Probabilistic Hash-and-Sign with Retry
in the Quantum Random Oracle Model

Haruhisa Kosuge! and Keita Xagawa?

! Japan Ministry of Defense, harucrypto@gmail.com
2 NTT Social Informatics Laboratories, keita.xagawa@ntt .com

Abstract. A hash-and-sign signature based on preimage-sampleable func-
tion (PSF) (Gentry et al. [STOC 2008]) is secure in the Quantum Ran-
dom Oracle Model (QROM) if the PSF is collision-resistant (Boneh et al.
[ASTIACRYPT 2011]) or one-way (Zhandry [CRYPTO 2012]). However,
trapdoor functions (TDFs) in code-based and multivariate-quadratic-
based (MQ-based) signatures are not PSFs; for example, underlying
TDFs of the Courtois-Finiasz-Sendrier (CFS), Unbalanced Oil and Vine-
gar (UOV), and Hidden Field Equations (HFE) signatures are not surjec-
tion. Thus, such signature schemes adopt probabilistic hash-and-sign with
retry. This paradigm is secure in the (classical) Random Oracle Model
(ROM), assuming that the underlying TDF is non-invertible; that is, it
is hard to find a preimage of a given random value in the range (e.g.,
Sakumoto et al. [PQCRYPTO 2011] for the modified UOV/HFE signa-
tures). Unfortunately, there is no known security proof for the proba-
bilistic hash-and-sign with retry in the QROM.

We give the first security proof for the probabilistic hash-and-sign with
retry in the QROM, assuming that the underlying non-PSF TDF is
non-invertible. Our reduction from the non-invertibility is tighter than
the existing ones that apply to only signature schemes based on PSFs.
We apply the security proof to code-based and MQ-based signatures.
Moreover, we extend the proof into the multi-key setting by using prefix
hashing (Duman et al. [ACM CCS 2021)).

keywords: Post-quantum cryptography, digital signature, hash-and-sign,
quantum random oracle model (QROM), preimage sampleable function.

1 Introduction

Hash-and-Sign Signature in the Random Oracle Model (ROM): A digital signa-
ture is an essential and versatile primitive in cryptography since it supports non-
repudiation and authentication; if a document is signed, the signer indeed signed
it and cannot repudiate the signature. The existential unforgeability against
chosen-message attack, the EUF-CMA security, is the standard security notion
of the digital signature [19]. Roughly speaking, a signature scheme is said to be
EUF-CMA-secure if no efficient adversary can forge a signature even if it can
use a signing oracle, which captures non-repudiation and authentication. The
hash-and-sign paradigm [1, 2] is one of the most widely adopted paradigms to



construct practical signatures along with the Fiat-Shamir paradigm [16] in the
ROM [1]. This paper focuses on the hash-and-sign paradigm.

A hash-and-sign signature scheme is realized by a hard-to-invert function
F: X = Y, its trapdoor |: Y — X, and a hash function H: {0,1}* — ) modeled
as a random oracle. To sign on a message m, a signer first computes y = H(r, m),
where r is a random string, computes z = I(y), and outputs o = (r,z) as
a signature. A verifier verifies the signature ¢ with the verification key F by
checking if H(r,m) = F(x) or not. We refer to this construction as probabilistic
hash-and-sign; if r is an empty string, then deterministic hash-and-sign.

A prime example is TDP-FDH, a full-domain hash (FDH) using a trap-
door permutation (TDP) such as RSA. TDP-FDH is EUF-CMA-secure in the
ROM, assuming the one-wayness (OW) or non-invertibility (INV) of TDP [1]. *
Since TDPs are hard to build in general, Gentry, Peikert, and Vaikuntanathan
proposed a (probabilistic) FDH signature with a preimage-sampleable function
(PSF) [18], which is a trapdoor function (TDF) with additional conditions, e.g.,
surjection. Gentry et al. showed a tight reduction from the collision-resistance
(CR) property of PSF to the strong EUF-CMA (SEUF-CMA) security of PSF-
FDH (and PSF-PFDH), and they constructed a collision-resistant PSF from
lattices.

Unfortunately, it is even hard to build PSFs in code-based and multivariate-
quadratic-based (MQ-based) cryptography; for example, F is not surjection. In
this case, the trapdoor | would output L on input y whose preimage does not ex-
ist. For such TDFs, we use probabilistic hash-and-sign with retry, where a signer
takes randomness r until r allows inversion of y = H(r, m). The Courtois-Finiasz-
Sendrier (CFS) signature [9] in code-based cryptography and the Unbalanced
Oil and Vinegar (UOV) [25] and Hidden Field Equations (HFE) signatures [33]
in MQ-based cryptography use this paradigm. Dallot [10] and Morozov, Roy,
Steinwandt, and Xu [29] showed the security of the modified CFS signature in
the ROM. Sakumoto, Shirai, and Hiwatari [38] also showed the security of the
modified HFE and UOV signatures in the ROM.

Hash-and-Sign Signature in the Quantum Random Oracle Model (QROM): Large-
scale quantum computers will be able to break widely deployed public-key cryp-
tography such as RSA and ECDSA because of Shor’s algorithm [41], and interest
has been growing in post-quantum cryptography (PQC). NIST has initiated a
PQC standardization project for public-key encryption/key-encapsulation mech-
anism (KEM) and digital signature. Many post-quantum hash-and-sign signa-
ture schemes have been proposed in lattice-based, code-based, and MQ-based
cryptography [11, 12, 7, 4, 17, 36].

Post-quantum signatures should be EUF-CM A-secure in the quantum ran-
dom oracle model (QROM) [6] since the QROM modelizes real-world quantum
adversaries with offline access to the hash function. In the QROM, the adver-

3 An adversary tries to find a preimage of a challenge y that is uniformly chosen in
the INV game [21] and that derived by F(z) for z chosen from some distribution on
X in the OW game [1].



Table 1: Summary of the security proofs for the hash-and-sign in the QROM.
DHaS/PHaS/PHaSwR stand for deterministic hash-and-sign, probabilistic hash-
and-sign, and probabilistic hash-and-sign with retry. € denotes the adversary’s
advantage in the game of the underlying assumption and €qy /iny € {€ows €inv}- 4
denotes the number of queries to the signing oracle or the random oracle. Table 2
shows the complete table.

Name DHaS PHaS PHaSwR Assumption Security Bound

[6] v v - CR O(€er)
[ ] v v - OW/INV O(QQEiv(jinv)
ext. of [11] v/ v - OW/INV  O(g"€on/in)
] - v - EUF-NMA O(€nma)
Ours - v v INV O(¢*€iny)

sary can query the random oracle in a superposition of many different values,
say a superposition of all inputs in a query. Thus, we could not directly use the
proof techniques for the ROM, such as lazy sampling in the QROM. Moreover,
schemes that are secure in the ROM are not always secure in the QROM, and Ya-
makawa and Zhandry gave separation results, including a signature scheme [43].
The history-free reduction, which avoids adaptive reprogramming, has been gen-
erally adopted [6, 23, 37]. Recently, some breakthrough results have shown that
adaptive reprogramming is feasible in some cases [12, 22, 13, 20].

Summarizing the previous studies, we find that there are no security proofs
for signature schemes using the probabilistic hash-and-sign with retry in the
QROM, which impacts the security evaluation of code-based and MQ-based
signatures. Thus, it is natural to ask the following question:

Q1. Is there an EUF-CMA security proof for the probabilistic hash-and-sign
with retry? How tight is the security proof?

Table 1 summarizes studies on the EUF-CMA security of the hash-and-sign in
the QROM. Boneh et al. [6] showed a tight reduction from the CR of PSF using
the history-free reduction. Zhandry [45] gave a reduction from the OW/INV *,
using a technique called semi-constant distribution. ® Unfortunately, the semi-
constant distribution incurs a square-root loss in the success probability. Ya-
makawa and Zhandry [14] gave the lifting theorem that shows that any search-
type game is hard in the QROM if the game is hard in the ROM. They used
the lifting theorem to show that an EUF-NMA-secure signature in the ROM is
EUF-NMA-secure in the QROM, where NMA stands for No-Message Attack.
By extending the results of [44], we obtain a reduction from the OW/INV of
PSF. Chailloux and Debris-Alazard [3] gave a security proof of the probabilistic

4 If a TDF is PSF, a tight reduction from OW to INV holds.

® Zhandry [45] proved the EUF-CMA security of TDP-FDH in the QROM, assuming
that the underlying TDP is one-way. The security proof applies to the case for the
OW/INV of PSF.



hash-and-sign based on non-PSF TDFs. However, their reduction does not apply
to the probabilistic hash-and-sign with retry. Also, Grilo, Hévelmanns, Hiilsing,
and Majenz [20] gave a reduction from the EUF-RMA security of a signature
scheme for fixed-length messages, where RMA stands for Random-Message At-
tack. © However, there is no known reduction to the EUF-RMA security of the
underlying signature from the OW/INV of TDF.

Provable Security in the Multi-key Setting: The EUF-CMA security is some-
times insufficient to ensure the security of the digital signature in the real world
since exploiting one of many users may be sufficient for a real-world adversary to
intrude into a system. We must consider the EUF-CMA security in the multi-
key setting, the M-EUF-CMA security in short. The adversary, given multiple
verification keys, tries to forge a valid signature for one of the verification keys.
If the adversary can gain an advantage by targeting multiple keys (multi-key
attack), the M-EUF-CMA security degrades with the number of keys or users.
NIST wrote resistance to multi-key attacks as a “desirable property” in their
call for proposals [31] in their PQC standardization project.

The inclusion of an entire verification key enables one to separate the domain
of the hash function for each verification key [28]. Similarly, Duman et al. [15]
proposed a technique called prefix hashing for the Fujisaki-Okamoto transform
of KEM. In prefix hashing, the hash function includes only a small unpredictable
part of a public key. This modification causes less increase in the execution time
than in the case including the entire key. Since this technique only changes the
method of hashing, the hash-and-sign can adopt it. Thus, one might also ask the
following question:

Q2. Does the hash-and-sign become M-EUF-CMA -secure with prefix hashing?
How tight is the security proof?

1.1 Contributions

Security Proof of Probabilistic Hash-and-Sign with Retry in the QROM: We
affirmatively answer Q1 by giving the first reduction from the INV of the un-
derlying TDF to the EUF-CMA security of the probabilistic hash-and-sign with
retry in the QROM (main theorem). Also, we show that a signature scheme is
SEUF-CMA-secure if the underlying TDF is an injection.

Our reduction is tighter than the existing ones from the INV that apply to
probabilistic hash-and-sign without retry only [415, 8, 441]. Fig. 1 shows a diagram
of the existing and our reductions. The main theorem comprises two reductions;
INV = EUF-NMA and EUF-NMA = EUF-CMA, where X = Y inidicates
a reduction from X to Y. Our reduction of INV = EUF-NMA is tighter than
the one using the lifting theorem [44], and our reduction of EUF-NMA =
EUF-CMA is tight. In the main theorem, a bound on the EUF-CMA advantage
is (2¢qro + 1)%€iny, where qro is @ bound on the number of random oracle queries
and €,y is the INV advantage of the underlying TDF.

5 A signer chooses r, computes m' = H(r,m), and signs on m’ by using a signing
algorithm of the signature scheme for fixed-length messages, and outputs (r, o).
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Fig.1: A diagram for existing and our reductions of the hash-and-sign in the
QROM. Red arrows indicate our reductions of the main theorem. Solid ar-
rows indicate tight reductions, double arrows indicate reductions with linear
or quadratic loss, and dashed arrows indicate non-tight reductions.

Applications: We apply the main theorem to the existing code-based and MQ-
based hash-and-sign signatures. We improve the EUF-CMA security of Wave [11]
and give the first proof for the SEUF-CMA security of the modified CFS signa-
ture [10] and the EUF-CMA security of some MQ-based signatures, including
Rainbow [12], GeMSS [7], MAYO [4], and QR-UOV [17] in the QROM. To
the best of our knowledge, the main theorem covers all post-quantum hash-
and-sign signature schemes with provable securities of INV = EUF-CMA or
INV = sEUF-CMA in the ROM.

In response to the practical break of Rainbow [5], NIST has announced a
new call for proposals of the post-quantum signature with short signatures and
fast verification [32]. NIST has the intention of standardizing schemes that are
not based on structured lattices. Since the main theorem has wide application
in code-based and MQ-based cryptography, promising candidates for this call,
our work will be used to ensure the security of new candidates.

Multi-Key Extension: We affirmatively answer Q2 by showing a reduction from
the multi-instance INV (M-INV) of TDF to the M-EUF-CMA security of
the hash-and-sign with prefix hashing by extending the main theorem. The
M-EUF-CMA advantage has a bound (2¢qro+1)2€inym, where €pym is the M-INV
advantage. Also, we show a tight reduction from the multi-instance CR (M-CR).
Note that the above reductions incur security losses in the number of keys with-
out prefix hashing. The reduction from the M-INV or M-CR does not assure
resistance to multi-key attacks in general. However, if there is a reduction from
the INV or CR without the security loss in the number of keys, we can ensure
resistance to multi-key attacks. This paper proposes a generic method for such
single-key to multi-key reduction.

Organization: Section 2 gives notations, definitions, and so on. Section 3 reviews
the existing security proofs in the (Q)ROM. Section 4 introduces our main the-



orem. Section 5 applies the main theorem to code-based and MQ-based signa-
tures. Section 6 shows the multi-key extension of the main theorem. Section 7
explains the generic method for single-key to multi-key reduction. Section 8 ap-
plies the generic method for single-key to multi-key reduction to lattice-based,
code-based, and MQ-based signatures. In appendix, Appendix A reviews the
TDFs of signature schemes. Appendix B shows missing proofs.

2 Preliminaries

2.1 Notations and Terminology

For n € N, we let [n] := {1,...,n}. We write any symbol for sets in calligraphic
font. For a finite set X, |X| is the cardinality of X and U(X) is the uniform
distribution over X. By = +—g X and x < Dy, we denote the sampling of an
element from U(X) and Dy (distribution on X). For a domain X and a range
Y, by Y¥ we denote a set of functions F: X — ).

We write any symbol for functions in sans-serif font and adversaries in calli-
graphic font. Let F be a function and A be an adversary. We denote by y < FH(a:)
and y < A"(z) (resp., y < F'™(2) and y « AM () probabilistic computations
of F and A on input  with a classical (resp., quantum) oracle access to a function
H. If F and A are deterministic, we write y := F"(z) and y := A" (). For a ran-
dom function H, we denote by H* %" a function such that H* ¥ (z) = H(x)
for © # z* and H* 7Y (2*) = y*. The notation G* = y denotes an event in
which a game G played A returns y.

We denote 1 if the Boglean statement is true T and 0 if the statement is false
L. A binary operation a = b outputs T if a = b and outputs L otherwise.

2.2 Digital Signature
A digital signature scheme Sig consists of three algorithms:

Sig.KeyGen(1*): This algorithm takes the security parameter 1* as input and
outputs a verification key vk and a signing key sk.

Sig.Sign(sk, m): This algorithm takes a signing key sk and a message m as input
and outputs a signature o.

Sig.Vrfy(vk, m, o): This algorithm takes a verification key vk, a message m, and
a signature o as input, and outputs T (acceptance) or L (rejection).

We define existential unforgeability against chosen-message attack (EUF-CMA
security) and that against no-message attack (EUF-NMA security).

Definition 2.1 (Security of Signature). Let Sig be a signature scheme. Us-
ing games given in Fig. 2, we define advantage functions of adversaries playing
EUF-CMA (Ezistential UnForgeability against Chosen-Message Attack) and
EUF-NMA (No-Message Attack) games against Sig as AdvgigF'Cl\"IA(Acma) =

Pr [EUF-CMAAw = 1] and Advéy" ™4 (Apma) = Pr [EUF-NMAAm = 1] Also,



GAME: EUF-CMA Sign(m;)

1 (vk,sk) « Sig.KeyGen(1*) 1 o; « Sig.Sign(sk,m;)
2 (m*,0%) <—A§i§:(vk) 2 return o;

3 if 37 : m* = m; then

4 return(

5 return Sig.Verify(vk,m*,0")

GaME: EUF-NMA

1 (vk,sk) « Sig.KeyGen(1*)

2 (m*,0") < Anma(vk)

3 return Sig.Verify(vk,m", ")

Fig.2: EUF-CMA and EUF-NMA games.

GAME: INV GAME: OW GaME: CR
1 (F,1) < Gen(1%) 1 (F,1) < Gen(1%) 1 (F,1) < Gen(1?)
2 y+gV 2 v+ Dx 2 (z1,25) + B (F)
3 2" Bin(F,y) 3y = F(x) 3 return F(z7) < F(z3)
4 return F(z") Ly 4 2"« Bou(F,y)
5 return F(z") < Y

Fig.3: Non-invertibility (INV), one-wayness (OW), and collision-resistance
(CR) games.

we define an advantage function for a SEUF-CMA (strong EUF-CMA ) game
as AdVZIiEgUF’CMA(Acma) = Pr [SEUF-CMA“=s = 1], where the SEUF-CMA game
is identical to the EUF-CMA game except that Line 3 is changed as “ if
i, (m*,0%) = (my,0;) then” We say Sig is EUF-CMA -secure, EUF-NMA -
secure, or SEUF-CMA-secure if its corresponding advantage is negligible for
any efficient adversary in the security parameter.

2.3 Trapdoor Function
A trapdoor function (TDF) T consists of three algorithms:

Gen(1*): This algorithm takes the security parameter 1* as input and outputs
a function F with a trapdoor I.

F(z): This algorithm takes z € X and deterministically outputs F(x) € Y.

I(y): This algorithm takes y €Y and outputs z € X, s.t., F(z) =y, or outputs L.

Definition 2.2 (Security of TDF). Let T be a TDF. Using games given in
Fig. 3, we define advantage functions of adversaries playing the non-IN Vertibility



(INV)", One-Wayness (OW ) and Collision-Resistance (CR.) games against T as
AdvIY (Bin,) = Pr [INVBn = 1], AdvY (Bow) = Pr [OWPor = 1] and Adv§™ (B) =
Pr [CRB«=1].

2.4 Preimage-Sampleable Function

In the ROM, the hash-and-sign is EUF-CM A-secure when instantiated with a
preimage-sampleable function (PSF) proposed in [18]. We first define its weak-
ened version as follows:

Definition 2.3 (Weak Preimage-Sampleable Function (WPSF)). A TDF
T is said to be a WPSF if it consists of the following four algorithms:

Gen(1*): This algorithm takes the security parameter 1* as input and outputs
a function F with a trapdoor 1.

F(z): This algorithm takes x € X and deterministically outputs F(z) € V.

I(y): This algorithm takes y € Y and outputs x € X satisfying F(z) = y or
outputs L.

SampDom(F): This algorithm takes F € Y% and outputs v € X.

We then review PSF [13]:

Definition 2.4 (Preimage-Sampleable Function (PSF) [18]). A TDF T
is said to be a PSF if T is WPSF and its algorithms satisfy three conditions for
any (F,1) < Gen(1*):

Condition 1: F(x) is uniform over ) for x < SampDom(F).

Condition 2: x© < I(y) follows a distribution of x + SampDom(F) given
Fz) =y.

Condition 3: |(y) outputs x satisfying F(x) =y for anyy € Y.

If T is collision-resistant PSF, it satisfies the above conditions plus the following:

Condition 4: For anyy € ), the conditional min-entropy of x <+ SampDom(F)
given F(x) =y is at least w(logn).

We define a condition for indistinguishability of « < SampDom(F) and = «
I(y) in a different manner from Condition 2.

Definition 2.5 (Preimage Sampling (PS) Game). Let T be a« WPSF. Us-
ing a game defined in Fig. /, we define an advantage function of an adversary
playing the PS game against T as Adv-Pr)S(Dps) = ‘Pr [PSODps = 1} — Pr [PS?PS: 1] |

The condition that Advi®(Dy) is negligible is a relaxation of Condition 2 in
which we can use either statistical or computational indistinguishability.

" In general, non-invertibility of TDFs is called one-wayness [18, 38, 8]. We make a dis-
tinction between them depending on the way to choose challenges (INV follows [21]
and OW follows [1]).

& The original definition of PSF [18] does not explicitly assume Condition 3 but
implicitly assumes by Condition 2. Condition 3 is necessary for a signature gen-
eration without retry.



GAME: PS, Sample,() Sample, ()
N 1 repeat 174 R
: (I:’l) <_Sacr;ni2b(1 ) 2 Ti<sR 2 x; < SampDom(F)
2 b7« Dps (F) 3 yi+sY 3 return (r;, z;)
3 return b 4 @ (y)
5 until z; # L
6 return (r;,z;)

Fig.4: A preimage sampling (PS) game.

GAME: M-EUF-CMA Sign(k, m¥)
for j € [grey] do

(vkj, sk;) + Sig.KeyGen(1*)
(% m*,0%)  AZEn ({vk; }ieqe,)

=

1 of « Sig.Sign(sky, mF)
2 return of

[7-I V]

cma™

4 ifdi:m* = mg* then

5 return 0

6 return Sig.Verify(vk;=,m*, o)

Fig.5: An EUF-CMA game in the multi-key setting.

2.5 Security Games in the Multi-key /Multi-instance Settings

We define multi-key/multi-instance versions of the security notions.

Definition 2.6 (Security of Signature in the Multi-key Setting [24]). Let

Sig be a signature scheme. Using a game given in Fig. 5, we define advantage
functions of adversaries playing the M-EUF-CMA (Multi-key EUF-CMA ) and
M-sEUF-CMA (Multi-key SEUF-CMA ) games against Sig as AdVé’EEUF_Cl\IA(Acmam) =
Pr [M-EUF-CMA“A= = 1] and Advel” """ ™M (Acman) = Pr [M-sEUF-CMAAm" = 1],
where the M-SEUF-CMA game is identical to the M-EUF-CMA game ezcept

that Line 4 is changed as “ if Ji, (m*,0*) = (mg*,af*) then” We say Sig is
M-EUF-CMA -secure or M-sEUF-CM A -secure if its corresponding advantage

is megligible for any efficient adversary in the security parameter.

Definition 2.7 (INV, CR, and PS in Multi-instance Setting). Let T be
a TDF or a WPSF. Using games given in Fig. 6, we define advantage func-
tions of adversaries playing the M-INV (Multi-instance INV ), M-CR, (Multi-
instance CR), and M-PS (Multi-instance PS) against T as Advy ™™V (Bipym) =
Pr [M-INVB» = 1], Advi % (Bem) = Pr [M-CRB = 1], and Adv}™"> (Dpsn) =
|Pr [M-PS§>" = 1] — Pr [M-PSP»" =1] .



GAME: M-INV GAME: M-CR
1 for j € [ginst] doO 1 for j € [ginst] do
2 (Fj,1;) s Gen(1*) 2 (F;,1;) «s Gen(1%);
3 yi<sY 3 (55,21, 22) < Bam({F; }jlgina)
a (5%, 2") < Bin({(F, 45) }jclgina) a return Fj. (z}) = F . (x3)
5 return F;.(z) = Yj*
GAME: M-PS, Sample (k) Sample, (k)
1 for j € [ginst] dO 1 repeat 1P s R
2 (Fjl) <s Gen(1%) 2 ri+sR 2 z¥ < SampDom(F;)
5 b DI bet) 5 05 Y a return (rF,2%)
4 return b* 4 2F 1 yh
5 until 2¥ # |
6 return (rf z¥)

Fig.6: INV, CR, and PS games in the multi-instance setting.

2.6 Quantum Random Oracle Model and Proof Techniques

In the ROM, a hash function H: R x M — ) is modeled as a random function
H g YR**M_ The random function is under the control of the challenger, and
the adversary makes queries to the random oracle (random oracle queries) to
compute the hash values. In the ROM, the challenger chooses y <3 ) and
programs H as H(r,m) = y for queried (r,m) on-the-fly instead of choosing
H <g YR*M at the beginning (lazy sampling technique).

In the QROM, the adversary makes queries to H in a superposition of many
different values, e.g., >, .,y @rm [7,m) [y). The challenger computes H and gives
a superposition of the results to the adversary, >, .. &rm [r,m) [y & H(r,m)).
Some works enable one to adaptively reprogram H in the security game [42,

, 13, 20]. Among the works, we will use the tight adaptive reprogramming
technique [20] and the measure-and-reprogram technique [13].

Tight Adaptive Reprogramming Technique [20]: Fig. 7 shows a game called
adaptive reprogramming (AR) game, in which the adversary D,, tries to dis-
tinguish Hy (no reprogramming) from Hy (reprogrammed by Repro). For i-th re-
programming query, the challenger reprograms H; for uniformly chosen (r;,y;),
and gives 7; to D,,. A distinguishing advantage of the AR game is defined by
Adviy®(Da) = |Pr [ARP*=1] — Pr [ARP=1]|.

Lemma 2.1 (Tight Adaptive Reprogramming Technique: Proposition
1 of [20]). For any quantum AR adversary Dy, issuing at most ¢wp classical
reprogramming queries and dqro (quantum) random oracle queries to Hy, the
distinguishing advantage of the AR game is bounded by

AdVAR(D,,) < 2ree [aro
T2 VIRP

10




GAME: AR, Repro(m;)

1 H() s yRXM 1 (ri,yi) <—$R><)i
2 Hy :=Hp 2 Hy = Hgﬁ‘»mi)'—ﬂﬁ,
3 b* < D) Repre(y 3 return r;

4 return b”

Fig. 7: An adaptive reprogramming (AR) game.

ADVERSARY: A" () SIMULATOR: S(0) for A ()
1 (r,m,z) « AM() 1 H g YRXM
2 return (r,m, z) 2 (7', m') eSf‘IH)()

3 H = H('r/,m/)»—>9

AlHD
4 Z 32 ((9)
5 return (r',m/, 2)

Fig.8: A simulator S for any search-type game adversary A.

Measure-and-Reprogram Technique [15]: Fig. 8 shows a two-stage simulator S for
A playing any search-type game in the QROM. In the first stage, S; uniformly
chooses one of the A’s queries to a random function H and outputs the observed
value (r';m’) of the chosen query. Then, H is reprogrammed as H' := H(r'm')—0
for a random 6. In the second stage, Sy runs A using H’'. Finally, Sy outputs
whatever A outputs, which is denoted by z and maybe quantum.

Lemma 2.2 (Measure-and-Reprogram Technique: Theorem 2 of [13]).

For any quantum adversary A issuing at most qqro (quantum) random oracle
queries to H <—g YR*M  there exists a two-stage quantum simulator S given
uniformly chosen 6 such that for any (¥,m) € R x M and any predicate V,

Pr [(r,m') = (7,50) AV, 0,2) = (', m') = S22 e 538 (0)]

1 A~ A~
- mPr {(r’ m) = (7,m) AV(r,m,H(r,m),z) : (r,m, z) A‘H>()] .

3 Hash-and-Sign Paradigm and Existing Security Proofs

3.1 Hash-and-Sign Paradigm

Fig. 9 shows algorithms of the probabilistic hash-and-sign with retry, and HaS[T, H|
denotes a signature scheme using a TDF T and a hash function H. If HaS[T, H].Sign
outputs a signature without retry, HaS[T, H] instantiates the probabilistic hash-
and-sign. If r is an empty string, HaS[T, H] instantiates the deterministic hash-
and-sign.
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HaS[T, H].KeyGen(1™) HaS[T, H].Sign(l, m) HaS[T, H].Vrfy(F, m,r, x)
1 (F,1) < Gen(1%) 1 repeat 1 return F(z) = H(r,m)
2 return (F,I) r<sR

z + I(H(r,m))
until z # |
return (r,z)

LT NI V]

Fig.9: Algorithms of the probabilistic hash-and-sign with retry.

3.2 Existing Security Proofs

We review existing security proofs. Table 2 summarizes the existing security
proofs (and ours).

Security Proof in the ROM [2, 15]: Let Tps be a PSF. A reduction from the
INV of Tpe to the EUF-CMA security of HaS[Tpsf, H] in the ROM is given by
lazy sampling and programming. The INV adversary B;,,, given a challenge
(F,y), simulates the EUF-CMA game played by an adversary Acma as fol-
lows: For a random oracle query (r,m), By returns F(x) for x < SampDom(F)
and stores (r,m,x) in a database D. If (r,m,x) € D with some z, then B,
gives F(x) to Acma. For a signing query m, Bj,, chooses (r,x) by r +—¢ R and
x < SampDom(F). If (r,m, *) &€ D, Bi,, returns (r,z) and stores (r,m,z) in D;
otherwise B,y returns stored (r,x).

From Condition 1 of PSF (F(x) is uniform), Bi,, can use F(z) as an output
of the random function. Also from Conditions 2 and 3, honestly generated
signatures x; < |(H(r;, m;)) and simulated signatures z; <— SampDom(F) are
statistically indistinguishable. To win the INV game, B;,, gives his query y to
Acma in one of (gsign + gro + 1) queries to H. If A, outputs a valid signature
(m*,r*,2*), H(r*,m*) = y holds and B;,, can win the INV game with proba-
bility TRt Hence, we have

AdVEESF[:r(;jf\ﬁ{A] (Acmac) < (QSign + Gro + 1)AdVI|'1j:f/ (Binv)>

where Acmac is an adversary who can make only classical queries to H.

Note that a tight reduction of AdvITl\pl\f/(B;nv) < AdV-(l—):;/(BOW) holds (Dy is
defined as SampDom(F) in the OW game (see Fig. 3)) since the OW adversary
can simulate the INV game by giving a uniform F(z) to the INV adversary.

Security Proof by Semi-constant Distribution [/5]: Zhandry showed the reduction
from the OW of TDP in the QROM using a technique called semi-constant
distribution. This technique leads to a reduction from the INV of PSF. Bj,,
simulates the EUF-CMA game by generating signatures without the trapdoor
as the above security proof in the ROM. Instead of adaptively programming H,
Biny replaces H as H' = F(DetSampDom(F, H(r,m))), where H <—g WR*M is a

12



Table 2: Summary of the existing and our security proofs. € denotes the ad-
versary’s advantage in the game of the underlying assumption and e€g /iy €
{€ow; €inv }- In “Conditions of PSF”, v indicates this condition is necessary, and
v''/v? indicates that Condition 2 is relaxed as “A bound § on average of
OF, is negligible” and “eps = Adv?ipﬁf (Dps) is negligible”. In “Target scheme”,
d/p/pr indicate that the security proof is applied to deterministic hash-and-sign,
probabilistic hash-and-sign, and probabilistic hash-and-sign with retry.

Security Conditions Target
proof Security Bound Assumption of PSF  scheme
1 23 4
[45] 2\/(qsagn + 8 (gsign + daro + 1)) €owsie OW/INV v v v —  d/p
ext. of [14] 4Gsign (daro + 1)(2dqro + 1) €ow inv OW/INV v v v — d/p
r 3 sign
B 3 (ome+ 503 Vo+ g (6+ 1)) BUF-NMA -v'v = p
ours (2¢gro + 1) €iny +€ps -+ 3kign qgig"T%{"H INV ~vi— — p/pr
ours €nma + €ps + 3qsign qg'g"-f%"ﬁl EUF-NMA - vZ - —  p/pr
ours (2(]qro + 1)2€ow/inv + 3QSign qSign7T7qaC;VO+l OW/INV VvV - P

random function to output randomness w and DetSampDom is a deterministic
function of SampDom [(]. From Condition 1, H’ is indistinguishable from H.

To find a preimage of his challenge y, B, programs H' that outputs y with
probability € (semi-constant distribution). In the signing queries, if H'(r;, m;)
outputs y, Bi,, aborts this game. A bound on the statistical distance between
the random function and the programmed one with the semi-constant distribu-
tion is %(qsign + gqro + 1)*€? [15, Corollary 4.3]. When Acm, wins the EUF-CMA
game, Bi,, can win the INV game with probability (1 — €)%ee ~ € — gsign€>.
Minimizing the bound %Advlle: + (qsign + %(qsign + gqro + 1)4) € gives the follow-
ing [45, Theorem 5.3

o) 8
AdVEESITTij\,Iﬁ] (Acma) < 2\/((15ign + g (QSign + qqro + 1)4) Advll'ljs\f/(BinV) (1)

Application of Lifting Theorem [//]: Yamakawa and Zhandry gave the lifting
theorem for search-type games. As an application of the lifting theorem, they
showed AdvgigF'NMA(Anma) < (2qqro + 1)2AdvggF'Nl\lA(¢4nmac), where A,mac is
an EUF-NMA adversary making classical queries to H [14, Corollary 4.10]. For
a hash-and-sign signature HaS[T pef, H], they showed that Advﬁgsl?}il?% (Acma) <
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4qs,gnAdVEESF lllf“ﬁ] (Anma) holds [11, Theorem 4.11]. Extending the results of [11]
using the security proof in the ROM, we have the following bound:

Adviisdrai (Acma) < 44sign(daro + 1) (2dqr0 + 1)*AdVEY (Biny)

Reduction from EUF-NMA for WPSF [§]: The security proofs mentioned above
hold only if the underlying TDF is PSF. Unfortunately, some TDFs cannot sat-
isfy some conditions. To relax the conditions on TDFs, Chailloux and Debris-
Alazard proposed a reduction from the EUF-NM A-security of the probabilis-
tic hash-and-sign. © The authors assumed a WPSF with Condition 3 and a
weaker version of Condition 2, that is, there is a bound ¢ on the average of
statistical distance dg; = A(SampDom(F),1(U(})))) over all (F,l) <+ Gen(1?)
(see details in Section 5.1). Let Typsr be a WPSF. The EUF-NMA adversary
Apma replaces the random function H by H’, which outputs H(r,m) with % and
F(DetSampDom(F,w)) with 3. A bound on the advantage of distinguishing H

from H’ is fqgr/f\ﬁ. The authors gave the following reduction [, Theorem 2J:

1 _NM 8r 32 sign
AdVEESF Cvjvi\%] (Acma) < B <Ad ﬁESF[TIji\sﬁﬂ (Anma) + ﬁqqzro\/gjL Gsign (5 + L )>
2

Reduction from Collision-resistance [6]: We introduce a reduction from the CR
of Tper to the SEUF-CMA security of HaS[Tpsf, H]. Let us assume that the CR
adversary B, given F simulates the SEUF-CMA game for Acm,. For a ran-
dom function H <—g WR*M B replaces the random function H as H'(r,m) =
F(DetSampDom(F, H(r,m))), where H and H’ are indistinguishable from Condi-
tion 1. Also, the CR adversary simulates the signing oracle using Conditions
2 and 3. If A, wins by (m*,r*, z*), then F(2*) = H' (r*,m*) = F(2’) holds for
2/ = DetSampDom(F, H(r*, m*)). When z* # 2/, Be, can obtain a collision pair
(z*,2"). From Condition 4, z* # z’ holds with probability 1 — 2-<(°8") and
the following inequality holds [6, Theorem 2]:

1
At (Aema) < 5 agiy A0V (Ber) ?)

4 New Security Proof

The main theorem is as follows:

Theorem 4.1 (INV = EUF-CMA (Main Theorem)). For any quantum
EUF-CMA adversary Acma of HaS[Twpsf, H] issuing at most gsign classical queries
to the signing oracle and qqro (quantum) random oracle queries to H <—g YRXM.

9 The authors of [8] defined a problem called claw with random function problem;
however, the definition of this problem is identical to that of the EUF-NMA game
for the hash-and-sign.
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there exist an INV adversary Biny of Twpst and a PS adversary Dps of Typst
issuing gsign sampling queries such that

AdVEESF[_T?VgI,AI—I] (Acma) < (2qu0 + 1)2AdVIrle::f(BinV) + Advi® (DPS)

Twpsf

q/i n ‘|’q ro + 1
+ 3q;ign“ %7 (4)

where lign s the total number of queries to H in all the signing queries, and the
running times of Biny and Dps are about that of Acma.

We present a proof sketch first and the detailed proof later.

Proof Sketch. We prove the main theorem via two reductions; EUF-NMA =
EUF-CMA and INV = EUF-NMA:

EUF-NMA = EUF-CMA: We modify the EUF-CMA game to be simu-
lated by the EUF-NMA adversary Apma. Since A,ma cannot make queries
to the signing oracle, he needs to simulate the oracle by r; <—g R and
x; < SampDom(F) with reprogramming H("#™m)~F(:) a5 in the existing
security proofs. Therefore, we first modify the EUF-CMA game such that
we can adaptively reprogram H using the tight adaptive reprogramming tech-
nique [20]. In answering a signing query m, a preimage x < |(y) for uniformly
chosen y < Y is computed and H is reprogrammed as H">"™~% The AR
adversary (see Fig. 7) can simulate the original and modified EUF-CMA
games, and we can use the bound of Lemma 2.1.

Next, we modify the game such that signatures are generated by r; <—g
R and x; < SampDom(F) in the signing oracle. The PS advantage (see
Definition 2.5) gives a bound on the advantage gap.

Finally, the EUF-NMA adversary can simulate the modified EUF-CMA
game. Hence, a tight reduction holds in EUF-NMA = EUF-CMA.

INV = EUF-NMA: We use the measure-and-reprogram technique [13]. The
INV adversary Bi,, given a challenge (F,y) runs the two-stage simulator S
of the EUF-NMA game played by Anma. In the first stage, S observes one
of the random oracle queries A,ma makes. Let (', m’) be the observed value
and H is reprogrammed as H' = H"-m)=¥ I the second stage, S runs Anma
again with H’) and obtains (m™*, r*, z*). After running S, B;,, outputs z* as a
preimage of y. From Lemma 2.2, a reduction with a security loss (2¢qr0 + 1)?
holds in INV = EUF-NMA.

Remark 4.1. We have the following tight reduction in EUF-NMA = EUF-CMA.

AdVHaS(T ) (Acma) < AAVESIE 1y (Auma) + AdVEL (Dps)

qgign + 4qro +1
3qs; s — )
+ QSg |R| ( )

Compared with the similar bound of Eq. (2) [8], the requirement for the TDF is
weaker, and there are no square-root terms related to Condition 2.
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Remark 4.2. The relaxed Condition 2, that is, Adv-Prfpsf(Aps) is negligible, is
also necessary for reductions of EUF-NMA = EUF-CMA in the ROM. As
shown in Section 3.2, an adversary who cannot generate real signatures simu-
lates the signing oracle by SampDom:; therefore, honestly generated signatures
and simulated ones should be indistinguishable. Therefore, we conjecture that
EUF-NMA = EUF-CMA holds in the QROM whenever the same reduction
holds in the ROM.

Remark 4.3. If the underlying TDF is PSF, we have

Ad EUF-CMA i r
aS| ijsfle] (Acma) <— (2quo - I)ZAdVITIij (BI v) 3q| —ng| qTol

- 2 +| V: / qsin+qro+
= ( qqro ) Ad ::: (BOW) + 3qsl %7

since Adv-lipssf(Dps) = 0 holds from Condition 2 and gign = Gsign holds from
Condition 3. The above bounds are tighter than existing ones for HaS[T s, H]
(see Table 2), which implies that the probabilistic hash-and-sign gives a better
bound than the deterministic one even if the underlying TDF is PSF.

Remark 4.4. Grilo et al. showed a tight reduction of EUF-NMA = EUF-CMA
in the Fiat-Shamir paradigm, assuming that the underlying ID scheme is hon-
est verifier zero-knowledge (HVZK) [20, Theorem 3]. Also, Don et al. gave a
generic reduction in the Fiat-Shamir transform of arbitrary ID schemes with a
security loss (2¢qro + 1)? [14, Theorem 8]. The above reductions use the same
techniques of adaptive reprogramming in the QROM (Lemmas 2.1 and 2.2) and
their combination has the same security loss as Theorem 4.1.

There are two advantages compared with the existing security proofs.

Advantage 1: Wide applications: Our reduction gives security proofs for code-
based and MQ-based hash-and-sign signatures. Relaxation of Condition 2 is
necessary for such applications. The existing security proofs replace H with H' at
all once, which requires statistical indistinguishability of H and H’. On the other
hand, our proof reprograms H in each signing query, and Adv%svpsf (Bps) can bound
the advantage gap of games in EUF-NMA = EUF-CMA. Note that |(y) is not
necessarily indistinguishable from SampDom(F). Since the condition to output
1 is arbitrarily defined, the specification of a trapdoor | can be adjusted such
that Adv-livsvpsf([)’ps) is negligible.

Advantage 2: Tighter proof: Our reduction is tighter than the existing ones [45,

] as mentioned in Remarks 4.1 and 4.3. The optimality of our reduction is
not guaranteed; however, the multiplicative loss (2qqr + 1)? seems unavoidable
in the generic (black-box) reduction when we infer from three facts. First, the
reduction incurs the loss (gqro + gsign + 1) even in the ROM (see Section 3.2).
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GAME: Go—G3 SignH(m,’) for Go—Go

1
2

3
4
5

6

H s YM 1 repeat
(F,1) < Gen(1*) 2 ri<sgR
(m", 7", ")  ASEV(F) 3 @i ¢ (H(ri,m:)) /1 Go
if 37 : m* = m; then 4 yi<csY // G1-Gg
return 0 5 H:= Himi)—=y /] Gy
return F(q;*) z H(T*,m*) 6 T |(yi) // G1-Go
7 until z; # L
8 H:= H(’rl,’m7)'—>y7 // G2

9 return (r;,x;)

Sign"(m;) for Gz
17143 R

2 z; < SampDom(F)
3 H:= H(mi)—=F(zi)

4 return (7;,z;)

Fig.10: Games for EUF-NMA = EUF-CMA

Second, the security loss of a generic reduction from ROM to QROM using the
lifting theorem [14] is at least (2gqro + 1)2. Third, in the Fiat-Shamir paradigm,
a generic reduction from arbitrary ID schemes incurs the same security loss as
mentioned in Remark 4.4

4.1 Proof of Theorem 4.1

EUF-NMA = EUF-CMA: Figs. 10 and 11 show the games and simulations
described below.

GAME Gy (EUF-CMA game): This is the original EUF-CMA game and

Pr [Gg'm = 1] = Adviiis o 1) (Acma) holds.

GAME G; (adaptive reprogramming on H): The signing oracle Sign" uniformly

chooses y; and reprograms H := H(-m)=% until I(y;) does not output L
(see Lines 4 and 5 in Sign" of G;). Considering the number of times that
[(y;) outputs L, H is reprogrammed for ¢gig, times.

The AR adversary D,, can simulate Gg/G; (the top row of Fig. 11). If D,,
plays ARg, D, simulates Gg; otherwise it simulates G;. From Lemma 2.1,

we have |Pr [G()“C’“a:> 1] —Pr [Gf“:’“a = 1] | < AdvﬁR(Da,) < 3./ %.

GAME Gy (changing the timing of adaptive reprogramming on H): The adaptive

reprogramming is executed only at the end of the signing oracle. That is,
after generating y; satisfying I(y;) # L, the challenger reprograms H =
H(ri:mi)=vi (see Line 8 in Sign™ of Gy).

As shown in the second row of Fig. 11, D,, can simulate G;/G. Instead
of using his challenge Hy, D,, uses H' controlled by D,,. H' returns whatever
Hp outputs except on {(7, M) }ic[gp]-
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DL'?“() simulates Go/G1 w
1 (F,1) ¢ Gen(1%) 1 repeat

2 (m*,r*,2*) « ASE M) (F) 2 ri < Repro(m;)
3 if 3i: m* = m; then 3 xi'“ [(Hy(ri, m))
4 return 0 4 until z; # L

t i Ti
5 return F(z*) =z Hy (", m*) 5 return (r;,z;)
DL'?”)() simulates G1/Go w

repeat
r; < Repro(m;)
T; < I(Hb(n,mi))
until z; # L

1 H =H, 1
2
3
4
5 repeat
6
7
8
9

(F,1) < Gen(1*)
(m*,r*, 2*) « ASEn N ()
if 3¢ : m* = m; then

5 return 0

N

[

Yi sV

Ti < |(y1)
until z; # L
H = y/(remad—ui

6 return F(z*) = H'(r*,m")

10 return (r;, ;)

D™ (F) simulates Gz /Gs Sign"%2mPe (m,)

1 Hg YRXM 1 (ri, ;) + Sample,()
2 (m*,r*,m*) <_A§:1§2,|H>(F) 2 H:= H(Twm1>’_>F(T1)
3 if 3¢ : m* = m,; then 3 return (r;, ;)

4 return 0

5 return F(z*) < H(r*,m")

A.L'jn)a(F) simulates G3 SignH/(mi)

1 H :=H 17 g R
(m*,r*,x*) — Af['ﬁ:y“’i/)(l:) 2 T; < SampDom(F)
if 37 : m* = m; then 3 H = H/(romo=F@)
4 return 0 4

5 return F(z*) = H'(r*, m")

w N

return (r;,x;)

Fig. 11: Simulations for EUF-NMA = EUF-CMA

If D, plays ARy (Hy = Hp), D, simulates Gy, because H' is repro-
grammed in Lines 2 and 9 of Sign™':Repro (corresponds to Line 5 in Sign" of
Gyp). Otherwise (H, = Hy), D, simulates Go, because H’ is reprogrammed
only in Line 9 of Signt'Repro (corresponds to Line 8 in Sign" of Gy). Thus,

|Pr [Gf'm=1] — Pr [G5=1]| < Adviy™(Dar) < § /%73 %2 holds.

GAME Gj3 (simulating the signing oracle by SampDom): Signatures are gener-
ated by r; - R and x; < SampDom(F) in the signing oracle. We show that
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ADVERSARY: AWV, (F) SIMULATOR: S(6) for AN, (F)
1 (m*,r*,z") Amq)a(F) 1 Hs V¥
2 return (m*,r*, x") (r',m') Sflr'\t'né()

H = H('r’,m/)»—»e

[V

w

, .A‘H/>
x' + 85 ()
return (m/,r’,z’)

S

Fig. 12: A two-stage simulator S for EUF-NMA adversary Anma

the PS adversary Dps can simulate Gy and G3 as in the third row of Fig. 11.
The reprogramming H := H("™)=¥: is identical to H := H(r#m)=F () (see
Line 8 in Sign* of Gy). Therefore, if Dys plays PSg, the procedures of the orig-
inal and simulated Ga are the same. If Dy plays PSy, he obviously simulates
Gs. Thus, we have [Pr [Gg“ = 1] — Pr [Ggm = 1]| < Advy>  (Dps).

We show that the EUF-NMA adversary Anma can simulate G as in the
bottom row of Fig. 11. In the simulation Acm, uses H which outputs what-
ever H outputs except on {(r;,m;)}ic(gg)- When Acma wins the EUF-CMA
game by submitting (m*,r* z*), F(z*) = H/(r*,m*) holds. From m* #
m; for all i € [gsign], Anma wins his game since H'(r*,m*) = H(r*,m*)
holds. Hence, A,ma can perfectly simulate Gz with the same number of
queries and almost the same running time as Acma, and Pr [G?C"‘azﬂ] <

Adviisirat i (Anma) holds.

Summing up, we have Eq. (5).

INV = EUF-NMA: We use Lemma 2.2. Let S be a two-stage algorithm that
runs Ayma in the EUF-NMA game shown in Fig. 12. The INV adversary B,y
runs Apma indirectly by S. Since y is uniformly chosen in the INV game, Bj,,
can set the input for S as 6 = y. In the first stage, S; observes one of the
quantum queries to H made by Apma at random to obtain (r’,m’). Then, H
is reprogrammed as H' := H(m)=0 T the second stage, So runs A,ma with
reprogrammed H’ and outputs (m/,r’, z') + ALﬁLIQ(F)

When the predicate is F(x) ~ H(r, m), we have the following inequality for
any (7#,m) € R x M from Lemma 2.2:

Pr (¢, m) = (7, 700) AF(2) =y () = S{ ()07 S5 ()]

1 e e s e
ZWPY[(T’m)*(“m)”@f)*“(r,m)-(m,r,x)eAL'ﬂa(F)].
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By summing up over all (#,7) € R x M,

[H) [H")

Pr[F(@) = y: (',m) « S (), 0/« S ()]

> WPI |:F(:L‘*) = H(T*’m*) : (m*’r*7gj ) — ,A”jrza( ):| . (6)

Notice that the probability in the RHS of Eq. (6) is the EUF-NMA advantage,
that is, Pr [F(z*) = H(r*,m*) : (m*,r*,2*) < A ,(F)] = AdvESSF[’Tﬁg% (Anma)-

The LHS satisfies: AdviYY (Bin,) > Pr [F(z’) — oy () S (), 2 S (y )}.
Hence, we have

AdVEaS Ty 1) (Anma) < (20qro + 1)?AdVE L (Biny)- (7)
From Egs. (5) and (7), we have Eq. (4). O

4.2 Extension to sEUF-CMA Security
If F is injective, HaS[Typst, H] is SEUF-CMA-secure.

Corollary 4.1 (INV = sEUF-CMA). Suppose that F of Tupst is an in-
jection. For any quantum SEUF-CMA adversary Acma of HaS[Twpst, H] issuing
at most gsign classical queries to the signing oracle and qqro (quantum) random
oracle queries to H <—g nyM, there exist an INV adversary Biny of Tupss and
a PS adversary Dps of Twpsf 155uing gsign sampling queries such that

Adv T—{E[SJF visltlﬁ] (Acma) < (2qf4ro + 1)2AdVI|—1:I’:; (Binv) + AdV-Pr"S"PSf(DPS)

qgign + qqro + 1
3qsigny | —— 1>
TR

where lign s the total number of queries to H in all the signing queries, and the
running times of Biny and Dps are about that of Acma.

Proof. The SEUF-CMA game outputs 0 if 3¢, (m*,r*,2*) = (my, r;, x;). Since
F is injective, (m*,r*) = (m;,r;) implies * = x;. Therefore, the condition to
output 0 is re-stated as: if 3i, (m*,r*) = (m;,r;). We show that EUF-NMA =
SEUF-CMA with the same bound as Eq. (5) holds.

In the games defined in Theorem 4.1 (see Fig. 10), the same bound on
|Pr [G;’f‘m =1] —Pr [GOAC“:> 1]| holds. In the simulation of Gz (see the bottom
row of Fig. 11), Ayma makes Acma use the H' reprogrammed on {(Tiami)}z‘e[qsign]
instead of the original H. If A, playing SEUF-CMA game outputs (m*, r*, z*)
such that F(z*) = H'(r*,m*), where H'(r*, m*) # H(r*,m*), Apma cannot win
his game. Since (m*,r*) # (m;,r;) for any 4, H (r*,m*) = H(r*, m*) holds and
Anma can win his game. Therefore, A,ma can simulate Gs and Pr [Gé“cmazﬂ} <
Adviiisra b (Anma) holds. Hence, EUF-NMA = sEUF-CMA holds with the
same bound as Eq. (5).

O
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5 Applications of New Security Proof

This section shows the applications of Theorem 4.1 (the main theorem) to some
code-based and MQ-based hash-and-sign signatures. We briefly review the un-
derlying TDFs of the signatures in Appendix A. Note that in lattice-based
cryptography, all the practical and provable secure hash-and-sign signatures use
collision-resistant PSFs given by the GPV framework [18]. Since the tight reduc-
tion in the QROM already exists for the GPV framework [(], it is unnecessary
to apply Theorem 4.1.

5.1 Code-based Cryptography

Application to the Modified CSF Signature: Dallot [10] proposed a modi-
fication to the CFS signature, that is, adaption of the probabilistic hash-and-sign
with retry. Let Tes = (Gengss, Fefs, lets) be the underlying TDF of the modified
CFS signature. Note that Fs is injective and Morozov et al. gave a reduction
INV = sEUF-CMA in the ROM [29, Theorem 3.1]. From the injection of F,
we show that the modified CFS signature is SEUF-CMA-secure also in the
QROM, assuming that T is non-invertible.

Proposition 5.1 (INV = sEUF-CMA (Modified CFS Signature)). For
any quantum SEUF-CMA adversary Acma of HaS[Tcs, H] issuing at most gsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H g YR*M  there exists an INV adversary Biny of Tegs such that

SEUF-CM Sign T Qaro + 1
Adv;Eg[FTCS},_ﬁ]A(Acma)s(2qqro+1)2Adv¥f2’(Binv)+3q’sign,/—qsg" é‘; :

where qegn s the total number of queries to H in all the signing queries, and the
running time of Biny s about that of Acma-

Proof. Since Fgs: X — )Y is injective, we can apply Corollary 4.1. Outputs
of SampDom(F ) follow U(X), since a domain value of F¢s can be sampled by
x +—g X. From the injection of Fegs, 7 == lgs(y) for y <5 {y € V: Tz, Fis(z) = y}
follows U(X). Hence, Adv%sfs(Dps) = 0 holds and we obtain the claimed bound.

O

Application to Wave: Wave is a practical and unbroken hash-and-sign sig-
nature [11]. Wave’s TDF T, satisfies conditions of average trapdoor PSF
(ATPSF) [8, Definition 2] that is a special case of WPSF satisfying:

1. There is a bound & on the average of d ; over all (F,1) < Gen(1*), that is,
Er 1 (dr,) < 6, where df | = A(SampDom(F), 1(U(Y))) is a statistical distance
between SampDom(F) and I(y) for y g ) (relaxed Condition 2).

2. I(y) outputs z satisfying F(z) = y for any y € Y (Condition 3).
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Wave adopts the probabilistic hash-and-sign (without retry) to apply the re-
duction of EUF-NMA = EUF-CMA by Chailloux and Debris-Alazard [3] (see
Section 3.2). We show that Wave is EUF-CMA-secure assuming that Wave’s
TDF Tuave = (Genyave, Fwave, lwave) is non-invertible.

Proposition 5.2 (INV = EUF-CMA (Wave)). For any quantum EUF-CMA
adversary Acma of HaS[Twave, H] issuing at most Gsign classical queries to the sign-
ing oracle and qqro (quantum) random oracle queries to H <—g YRXM there exists
an INV adversary Biny of Twave such that

_CM IQSin+qro+1
AdVEESIETC‘jii,AH] (Acma) S (Qquo + 1)2AdVIrleXe (Binv) + QSign5 + 3(]sign & ‘Rq| )

where the running time of Biny is about that of Acma-

Proof. Since Tave is WPSF, we can apply Theorem 4.1. From Condition 3, the
total number of random oracle queries glign equals that of signing queries gsign.
Also, the advantage Adv%svave (Dps) is statistically bounded by gsignd [, Proposi-
tion 1]. Substitution of g&ign = gsign and Adv?éave (Dps) = gsignd to Eq. (4) yields
the claimed bound. a

Compared with the existing reduction using Eq. (2) [8], the factor of § is not
a square root in our reduction. Also, its security can be proved on the basis of
hardness assumption of the syndrome decoding since there is a tight reduction
from the syndrome decoding to the INV of Tyaye [, Proposition 8].

5.2 Multivariate-quadratic-based Cryptography

Many schemes based on the UOV [25] and HFE [33] signatures have been pro-
posed. Sakumoto et al. proposed modifications of the schemes adopting the prob-
abilistic hash-and-sign with retry, and the modified schemes are EUF-CMA-
secure in the ROM [38]. We prove that the modified UOV/HFE signatures are
EUF-CMA-secure in the QROM if their TDFs are non-invertible. By the proof,
we can show the EUF-CMA security of concrete signature schemes based on
these two schemes, including Rainbow [12], QR-UOV [17], and GeMSS [7]. Also,
we prove the EUF-CMA security of MAYO [4] whose TDF is quite different
from the original UOV signature.

Application to the Modified UOV Signature: Let T,o, = (Genyov, Fuov, luov)
be a TDF used in the modified UOV signature. The trapdoor |, is divided into
two functions; 1L, and 12,; therefore, the signing procedure is different from
the others. Fig. 13 shows a signature generation of the modified UOV signa-
ture. 11, chooses z at the beginning. |12, finds a preimage x corresponding to
z and H(r,m) (see the full description in Appendix A.4). Preimages generated
by HaS[T v, H].Sign are uniform over X', and they are indistinguishable from
x + SampDom(F o). From this fact, we show the EUF-CMA security of the

modified UOV signature in the QROM.
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HaS[Tuov, H].Sign(luov, m) Sampleo()
1 2 ¢ i) 1 2 ¢ Loy ()
2 repeat 2 repeat
3 r+gsR 3 ri<+sR
4 x4+ 12,(z,H(r,m)) 4 yi+g)
5 until 2 # L 5 @i oy (2i,yi)
6 return (r,z) 6 until z; # L
7 return (r;, x;)

Fig. 13: A signature generation algo- Fig.14: Sample, for the modified
rithm of the modified UOV signature. UOV in the PS game.

Proposition 5.3 (INV = EUF-CMA (Modified UOV Signature)). For
any quantum EUF-CMA adversary Acma of HaS[Tyov, H] issuing at most gsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H «g YR*M  there exists an INV adversary Bin, of Tuoy such that

Ad EUF-CMA A < (2 1 2Ad INV B: 3 /. qgign + 4qro +1
VHaS[Tuov,H]( cma) = ( qqro + ) VTUOV( lnv) + {sign T,

where qegn s the total number of queries to H in all the signing queries, and the
running time of Biny s about that of Acma-

Proof. We modify Sample, of the PS game as in Fig. 14. Then, Dys playing
the modified PS game can simulate Gz (b = 0) and Gz (b = 1) in the proof of
Theorem 4.1 (see the third row of Fig. 11). Hence, we can apply Theorem 4.1
to the modified UOV scheme. Since preimages generated by HaS[T ey, H].Sign
are indistinguishable from outputs of SampDom(F ), Adv%sov (Dps) = 0 holds.

Substitution of Adv%sov (Dps) = 0 to Eq. (4) yields the claimed bound. O

If Rainbow [12] and QR-UOV [17] make the same modification as the modi-
fied UOV signature, we can apply Proposition 5.3 to these schemes.

Application to the Modified HFE Signature: Let Tpfe = (Genpfe, Fhfe, Infe)
be a TDF used in the modified HFE scheme. As in the modified UOV signature,
preimages generated by HaS[T s, H].Sign are uniform over X, and they are indis-
tinguishable from 2 <~ SampDom(Fp¢ ). Therefore, the modified HFE signature
is EUF-CMA secure as follows:

Proposition 5.4 (INV = EUF-CMA (Modified HFE Signature)). For
any quantum EUF-CMA adversary Acma of HaS[Thse, H] issuing at most Gsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H < YRXM there exists an INV adversary Biny of Thee such that

M v QSign + qaro + 1
Advidmmi (Aama) < (2aq0 + 1)?AdVEY (Biny) + 3gligny | — o ®— Rl
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Sign* (m;) for Gh

T ¢ R

Yi <5 YV

T4 £ Imayo(yi)

if z; = 1 then
abort

H .= H{rimi)—=yi

N0 oA N R

return (r;, x;)

Fig. 15: A signing oracle for G5 in the application of Theorem 4.1 to MAYO.

where qgn s the total number of queries to H in all the signing queries, and the
running time of Biny s about that of Acma-

Proof. Since preimages generated by HaS[Thfe, H].Sign and outputs of SampDom (Fps)
are indistinguishable, we have the same bound as Proposition 5.3. a

Since GeMSS [7] takes the same modification, we can apply Proposition 5.4 to
GeMSS.

Application to MAYO: MAYO is a signature scheme adopting the proba-
bilistic hash-and-sign with retry and its TDF is based on UOV [1]. Let Tmayo =
(GeNmayo; Fmayos Imayo) be a TDF used in MAYO. HaS[T mayo, H].Sign has an inter-
esting property related to Condition 2. If HaS[Tmayo, H].Sign outputs a preim-
age x without retry, x is uniformly distributed over X, and it is indistinguishable
from x <~ SampDom(Fmayo). Let 7 be a bound on the probability that Imay out-
puts L, which induces the retry in the signature generation. MAYO offers ‘no
leakage’ parameter sets that satisfy 7 < 2765,

Proposition 5.5 (INV = EUF-CMA (MAYO)). Forany quantum EUF-CMA
adversary Acma 0f HaS[Tmayo, H] issuing at most gsign classical queries to the sign-

ing oracle and qqro (quantum) random oracle queries to H <—g YRXM there exists

an INV adversary Biny of Tmayo such that

_CM 24qro +1)° - ign + daro + 1
AQVEEOMA (4. < Bloo T 1 qiwy (g )y g, | Bt e T L
4 1 — gsignT 4 |R‘

where qgn is the total number of queries to H in all the signing queries, and the
running time of Biny is about that of Acma-

Proof. We apply Theorem 4.1 with defining an intermediate game G5 as in
Fig. 15. Gb is the same as Gy except that G5 aborts and outputs 0 if Imayo outputs
L. Since Imayo outputs L with probability 7, the probability that G5 does not
abort while gsign signing queries is at least 1 — gsign7. Therefore, Pr [Gé‘lm = 1} <

L_Pr [G’QAC"“ = 1] holds. If Imayo does not output L in Gb, the signing oracle

1 —Gsign T
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of G5 can be simulated by SampDom(Fayo). Therefore, the adversary of Gs per-
fectly simulates the signing oracle in the case that G5 does not abort by using
his oracle, and the view of the adversary is identical in the simulated one with
the case that G5 does not abort. Hence, Pr [G’QA”‘“ = l] < Pr [Gg,Ac’"a = 1] holds.

We thus have Advijid it H)(Acma) < 1=a— Adviiiea 1 (Anma), which yields

1—qsignT

the claimed bound. O

6 Provable Security of Hash-and-Sign with Prefix
Hashing in Multi-key Setting

We show that the probabilistic hash-and-sign with retry is M-EUF-CM A-secure
when prefiz hashing [15] is adopted. In prefix hashing, the hash function H in-
cludes a small unpredictable part of the verification key. Let H: Y x Rx M — Y
be a hash function and HaSP"[T, H, E] be a signature scheme adopting the prob-
abilistic hash-and-sign with retry and prefix hashing, where E: Y% — U is a
deterministic function to extract a small unpredictable part of F into a key ID
u € U. We assume that E(F) is uniform over U for (F,1) + Gen(1*). ' For a
message m, HaSP"[T, H, E].Sign repeats r + R and = < |(H(E(F),r,m)) until
x # L1, and outputs (r, z). For a verification key F, a message m, and a signature
(r, ), HaSPP[T, H, E].Vrfy verifies by F(x) L H(E(F),r, m).

We have the following as an extension of Theorem 4.1 (we show the proof in
Appendix B.1).

Theorem 6.1 (M-INV = M-EUF-CMA). For any quantum M-EUF-CMA
adversary Acmam of HaSph[TWpsf, H, E] with Qkey keys and issuing at most gsign clas-
sical queries to the signing oracle and qqro (quantum) random oracle queries to
H g YUXRXM there exist an M-INV B of Tuwpst With Ginst instances and
an M-PS adversary Dpsm of Twpst With qrey nstances and issuing gsign Sampling
queries such that

AV M 6 (Aeman) < (20qr0 + 1)?AdVEENY (Bipun) + AdVY, S (Dpon)

Tuwpsf wpsf

2

qgin"’_Qro"’l Qye
3qkion [ dsign T Hqro T Y7 8
+ ng |R| +|Z/{| ()

where glign is a bound on the number of random oracle queries to H in all the
W%) over all (F,1) < Gen(1%), and the
ey

running times of Binym and Dpsm are about that of Acmam.

signing queries, E(Ginst) < qkey<

Also, we have the following (see the proof of Lemma 7.2 in Appendix B.3).

2
qkey
. |
10 If unpredictable parts do not exist or are computationally expensive to include in
H, a fixed nonce can be used instead (the nonce is put in the verification key).

) 1 ;
M-sEUF-CMA M-CR
AdVHa;Ph [Tpst,H,E] (Acmam) < 1— 2—w(log n) AdVTpsf (Bcrm) +
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GAME: ST, NewKey, () NewKey, ()

1 (F,1) + Gen’(1%) 1 (F;,15) « Gen(1%) 1L+ Do

2 b* < DYV (F) 2 return F; 2 Rj < Dr

3 return b* 3 Fj=LjoFoR;
4 return F;

Fig. 16: A sandwich transformation (ST) game.

7 Generic Method for Single-key to Multi-key Reduction.

There are trivial reductions with bounds; Adv¥'mv(8in\,m) < qinstAdvITNV(Binv)
and Advl\r'I’CR'(Bcrm) < qinstAdng(Bcr). If the adversaries can target multiple
instances simultaneously, equality may hold in these inequalities. If we do not
assume any security property on the underlying TDF, we cannot deny the fea-
sibility of such attacks. To solve this problem, we propose a generic method
for the single-key to multi-key reductions, that is, INV = M-EUF-CMA and
CR = M-EUF-CMA.

Let {F;}jc[q.,) be verification keys generated by Gen of a TDF T in the
M-EUF-CMA game. Let us consider the following procedure producing {F; }j¢(¢.,]
from a single key F as follows: Given a verification key F: X’ — )’ generated by
Gen’ of another TDF T/, simulates multiple verification keys {L; o F o R;};¢[g.,]
by choosing L;: ' — Y and Rj: X — X’. Let Dy and Dg be distributions of L;
and R;. We note that the domains and the ranges of F and F;’s may differ.

We define a new game to give a bound on the distinguishing advantage of

{Fj}iclae) and {Lj o FoR;}ic(g. -

Definition 7.1 (Sandwich Transformation (ST) Game). Let T and T’
be TDFs. Using a game given in Fig. 10, we define an advantage function
of an adversary playing the ST game against T and T as Adv%TT/ (Ds) =

|Pr [STE*=1] — Pr [STT*=1]|.

Note that we use a term, valid preimage, in this section. A wvalid preimage
is a preimage that satisfies some conditions, e.g., shortness in lattice-based and
code-based cryptography.

We have the following single-key to multi-key reductions assuming some con-
ditions on L; and R; (see the proofs in Appendices B.2 and B.3).

Lemma 7.1 (INV = M-EUF-CMA). Suppose that verification keys in the
M-EUF-CMA game are simulated by {L; o F o Rj}jcq.,) that satisfy:

1. Lj: Y = Y is a bijection.
2. For any valid preimage x of F;, R;j(x) is a valid preimage of F (Rj: X — X').

For any quantum M-EUF-CMA adversary Acmam of HaSP [Twpst; H, E] with gyey
keys and issuing at most gsign classical queries to the signing oracle and qqro
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(quantum) random oracle queries to H g YYXR*M there exist an INV ad-
versary Biny of Twpst With Ginst instances, an M-PS adversary Dpsm of Topst with
Qkey instances and issuing gsign sampling queries, and an ST adversary Ds of
(Twpst, Twpsf) SSUing qrey new key queries such that

Advﬁla_g’g[ﬁ'fp::?liE] (Acmam) < (2(1qr0 + 1)2AdVII'§V::f(BiHV) + Advi S (DPS"")

Twpsf

2
Qsign + dqro + 1 | i
+ AL 1 (Do) + S | e T

where ¢lign is a bound on the number of random oracle queries to H in all the

signing queries, E(ginst) < Qey <WIL%> over all (F,1) < Gen(1%), and the
ey

running times of Biny, Dpsm, and Ds are about that of Acmam.

Lemma 7.2 (CR = M-sEUF-CMA). Suppose that verification keys in the
M-sEUF-CMA game are simulated by {L; o F o R;}jcq.,) that satisfy:

1. Rj: X = X and L;: Y' — Y are injections.
2. For any valid preimage x of F;, R;j(x) is a valid preimage of F.

For any quantum M-SEUF-CMA adversary Acman of HaSPP[T pst, H, E] with ey
keys and issuing at most qsgn classical queries to the signing oracle and qqro
(quantum) random oracle queries to H <—g YUXRXM “there exist a CR adversary
Ber of Tpst with Ginst instances and an ST adversary Ds of (Tpst, Tpsf) ssuing
Qrey Mew key queries such that

2
qkey

|’

| 1
M-sEUF-CMA CR ST
AdVHagph [Tpsf;HvE] (-Acma’") S 71 _ 2—w(log ) (AdVT{,sf (Bcr) + AdvashT;/)sf (Dst)> +

where E(ginst) < Qrey (%) over all (F,1) < Gen(1%), and the running

times of Ber and Dg are about that of Acmam -

8 Use Cases of Generic Method

We show use cases of Lemma 7.2 in lattice-based cryptography and Lemma 7.1
in code-based and MQ-based cryptography. In this paper, we apply the generic
method to frameworks of the schemes (e.g., GPV framework [18]) instead of
specific schemes (e.g., FALCON [36]). We will study the applicability to the
specific schemes in future works.

Lattice-based Cryptography: We apply the generic method to the GPV framework
(see Appendix A.1) [18]. For Lemma 7.2, we design simulation of verification keys
by {L;AR;}jeq.,) Where L; is an n x n invertible matrix over F, and R; is an
m X m signed permutation matrix. Note that we require the orthogonality of R;
for |z = |lzRT| and any integer orthogonal matrices are signed permutation

matrices whose non-zero entries are +1. Then, the ST advantage Adqu’rTT/(Dst)
is bounded by an advantage of the following problem.
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Definition 8.1 (Multi-instance Signed Permutation Equivalence (M-
SPE)). Given matrices G € Fp*™ and {Gj}jeiq) (G € Fy*™), do there
exist n xn invertible matrices {L;} je(q.) Over Fy and m xm signed permutation
matrices {R;}jeiqn. over By such that G; = L;GR;?

This problem is a variant of the well-studied problem called code equivalence
in code-based cryptography [35]. The code equivalence is defined as: Given a
pair of generator matrices (G, G’), do there exist an invertible matrix L and an
isometric matrix R such that G’ = LGR? There are variations of this problem
in terms of R. When R is a permutation matrix (resp., generalized permutation
matrix), this problem is called permutation equivalence (resp., linear equiva-
lence)[40].

In lattice-based cryptography, there is a closely related problem called lat-
tice isomorphism, that is, given a pair of lattice bases (B, B’), do there exist a
unimodular matrix L and an orthogonal matrix R such that B’ = LBR? The
conditions on L and R are required to keep the geometry of lattices; however, it
is not necessary for our purpose.

Any variants of the code equivalence listed above are in the complexity class
coAM and not conjectured to be NP-hard [35]. Also, there are some algorithms
for the code equivalence [26, 39, 3]. It is necessary to confirm that existing
algorithms cannot efficiently solve the target instance of M-SPE.

Ginst]

Code-based Cryptography: We apply the generic method to a TDF using a
parity-check matrix H € Fy*™ as in the modified CFS signature and Wave
(see Appendices A.2 and A.3). For Lemma 7.1, we simulate verification keys by
{LjHR;}jelqe,], Where Lj is an m x m invertible matrix over F, and R; is an
n X n generalized permutation matrix over IF,. Note that generalized permuta-
tion matrices preserve the Hamming weights of vectors. Then, the ST advantage
Adv-sr,TT/ (Dst) is bounded by an advantage of the following problem.

Definition 8.2 (Multi-instance Linear Equivalence (M-LE)). Given gen-
erator matrices G € Fp*™ and {Gj}jeiq.. (G5 € Fy*™), do there exist n x n

invertible matrices {L;} ciq] over Fq and m x m generalized permutation ma-
trices {R;}jclqns) over Fq such that G; = L;GR;?

As with the M-SPE (Definition 8.1), it is necessary to confirm that existing
algorithms cannot efficiently solve the target instance of M-LE.

Multivariate-quadratic-based Cryptography: We assume a TDF of the modified
UOV signature or the modified HFE signature. Let F: IFZ' — Fg and Fj: Fp —
Fy" be functions composed of multivariate quadratic polynomials (n’ > n). For
Lemma 7.1, we simulate verification keys by {L; o F o R;};c(q,,], Where L; is an
invertible affine map over I, and R; is an affine map over F,. Then, the ST
advantage AdV%TT, (Dgt) is bounded by an advantage of the following game.

Definition 8.3 (Multi-instance Decision Morphism of Polynomials (M-
DMP)). Given functions composed of quadratic polynomials F and {F;} jc(gns

do there exist affine maps {L;} cigna] 0nd {R;}jcigna) 0ver Fy such that F; =
LioFoR;?
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The (single-instance) decision morphism of polynomials is proven NP-complete
if a general case that both L and R are arbitrary affine maps [34]. If L and
R are invertible affine maps, this problem is called decision isomorphism of
polynomials that is in the complexity class coAM and not conjectured to be NP-
hard [34]. Therefore, we recommend using non-invertible affine maps; however,
further study of the M-DMP is needed since it has not yet been well studied.
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A Review of Trapdoor Functions in Hash-and-sign
Signatures

A.1 GPYV Framework [18]

Let Tgpy = (Gengpy, Fapy, lgpv) be a TDF used in the GPV framework. Geng,
outputs a full-rank matrix A € Zg*™ generating a g-ary lattice A as Fgpy and a
matrix B generating A(JI- that is orthogonal to A modulo ¢ as lgp,. The function
Fgpv computes y = z AT for a short vector x € {z € Z™: ||z|| < s\/m}, where s
is a Gaussian parameter. The trapdoor lgp, outputs a short vector z for y € Fy
using B. Tgpy is collision-resistant PSF (see Definition 2.4) whose security is
based on the hardness of the short integer solution (SIS) problem [18, Theorem
4.9].

A.2 Modified CFS Signature [10]

Let Tets = (Gengss, Fefs, Iefs) be a TDF used in the modified CFS signature.
Xp<t = {r € F} : 0 < hw(z) < t} denotes a set of vectors z € Fy whose
Hamming weight, denoted by hw(x), is at most t. Gengs generates a parity-
check matrix Hy € an_k)xn of an (n, k)-binary Goppa code, a random invert-
ible matrix U € an_k)x("_k), and a random permutation matrix P € F}*",
and outputs H = UHyP € Fénik)xn as Fes and (U, Hp, P) as legs. On input
x € X, <4, the function F computes a syndrome y = zHT € ]Fg_k. On input
Yy € ]Fg_k, the trapdoor | composed of (U, Hy, P) computes an error vector as
follows: It decodes y(U~1)T using Hy to obtain 2, and outputs an error vector
r=2'(P~HT;if y(U1)7T is not decodable, it outputs L. Since the (n, k)-binary
Goppa code can decode up to t errors, there is a one-to-one correspondence
between X, <; and Viee = {y € IF;“’“ :y(U~1)T is decodable} (decodable syn-

dromes). Therefore, Fes : X <1 — Fg_k is not surjection but injection.
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HaS[Tuov, H].Sign (luov, m) liov ()

1 2% <+ 15 () 12" g Iy

2 repeat 2 return 2"

3 r<gR 2

a4 x4+ 12,(2Y, H(r,m)) liov (2%, )

5 until z # L 1 if {2°: P(2",2°) = y} = 0 then
6 return (r,z) return L

2
3 2% g {2°: P(2",2°) =y}
4 2:=S5"1z"2°
5

return =

Fig.17: A signature generation algorithm of the modified UOV signature (full
description).

A.3 Wave [11]

Let Tuwave = (GeNyave, Fwaves lwave) be @ TDF used in Wave and H € an_k)xn be
a parity-check matrix for an (n, k)-code over F,. X, ; = {z € Fy : hw(x) = t}
denotes a set of vectors z € Fj whose Hamming weight is exactly ¢, where ¢

is chosen such that Fyave: Xp ¢ — Hﬂ‘g”C is surjection. Genyaye outputs a parity-

check matrix H € anik)xn for an (n, k)-code over F, as Fyave and parity-check

matrices of generalized (U, U+ V')-codes as lyave. On input = € X, ¢, the function
Fuave computes a syndrome y :== 2H” € F2~%. On input y € F7 ", the trapdoor
lwave Outputs an element of X, ;. Since a description of lyayve is out of the scope
of this paper, we omit the description.

As shown in Section 5.1, Tyave is a special case of WPSF that has a statistical
property related to Condition 2 of PSF and satisfies Condition 3. We can
take a statistical bound on the distinguishing advantage of honestly generated
signatures and simulated ones.

A.4 Modified UOV Signature [38]

Let Tuow = (Genyoy, Fuov, luoy) be a TDF used in the modified UOV signa-
tures. Genyo, generates an invertible affine map S: Fy — Fy' and a multivariate
quadratic polynomial P : Fy — F* defined as P = (P, P2,...,P™), where

Pk(2%,2°) = Z Zaﬁjzizj,

i€[vto] jE[v]

and outputs PoS as F o, and (P,S) as l,e,. Variables in P are called vinegar vari-
ables z¥ = (21,22,...,2y) € [y and oil variables z° = (Zotk1s Zo42y - -« s Zoto) €
g, where n = v + 0. On input y € F}", the trapdoor l ., computes a preimage
z € Fy as follows: It chooses vinegar variables z¥ uniformly at random. Fixing
z¥, P becomes a set of linear functions on oil variables z°. Therefore, it is easy
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lhfe (y)

1 y, g F;ﬂ

2 2:=¢"" (S (ylly))

3 143 [N]

4 ifi g [|{#' : P(2') = 2z}|] then
5 return L

6 2/ 5 {2 :P(?) =2}

72 =S (6(2))

8 return x

Fig.18: A trapdoor of the modified HFE signature.

to find a preimage of P oS by solving a linear equation system and taking the
inverse of S. There is possibly no solution. In the original UOV signature [25], the
signing algorithm retakes the vinegar variables z”. The modified UOV signature
fixes vinegar variables 2" and retakes r instead. Fig. 17 shows a full description
of the signature generation HaS[T .y, H].Sign.

The authors of [38] showed that preimages generated by HaS[T oy, H].Sign
are uniformly distributed over Fy. For completeness, we give the proof sketch.

In the beginning, z* is uniformly chosen (2 follows U(F})). By fixing 2?,
P(z?,-) becomes a set of linear functions containing o x o matrix whose rank
is determined by choice of z¥ if solutions exist. When the rank is i, P(z?,-)
becomes a ¢°-to-1 mapping for each element in the range Fy'. There are only
q" possible outputs of H satisfying {2° : P(2%,2°) = H(r,m)} # 0. When H is a
random function, one of the ¢’ outputs is uniformly chosen after some retries.
Once the output is fixed, one of ¢°~% solutions is uniformly chosen. In this way,
z° follows U(FF¢) and thus z = S™'(z, 2°) follows U(F}}).

A.5 Modified HFE Signature [38]

Let Thte = (Genpse, Fhfe, Infe) be a TDF used in the modified HFE signature and
¢: K — Fy be a standard linear isomorphism ¢(ag + arz + -+ + ap_qz" ) =
(ag,ai,...,an—1), where K = F [x]/g(x) for an irreducible polynomial g(x) of
degree n. Genpfe generates invertible affine maps (S,S") over Fj and a central
map P: K — K defined as

P(X) = > RS D SR>
(i.5) €l x ] i)
st ¢t Tl T i<d st ¢t l<d

where «; ;,3; € K, and outputs S’ o poPo ¢! oS as Fpee and (P,S,5') as Inse.
On input y € F; ™™, lyfe computes a preimage x € Fy as in Fig. 18.

As in the modified UOV signature, the authors of [38] showed that preimages
generated by HaS[Thf, H].Sign are uniformly distributed over Fj;. We give the
proof sketch too.
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Imayo (9)
1 P*(Il, ey xk) = Zie[k] EZ}ZP(JZZ) =+ Z(i,j)el Ei,j P'(mi,xj)
z¥ g (Fy™™ x Om)k
if P*(z¥ + z°) does not have full rank then
return L
x° ¢ {z°: P* (2" + 2°) = y}
r=uxa"+2°
return =

N O ok ®N

Fig.19: A signature generation algorithm of MAYO (full description).

When H is a random function, each 2z € Fy is chosen with probability %.

With probability W, Ihfe does not output L and chooses z’' out of
[{z" : P(2') = z}| elements, where N is set as d in general. Therefore, for any
x € Fy, HaS[Thte, H].Sign outputs = with probability

1 {:PE) ==} 1 _ 1
- N P = N

Hence, preimages of HaS[Thf, H].Sign are uniformly distributed over Fy.

A.6 MAYO [4]

Let Tmayo = (G€Nmayo, Fmayo, Imayo) be & TDF used in MAYO. Genmayo generates a
multivariate quadratic polynomial P: Fy — Fi" with a subspace O C Fy called
oil space such that P(z) = 0 for 2 € O, and outputs P as Fmayo and a basis of O as
Imayo- " Let P(z) = (p1(2),...,pm(x)), where p;(z): F} — Fg is a multivariate
quadratic polynomial. The polar form of p(x) is defined as

P(z,y) = plx+y) —p(x) - py),

which is bilinear. We define the polar form of multivariate quadratic map P(z)
to be P’(:c,y) = (p'l(x,y), s 7plm($,y)).

Let T = {(i,7) € [k] x [k]: i < j} and {E4;}(; j)ez be a set of invertible ma-
trices such that E = {E; ;} is nonsingular. On input = (21,..., ;) € FI" and
{Eij}(i.5)ex Fmayo computes y = P*(z) = 3 ey BuiP (wi) 430 jyex B (0, 25).
In MAYO, P*: IF’;" — " is conjectured to be non-invertible. Therefore, the
INV game of Tayo is defined as: given (P, {E;;}; j)ez, ), find 2* = (27, ..., 2})
satisfying Eie[k] E;P(z}) + Z(i,j)el' E; jP'(z},z}) [1, Definition 4]. On input
y € F7", Imayo computes z as in Fig. 19. Let z, % and z” be vectors over F’;".
Imayo finds a preimage x = =¥ + z° of y for P*. In the beginning, z" is uniformly
chosen from (F7~™ x 0™)* C FF", where 0™ denotes a vector of m 0s. Fixing

' For the convenience of MAYO’s description, the notation of UOV follows [4] which
is slightly different from Appendix A.4.
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GAME: M-EUF-NMA

for j € [guey] do

2 (vkj, skj) < Sig.KeyGen(1)

3 (j5,m*,0") + Anma"‘({vkj}je[qkey])
4 return Sig.Verify(vk;=, m*, o)

[

Fig.20: An EUF-NMA game in the multi-key setting.

z¥, P*(z¥ 4+ 2°) = y becomes a linear system of equations for z°. lnaye outputs
x¥ 4 z° by solving P*(x? 4+ 2°) = y if P*(z¥ + 2°) has full rank and outputs L
otherwise.

A preimage x generated by HaS[T mayo, H].Sign is uniform over IF’;” if Imayo has
never output L [/, Lemma 7]. First, z¥ is uniformly chosen from (F}~™ x 0™)¥.
Next, z° is uniformly chosen from OF since P*(z¥ 4+ x°) has full rank. Finally,
the output x = (z* + 2°) follows U(FA") since (Fp~™ x 0™) + O = F7.

B Missing Proofs

B.1 Proof of Theorem 6.1

We prove two reductions; M-EUF-NMA = M-EUF-CMA and M-INV =
M-EUF-CMA, where M-EUF-NMA stands for multi-key EUF-NMA. We
define an advantage function of the M-EUF-NMA game given in Fig. 20 as
Advel"UFMA (A am) = Pr [M-EUF-NMA“m" = 1]. Without loss of generality,
we assume that adversaries make random oracle queries by fixing key ID u as
one of the gue, verification keys.

M-EUF-NMA = M-EUF-CMA:

GAME Gy (M-EUF-CMA game ThlS is the original M-EUF-CMA game and
Pr [Ggtm = 1] = Adv g{,gp‘hﬁwpyﬁ ] (Acman) holds.
GAME G; (adaptive reprogramming on H): In answering i-th signing query for

k-th verification key, it reprograms H as H( (Fi)ordomi )Hy’ for (rF yk) «

R x Y and computes z¥ < 1, (y¥) until % # | holds. The AR adversary Dar
can simulate Go/G;. From LCIIHlld 2.1, ‘Pr [GAC’““ = 1] Pr [GA““” ﬁl} | <

3.7, qéign +qqrot1 .
Sdsign\/ R holds

GAME Gy (changing the timing of adaptive reprogramming on H): The adap-
tive reprogramming is executed only at the end of the signing oracle. Since
the number of reprogramming queries decreases, we can use the same tech-
nique as in Gy. Therefore, we have ‘Pr [Gf‘c"‘amél] — Pr [Gflmm :>1” <

3.1, qéign+quo+1
5 qsign R .

GAME Gj3 (simulating the signing oracle by SampDom): Signatures are gener-
ated by r¥ <—g R and x¥ <~ SampDom(F},) in the signing oracle. The M-PS

36



adversary can simulate Go/Gs. When Dpem plays M-PSg, he simulates Gg;
otherwise simulates G3. We thus have |Pr [Gé‘lcmam = 1} — Pr [Gf»f‘cma” = 1] | <
AdvT, S (Dpgr).

Since the M-EUF-NMA adversary Apmam can simulate Gz by using
SampDom, Pr [Gglm" =1] < Advﬁgg}hjﬁ;}li\:[,‘iE] (Anmam) holds.

M-INV = M-EUF-NMA::

GAME G4 (M-EUF-NMA game): This is the original M-EUF-NMA game and
Pr[Gi = 1] = Adviren o i ) (Anman) holds.

GAME Gg (abort with the collision on key IDs): When a collision on the key
IDs is detected, G5 aborts and outputs 0. From the collision probability of

2
Pr [Gfm = 1] — Pr G - 1]| < %

uniformly chosen key IDs,

We use Lemma 2.2 to show a reduction from the M-INV of Typs. The M-INV
adversary Binm given {(F;,v;j)}je[q] TUns a two-stage algorithm S for Apmam
playing Gs and chooses the input 6 for the algorithm from {y; } j¢[4,..]- To simulate
G5 without collision on key IDs, Bj,,m» needs to prepare gy, verification keys with
different key IDs. The expected number of instances E(ginst) needed for obtaining
Qkey different key IDs is

Gkey
$ g (Y,
Ui+l TA\U| = ey +1

In the first stage, S; observes one of the quantum queries to H at random to
obtain (u/,r’,m’). Since there is no collision on key IDs, B;,» can understand
the target key of the observed random oracle query. If v = E(F;/), H is repro-
grammed as H' := H " m)=y;r Tn the second stage, So runs Apmam with repro-
grammed H’ and outputs (', m/, ", 2’) + AL'::Qm({Fj }i€lgu,])- From Lemma 2.2,
we have the following bound:

. [H) [H')
Pr [Fj/(x') =Y (lem/, 7”/’ (E/) — <814"mam ()7 Sé‘t"mam (y]')):|

1
> -
N (2qu0 +1)2

1
= Pr |G =1
(2(]qro+1)2 r[ 5 }

* * * -k * * * H
Pr [Fje (@) = H(E(F ;) m™) (1, 2") < Al ({F elg)

Therefore, we have Pr [Gf”’"a” = 1] < (2qqr0 + 1)2Adv¥I'INV(B;an).

wpsf

We obtain Eq. (8) by combining the two reductions. a

B.2 Proof of Lemma 7.1

We extend the proof of Theorem 6.1 (Appendix B.1). We define Gg in which
verification keys {F;} j¢[q.,] in G5 are replaced with {L;oFoR;} for given F: X' —

Qkey
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Y generated by Gen’. The ST adversary Dy can simulate Gs/Gg by setting his
challenges as verification keys. If Dg plays STg, Gy is simulated; otherwise, Gg
is simulated. Therefore, |Pr [Gg‘nmam =1] — Pr [Gé“"’“am =1]| < Adv%{psfﬂwsf (Dst)
holds.

To use Lemma 2.2, we assume that B;,, runs a two-stage algorithm S in Gg
with input 6 (see Fig. 8). As in Theorem 6.1, B;,, can understand the target key
of the observed random oracle query. When the observed value is targeted to
j'-th verification key, Biny sets § := L;/(y) as the input to S. Since L, is bijective
(first condition of Lemma 7.1), Lj/(y) for y <—¢ V is statistically indistinguishable
from random 3’ <—g Y. When Bjym submits z* for F;. (5 = j'), Biny outputs
R« (z*). Suppose that L;«(F(R;«(2*))) = L;«(y) holds. Since L;+ is a bijection,
F(Rj+(2*)) = y. From the second condition of Lemma 7.1, R;(z*) is valid.
Therefore, Bin, can win the INV game by submitting R;«(z*), and we have
Pr [Gé“"ma” = 1] < (2qqro + 1)2AdVIT‘\gV:;(BinV) from Lemma 2.2, which proves this
lemma.

(|

B.3 Proof of Lemma 7.2

First, we show a reduction M-CR = M-SEUF-CMA extending the single-key
version of [6, Theorem 2.

GAME Gy (M-sEUF-CMA game): This is the original M-SEUF-CMA game
and Pr [Ggm" = 1] = Advan i) (Aeman) holds.

GAME G; (abort with collision on key IDs): When a collision of the key IDs is de-
tected, G; aborts and outputs 0. We have |Pr [G(f‘”’"am = 1] —Pr [Gf‘"’"am = 1} ’ <
iy
el

GAME G; (replace random function): The random function H is replaced as H’
such that

H (E(F;),r,m) =F, (DetSampDom (Fj, H (E(F;) ., m))) ,

where DetSampDom is a deterministic function of SampDom and H: U xR x
M — W is another random function to output randomness for DetSampDom.
From Condition 1 of PSF, F,(x) is uniform for 2 <~ SampDom(F ;). Since H
and H’ are statistically indistinguishable, Pr [Gf‘”mam = 1] =Pr [Gfl”m” = 1]
holds.

The M-CR adversary B.m can simulate Gy. As in Theorem 6.1, the expected
%) over all (F,1) «+ Gen(1*). From
Conditions 2 and 3, the M-CR adversary B~ can simulate the signing oracle.
In answering the i-th signing query m¥ for the k-th verification key F,, he returns

(rk zk), where ¥ +¢ R and z¥ := DetSampDom (Fk,H (E(Fk) rk mf)) If

'3 LA

the M-SEUF-CMA adversary Acmam wins by (5, m*,r*,2*), F;«(z*) = F,. (')

number of instances is at most gyey (
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holds, where 2’ = DetSampDom(Fj*,ﬁ(E(Fj*),r*,m*))). From Condition 4,
x* # 2’ holds with probability 1 — 2-«0°8™) "and we have

Ghey

|

) 1A 1 I-CR m) +
1-SEUF-CV vt B,
Advl\lag[E-P}; C]M (Acma) < —— H—w(l :gn)Ad Mpsfc ( cr )

Next, we show CR = M-CR.

GAME G3 (M-CR game): This is the original M-CR game and Pr [G?“m =1] =
Advy T (Be) holds.

GAME Gy (replacing verification keys): We replace F; with L; oF oR;. Since the
ST adversary can simulate Gz /Gy, we have ’Pr [Gglf“” = 1] — Pr [Gf““ = 1] ’ <
AdV'SI'stf,T,/,sf (Dst)-

The CR adversary B simulates G4 as follows: Given F, B gives {L; o F o
Rj}jclge) t0 Bam. When Bem submits (27, 23) for F ., Be, outputs (R« (27), Ry (23)).
Suppose that Lj«(F(R;j-(z7))) = L;-(F(Rj«(z3))) holds. Since L; is injective,
F(Rj+ (7)) = F(Rj«(z3)) holds. From the second condition of Lemma 7.2, R;- (z7})
and Rj«(x3) are valid. Moreover, we have Rj«(z}) # Rj-(x3) if 2] # «3 since
R; is also injective. Therefore, B, can win the CR game, and he can perfectly
simulate G4. Therefore, we have

Advl\l'ﬂ[pr(Bcr"‘) < Advgg(gcr) + Adv-s'—;rsf’-rf’sf (D5t>'

Combination of the reductions M-CR = M-EUF-CMA and CR = M-CR
yields Lemma 7.2. 0
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