δ1
), be an upper bound of the additive error of (ϵ1, δ1)-differentially

private prefix sums on at most B integers.
• Let R := (Ri : i ∈ [B]), where Ri is the number of real elements in Bini. Call cnt :=

PrefixSumϵ1,δ1(R).
• Let Buf and the output array be initially empty. For i = 1 to B:

– Read the i-th bin and append it to the end of Buf.
– Perform stable oblivious sorting on Buf such that all real elements are moved to the

front.
– Let L be the current length of the output array. Remove an appropriate number of
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elements from the beginning of Buf and append them to the output array, such that the
output array has length exactly max(cnt[i]− s, L).

– Truncate Buf if necessary such that its length is at most 2s.

• Append Buf to the end of the output array. Write the true output length
∑

i∈[B]Ri to some
dedicated location on the output tape.

To gain some intuition, basically in each step i, the CompactBin algorithm reads the next
bin i, and tries to copy the real elements in bin i to the end of the output array. To achieve
differential obliviousness, the algorithm cannot reveal the true number of real elements inside each
bin. Therefore, it calls a differentially private prefix sum mechanism to compute an array cnt[1 : B]
where cnt[i] is an estimate of the number of real elements contained in the first i bins. The prefix
sum algorithm guarantees that the estimation error is upper bounded by s. Therefore, at the end
of the i-th step, the algorithm should have written exactly cnt[i]− s number of real elements to the
output array. To accomplish this, the algorithm makes use of a temporary working buffer Buf that
is used to store the real elements that have been fetched from the input bins but have not been
appended to the output array. It guarantees that at the end of each step, there are at most 2s real
elements leftover in Buf.

Theorem 5.4. With probability 1, the output of CompactBin includes all the real elements from
the B input bins with their order preserved and the filler elements in the output array only appear
after the last real element.

Proof. We need to show that no filler element will be output before the last real element and no
real element will be truncated. We know fact that for every i ∈ [B], |

∑
j≤iRi − cnt[i]| ≤ s since s

is the upper bound on error of the prefix sum mechanism.
Let i∗ be the smallest i such that cnt[i] − s ≥ 0. If all cnt[i] < s, then let i∗ = B + 1. First,

we observe that during the first i∗ − 1 iteration, no element will be output. Also, at the end of the
iteration i∗−1, Buf contains

∑
j≤i∗−1Rj real elements. We know that

∑
j≤i∗−1Rj ≤ cnt[i∗−1]+s ≤

2s, so no real elements get truncated.
Starting from the i∗ iteration, for each iteration i, after reading the i-th bin into Buf, the

algorithm has read
∑

j≤iRi real elements. Then, if we know at the end of the iteration, the output
array does not have more than

∑
j≤iRi elements, then all the elements that in the output tape

are still real. We simply have that for i ≥ i∗, the output array will be appended to the length of
cnt[i]− s at the end of the iteration and cnt[i]− s ≤

∑
j≤iRi. Also, we know that after the output

step, Buf contains exactly
∑

j≤iRi − (cnt[i] − s) ≤ 2s real elements. So no real elements will be
truncated.

At the end of the algorithm, we append the whole Buf to the output. Since this Buf is sorted,
the first filler element will be after the last real element.

Theorem 5.5. CompactBinϵ,δ is (ϵ, δ)-NPDO w.r.t. the input neighboring relation ∼B and output
neighboring relation ∼E.

Proof. First, due to Theorem 5.4 and the definition of ∼B, we know that CompactBin is strongly-NP.
Also, notice that the view of the adversary fully depends on the (ϵ1, δ1)-DP prefix sum mechanism
result cnt. By the definition of ∼B, we know there are at most two bins that have difference at
most one given the neighboring input. Notice that we set ϵ1 = ϵ/2, δ1 = δ/(2(1 + eϵ1)). With
group privacy theorem, it is straightforward that releasing cnt to the adversary is (ϵ, δ)-DP and
thus CompactBin is (ϵ, δ)-DO. Therefore, we have CompactBin is (ϵ, δ)-NPDO.

Theorem 5.6. CompactBin has a worst-case runtime of O(B(Z + s) log(Z + s)).
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Proof. We have B iterations. Before each iteration, the Buf has size at most 2s. When we read
the i-th bin into Buf, its size will be at most 2s+ Z. So performing oblivious sorting on Buf takes
O((Z + s) log(Z + s)) time. In total, the time complexity will be O(B(Z + s) log(Z + s)).

From the RandBin algorithm, BZ = O(|I|), Z = Θ(s), and s = O(1ϵ log
2 |I| log 1

δ ). By Theo-
rem 5.2 and Theorem 5.6, the following corollary holds:

Corollary 5.7. Assuming |I| = Ω(1ϵ log
1
δ ), then the full compaction algorithm Compactϵ,δ :=

CompactBinϵ/2,δ/2◦RandBinϵ/2,δ/2 has a worst-case runtime of O
(
|I|
(
log log |I|+ log 1

ϵ + log log 1
δ

))
.

6 Application: Optimal Privacy Amplification in the Differential
Oblivious Shuffle Model

We use our composition framework to prove a privacy amplification theorem for the differentially
oblivious shuffle (DO-shuffle) model. In particular, consider a distributed setting with n clients and
one server. In the so-called local model, each client runs an ϵ0-locally differentially private (LDP)
mechanism on its own private data, and sends the result the server. Earlier works [CSU+19,Che21,
GGK+21,GKMP20] showed that if we first rely on a trusted shuffler to shuffle all clients’ messages,
and reveal only the permuted messages to the server (without revealing the permutation), then,
we can significantly amplify the privacy guarantees. Here, amplification means that we can have
an (ϵ, δ)-DP guarantee with ϵ < ϵ0. Notably, the recent work of Feldman et al. [FMT21] proved
optimal parameters for privacy amplification in a perfectly secure shuffle model, that is, it can
achieve (ϵ, δ)-DP with any δ > 0 and ϵ = O

(
(1− e−ϵ0)eϵ0/2

√
log(1/δ)

n

)
. In this section, our goal

is to show that the perfectly secure shuffle in privacy amplification can be replaced with a much
weaker, (ϵ, δ)-differentially oblivious shuffle, without degrading the amplification guarantees (except
for extra ϵ and δ additive factors that arise from the differentially oblivious shuffler itself).

6.1 Definitions
Definition 6.1 (Shuffle protocol). A protocol between a server and n clients each with some input
from X is said to be a shuffle protocol, iff under an honest execution, the server outputs a random
permutation of the clients’ inputs.

We assume that an adversary A may control up to t clients as well as the server, we define
the random variable ViewA(xH) to mean the view of the adversary during an execution where the
honest clients’ inputs are xH ∈ X n−t. The view of the adversary A should include whatever the
adversary can observe during the execution. Specifically, the view include the server’s output, all
messages sent and received by the corrupted clients and the server. Further, the view may include
any additional information the adversary can observe. For example, if the adversary can observe
honest-to-honest communication (e.g., a network adversary), then, the view should also include the
honest-to-honest communication. For a protocol secure in the semi-honest model, we assume that
the corrupt players will honestly follow the protocol. For the protocol secure in the malicious model,
we assume that the corrupt players can send arbitrary messages and the adversary A controls the
messages sent by corrupt players.

Remark 6.2. Different DO-shuffle protocols may provide security guarantees under differing ad-
versarial power. For example, of Gordon et al. [GKLX22] assumes a semi-honest adversary cannot
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observe honest-to-honest communication, whereas Bünz et al. [BHMS] assumes a malicious ad-
versary who can observe the entire network communication. Our privacy amplification theorem
does not care about the exact modeling choice made by the underlying DO-shuffle protocol, and the
composed DO-shuffle-model mechanism essentially inherits the same assumptions as the underlying
DO-shuffle.

Neighboring by swapping. Given some set D and two vectors y,y′ ∈ Dm, we say that y ∼S y′,
iff either y = y′, or y′ can be obtained from y by swapping the values of two coordinates.

Definition 6.3 (DO-shuffle). A shuffle protocol is said to satisfy statistical (ϵ, δ)-differentially
obliviousness in the presence of t ≤ n corruptions, iff the following holds: for any adversary A
controlling the server and at most t clients, for any two honest input configurations yH ,y′

H ∈ Yn−t

such that yH ∼S y′
H , for any subset S ⊆ V where V denotes the view space, it holds that

Pr
[
ViewA(yH) ∈ S

]
≤ eϵ · Pr

[
ViewA(y′

H) ∈ S
]
+ δ

Definition 6.4 (Computational DO-shuffle). A shuffle protocol Φ is said to satisfy computational
(ϵ, δ)-differentially obliviousness in the presence of t ≤ n corruptions, iff for any probabilistic
polynomial-time (p.p.t.) adversary A controlling the server and at most t clients, for any two
neighboring honest input configurations yH ∼S y′

H , it holds that

Pr
[
ExptA(1λ,yH) = 1

]
≤ eϵ · Pr

[
ExptA(1λ,y′

H) = 1
]
+ δ

where ExptA(1λ,y) is the randomized experiment where we execute the protocol using security
parameter λ and interacting with the adversary A, and at the end we output whatever A outputs.

Definition 6.5 (ϵ0-LDP mechanism). The function R : X → Y is an ϵ0-LDP mechanism if for any
x, x′ ∈ X and any subset S ⊆ Y , Pr[R(x) ∈ S] ≤ eϵ0 Pr[R(x′) ∈ S].
6.2 Privacy Amplification in the DO-Shuffle Model
Since we want to use our composition framework to prove optimal privacy amplification in the
DO-shuffle model, we can define the first and second mechanism M1 and M2 as follows:

• The first mechanism M1 : X n → Yn is where the n clients each apply the ϵ0-LDP mechanism
R : X → Y to their private data, respectively. The mechanism generates no view observable by
the adversary, and moreover, its output is the concatenation of all clients’ outputs.

• The second mechanism M2 : Yn → Yn is the DO-shuffler itself. Here, the view of the adversary
is its view in the DO-shuffle protocol, and the output is the shuffled outcome. In the main body,
we shall first assume that M2 satisfies statistical differential obliviousness (Definition 6.3). Later
in Appendix A.1, we will extend our composition framework to support the case when M2 is a
computationally differentially oblivious shuffler (Definition 6.4).

To prove an optimal privacy amplification theorem in the DO-shuffle model, the crux is to show
that M1 satisfies (ϵ, δ)-NPDO for ϵ = O

(
(1− e−ϵ0)eϵ0/2

√
log(1/δ)
n−t

)
with any δ > 0 when at most t

clients are corrupted, as more formally stated in the following lemma,

Lemma 6.6. Suppose ϵ0 ≤ log
(

n−t
16 log(2/δ)

)
. The above mechanism M1 satisfies (ϵ, δ)-NPDO w.r.t.

the input relation ∼H , (i.e., two vectors are neighboring if they have the same length and differ in
at most one position) and the output relation ∼S (i.e., neighboring by swapping).
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If we can prove Lemma 6.6, we can directly apply our composition theorem (Theorem 3.6) to
get the desired result. Before we embark on proving Lemma 6.6, it is interesting to point out
that Lemma 6.6 is a generalization of the following main theorem of Feldman et al. [FMT21], who
proved an optimal privacy amplification theorem in a perfectly secure shuffle model.

Theorem 6.7 (Main theorem of Feldman et al. [FMT21]). LetR : X → Y be an ϵ0-LDP mechanism
to be run by each client over its private input. Let x = (x1, . . . , xn) ∈ X n and x′ = (x′1, . . . , x

′
n) ∈

X n be any two neighboring input configurations that differ in at most one client’s input. Let
AllSetsn(Y) be the family of all multi-sets of size n drawn from the space Y. For any δ > 0 that
ϵ0 ≤ log

(
n

16 log(2/δ)

)
, it must be that for any subset S ⊆ AllSetsn(Y),

Pr[MSet(R1(x1), . . . ,Rn(xn)) ∈ S] ≤ eϵ · Pr[MSet(R1(x
′
1), . . . ,Rn(x

′
n)) ∈ S] + δ,

for ϵ = O

(
(1− e−ϵ0)eϵ0/2

√
log(1/δ)

n

)
. In the above, the notation MSet(·) converts the input elements

into a multi-set representation.

We can view Feldman et al.’s main theorem (Theorem 6.7) as a special case of (ϵ, δ)-NPDO,
where the output neighboring relation is set equivalence, i.e., two output vectors y ∈ Yn and
y′ ∈ Yn are considered neighboring iff MSet(y) = MSet(y′). Our Lemma 6.6 can be viewed as
a strict generalization of Feldman et al.’s Theorem 6.7, since in our case, the output neighboring
relation ∼S is more stringent than set equivalence. At a more intuitive level, Feldman et al.’s
Theorem 6.7 says that secretly permuting the clients amplifies privacy, but whereas our Lemma 6.6
says that we need only the ability to secretly swap two clients without being noticed to amplify
privacy, and the degree of amplification is almost as strong as permuting all clients.

6.3 Proof of Lemma 6.6
We provide the proof sketch and defer the proof to Appendix B.1.

We want to prove that the mechanism M1 as defined above satisfies (ϵ, δ)-NPDO. Instead of
directly proving this statement, we first define a related mechanism M′

1 which is otherwise the same
as M1, except that we augment the adversary’s view with some extra information. Specifically,
recall that the mechanism M1 does not generate any view observable by the adversary. Now, in M′

1,
we assume the adversary can observe some additional auxiliary information which we shall define
shortly. We shall prove that M′

1 satisfies (ϵ, δ)-NPDO by proving that M′
1 satisfies (ϵ, δ)-DO and

(0, 0)-NP. This immediately implies that the original M1 satisfies (ϵ, δ)-NPDO as well.

Equivalent view of M1. Without loss of generality, we may assume that client 1 is the client
whose input differs in the two neighboring input configurations x = (x1, x2, . . . , xn) and x′ =
(x′1, x2, . . . , xn). Feldman et al. [FMT21] showed that M1 can be equivalently viewed as the following
randomized experiment. Recall that in M1, every client i runs a ϵ0-DP local randomizer R on its
private data xi. An equivalent way to view R(xi) where i ̸= 1 is the following:

R(xi) =


R(x1) w.p. 1

2eϵ0 ,

R(x′1) w.p. 1
2eϵ0 ,

Q{x1,x′
1}(xi), w.p. 1− 1

eϵ0 .

Using this equivalent view, we can imagine that every other client besides client 1 first flips a
random coin to decide whether it wants to be a clone of R(x1) or R(x′1). If so, it chooses to be
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a clone of R(x1) or R(x′1) with equal probability. If not, it will sample from a suitable leftover
distribution Q{x1,x′

1}(xi). The client 1 is always a clone of itself, i.e., of R(x1) in the first world,
and of R(x′1) in the second world.

Definition of M′
1. In M1, the adversary’s view is empty. We define an augmented mechanism

that is almost identical to M1 except that we give the adversary some extra information, i.e., we
augment the adversary’s view. In particular, we will give the adversary the extra information
(U, V, T ), where

• V contains the indices of the clones, i.e., the clients (including 1) who clone either R(x1) or
R(x′1),

• U is the multi-set of the messages (i.e., outcomes of the local randomizer) sent by the clones in
V ,

• T contains the messages sent by all the non-clones (i.e., clients not in V ) along with their indices.

It suffices to prove that M′
1 satisfies (ϵ, δ)-NPDO. To do so, we will prove that M′

1 satisfies
(ϵ, δ)-DO and (0, 0)-NP. It turns out that the fact that M′

1 is (ϵ, δ)-DO is already implied by the
key lemma of Feldman et al. [FMT21], as stated in Lemma B.1 of of Appendix B.1. Note that
Feldman et al.’s main theorem Theorem 6.7 is also a corollary of Lemma B.1. The intuition is
that if we can secretly permute all clients’ messages, then client 1 is well-hidden among the clones
— in particular, observe that even when we directly tell the adversary all the messages sent by
non-clones, client 1 is still well-hidden.

Therefore, the crux of our proof is to show that M′
1 satisfies (0, 0)-NP.

Proving that M′
1 satisfies (0, 0)-NP. This is the most technical part of our proof. To prove that

M′
1 satisfies (0, 0)-NP, we will be using Lemma 4.1. Specifically, we will consider the probability

space conditioned on the adversary’s view (U, V, T ), and we want to find an (0, 0)-matching in
a bipartite graph where the vertices on both sides represent a point in the output space of M′

1.
One can think of the vertices on the left as producers, and the amount of commodity produced
by each producer is exactly the conditional probability of this output. The vertices on the right
are consumers, and each consumer’s maximum capacity is also the conditional probability of this
output. Now, each producer can only route to neighboring consumers, and we want to make sure
that all but 1 − δ amount of the commodity is routed to some consumer. In our proof, it is
equivalent to just ignore the term T , and imagine that the output space is merely all permutations
of the messages in U . This part of the proof is somewhat more involved, and we defer the actual
proof to Appendix B.1.
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A Computational Differentially Obliviousness and Composition
In the main body, we focused on statistical notions of NPDO and DO. In this section, we discuss
how to extend our composition theorem to computational notions of NPDO and DO.

As a first step (Appendix A.1), we consider the case where the second mechanism satisfies a
standard, indistinguishability-based computational DO notion, and the first mechanism still sat-
isfies statistical NPDO. We particularly care about this scenario, since in our DO-shuffle-model
application, M1 is the step where the clients each run their LDP algorithm, and indeed M1 enjoys
statistical security. However, known instantiations [ALU18, GKLX22, BHMS] of the DO-shuffler,
i.e., M2, satisfy only computational notions of security.

Next, in Appendix A.2 we will consider the case where both the first and the second mechanisms
enjoy computationally security. To do so, we will have to first introduce a computational variant
of our NPDO notion.

A.1 When M2 is Computationally Secure
We first define an indistinguishability-based notion of DO, in the same flavor of the indistinguishability-
based, computational DP notion of Mironov et al. [MPRV09].

Definition A.1 (CDO Mechanism). A mechanism Φ is said to satisfy computational (ϵ, δ)-differentially
obliviousness iff for any probabilistic polynomial-time (p.p.t.) adversary A for any two neighboring
input configurations x ∼X x, it holds that

Pr
[
ExptAΦ(1

λ, x) = 1
]
≤ eϵ · Pr

[
ExptAΦ(1

λ, x′) = 1
]
+ δ + negl(λ)

where ExptAΦ(1
λ, x) is the randomized experiment where we execute the mechanism Φ using security

parameter λ and interacting with the adversary A, and at the end we output whatever A outputs.

We extend our composition theorem to work even when the second mechanism M2 satisfies the
above CDO notion.

Corollary A.2 (Composition when M2 satisfies CDO). Suppose that an algorithm M1 : X → Y
satisfies (ϵ1, δ1)-NPDO w.r.t. ∼X and ∼Y , and moreover, the view space V and output space Y
of M1 is finite or countably infinite. Suppose that M2 : Y → Z satisfies (ϵ2, δ2)-CDO w.r.t. ∼Y .
Then, the composed mechanism M2 ◦M1 : X → Z satisfies (ϵ1 + ϵ2, δ1 + δ2)-CDO.

Proof. Fix any neighboring input x, x′. By Lemma 4.1, there exists an (ϵ1, δ1)-matching w : (V1 ×
Y)×(V1×Y)→ [0, 1] w.r.t natural neighbor notion ∼ in the product space V1×Y : (v1, y) ∼ (v′1, y

′)
when v1 = v′1 and y ∼Y y′. We want to prove that, for any p.p.t. adversary A,

Pr
[
ExptAM2◦M1

(1λ, x) = 1
]
≤ eϵ1+ϵ2 · Pr

[
ExptAM2◦M1

(1λ, x′) = 1
]
+ δ1 + δ2 + negl(λ).

For any p.p.t. adversary A, we denote adversary A(v1), whose behavior is the same as the
adversary A when it is given the auxiliary information v1 (which should be polynomial-length).
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We have

Pr
[
ExptAM2◦M1

(1λ, x) = 1
]

=
∑

(v1,y)∈V1×Y

Pr[ExecM1(x) = (v1, y)] · Pr
[
Expt

A(v1)
M2

(1λ, y) = 1
]

(Use condition (b) and (d) of the matching)

≤
∑

(v1,y)∈V1×Y,y′∼Yy

w
(
(v1, y), (v1, y

′)
)
· Pr

[
Expt

A(v1)
M2

(1λ, y) = 1
]
+ δ1

(M2 is (ϵ2, δ2)-CDO)

≤
∑

(v1,y)∈V1×Y,y′∼Yy

w
(
(v1, y), (v1, y

′)
)
·
(
eϵ2 Pr

[
Expt

A(v1)
M2

(1λ, y′) = 1
]
+ δ2 + negl(λ)

)
+ δ1

(Use condition (b) of the matching)

≤
∑

(v1,y)∈V1×Y,y′∼Yy

w
(
(v1, y), (v1, y

′)
)
·
(
eϵ2 Pr

[
Expt

A(v1)
M2

(1λ, y′) = 1
])

+ negl(λ) + δ2 + δ1

(Use condition (c) of the matching)

≤
∑

(v1,y′)∈V1×Y

eϵ1 Pr[ExecM1(x′) = (v1, y
′)] ·

(
eϵ2 Pr

[
Expt

A(v1)
M2

(1λ, y′) = 1
])

+ negl(λ) + δ2 + δ1

=eϵ1+ϵ2 Pr
[
ExptAM2◦M1

(1λ, x′) = 1
]
+ negl(λ) + δ2 + δ1.

A.2 When Both M1 and M2 Are Computationally Secure
We now consider the case when both M1 and M2 are computationally secure. To understand this
case, we have to first define a computational variant of our NPDO notion. The most straightforward
way is to use a simulation-based notion, i.e., an algorithm satisfies (ϵ, δ)-computational-NPDO iff
the view (i.e., access patterns) and the output generated by the algorithm can be simulated by
those generated by another algorithm which satisfies (ϵ, δ)-statistical-NPDO. We first define the
computationally indistinguishability of mechanisms:

Definition A.3 (Computationally indistinguishable mechanisms). We say two mechanisms M and
M′ are computationally indistinguishable iff for any p.p.t. adversary A,

∣∣∣Pr [x← A; (v, y)← ExecM(1λ, x) : A(v, y) = 1
]

− Pr
[
x← A; (v, y)← ExecM′

(1λ, x) : A(v, y) = 1
] ∣∣∣ ≤ negl(λ).

Definition A.4 ((ϵ, δ)-computational-NPDO). We say that an algorithm M(1λ, ·) : X → Y with
view space V satisfies (ϵ, δ)-computational-NPDO, iff there exists an (ϵ, δ)-statistical-NPDO algo-
rithm M′(1λ, ·) : X → Y such that M and M′ are computationally indistinguishable.

We now extend our composition framework to the case when both M1 and M2 satisfy compu-
tational notions of security.
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Corollary A.5 (Composition when both M1 and M2 have computational security). Suppose that
an algorithm M1 : X → Y satisfies (ϵ1, δ1)-computational-NPDO w.r.t. ∼X and ∼Y , and moreover,
the view space V and output space Y of M1 is finite or countably infinite. The following two
statement holds:

1. If M2 : Y → Z satisfies (ϵ2, δ2)-CDO w.r.t. ∼Y , then, the composed mechanism M2 ◦M1 :
X → Z satisfies (ϵ1 + ϵ2, δ1 + δ2)-CDO.

2. If M2 satisfies (ϵ2, δ2)-computational-NPDO w.r.t. ∼Y and ∼Z , then M2 ◦M1 satisfies (ϵ1 +
ϵ2, δ1 + δ2)-computation-NPDO.

Before we prove this corollary, we first provide the following lemma:

Lemma A.6. Supopse mechanism M is computationally indistinguishable from mechanism M′ and
M′ is (ϵ, δ)-CDO, then M is also (ϵ, δ)-CDO.

Proof. Since M is computationally indistinguishable from mechanism M′, we have that for any
p.p.t. A and any input x,

Pr
[
ExptAM(1λ, x) = 1

]
≤ Pr

[
ExptAM′(1λ, x) = 1

]
+ negl(λ).

Thus, for any neighboring input x ∼X x′

Pr
[
ExptAM(1λ, x) = 1

]
≤Pr

[
ExptAM′(1λ, x) = 1

]
+ negl(λ)

≤eϵ
(
Pr
[
ExptAM′(1λ, x′) = 1

])
+ δ + negl(λ)

≤eϵ
(
Pr
[
ExptAM(1λ, x′) = 1

]
+ negl(λ)

)
+ δ + negl(λ)

≤eϵ Pr
[
ExptAM(1λ, x′) = 1

]
+ δ + negl(λ).

Proof of Corollary A.5. When M2 is CDO: By the definition of computational-NPDO, we know
that there exists an (ϵ1, δ1)-statistical NPDO mechanism M′

1 that is computationally indistinguish-
able from M1. We now prove that M2 ◦M1 is computationally indistinguishable from M2 ◦M′

1 with
a standard argument for “post-processing” (where M2 is the post-process step). Suppose there is an
p.p.t. adversary A that can distinguish M2 ◦M1 and M2 ◦M′

1 with non-negligible advantage. Then,
we simply build an p.p.t. adversary B that takes the challenge input x from A, runs the execution
of the first mechanism, ExecM1(x), takes the output of the first mechanism as y and receives an
execution from the environment (ExecM2(1λ, y) or ExecM′

2(1λ, y), depending on the experiment). It
then sends the view in ExecM1(x) and the whole execution of the second mechanism to A and out-
puts what A outputs. B correctly simulates the input for A, so B can distinguish M1 and M′

1 with
non-negligible advantage, which is a contradition. Thus, we know that M2 ◦M1 is computationally
indistinguishable from M2 ◦M′

1, which is an (ϵ1 + ϵ2, δ1 + δ2)-CDO mechanism by Corollary A.2.
Finally, by Lemma A.6, M2 ◦M1 is (ϵ1 + ϵ2, δ1 + δ2)-CDO.

When M2 is computatiaon-NPDO: By the definition of computational-NPDO, we know that
there exists an (ϵ1, δ1)-statistical NPDO mechanism M′

1 that is computationally indistinguishable
from M1. Also, there exists an (ϵ2, δ2)-statistical NPDO mechanism M′

2 that is computationally
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indistinguishable from M2. We only need to show that M2◦M1 is computationally indistinguishable
from M′

2 ◦M′
1 and then by our main composition theorem for statistical NPDO mechanism 3.6, we

can prove the statement.
Let a hybrid mechanism be M′

2 ◦M1. By the similar argument as the first case in this proof,
we have that M′

2 ◦M1 is computatiaonlly indistinguishable from M′
2 ◦M′

1. We only need to prove
that M′

2 ◦M1 is computationally indistinguishable from M2 ◦M1. Suppose there is a p.p.t. A that
distinguishes M′

2 ◦M1 and M2 ◦M1. We can build a p.p.t. B that distinguishes M′
2 and M2 with

non-negligible advantage: B takes the challenge input x from A, samples an execution from M1 and
then submit the output of M1 as the challenge input. When B gets the view and the output from
M2 or M′

2, it sends the view, the output and also the view of ExecM1(x) to A. Then B outputs what
A outputs. Since B correctly simulates the input distribution for A, B can distinguish M′

2 and M2

with non-negligible advantage, which is a contradiction.

B Deferred Proofs
B.1 Proofs for the privacy amplification theorem by DO-shuffle
In Section 6, we mentioned that the it is suffice to prove the mechanism M′

1 that provides the
adversary with auxiliary information is (ϵ, δ)-NPDO w.r.t the input neighboring relation of ∼H

(neighboring by Hamming distance at most 1) and output neighboring relation of ∼S (neighboring
by swapping two messages).

Equivalent view of M1. Without loss of generality, fix a pair of neighboring input configurations
x = (x1, x2 . . . , xn) and x′ = (x′1, x2 . . . , xn) that only differ in the first client’s input. Feldman et
al. [FMT21] defined the following equivalent view of M1. For client 1, its message are generated as
following: for x, the message y1 will be sampled from R(x1); for x′, y1 is sampled from R(x′1). For
each client i from 2 to n, it behaves the same given the input being x or x′. That is, yi is sampled
from R(xi). Since R is an ϵ0-DP mechanism, for any x, x′ ∈ X where X is the input domain and
any y ∈ Y where Y is the randomizer’s output domain, we have Pr[R(x)=y]

Pr[R(x′)=y] ≥ e−ϵ0 . Thus, we can
“decompose” the distribution of R(x′) as R(x′) = e−ϵ0R(x) + (1− e−ϵ0)Qx(x

′). It means that the
distribution of R(x′) can be seen as a mixture of R(x) and some appropriate leftover distribution
Qx(x

′). Similarly, for all xi where i = 2, . . . , n, we can decompose the output distribution of R(xi)
as

R(xi) =


R(x1) w.p. 1

2eϵ0 ,

R(x′1) w.p. 1
2eϵ0 ,

Q{x1,x′
1}(xi), w.p. 1− 1

eϵ0 .

Here, Q{x1,x′
1}(xi) is also some appropriate left-over distribution after the decomposition. The

properties of Q{x1,x′
1}(xi) are irrelevant in this proof, so we only need to know Q{x1,x′

1}(xi) is a
legal and well-defined distribution. In other words, with probability 1/eϵ0 , each client from 2 to n
will clone either R(x1) or R(x′1) with equal probability, and with the remaining probability, it will
sample from the leftover distribution Q{x1,x′

1}(xi).

Definition of M′
1. Recall that in M1, the adversary’s view is empty. We will define an augmented

algorithm M′
1 that is almost identical as M1 except that we add some extra information to the

adversary’s view. We define the view of the mechanism M′
1 to contain the random varaibles (U, V, T ).

Here, V is the set of the indices of those clients that sample their messages from R(x1) or R(x′1).
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V always contains index 1 and it may contain some indices from 2 to n, depending on those clients’
decision on sampling from the corresponding decomposed distribution. U is the multi-set of the
messages sent by those clients in V . T contains the messages sent by all the non-clones (i.e., clients
not in V ) along with their indices.

Later in our proof, we will consider a probability space conditioned on the adversary’s view
(U, V, T ). Thus, it may be helpful to think of M′

1 as first sampling the variables (U, V, T ), and then
sampling the output (y1, . . . , yn) accordingly. Specifically, consider the following equivalent way of
sampling the experiment M′

1.

• First, decide out of the n−1 clients, how many clients sample from R(x1) or R(x′1). We sample
this quantity, denoted as c, from Bin(n− 1, e−ϵ0).

• Then, conditioned on c clients sampling from R(x1) or R(x′1), we sample the number of the
clients cloning R(x1), denoted as H, from Bin(c, 1/2). Let H ′ = c−H be the number of clients
cloning R(x′1).

• We now denote (m,m′) be the total numbers of clients (including client 1) that are sampling
from R(x1) and R(x′1), repectively. When the input is x, (m,m′) = (H + 1,H ′). When the
input is x′, (m,m′) = (H,H ′ + 1).

• Generate U, V as following: Sample m messages independently from R(x1) and sample m′

messages independently from R(x′1). Let U be the multi-set of these m+m′ messages. Let V be
a subset of the indicies of m+m′ clients picked uniformly at random from [n] that must include
client 1.

• Generate T as following: for each i /∈ V , sample a message yi from Q{x1,x′
1}(xi) and add the

index-message pair (i, yi) to T .
• Finally, generate the output (each client’s message) in the following way.

1. If the input is x, sample a subset of m clients from V uniformly at random conditioned on
containing client 1. If the input is x′, the condition will be changed to exclude client 1.

2. The clients in this set will be assigned messages from the m messages that are sampled earlier
from R(x1) (for instance, in a uniformly random order), and the remaining clients in V will
be assigned messages from the remaining m′ messages sampled from R(x′1).

3. For a client i /∈ V , its message is already determined by T .

A key lemma from Feldman et al. [FMT21] shows that releasing (m,m′), i.e.,the number of
clients (including client 1) sampling from R(x1) and R(x′1), is (ϵ, δ) differentially private, where ϵ
is much smaller than ϵ0. Formally, they prove the following result.

Lemma B.1 ( [FMT21]). Let c $←Bin(n− 1, e−ϵ0), H $←Bin(c, 1/2) and H ′ = c−H. For any δ > 0

and ϵ0 ≤ log
(

n
16 log(2/δ)

)
, the joint distributions on (H + 1,H ′) and (H,H ′ + 1) are (ϵ, δ)-close

where ϵ = O

(
(1−e−ϵ0 )eϵ0/2

√
log(1/δ)√

n

)
.

Here, two distributions D and D′ are (ϵ, δ)-close means that for any subset S in the sample
space, Pr[x $←D : x ∈ S] ≤ eϵ Pr[x′

$←D′ : x′ ∈ S] + δ and vice versa.
Notice that conditioned on (m,m′), whose distribution is (ϵ, δ)-close, the generation of the view

(U, V, T ) is the same regardless of the input being x or x′. Thus, by post-processing theorem
and Lemma B.1, we can easily show that M′

1 is (ϵ, δ)-DO. Also, suppose there are t clients that are
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corrupted by the adversary. Notice that all honest clients run R() locally. Then, we can simply just
consider the honest client set, which has size n− t and the aforementioned argument still holds, as
long as we plug n− t into Lemma B.1. We have:

Corollary B.2. For any δ > 0 and ϵ0 ≤ log
(

n−t
16 log(2/δ)

)
, M′

1 is (ϵ, δ)-DO with ϵ = O

(
(1−e−ϵ0 )eϵ0/2

√
log(1/δ)√

n−t

)
when at most t clients are corrupted by the adversary.

Now, we only need to prove the following key lemma and the proof is finished. In this proof,
we will use techniques from Gordon et al. [GKLX22] in a non-black box way.

Lemma B.3. M′
1 is (0, 0)-NP.

Proof. Given any view of the adversary (U, V, T ) that has non-zero probability when the input is
x or x′, it suffices to give a (0, 0)-matching on the output space of M′

1 conditioned on (U, V, T ) as
in Lemma 4.1.

If client i is sampling from R(x1) or R(x′1), we call that client i is cloning R(x1) or R(x′1).
Recall that V is the subset of clients (including client 1) that clone either R(x1) or R(x′1), and U
is the multi-set of the messages they generate.

Without loss of generality, we assume that all clients in V are honest; otherwise, we remove
dishonest clients from V (and also their messages from U). Denote ℓ = |V | and we can rename the
clients such that V = [ℓ] without loss of generality. For clients i /∈ V , their messages in the output
are already determined by T . For the rest of the proof, since we will always conditioned on T , we
will focus on the part of the output space Yℓ corresponding to the clients in V .

To recap the setup, we have fixed some neighboring inputs x and x′ and conditioned on some
subset V = [ℓ] of clients that clone either R(x1) or R(x′1), and their multi-set U of output messages
(such that the view (U, V ) has non-zero probability in both executions). We use SEQU to denote the
multi-set of the ℓ! permutations of messages in U , where each permutation can be interpreted as an
output in Yℓ. Since U itself is a multi-set, then so is SEQU ; for the purpose of distinguishing repeated
elements in U , we can artificially attach labels on them which will help to resolve any ambiguity.
Observe that conditioning on (U, V ), only outputs in SEQU can have non-zero probabilities in either
executions. So we only need to build the mappings w(y,y′) for y,y′ ∈ SEQU .
Conditional Probability Calculations. Before we build the mapping, we need to figure out the condi-
tional probabilities of the outputs. For each y ∈ SEQU , we will calculate Pr[M′

1(x) = y|ViewM′
1(x) =

(U, V, T )]. For each y′ ∈ SEQU , we will calculate Pr[M′
1(x

′) = y′|ViewM′
1(x′) = (U, V, T )]. For

simpilicity, we use Prx[·] to denote probabilities associated with the execution given input x, and
Prx′ [·] to denote those associated given input x′. So we write the previous conditional probabilities
as Prx[y | U, V, T ],Prx′ [y′ | U, V, T ] for short.

We use µ and µ′ to denote the distribution for R(x1) and R(x′1), respectively. Also, we define
µ(·) and µ′(·) as their probability density functions. For i ∈ V such that i ̸= 1, client i will clone
either R(x1) or R(x′1) with 1

2 probability (conditioned on only V ); in other words, it will generate a
message sampled from the mixture distribution ω = 1

2µ+
1
2µ

′. We also denote ω(·) as its probability
density function.

We first compute the probabilities corresponding to the execution on x. Conditioned on V , for
each y ∈ SEQU , we have

Pr
x
[y | V, T ] = µ(y1)ω(y2) · · ·ω(yl) =

µ(y1)

ω(y1)

∏
u∈U

ω(u).

By enumerating all l! sequences in SEQU , we have Prx[U | V, T ] =
∑

y∈SEQU
Prx[y | V, T ].
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Observe that the above probability is the sum of ℓ! terms, each of which corresponds to a
sequence in SEQU . Hence, for each y ∈ SEQU ,

Pr
x
[y | (U, V, T )] = Prx[y | V, T ]

Prx[U | V, T ]
=

µ(y1)
ω(y1)

∏
u∈U ω(u)∑

z∈SEQU

µ(z1)
ω(z1)

∏
u∈U ω(u)

=
1

(ℓ− 1)!

µ(y1)/ω(y1)∑
z∈U µ(z)/ω(z)

,

where the last equality holds, because we can group the ℓ! possible sequences in SEQU according
to the message sent from client 1, i.e., z1. Hence, there are ℓ groups and each group has (ℓ − 1)!
sequences.

By the same calculation, for the execution on x′, we have:

Pr
x′
[y | (U, V, T )] = 1

(ℓ− 1)!

µ′(y1)/ω(y1)∑
z∈U µ′(z)/ω(z)

.

Building the (0, 0)-matching. We are now ready to build the (0, 0)-matching w : Yℓ × Yℓ → [0, 1].
Notice that we only need to assign non-zero value to w(y,y′) where y,y′ ∈ SEQU , because only
those sequences will have non-zero probability in the execution conditioned on (U, V, T ).

Given a vector y ∈ Yℓ and some index k ∈ [ℓ], we use y1↔k as the sequence produced by
interchanging coordinates between the 1st and the kth positions. For each y ∈ SEQU , it has ℓ
neighbors: y1↔1,y1↔2, . . . ,y1↔ℓ. We let

w(y,y1↔k) =
1

(ℓ− 1)!

µ(y1)/ω(y1)∑
z∈U µ(z)/ω(z)

× µ′(yk)/ω(yk)∑
z∈U µ′(z)/ω(z)

It’s easy to check that this matching satisfies all the conditions in Lemma 4.1:

(a) We know that y ∼ y1↔k, so w(y,y′) will only be non-zero if y ∼ y′.

(b) For each y ∈ SEQu, we have that∑
k∈[ℓ]

w(y,y1↔k) =
1

(ℓ− 1)!

µ(y1)/ω(y1)∑
z∈U µ(z)/ω(z)

∑
k∈[ℓ] µ

′(yk)/ω(yk)∑
z∈U µ′(z)/ω(z)

=
1

(ℓ− 1)!

µ(y1)/ω(y1)∑
z∈U µ(z)/ω(z)

.

The last equality holds because y1, . . . , yℓ is a permutation of U .
So we get that

∑
k∈[ℓ]w(y,y1↔k) = Prx[y | (U, V, T )].

(c) For all y′ = (y′1, . . . , y
′
ℓ) ∈ SEQU , it also has ℓ neighbors y′

1↔1,y
′
1↔2, . . . ,y

′
1↔ℓ and only those

neighbors will satisfy w(y′
1↔k,y

′) > 0. We simply check that∑
k∈[ℓ]

w(y′
1↔k,y

′) =
1

(ℓ− 1)!

µ′(y′1)/ω(y
′
1)∑

z∈U µ′(z)/ω(z)

∑
k∈[ℓ] µ(y

′
k)/ω(y

′
k)∑

z∈U µ(z)/ω(z)
=

1

(ℓ− 1)!

µ′(y′1)/ω(y
′
1)∑

z∈U µ′(z)/ω(z)
.

The last equality holds because y′1, . . . , y
′
ℓ is a permutation of U .

So we get that
∑

k∈[ℓ]w(y
′
1↔k,y

′) = Prx′ [y′ | (U, V, T )].

(d) We simply have that∑
y,y′∈SEQU

w(y,y′) =
∑

y∈SEQU

∑
k∈[ℓ]

w(y,y1↔k) =
∑

y∈SEQU

Pr
x
[y | (U, V, T )] = 1.

All conditions hold for the (0, 0)-matching, so we know that M′
1 is (0, 0)-NP.

38



C Discussion: Generalizing to Uncountable Sample Spaces
In this section, we describe how Lemma 4.1 may be generalized to uncountable sample spaces. We
show how Lemma 4.1 can be derived from a couple of conjectures that can be viewed as uncountable
variants of some well-known primal-dual results on bipartite matching and vertex cover. Proving
these conjectures is an interesting open question.

We first introduce generalized bipartite matching on measure spaces. Note that we use notation
from measure theory that can capture both discrete and uncountable spaces.

Definition C.1 (Generalized Bipartite Matching). Consider the following bipartite matching prob-
lem.
Bipartite graph. Suppose (Ω1, µ1) and (Ω2, µ2) are measure spaces, each of which represents a
vertex set in a bipartite graph. Suppose E ⊆ Ω1 × Ω2 is a (measurable) subset representing the
edges of the bipartite graph, where for each x ∈ Ω1, E(x) := {y ∈ Ω2 : (x, y) ∈ E} is a measurable
subset denoting the neighbors of x in Ω2, and E(y) ⊆ Ω1 is defined analogously for y ∈ Ω2.
Vertex capacities. Let p : Ω1 → R+ and q : Ω2 → R+ be measurable functions denoting vertex
capacities. We consider the special case that

∫
x∈Ω1

p(x)dµ1(x) < +∞ and
∫
y∈Ω2

q(y)dµ2(y) < +∞.
Feasible matching. A feasible matching is a measurable function w : E → R+ satisfying the vertex
capacity constraints:

• For all x ∈ Ω1,
∫
y∈E(x)w(x, y)dµ2(y) ≤ p(x).

• For all y ∈ Ω2,
∫
x∈E(y)w(x, y)dµ1(x) ≤ q(y).

Maximum matching. The goal is to “find” a feasible matching w that maximizes the objective
function:∫

(x,y)∈E w(x, y)dµ1(x)dµ2(y).

Interpreting Lemma 4.1 with Definition C.1. Definition C.1 is related to the second statement
in Lemma 4.1. The edges in E corresponds to neighboring elements in the relation ∼. For the
discrete spaces, the capacity for a vertex a in the first space is p(a) = Pr[A = a], and the capacity
for b in the second space is q(b) = eϵ · Pr[B = b]. Statement 2(d) means that there is a feasible
matching w with objective value at least 1− δ.

As in the finite case, the dual problem for Definition C.1 is the generalized vertex cover problem.

Definition C.2 (Generalized Vertex Cover Problem). Consider the bipartite graph in Defini-
tion C.1 between measure space (Ω1, µ1) and (Ω2, µ2) with edges in E ⊆ Ω1 × Ω2.
Vertex costs. The measurable functions p : Ω1 → R+ and q : Ω2 : Ω2 → R+ are interpreted as
vertex costs.
Feasible vertex cover. A feasible vertex cover consists of a pair of measurable functions α : Ω1 →
[0, 1] and β : Ω2 → [0, 1] such that for all (x, y) ∈ E , α(x) + β(y) ≥ 1.
Minimum vertex cover. The goal is to “find” a feasible vertex cover (α, β) that minimizes the cost
objective:∫

x∈Ω1
α(x)p(x)dµ1(x) +

∫
y∈Ω2

β(y)q(y)dµ2(y).

One can easily check that weak duality holds for the problems in Definitions C.1 and C.2.
Observe that w ≡ 0 is feasible for the primal problem and α ≡ β ≡ 1 is feasible for the dual
problem. The first conjecture is that strong duality also holds.

Conjecture C.3 (Strong Duality). There exist primal and dual feasible solutions in Definitions C.1
and C.2 with the same objective value, and hence, each is an optimum solution in its corresponding
problem.
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Ease of proof. We actually believe that Conjecture C.3 is more like a claim, because strong duality
for finite LP can be proved via Farkas’ Lemma, which can be derived from the hyperplane separation
theorem. Hence, it should be a fairly straightforward exercise to apply the corresponding Hahn-
Banach separation theorem to general spaces, where one might need to add appropriate assumptions
on the measure spaces (Ω1, µ1) and (Ω2, µ2).

Conjecture C.4 (Integrality Gap for Vertex Cover). For the vertex cover problem in Definition C.2,
there exists an integral feasible solution α : Ω1 → {0, 1} and β : Ω2 → {0, 1} that attains the
minimum.

Ease of proof. If E is finite, then this is a well-known result by considering the vertex cover polytope
for bipartite graphs. However, we are not aware of any result in the literature that can readily
extend the result to general uncountable bipartite graphs.

We next show that Lemma 4.1 is an easy corollary from Conjectures C.3 and C.4.
Deriving Lemma 4.1. We consider the more difficult direction of statement 1 implies statement
2. Proceeding with proof by contradiction, we assume that the primal objective of the maximum
matching is strictly less than 1 − δ. By strong duality from Conjecture C.3, the exists a feasible
dual solution whose objective is also strictly less than 1− δ.

By Conjecture C.4, we may assume that the dual solution (α, β) is integral. Define S := {x ∈
Ω1 : α(x) = 0} and T := {y ∈ Ω2 : β(x) = 1}. Since (α, β) is a feasible vertex cover, it follows that
all the neighbors in S are contained in T .

Recall that the cost functions satisfy p(a) = Pr[A = a] and q(b) = eϵ Pr[B = b] (which are
interpreted as probability density functions in the continuous case). Hence, the objective value of
(α, β) is:

Pr[A /∈ S] + eϵ · Pr[B ∈ T ] ≥ 1− Pr[A ∈ S] + eϵ · Pr[B ∈ N (S)].
Finally, since the value of (α, β) is also strictly less than 1− δ, we immediately have
Pr[A ∈ S] > eϵ · Pr[B ∈ N (S)] + δ, obtaining the required contradition.
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