Probabilistic Hash-and-Sign with Retry in the Quantum Random Oracle Model

Haruhisa Kosuge ${ }^{1}$ and Keita Xagawa ${ }^{2}$
${ }^{1}$ Japan Ministry of Defense, harucrypto@gmail.com
${ }^{2}$ Technology Innovation Institute, keita.xagawa@tii.ae

Abstract

A hash-and-sign signature based on a preimage-sampleable function (PSF) (Gentry et al. [STOC 2008]) is secure in the Quantum Random Oracle Model (QROM) if the PSF is collision-resistant (Boneh et al. [ASIACRYPT 2011]) or one-way (Zhandry [CRYPTO 2012]). However, trapdoor functions (TDFs) in code-based and multivariate-quadratic-based (MQ-based) signatures are not PSFs; for example, underlying TDFs of the Courtois-Finiasz-Sendrier (CFS), Unbalanced Oil and Vinegar (UOV), and Hidden Field Equations (HFE) signatures are not surjections. Thus, such signature schemes adopt probabilistic hash-and-sign with retry. This paradigm is secure in the (classical) Random Oracle Model (ROM), assuming that the underlying TDF is noninvertible, that is, it is hard to find a preimage of a given random value in the range (e.g., Sakumoto et al. [PQCRYPTO 2011] for the modified UOV/HFE signatures). Unfortunately, there is currently no known security proof for the probabilistic hash-and-sign with retry in the $Q R O M$. We give the first security proof for the probabilistic hash-and-sign with retry in the QROM, assuming that the underlying non-PSF TDF is noninvertible. Our reduction from the non-invertibility assumption is tighter than the existing ones that apply only to signature schemes based on PSFs. We apply the security proof to code-based and MQ-based signatures. Additionally, we extend the proof into the multi-key setting and propose a generic method that provides security reduction without any security loss in the number of keys. keywords: Post-quantum cryptography, digital signature, hash-and-sign, quantum random oracle model (QROM), preimage sampleable function.

1 Introduction

Hash-and-Sign Signature in the Random Oracle Model (ROM): A digital signature is an essential and versatile primitive since it supports non-repudiation and authentication; if a document is signed, the signer indeed signed it and cannot repudiate the signature. The standard security notion of the digital signature is existential unforgeability against chosen-message attack (EUF-CMA) [30]. Roughly speaking, a signature scheme is said to be EUF-CMA-secure if no efficient adversary can forge a signature even if the adversary can access to a signing oracle, which captures non-repudiation and authentication. Hash-and-sign [4, 5]
is a widely adopted paradigm for constructing practical signatures, along with Fiat-Shamir [27], in the ROM [4]. This paper focuses on hash-and-sign.

A hash-and-sign signature scheme is realized by a hard-to-invert function $\mathrm{F}: \mathcal{X} \rightarrow \mathcal{Y}$, its trapdoor $\mathrm{I}: \mathcal{Y} \rightarrow \mathcal{X}$, and a hash function $\mathrm{H}:\{0,1\}^{*} \rightarrow \mathcal{Y}$ modeled as a random oracle. To sign on a message m, a signer first computes $y=\mathrm{H}(r, m)$, where r is a random string, computes $x=\mathrm{I}(y)$, and outputs $\sigma=(r, x)$ as a signature. A verifier verifies the signature σ with the verification key F by checking if $\mathrm{H}(r, m)=\mathrm{F}(x)$ or not. We refer to this construction as probabilistic hash-and-sign; if r is an empty string, then deterministic hash-and-sign.

A prime example is a full-domain hash using a trapdoor permutation (TDPFDH) such as RSA. TDP-FDH is EUF-CMA-secure in the ROM, assuming the one-wayness (OW) or non-invertibility (INV) of TDP [4]. ${ }^{3}$ Gentry, Peikert, and Vaikuntanathan proposed FDH and probabilistic FDH (PFDH) signatures with a preimage-sampleable function (PSF) [29], which is a trapdoor function (TDF) with additional conditions, e.g., surjection. Gentry et al. showed a tight reduction from the collision-resistance (CR) property of PSF to the strong EUF-CMA (sEUF-CMA) security of PSF-FDH (and PSF-PFDH), and they constructed a collision-resistant PSF from lattices. Unfortunately, it is hard to build PSFs in code-based and multivariate-quadratic-based (MQ-based) cryptography; for example, \mathbf{F} is not a surjection. In this case, the trapdoor I fails to invert y whose preimage does not exist. For such TDFs, we employ the probabilistic hash-andsign with retry, where a signer takes randomness r until r allows inversion of $y=\mathrm{H}(r, m)$. The Courtois-Finiasz-Sendrier (CFS) signature [18] in code-based cryptography and the Unbalanced Oil and Vinegar (UOV) [37] and Hidden Field Equations (HFE) signatures [46] in MQ-based cryptography use this paradigm.

Hash-and-Sign Signature in Quantum Random Oracle Model (QROM): Largescale quantum computers will be able to break widely deployed public-key cryptography such as RSA and ECDSA because of Shor's algorithm [53], and interest has been growing in post-quantum cryptography (PQC). Recently NIST selected PQC candidates of public-key encryption/key-encapsulation mechanism (KEM) and digital signature for standardization [45] and started additional call for PQC digital signatures [44]. In the context of PQC, it is essential for signature schemes to provide EUF-CMA security in the QROM (Quantum Random Oracle Model) [13] since it models real-world quantum adversaries with offline access to the hash function. Unfortunately, schemes that are secure in the ROM are not always secure in the QROM, as demonstrated by separation results, including a signature scheme, by Yamakawa and Zhandry [57].

Table 1 summarizes studies on the EUF-CMA security of hash-and-sign signatures in the QROM. Boneh et al. [13] showed a tight reduction from the CR of PSF using the history-free reduction. Zhandry [59] gave a reduction from

[^0]Table 1: Summary of the security proofs for hash-and-sign in the QROM. DHaS, PHaS, and PHaSwR denote deterministic hash-and-sign, probabilistic hash-andsign, and probabilistic hash-and-sign with retry. ϵ denotes the adversary's advantage in the game of the underlying assumption. q denotes the number of queries to the signing oracle or random oracle.

Name	DHaS	PHaS	PHaSwR	Assumption	Security Bound
$[13]$	\checkmark	\checkmark	-	CR	$O\left(\epsilon_{\text {cr }}\right)$
$[59]$	\checkmark	\checkmark	-	OW/INV	$O\left(q^{2} \sqrt{\epsilon_{\text {ow }} / \text { inv }}\right)$
ext. of [56]	\checkmark	\checkmark	-	OW/INV	$O\left(q^{4} \epsilon_{\text {ow } / \text { inv }}\right)$
$[16]$	-	\checkmark	-	EUF-NMA	$O\left(\epsilon_{\text {nma }}\right)$
Ours	-	\checkmark	\checkmark	INV	$O\left(q^{2} \epsilon_{\text {inv }}\right)$

the OW/INV ${ }^{4}$, using a technique called semi-constant distribution. ${ }^{5}$ Unfortunately, the semi-constant distribution technique incurs a square-root loss in the success probability. Yamakawa and Zhandry [56] gave the lifting theorem that shows that any search-type game is hard in the QROM if the game is hard in the ROM. They used the lifting theorem to show that an EUF-NMA-secure signature in the ROM is EUF-NMA-secure in the QROM, where NMA stands for No-Message Attack. By extending the results of [56], we obtain a reduction from the OW/INV of PSF. Chailloux and Debris-Alazard [16] gave a security proof of the probabilistic hash-and-sign based on non-PSF TDFs. Also, Grilo, Hövelmanns, Hülsing, and Majenz [31] gave a reduction from the EUF-RMA security of a signature scheme for fixed-length messages, where RMA stands for Random-Message Attack. ${ }^{6}$ However, there is no known reduction to the EUF-RMA security of the underlying signature from the OW/INV of TDF.

Based on the summary of previous studies, there are currently no security proofs for the probabilistic hash-and-sign with retry in the QROM, which has an impact on the security evaluation of code-based and MQ-based signatures for upcoming additional PQC standardization. Our central question is:

Q1. Is there an EUF-CMA security proof for the probabilistic hash-and-sign with retry? How tight is the security proof?

Provable Security in Multi-key Setting: The EUF-CMA security is sometimes insufficient to ensure the security of the digital signature in the real world since exploiting one of many users may be sufficient for a real-world adversary to intrude into a system. We must consider the EUF-CMA security in the multikey setting, the M-EUF-CMA security in short. The adversary, given multiple

[^1]

Fig. 1: A diagram illustrating reductions of hash-and-sign in the QROM. Red arrows represent our results, while solid, double, and dashed arrows represent tight reductions, reductions with linear or quadratic loss, and non-tight reductions.
verification keys, tries to forge a valid signature for one of the verification keys. If the adversary can gain an advantage by targeting multiple keys (multi-key attack), the M-EUF-CMA security degrades with the number of keys (or users). NIST mentioned resistance to multi-key attacks as a "desirable property" in their call for proposals [43] of the PQC standardization project. We can ensure resistance against multi-key attacks if there is no security loss in the number of keys. Thus, our additional question is:

Q2. Is there an M-EUF-CMA security proof for hash-and-sign without any security loss in the number of keys

The technique of including an entire verification key in the hash computation is known as key prefixing, which enables one to separate the domain of the hash function for each verification key. Schnorr signature adopts key prefixing to show a tight reduction in the multi-key setting [41]. Similarly, Duman et al. [25] proposed a technique called prefix hashing for the Fujisaki-Okamoto transform of KEM. Prefix hashing is a technique in which the hash function includes only a small unpredictable portion of a verification key, resulting in a smaller increase in execution time compared to key prefixing.

1.1 Contributions

Security Proof of Probabilistic Hash-and-Sign with Retry in the QROM: We affirmatively answer Q1 by giving the first reduction from the INV of the underlying TDF to the EUF-CMA security of the probabilistic hash-and-sign with retry in the QROM (main theorem). Additionally, the main theorem applies to the probabilistic hash-and-sign without retry. Furthermore, we show that a signature scheme is SEUF-CMA-secure if the underlying TDF is an injection. Our reduction is tighter than the existing ones from the INV that apply to the probabilistic hash-and-sign without retry only [59, 16, 56]. Fig. 1 shows a diagram of the reduction. The main theorem comprises two reductions; EUF-NMA \Rightarrow EUF-CMA
and $\mathrm{INV} \Rightarrow$ EUF-NMA, where $\mathrm{X} \Rightarrow \mathrm{Y}$ inidicates a reduction from X to Y . The main theorem has a security bound $\left(2 q_{\text {qro }}+1\right)^{2} \epsilon_{\text {inv }}$, where $q_{\text {qro }}$ is a bound on the number of random oracle queries and $\epsilon_{\text {inv }}$ is an advantage of the INV game.

Proof Idea: We provide a technical overview of our main theorem: To prove EUF-NMA \Rightarrow EUF-CMA, we first reprogram the quantum random oracle in the signing procedure and, then, simulate the signing oracle. We can employ the tight adaptive reprogramming technique in [31] and reprogram the random oracle in the signing procedure. At first sight, this technique seems directly allow for the simulation of the signing oracle in the absence of a signing key. However, the direct application causes a subtle bias in the distribution of the reprogrammed quantum random oracle in retries; thus, we need to cancel the reprogramming performed during retries. Unfortunately, this cancelation also introduces a bias in the distribution of the quantum random oracle. We carefully treat the bias caused by this cancelation using the semi-classical O2H (One-way to Hiding) technique [1]. After this cancelation, we can simulate the signing oracle without the signing key.

For INV \Rightarrow EUF-NMA, we use the measure-and-reprogram technique developed by Don et al. [23]. As far as we know, this usage is new in the context of the probabilistic hash-and-sign. We also note that this usage induces the security $\operatorname{loss}\left(2 q_{\text {qro }}+1\right)^{2}$.

Applications: Applying the main theorem, we enhance the EUF-CMA security of Wave [20] and give the first proof for the SEUF-CMA security of the modified CFS signature [19] as well as the EUF-CMA security of Rainbow [22], GeMSS [15], MAYO [9], and QR-UOV [28] in the QROM. To the best of our knowledge, the main theorem encompasses all existing post-quantum hash-andsign signatures such that reductions from the INV are known in the ROM.

NIST has announced an additional call for proposals of the post-quantum signature with short signatures and fast verification [44]. NIST has the intention of standardizing schemes that are not based on structured lattices. Since the main theorem has wide application in code-based and MQ-based cryptography, promising candidates for this call, our work can and very likely will be used to ensure the security of new candidates in the QROM.

Security Proof in Multi-Key Setting: We extend the main theorem to the multikey setting and propose a generic method for establishing a reduction from the security of TDFs in the single-instance setting to the security of the hash-and-sign with prefix hashing in the multi-key setting. The idea behind the generic method is to apply some pairs of randomly generated transformations $\left\{\mathrm{L}_{j}, \mathrm{R}_{j}\right\}_{j}$ to a single verification key F^{\prime} of another TDF that is assumed to be non-invertible, which simulates multiple verification keys by $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}_{j}$. Assuming the indistinguishability between $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}_{j}$ and real verification keys $\left\{\mathrm{F}_{j}\right\}_{j}$, we show a reduction of INV $\Rightarrow \mathrm{M}$-EUF-CMA with a security bound $\left(2 q_{\mathrm{qro}}+1\right)^{2} \epsilon_{\text {inv }}$ and a tight reduction of $\mathrm{CR} \Rightarrow \mathrm{M}-\mathrm{sEUF}-\mathrm{CMA}$. Since there is no security loss in the number of keys, we can affirmatively answer Q2. Furthermore, we apply the generic method to some hash-and-sign signatures. In these applications,
we introduce computational problems that can ensure the indistinguishability between $\left\{\mathrm{L}_{j} \circ \mathrm{~F} \circ \mathrm{R}_{j}\right\}_{j}$ and $\left\{\mathrm{F}_{j}\right\}_{j}$.

Organization: Section 2 gives notations, definitions, and so on. Section 3 presents our main theorem and discusses applications. In Section 4, we describe the generic method applied in the multi-key setting. Appendix A gives proof techniques in the QROM. Appendix B reviews the existing security proofs in the (Q)ROM. Appendices C and D show missing proofs for the main theorem and its strong version. Appendix E presents security proofs of hash-and-sign signatures reviewed in Appendix F. Appendix G shows reductions from multi-instance INV and CR (M-INV and M-CR) to M-EUF-CMA and M-sEUF-CMA. Appendices H and I show missing proofs for the theorem in the multi-key setting and its strong version. Appendix J shows applications of the generic method in the multi-key setting.

Concurrent Work: Liu, Jiang, and Zhao [39] show the EUF-CMA security of the TDP-FDH and TDP-PFDH in the QROM by using the measure-and-reprogram technique by Don et al. [23]. Their security bound is $\left(2\left(q_{\text {qro }}+q_{\text {sign }}+1\right)+1\right)^{2} \epsilon_{\text {inv }}$, where $q_{\text {sign }}$ is a bound on the number of signing queries. They also give an analysis for (H)IBE in the QROM. Our work has two advantages over their work on hash-and-sign. First, our main theorem applies to the TDP-PFDH and has wider applications in existing signature schemes. Although no post-quantum signatures adopting TDP-FDH/TDP-PFDH have been proposed, numerous post-quantum signatures adopt the probabilistic hash-and-sign with retry. Second, our main theorem has the security bound $\left(2 q_{\mathrm{qro}}+1\right)^{2} \epsilon_{\mathrm{inv}}$ that is not including q_{sign}.

Two papers [21, 2] recently pointed out a subtle flaw in the security proofs of Fiat-Shamir with Aborts in the QROM [35, 31]. The flaw stems from the bias introduced by the simulation with abort, which we treat in EUF-NMA \Rightarrow EUF-CMA carefully. We note that the games in the corrected proof in [2] are defined in the same spirit as our proof of EUF-NMA \Rightarrow EUF-CMA while the proof techniques and the details are different.

2 Preliminaries

2.1 Notations and Terminology

For $n \in \mathbb{N}$, we let $[n]:=\{1, \ldots, n\}$. We write any symbol for sets in calligraphic font. For a finite set $\mathcal{X},|\mathcal{X}|$ is the cardinality of \mathcal{X} and $\mathrm{U}(\mathcal{X})$ is the uniform distribution over \mathcal{X}. By $x \leftarrow_{\$} \mathcal{X}$ and $x \leftarrow \mathcal{D} \mathcal{X}$, we denote the sampling of an element from $\mathcal{U}(\mathcal{X})$ and $\mathcal{D}_{\mathcal{X}}$ (distribution on $\left.\mathcal{X}\right)$. We denote a set of functions having a domain \mathcal{X} and a range \mathcal{Y} by $\mathcal{Y}^{\mathcal{X}}$.

We write any symbol for functions in sans-serif font and adversaries in calligraphic font. Let F be a function, and \mathcal{A} be an adversary. We denote by $y \leftarrow \mathrm{~F}^{\mathrm{H}}(x)$ and $y \leftarrow \mathcal{A}^{\mathrm{H}}(x)$ (resp., $y \leftarrow \mathrm{~F}^{|\mathrm{H}\rangle}(x)$ and $y \leftarrow \mathcal{A}^{|\mathrm{H}\rangle}(x)$) probabilistic computations of F and \mathcal{A} on input x with a classical (resp., quantum) oracle access to a function H . If F and \mathcal{A} are deterministic, we write $y:=\mathrm{F}^{\mathrm{H}}(x)$ and

Fig. 2: EUF-CMA and EUF-NMA games
$y:=\mathcal{A}^{\mathrm{H}}(x)$. For a random function H , we denote by $\mathrm{H}^{x^{*} \mapsto y^{*}}$ a function such that $\mathrm{H}^{x^{*} \mapsto y^{*}}(x)=\mathrm{H}(x)$ for $x \neq x^{*}$ and $\mathrm{H}^{x^{*} \mapsto y^{*}}\left(x^{*}\right)=y^{*}$. The notation $\mathrm{G}^{\mathcal{A}} \Rightarrow y$ denotes an event in which a game G played by \mathcal{A} returns y.

We denote 1 if the Boolean statement is true T and 0 if the statement is false \perp. A binary operation $a \stackrel{?}{=} b$ outputs \top if $a=b$ and outputs \perp otherwise.

2.2 Digital Signature and Trapdoor Function

Definition 2.1 (Digital Signature). A digital signature scheme Sig consists of three algorithms:

Sig.KeyGen $\left(1^{\lambda}\right)$: This algorithm takes the security parameter 1^{λ} as input and outputs a verification key $v k$ and a signing key sk.
Sig.Sign $(s k, m)$: This algorithm takes a signing key sk and a message m as input and outputs a signature σ.
Sig.Vrfy $(v k, m, \sigma)$: This algorithm takes a verification key $v k$, a message m, and a signature σ as input, and outputs \top (acceptance) or \perp (rejection).

Definition 2.2 (Security of Signature). Let Sig be a signature scheme. Using games given in Fig. 2, we define advantage functions of adversaries playing EUF-CMA (Existential UnForgeability against Chosen-Message Attack) and EUF-NMA (No-Message Attack) games against Sig as $\operatorname{Adv}_{\text {SUg }}^{\text {EUF-CMA }}\left(\mathcal{A}_{\mathrm{cma}}\right)=$ $\operatorname{Pr}\left[E U F-C M A \mathcal{A}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right]$ and $\operatorname{Adv}_{\text {Sig }}^{\text {EUF-NMA }}\left(\mathcal{A}_{\mathrm{nma}}\right)=\operatorname{Pr}\left[\mathrm{EUF} \mathrm{NMA}^{\mathcal{A}_{\mathrm{nma}}} \Rightarrow 1\right]$, respectively. Also, we define an advantage function for an SEUF-CMA (strong EUF-CMA) game as $\operatorname{Adv}_{\mathrm{Sig}}^{\mathrm{SEUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right)=\operatorname{Pr}\left[\mathrm{sEUF}-\mathrm{CMA} \mathcal{A}_{\mathrm{cma}} \Rightarrow 1\right]$, where the sEUF-CMA game is identical to the EUF-CMA game except that Line 4 is changed as "if $\left(m^{*}, \sigma^{*}\right) \in \mathcal{Q}^{\prime}$ then" and \mathcal{Q}^{\prime} keeps messages and signatures in the signing oracle. We say Sig is EUF-CMA-secure, SEUF-CMA-secure, or EUF-NMA-secure if its corresponding advantage is negligible for any efficient adversary in the security parameter.

Definition 2.3 (Trapdoor Function (TDF)). A TDF T consists of three algorithms:

Gen $\left(1^{\lambda}\right)$: This algorithm takes the security parameter 1^{λ} as input and outputs a function F with a trapdoor I of F .

Game: INV	Game: OW	Game: CR
$1(\mathrm{~F}, \mathrm{l}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$	$1(\mathrm{~F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$	$1(\mathrm{~F}, \mathrm{l}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right.$
$2{ }^{2} \leftarrow_{\$} \mathcal{Y}$	$2 x \leftarrow \mathcal{D}_{\mathcal{X}}$	$2\left(x_{1}^{*}, x_{2}^{*}\right) \leftarrow \mathcal{B}_{\text {cr }}(\mathrm{F})$
$3 x^{*} \leftarrow \mathcal{B}_{\mathrm{inv}}(\mathrm{~F}, y)$	$\begin{array}{ll} 3 & y:=\mathrm{F}(x) \\ 4 & x^{*} \leftarrow \mathcal{B}_{\text {ow }}(\mathrm{F}, y) \end{array}$	3 return $\mathrm{F}\left(x_{1}^{*}\right) \stackrel{?}{=} \mathrm{F}\left(x_{2}^{*}\right)$

Fig. 3: INV (non-INVertibility), OW (One-Wayness), and CR (CollisionResistance) games
$\mathrm{F}(x)$: This algorithm takes $x \in \mathcal{X}$ and deterministically outputs $\mathrm{F}(x) \in \mathcal{Y}$.
$\mathrm{I}(y)$: This algorithm takes $y \in \mathcal{Y}$ and outputs $x \in \mathcal{X}$, s.t., $\mathrm{F}(x)=y$, or outputs \perp.
Definition 2.4 (Security of TDF). Let T be a TDF. Using games given in Fig. 3, we define advantage functions of adversaries playing the INV (nonINVertibility) ${ }^{7}$, OW (One-Wayness), and CR (Collision-Resistance) games against T as $\operatorname{Adv}_{\top}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)=\operatorname{Pr}\left[\operatorname{INV}^{\mathcal{B}_{\text {inv }}} \Rightarrow 1\right], \operatorname{Adv}_{\mathrm{T}}^{\mathrm{OW}}\left(\mathcal{B}_{\mathrm{ow}}\right)=\operatorname{Pr}\left[\mathrm{OW}^{\mathcal{B}_{\mathrm{ow}}} \Rightarrow 1\right]$, and $\operatorname{Adv}_{\top}^{\mathrm{CR}}\left(\mathcal{B}_{\mathrm{cr}}\right)=\operatorname{Pr}\left[\mathrm{CR}^{\mathcal{B}_{\mathrm{cr}}} \Rightarrow 1\right]$, respectively.

2.3 Preimage-Sampleable Function

In the ROM, hash-and-sign is EUF-CMA-secure when instantiated with a preimage-sampleable function (PSF) [29]. We first define its weakened version.

Definition 2.5 (Weak Preimage-Sampleable Function (WPSF)). A WPSF T is a TDF that is equipped with an additional function $\operatorname{SampDom}(\mathrm{F})$, which takes as input $\mathrm{F} \in \mathcal{Y}^{\mathcal{X}}$ and outputs some $x \in \mathcal{X}$.
We then review PSF:
Definition 2.6 (Preimage-Sampleable Function (PSF) [29]). A WPSF T is said to be a PSF if it satisfies three conditions for any $(\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$:
Condition 1: $\mathrm{F}(x)$ is uniform over \mathcal{Y} for $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$.
Condition 2: $x \leftarrow \mathrm{I}(y)$ follows a distribution of $x \leftarrow$ SampDom(F$)$ given $\mathrm{F}(x)=y$.
Condition 3: $\mathfrak{I}(y)$ outputs x satisfying $\mathrm{F}(x)=y$ for any $y \in \mathcal{Y}$.
If T is collision-resistant PSF, it satisfies the above conditions plus the following:
Condition 4: For any $y \in \mathcal{Y}$, the conditional min-entropy of $x \leftarrow \operatorname{SampDom}(F)$ given $\mathrm{F}(x)=y$ is at least $\omega(\log (\lambda))$.

In the proof of EUF-CMA security, a TDF may not be a PSF, but it must be a WPSF that satisfies a relaxed version of Condition 2 that ensures indistinguishability between $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$ and $x \leftarrow \mathrm{I}(y)$. To define this relaxed condition, we introduce the following game:

[^2]| GAME: PS_{b} | Sample ${ }_{0}$ () | Sample ${ }_{1}$ () |
| :---: | :---: | :---: |
| $1(\mathrm{~F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$ | 1 repeat | 1 $x_{i} \leftarrow \operatorname{SampDom}(\mathrm{~F})$ |
| $2 b^{*} \leftarrow \mathcal{D}_{\text {ps }}$ Sample $_{\text {b }}(\mathrm{F})$ | ${ }_{2}^{2} \quad y_{i} \leftarrow_{\$} \mathcal{Y}$ | 2 return x_{i} |
| 3 return b^{*} | $\begin{aligned} & 3 \quad x_{i} \leftarrow \stackrel{\leftarrow}{\leftarrow}\left(y_{i}\right) \\ & 4 \\ & 4 \\ & \text { until } \\ & x_{i} \end{aligned}$ | |

Fig. 4: PS (Preimage Sampling) game

Game: M-EUF-CMA	$\operatorname{Sign}\left(j, m_{i}\right)$
$1 \quad \mathcal{Q}:=\emptyset$	$1 \sigma_{i} \leftarrow \operatorname{Sig} . \operatorname{Sign}\left(s k_{j}, m_{i}\right)$
2 for $j \in\left[q_{\text {key }}\right]$ do	$2 \mathcal{Q}:=\mathcal{Q} \cup\left\{\left(j, m_{i}\right)\right\}$
$3\left(v k_{j}, s k_{j}\right) \leftarrow$ Sig.KeyGen $\left(1^{\lambda}\right)$	3 return σ_{i}
$4\left(j^{*}, m^{*}, \sigma^{*}\right) \leftarrow \mathcal{A}_{\text {cmam }}^{\text {Sign }}\left(\left\{v k_{j}\right\}_{j \in\left[q_{\text {key }}\right]}\right)$	
5 if $\left(j^{*}, m^{*}\right) \in \mathcal{Q}$ then	
6 return 0	
7 return Sig.Verify $\left(v k_{j^{*}}, m^{*}, \sigma^{*}\right)$	

Fig. 5: M-EUF-CMA (Multi-key EUF-CMA) game

Definition 2.7 (Preimage Sampling (PS) Game). Let T be a WPSF. Using a game defined in Fig. 4, we define an advantage function of an adversary playing the PS game against T as $\operatorname{Adv}_{\mathrm{T}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=\left|\operatorname{Pr}\left[\mathrm{PS}_{0}^{\mathcal{D}_{\mathrm{ps}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{PS}_{1}^{\mathcal{D}_{\mathrm{ps}}} \Rightarrow 1\right]\right|$.

The condition that $\operatorname{Adv}_{\top}^{P S}\left(\mathcal{D}_{\mathrm{ps}}\right)$ is negligible is a relaxation of Condition 2 in which we can use computational indistinguishability.

2.4 Security Games in Multi-key/Multi-instance Settings

Definition 2.8 (Security of Signature in Multi-key Setting [36]). Let Sig be a signature scheme. Using a game given in Fig. 5, we define advantage functions of adversaries playing the M-EUF-CMA and M-sEUF-CMA (Multikey EUF-CMA/sEUF-CMA) games against Sig as $\operatorname{Adv}_{\text {Sig }}^{\text {M-EUF-CMA }}\left(\mathcal{A}_{\text {cmam }}\right)=$ $\operatorname{Pr}\left[\mathrm{M}-E U F-C M A \mathcal{A}_{\text {cmam }} \Rightarrow 1\right]$ and $\operatorname{Adv}_{\mathrm{Sig}}^{\mathrm{M}-\mathrm{sEUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}{ }^{\mathrm{m}}\right)=\operatorname{Pr}\left[\mathrm{M}-\mathrm{sEUF}-\mathrm{CMA} \mathcal{A}_{\text {cmam }} \Rightarrow 1\right]$, where the M-sEUF-CMA game is identical to the M-EUF-CMA game except that Line 5 is changed as "if $\left(j^{*}, m^{*}, \sigma^{*}\right) \in \mathcal{Q}^{\prime}$ then" and \mathcal{Q}^{\prime} keeps key IDs, messages, and signatures in the signing oracle. We say Sig is M-EUF-CMAsecure or M-sEUF-CMA-secure if its corresponding advantage is negligible for any efficient adversary in the security parameter.

Definition 2.9 (INV, CR, and PS in Multi-instance Setting). Let T be a TDF or a WPSF. Using games given in Fig. 6, we define advantage functions of adversaries playing the M-INV (Multi-instance INV), M-CR (Multiinstance CR), and M-PS (Multi-instance PS) against T as $\mathrm{Adv}_{\mathrm{T}}^{\mathrm{M}-\mathrm{INV}}\left(\mathcal{B}_{\mathrm{invm}}\right)=$ $\operatorname{Pr}\left[\mathrm{M}-\mathrm{INV} \mathcal{B}_{\text {invm }} \Rightarrow 1\right], \operatorname{Adv}_{\mathrm{T}}^{\mathrm{M}-\mathrm{CR}}\left(\mathcal{B}_{\mathrm{crm}}\right)=\operatorname{Pr}\left[\mathrm{M}-\mathrm{CR}^{\mathcal{B}_{c r^{m}}} \Rightarrow 1\right]$, and $\operatorname{Adv}_{\mathrm{T}}^{\mathrm{M}-\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=$ $\left|\operatorname{Pr}\left[\mathrm{M}-\mathrm{PS}_{0}^{\mathcal{D}_{\mathrm{ps} \mathrm{m}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{M}-\mathrm{PS}_{1}^{\mathcal{D}_{\mathrm{ps} m}} \Rightarrow 1\right]\right|$, respectively.

$\begin{aligned} & \text { GamE: } \mathrm{M} \text {-INV } \\ & \hline \mathbf{1} \text { for } j \in\left[q_{\text {inst }}\right] \text { do } \\ & \mathbf{2} \quad\left(\mathrm{F}_{j}, \mathrm{I}_{j}\right) \leftarrow \$ \text { Gen }\left(1^{\lambda}\right) \\ & \mathbf{3} \quad y_{j} \leftarrow \$ \mathcal{Y} \\ & \mathbf{4}\left(j^{*}, x^{*}\right) \leftarrow \mathcal{B}_{\text {invm }}\left(\left\{\left(\mathrm{F}_{j}, y_{j}\right)\right\}_{j \in\left[q_{\text {inst }}\right.}\right) \\ & \mathbf{5} \end{aligned}$		$\begin{aligned} & \text { GAME: } \mathrm{M}-\mathrm{CR} \\ & \hline \mathbf{1} \text { for } j \in\left[q_{\text {inst }}\right] \text { do } \\ & \mathbf{2} \quad\left(\mathrm{F}_{j}, \mathrm{I}_{j}\right) \leftarrow \$ \mathrm{Gen}^{*}\left(1^{\lambda}\right) \\ & \mathbf{3}\left(j^{*}, x_{1}^{*}, x_{2}^{*}\right) \leftarrow \mathcal{B}_{\mathrm{crm}}\left(\left\{\mathrm{~F}_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}\right) \\ & \mathbf{4} \\ & \text { return } \mathrm{F}_{j^{*}}\left(x_{1}^{*}\right) \stackrel{?}{=} \mathrm{F}_{j^{*}}\left(x_{2}^{*}\right) \end{aligned}$
	$\begin{array}{cc} \text { Sample }_{0}(j \\ \hline \text { 1 } & \text { repeat } \\ 2 & y_{i}, \\ 3 & x_{i} \\ 4 & \text { until } \\ 5 & \text { return } \end{array}$	$\begin{array}{ll} \frac{j)}{\mathbf{t}} & \frac{\operatorname{Sample}_{1}(j)}{1 x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{j}\right)} \\ \leftarrow \mathbb{Y} & 2 \text { return } x_{i} \\ -\mathbf{I}_{j}\left(y_{i}\right) & \\ x_{i} \neq \perp & \\ \mathbf{n} x_{i} & \end{array}$

Fig. 6: M-INV, M-CR, and M-PS (Multi-instance INV, CR, and PS) games

2.5 Quantum Random Oracle Model

In the ROM, a hash function $\mathrm{H}: \mathcal{R} \times \mathcal{M} \rightarrow \mathcal{Y}$ is modeled as a random function $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$. The random function is under the control of the challenger, and the adversary makes queries to the random oracle (random oracle queries) to compute the hash values. In the ROM, the challenger can choose $y \leftarrow_{\$} \mathcal{Y}$ and reprogram $\mathrm{H}:=\mathrm{H}^{(r, m) \mapsto y}$ for queried (r, m) on-the-fly instead of choosing $\mathrm{H} \leftarrow \$$ $\mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$ at the beginning (lazy sampling technique).

In the QROM, the adversary makes queries to H in a superposition of many different values, e.g., $\sum_{(r, m)} \alpha_{r, m}|r, m\rangle|y\rangle$. The challenger computes H and gives a superposition of the results to the adversary, $\sum_{(r, m)} \alpha_{r, m}|r, m\rangle|y \oplus \mathrm{H}(r, m)\rangle$. Due to the nature of superposition queries in the QROM, traditional proof techniques like lazy sampling used in the ROM cannot be directly applied in the QROM. However, some works enable one to adaptively reprogram H in the security game [55, 33, 23, 31]. Among the works, we use the tight adaptive reprogramming technique [31] and the measure-and-reprogram technique [23]. Also, we use the semi-classical O2H technique [1]. See Appendix A.

2.6 Hash-and-Sign Paradigm

Fig. 7 shows algorithms of the probabilistic hash-and-sign with retry, and $\mathrm{HaS}[\mathrm{T}, \mathrm{H}]$ is a signature scheme using a TDF T and a hash function H . If $\mathrm{HaS}[\mathrm{T}, \mathrm{H}]$. Sign outputs a signature without retry, $\mathrm{HaS}[\mathrm{T}, \mathrm{H}]$ instantiates the probabilistic hash-and-sign. If r is empty, $\mathrm{HaS}[\mathrm{T}, \mathrm{H}]$ instantiates the deterministic hash-and-sign. In Appendix B, we present the existing security proofs for hash-and-sign.

3 New Security Proof

The main theorem is as follows:

HaS[T, H].KeyGen(1^{λ})	$\underline{\mathrm{HaS}[\mathrm{T}, \mathrm{H}] . \mathrm{Sign}(\mathrm{I}, m)}$	$\underline{\mathrm{HaS}[\mathrm{T}, \mathrm{H}] . \mathrm{Vrfy}(\mathrm{F}, m,(r, x))}$
$1(\mathrm{~F}, \mathrm{l}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$	1 repeat	1 return $\mathrm{F}(x) \stackrel{?}{=} \mathrm{H}(r, m)$
2 return (F, l)	$\begin{array}{ll} \mathbf{2} & r \leftarrow \$ \mathcal{R} \\ \mathbf{3} & x \leftarrow \mathbf{I}(\mathbf{H}(r, m)) \end{array}$	
	4 until $x \neq \perp$ 5 return (r, x)	

Fig. 7: Algorithms of the probabilistic hash-and-sign with retry

Theorem 3.1 (INV \Rightarrow EUF-CMA (Main Theorem)). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]$ issuing at most q_{sign} classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exist an INV adversary $\mathcal{B}_{\mathrm{inv}}$ of $\mathrm{T}_{\mathrm{wpsf}}$ and a PS adversary $\mathcal{D}_{\mathrm{ps}}$ of $\mathrm{T}_{\mathrm{wpsf}}$ issuing $q_{\text {sign }}$ sampling queries such that

$$
\begin{align*}
& \operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{~T}_{\text {wpsf }}, \mathrm{H}\right]}{\mathrm{EUF}}\left(\mathcal{A}_{\text {cma }}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{PS}}\left(\mathcal{D}_{\text {ps }}\right) \\
& +\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}+2\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}}, \tag{1}
\end{align*}
$$

where $q_{\text {sign }}^{\prime}$ is a bound on the total number of queries to H in all the signing queries, and the running times of $\mathcal{B}_{\mathrm{inv}}$ and $\mathcal{D}_{\mathrm{ps}}$ are about that of $\mathcal{A}_{\mathrm{cma}}$.

In this section, we provide a proof sketch, while Appendix C contains the complete proof.

Proof Sketch: The main theorem consists of two reductions: EUF-NMA \Rightarrow EUF-CMA and INV \Rightarrow EUF-NMA. To establish EUF-NMA \Rightarrow EUF-CMA, we modify the signing oracle to enable simulation by SampDom without using the signing key. We employ the tight adaptive reprogramming technique [31] (see Appendix A.1) to modify the signing oracle. This modification involves sampling $r \leftarrow_{\$} \mathcal{R}$ and $y \leftarrow_{\$} \mathcal{Y}$, and reprogramming H as $\mathrm{H}^{(r, m) \mapsto y}$ every time the signing oracle calls H . If we can reprogram H by $\mathrm{H}^{(r, m) \mapsto \mathrm{F}(x)}$ where $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$, (r, x) becomes a valid signature for the reprogrammed H. However, $\mathrm{F}(x)$ is not necessarily a uniform distribution, which introduces bias to the distribution of H after reprogramming. If we can cancel the reprogramming performed during retries, we can simulate the signing oracle with outputting (r, x) and reprogramming $\mathrm{H}:=\mathrm{H}^{(r, m) \mapsto \mathrm{F}(x)}$ assuming the hardness of the PS game (see Definition 2.7). Such cancellation is a non-trivial task. Reapplying the tight adaptive reprogramming technique cannot achieve cancellation without introducing the distribution bias. To achieve this goal, we use the semi-classical O2H technique [1] (see Appendix A.3). By puncturing H for reprogrammed points during retries, we prevent the adversary from obtaining the values associated with those points. As a result, the reprogramming during retries can be canceled because it does not affect the adversary's advantage. This cancellation enables the EUF-NMA adversary to simulate the signing oracle, which completes the reduction.

For INV \Rightarrow EUF-NMA, we utilize the measure-and-reprogram technique [23]. The INV adversary $\mathcal{B}_{\text {inv }}$ is given a challenge (F, y) and interacts with $\mathcal{A}_{\text {nma }}$ in the EUF-NMA game. $\mathcal{B}_{\text {inv }}$ measures and reprograms the random function H accessed by $\mathcal{A}_{\text {nma }}$. $\mathcal{B}_{\text {inv }}$ measures one of the random oracle queries made by $\mathcal{A}_{\text {nma }}$. Let $\left(r^{\prime}, m^{\prime}\right)$ denote the observed value, and H is reprogrammed as $\mathrm{H}^{\prime}=\mathrm{H}^{\left(r^{\prime}, m^{\prime}\right) \mapsto y}$. Then, $\mathcal{B}_{\text {inv }}$ runs $\mathcal{A}_{\text {nma }}$ again with H^{\prime} and obtains (m, r, x). Finally, $\mathcal{B}_{\text {inv }}$ outputs x as a preimage of y. From [23, Theorem 2] (see Appendix A.2), we can achieve a reduction with a security loss of $\left(2 q_{\text {qro }}+1\right)^{2}$ in INV \Rightarrow EUF-NMA.

Remark 3.1. If $\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]$ adopts the probabilistic hash-and-sign, then $q_{\text {sign }}^{\prime}=$ $q_{\text {sign }}$ holds and the last term of Eq. (1) becomes 0 .

Remark 3.2. We have a tight reduction in EUF-NMA \Rightarrow EUF-CMA.

$$
\begin{align*}
& \underset{\operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{wpf}}, \mathrm{H}\right]}{\mathrm{EUFF}]}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{wpsf}}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{MMA}}\left(\mathcal{A}_{\mathrm{nma}}\right)+\operatorname{Adv}_{\mathrm{T}_{\mathrm{wpsf}}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)}{ } \\
& \quad+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}+2\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}} \tag{2}
\end{align*}
$$

Compared with the security bound of [16] (see Eq. (4) in Appendix B), the requirement for $\mathrm{T}_{\text {wpsf }}$ is weaker, and there are no square-root terms related to Condition 2.

Remark 3.3. If the underlying TDF is PSF (or TDP), $\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}\right]}^{\mathrm{EUF}}\left(\mathcal{A}_{\text {cma }}\right) \leq$ $\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\text {INV }}\left(\mathcal{B}_{\text {inv }}\right)+\frac{3}{2} q_{\text {sign }} \sqrt{\frac{q_{\text {sign }}+q_{\text {qro }}+1}{|\mathcal{R}|}}$. Since $\mathrm{HaS}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}\right]$. Sign outputs a signature without retry (Condition 3), $q_{\text {sign }}^{\prime}=q_{\text {sign }}$ holds. In the PS game, outputs of I and $\operatorname{SampDom}(\mathrm{F})$ are equivalent from Condition 2 and $\operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=$ 0 . This bound is tighter than existing ones for $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}\right]$.

Remark 3.4. Grilo et al. showed a tight reduction of EUF-NMA \Rightarrow EUF-CMA in the Fiat-Shamir paradigm, assuming that the underlying ID scheme is honest verifier zero-knowledge (HVZK) [31, Theorem 3]. Also, Don et al. gave a generic reduction in the Fiat-Shamir transform of arbitrary ID schemes with a security loss $\left(2 q_{\text {qro }}+1\right)^{2}[24$, Theorem 8]. The above reductions use the same techniques of adaptive reprogramming in the QROM (Lemmas A. 1 and A.2) as used in Theorem 3.1. However, the unique aspect of Theorem 3.1 lies in the combination of the semi-classical O2H technique with these two techniques.

There are two advantages compared with the existing security proofs.
Advantage 1: Wide applications: Our reduction gives security proofs for codebased and MQ-based hash-and-sign signatures. Relaxation of Condition 2 is necessary for such applications. The existing security proofs replace H with H^{\prime} all at once, requiring statistical indistinguishability between H and H^{\prime}. On the other hand, our proof reprograms H in each signing query. This approach allows us to bound the advantage gap of games in the reduction using $\operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{PS}}\left(\mathcal{B}_{\mathrm{ps}}\right)$.

Advantage 2: Tighter proof: Our reduction is tighter than the existing ones [59, 56] as mentioned in Remark 3.3. While we cannot guarantee the optimality of our reduction, we can infer from several observations that a multiplicative loss of $\left(2 q_{\mathrm{qro}}+1\right)^{2}$ appears to be unavoidable in the generic (black-box) reduction. First, the reduction incurs the loss $\left(q_{\text {sign }}+q_{\text {qro }}+1\right)$ even in the ROM (see Appendix B). Second, the security loss of a generic reduction from ROM to QROM using the lifting theorem [56] is at least $\left(2 q_{\text {qro }}+1\right)^{2}$. Third, in the Fiat-Shamir paradigm, a generic reduction from arbitrary ID schemes incurs the same security loss as mentioned in Remark 3.4.

3.1 Extension to sEUF-CMA Security

If F of the underlying TDF is injective, $\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]$ is sEUF-CMA secure (see the proof in Appendix D).

Corollary 3.1 (INV \Rightarrow sEUF-CMA). Suppose that F of $\mathrm{T}_{\mathrm{wpsf}}$ is an injection. For any quantum sEUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]$ issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$, there exist an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {wpsf }}$ and $a \mathrm{PS}$ adversary $\mathcal{D}_{\mathrm{ps}}$ of $\mathrm{T}_{\mathrm{wpsf}}$ issuing q_{sign} sampling queries such that

$$
\begin{align*}
& \operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\text {wpsf }}, \mathrm{H}\right]}^{\text {SEUF-CMA }}\left(\mathcal{A}_{\text {cma }}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathbf{T}_{\text {wpsf }}}^{\text {INV }}\left(\mathcal{B}_{\text {inv }}\right)+\operatorname{Adv}_{\mathbf{T}_{\text {wpsf }}}^{\mathrm{PS}}\left(\mathcal{D}_{\text {ps }}\right) \\
& +\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}+2\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}}, \tag{3}
\end{align*}
$$

where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries, and the running times of $\mathcal{B}_{\mathrm{inv}}$ and $\mathcal{D}_{\mathrm{ps}}$ are about that of $\mathcal{A}_{\mathrm{cma}}$.

3.2 Applications of New Security Proof

By applying Theorem 3.1, we can establish security proofs for Wave [20], the original/modified UOV signatures [37, 50], the modified HFE signature [50], and MAYO [9]. Additionally, by utilizing Corollary 3.1, we can provide a security proof for the modified CFS signature [19]. If Rainbow [22] and QR-UOV [28] make the same modification as the modified UOV signature, these schemes can be provably secure. Also, GeMSS [15] is provable secure since it follows the modified HFE signature. The security proofs for these schemes, obtained by applying Theorem 3.1 and Corollary 3.1, are provided in Appendix E.

4 Security Proof of Hash-and-Sign with Prefix Hashing in Multi-key Setting

In prefix hashing, the hash function H includes a small unpredictable portion of the verification key. Let $\mathrm{H}: \mathcal{U} \times \mathcal{R} \times \mathcal{M} \rightarrow \mathcal{Y}$ be a hash function and $\mathrm{HaS}^{\text {ph }}[\mathrm{T}, \mathrm{H}, \mathrm{E}]$

$\frac{\operatorname{NewKey}_{1}()}{1 \mathrm{~L}_{j} \leftarrow \mathcal{D}_{\mathrm{L}}}$
$\frac{\operatorname{NewKey}_{1}()}{1 \mathrm{~L}_{j} \leftarrow \mathcal{D}_{\mathrm{L}}}$
$2 \mathrm{R}_{j} \leftarrow \mathcal{D}_{\mathrm{R}}$
$2 \mathrm{R}_{j} \leftarrow \mathcal{D}_{\mathrm{R}}$
$\mathrm{F}_{j}:=\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}$
$\mathrm{F}_{j}:=\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}$
$\operatorname{return} F_{j}$
$\operatorname{return} F_{j}$

Fig. 8: ST (Sandwich Transformation) game
be a signature scheme adopting the probabilistic hash-and-sign with retry and prefix hashing, where $\mathrm{E}: \mathcal{Y}^{\mathcal{X}} \rightarrow \mathcal{U}$ is a deterministic function to extract a small unpredictable part of F into a key ID $u \in \mathcal{U}$. We assume that $\mathrm{E}(\mathrm{F})$ is uniform over \mathcal{U} for $(\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right) .{ }^{8}$ For a message m, $\operatorname{Ha} \mathrm{S}^{\mathrm{ph}}[\mathrm{T}, \mathrm{H}, \mathrm{E}]$. Sign repeats $r \leftarrow \& \mathcal{R}$ and $x \leftarrow \mathrm{I}(\mathrm{H}(\mathrm{E}(\mathrm{F}), r, m))$ until $x \neq \perp$ holds, and outputs (r, x). For a verification key F , a message m, and a signature (r, x), $\mathrm{HaS}^{\mathrm{Ph}}[\mathrm{T}, \mathrm{H}, \mathrm{E}]$.Vrfy verifies by $\mathrm{F}(x) \stackrel{?}{=} \mathrm{H}(\mathrm{E}(\mathrm{F}), r, m)$.

In Appendix G, Lemmas G. 1 and G. 2 establish reductions of M-INV \Rightarrow M-EUF-CMA and M-CR \Rightarrow M-sEUF-CMA without any security loss in the number of keys. However, there are trivial reductions: $\operatorname{Adv}_{\top}^{M-I N V}\left(\mathcal{B}_{\text {invm }}\right) \leq$ $q_{\text {inst }} \operatorname{Adv}_{T}^{\text {INV }}\left(\mathcal{B}_{\text {inv }}\right)$ and $\operatorname{Adv}_{T}^{\mathrm{M}-\mathrm{CR}}\left(\mathcal{B}_{\text {crm }}\right) \leq q_{\text {inst }} \operatorname{Adv}_{T}^{\mathrm{CR}}\left(\mathcal{B}_{\text {cr }}\right)$. If the adversaries can target multiple instances conccurently, equality may hold in these inequalities. To address this issue, we propose a generic method to show reductions from INV or CR by assuming the hardness of the computational problem on keys' distributions.

Let $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {keel }}\right]}$ be verification keys generated by Gen of a TDF T. Given a verification key $\mathrm{F}^{\prime}: \mathcal{X}^{\prime} \rightarrow \mathcal{Y}^{\prime}$ generated by Gen' of another TDF T^{\prime}, we simulate $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {keve }}\right]}$ by $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$, where $\mathrm{L}_{j}: \mathcal{Y}^{\prime} \rightarrow \mathcal{Y}$ and $\mathrm{R}_{j}: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$. Let \mathcal{D}_{L} and \mathcal{D}_{R} be some distributions of L_{j} and R_{j}. We note that the domains and ranges of F^{\prime} and F_{j} 's may differ. We define a new game to give a bound on the distinguishing advantage of $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$ and $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}_{j \in[\text { qhey }]}$.

Definition 4.1 (ST (Sandwich Transformation) Game). Let T and T^{\prime} be TDFs. Using a game given in Fig. 8, we define an advantage function of an adversary $\mathcal{D}_{\text {st }}$ playing the ST game against T and T^{\prime} as $\operatorname{Adv}_{\mathrm{T}, \mathrm{T}^{\prime}}^{\mathrm{ST}}\left(\mathcal{D}_{\mathrm{st}}\right)=$ $\left|\operatorname{Pr}\left[\mathrm{ST}_{0}^{D_{\mathrm{st}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{ST}_{1}^{\mathcal{D}_{\mathrm{st}}} \Rightarrow 1\right]\right|$.

We have the following reductions assuming some conditions on L_{j} and R_{j} (see the proofs in Appendices H and I).

Lemma 4.1 (INV $+\mathbf{S T} \Rightarrow$ M-EUF-CMA). Let T^{\prime} be a TDF with $\mathrm{F}^{\prime}: \mathcal{X}^{\prime} \rightarrow$ \mathcal{Y}. Suppose that $\mathrm{L}_{j}: \mathcal{Y} \rightarrow \mathcal{Y}$ and $\mathrm{R}_{j}: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$ are used to simulate F_{j} by $\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}$ in the ST game, where L_{j} is a bijection.

For any quantum M-EUF-CMA adversary $\mathcal{A}_{\text {cmam }}$ of $\mathrm{Ha} \mathrm{S}^{\mathrm{ph}}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}, \mathrm{E}\right]$ with $q_{\text {key }}$ keys and issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and

[^3]$q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{U}} \times \mathcal{R} \times \mathcal{M}$, there exist an INV adversary $\mathcal{B}_{\text {inv }}$ of T^{\prime} with $q_{\text {inst }}$ instances, an $\mathrm{M}-\mathrm{PS}$ adversary $\mathcal{D}_{\mathrm{ps}}{ }^{\mathrm{m}}$ of $\mathrm{T}_{\mathrm{wpsf}}$ with $q_{\text {key }}$ instances and issuing $q_{\text {sign }}$ sampling queries, and an ST adversary $\mathcal{D}_{\text {st }}$ of ($\mathrm{T}_{\text {wpsf }}, \mathrm{T}^{\prime}$) issuing $q_{\text {key }}$ new key queries such that
\[

$$
\begin{aligned}
& +\operatorname{Adv}_{\mathbf{T}_{\text {wpsf }}, \boldsymbol{T}^{\prime}}^{\mathrm{ST}^{\prime}}\left(\mathcal{D}_{\mathrm{st}}\right)+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}} \\
& +2\left(q_{\text {sign }}+q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\text {sign }}}{|\mathcal{R}|}}+\frac{q_{\text {key }}^{2}}{|\mathcal{U}|},
\end{aligned}
$$
\]

where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries, $\mathbb{E}_{\mathrm{F}, \mathrm{I}}\left(q_{\text {inst }}\right) \leq q_{\text {key }}\left(\frac{|\mathcal{U}|}{|\mathcal{U}|-q_{\text {key }}+1}\right)$ holds, and the running times of $\mathcal{B}_{\text {inv }}, \mathcal{D}_{\mathrm{ps}}{ }^{\mathrm{m}}$, and $\mathcal{D}_{\text {st }}$ are about that of $\mathcal{A}_{\mathrm{cma}^{\mathrm{m}}}$.

Lemma 4.2 ($\mathbf{C R}+\mathbf{S T} \Rightarrow \mathbf{M}$-sEUF-CMA). Let T^{\prime} be a TDF with $\mathrm{F}^{\prime}: \mathcal{X}^{\prime} \rightarrow$ \mathcal{Y}. Suppose that $\mathrm{L}_{j}: \mathcal{Y}^{\prime} \rightarrow \mathcal{Y}$ and $\mathrm{R}_{j}: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$ are used to simulate F_{j} by $\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}$ in the ST game, where L_{j} and R_{j} are injections.

For any quantum M-sEUF-CMA adversary $\mathcal{A}_{\mathrm{cma}^{\mathrm{m}}}$ of $\mathrm{HaS}^{\mathrm{ph}}\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}, \mathrm{E}\right]$ with $q_{\text {key }}$ keys and issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{U}} \times \mathcal{R} \times \mathcal{M}$, there exist a CR adversary $\mathcal{B}_{\mathrm{cr}}$ of $\mathrm{T}_{\mathrm{psf}}$ with q_{inst} instances and an ST adversary $\mathcal{D}_{\mathrm{st}}$ of $\left(\mathrm{T}_{\mathrm{psf}}, \mathrm{T}^{\prime}\right)$ issuing q_{key} new key queries such that
$\operatorname{Adv}_{\mathrm{HaS}^{\mathrm{M}} \mathrm{Sh}\left[\mathrm{T}_{\text {ps } f}, \mathrm{H}, \mathrm{E}\right]}^{\mathrm{M}]}\left(\mathcal{A}_{\mathrm{cmam}}\right) \leq \frac{1}{1-2^{-\omega(\log (\lambda))}}\left(\operatorname{Adv}_{\mathrm{T}^{\prime}}^{\mathrm{CR}}\left(\mathcal{B}_{\mathrm{cr}}\right)+\operatorname{Adv}_{\mathrm{T}_{\text {psf }}, \mathrm{T}^{\prime}}^{\mathrm{ST}^{\prime}}\left(\mathcal{D}_{\mathrm{st}}\right)\right)+\frac{q_{\text {key }}^{2}}{|\mathcal{U}|}$,
where $\mathbb{E}_{\mathrm{F}, \mathrm{I}}\left(q_{\text {inst }}\right) \leq q_{\text {key }}\left(\frac{|\mathcal{U}|}{|\mathcal{U}|-q_{\text {key }}+1}\right)$ holds and the running times of $\mathcal{B}_{\mathrm{cr}}$ and $\mathcal{D}_{\text {st }}$ are about that of $\mathcal{A}_{\mathrm{cmam}^{\mathrm{m}}}$.

In Appendix J, we applly the generic method to some frameworks of hash-and-sign signatures in lattice-based, code-based, and MQ-based cryptography. To bound the ST advantage, we introduce multi-instance variants of established computational problems in code-based and MQ-based cryptography, that is, permutation/linear equivalence [48] and morphism of polynomials [47].

Open problems: There are two open problems for the generic method. First, the computational problems defined in Appendix J used for bounding the ST advantage have not been studied deeply; therefore, future studies are necessary to guarantee the hardness of the problems. Second, we currently fail to use the generic method to show the M-EUF-CMA security under adaptive corruptions of signing keys. Solving this issue is the second open problem.

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semiclassical oracles. In: Boldyreva and Micciancio [12], pp. 269-295. https://-doi.org/10.1007/978-3-030-26951-7_10 5, 10, 11, 21, 22
2. Barbosa, M., Barthe, G., Doczkal, C., Don, J., Fehr, S., Grégoire, B., Huang, Y.H., Hülsing, A., Lee, Y., Wu, X.: Fixing and mechanizing the security proof of fiatshamir with aborts and dilithium. Cryptology ePrint Archive, Report 2023/246 (2023), https://eprint.iacr.org/2023/246 6
3. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: On the computational hardness of the code equivalence problem in cryptography. Advances in Mathematics of Communications 17(1), 23-55 (Feb 2023). https://doi.org/10.3934/amc.2022064, /article/id/62fa202b4cedfd0007b8b288 45
4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93. pp. 62-73. ACM Press (Nov 1993). https://doi.org/10.1145/168588.168596 1, 2, 8
5. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with RSA and Rabin. In: Maurer [40], pp. 399-416. https://doi.org/10.1007/3-540-68339-9_34 1, 4, 22
6. Belsley, E.D.: Rates of convergence of Markov chains related to association schemes. Ph.D. thesis (May 1993) 38
7. Beullens, W.: Not enough LESS: An improved algorithm for solving code equivalence problems over \mathbb{F}_{q}. Cryptology ePrint Archive, Report 2020/801 (2020), https://eprint.iacr.org/2020/801 45
8. Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 348-373. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5_13 39
9. Beullens, W.: MAYO: Practical post-quantum signatures from oil-and-vinegar maps. Cryptology ePrint Archive, Report 2021/1144 (2021), https://eprint.iacr. org/2021/1144 5, 13, 32, 35, 39, 40
10. Beullens, W., Chen, M.S., Hung, S.H., Kannwischer, M.J., Peng, B.Y., Shih, C.J., Yang, B.Y.: Oil and vinegar: Modern parameters and implementations. Cryptology ePrint Archive, Report 2023/059 (2023), https://eprint.iacr.org/2023/059 33, 38
11. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs of CCA security in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61-90. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7_3 21
12. Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part II, LNCS, vol. 11693. Springer, Heidelberg (Aug 2019) 16, 17
13. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41-69. Springer, Heidelberg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_3 2, 3, 4, 23, 24, 25, 43
14. Bouillaguet, C., Fouque, P.A., Véber, A.: Graph-theoretic algorithms for the "isomorphism of polynomials" problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 211-227. Springer, Heidelberg (May 2013). https://doi.org/10.1007/978-3-642-38348-9_13 46
15. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem, J.: GeMSS. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/ post-quantum-cryptography-standardization/round-3-submissions 5, 13, 35
16. Chailloux, A., Debris-Alazard, T.: Tight and optimal reductions for signatures based on average trapdoor preimage sampleable functions and applications to codebased signatures. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 453-479. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45388-6_16 3, 4, 8, 12, 23, 24, 25, 32, 37
17. Chatterjee, S., Das, M.P.L., Pandit, T.: Revisiting the security of salted UOV signature. In: Isobe, T., Sarkar, S. (eds.) Progress in Cryptology - INDOCRYPT 2022. LNCS, vol. 13774, pp. 697-719. Springer, Heidelberg (Jan 2022) 24, 25, 32
18. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157-174. Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-456821_10 2, 37
19. Dallot, L.: Towards a concrete security proof of Courtois, Finiasz and Sendrier signature scheme. In: WEWoRC 2007. LNCS, vol. 4945, pp. 65-77. Springer, Heidelberg (Jul 2007) 5, 13, 31, 36
20. Debris-Alazard, T., Sendrier, N., Tillich, J.P.: Wave: A new family of trapdoor one-way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 21-51. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-34578-5_2 5, 13, 32, 37
21. Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D.: A detailed analysis of fiatshamir with aborts. Cryptology ePrint Archive, Report 2023/245 (2023), https: //eprint.iacr.org/2023/245 6
22. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y., Kannwischer, M., Patarin, J.: Rainbow. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/ post-quantum-cryptography-standardization/round-3-submissions 5, 13, 34
23. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 602-631. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56877-1_21 5, 6, 10, 12, 20, 21, 25
24. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transformation in the quantum random-oracle model. In: Boldyreva and Micciancio [12], pp. 356-383. https://doi.org/10.1007/978-3-030-26951-7_13 12
25. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.: Faster latticebased KEMs via a generic fujisaki-okamoto transform using prefix hashing. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2722-2737. ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484819 4
26. Faugère, J.C., Perret, L.: Polynomial equivalence problems: Algorithmic and theoretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30-47. Springer, Heidelberg (May / Jun 2006). https://doi.org/10.1007/11761679_3 46
27. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO'86. LNCS, vol. 263, pp. 186-194. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-477217_12 2
28. Furue, H., Ikematsu, Y., Kiyomura, Y., Takagi, T.: A new variant of unbalanced Oil and Vinegar using quotient ring: QR-UOV. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 187-217. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-92068-5_7 5, 13, 34
29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 197-206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407 2, $4,8,22,36,44,45$
30. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281-308 (1988). https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017 1
31. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 637-667. Springer, Heidelberg (Dec 2021). https://-doi.org/10.1007/978-3-030-92062-3_22 3, 5, 6, 10, 11, 12, 20
32. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 275-304. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03326-2_10 2, 8
33. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hashbased signatures. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 387-416. Springer, Heidelberg (Mar 2016). https://doi.org/10.1007/978-3-662-49384-7_15 10
34. Ikematsu, Y., Nakamura, S., Santoso, B., Yasuda, T.: Security analysis on an ElGamal-like multivariate encryption scheme based on isomorphism of polynomials. In: Yu, Y., Yung, M. (eds.) Information Security and Cryptology - Inscrypt 2021. LNCS, vol. 13007, pp. 235-250. Springer, Heidelberg (Oct 2021) 46
35. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552-586. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_18 6
36. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 33-61. Springer, Heidelberg (Aug 2016). https://-doi.org/10.1007/978-3-662-53008-5_2 9
37. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT'99. LNCS, vol. 1592, pp. 206-222. Springer, Heidelberg (May 1999). https://doi.org/10.1007/3-540-48910-X_15 2, 13, 32, 33, 37
38. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Transactions on Information Theory 28(3), 496-511 (May 1982), https://ieeexplore.ieee. org/document/1056498 45
39. Liu, Y., Jiang, H., Zhao, Y.: Tighter post-quantum proof for plain FDH, PFDH and GPV-IBE. Cryptology ePrint Archive, Report 2022/1441 (2022), https://eprint. iacr.org/2022/1441 6, 23, 25
40. Maurer, U.M. (ed.): EUROCRYPT'96, LNCS, vol. 1070. Springer, Heidelberg (May 1996) 16, 19
41. Menezes, A., Smart, N.: Security of signature schemes in a multi-user setting. Designs, Codes and Cryptography 33(3), 261-274 (Nov 2004), https://link.springer. com/article/10.1023/B:DESI.0000036250.18062.3f 4
42. Morozov, K., Roy, P.S., Steinwandt, R., Xu, R.: On the security of the Courtois-Finiasz-Sendrier signature. Open Mathematics 16(1), 161-167 (Mar 2018). https://doi.org/doi:10.1515/math-2018-0011, https://doi.org/10. 1515/math-2018-0011 31
43. NIST: Submission requirements and evaluation criteria for the postquantum cryptography standardization process (Jan 2017), https://csrc. nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/ call-for-proposals-final-dec-2016.pdf 4
44. NIST: Call for additional digital signature schemes for the post-quantum cryptography standardization process (Sep 2022), https://csrc.nist.gov/csrc/media/ Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf 2, 5
45. NIST: Status report on the third round of the nist post-quantum cryptography standardization process (Sep 2022), https://csrc.nist.gov/publications/detail/ nistir/8413/final 2
46. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer [40], pp. 33-48. https://-doi.org/10.1007/3-540-68339-9_4 2, 32
47. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of polynomials. In: Nyberg, K. (ed.) EUROCRYPT'98. LNCS, vol. 1403, pp. 184-200. Springer, Heidelberg (May / Jun 1998). https://doi.org/10.1007/BFb0054126 15, 46
48. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Transactions on Information Theory 43(5), 1602-1604 (Sep 1997), https://ieeexplore.ieee.org/ document/623157 15, 45
49. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National Institute of Standards and Technology (2022), available at https://csrc.nist.gov/ Projects/post-quantum-cryptography/selected-algorithms-2022 44
50. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and HFE signature schemes against chosen-message attack. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011. pp. 68-82. Springer, Heidelberg (Nov / Dec 2011). https://doi.org/10.1007/978-3-642-25405-5_5 4, 8, 13, 24, 32, 34, 35, 37, 38, 39
51. Sendrier, N.: Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193-1203 (2000) 45
52. Sendrier, N., Simos, D.E.: The hardness of code equivalence over and its application to code-based cryptography. In: Gaborit, P. (ed.) Post-Quantum Cryptography 5th International Workshop, PQCrypto 2013. pp. 203-216. Springer, Heidelberg (Jun 2013). https://doi.org/10.1007/978-3-642-38616-9_14 45
53. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: 35th FOCS. pp. 124-134. IEEE Computer Society Press (Nov 1994). https://doi.org/10.1109/SFCS.1994.365700 2
54. Szepieniec, A., Preneel, B.: Block-anti-circulant unbalanced Oil and Vinegar. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 574-588. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-38471-5_23 46
55. Unruh, D.: Quantum position verification in the random oracle model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 1-18. Springer, Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44381-1_1 10

Game: AR_{b}	$\underline{\operatorname{Repro}\left(m_{i}\right)}$
$1 \mathrm{H}_{0} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$	$1\left(r_{i}, y_{i}\right) \leftarrow_{\$} \mathcal{R} \times \mathcal{Y}$
$2 \mathrm{H}_{1}:=\mathrm{H}_{0}$	$2 \mathrm{H}_{1}:=\mathrm{H}_{1}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}$
$\begin{array}{ll} 3 & b^{*} \leftarrow \mathcal{D}_{\mathrm{ar}}^{\left\|\mathrm{H}_{b}\right\rangle, \text { Repro }}(), \end{array}$	3 return r_{i}

Fig. 9: AR (Adaptive Reprogramming) game
56. Yamakawa, T., Zhandry, M.: Classical vs quantum random oracles. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 568-597. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77886-6_20 3, 4, 13, 23, 24
57. Yamakawa, T., Zhandry, M.: Verifiable quantum advantage without structure. In: 63rd FOCS. pp. 69-74. IEEE Computer Society Press (Oct / Nov 2022). https://doi.org/10.1109/FOCS54457.2022.00014 2
58. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS. pp. 679-687. IEEE Computer Society Press (Oct 2012). https://doi.org/10.1109/FOCS.2012.37 24
59. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. Cryptology ePrint Archive, Report 2012/076 (2012), https://eprint.iacr. org/2012/076 2, 3, 4, 13, 23, 24, 25

A Proof Techniques in QROM

We introduce three techniques employed in proving Theorem 3.1.

A. 1 Tight Adaptive Reprogramming Technique [31]

Fig. 9 shows a game called AR (Adaptive Reprogramming) game, in which the adversary $\mathcal{D}_{\mathrm{ar}}$ attempts to distinguish H_{0} (no reprogramming) from H_{1} (reprogrammed by Repro). For i-th reprogramming query, the challenger reprograms H_{1} for uniformly chosen $\left(r_{i}, y_{i}\right)$, and gives r_{i} to $\mathcal{D}_{\mathrm{ar}}$. A distinguishing advantage of the AR game is defined by $\operatorname{Adv}_{\mathrm{H}}^{\mathrm{AR}}\left(\mathcal{D}_{\mathrm{ar}}\right)=\left|\operatorname{Pr}\left[\operatorname{AR}_{0}^{\mathcal{D}_{\mathrm{ar}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{AR}_{1}^{\mathcal{D}_{\mathrm{ar}}} \Rightarrow 1\right]\right|$.
Lemma A. 1 (Tight Adaptive Reprogramming Technique [31, Proposition 1]). For any quantum AR adversary $\mathcal{D}_{\mathrm{ar}}$ issuing at most $q_{\text {rep }}$ classical reprogramming queries and $q_{\text {qro }}$ (quantum) random oracle queries to H_{b}, the distinguishing advantage of the AR game is bounded by

$$
\operatorname{Adv}_{\mathrm{H}}^{\mathrm{AR}}\left(\mathcal{D}_{\mathrm{ar}}\right) \leq \frac{3}{2} q_{\text {rep }} \sqrt{\frac{q_{\text {qro }}}{|\mathcal{R}|}} .
$$

A. 2 Measure-and-Reprogram Technique [23]

Fig. 10 shows a two-stage simulator S for \mathcal{A} playing any search-type game in the QROM. The simulator operates as follows: In the first stage, S_{1} uniformly

AdVERSARY: $\mathcal{A}^{\|\mathrm{H}\rangle}()$	Simulator: $\mathrm{S}(\theta)$ for $\mathcal{A}^{\|\mathrm{H}\rangle}()$
$1{ }^{1}(r, m, z) \leftarrow \mathcal{A}^{\|\mathrm{H}\rangle}()$	$1 \mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$
2 return (r, m, z)	$2\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathrm{S}_{1}^{\mathcal{A}^{\|H\rangle}}()$
	$3 \mathrm{H}^{\prime}:=\mathrm{H}^{\left(r^{\prime}, m^{\prime}\right) \mapsto \theta}$
	$4 z \leftarrow \mathrm{~S}_{2}^{\mathcal{A}^{\left\|\mathrm{H}^{\prime}\right\rangle}}(\theta)$
	5 return ($\left.r^{\prime}, m^{\prime}, z\right)$

Fig. 10: A simulator S for any search-type game adversary \mathcal{A}
selects one of the \mathcal{A} 's queries to a random function H and outputs the observed value $\left(r^{\prime}, m^{\prime}\right)$ of the chosen query. Then, H is reprogrammed as $\mathrm{H}^{\prime}:=\mathrm{H}^{\left(r^{\prime}, m^{\prime}\right) \mapsto \theta}$ for a random θ. In the second stage, S_{2} runs \mathcal{A} using H^{\prime}. Finally, S_{2} outputs whatever \mathcal{A} outputs, which is denoted by z and maybe quantum.

Lemma A. 2 (Measure-and-Reprogram Technique [23, Theorem 2]). For any quantum adversary \mathcal{A} issuing at most $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exists a two-stage quantum simulator S given uniformly chosen θ such that for any $(\hat{r}, \hat{m}) \in \mathcal{R} \times \mathcal{M}$ and any predicate V ,

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(r^{\prime}, m^{\prime}\right)=(\hat{r}, \hat{m}) \wedge \mathrm{V}\left(r^{\prime}, m^{\prime}, \theta, z\right):\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathrm{S}_{1}^{\mathcal{A}^{|\mathrm{H}\rangle}}(), z \leftarrow \mathrm{~S}_{2}^{\mathcal{A}^{\left|\mathrm{H}^{\prime}\right\rangle}}(\theta)\right] \\
& \geq \frac{1}{\left(2 q_{\mathrm{qro}}+1\right)^{2}} \operatorname{Pr}\left[(r, m)=(\hat{r}, \hat{m}) \wedge \mathrm{V}(r, m, \mathrm{H}(r, m), z):(r, m, z) \leftarrow \mathcal{A}^{|\mathrm{H}\rangle}()\right]
\end{aligned}
$$

A. 3 Semi-classical O2H Technique [1]

We define punctured oracle following a notation of [11].
Definition A. 1 (Punctured Oracle [11, Definition 1]). Let $\mathcal{S} \subset \mathcal{R} \times \mathcal{M}$ be a set. Let $\mathrm{f}_{\mathcal{S}}: \mathcal{R} \times \mathcal{M} \rightarrow\{0,1\}$ be a predicate that returns 1 if and only if $(r, m) \in \mathcal{S}$. Punctured oracle $\mathrm{H} \backslash \mathcal{S}$ (H punctured by \mathcal{S}) of $\mathrm{H} \in \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$ runs as follows: on input (r, m), computes whether $(r, m) \in \mathcal{S}$ in an auxilliary qubit $\left|\mathrm{f}_{\mathcal{S}}(r, m)\right\rangle$, measures $\left|\mathrm{f}_{\mathcal{S}}(r, m)\right\rangle$, runs $\mathrm{H}(r, m)$, and returns the result. Let FIND be an event that any of measurements of $\left|\mathrm{f}_{\mathcal{S}}(r, m)\right\rangle$ returns 1.

The answer from the oracle $\mathrm{H} \backslash \mathcal{S}$ depends on the measurement results. Let us consider a query $\sum_{(r, m)} \alpha_{r, m}|r, m\rangle|y\rangle . \mathrm{H} \backslash \mathcal{S}$ computes $\sum_{(r, m)} \alpha_{r, m}|r, m\rangle|y\rangle\left|\mathrm{f}_{\mathcal{S}}(r, m)\right\rangle$ and measures the third register. If the result is 0 , then the query is transformed to $\sum_{(r, m) \notin \mathcal{S}} \alpha_{r, m}|r, m\rangle|y\rangle|0\rangle$ and $\mathrm{H} \backslash \mathcal{S}$ returns $\sum_{(r, m) \notin \mathcal{S}} \alpha_{r, m}|r, m\rangle|y \oplus \mathrm{H}(r, m)\rangle$ to the adversary. If the results is 1 (and thus, FIND $=\top$ holds), $\mathrm{H} \backslash \mathcal{S}$ returns $\sum_{(r, m) \in \mathcal{S}} \alpha_{r, m}|r, m\rangle|y \oplus \mathbf{H}(r, m)\rangle$ to the adversary. Thus, if FIND $=\perp$, then the adversary cannot obtain any information on $\mathrm{H}(r, m)$ for $(r, m) \in \mathcal{S}$. Hence, we have the following:

Lemma A. 3 (Indistinguishability of Punctured Oracles [1, Lemma 1]). Let $\mathrm{H}_{0}, \mathrm{H}_{1}: \mathcal{R} \times \mathcal{M} \rightarrow \mathcal{Y}$ and $\mathcal{S} \subset \mathcal{R} \times \mathcal{M}$, and z be a bitstring. $\left(\mathcal{S}, \mathrm{H}_{0}, \mathrm{H}_{1}\right.$,
and z are taken from arbitrary joint distribution satisfying $\mathrm{H}_{0}(r, m)=\mathrm{H}_{1}(r, m)$ for any $(r, m) \notin \mathcal{S}$.) For any quantum adversary \mathcal{A} and any event E ,

$$
\operatorname{Pr}\left[\mathrm{E} \wedge \mathrm{FIND}=\perp: b \leftarrow \mathcal{A}^{\left|\mathrm{H}_{0} \backslash \mathcal{S}\right\rangle}(z)\right]=\operatorname{Pr}\left[\mathrm{E} \wedge \mathrm{FIND}=\perp: b \leftarrow \mathcal{A}^{\left|\mathrm{H}_{1} \backslash \mathcal{S}\right\rangle}(z)\right] .
$$

The following lemma provides a bound on the advantage gap between the original game and a game with a punctured oracle by considering the probability of FIND $=T$. Note that we omit unnecessary statements from [1, Theorem 1] and do not consider the parallelization of queries.

Lemma A. 4 (Semi-classical O2H Technique [1, Theorem 1]). Let $\mathrm{H}: \mathcal{R} \times$ $\mathcal{M} \rightarrow \mathcal{Y}$ and $\mathcal{S} \subset \mathcal{R} \times \mathcal{M}$, and z be a bitstring. (\mathcal{S}, H, and z are taken from arbitrary joint distribution.) For any quantum adversary \mathcal{A} issuing at most $q_{\mathrm{q} \text { ro }}$ (quantum) random oracle queries to H ,

$$
\begin{aligned}
\mid \operatorname{Pr}\left[1 \leftarrow \mathcal{A}^{|\mathrm{H}\rangle}(z)\right]-\operatorname{Pr}[1 \leftarrow & \left.\mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z) \wedge \mathrm{FIND}=\perp\right] \mid \\
& \leq \sqrt{\left(q_{\text {qro }}+1\right) \operatorname{Pr}\left[\mathrm{FIND}=\top: b \leftarrow \mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z)\right]}
\end{aligned}
$$

Furthermore, the following provides a bound on $\operatorname{Pr}\left[\operatorname{FIND}=\top: b \leftarrow \mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z)\right]$.

Lemma A. 5 (Search in Semi-classical Oracle [1, Theorem 2 and Corollary 1]). Let \mathcal{A} be a quantum adversary issuing at most $q_{\text {qro }}$ (quantum) random oracle queries to H . Let $\mathcal{B}^{|\mathrm{H}\rangle}(z)$ be an algorithm that runs as follows: Picks $i \leftarrow_{\$}\left[q_{\mathrm{qro}}\right]$, runs $\mathcal{A}^{|\mathrm{H}\rangle}(z)$ until just before i-th query, measures a query input register in the computational basis, and outputs the measurement outcome as $\left(r^{\prime}, m^{\prime}\right)$. Then,

$$
\operatorname{Pr}\left[\mathrm{FIND}=\top: b \leftarrow \mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z)\right] \leq 4 q_{\text {qro }} \operatorname{Pr}\left[\left(r^{\prime}, m^{\prime}\right) \in \mathcal{S}:\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathcal{B}^{|\mathrm{H}\rangle}(z)\right] .
$$

In particular, if for each $\left(r^{\prime}, m^{\prime}\right) \in \mathcal{S}, \operatorname{Pr}\left[\left(r^{\prime}, m^{\prime}\right) \in \mathcal{S}\right] \leq \epsilon$ (conditioned on z, on other oracles \mathcal{A} has access to, and on other outputs of H), then

$$
\operatorname{Pr}\left[\mathrm{FIND}=\top: b \leftarrow \mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z)\right] \leq 4 q_{\mathrm{qro}} \epsilon .
$$

B Existing Security Proofs

We review the existing security proofs, including our own, and summarize them in Table 2.

Security Proof in the ROM [5, 29]: Let $\mathrm{T}_{\mathrm{psf}}$ be a PSF. A reduction from the INV of $T_{p s f}$ to the EUF-CMA security of $\mathrm{HaS}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}\right]$ in the ROM is given by lazy sampling and programming. The INV adversary $\mathcal{B}_{\text {inv }}$, given a challenge (F, y), simulates the EUF-CMA game played by an adversary $\mathcal{A}_{\mathrm{cma}}$ as follows: For a random oracle query $(r, m), \mathcal{B}_{\text {inv }}$ returns $\mathrm{F}(x)$ for $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$

Table 2: Summary of the existing and our security proofs. In "Conditions of TDF", \checkmark indicates this condition of PSF (see Definition 2.6) is necessary, and $\checkmark^{1} / \checkmark^{2}$ indicate that Condition 2 is relaxed as "A bound δ on average of $\delta_{\mathrm{F}, \mathrm{I}}$ is negligible" and " $\epsilon_{\mathrm{ps}}=\operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)$ is negligible". In "Target scheme", $\mathrm{d} / \mathrm{p} / \mathrm{pr}$ stand for the deterministic hash-and-sign, probabilistic hash-and-sign, and probabilistic hash-and-sign with retry.

Security proof	Security Bound	Assumption	Conditions of TDF	Target scheme
			1234	
[13]	$\frac{1}{1-2^{-\omega(\log (\lambda))}} \epsilon_{\mathrm{cr}}$	CR	$\checkmark \checkmark \checkmark \checkmark$	d/p
[59]	$2 \sqrt{\left(q_{\text {sign }}+\frac{8}{3}\left(q_{\text {sign }}+q_{\text {qro }}+1\right)^{4}\right) \epsilon_{\text {ow } / \text { inv }}}$	OW/INV	$\checkmark \checkmark \checkmark-$	d/p
ext. of [56]	$4 q_{\text {sign }}\left(q_{\text {qro }}+1\right)\left(2 q_{\text {qro }}+1\right)^{2} \epsilon_{\text {ow } / \mathrm{inv}}$	OW/INV	$\checkmark \checkmark \checkmark$	d/p
[39]	$\left(2\left(q_{\text {qro }}+q_{\text {sign }}+1\right)+1\right)^{2} \epsilon_{\text {ow } / \text { inv }}$	OW/INV	$\checkmark \checkmark \checkmark-$	d/p
[16]	$\frac{1}{2}\left(\epsilon_{\text {nma }}+\frac{8 \pi}{\sqrt{3}} q_{q^{\frac{3}{20}}}^{\frac{3}{\delta}} \sqrt{\delta}+q_{\mathrm{sign}}\left(\delta+\frac{q_{\mathrm{gign}}}{\|R\|}\right)\right)$	EUF-NMA	$-\checkmark^{1} \checkmark-$	p
ours	$\begin{aligned} & \left(2 q_{\mathrm{qro}}+1\right)^{2} \epsilon_{\mathrm{inv}}+\epsilon_{\mathrm{ps}}+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sig}}^{\prime}+q_{\mathrm{qro}}+1}{\|\mathcal{L}\|}} \\ & \quad+2\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign} n}-q_{\mathrm{sign}} \mid}{\|\mathcal{R}\|}} \end{aligned}$	INV	- V^{2} - -	p / pr
ours		EUF-NMA	- $\mathrm{v}^{2}-$	p / pr
ours	$\left(2 q_{\text {qro }}+1\right)^{2} \epsilon_{\text {ow } / \text { inv }}+\frac{3}{2} q_{\text {sign }} \sqrt{\frac{q_{\text {sig } n}+q_{\text {qro }}+1}{\|\mathcal{R}\|}}$	OW/INV	$\checkmark \checkmark \checkmark-$	p

and stores (r, m, x) in a database \mathcal{D}. If $(r, m, x) \in \mathcal{D}$ with some x, then $\mathcal{B}_{\text {inv }}$ gives $\mathrm{F}(x)$ to $\mathcal{A}_{\text {cma }}$. For a signing query $m, \mathcal{B}_{\text {inv }}$ chooses (r, x) by $r \leftarrow_{\$} \mathcal{R}$ and $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$. If $(r, m, *) \notin \mathcal{D}, \mathcal{B}_{\text {inv }}$ returns (r, x) and stores (r, m, x) in \mathcal{D}; otherwise $\mathcal{B}_{\text {inv }}$ returns stored (r, x).

From Condition 1 of $\operatorname{PSF}\left(\mathrm{F}(x)\right.$ is uniform), $\mathcal{B}_{\text {inv }}$ can use $\mathrm{F}(x)$ as an output of the random function. Also from Conditions 2 and $\mathbf{3}, \mathcal{B}_{\text {inv }}$ can simulate an honestly generated signature $x_{i} \leftarrow \mathrm{I}\left(\mathrm{H}\left(r_{i}, m_{i}\right)\right)$ by $x_{i} \leftarrow \operatorname{SampDom}(\mathrm{~F})$. To win the INV game, $\mathcal{B}_{\text {inv }}$ gives his query y to $\mathcal{A}_{\text {cma }}$ in one of $\left(q_{\text {sign }}+q_{\mathrm{ro}}+1\right)$ queries to H . If $\mathcal{A}_{\text {cma }}$ outputs a valid signature $\left(m^{*}, r^{*}, x^{*}\right), \mathrm{H}\left(r^{*}, m^{*}\right)=y$ holds and $\mathcal{B}_{\text {inv }}$ can win the INV game with probability $\frac{1}{q_{\text {sign }}+q_{\mathrm{ro}}+1}$. Hence, we have $\operatorname{Adv}_{\mathrm{HaS}\left[T_{\text {psf }}, H\right]}^{\mathrm{EUF}]}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq\left(q_{\text {sign }}+q_{\mathrm{ro}}+1\right) \operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)$, where $\mathcal{A}_{\mathrm{cma}}$ is an adversary who can make only classical queries to H .

Note that $\operatorname{Adv}_{\boldsymbol{T}_{\text {ps }}}^{\text {INV }}\left(\mathcal{B}_{\text {inv }}\right)=\operatorname{Adv}_{\boldsymbol{T}_{\text {psf }}}^{\mathrm{OW}_{\text {f }}}\left(\mathcal{B}_{\text {ow }}\right)$ holds $\left(\mathcal{D}_{\mathcal{X}}\right.$ is defined as $\operatorname{SampDom}(\mathrm{F})$ in the OW game (see Fig. 3)) since the OW adversary can simulate the INV game by giving a uniform $y=\mathrm{F}(x)$ to the INV adversary, and vice versa.

Security Proof by Semi-constant Distribution [59]: Zhandry showed the reduction from the OW of TDP in the QROM using a technique known as semi-constant distribution. This technique leads to a reduction from the INV of PSF. $\mathcal{B}_{\text {inv }}$ simulates the EUF-CMA game by generating signatures without the trapdoor as the above security proof in the ROM. Instead of adaptively programming H , $\mathcal{B}_{\text {inv }}$ replaces H as $\mathrm{H}^{\prime}=\mathrm{F}\left(\operatorname{DetSampDom}(\mathrm{F}, \widetilde{\mathrm{H}}(r, m))\right.$), where $\widetilde{\mathrm{H}} \leftarrow_{\$} \mathcal{W}^{\mathcal{R}} \times \mathcal{M}$ is a random function to output randomness w and DetSampDom is a deterministic function of SampDom [13]. From Condition 1, H^{\prime} is indistinguishable from H .
$\mathcal{B}_{\text {inv }}$ programs H^{\prime} that outputs y with probability ϵ (semi-constant distribution). In the signing oracle, if $\mathrm{H}^{\prime}\left(r_{i}, m_{i}\right)$ outputs $y, \mathcal{B}_{\text {inv }}$ aborts this game. A bound on the statistical distance between the random function and the programmed one with the semi-constant distribution is $\frac{8}{3}\left(q_{\text {sign }}+q_{\text {qro }}+1\right)^{4} \epsilon^{2}[59$, Corollary 4.3]. When $\mathcal{A}_{\text {cma }}$ wins the EUF-CMA game, $\mathcal{B}_{\text {inv }}$ can win the INV game with probability $(1-\epsilon)^{q_{\operatorname{sign}}} \epsilon \approx \epsilon-q_{\text {sign }} \epsilon^{2}$. Minimizing the bound $\frac{1}{\epsilon} \mathrm{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{INV}}+$ $\left(q_{\mathrm{sign}}+\frac{8}{3}\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+1\right)^{4}\right) \epsilon$ gives [59, Theorem 5.3]

$$
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{psf}}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq 2 \sqrt{\left(q_{\mathrm{sign}}+\frac{8}{3}\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+1\right)^{4}\right) \operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{INV}}\left(\mathcal{B}_{\mathrm{inv}}\right)}
$$

Zhandry proposed another technique called small-range distribution [58] that also yields a security bound with a square root loss. Chatterjee, Das, and Pandit [17] used this technique to show the EUF-CMA security of the modified UOV signature [50] in the QROM.

Application of Lifting Theorem [56]: Yamakawa and Zhandry gave the lifting theorem for search-type games. As an application of the lifting theorem, they showed $\operatorname{Adv}_{\text {Sig }}^{\text {EUF-NMA }}\left(\mathcal{A}_{\text {nma }}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\text {Sig }}^{\text {EUF-NMA }}\left(\mathcal{A}_{\text {nmac }}\right)$, where $\mathcal{A}_{\text {nmac }}$ is an EUF-NMA adversary making classical queries to H [56, Corollary 4.10]. For a hash-and-sign signature $\mathrm{HaS}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}\right]$, they showed $\operatorname{Adv}{ }_{\mathrm{HaS}\left[\mathrm{T}_{\text {ps }}, \mathrm{H}\right]}^{\mathrm{EUF}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq$ $4 q_{\text {sign }} \operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{NMA}}\left(\mathcal{A}_{\text {nma }}\right)$ [56, Theorem 4.11]. Extending the results of [56] using the security proof in the ROM, we have a bound:

$$
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{psf}}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq 4 q_{\mathrm{sign}}\left(q_{\mathrm{qro}}+1\right)\left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{INV}}\left(\mathcal{B}_{\mathrm{inv}}\right)
$$

Reduction from EUF-NMA for WPSF [16]: The security proofs mentioned above hold only if the underlying TDF is PSF. Unfortunately, some TDFs cannot satisfy some conditions. To relax the conditions on TDFs, Chailloux and Debris-Alazard gave EUF-NMA \Rightarrow EUF-CMA for the probabilistic hash-andsign. ${ }^{9}$ The authors assumed a WPSF with Condition 3 and a weaker version of Condition 2, that is, there is a bound δ on the average of statistical distance $\delta_{\mathrm{F}, \mathrm{I}}=\Delta(\operatorname{SampDom}(\mathrm{F}), \mathrm{I}(\mathrm{U}(\mathcal{Y})))$ over all $(\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$ (see details in

[^4]Appendix E.1). Let $\mathrm{T}_{\text {wpsf }}$ be a WPSF. The EUF-NMA adversary $\mathcal{A}_{\text {nma }}$ replaces the random function H by H^{\prime}, which outputs $\mathrm{H}(r, m)$ with probability $\frac{1}{2}$ and $\mathrm{F}(\operatorname{DetSampDom}(\mathrm{F}, w))$ with probability $\frac{1}{2}$. A bound on the advantage of distinguishing H from H^{\prime} is $\frac{8 \pi}{\sqrt{3}} q_{\mathrm{qro}}^{3 / 2} \sqrt{\delta}$. The authors gave [16, Theorem 2]

$$
\begin{equation*}
\operatorname{Adv} \underset{\mathrm{HaS}\left[T_{\mathrm{wpsf}}, H\right]}{\mathrm{EUF}] \mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \frac{1}{2}\left(\operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{wpsf}}, H\right]}{\mathrm{EUF-NMA}}\left(\mathcal{A}_{\mathrm{nma}}\right)+\frac{8 \pi}{\sqrt{3}} q_{\mathrm{qro}}^{\frac{3}{2}} \sqrt{\delta}+q_{\mathrm{sign}}\left(\delta+\frac{q_{\text {sign }}}{|\mathcal{R}|}\right)\right) . \tag{4}
\end{equation*}
$$

Reduction from Collision-resistance [13]: Boneh et al. [13] gave a reduction from the CR of $\mathrm{T}_{\mathrm{psf}}$ to the sEUF-CMA security of $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}\right]$. Let us assume that the CR adversary $\mathcal{B}_{\text {cr }}$ given F simulates the sEUF-CMA game for $\mathcal{A}_{\text {cma }}$. For a random function $\mathrm{H} \leftarrow_{\$} \mathcal{W}^{\mathcal{R} \times \mathcal{M}}, \mathcal{B}_{\text {cr }}$ replaces the random function H as $\mathrm{H}^{\prime}(r, m)=\mathrm{F}\left(\operatorname{DetSampDom}(\mathrm{F}, \widetilde{\mathrm{H}}(r, m))\right.$), where H and H^{\prime} are indistinguishable from Condition 1. Also, the CR adversary simulates the signing oracle using Conditions 2 and 3. If $\mathcal{A}_{\mathrm{cma}}$ wins by $\left(m^{*}, r^{*}, x^{*}\right)$, then $\mathrm{F}\left(x^{*}\right)=\mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)=$ $\mathrm{F}\left(x^{\prime}\right)$ holds for $x^{\prime}=\operatorname{DetSampDom}\left(\mathrm{F}, \widetilde{\mathrm{H}}\left(r^{*}, m^{*}\right)\right)$. When $x^{*} \neq x^{\prime}, \mathcal{B}_{\mathrm{cr}}$ can obtain a collision pair $\left(x^{*}, x^{\prime}\right)$. Since $x^{*} \neq x^{\prime}$ holds with probability $1-2^{-\omega(\log (\lambda))}$ (see Condition 4),

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{HaS}\left[T_{\mathrm{psf}}, \mathrm{H}\right]}^{\text {SEUF-CMA }}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \frac{1}{1-2^{-\omega(\log (\lambda))}} \operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{CR}}\left(\mathcal{B}_{\mathrm{cr}}\right) \tag{5}
\end{equation*}
$$

Concurrent Work [39]: Liu, Jiang, and Zhao [39] showed OW \Rightarrow EUF-CMA for the TDP-FDH and TDP-PFDH in the QROM. Their reduction can be extended to INV \Rightarrow EUF-CMA for the deterministic/probabilistic hash-andsign based on PSF. As in [17, 13, 59], the random function H is replaced as $\mathrm{H}^{\prime}=\mathrm{F}(\operatorname{DetSampDom}(\mathrm{F}, \widetilde{\mathrm{H}}(r, m)))$ to answer the signing queries without using the trapdoor. From Condition 1, this modification does not incur any security loss. Then, their reduction uses the measure-and-reprogram technique [23, Theorem 2] (see Lemma A. 2 in Appendix A) as in our security proof. Since the INV adversary answers signing queries using H^{\prime}, the number of signing queries $q_{\text {sign }}$ must be included in the number of queries to H^{\prime}. As a result, their reduction has a security bound that includes $q_{\text {sign }}$ in the multiplicative loss: ${ }^{10}$

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{psf}}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{HMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq\left(2\left(q_{\text {qro }}+q_{\mathrm{sign}}+1\right)+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{INV}}\left(\mathcal{A}_{\text {inv }}\right) . \tag{6}
\end{equation*}
$$

[^5]
C Proof of Theorem 3.1

In the beginning, we show that we can set $q_{\text {sign }}^{\prime}=\frac{c}{\rho} q_{\text {sign }}$ for some constant $c>1$, where $\rho=\operatorname{Pr}\left[x \neq \perp: y \leftarrow_{\$} \mathcal{Y}, x \leftarrow \mathbf{I}(y)\right]$. In $q_{\text {sign }}^{\prime}$ trials (queries to H), the number of successful trials $(\mathrm{I}(\mathrm{H}(r, m))$ outputs a preimage) must be at least $q_{\text {sign }}$ to generate $q_{\text {sign }}$ signatures. Let S be a random variable for the number of successful trials. $\mathbb{E}(S)=\rho q_{\text {sign }}^{\prime}=c q_{\text {sign }}$ holds. From the Chernoff bound, we have $\operatorname{Pr}[S \leq(1-\gamma) \mathbb{E}(S)] \leq e^{-\frac{1}{2} \gamma^{2} \mathbb{E}(S)}$. Substituting $\gamma=\frac{\mathbb{E}(S)-q_{\text {sign }}+1}{\mathbb{E}(S)}$, the LHS becomes $\operatorname{Pr}\left[S \leq q_{\text {sign }}-1\right]$ that is a probability that we cannot generate $q_{\text {sign }}$ signatures with $q_{\text {sign }}^{\prime}$ trials. When we set $q_{\text {sign }}^{\prime}=\frac{c}{\rho} q_{\text {sign }}$, the exponent of the RHS becomes $-\frac{\left((c-1) q_{\text {sign }}+1\right)^{2}}{2 c q_{\mathrm{sign}}} \geq-\frac{c-1}{2 c} q_{\text {sign }}$ and the bound on $\operatorname{Pr}\left[S \leq q_{\text {sign }}-1\right]$ becomes negligible for $q_{\text {sign }}=\omega(\log (\lambda))$.

EUF-NMA \Rightarrow EUF-CMA: Figs. 11 and 12 show the games and simulations described below. Without loss of generality, we assume that $\mathcal{A}_{\text {cma }}$ makes queries $\left\{\left(r_{i}, m_{i}\right)\right\}_{i \in\left[q_{\text {sign }}\right]}$ and $\left(r^{*}, m^{*}\right)$ to H , where m_{i} is i-th query for $\operatorname{Sign}^{\mathrm{H}}$ and r_{i} is output by $\operatorname{Sign}{ }^{\mathrm{H}}$. Then, the total number of queries to H is $q_{\text {sign }}+q_{\text {qro }}+1$.

Game G_{0} (EUF-CMA game): This is the original EUF-CMA game and $\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]}{\mathrm{EUF}}\left(\mathcal{A}_{\mathrm{cma}}\right)$ holds.
Game G_{1} (adaptive reprogramming of H): The signing oracle $\mathrm{Sign}^{\mathrm{H}}$ uniformly chooses $\left(r_{i}, y_{i}\right)$ and reprograms $\mathbf{H}:=\mathbf{H}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}$ until $\boldsymbol{I}\left(y_{i}\right)$ does not output \perp (see Lines 2 to 5 in $\operatorname{Sign}^{\mathrm{H}}$ for G_{1}). Considering the number of retries, H is reprogrammed for at most $q_{\text {sign }}^{\prime}$ times.

The AR adversary $\mathcal{D}_{\mathrm{ar}}$ can simulate $\mathrm{G}_{0} / \mathrm{G}_{1}$ (the top row of Fig. 12). If $\mathcal{D}_{\mathrm{ar}}$ plays $A R_{0}, \mathcal{D}_{\text {ar }}$ simulates G_{0}; otherwise it simulates G_{1}. From Lemma A.1, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq \operatorname{Adv}_{\mathrm{H}}^{\mathrm{AR}}\left(\mathcal{D}_{\mathrm{ar}}\right) \leq \frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\text {qro }}+1}{|\mathcal{R}|}}$.
Game G_{2} (pre-choosing r for unsuccessful trials): In the beginning, the challenger chooses $r \leftarrow_{\$} \mathcal{R}$ for $q_{\text {sign }}^{\prime}-q_{\text {sign }}$ times and keeps them in a sequence \mathcal{S} (elements of \mathcal{S} are ordered and may be duplicated.). In the signing oracle, $r_{i}=\mathcal{S}[c t r]$ is used for reprogramming if $\mathrm{I}\left(y_{i}\right)$ outputs \perp for $y_{i} \leftarrow_{\$} \mathcal{Y}$ (see Lines 6 and 9 of $\operatorname{Sign}^{\mathrm{H}}$ for G_{2}), where $\mathcal{S}[j]$ is j-th element of \mathcal{S} and ctr is a counter that increments just before using $\mathcal{S}[c t r]$. In G_{1}, the challenger can choose r_{i} in the beginning since r_{i} is chosen independently of m_{i} queried by $\mathcal{A}_{\text {cma }}$. Also, r_{i} is always uniformly chosen whatever $\mathrm{I}\left(y_{i}\right)$ outputs. Therefore, the challenger can use r_{i} chosen in the beginning only when $\mathrm{I}(y)$ outputs \perp. Hence, $\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]$ holds.
Game G_{3} (puncturing H): Let $\mathcal{S}^{\prime}=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}$ be a set induced by \mathcal{S}. Instead of $\mathrm{H}, \mathcal{A}_{\mathrm{cma}}$ makes queries to $\mathrm{H} \backslash \mathcal{S}^{\prime}\left(\mathrm{H}\right.$ punctured by $\left.\mathcal{S}^{\prime}\right)$. Also, G_{3} outputs 0 if FIND $=\top$ (see the definitions of $\mathrm{H} \backslash \mathcal{S}^{\prime}$ and FIND in Definition A.1). We use Lemma A. 4 to bound $\left|\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right]\right|$. Suppose that $\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[1 \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},|\mathrm{H}\rangle}(\mathrm{F})\right]$. Since G_{3} uses $\mathrm{H} \backslash \boldsymbol{S}^{\prime}$ and outputs 0 if FIND $=\top$, we have $\operatorname{Pr}\left[G_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[1 \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F}) \wedge \mathrm{FIND}=\perp\right]$

$\begin{aligned} & \text { GAME: } \mathrm{G}_{0}-\mathrm{G}_{1} \\ & \hline 1 \mathcal{Q}:=\emptyset \\ & 2 \mathrm{H} \leftarrow \$ \mathcal{Y}^{\mathcal{R}} \times \mathcal{M} \\ & 3(\mathrm{~F}, \mathrm{I}) \leftarrow \mathrm{Gen}\left(1^{\lambda}\right) \\ & 4\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\|\mathrm{H}\rangle}(\mathrm{F}) \\ & 5 \text { if } m^{*} \in \mathcal{Q} \text { then } \\ & 6 \quad \text { return } 0 \\ & 7 \quad \text { return } \mathrm{F}\left(x^{*}\right) \stackrel{?}{=} \mathrm{H}\left(r^{*}, m^{*}\right) \end{aligned}$		
```Game: \(\mathrm{G}_{2}\) \(\mathcal{Q}:=\emptyset\) \(\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}\) ctr \(:=0\) \(\mathcal{S}:=\emptyset\) for \(j \in\left[q_{\text {sign }}^{\prime}-q_{\text {sign }}\right]\) do \(r \leftarrow \$ \mathcal{R}\) \(\mathcal{S}:=\mathcal{S} \cup\{r\}\) \((\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)\) \(\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\|\mathrm{H}\rangle}(\mathrm{F})\) if \(m^{*} \in \mathcal{Q}\) then return 0 return \(\mathrm{F}\left(x^{*}\right) \stackrel{?}{=} \mathrm{H}\left(r^{*}, m^{*}\right)\)```	```\(\underline{\operatorname{Sign}{ }^{\mathrm{H}}\left(m_{i}\right) \text { for } \mathrm{G}_{2}}\) repeat \(y_{i} \leftarrow_{\$} \mathcal{Y}\) \(x_{i} \leftarrow \mathrm{I}\left(y_{i}\right)\) if \(x_{i}=\perp\) then \(c t r:=c t r+1\) \(r_{i}:=\mathcal{S}[c t r]\) else \(r_{i} \leftarrow_{\$} \mathcal{R}\) \(\mathrm{H}:=\mathbf{H}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}\) until \(x_{i} \neq \perp\) \(\mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\}\) return \(\left(r_{i}, x_{i}\right)\)```	
```Game: \(\mathrm{G}_{3}-\mathrm{G}_{5}\) \(\mathcal{Q}:=\emptyset\) \(\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}\) FIND \(:=\perp\) ctr \(:=0\) \(\mathcal{S}:=\emptyset\) for \(j \in\left[q_{\text {sign }}^{\prime}-q_{\text {sign }}\right]\) do \(r \leftarrow \$ \mathcal{R}\) \(\mathcal{S}:=\mathcal{S} \cup\{r\}\) \(\mathcal{S}^{\prime}:=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}\) \((\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)\) \(\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left\|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F})\) if \(m^{*} \in \mathcal{Q} \vee\) FIND \(=\top\) then return 0 return \(\mathrm{F}\left(x^{*}\right) \stackrel{?}{=} \mathrm{H}\left(r^{*}, m^{*}\right)\)```		

Fig. 11: Games for EUF-NMA \Rightarrow EUF-CMA
and $\operatorname{Pr}\left[\mathrm{FIND}=\mathrm{T}: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]=\operatorname{Pr}\left[\mathrm{FIND}=\mathrm{T}: b \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F})\right]$. Then,

$$
\begin{align*}
\mid \operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}[& \left.\mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right] \mid \\
& \leq \sqrt{\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \operatorname{Pr}\left[\mathrm{FIND}=\top: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]} \tag{7}
\end{align*}
$$

by Lemma A.4. We will show a bound on Eq. (7) after defining G_{4}.
Game G_{4} (reprogramming only for successful trials): The signing oracle reprograms $\mathrm{H}:=\mathrm{H}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}$ only for $r_{i} \leftarrow \mathcal{R}, y_{i} \leftarrow \$ \mathcal{Y}$, and $x_{i} \leftarrow \mathrm{I}\left(y_{i}\right)$ satisfying $x_{i} \neq \perp$. Notice that $\mathcal{A}_{\text {cma }}$ makes queries to the punctured oracle $\mathrm{H} \backslash \mathcal{S}^{\prime}$. By the

$\mathcal{D}_{\text {ar }}{ }^{\left\|\mathrm{H}_{b}\right\rangle}()$ simulates $\mathrm{G}_{0} / \mathrm{G}_{1}$	$\underline{\text { Sign }{ }^{\mathrm{H}_{b}, \text { Repro }}\left(m_{i}\right)}$
$1 \quad \mathcal{Q}:=\emptyset$	1 repeat
$2(\mathrm{~F}, \mathrm{l}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$	$\begin{array}{ll} \mathbf{2} & r_{i} \leftarrow \operatorname{Repro}\left(m_{i}\right) \\ \mathbf{3} & x_{i} \leftarrow \mathrm{I}\left(\mathrm{H}_{b}\left(r_{i}, m_{i}\right)\right) \end{array}$
$3\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left\|\mathrm{H}_{b}\right\rangle}(\mathrm{F})$	$4 \text { until } x_{i} \neq \perp$
$\begin{aligned} & 4 \text { if } m^{*} \in \mathcal{Q} \text { then } \\ & 5 \quad \text { return } 0 \end{aligned}$	$\begin{array}{ll} 5 & \mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\} \\ 6 & \text { return }\left(r_{i}, x_{i}\right) \end{array}$
$\mathcal{D}_{\text {ps }}^{\text {Sample }_{b}}(\mathrm{~F})$ simulates $\mathrm{G}_{4} / \mathrm{G}_{5}$	Sign $^{\mathrm{H}, \text { Sample }_{\text {b }}}\left(m_{i}\right)$
$1 \mathcal{Q}:=\emptyset$	$1 r_{i} \leftarrow_{\$} \mathcal{R}$
$2 \mathrm{H} \leftarrow \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$	$2 x_{i} \leftarrow \text { Sample }_{b}()$
3 FIND $:=\perp$	$3 \mathrm{H}:=\mathrm{H}^{\left(r_{i}, m_{i}\right) \mapsto \mathrm{F}\left(x_{i}\right)}$
$4 \mathcal{S}:=\emptyset$	$4 \mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\}$
5 for $j \in\left[q_{\text {sign }}^{\prime}-q_{\text {sign }}\right]$ do	5 return $\left(r_{i}, x_{i}\right)$
6 $\quad r \leftarrow_{\$} \mathcal{R}$	
$7 \quad \mathcal{S}:=\mathcal{S} \cup\{r\}$	
$8 \mathcal{S}^{\prime}:=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}$	
$9\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left\|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F})$	
10 if $m^{*} \in \mathcal{Q} \vee \mathrm{FIND}=\top$ then	
11 return 0	
12 return $\mathrm{F}\left(x^{*}\right) \stackrel{?}{=} \mathrm{H}\left(r^{*}, m^{*}\right)$	
$\mathcal{A}_{\mathrm{nma}}^{\|\mathrm{H}\rangle}(\mathrm{F})$ simulates G_{5}	$\underline{\operatorname{Sign}}{ }^{\mathrm{H}^{\prime}}\left(m_{i}\right)$
$1 \mathcal{Q}:=\emptyset$	$1 r_{i} \leftarrow_{\$} \mathcal{R}$
$2 \mathrm{H}^{\prime}:=\mathrm{H}$	$2 x_{i} \leftarrow \operatorname{SampDom}(\mathrm{~F})$
3 FIND $:=\perp$	$3 \mathrm{H}^{\prime}:=\mathrm{H}^{\left(r_{i}, m_{i}\right) \mapsto \mathrm{F}\left(x_{i}\right)}$
$4 \mathcal{S}:=\emptyset$	$4 \mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\}$
5 for $j \in\left[q_{\text {sign }}^{\prime}-q_{\text {sign }}\right]$ do	5 return $\left(r_{i}, x_{i}\right)$
6 $\quad r \leftarrow_{\$} \mathcal{R}$	
$7 \quad \mathcal{S}:=\mathcal{S} \cup\{r\}$	
$8 \mathcal{S}^{\prime}:=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}$	
$9\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\text {cma }}^{\text {Sign, }\left\|\mathrm{H}^{\prime} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F})$	
10 if $m^{*} \in \mathcal{Q} \vee$ FIND $=\top$ then	
11 return 0	
12 return $\mathrm{F}\left(x^{*}\right) \stackrel{?}{=} \mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)$	

Fig. 12: Simulations for EUF-NMA \Rightarrow EUF-CMA
definition of FIND, if FIND $=\perp$, that is, the measurements of $\left|\mathrm{f}_{\mathcal{S}^{\prime}}(r, m)\right\rangle$ are 0 for all queries, then $\mathcal{A}_{\text {cma's }}$ queries never contain any $(r, m) \in \mathcal{S}^{\prime}$ and $\mathcal{A}_{\text {cma }}$ cannot obtain $\mathrm{H}(r, m)$ for $(r, m) \in \mathcal{S}^{\prime}$. Hence, if FIND $=\perp$, then $\mathcal{A}_{\text {cma }}$ cannot distinguish whether H is reprogrammed at $(r, m) \in \mathcal{S}^{\prime}$ in G_{3} or not in G_{4} and we have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{FIND}=\perp: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]=\operatorname{Pr}\left[\mathrm{FIND}=\perp: \mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right] \tag{8}
\end{equation*}
$$

(as Lemma A.3). Especially, if G_{3} / G_{4} outputs 1 , then FIND should be \perp (Line 12 of $\mathrm{G}_{3}-\mathrm{G}_{5}$). Thus, we also have $\operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]$. Moreover, $\operatorname{Pr}\left[\mathrm{FIND}=\mathrm{T}: \mathrm{G}_{3}^{\mathcal{A}_{\text {cma }}} \Rightarrow b\right]=\operatorname{Pr}\left[\mathrm{FIND}=\mathrm{T}: \mathrm{G}_{4}^{\mathcal{A}_{\text {cma }}} \Rightarrow b\right]$ holds from Eq. (8).

Let G_{4}^{\prime} be a game given in Fig. 13 (identical to G_{4} except that $\mathcal{B}_{\mathrm{cma}}$ outputs $\left(r^{\prime}, m^{\prime}\right)$ and H is not punctured). Choosing $j \leftarrow_{\$}\left[q_{\text {sign }}+q_{\text {qro }}+1\right], \mathcal{B}_{\text {cma }}$ runs $\mathcal{A}_{\mathrm{cma}}$ playing G_{4}. Just before $\mathcal{A}_{\mathrm{cma}}$ makes j-th query to $\mathrm{H}, \mathcal{B}_{\mathrm{cma}}$ measures

Game: G_{4}^{\prime}	$\operatorname{Sign}^{\mathrm{H}}\left(m_{i}\right)$ for G_{4}^{\prime}
$1 \mathcal{Q}:=\emptyset$	1 repeat
$2 \mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$	$2 \quad y_{i} \leftarrow_{\$} \mathcal{Y}$
$3 \mathcal{S}:=\emptyset$	$3 \quad x_{i} \leftarrow \mathrm{I}\left(y_{i}\right)$
4 for $j \in\left[q_{\text {sign }}^{\prime}\right]$ do	4 until $x_{i} \neq \perp$
$5 \quad r \leftarrow_{\$} \mathcal{R}$	$5 r_{i} \leftarrow \$ \mathcal{R}$
$6 \quad \mathcal{S}:=\mathcal{S} \cup\{r\}$	$6 \mathrm{H}:=\mathrm{H}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}$
$7 \mathcal{S}^{\prime}=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}$	$7 \mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\}$
$8(\mathrm{~F}, \mathrm{l}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$	8 return $\left(r_{i}, x_{i}\right)$
$9\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathcal{B}_{\text {cma }}^{\text {Sign, }}$ \|H ${ }^{\text {P }}(\mathrm{F})$	
10 return $\left(r^{\prime}, m^{\prime}\right) \stackrel{?}{\in} \mathcal{S}^{\prime}$	

Fig. 13: A game G_{4}^{\prime} used in the application of Lemma A. 5
a query input register of $\mathcal{A}_{\text {cma }}$ and outputs the measurement outcome as $\left(r^{\prime}, m^{\prime}\right)$. Since the oracles of G_{4}^{\prime} reveal no information on $\mathcal{S}, \mathcal{B}_{\text {cma }}$ has no information on \mathcal{S}; therefore, $\operatorname{Pr}\left[\mathrm{G}_{4}^{\prime} \mathcal{B}_{\mathrm{cma}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[r^{\prime} \in \mathcal{S}\right] \leq \frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}$ holds. Hence, $\operatorname{Pr}\left[\right.$ FIND $\left.=\top: \mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right] \leq 4\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+1\right) \frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}$ holds from Lemma A. 5 and an upper bound on Eq. (7) is $2\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign}}-q_{\mathrm{sign}}}{|\mathcal{R}|}}$.
Game G_{5} (simulating the signing oracle by SampDom): The signing oracle generates signatures by $r_{i} \leftarrow_{\$} \mathcal{R}$ and $x_{i} \leftarrow \operatorname{SampDom}(\mathrm{~F})$. The PS adversary $\mathcal{D}_{\mathrm{ps}}$ can simulate G_{4} and G_{5} as in the second row of Fig. 12. If $\mathcal{D}_{\mathrm{ps}}$ plays PS_{0}, the procedures of the original and simulated G_{4} are identical. If $\mathcal{D}_{\mathrm{ps}}$ plays PS_{1}, he obviously simulates G_{5}. Thus, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq$ $\operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)$.

We show that the EUF-NMA adversary $\mathcal{A}_{\text {nma }}$ can simulate G_{5} as in the bottom row of Fig. 12. In the simulation, $\mathcal{A}_{\text {cma }}$ makes queries to $\mathrm{H}^{\prime} \backslash \mathcal{S}^{\prime}$, where H^{\prime} outputs whatever H outputs except on $\left\{\left(r_{i}, m_{i}\right)\right\}_{i \in\left[q_{\text {sign }}\right]}$. From $m^{*} \notin \mathcal{Q}$, $\mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)=\mathrm{H}\left(r^{*}, m^{*}\right)$ holds for $\left(m^{*}, r^{*}, x^{*}\right)$ that $\mathcal{A}_{\mathrm{cma}}$ returns. Therefore, $\mathcal{A}_{\text {nma }}$ wins his game if $\mathcal{A}_{\text {cma }}$ wins the EUF-CMA game. Hence, $\mathcal{A}_{\text {nma }}$ can perfectly simulate G_{5} with the same number of queries and almost the same running time as $\mathcal{A}_{\text {cma }}$, and $\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right] \leq \operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{T}_{\text {wps } f}, \mathrm{H}\right]}^{\mathrm{EUF}]}\left(\mathcal{A}_{\text {nma }}\right)$ holds. We finally stress that the number of queries $\mathcal{A}_{\text {nma }}$ made to H is $q_{\text {qro }}$ rather than $q_{\text {qro }}+q_{\text {sign }}$ since $\mathcal{A}_{\text {nma }}$ never queries to its random oracle in the simulation of the signature.

Summing up, we have Eq. (2) for EUF-NMA \Rightarrow EUF-CMA.
INV \Rightarrow EUF-NMA: We use Lemma A.2. Let S be a two-stage algorithm that runs $\mathcal{A}_{\text {nma }}$ in the EUF-NMA game shown in Fig. 14. The INV adversary $\mathcal{B}_{\text {inv }}$ runs S. Since y is uniformly chosen in the INV game, $\mathcal{B}_{\text {inv }}$ can set the input for S as $\theta:=y$. In the first stage, S_{1} observes one of the quantum queries to H made by $\mathcal{A}_{\text {nma }}$ at random to obtain $\left(r^{\prime}, m^{\prime}\right)$. Then, H is reprogrammed as $\mathrm{H}^{\prime}:=\mathrm{H}^{\left(r^{\prime}, m^{\prime}\right) \mapsto y}$. In the second stage, S_{2} runs $\mathcal{A}_{\mathrm{nma}}$ with reprogrammed H^{\prime} and outputs x^{\prime} included in an output of $\mathcal{A}_{\mathrm{nma}}^{\left|\mathrm{H}^{\prime}\right\rangle}(\mathrm{F})$.

Adversary: $\mathcal{A}_{\text {nma }}^{\|\mathrm{H}\rangle}(\mathrm{F})$	Simulator: $\mathrm{S}(\theta)$ for $\mathcal{A}_{\mathrm{nma}}^{\|\mathrm{H}\rangle}(\mathrm{F})$
$\begin{aligned} & 1 \quad\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{n m a}^{\|\mathrm{H}\rangle}(\mathrm{F}) \\ & 2 \\ & \text { return }\left(m^{*}, r^{*}, x^{*}\right) \end{aligned}$	$1 \mathrm{H} \leftarrow_{\Phi} \mathcal{Y}^{\mathcal{X}}$
	$2\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathrm{S}_{1}^{\mathcal{A}^{\|H \mathrm{H}\rangle}}()$
	$3 \mathrm{H}^{\prime}:=\mathrm{H}^{\left(r^{\prime}, m^{\prime}\right) \mapsto \theta}$
	$4 x^{\prime} \leftarrow \mathrm{S}_{2}^{\left.\mathcal{A}_{\text {mma }} \mathrm{H}^{\prime \prime}\right\rangle}(\theta)$
	5 return ($\left.m^{\prime}, r^{\prime}, x^{\prime}\right)$

Fig. 14: A two-stage simulator S for the EUF-NMA adversary $\mathcal{A}_{\text {nma }}$

When the predicate is $\mathrm{F}(x) \stackrel{?}{=} \mathrm{H}(r, m)$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(r^{\prime}, m^{\prime}\right)=(\hat{r}, \hat{m}) \wedge \mathrm{F}\left(x^{\prime}\right)=y:\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathrm{S}_{1}^{\mathcal{A}_{\mathrm{nma}}^{|\mathrm{H}\rangle}}(), x^{\prime} \leftarrow \mathrm{S}_{2}^{\mathcal{A}_{\mathrm{nma}}^{\left|\mathrm{H}^{\prime}\right\rangle}}(y)\right] \\
\geq & \frac{1}{\left(2 q_{\mathrm{qro}}+1\right)^{2}} \operatorname{Pr}\left[\left(r^{*}, m^{*}\right)=(\hat{r}, \hat{m}) \wedge \mathrm{F}\left(x^{*}\right)=\mathrm{H}\left(r^{*}, m^{*}\right):\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{nma}}^{|\mathrm{H}\rangle}(\mathrm{F})\right]
\end{aligned}
$$

for any $(\hat{r}, \hat{m}) \in \mathcal{R} \times \mathcal{M}$ from Lemma A.2. By summing up over all $(\hat{r}, \hat{m}) \in$ $\mathcal{R} \times \mathcal{M}$,

$$
\begin{align*}
\operatorname{Pr}\left[\mathrm{F}\left(x^{\prime}\right)\right. & \left.=y:\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathrm{S}_{1}^{\mathcal{A}_{\mathrm{nma}}^{|\mathrm{H}\rangle}}(), x^{\prime} \leftarrow \mathrm{S}_{2}^{\mathcal{A}_{\mathrm{nma}}^{\left|\mathrm{H}^{\prime}\right\rangle}}(y)\right] \\
& \geq \frac{1}{\left(2 q_{\mathrm{qro}}+1\right)^{2}} \operatorname{Pr}\left[\mathrm{~F}\left(x^{*}\right)=\mathrm{H}\left(r^{*}, m^{*}\right):\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{nma}}^{|\mathrm{H}\rangle}(\mathrm{F})\right] \tag{9}
\end{align*}
$$

Notice that the probability in the RHS of Eq. (9) is the EUF-NMA advantage. Also, $\operatorname{Adv}_{\mathbf{T}_{\text {wpsf }}}^{\mathrm{INV}_{\text {inv }}}\left(\mathcal{B}_{\text {inv }}\right) \geq \operatorname{Pr}\left[\mathrm{F}\left(x^{\prime}\right)=y:\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathrm{S}_{1}^{\mathcal{A}_{\text {nma }}^{|\mathrm{H}\rangle}}(), x^{\prime} \leftarrow \mathrm{S}_{2}^{\mathcal{A}_{\text {nma }}^{\left|\mathrm{H}^{\prime}\right\rangle}}(y)\right]$ holds since $\mathcal{B}_{\text {inv }}$ runs S. Hence, we have

$$
\begin{equation*}
\operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{~T}_{\text {wpsf }}, \mathrm{H}\right]}{\mathrm{EUF}[\mathrm{HMA}}\left(\mathcal{A}_{\text {nma }}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right) \tag{10}
\end{equation*}
$$

From Eqs. (2) and (10), we have Eq. (1).

D Proof of Corollary 3.1

The sEUF-CMA game outputs 0 if $\left(m^{*}, r^{*}, x^{*}\right) \in \mathcal{Q}^{\prime}$. Since F is injective, $\left(m^{*}, r^{*}\right)=\left(m_{i}, r_{i}\right)$ implies $x^{*}=x_{i}$. Therefore, the condition to output 0 is restated as: if $\left(m^{*}, r^{*}\right) \in \mathcal{Q}^{\prime}$, where $\mathcal{Q}^{\prime}=\left\{\left(m_{i}, r_{i}\right)\right\}_{i \in\left[q_{\text {sign }}\right]}$. We show that the same bound as Eq. (2) holds for EUF-NMA \Rightarrow sEUF-CMA.

In Corollary 3.1, we can use the same games as defined in Theorem 3.1, and the bound on $\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{c m a}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{c m a}} \Rightarrow 1\right]\right|$ remains unchanged. In the simulation of G_{5} (see the bottom row of Fig. 12), $\mathcal{A}_{\text {cma }}$ uses $\mathrm{H}^{\prime} \backslash \mathcal{S}^{\prime}$ reprogrammed on $\left\{\left(r_{i}, m_{i}\right)\right\}_{i \in\left[q_{\text {sign }}\right]}$ instead of the original H . By $\left(m^{*}, r^{*}\right) \notin \mathcal{Q}^{\prime}, \mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)=$ $\mathrm{H}\left(r^{*}, m^{*}\right)$ holds and $\mathcal{A}_{\mathrm{nma}}$ can win his game if $\mathrm{F}\left(x^{*}\right)=\mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)$. Therefore, $\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right] \leq \operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{T}_{\text {wps }, H}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{NMA}}\left(\mathcal{A}_{\text {nma }}\right)$ holds, which implies that Eq. (2) holds.

E Security Proofs of Hash-and-sign Signatures by Theorem 3.1 and Corollary 3.1

This section shows the applications of Theorem 3.1 and Corollary 3.1 to some code-based and MQ-based hash-and-sign signatures.

E. 1 Code-based Cryptography

Application to the Modified CSF Signature: Dallot [19] proposed a modification to the CFS signature, that is, the adaption of the probabilistic hash-and-sign with retry. For the details of the (modified) CFS signature, see Appendix F.2.

Let us assume that (n, k)-Goppa code over \mathbb{F}_{q} can decode up to t errors. Let $\mathrm{T}_{\mathrm{cfs}}=\left(\mathrm{Gen}_{\mathrm{cfs}}, \mathrm{F}_{\mathrm{cfs}}, \mathrm{I}_{\mathrm{cfs}}\right)$ be the underlying TDF of the modified CFS signature and $\mathcal{X}_{n, \leq t}=\left\{x \in \mathbb{F}_{q}^{n}: 0<\mathrm{hw}(x) \leq t\right\}$ be a domain of $\mathrm{F}_{\mathrm{cfs}}$, where $\mathrm{hw}(x)$ denotes a Hamming weight of $x . \mathrm{F}_{\mathrm{cfs}}=U H_{0} P\left(\mathrm{~F}_{\mathrm{cfs}}: \mathcal{X}_{n, \leq t} \rightarrow \mathbb{F}_{q}^{n-k}\right)$ consists of a paritycheck matrix of an (n, k)-binary Goppa code $H_{0} \in \mathbb{F}_{q}^{(n-k) \times n}$, an invertible matrix $U \in \mathbb{F}_{q}^{(n-k) \times(n-k)}$, and a permutation matrix $P \in \mathbb{F}_{q}^{n \times n}$. There is a one-to-one correspondence between $\mathcal{X}_{n, \leq t}$ and $\mathcal{Y}_{\text {dec }}=\left\{y \in \mathbb{F}_{q}^{n-k}: y\left(U^{-1}\right)^{T}\right.$ is decodable $\}$, and $\mathrm{I}_{\mathrm{cfs}}(y)$ outputs \perp for $y \notin \mathcal{Y}_{\text {dec }}$. Therefore, $\mathrm{F}_{\mathrm{cfs}}: \mathcal{X}_{n, \leq t} \rightarrow \mathbb{F}_{q}^{n-k}$ is an injection. Using the fact, Morozov et al. gave INV \Rightarrow sEUF-CMA in the ROM [42, Theorem 3.1]. We show that the modified CFS signature is SEUF-CMA-secure in the QROM, assuming that $\mathrm{T}_{\mathrm{cfs}}$ is non-invertible.

Proposition E. 1 (INV \Rightarrow sEUF-CMA (Modified CFS Signature)). For any quantum sEUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{cfs}}, \mathrm{H}\right]$ issuing at most q_{sign} classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow \$ \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {cfs }}$ such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{cs}}, H\right]}^{\mathrm{SEUF}-\mathrm{HMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq & \left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\mathrm{cfs}}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\frac{3}{2} q_{\text {sign }}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}} \\
& +2\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}}
\end{aligned}
$$

where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries and the running time of $\mathcal{B}_{\mathrm{inv}}$ is about that of $\mathcal{A}_{\mathrm{cma}}$.

Proof. When we define SampDom $\left(\mathrm{F}_{\mathrm{cfs}}\right)$ as $x \leftarrow \$ \mathcal{X}_{n, \leq t}, \mathrm{~T}_{\mathrm{cfs}}$ becomes WPSF. Since $F_{c f s}$ is an injection, we can apply Corollary 3.1 to the modified CFS signature. In the PS game, we show that SampDom $\left(\mathrm{F}_{\mathrm{cfs}}\right)$ in Sample ${ }_{1}$ can perfectly simulate x_{i} output by Sample $_{0}$. From the one-to-one correspondance between $\mathcal{X}_{n, \leq t}$ and $\mathcal{Y}_{\text {dec }}, x \leftarrow \mathrm{I}_{\mathrm{cfs}}(y)$ for $y \leftarrow_{\$} \mathcal{Y}_{\text {dec }}$ follows $\mathrm{U}\left(\mathcal{X}_{n, \leq t}\right)$. Also, Sample ${ }_{0}$ outputs x_{i} after retrying $y_{i} \leftarrow_{\$} \mathbb{F}_{q}^{n-k}$ until $\mathrm{I}_{\mathrm{cfs}}\left(y_{i}\right) \neq \perp$ holds; therefore y_{i} is uniformly chosen from $\mathcal{Y}_{d e c}$. Hence, the distribution of x_{i} output by Sample ${ }_{0}$ is equivalent to that of $x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{\mathrm{cfs}}\right)$ and, thus, $\operatorname{Adv}_{\mathrm{T}_{\mathrm{cfs}}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=0$ holds.

Application to Wave: Wave is a practical and unbroken hash-and-sign signature [20]. See Appendix F. 3 for the details.

Wave adopts the probabilistic hash-and-sign (without retry) and Wave's $\mathrm{TDF} \mathrm{T}_{\text {wave }}=\left(\operatorname{Gen}_{\text {wave }}, \mathrm{F}_{\text {wave }}, \mathrm{I}_{\text {wave }}\right)$ satisfies conditions of average trapdoor PSF (ATPSF) [16, Definition 2] that is a special case of WPSF satisfying:

1. There is a bound δ on the average of $\delta_{\mathrm{F}, \mathrm{I}}$ over all $(\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$, that is, $\mathbb{E}_{\mathrm{F}, \mathrm{I}}\left(\delta_{\mathrm{F}, \mathrm{I}}\right) \leq \delta$, where $\delta_{\mathrm{F}, \mathrm{I}}=\Delta(\operatorname{SampDom}(\mathrm{F}), \mathrm{I}(\mathrm{U}(\mathcal{Y})))$ is a statistical distance between SampDom (F) and $\mathrm{I}(y)$ for $y \leftarrow_{\$} \mathcal{Y}$ (relaxed Condition 2).
2. $\mathrm{I}(y)$ outputs x satisfying $\mathrm{F}(x)=y$ for any $y \in \mathcal{Y}$ (Condition 3).

We show that Wave is EUF-CMA-secure using the above conditions.
Proposition E. 2 (INV \Rightarrow EUF-CMA(Wave)). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {wave }}, \mathrm{H}\right]$ issuing at most q_{sign} classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {wave }}$ such that
$\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{T}_{\text {wave }}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {wave }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+q_{\text {sign }} \delta+\frac{3}{2} q_{\text {sign }} \sqrt{\frac{q_{\text {sign }}+q_{\text {qro }}+1}{|\mathcal{R}|}}$,
where the running time of $\mathcal{B}_{\text {inv }}$ is about that of $\mathcal{A}_{\text {cma }}$.
Proof. Since $\mathrm{T}_{\text {wave }}$ is ATPSF [16] that is a special case of WPSF, we can apply Theorem 3.1 to Wave. Since $\mathrm{HaS}\left[\mathrm{T}_{\text {wave }}, \mathrm{H}\right]$.Sign generates signatures without retry, $q_{\text {sign }}^{\prime}=q_{\text {sign }}$ holds (the last term of Eq. (1) is 0). From the first condition of ATPSF, there is a bound δ on the expectation of $\delta_{\mathrm{F}, \mathrm{I}}$; therefore, $\operatorname{Adv}_{\mathrm{T}_{\text {wave }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right) \leq q_{\mathrm{sign}} \delta$ holds from the union bound.

Compared with the existing reduction using Eq. (4) [16], the factor of δ is not a square root in our reduction. Also, its security can be proved on the basis of hardness assumption of the syndrome decoding since there is a tight reduction from the syndrome decoding to the INV of $\mathrm{T}_{\text {wave }}[16$, Proposition 8].

E. 2 Multivariate-quadratic-based Cryptography

Many schemes based on the UOV [37] and HFE [46] signatures have been proposed. Sakumoto et al. proposed modifications of the schemes adopting the probabilistic hash-and-sign with retry, and the modified schemes are EUF-CMAsecure in the ROM [50]. ${ }^{11}$ We prove that the original/modified UOV signatures and the modified HFE signature are EUF-CMA-secure in the QROM if their TDFs are non-invertible. Also, we prove the EUF-CMA security of MAYO [9].

[^6]

Fig. 15: Signature generation algorithm of the original UOV signature

Application to the Original UOV Signature: We briefly review the Original UOV scheme. For the details, see Appendix F.4.

Let $\mathrm{T}_{\text {uov }}=\left(\mathrm{Gen}_{\text {uov }}, \mathrm{F}_{\text {uov }}, \mathrm{I}_{\text {uov }}\right)$ be a TDF used in the original UOV signature. $\mathrm{F}_{\text {uov }}=\mathrm{P} \circ \mathrm{S}\left(\mathrm{F}_{\text {uov }}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{o}\right)$ consists of an invertible affine map $\mathrm{S}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ and a multivariate quadratic map $\mathrm{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{o}$. Variables in P are called vinegar variables $z^{v} \in \mathbb{F}_{q}^{v}$ and oil variables $z^{o} \in \mathbb{F}_{q}^{o}$, where $n=v+o$. By design of $\mathrm{P}, \mathrm{P}\left(z^{v}, \cdot\right)$ becomes a set of linear functions on oil variables z^{o} by fixing z^{v}. $\mathrm{I}_{\text {uov }}$ chooses $z^{v} \leftarrow_{\$} \mathbb{F}_{q}^{v}$ and obtains z^{o} after retrying z^{v} until $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=\mathrm{H}(r, m)\right\} \neq \emptyset$ holds or $\mathrm{P}\left(z^{v}, z^{o}\right)$ is full-rank. ${ }^{12}$ See Fig. 15 for the signing algorithm and $\mathrm{I}_{\text {uov }}$.

We show the EUF-CMA security of the original UOV signature in the QROM if it adopts the probabilistic hash-and-sign.

Proposition E. 3 (INV \Rightarrow EUF-CMA (Original UOV Signature)). For any quantum EUF-CMA adversary $\mathcal{A}_{\text {cma }}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {uov }}, \mathrm{H}\right]$ issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exist an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {uov }}$ and a PS adversary $\mathcal{D}_{\mathrm{ps}}$ of $\mathrm{T}_{\text {uov }}$ issuing q_{sign} sampling queries such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{HaS}^{\mathrm{EUF}\left[\mathrm{~T}_{\text {uov }}, \mathrm{H}\right]}}^{\mathrm{EUF}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq & \left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {uov }}}^{\mathrm{INV}}\left(\mathcal{B}_{\mathrm{inv}}\right)+\operatorname{Adv}_{\mathrm{T}_{\text {uov }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right) \\
& +\frac{3}{2} q_{\mathrm{sign}} \sqrt{\frac{q_{\mathrm{sign}}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}
\end{aligned}
$$

where the running times of $\mathcal{B}_{\mathrm{inv}}$ and $\mathcal{D}_{\mathrm{ps}}$ are about that of $\mathcal{A}_{\mathrm{cma}}$.
Proof. Defining SampDom $\left(\mathrm{F}_{\text {uov }}\right)$ as $x \leftarrow_{\$} \mathbb{F}_{q}^{n}$, $\mathrm{T}_{\text {uov }}$ becomes WPSF; therefore, we can apply Theorem 3.1. Note that $\mathrm{HaS}\left[\mathrm{T}_{\text {uov }}, \mathrm{H}\right]$.Sign generates signatures without retry to take r. Thus, $q_{\text {sign }}^{\prime}=q_{\text {sign }}$ holds as in Proposition E.2.

If the PS advantage $\operatorname{Adv}_{\mathrm{T}_{\text {uov }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)$ is negligible, the original UOV signature is provable secure. However, we must consider the computational indistinguishability of $x \leftarrow \mathrm{I}_{\text {uov }}(y)$ for $y \leftarrow_{\$} \mathbb{F}_{q}^{o}(b=0)$ and $x \leftarrow_{\$} \mathbb{F}_{q}^{n}(b=1)$ in the PS game since x output by $\mathrm{HaS}\left[\mathrm{T}_{\text {uov }}, \mathrm{H}\right]$.Sign is not uniform. Note that we can apply Proposition E. 3 to a signature scheme recently proposed by Beullens et al. [10] since it follows the original UOV signature.

[^7]```
HaS[\mp@subsup{\textrm{T}}{\mathrm{ muov }}{},\textrm{H}].\operatorname{Sign}(\mp@subsup{\textrm{I}}{\mathrm{ muov }}{},m)}\quad\underline{\mp@subsup{\textrm{I}}{\mathrm{ muov (}}{1}
 1 z
 repeat 2 return z}\mp@subsup{z}{}{v}\quad2\quad\mathrm{ return }
 r<s\mathcal{R}
 x\leftarrow I muov}(\mp@subsup{z}{}{v},\textrm{H}(r,m))\quad 4x:=\mp@subsup{\textrm{S}}{}{-1}(\mp@subsup{z}{}{v}|\mp@subsup{z}{}{o}
 until }x\not=
 return (r,x)
```

Fig. 16: Signature generation algorithm of the modified UOV signature

Application to the Modified UOV Signature: Sakumoto et al. [50] proposed the modified UOV signature to solve the problem of the original one, that is, the non-uniformity of signatures. For the details, see Appendix F.4.

Let $\mathrm{T}_{\text {muov }}=\left(\right.$ Gen $\left._{\text {muov }}, \mathrm{F}_{\text {muov }}, I_{\text {muov }}\right)$ be a TDF used in the modified UOV signature $\left(G e n_{\text {muov }}=G e n_{\text {uov }}\right.$ and $\left.F_{\text {muov }}=F_{\text {uov }}\right)$ and Fig. 16 depicts HaS[ $\left.T_{\text {muov }}, H\right]$.Sign and $I_{\text {muov }}$. The modified UOV signature retries $r$ instead of $z^{v}$ and $I_{\text {muov }}$ is divided into two functions; $I_{\text {muov }}^{1}$ and $I_{\text {muov }}^{2} \cdot I_{\text {muov }}^{1}$ chooses $z^{v} \leftarrow \$ \mathbb{F}_{q}^{v}$ and $I_{\text {muov }}^{2}$ finds $z^{o}$ after retrying $r$ until $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=\mathrm{H}(r, m)\right\} \neq \emptyset$ holds. Considering the difference in the signing procedure, we show the EUF-CMA security of the modified UOV signature in the QROM.

Proposition E. 4 (INV $\Rightarrow$ EUF-CMA (Modified UOV Signature)). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, \mathrm{H}\right]$ issuing at most $q_{\mathrm{sign}}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow \$ \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {muov }}$ such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\text {muov }}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{HMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq & \left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {muv }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\text {sign }}^{\prime}+q_{\text {qro }}+1}{|\mathcal{R}|}} \\
& +2\left(q_{\text {sign }}+q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\text {sign }}}{|\mathcal{R}|}}
\end{aligned}
$$

where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries and the running time of $\mathcal{B}_{\mathrm{inv}}$ is about that of $\mathcal{A}_{\mathrm{cma}}$.

Proof. Defining SampDom $\left(\mathrm{F}_{\text {muov }}\right)$ as $x \leftarrow \$ \mathbb{F}_{q}^{n}$, $\mathrm{T}_{\text {muov }}$ becomes WPSF. Considering the signing procedure of the modified UOV signature, we modify the signing oracles of $\mathrm{G}_{0}-\mathrm{G}_{4}$ and Sample $_{0}$ of the PS game by adding $z^{v} \leftarrow I_{\text {muov }}^{1}()$ in the beginning and replacing $x_{i} \leftarrow \mathrm{I}\left(y_{i}\right)$ with $x_{i} \leftarrow \mathrm{I}_{\text {muov }}^{2}\left(z^{v}, y_{i}\right)$. Then, $\mathcal{D}_{\mathrm{ps}}$ playing the modified PS game can simulate $\mathrm{G}_{4}(b=0)$ and $\mathrm{G}_{5}(b=1)$ in the proof of Theorem 3.1. Hence, we can apply Theorem 3.1 to the modified UOV signature. In Sample ${ }_{0}$ of the PS game, $x_{i} \leftarrow I_{\text {muov }}^{2}\left(z^{v}, y\right)$ for $z^{v} \leftarrow I_{\text {muov }}^{1}()$ after retrying $y$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{n}\right)$ form [50, Theorem 1] (we show the proof sketch in Appendix F.4); therefore, $x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{\text {muov }}\right)$ in Sample ${ }_{1}$ is indistinguishable form $x_{i}$ output by Sample ${ }_{0}$. Hence, $\operatorname{Adv}_{\mathrm{T}_{\text {muov }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=0$ holds.

We can apply Proposition E. 4 to Rainbow [22] and QR-UOV [28] if these schemes make the same modification as the modified UOV signature.

Application to the Modified HFE Signature: The modified HFE signature proposed by Sakumoto et al. [50] is designed to be EUF-CMA secure in the ROM. For the details, see Appendix F.5.

Let $T_{\text {mhfe }}=\left(\right.$ Gen $\left._{\text {mhfe }}, F_{\text {mhfe }}, I_{\text {mhfe }}\right)$ be a TDF used in the modified HFE scheme. We show that the modified HFE signature is EUF-CMA secure.

Proposition E.5 (INV $\Rightarrow$ EUF-CMA (Modified HFE Signature)). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{mhfe}}, \mathrm{H}\right]$ issuing at most $q_{\mathrm{sign}}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow \$ \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {mhfe }}$ such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{mhf}}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{HMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq & \left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {mhe }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}} \\
& +2\left(q_{\text {sign }}+q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}}
\end{aligned}
$$

where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries and the running time of $\mathcal{B}_{\mathrm{inv}}$ is about that of $\mathcal{A}_{\mathrm{cma}}$.

Proof. Since $\mathrm{F}_{\text {mhfe }}$ has a domain $\mathbb{F}_{q}^{n}$, we can define SampDom $\left(\mathrm{F}_{\text {mhfe }}\right)$ as $x \leftarrow_{\$} \mathbb{F}_{q}^{n}$. Then, $\mathrm{T}_{\text {mhfe }}$ becomes WPSF and we can apply Theorem 3.1 to the modified HFE scheme. The authors of [50] showed that $x \leftarrow \mathrm{I}_{\text {mhfe }}(y)$ after retrying $y$ is uniformly distributed over $\mathbb{F}_{q}^{n}$ (we show the proof sketch in Appendix F.5). Therefore, in the PS game, $x_{i} \leftarrow$ SampDom $\left(\mathrm{F}_{\text {mhfe }}\right)$ in Sample $_{1}$ is indistingushable from $x_{i}$ output by Sample 0 , and thus, $\operatorname{Adv}_{\mathrm{T}_{\text {mhfe }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=0$ holds.

We can apply Proposition E. 5 to GeMSS [15] since GeMSS takes the same modification as the modified HFE signature.

Application to MAYO: MAYO, proposed by Beullens [9], is a signature scheme that adopts the probabilistic hash-and-sign and its TDF is based on UOV. For the details, see Appendix F.6.

Let $\mathrm{T}_{\text {mayo }}=\left(\operatorname{Gen}_{\text {mayo }}, \mathrm{F}_{\text {mayo }}, \mathrm{I}_{\text {mayo }}\right)$ be a TDF used in MAYO. $\mathrm{I}_{\text {mayo }}$ finds a preimage $x=x^{v}+x^{o}$ of $y$ for a multivariate quadratic map $\mathrm{P}^{*}: \mathbb{F}_{q}^{k n} \rightarrow \mathbb{F}_{q}^{m}$. Once $x^{v}$ is uniformly chosen from $\left(\mathbb{F}_{q}^{n-o} \times\left\{0^{o}\right\}\right)^{k} \subset \mathbb{F}_{q}^{k n}$, where $0^{o}$ denotes a vector of $o 0 \mathrm{~s}, \mathrm{P}^{*}\left(x^{v}+x^{o}\right)=y$ becomes a linear system of equations for $x^{o}$. $I_{\text {mayo }}$ outputs a preimage after retrying $x^{v}$ until $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ has full rank. MAYO is EUF-CMAsecure in the ROM [9, Theorem 6] assuming that it follows no leakage parameter sets [9, Table 1]. For the parameter sets, $x$ is uniformly distributed over $\mathbb{F}_{q}^{k n}$ if $I_{\text {mayo }}$ outputs $x$ without retaking $x^{v}$. Let $\tau$ be a bound on the probability that $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ does not have full rank for a random $x^{v}$. The no-leakage parameter sets satisfy $\tau \leq 2^{-65}$. We show the EUF-CMA security of MAYO following the no leakage parameter sets in the QROM. ${ }^{13}$

[^8]Proposition E. 6 (INV $\Rightarrow$ EUF-CMA (MAYO)). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {mayo }}, \mathrm{H}\right]$ issuing at most $q_{\mathrm{sign}}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {mayo }}$ such that

$$
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\text {mayo }}, \mathrm{H}\right]}^{\mathrm{EUF}]}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \frac{\left(2 q_{\text {qro }}+1\right)^{2}}{1-q_{\mathrm{sign}} \tau} \operatorname{Adv}_{\mathbf{T}_{\text {mayo }}}^{\text {INV }}\left(\mathcal{B}_{\text {inv }}\right)+\frac{3}{2} q_{\mathrm{sign}} \sqrt{\frac{q_{\text {sign }}+q_{\text {qro }}+1}{|\mathcal{R}|}},
$$

where the running time of $\mathcal{B}_{\mathrm{inv}}$ is about that of $\mathcal{A}_{\mathrm{cma}}$.
Proof. We apply Theorem 3.1 with defining an intermediate game $\mathrm{G}_{1}^{\prime}$. $\mathrm{G}_{1}^{\prime}$ is the same as $\mathrm{G}_{1}$ except that $\mathrm{G}_{1}^{\prime}$ aborts and outputs 0 whenever $\mathrm{I}_{\text {mayo }}$ retakes $x^{v}$. The probability that $\mathrm{G}_{1}^{\prime}$ does not abort while $q_{\text {sign }}$ signing queries is at least $1-q_{\text {sign }} \tau$. Therefore, $\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right] \leq \frac{1}{1-q_{\text {sign }} \tau} \operatorname{Pr}\left[\mathrm{G}_{1}^{\prime} \mathcal{A}_{\text {cma }} \Rightarrow 1\right]$ holds. We define SampDom $\left(\mathrm{F}_{\text {mayo }}\right)$ as $x \leftarrow_{\$} \mathbb{F}_{q}^{k n}$. The adversary of $\mathrm{G}_{5}$ perfectly simulates the signing oracle in the case that $\mathrm{G}_{1}^{\prime}$ does not abort by using his oracle since $x \leftarrow \mathrm{I}_{\text {mayo }}(y)$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{k n}\right)$ if $\mathrm{I}_{\text {mayo }}$ never retakes $x^{v}$. Therefore, the view of the adversary is identical in the simulated one with the case that $\mathrm{G}_{1}^{\prime}$ does not abort, and thus $\operatorname{Pr}\left[\mathrm{G}_{1}^{\prime} \mathcal{A}_{\mathrm{cma}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]$ holds. Since the EUF-NMA adversary can simulate $\mathrm{G}_{5}, \operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right] \leq \operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{T}_{\text {mayo }}, \mathrm{H}\right]}{\mathrm{EUE}}\left(\mathcal{A}_{\mathrm{nma}}\right)$ holds, which yields the claimed bound.

## F Review of Hash-and-sign Signatures

## F. 1 GPV Framework [29]

Let $\mathrm{T}_{\mathrm{gpv}}=\left(\mathrm{Gen}_{\mathrm{gpv}}, \mathrm{F}_{\mathrm{gpv}}, \mathrm{I}_{\mathrm{gpv}}\right)$ be a TDF used in the GPV framework. Gen gpv outputs a full-rank matrix $A \in \mathbb{Z}_{q}^{n \times m}$ generating a $q$-ary lattice $\Lambda$ as $\mathrm{F}_{\mathrm{gpv}}$ and a matrix $B$ generating $\Lambda_{q}^{\perp}$ that is orthogonal to $\Lambda$ modulo $q$ as $\mathrm{I}_{\mathrm{gpv}}$. The function $\mathrm{F}_{\mathrm{gpv}}$ computes $y=x A^{T}$ for a short vector $x \in\left\{x \in \mathbb{Z}^{m}:\|x\| \leq s \sqrt{m}\right\}$, where $s$ is a Gaussian parameter. The trapdoor $\mathrm{I}_{\mathrm{gpv}}$ outputs a short vector $x$ for $y \in \mathbb{F}_{q}^{n}$ using $B . \mathrm{T}_{\mathrm{gpv}}$ is a collision-resistant PSF (see Definition 2.6) whose security is based on the hardness of the short integer solution (SIS) problem [29, Theorem 4.9].

## F. 2 Modified CFS Signature [19]

Let $\mathrm{T}_{\mathrm{cfs}}=\left(\mathrm{Gen}_{\mathrm{cfs}}, \mathrm{F}_{\mathrm{cfs}}, \mathrm{I}_{\mathrm{cfs}}\right)$ be a TDF used in the modified CFS signature. We assume that $(n, k)$-Goppa code over $\mathbb{F}_{q}$ can decode up to $t$ errors. $\mathcal{X}_{n, \leq t}=\{x \in$ $\left.\mathbb{F}_{q}^{n}: 0<\operatorname{hw}(x) \leq t\right\}$ denotes a set of vectors $x \in \mathbb{F}_{q}^{n}$ whose Hamming weight, denoted by $\operatorname{hw}(x)$, is at most $t$. Gen cfs $^{\text {generates a parity-check matrix } H_{0} \in, ~}$ $\mathbb{F}_{q}^{(n-k) \times n}$ of an $(n, k)$-binary Goppa code, an invertible matrix $U \in \mathbb{F}_{q}^{(n-k) \times(n-k)}$, and a permutation matrix $P \in \mathbb{F}_{q}^{n \times n}$, and outputs $H=U H_{0} P \in \mathbb{F}_{q}^{(n-k) \times n}$ as $\mathrm{F}_{\mathrm{cfs}}$ and $\left(U, H_{0}, P\right)$ as $\mathrm{I}_{\mathrm{cfs}}$. On input $x \in \mathcal{X}_{n, \leq t}$, the function $\mathrm{F}_{\mathrm{cfs}}$ computes a
syndrome $y:=x H^{T} \in \mathbb{F}_{q}^{n-k}$. On input $y \in \mathbb{F}_{q}^{n-k}$, the trapdoor $\mathrm{I}_{\text {cfs }}$ composed of $\left(U, H_{0}, P\right)$ computes an error vector as follows: It decodes $y\left(U^{-1}\right)^{T}$ using $H_{0}$ to obtain $x^{\prime}$, and outputs an error vector $x=x^{\prime}\left(P^{-1}\right)^{T}$; if $y\left(U^{-1}\right)^{T}$ is not decodable, it outputs $\perp$. Since the $(n, k)$-Goppa code over $\mathbb{F}_{q}$ can decode up to $t$ errors, which is our assumption, there is a one-to-one correspondence between $\mathcal{X}_{n, \leq t}$ and $\mathcal{Y}_{\text {dec }}=\left\{y \in \mathbb{F}_{q}^{n-k}: y\left(U^{-1}\right)^{T}\right.$ is decodable $\}$ (decodable syndromes). Therefore, $\mathrm{F}_{\mathrm{cfs}}$ is injective and $\mathrm{I}_{\mathrm{cfs}}(y)$ outputs a preimage for $y \leftarrow_{\delta} \mathbb{F}_{q}^{n-k}$ with probability $\frac{\left|\mathcal{Y}_{\text {dec }}\right|}{\left|\mathbb{F}_{q}^{\eta-k}\right|}=\frac{\left|\mathcal{X}_{n, \leq t}\right|}{\left|\mathbb{F}_{q}^{\eta^{-k} \mid}\right|}$. As shown in [18], $\frac{\left|\mathcal{X}_{n, \leq t}\right|}{\left|\mathbb{F}_{q}^{\eta-k}\right|} \approx \frac{1}{t!}$ holds.

We show that a preimage $x$ output by $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{cf}}, \mathrm{H}\right]$. Sign follows $\mathrm{U}\left(\mathcal{X}_{n, \leq t}\right)$. First, $x \leftarrow \mathrm{I}_{\mathrm{cs}}(y)$ for $y \leftarrow_{\delta} \mathcal{Y}_{\text {dec }}$ follows $\mathrm{U}\left(\mathcal{X}_{n, \leq t}\right)$ from the one-to-one correspondance between $\mathcal{X}_{n, \leq t}$ and $\mathcal{Y}_{\text {dec }}$. Next, $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{cf}}, \mathrm{H}\right]$.Sign outputs $x$ after retrying $y \leftarrow_{s} \mathbb{F}_{q}^{n-k}$ until $\mathrm{I}_{\mathrm{cf}}(y) \neq \perp$ holds; therefore $y$ follows $\mathrm{U}\left(\mathcal{Y}_{\text {dec }}\right)$. Hence, $x$ output by $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{cf}}, \mathrm{H}\right]$. Sign follows $\mathrm{U}\left(\mathcal{X}_{n, \leq t}\right)$.

## F. 3 Wave [20]

Let $\mathrm{T}_{\text {wave }}=\left(\operatorname{Gen}_{\text {wave }}, \mathrm{F}_{\text {wave }}, \mathrm{I}_{\text {wave }}\right)$ be a TDF used in Wave and $H \in \mathbb{F}_{q}^{(n-k) \times n}$ be a parity-check matrix for an $(n, k)$-code over $\mathbb{F}_{q} . \mathcal{X}_{n, t}=\left\{x \in \mathbb{F}_{q}^{n}: \operatorname{hw}(x)=t\right\}$ denotes a set of vectors $x \in \mathbb{F}_{q}^{n}$ whose Hamming weight is exactly $t$, where $t$ is chosen such that $\mathrm{F}_{\text {wave }}: \mathcal{X}_{n, t} \rightarrow \mathbb{F}_{q}^{n-k}$ is a surjection. Gen wave outputs a paritycheck matrix $H \in \mathbb{F}_{q}^{(n-k) \times n}$ for an $(n, k)$-code over $\mathbb{F}_{q}$ as $\mathcal{F}_{\text {wave }}$ and parity-check matrices of generalized $(U, U+V)$-codes as $\mathrm{I}_{\text {wave }}$. On input $x \in \mathcal{X}_{n, t}$, the function $\mathrm{F}_{\text {wave }}$ computes a syndrome $y:=x H^{T} \in \mathbb{F}_{q}^{n-k}$. On input $y \in \mathbb{F}_{q}^{n-k}$, the trapdoor $\mathrm{I}_{\text {wave }}$ outputs an element of $\mathcal{X}_{n, t}$. Since a description of $\mathrm{I}_{\text {wave }}$ is out of the scope of this paper, we omit the description.
$\mathrm{T}_{\text {wave }}$ satisfies the conditions of ATPSF [16, Definition 2] and we can take a statistical bound on the distinguishing advantage of honestly generated signatures and simulated ones.

## F. 4 Original/Modified UOV Signature [37, 50]

Let $\mathrm{T}_{\text {uov }}=\left(\mathrm{Gen}_{\text {uov }}, \mathrm{F}_{\text {uov }}, \mathrm{I}_{\text {uov }}\right)\left(\right.$ resp., $\left.\mathrm{T}_{\text {muov }}=\left(\operatorname{Gen}_{\text {muov }}, \mathrm{F}_{\text {muov }}, I_{\text {muov }}\right)\right)$ be a TDF used in the original (resp., modified) UOV signatures. Note that Gen uov $=$ Gen $_{\text {muov }}$ and $\mathrm{F}_{\text {uov }}=\mathrm{F}_{\text {muov }}$. Gen uov generates an invertible affine map $\mathrm{S}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ and a multivariate quadratic map $\mathrm{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{o}$ defined as $\mathrm{P}=\left(p_{1}, p_{2}, \ldots, p_{o}\right)$, where

$$
p_{k}\left(z^{v}, z^{o}\right)=\sum_{i \in[v+o]} \sum_{j \in[v]} \alpha_{i, j}^{k} z_{i} z_{j},
$$

and outputs $P \circ S$ as $F_{\text {uov }}$ and $(P, S)$ as $\mathrm{I}_{\text {uov }}$. Variables in P are called vinegar variables $z^{v}=\left(z_{1}, z_{2}, \ldots, z_{v}\right) \in \mathbb{F}_{q}^{v}$ and oil variables $z^{o}=\left(z_{v+1}, z_{v+2}, \ldots, z_{v+o}\right) \in$ $\mathbb{F}_{q}^{o}$, where $n=v+o$. On input $y \in \mathbb{F}_{q}^{o}$, $\mathrm{I}_{\text {uov }}$ chooses $z^{v} \leftarrow \& \mathbb{F}_{q}^{v}$ and outputs $x=\mathrm{S}^{-1}\left(z^{v} \| z^{0}\right)$ by solving a linear equation system $\mathrm{P}\left(z^{v}, \cdot\right)=y$. There
is possibly no solution. In the original UOV signature, $\mathrm{I}_{\text {uov }}$ retries $z^{v}$ until $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=y\right\} \neq \emptyset$ holds or $\mathrm{P}\left(z^{v}, \cdot\right)$ has full rank [10] (see Fig. 15).

Since $x \leftarrow \mathrm{I}_{\text {uov }}(y)$ for $y \leftarrow_{\$} \mathbb{F}_{q}^{o}$ is not uniformly distributed, it is hard to simulate a signature without using the trapdoor; therefore, the computational indistinguishability of $x \leftarrow \mathrm{I}_{\text {uои }}(y)$ for $y \leftarrow_{\$} \mathbb{F}_{q}^{o}$ and $x \leftarrow_{\$} \mathbb{F}_{q}^{n}$, that is, the PS advantage, appears in the security bound (see Proposition E.3).

Modified UOV signature: To solve the above problem, Sakumoto et al. [50] proposed the modified UOV signature. Instead of retaking $z^{v}$, the modified UOV signature retakes the randomness $r$ for the hash function. The signing procedure of the modified UOV signature (see Fig. 16) is different from the others. $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, \mathrm{H}\right]$ using $I_{\text {muov }}^{1}$ and $I_{\text {muov }}^{2}$ generates a signature as follows: $I_{\text {muov }}^{1}$ chooses vinegar variables $z^{v}$ uniformly at random. Fixing $z^{v}$, P becomes a set of linear functions on oil variables $z^{o}$. $I_{\text {muov }}^{2}$ finds a preimage of $\mathrm{P} \circ \mathrm{S}$ by solving a linear equation system and taking the inverse of $S$. If there is no solution, $I_{\text {muov }}^{2}$ outputs $\perp$ and $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, \mathrm{H}\right]$ retakes $r$ and executes $\mathrm{I}_{\text {muov }}^{2}$ again without retaking $z^{v}$.

Sakumoto et al. showed that preimages generated by $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, \mathrm{H}\right]$. Sign are uniformly distributed over $\mathbb{F}_{q}^{n}$. For completeness, we give the proof sketch.

In the beginning, $z^{v}$ is uniformly chosen, that is, $z^{v}$ follows $U\left(\mathbb{F}_{q}^{v}\right)$. By fixing $z^{v}, \mathrm{P}\left(z^{v}, \cdot\right)$ becomes a set of linear functions containing $o \times o$ matrix whose rank is determined by choice of $z^{v}$ if solutions exist. When the rank is $i, \mathrm{P}\left(z^{v}, \cdot\right)$ becomes a $q^{o-i}$-to- 1 mapping for each element in the range $\mathbb{F}_{q}^{o}$. There are only $q^{i}$ possible outputs of H satisfying $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=\mathrm{H}(r, m)\right\} \neq \emptyset$. When H is a random function, one of the $q^{i}$ outputs is uniformly chosen after some retries. Once the output is fixed, one of $q^{o-i}$ solutions is uniformly chosen. In this way, $z^{o}$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{o}\right)$ and thus $x=\mathrm{S}^{-1}\left(z^{v} \| z^{o}\right)$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{n}\right)$.

In Proposition E.4, we cannot take $q_{\text {sign }}^{\prime}$ as in the other schemes since the probability that $\mathrm{I}_{\text {muov }}\left(z^{v}, y\right)$ outputs $\perp$ varies depending on $z^{v}$. We set $q_{\text {sign }}^{\prime}=$ $q_{\text {retry }} q_{\text {sign }}$, where $q_{\text {retry }}$ is a bound on the number of queries to H in each signing query. Let $X_{i}$ be a random variable for the number of queries to H in $i$-th queries and $X=\sum_{i=1}^{q_{\text {sign }}} X_{i}$. We have

$$
\operatorname{Pr}\left[X_{i}>q_{\text {retry }}\right]=\sum_{j=1}^{o} p_{j}\left(1-q^{j-o}\right)^{q_{\text {retry }}}
$$

where $p_{j}$ is a probability that $\mathrm{P}\left(z^{v}, \cdot\right)$ has rank $j$ for $z^{v} \leftarrow_{\$} \mathbb{F}_{q}^{v}$. It is known that a random $o \times o$ matrix over $\mathbb{F}_{q}$ has rank $o-a$ for $a \in\{0,1, \ldots, o\}$ with a probability [6]:

$$
\begin{equation*}
\frac{1}{q^{a^{2}}} \cdot \frac{\prod_{k=1}^{o}\left(1-q^{-k}\right) \prod_{k=a+1}^{o}\left(1-q^{-k}\right)}{\prod_{k=1}^{o-a}\left(1-q^{-k}\right) \prod_{k=1}^{a}\left(1-q^{-k}\right)} \tag{11}
\end{equation*}
$$

When we assume that $\mathrm{P}\left(z^{v}, \cdot\right)$ becomes a random $o \times o$ matrix for any $z^{v}$, $p_{j}$ follows Eq. (11). Since $X>q_{\text {sign }}^{\prime}$ implies $\exists i, X_{i}>q_{\text {retry }}, \operatorname{Pr}\left[X>q_{\text {sign }}^{\prime}\right] \leq$ $q_{\text {sign }} \operatorname{Pr}\left[X_{i}>q_{\text {retry }}\right]$ holds. To determine an appropriate value for $q_{\text {sign }}^{\prime}=q_{\text {retry }} q_{\text {sign }}$ in the security bound, we need to take $q_{\text {retry }}$ such that $q_{\text {sign }} \operatorname{Pr}\left[X_{i}>q_{\text {retry }}\right]$ is negligible for the security parameter.

```
Imhee (y)
 1 \mp@subsup{y}{}{\prime}}\mp@subsup{\leftarrow&&}{\mp@subsup{\mathbb{F}}{q}{m}}{
 z:= 珤}{-1}{(}\mp@subsup{\textrm{S}}{}{\prime-1}(y|\mp@subsup{y}{}{\prime}))
 if }1\leqi\leq|{\mp@subsup{z}{}{\prime}:\textrm{P}(\mp@subsup{z}{}{\prime})=z}|\mathrm{ then
 return }
 z'}\mp@subsup{\leftarrow}{$}{}{\mp@subsup{z}{}{\prime}:\textrm{P}(\mp@subsup{z}{}{\prime})=z
 x:= 每-1}(\phi(\mp@subsup{z}{}{\prime})
 return x
```

Fig. 17: Trapdoor of the modified HFE signature

## F. 5 Modified HFE Signature [50]

Let $\mathrm{T}_{\text {mhfe }}=\left(\mathrm{Gen}_{\text {mhfe }}, \mathrm{F}_{\text {mhfe }}, \mathrm{I}_{\text {mhfe }}\right)$ be a TDF used in the modified HFE signature and $\phi: K \rightarrow \mathbb{F}_{q}^{n}$ be a standard linear isomorphism $\phi\left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}\right)=$ $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $K=\mathbb{F}_{q}[x] / g(x)$ for an irreducible polynomial $g(x)$ of degree $n$. $\mathrm{Gen}_{\text {mhfe }}$ generates invertible affine maps $\left(\mathrm{S}, \mathrm{S}^{\prime}\right)$ over $\mathbb{F}_{q}^{n}$ and a central map P: $K \rightarrow K$ defined as

$$
\mathrm{P}(X)=\sum_{\substack{(i, j) \in[n] \times[n] \\ \text { s.t. } q^{i-1}+q^{j-1}<d}} \alpha_{i, j} X^{q^{i-1}+q^{j-1}}+\sum_{\substack{i \in[n] \\ \text { s.t. } q^{i-1}<d}} \beta_{i} X^{q^{i-1}},
$$

where $\alpha_{i, j}, \beta_{i} \in K$, and outputs $\mathrm{S}^{\prime} \circ \phi \circ \mathrm{P} \circ \phi^{-1} \circ \mathrm{~S}$ as $\mathrm{F}_{\text {mhfe }}$ and $\left(\mathrm{P}, \mathrm{S}, \mathrm{S}^{\prime}\right)$ as $\mathrm{I}_{\text {mhfe }}$. On input $y \in \mathbb{F}_{q}^{n-m}$, $I_{\text {mhfe }}$ computes a preimage $x \in \mathbb{F}_{q}^{n}$ as in Fig. 17 .

As in the modified UOV signature, the authors of [50] showed that preimages generated by $\mathrm{HaS}\left[\mathrm{T}_{\text {mhfe }}, \mathrm{H}\right]$.Sign are uniformly distributed over $\mathbb{F}_{q}^{n}$. We give the proof sketch.

When H is a random function, each $z \in \mathbb{F}_{q}^{n}$ is chosen with probability $\frac{1}{q^{n}}$. With probability $\frac{\left\{\left\{z^{\prime}: P\left(z^{\prime}\right)=z\right\} \mid\right.}{N}, I_{\text {mhfe }}$ chooses $z^{\prime}$ out of $\left|\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\}\right|$ elements, where $N$ is set as $d$ in general. Therefore, for any $x \in \mathbb{F}_{q}^{n}, \mathrm{HaS}\left[\mathrm{T}_{\text {mhfe }}, \mathrm{H}\right]$.Sign outputs $x$ with probability

$$
\frac{1}{q^{n}} \cdot \frac{\left|\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\}\right|}{N} \cdot \frac{1}{\left|\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\}\right|}=\frac{1}{q^{n} N} .
$$

Hence, preimages output by $\mathrm{HaS}\left[\mathrm{T}_{\text {mhfe }}, \mathrm{H}\right]$.Sign are uniformly distributed over $\mathbb{F}_{q}^{n}$. Also, $\mathrm{I}_{\text {mhfe }}$ does not output $\perp$ with probability $\sum_{x \in \mathbb{F}_{q}^{n}} \frac{1}{q^{n} N}=\frac{1}{N}$.

## F. 6 MAYO [9]

Let $T_{\text {mayo }}=\left(\right.$ Gen $\left._{\text {mayo }}, F_{\text {mayo }}, I_{\text {mayo }}\right)$ be a TDF used in MAYO. Gen mayo generates a multivariate quadratic map $\mathrm{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$ with a subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension $o$ called oil space such that $\mathrm{P}(x)=0$ for any $x \in \mathcal{O}$, and outputs P as $\mathrm{F}_{\text {mayo }}$ and a basis of $\mathcal{O}$ as $\mathbf{I}_{\text {may. }}{ }^{14}$ Let $\mathrm{P}(x)=\left(p_{1}(x), \ldots, p_{m}(x)\right)$, where $p_{i}(x): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is
${ }^{14}$ The notation of UOV in MAYO follows [8] which is a generalization of the traditional description of Appendix F.4.

```
\(\underline{\mathrm{I}_{\text {mayo }}(y)}\)
 \(\mathrm{P}^{*}\left(x_{1}, \ldots, x_{k}\right):=\sum_{i \in[k]} E_{i, i} \mathrm{P}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{I}} E_{i, j} \mathrm{P}^{\prime}\left(x_{i}, x_{j}\right)\)
 repeat
 \(x^{v} \leftarrow \$\left(\mathbb{F}_{q}^{n-m} \times 0^{m}\right)^{k}\)
 until \(\mathrm{P}^{*}\left(x^{v}+x^{o}\right)\) has full rank
 \(x^{o} \leftarrow\left\{x^{o}: \mathrm{P}^{*}\left(x^{v}+x^{o}\right)=y\right\}\)
 \(x=x^{v}+x^{o}\)
 return \(x\)
```

Fig. 18: Trapdoor of MAYO
a multivariate quadratic polynomial. The polar form of $p(x)$ is defined as

$$
p^{\prime}(x, y):=p(x+y)-p(x)-p(y)
$$

which is bilinear. We define the polar form of multivariate quadratic map $\mathrm{P}(x)$ to be $\mathrm{P}^{\prime}(x, y)=\left(p_{1}^{\prime}(x, y), \ldots, p_{m}^{\prime}(x, y)\right)$.

Let $\mathcal{I}=\{(i, j) \in[k] \times[k]: i \leq j\}$ and $\left\{E_{i j}\right\}_{(i, j) \in \mathcal{I}}$ be a set of invertible matrices such that $E=\left\{E_{i, j}\right\}$ is nonsingular. We set $\left\{E_{i j}\right\}_{(i, j) \in \mathcal{I}}$ as a system parameter. On input $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{F}_{q}^{k n}$, $\mathrm{F}_{\text {mayo }}$ computes $y=\mathrm{P}^{*}(x)=$ $\sum_{i \in[k]} E_{i, i} \mathrm{P}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{I}} E_{i, j} \mathrm{P}^{\prime}\left(x_{i}, x_{j}\right)$. In MAYO, $\mathrm{P}^{*}: \mathbb{F}_{q}^{k n} \rightarrow \mathbb{F}_{q}^{m}$ is conjectured to be non-invertible. Therefore, the INV game of $\mathrm{T}_{\text {mayo }}$ is defined as: given $\left(\mathrm{P},\left\{E_{i j}\right\}_{(i, j) \in \mathcal{I}}, y\right)$, find $x^{*}=\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)$ satisfying $\sum_{i \in[k]} E_{i, i} \mathrm{P}\left(x_{i}^{*}\right)+$ $\sum_{(i, j) \in \mathcal{I}} E_{i, j} \mathrm{P}^{\prime}\left(x_{i}^{*}, x_{j}^{*}\right)$ [9, Definition 4]. On input $y \in \mathbb{F}_{q}^{m}, \mathrm{I}_{\text {mayo }}$ computes $x$ as in Fig. 18. Let $x, x^{o}$ and $x^{v}$ be vectors over $\mathbb{F}_{q}^{k n}$. $I_{\text {mayo }}$ finds a preimage $x=x^{v}+x^{o}$ of $y$ for $\mathrm{P}^{*}$. In the beginning, $x^{v}$ is uniformly chosen from $\left(\mathbb{F}_{q}^{n-o} \times\left\{0^{o}\right\}\right)^{k} \subset \mathbb{F}_{q}^{k n}$, where $0^{o}$ denotes a vector of $o$ 0s. Fixing $x^{v}, \mathrm{P}^{*}\left(x^{v}+x^{o}\right)=y$ becomes a linear system of equations for $x^{o}$. If $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ has full rank, $\mathrm{I}_{\text {mayo }}$ outputs $x^{v}+x^{o}$ by solving $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)=y$. Otherwise, $\mathrm{I}_{\text {mayo }}$ retakes $x^{v}$. The probability that $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ does not have full rank is bounded by $\tau=\frac{q^{k-n+o}+q^{m-k o}}{q-1}[9$, Lemma 2]. For no leakage parameter sets [9, Table 1], $\tau \leq 2^{-65}$ holds.

A preimage $x \leftarrow I_{\text {mayo }}(y)$ is uniform over $\mathbb{F}_{q}^{k n}$ if $I_{\text {mayo }}$ does not retake $x^{v}$ in the signature generation [9, Lemma 7]. Since this property is necessary for applying Theorem 3.1, we show the proof sketch.

First, $x^{v}$ is uniformly chosen from $\left(\mathbb{F}_{q}^{n-o} \times\left\{0^{o}\right\}\right)^{k}$ if it is not retaken. Next, $x^{o}$ is uniformly chosen from $\mathcal{O}^{k}$ since $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ has full rank. Hence, the output $x=x^{v}+x^{o}$ follows $\cup\left(\mathbb{F}_{q}^{k n}\right)$ since $\left(\mathbb{F}_{q}^{n-o} \times\left\{0^{o}\right\}\right)+\mathcal{O}=\mathbb{F}_{q}^{n}$ holds.

## G Reductions of M-INV $\Rightarrow$ M-EUF-CMA and M-CR $\Rightarrow$ M-sEUF-CMA

First, we have the following as an extension of Theorem 3.1.
Lemma G. 1 (M-INV $\Rightarrow$ M-EUF-CMA). For any quantum M-EUF-CMA adversary $\mathcal{A}_{\text {cmam }}$ of $\mathrm{HaS}^{\mathrm{ph}}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}, \mathrm{E}\right]$ with $q_{\text {key }}$ keys and issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries


Fig. 19: M-EUF-NMA (Multi-key EUF-NMA) game
to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{U}} \times \mathcal{R} \times \mathcal{M}$, there exist an $\mathrm{M}-\mathrm{INV} \mathcal{B}_{\text {invm }}$ of $\mathrm{T}_{\text {wpsf }}$ with $q_{\text {inst }}$ instances and an M-PS adversary $\mathcal{D}_{\mathrm{ps}}$ of $\mathrm{T}_{\text {wpsf }}$ with $q_{\mathrm{key}}$ instances and issuing $q_{\mathrm{sign}}$ sampling queries such that

$$
\begin{align*}
& \operatorname{Adv}_{\mathrm{HaS} \text { Sh }\left[\mathrm{T}_{\mathrm{wpsf}, \mathrm{H}, \mathrm{E}]}^{\mathrm{M}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cmam}}\right) \leq\left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}^{\mathrm{M}-\mathrm{INV}}}\left(\mathcal{B}_{\mathrm{invm}}\right)+\operatorname{Adv}_{\mathrm{T}_{\mathrm{wpsf}}}^{\mathrm{M}-\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)\right.} \quad+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}+2\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}}+\frac{q_{\mathrm{key}}^{2}}{|\mathcal{U}|}
\end{align*}
$$

where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries, $\mathbb{E}_{\mathrm{F}, \mathrm{I}}\left(q_{\text {inst }}\right) \leq q_{\text {key }}\left(\frac{|\mathcal{U}|}{|\mathcal{U}|-q_{\text {key }}+1}\right)$ holds, and the running times of $\mathcal{B}_{\text {invm }}$ and $\mathcal{D}_{\mathrm{ps}}{ }^{\mathrm{m}}$ are about that of $\mathcal{A}_{\mathrm{cma}^{\mathrm{m}}}$.

Proof. We prove two reductions; M-EUF-NMA $\Rightarrow$ M-EUF-CMA and M-INV $\Rightarrow$ M-EUF-CMA, where M-EUF-NMA stands for multi-key EUF-NMA. We define an advantage function of the M-EUF-NMA game given in Fig. 19 as $\operatorname{Adv}_{\mathrm{Sig}}^{\mathrm{M}-\text { EUF-NMA }}\left(\mathcal{A}_{\mathrm{nma}^{m}}\right)=\operatorname{Pr}\left[\mathrm{M}-E U F-\mathrm{NMA}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]$. Without loss of generality, we assume that adversaries make random oracle queries by fixing key ID $u$ as one of the $q_{\text {key }}$ verification keys.

## M-EUF-NMA $\Rightarrow$ M-EUF-CMA:

Game $\mathrm{G}_{0}$ (M-EUF-CMA game): This is the original M-EUF-CMA game and $\left.\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cmam}}} \Rightarrow 1\right]=\operatorname{Adv}_{\mathrm{HaSph}}^{\mathrm{M}-\mathrm{EUF-CMA}} \mathrm{~T}_{\text {wps }}, \mathrm{H}, \mathrm{E}\right]\left(\mathcal{A}_{\mathrm{cmam}}\right)$ holds.
Game $\mathrm{G}_{1}$ (adaptive reprogramming and puncturing of H ): In the same manner as $\mathrm{G}_{4}$ of Theorem 3.1, the challenger chooses $r \leftarrow_{\$} \mathcal{R}$ for $q_{\text {sign }}^{\prime}-q_{\text {sign }}$ times and keeps them in a sequence $\mathcal{S}$, punctures H by $\mathcal{S}^{\prime}=\{u \in \mathcal{U}, r \in \mathcal{S}, m \in$ $\mathcal{M}\}$, and outputs 0 if FIND $=\top$. Also, the signing oracle reprograms $\mathrm{H}:=$ $\mathrm{H}^{\left(\mathrm{E}\left(\mathrm{F}_{j}\right), r_{i}, m_{i}\right) \mapsto y_{i}}$ after repeating $r_{i} \leftarrow \mathcal{R}$ and $y_{i} \leftarrow_{\$} \mathcal{Y}$ until $\mathrm{I}_{j}\left(y_{i}\right)$ does not output $\perp$.

By analyzing the number of queries to H , the number of times H is reprogrammed, and the number of punctured points of H , we can derive the bounds on the advantage gaps of $G_{0} / G_{1}, G_{1} / G_{2}$, and $G_{3} / G_{4}$ in Theorem 3.1. Since these numbers are the same in both the single-key and multi-key set-
tings, we can apply the same bound as $G_{0} / G_{4}$ in Theorem 3.1. Thus, we have

$$
\begin{aligned}
\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq & \frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}} \\
& +2\left(q_{\mathrm{sign}}+q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}}
\end{aligned}
$$

Game $G_{2}$ (simulating the signing oracle by SampDom): The signing oracle reprograms $\mathrm{H}:=\mathrm{H}^{\left(\mathrm{E}\left(\mathrm{F}_{j}\right), r_{i}, m_{i}\right) \mapsto \mathrm{F}_{j}\left(x_{i}\right)}$ for $r_{i} \leftarrow \mathcal{R}$ and $x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{j}\right)$, and outputs $\left(r_{i}, x_{i}\right)$. Since the M-PS adversary can simulate $\mathrm{G}_{1} / \mathrm{G}_{2}$, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{c \mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\text {cmam }}} \Rightarrow 1\right]\right| \leq \operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{M}-\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}{ }^{m}\right)$.

Since the M-EUF-NMA adversary $\mathcal{A}_{\text {nmam }}$ can simulate $G_{2}$ by SampDom, $\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\text {cmam }}} \Rightarrow 1\right] \leq \operatorname{Adv}_{\mathrm{HaSh}}^{\mathrm{M}-\mathrm{EUF}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}, \mathrm{E}\right]} \mathrm{CMA}\left(\mathcal{A}_{\text {nmam }}\right)$ holds.

M-INV $\Rightarrow$ M-EUF-NMA:
Game $G_{3}$ (M-EUF-NMA game): This is the original M-EUF-NMA game and

Game $G_{4}$ (abort with the collision on key IDs): When a collision on the key IDs is detected, $G_{4}$ aborts and outputs 0 . From the collision probability of uniformly chosen key IDs, $\left|\operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]\right| \leq \frac{q_{\text {ke }}^{2}}{|\mathcal{U}|}$.

We use Lemma A. 2 to show a reduction from the M-INV of $\mathrm{T}_{\text {wpsf }}$. The M-INV adversary $\mathcal{B}_{\text {invm }}$ given $\left\{\left(\mathrm{F}_{j}, y_{j}\right)\right\}_{j \in\left[q_{\text {inst }}\right]}$ runs a two-stage algorithm S for $\mathcal{A}_{\text {nma }}{ }^{\text {m }}$
 collision on key IDs, $\mathcal{B}_{\text {inv }}$ needs to prepare $q_{\text {key }}$ verification keys with different key IDs. The expected number of instances $\mathbb{E}\left(q_{\text {inst }}\right)$ needed for obtaining $q_{\text {key }}$ different key IDs is

$$
\sum_{i=1}^{q_{\text {key }}} \frac{|\mathcal{U}|}{|\mathcal{U}|-i+1} \leq q_{\text {key }}\left(\frac{|\mathcal{U}|}{|\mathcal{U}|-q_{\text {key }}+1}\right)
$$

In the first stage, $\mathrm{S}_{1}$ observes one of the quantum queries to H at random to obtain $\left(u^{\prime}, r^{\prime}, m^{\prime}\right)$. Since there is no collision on key IDs, $\mathcal{B}_{\text {invm }}$ can understand the target key of the observed random oracle query. If $u^{\prime}=E\left(F_{j^{\prime}}\right), H$ is reprogrammed as $\mathrm{H}^{\prime}:=\mathrm{H}^{\left(u^{\prime}, r^{\prime}, m^{\prime}\right) \mapsto y_{j^{\prime}}}$. In the second stage, $\mathrm{S}_{2}$ runs $\mathcal{A}_{\text {nmam }}$ with reprogrammed $\mathrm{H}^{\prime}$ and outputs $x^{\prime}$ included in an output of $\mathcal{A}_{\mathrm{nma}}\left|\mathrm{H}^{\prime}\right\rangle\left(\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\mathrm{key}}\right]}\right)$. From Lemma A.2, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathrm{F}_{j^{\prime}}\left(x^{\prime}\right)=y_{j^{\prime}}:\left(\mathrm{E}\left(\mathrm{~F}_{j^{\prime}}\right), r^{\prime}, m^{\prime}\right) \leftarrow \mathrm{S}_{1}^{\mathcal{A}_{\mathrm{nma} \mathrm{~m}}^{|\mathrm{H}\rangle}}(), x^{\prime} \leftarrow \mathrm{S}_{2}^{\mathcal{A}_{\mathrm{nma}}^{\left|\mathrm{H}^{\prime}\right\rangle}}\left(y_{j^{\prime}}\right)\right] \\
\geq & \frac{1}{\left(2 q_{\text {qro }}+1\right)^{2}} \operatorname{Pr}\left[\mathrm{~F}_{j^{*}}\left(x^{*}\right)=\mathrm{H}\left(\mathrm{E}\left(\mathrm{~F}_{j^{*}}\right), r^{*}, m^{*}\right):\left(j^{*}, m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{nma}{ }^{m}}^{|\mathrm{H}\rangle}\left(\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\mathrm{key}}\right\rangle}\right)\right] \\
= & \frac{1}{\left(2 q_{\text {qro }}+1\right)^{2}} \operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right] .
\end{aligned}
$$

Therefore, we have $\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right] \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathbf{T}_{\text {wpsf }}}^{\mathrm{M}-\mathrm{INV}}\left(\mathcal{B}_{\text {invm }}\right)$.
We obtain Eq. (12) by combining the two reductions.

Next, we show a reduction $\mathrm{M}-\mathrm{CR} \Rightarrow \mathrm{M}-$ sEUF-CMA extending the single-key version of [13, Theorem 2].

Lemma G. 2 (M-CR $\Rightarrow$ M-EUF-CMA). For any quantum M-sEUF-CMA adversary $\mathcal{A}_{\mathrm{cmam}}$ of $\mathrm{Ha} \mathrm{S}^{\mathrm{ph}}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}, \mathrm{E}\right]$ with $q_{\text {key }}$ keys and issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\mathrm{qro}}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{U}} \times \mathcal{R} \times \mathcal{M}$, there exist an $\mathrm{M}-\mathrm{CR} \mathcal{B}_{\text {crm }}$ of $\mathrm{T}_{\text {wpsf }}$ with $q_{\text {inst }}$ instances such that

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{psf}}, \mathrm{H}\right]}^{\mathrm{M}]}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \frac{1}{1-2^{-\omega(\log (\lambda))}} \operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{M}-\mathrm{CR}}\left(\mathcal{B}_{\mathrm{crm}}\right)+\frac{q_{\mathrm{key}}^{2}}{|\mathcal{U}|}, \tag{13}
\end{equation*}
$$

where $\mathbb{E}_{\mathrm{F}, \mathrm{I}}\left(q_{\text {inst }}\right) \leq q_{\text {key }}\left(\frac{|\mathcal{U}|}{|\mathcal{U}|-q_{\text {key }}+1}\right)$ holds and the running times of $\mathcal{B}_{\text {crm }}$ and $\mathcal{D}_{\text {st }}$ are about that of $\mathcal{A}_{\mathrm{cmam}}$.

Proof. We define a sequence of games as follows:

Game $G_{0}$ (M-sEUF-CMA game): This is the original M-sEUF-CMA game and $\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\text {cmam }}} \Rightarrow 1\right]=\operatorname{Adv} v_{\mathrm{HaSh}}^{\mathrm{M}-\mathrm{SEUF}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}, \mathrm{E}\right]}\left(\mathcal{A}_{\mathrm{cma}^{m}}\right)$ holds.
Game $G_{1}$ (abort with collision on key IDs): When a collision of the key IDs is detected, $G_{1}$ aborts and outputs 0 . We have $\left|\operatorname{Pr}\left[G_{0}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]-\operatorname{Pr}\left[G_{1}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]\right| \leq$ $\frac{q_{\mathrm{key}}^{2}}{|\mathcal{U}|}$.
Game $G_{2}$ (replacing $H$ with $H^{\prime}$ ): This game replaces $H$ with $H^{\prime}$ satisfying

$$
\mathrm{H}^{\prime}\left(\mathrm{E}\left(\mathrm{~F}_{j}\right), r, m\right)=\mathrm{F}_{j}\left(\operatorname{DetSampDom}\left(\mathrm{~F}_{j}, \widetilde{\mathrm{H}}\left(\mathrm{E}\left(\mathrm{~F}_{j}\right), r, m\right)\right)\right),
$$

where DetSampDom is a deterministic function of SampDom and $\widetilde{\mathrm{H}}: \mathcal{U} \times \mathcal{R} \times$ $\mathcal{M} \rightarrow \mathcal{W}$ is another random function to output randomness for DetSampDom. From Condition 1 of PSF, $\mathrm{F}_{j}(x)$ is uniform for $x \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{j}\right)$. Since H and $H^{\prime}$ follow the same distribution, $\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]$ holds.

The M-CR adversary $\mathcal{B}_{\text {crm }}$ can simulate $G_{2}$. As in Lemma G.1, the expected number of instances is at most $q_{\text {key }}\left(\frac{|\mathcal{U}|}{|\mathcal{U}|-q_{\text {key }}+1}\right)$ over all $(F, I) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$. From Conditions 2 and $\mathbf{3}$, the M-CR adversary $\mathcal{B}_{\text {crm }}$ can simulate the signing oracle. When responding to the $i$-th signing query $m_{i}$ for the $j$-th verification key $\mathrm{F}_{j}, \mathcal{B}_{\mathrm{cr}}$ returns $\left(r_{i}, x_{i}\right)$, where $r_{i} \leftarrow_{\$} \mathcal{R}$ and $x_{i}:=\operatorname{DetSampDom}\left(\mathrm{F}_{j}, \widetilde{\mathrm{H}}\left(\mathrm{E}\left(\mathrm{F}_{j}\right), r_{i}, m_{i}\right)\right)$. If the M-sEUF-CMA adversary $\mathcal{A}_{\text {cmam }}$ wins the game by submitting $\left(j^{*}, m^{*}, r^{*}, x^{*}\right)$, $\mathrm{F}_{j^{*}}\left(x^{*}\right)=\mathrm{F}_{j^{*}}\left(x^{\prime}\right)$ holds, where $x^{\prime}=\operatorname{DetSampDom}\left(\mathrm{F}_{j^{*}}, \widetilde{\mathrm{H}}\left(\mathrm{E}\left(\mathrm{F}_{j^{*}}\right), r^{*}, m^{*}\right)\right)$ ). From Condition 4, $x^{*} \neq x^{\prime}$ holds with probability $1-2^{-\omega(\log (\lambda))}$, and we thus have Eq. (13).

## H Proof of Lemma 4.1

We extend the proof of Lemma G. 1 (Appendix G) by defininh a new game $\mathrm{G}_{5}$. In $\mathrm{G}_{5}$, the verification keys $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\mathrm{ke}}\right]}$ are replaced with $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}$ for given $\mathrm{F}^{\prime}: \mathcal{X}^{\prime} \rightarrow \mathcal{Y}$ generated by Gen'. The ST adversary $\mathcal{D}_{\text {st }}$ can simulate $\mathrm{G}_{4} / \mathrm{G}_{5}$ by setting the verification keys as the results of querying NewKeyb. If $\mathcal{D}_{\text {st }}$ plays $\mathrm{ST}_{0}, \mathrm{G}_{4}$ is simulated; otherwise, $\mathrm{G}_{5}$ is simulated. Consequently, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\text {nma }}} \Rightarrow 1\right]\right| \leq \operatorname{Adv}{\underset{\boldsymbol{T}_{\text {wpsf }}, \mathrm{T}^{\prime}}{\mathrm{ST}}\left(\mathcal{D}_{\text {st }}\right) .}$

To use Lemma A.2, we assume that $\mathcal{B}_{\text {inv }}$ runs a two-stage algorithm $S$ in $G_{5}$ with input $\theta$ (see Fig. 10). As in Lemma G.1, $\mathcal{B}_{\text {inv }}$ has knowledge of the target key for the observed random oracle query. When the observed value is targeted at $j^{\prime}$-th verification key, $\mathcal{B}_{\text {inv }}$ sets $\theta:=\mathrm{L}_{j^{\prime}}(y)$ as the input to S . Since $\mathrm{L}_{j^{\prime}}$ is bijective, $\mathrm{L}_{j^{\prime}}(y)$ for $y \leftarrow_{\$} \mathcal{Y}$ is uniformly distributed. When $\mathcal{B}_{\text {invm }}$ submits $x^{*}$ for $\mathrm{F}_{j^{*}}\left(j^{*}=\right.$ $\left.j^{\prime}\right), \mathcal{B}_{\text {inv }}$ outputs $\mathrm{R}_{j^{*}}\left(x^{*}\right)$. Suppose that $\mathrm{L}_{j^{*}}\left(\mathrm{~F}\left(\mathrm{R}_{j^{*}}\left(x^{*}\right)\right)\right)=\mathrm{L}_{j^{*}}(y)$ holds. Since $\mathrm{L}_{j^{*}}$ is a bijection, $\mathrm{F}\left(\mathrm{R}_{j^{*}}\left(x^{*}\right)\right)=y$ holds. Therefore, $\mathcal{B}_{\text {inv }}$ can win the INV game by submitting $\mathrm{R}_{j^{*}}\left(x^{*}\right)$, and we have $\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right] \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}^{\prime}}^{\text {INV }}\left(\mathcal{B}_{\text {inv }}\right)$ from Lemma A.2, which proves this lemma.

## I Proof of Lemma 4.2

To prove a reduction of $\mathrm{CR} \Rightarrow \mathrm{M}-\mathrm{CR}$, we define a sequence of games as follows:
Game $G_{0}$ (M-CR game): This is the original M-CR game and $\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{B}_{\mathrm{crm}}} \Rightarrow 1\right]=$ $\operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{M}-\mathrm{R}}\left(\mathcal{B}_{\mathrm{cr}^{m}}\right)$ holds.
Game $G_{1}$ (replacing verification keys): We replace $F_{j}$ with $L_{j} \circ F^{\prime} \circ R_{j}$. Since the ST adversary can simulate $\mathrm{G}_{0} / \mathrm{G}_{1}$, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{B}_{\mathrm{crm}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{B}_{\mathrm{crm}}} \Rightarrow 1\right]\right| \leq$ $\operatorname{Adv}{\underset{T}{\text { psf }}, \mathrm{T}^{\prime}}_{\mathrm{ST}}\left(\mathcal{D}_{\text {st }}\right)$.
The $C R$ adversary $\mathcal{B}_{\text {cr }}$ simulates $G_{1}$ as follows: Given $F^{\prime}$, $\mathcal{B}_{\text {cr }}$ gives $\left\{L_{j} \circ \mathrm{~F}^{\prime} \circ\right.$ $\left.\mathrm{R}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$ to $\mathcal{B}_{\text {crm}}$. When $\mathcal{B}_{\text {crm }}$ submits $\left(j^{*}, x_{1}^{*}, x_{2}^{*}\right), \mathcal{B}_{\text {cr }}$ outputs $\left(\mathrm{R}_{j^{*}}\left(x_{1}^{*}\right), \mathrm{R}_{j^{*}}\left(x_{2}^{*}\right)\right)$. Suppose that $\mathrm{L}_{j^{*}}\left(\mathrm{~F}\left(\mathrm{R}_{j^{*}}\left(x_{1}^{*}\right)\right)\right)=\mathrm{L}_{j^{*}}\left(\mathrm{~F}\left(\mathrm{R}_{j^{*}}\left(x_{2}^{*}\right)\right)\right)$ holds. Since $\mathrm{L}_{j}$ is injective, $\mathrm{F}\left(\mathrm{R}_{j^{*}}\left(x_{1}^{*}\right)\right)=\mathrm{F}\left(\mathrm{R}_{j^{*}}\left(x_{2}^{*}\right)\right)$ holds and $x_{1}^{*} \neq x_{2}^{*}$ implies $\mathrm{R}_{j^{*}}\left(x_{1}^{*}\right) \neq \mathrm{R}_{j^{*}}\left(x_{2}^{*}\right)$. Therefore, $\mathcal{B}_{\mathrm{cr}}$ can win the CR game and can perfectly simulate $\mathrm{G}_{4}$. Therefore, we have

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{M}-\mathrm{CR}}\left(\mathcal{B}_{\mathrm{cr}}\right) \leq \operatorname{Adv}_{\mathrm{T}^{\prime}}^{\mathrm{CR}}\left(\mathcal{B}_{\mathrm{cr}}\right)+\operatorname{Adv}_{\boldsymbol{T}_{\mathrm{psf}}, \mathrm{~T}^{\prime}}^{\mathrm{ST}_{\mathrm{st}}}\left(\mathcal{D}_{\mathrm{st}}\right) \tag{14}
\end{equation*}
$$

Combining Eq. (14) with Eq. (13) of Lemma G. 2 (Appendix G), we obtain the security bound of Lemma 4.2.

## J Applications of Generic Method in Multi-key Setting

In this section, we explore the applications of the generic method presented in Lemma 4.2 for lattice-based cryptography and Lemma 4.1 for code-based and MQ-based cryptography. Rather than focusing on specific schemes such as FALCON [49], our paper applies the generic method to frameworks of the schemes, such as the GPV framework [29]. We leave the applicability to the specific schemes for future works.

Lattice-based Cryptography: We apply the generic method to the GPV framework (see Appendix F.1) [29]. For Lemma 4.2, we design simulation of verification keys by $\left\{L_{j} A R_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$ where $L_{j}$ is an $n \times n$ invertible matrix over $\mathbb{F}_{q}$ and $R_{j}$ is an $m \times m$ signed permutation matrix. Note that we require the orthogonality of $R_{j}$ for $\|x\|=\left\|x R_{j}^{T}\right\|$ and any integer orthogonal matrices are signed permutation matrices whose non-zero entries are $\pm 1$. Then, the ST advantage is bounded by an advantage of the following problem.

Definition J. 1 (Multi-instance Signed Permutation Equivalence).
Given matrices $\left\{G_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}\left(G_{j} \in \mathbb{F}_{q}^{n \times m}\right)$, do there exist a matrix $G \in \mathbb{F}_{q}^{n \times m}$, $n \times n$ invertible matrices $\left\{L_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}$ over $\mathbb{F}_{q}$, and $m \times m$ signed permutation matrices $\left\{R_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}$ over $\mathbb{F}_{q}$ such that $G_{j}=L_{j} G R_{j}$ ?

This problem is a variant of the well-studied problem called code equivalence in code-based cryptography [48]. The code equivalence is defined as: Given a pair of matrices $\left(G, G^{\prime}\right)$, do there exist an invertible matrix $L$ and an isometric matrix $R$ such that $G^{\prime}=L G R$ ? There are variations of this problem in terms of $R$. When $R$ is a permutation matrix (resp., generalized permutation matrix), this problem is called permutation equivalence (resp., linear equivalence)[52].

In lattice-based cryptography, there is a closely related problem called lattice isomorphism, that is, given a pair of lattice bases $\left(B, B^{\prime}\right)$, do there exist a unimodular matrix $L$ and an orthogonal matrix $R$ such that $B^{\prime}=L B R$ ? The conditions on $L$ and $R$ are required to keep the geometry of lattices; however, it is not necessary for our purpose.

Any variants of the code equivalence listed above are in the complexity class coAM and not conjectured to be NP-hard [48]. Also, there are some algorithms for the permutation equivalence and linear equivalence. In the general case, Leon's algorithm solves the problems by enumerating all the codewords with Hamming weight $w$ for some $w$ [38], and Beullens [7] recently improved this algorithm. The complexity of this approach grows exponentially with $w$, and we cannot solve the problems with low $w$ [3]. There is a special case where we can easily solve the permutation equivalence with the Support Splitting Algorithm (SSA) proposed by Sendrier [51]. The SSA runs in $O\left(m^{3}+m^{2} q^{h} \ln (m)\right)$, where $h$ is a dimension of the hull space of a code, that is, the intersection between the code and its dual code [3]. Therefore, the SSA can efficiently solve the permutation equivalence if the dimension of the hull space is low. Note that the SSA does not apply to the case with an empty hull.

Code-based Cryptography: We apply the generic method to a TDF using a parity-check matrix $H \in \mathbb{F}_{q}^{n \times m}$ as in the modified CFS signature and Wave (see Appendices F. 2 and F.3). For Lemma 4.1, we simulate verification keys by $\left\{L_{j} H R_{j}\right\}_{j \in\left[q_{\mathrm{key}}\right]}$, where $L_{j}$ is an $m \times m$ invertible matrix over $\mathbb{F}_{q}$ and $R_{j}$ is an $n \times n$ generalized permutation matrix over $\mathbb{F}_{q}$. Note that generalized permutation matrices preserve the Hamming weights of vectors. Then, the ST advantage is bounded by an advantage of the following problem.

Definition J. 2 (Multi-instance Linear Equivalence). Given matrices $\left\{G_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}\left(G_{j} \in \mathbb{F}_{q}^{n \times m}\right)$, do there exist a matrix $G \in \mathbb{F}_{q}^{n \times m}$, $n \times n$ invert-
ible matrices $\left\{L_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}$ over $\mathbb{F}_{q}$, and $m \times m$ generalized permutation matrices $\left\{R_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}$ over $\mathbb{F}_{q}$ such that $G_{j}=L_{j} G R_{j}$ ?

As mentioned in the previous paragraph, some algorithms exist for the (singleinstance) linear equivalence.

Multivariate-quadratic-based Cryptography: We assume a TDF of the original/modified UOV signature or the modified HFE signature. Let $\mathrm{F}: \mathbb{F}_{q}^{n^{\prime}} \rightarrow \mathbb{F}_{q}^{m}$ and $\mathrm{F}_{j}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$ be a multivariate quadratic map $\left(n^{\prime} \geq n\right)$. For Lemma 4.1, we simulate verification keys by $\left\{\mathrm{L}_{j} \circ \mathrm{~F} \circ \mathrm{R}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$, where $\mathrm{L}_{j}$ is an invertible affine map over $\mathbb{F}_{q}$ and $\mathrm{R}_{j}$ is an affine map over $\mathbb{F}_{q}$. Then, the ST advantage is bounded by an advantage of the following game.

Definition J. 3 (Multi-instance Decision Morphism of Polynomials). Given multivariate quadratic maps $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}$, do there exist a multivariate quadratic map F and affine maps $\left\{\mathrm{L}_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}$ and $\left\{\mathrm{R}_{j}\right\}_{j \in\left[q_{\text {inst }}\right]}$ over $\mathbb{F}_{q}$ such that $\mathrm{F}_{j}=\mathrm{L}_{j} \circ \mathrm{~F} \circ \mathrm{R}_{j}$ ?
The (single-instance) decision morphism of polynomials, that is, given a pair of multivariate quadratic maps ( $F, F^{\prime}$ ), do there exist affine maps $L$ and $R$ such that $F^{\prime}=L \circ F \circ R$ ?, is proven NP-complete [47]. If $L$ and $R$ are invertible affine maps, this problem is called decision isomorphism of polynomials that is in the complexity class coAM and not conjectured to be NP-hard [47]. For signature schemes with some structures in their verification key, only invertible R may preserve the structures, e.g., only block-anti-circulant matrices can maintain a structure of BAC-UOV [54]; therefore, we need to use invertible R as in the decision isomorphism of polynomials for such signature schemes.

A search version of the isomorphism of polynomials has been well-studied. Bouillaguet, Fouque, and Véber [14] studied and surveyed the algorithms for the isomorphism of polynomials. Their algorithms run in $O\left(q^{n}\right) \cdot \operatorname{poly}(n, q)$, $O\left(q^{2 n / 3}\right) \cdot \operatorname{poly}(n, q)$, or $O\left(q^{n / 2}\right) \cdot \operatorname{poly}(n, q)$ assuming that $n=m$. The Gröbnerbased algorithm proposed by Faugère and Perret [26] can efficiently solve random instances of an inhomogeneous version of the problem. We also note that if L and $R$ are very structured, then the problems become easier (see, e.g., [34]).


[^0]:    ${ }^{3}$ An adversary tries to find a preimage of a challenge $y$ that is uniformly chosen in the INV game [32] and that derived by $\mathrm{F}(x)$ for $x$ chosen from some distribution on $\mathcal{X}$ in the OW game [4].

[^1]:    ${ }^{4}$ For PSFs, a tight reduction from OW to INV and one from INV to OW hold.
    ${ }^{5}$ Zhandry [59] proved the EUF-CMA security of TDP-FDH in the QROM, assuming that the underlying TDP is one-way. The security proof applies to the case for the OW/INV of PSF.
    ${ }^{6}$ A signer chooses $r$, computes $m^{\prime}=\mathrm{H}(r, m)$, and signs on $m^{\prime}$ by using a signing algorithm of the signature scheme for fixed-length messages, and outputs $(r, \sigma)$.

[^2]:    ${ }^{7}$ In general, non-invertibility of TDFs is called one-wayness [29, 50, 16]. We make a distinction between them depending on the way to choose challenges (INV follows [32] and OW follows [4]).

[^3]:    ${ }^{8}$ If unpredictable parts do not exist or are computationally expensive to include in H , a fixed nonce can be used instead (the nonce is put in the verification key).

[^4]:    ${ }^{9}$ The authors of [16] defined a problem called claw with random function problem; however, its definition is identical to EUF-NMA game for hash-and-sign.

[^5]:    ${ }^{10}$ In the latest version of their paper [39], the authors removed $q_{\text {sign }}$ from Eq. (6). They claimed that the queries to $\mathrm{H}^{\prime}$ for signing queries are not necessarily considered in [23, Theorem 2]. However, the correctness of their usage of [23, Theorem 2] remains to be fully justified.

[^6]:    ${ }^{11}$ Chatterjee et al. [17] pointed out that the security proof of [50] is flawed slightly, that is, ignorance of the bias of the programmed random oracle introduced by the simulation of the signature. They resolved the issue by making the failure probability negligible, which employs exponential $q$. We note that the security proof of [50] can easily be corrected using the ROM version of our technique that is used in Theorem 3.1.

[^7]:    ${ }^{12}$ The original UOV [37] does not use $r$, but we here employ $r$.

[^8]:    ${ }^{13}$ For the other parameter sets, Proposition E. 3 applies to MAYO.

