Probabilistic Hash-and-Sign with Retry in the Quantum Random Oracle Model

Haruhisa Kosuge ${ }^{1}$ and Keita Xagawa ${ }^{2[0000-0002-6832-9940] \star ~}$
${ }^{1}$ Japan Ministry of Defense, Japan
harucrypto@gmail.com
${ }^{2}$ Technology Innovation Institute, UAE
keita.xagawa@tii.ae

Abstract

A hash-and-sign signature based on a preimage-sampleable function (Gentry et al., STOC 2008) is secure in the quantum random oracle model if the preimage-sampleable function is collision-resistant (Boneh et al., ASIACRYPT 2011) or one-way (Zhandry, CRYPTO 2012). However, trapdoor functions in code-based and multivariate-quadraticbased signatures are not preimage-sampleable functions; for example, underlying trapdoor functions of the Courtois-Finiasz-Sendrier, Unbalanced Oil and Vinegar (UOV), and Hidden Field Equations (HFE) signatures are not surjections. Thus, such signature schemes adopt probabilistic hash-and-sign with retry. While Sakumoto et al. in PQCRYPTO 2011 showed the security of this paradigm in the classical random oracle model, their proof contains an error. Also, there is currently no known security proof for the probabilistic hash-and-sign with retry in the quantum random oracle model. We correct the proof in the random oracle model and give the first security proof in the quantum random oracle model for the probabilistic hash-and-sign with retry, assuming that the underlying trapdoor function is non-invertible, that is, it is hard to find a preimage of a given random value in the range. Our reduction from the non-invertibility assumption is tighter than the existing ones that apply only to signature schemes based on preimage-sampleable functions. We apply the security proof to code-based and multivariate-quadratic-based signatures. Additionally, we extend the proof into the multi-key setting and propose a generic method that provides security reduction without any security loss in the number of keys. keywords: Post-quantum cryptography, digital signature, hash-and-sign, quantum random oracle model, preimage sampleable function.

1 Introduction

Hash-and-Sign Signature in the Random Oracle Model (ROM): A digital signature is an essential and versatile primitive since it supports non-repudiation and authentication; if a document is signed, the signer indeed signed it and cannot repudiate the signature. The standard security notion of the digital signature

[^0]is existential unforgeability against chosen-message attack (EUF-CMA) [31]. Roughly speaking, a signature scheme is said to be EUF-CMA-secure if no efficient adversary can forge a signature even if the adversary can access a signing oracle, which captures non-repudiation and authentication. Hash-and-sign [5, 6] is a widely adopted paradigm for constructing practical signatures, along with Fiat-Shamir [28], in the ROM [5]. This paper focuses on hash-and-sign.

A hash-and-sign signature scheme is realized by a hard-to-invert function $\mathrm{F}: \mathcal{X} \rightarrow \mathcal{Y}$, its trapdoor $\mathrm{I}: \mathcal{Y} \rightarrow \mathcal{X}$, and a hash function $\mathrm{H}:\{0,1\}^{*} \rightarrow \mathcal{Y}$ modeled as a random oracle. To sign on a message m, a signer first computes $y=\mathrm{H}(r, m)$, where r is a random string, computes $x=\mathrm{I}(y)$, and outputs $\sigma=(r, x)$ as a signature. A verifier verifies the signature σ with the verification key F by checking if $\mathrm{H}(r, m)=\mathrm{F}(x)$ or not. We refer to this construction as probabilistic hash-and-sign; if r is an empty string, then deterministic hash-and-sign. The security properties of the trapdoor function are outlined as follows.

Non-invertibility (INV): It is hard to find a preimage of a challenge y that is uniformly chosen [34].
One-wayness (OW): It is hard to find a preimage of a challenge $y=\mathrm{F}(x)$ for x chosen from some distribution on \mathcal{X} [5].
Collision-resistance (CR): It is hard to find a collision pair of F.
A prime example is a deterministic hash-and-sign using a trapdoor permutation such as RSA, which is EUF-CMA-secure in the ROM, assuming the OW of the trapdoor permutation [5]. Gentry, Peikert, and Vaikuntanathan proposed deterministic/probabilistic hash-and-sign based on a preimage-sampleable function (PSF) [30], which is a trapdoor function with additional conditions, e.g., surjection. Gentry et al. showed a tight reduction from the CR assumption of PSF to the strong EUF-CMA (sEUF-CMA) security of the deterministic/probabilistic hash-and-sign, and they constructed a collision-resistant PSF from lattices. Unfortunately, it is hard to build PSFs in code-based and multivariate-quadraticbased (MQ-based) cryptography; for example, F is not a surjection. In this case, the trapdoor I fails to invert y whose preimage does not exist. For such trapdoor functions, we employ the probabilistic hash-and-sign with retry, where a signer takes randomness r until r allows inversion of $y=\mathrm{H}(r, m)$. The Courtois-FiniaszSendrier (CFS) signature [19] in code-based cryptography and the Unbalanced Oil and Vinegar (UOV) [39] and Hidden Field Equations (HFE) signatures [49] in MQ-based cryptography use this paradigm. Sakumoto et al. [53] gave a security proof of the probabilistic hash-and-sign with retry in the ROM. However, their proof has a flaw in the simulation of the random oracle, which is pointed out by Chatterjee et al. [18].

Hash-and-Sign Signature in Quantum Random Oracle Model (QROM): Largescale quantum computers will be able to break widely deployed public-key cryptography such as RSA and ECDSA because of Shor's algorithm [56]. Consequently, there has been a growing interest in post-quantum cryptography (PQC). Recently NIST selected PQC candidates of public-key encryption/keyencapsulation mechanism (KEM) and digital signature for standardization [48].

Table 1: Summary of the security proofs for hash-and-sign in the QROM. DHaS, PHaS, and PHaSwR denote deterministic hash-and-sign, probabilistic hash-andsign, and probabilistic hash-and-sign with retry. ϵ denotes the adversary's advantage in the game of the underlying assumption. q denotes the number of queries to the signing and random oracles.

Name	DHaS	PHaS	PHaSwR	Assumption	Security Bound
$[14]$	\checkmark	\checkmark	-	CR	$O\left(\epsilon_{\text {cr }}\right)$
$[61]$	\checkmark	\checkmark	-	OW/INV	$O\left(q^{2} \sqrt{\epsilon_{\text {ow }} / \text { inv }}\right)$
ext. of [59]	\checkmark	\checkmark	-	OW/INV	$O\left(q^{4} \epsilon_{\text {ow }}\right)$
[17]	-	\checkmark	-	EUF-NMA	$O\left(\epsilon_{\text {nma }}\right)$
Ours	-	\checkmark	\checkmark	INV	$O\left(q^{2} \epsilon_{\text {inv }}\right)$

Furthermore, NIST initiated an additional call for PQC digital signatures [47]. In the context of PQC, it is essential for signature schemes to provide EUF-CMA security in the QROM [14] since it models real-world quantum adversaries having offline access to the hash function. Unfortunately, schemes that are secure in the ROM are not always secure in the QROM, as demonstrated by separation results, including a signature scheme, by Yamakawa and Zhandry [60].

Table 1 summarizes studies on the EUF-CMA security of hash-and-sign signatures in the QROM. Boneh et al. [14] showed a tight reduction from the CR assumption of PSF using the history-free reduction. Zhandry [61] gave a reduction from the OW/INV assumptions ${ }^{3}$, using a technique called semi-constant distribution ${ }^{4}$. Unfortunately, the semi-constant distribution technique incurs a square-root loss in the success probability. Yamakawa and Zhandry [59] gave the lifting theorem that shows that any search-type game is hard in the QROM if the game is hard in the ROM. They used the lifting theorem to show that an EUF-NMA-secure signature in the ROM is EUF-NMA-secure in the QROM, where NMA stands for No-Message Attack. By extending the results of [59], we obtain a reduction from the OW/INV assumptions of PSF. Chailloux and Debris-Alazard [17] gave a security proof of the probabilistic hash-and-sign based on non-PSF trapdoor functions. Also, Grilo, Hövelmanns, Hülsing, and Majenz [32] gave a reduction from the EUF-RMA security of a signature scheme for fixed-length messages, where RMA stands for Random-Message Attack ${ }^{5}$. However, there is no known reduction to the EUF-RMA security of the underlying signature from the OW/INV assumptions of trapdoor functions. Regarding the probabilistic hash-and-sign with retry, there is no valid proof even in the ROM.

[^1]Naturally, there is no proof in the QROM, which has an impact on the security evaluation of code-based and MQ-based signatures. Our central question is:

> Q1. Is there an EUF-CMA security proof for the probabilistic hash-and-sign with retry? How tight is the security proof?

Provable Security in Multi-key Setting: The EUF-CMA security is sometimes insufficient to ensure the security of the digital signature in the real world since exploiting one of many users may be sufficient for a real-world adversary to intrude into a system. We must consider the EUF-CMA security in the multikey setting, the M-EUF-CMA security in short. The adversary, given multiple verification keys, tries to forge a valid signature for one of the verification keys. If the adversary can gain an advantage by targeting multiple keys (multi-key attack), the M-EUF-CMA security degrades with the number of keys (or users). NIST mentioned resistance to multi-key attacks as a "desirable property" in their call for proposals [46] of the PQC standardization project. We can ensure resistance against multi-key attacks if there is no security loss in the number of keys. Thus, our additional question is:

Q2. Is there an M-EUF-CMA security proof for hash-and-sign without any

 security loss in the number of keys?The technique of including an entire verification key as part of the input for the hash function is known as key prefixing, which enables one to separate the domain of the hash function for each verification key. Schnorr signature adopts key prefixing to show a tight reduction in the multi-key setting [44]. Similarly, Duman et al. [25] proposed a technique called prefix hashing for the Fujisaki-Okamoto transform of KEM. Prefix hashing is a technique in which the hash function includes only a small unpredictable portion of a verification key, resulting in a smaller increase in execution time compared to the key prefixing.

1.1 Contributions

Security Proof of Probabilistic Hash-and-Sign with Retry in the QROM: We affirmatively answer Q1. We correct the existing proof of [53] in the ROM and establish a security proof in the QROM (main theorem) based on the corrected ROM proof. Additionally, the main theorem applies to the probabilistic hash-and-sign without retry. Furthermore, we show that a signature scheme is SEUF-CMAsecure if the underlying trapdoor function is an injection. Our reduction is tighter than the existing ones that apply to the probabilistic hash-and-sign without retry only $[61,17,59]$. Fig. 1 shows a diagram of the reduction. The main theorem comprises two reductions; EUF-NMA \Rightarrow EUF-CMA and INV \Rightarrow EUF-NMA, where $\mathrm{X} \Rightarrow \mathrm{Y}$ inidicates a reduction from X to Y . The main theorem has a security bound $\left(2 q_{\text {qro }}+1\right)^{2} \epsilon_{\text {inv }}$, where $q_{\text {qro }}$ is a bound on the number of random oracle queries and $\epsilon_{\text {inv }}$ is an advantage of breaking the INV.

Fig. 1: A diagram illustrating reductions of hash-and-sign in the QROM. Red arrows represent our results, while solid, double, and dotted arrows represent tight reductions, reductions with linear or quadratic loss, and non-tight reductions.

Proof Idea: We provide a technical overview of the main theorem. To prove EUF-NMA \Rightarrow EUF-CMA, we assume that the following two values are statistically or computationally indistinguishable:
$-x$ obtained after retrying y until y becomes invertible by the trapdoor I.
$-x$ obtained by a simulator that does not use the trapdoor I.
The proof by Sakumoto et al. [53] simulates the signing oracle by programming H such that $\mathrm{H}(r, m)$ outputs $\mathrm{F}(x)$ for (r, x) chosen without using I. Since we do not assume that $\mathrm{F}(x)$ is uniform, the output of H may become biased. Therefore, their proof is flawed, and the following two additional steps are required.

First, we adapively reprogram the random function. Given a message m, the signing oracle repeatedly reprograms H such that $\mathrm{H}(r, m)=y$ holds for randomly chosen $(r, y) \in \mathcal{R} \times \mathcal{Y}$, and this reprogramming continues until the trapdoor I can provide a preimage $x \in \mathcal{X}$ of $y(\mathrm{~F}(x)=y)$. In the ROM, this reprogramming is feasible as long as r chosen in the signing oracle has not been queried in advance. In the QROM, we employ the tight adaptive reprogramming technique [32].

Next, we cancel the reprogramming during retries, specifically, reprogramming for (r, y) such that $\mathrm{I}(y)$ fails to invert, to make the simulation feasible based on the aforementioned assumption. We utilize the fact that r is chosen independently of the queried m in the signing oracle, which allows us to choose r used for reprogramming during retries at the beginning of the game. We define a set of such prechosen r as \mathcal{S}. Then, we puncture H on \mathcal{S} [1], that is, a modification of H such that the adversary cannot make a query for H on \mathcal{S}. In the ROM, this punctuation is feasible as long as the adversary does not make queries for H on \mathcal{S}. In the QROM, we utilize the semi-classical One-way to Hiding lemma [1]. As a result, we can cancel the reprogramming, as the adversary cannot distinguish whether H is reprogrammed during retries or not. After the cancelation, the EUF-NMA adversary can simulate the signing oracle.

Regarding INV \Rightarrow EUF-NMA, the INV adversary gives his challenge y to the EUF-NMA adversary and outputs x^{*} that is included in the final output
$\left(m^{*}, r^{*}, x^{*}\right)$ of the EUF-NMA adversary. In the ROM, the INV adversary randomly selects one query to H and returns his challenge y as in [53]. In the QROM, we use the measure-and-reprogram technique developed by Don et al. [23], incurring a security loss of $\left(2 q_{\text {qro }}+1\right)^{2}$. As far as we know, this usage is new in the context of the probabilistic hash-and-sign.

Applications: Applying the main theorem, we enhance the EUF-CMA security of Wave [2] and give the first proof for the SEUF-CMA security of the modified CFS signature [20] as well as the EUF-CMA security of Rainbow [22], GeMSS [16], MAYO [10], QR-UOV [29], and PROV [26] in the QROM. To the best of our knowledge, the main theorem encompasses all existing hash-andsign signatures such that reductions of INV $\Rightarrow(\mathrm{s})$ EUF-CMA are known in the ROM. NIST has recently announced additional candidates for post-quantum signatures. NIST has the intention of standardizing schemes that are not based on structured lattices [47]. The main theorem has wide application in code-based and MQ-based cryptography, promising candidates for this call. The additional candidates include Wave, MAYO, QR-UOV, and PROV. Notably, QR-UOV and PROV have utilized the main theorem in their specifications [29, 26].

Security Proof in Multi-Key Setting: We introduce a generic method for establishing a reduction from the property of trapdoor functions in the single-instance setting to the security of the hash-and-sign with prefix hashing in the multi-key setting. The core idea behind this generic method is to apply pairs of randomly generated transformations $\left\{\mathrm{L}_{j}, \mathrm{R}_{j}\right\}_{j}$ to a single verification key F^{\prime}. Here, F^{\prime} belongs to another trapdoor function, assumed to be non-invertible. This process effectively simulates multiple verification keys through $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}_{j}$. Assuming the indistinguishability between $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}_{j}$ and real verification keys $\left\{\mathrm{F}_{j}\right\}_{j}$, we show a reduction of INV $\Rightarrow \mathrm{M}$-EUF-CMA with a security bound $\left(2 q_{\mathrm{qro}}+1\right)^{2} \epsilon_{\text {inv }}$ and a tight reduction of $\mathrm{CR} \Rightarrow \mathrm{M}-\mathrm{sEUF}-\mathrm{CMA}$. Since there is no security loss in the number of keys, we can affirmatively answer Q2. Furthermore, we apply the generic method to some hash-and-sign signatures. In these applications, we introduce some computational problems that can computationally ensure the indistinguishability between $\left\{\mathrm{L}_{j} \circ \mathrm{~F} \circ \mathrm{R}_{j}\right\}_{j}$ and $\left\{\mathrm{F}_{j}\right\}_{j}$. However, establishing the hardness of these computational problems remains an open problem as they have not been extensively studied.

Concurrent Work: Liu, Jiang, and Zhao [41] show the EUF-CMA security of the deterministic/probabilistic hash-and-sign based on trapdoor permutations in the QROM by using the measure-and-reprogram technique by Don et al. [23]. Their security bound is $\left(2\left(q_{\text {qro }}+q_{\text {sign }}+1\right)+1\right)^{2} \epsilon_{\text {inv }}$, where $q_{\text {sign }}$ is a bound on the number of signing queries. They also give an analysis for (H)IBE in the QROM. Our work has two advantages over their work on hash-and-sign. First, our work has wider applications since it has generality in its application to probabilistic hash-and-sign with/without retry, in contrast to the restriction of [41] to
the deterministic/probabilistic hash-and-sign ${ }^{6}$ and allows the usage of non-PSF trapdoor functions, generalization of trapdoor permutations. Second, the main theorem has the bound $\left(2 q_{\text {qro }}+1\right)^{2} \epsilon_{\text {inv }}$, which does not include $q_{\text {sign }}$.

Two papers [21, 3] recently pointed out a subtle flaw in the security proofs of Fiat-Shamir with aborts [42] in the QROM [37, 32]. The flaw stems from the bias introduced by the simulation with abort, which we treat in EUF-NMA \Rightarrow EUF-CMA carefully. We note that the games in the corrected proof in [3] are defined in the same spirit as our proof of EUF-NMA \Rightarrow EUF-CMA while the proof techniques and the details are different. Leveraging its structural resemblance to the probabilistic hash-and-sign with retry, we present an alternative security proof for the Fiat-Shamir with aborts by employing the same techniques used in the main theorem of this paper.

Organization: Section 2 gives notations, definitions, and so on. Section 3 reviews the existing security proofs in the (Q)ROM. Section 4 presents the main theorem and discusses applications. In Section 5, we describe the generic method applied in the multi-key setting. Appendix A demonstrates a flaw in the security proof of concurrent work [41]. Appendix B presents security proofs of hash-and-sign signatures reviewed in Appendix C. Appendices D and E show missing proofs for the theorem in the multi-key setting. Appendix F shows applications of the generic method in the multi-key setting. Appendix G provides a security proof for the Fiat-Shamir with aborts, employing the same techniques as the main theorem.

2 Preliminaries

2.1 Notations and Terminology

For $n \in \mathbb{N}$, we let $[n]:=\{1, \ldots, n\}$. We write any symbol for sets in calligraphic font. For a finite set $\mathcal{X},|\mathcal{X}|$ is the cardinality of \mathcal{X} and $\mathrm{U}(\mathcal{X})$ is the uniform distribution over \mathcal{X}. By $x \leftarrow_{\mathcal{S}} \mathcal{X}$ and $x \leftarrow \mathcal{D}_{\mathcal{X}}$, we denote the sampling of an element from $\mathrm{U}(\mathcal{X})$ and $\mathcal{D}_{\mathcal{X}}$ (distribution on \mathcal{X}). We denote a set of functions having a domain \mathcal{X} and a range \mathcal{Y} by $\mathcal{Y}^{\mathcal{X}}$.

We write any symbol for functions in sans-serif font and adversaries in calligraphic font. Let F be a function, and \mathcal{A} be an adversary. We denote by $y \leftarrow \mathrm{~F}^{\mathrm{H}}(x)$ and $y \leftarrow \mathcal{A}^{\mathrm{H}}(x)$ (resp., $y \leftarrow \mathrm{~F}^{|\mathrm{H}\rangle}(x)$ and $y \leftarrow \mathcal{A}^{|\mathrm{H}\rangle}(x)$) probabilistic computations of F and \mathcal{A} on input x with a classical (resp., quantum) oracle access to a function H . If F and \mathcal{A} are deterministic, we write $y:=\mathrm{F}^{\mathrm{H}}(x)$ and $y:=\mathcal{A}^{\mathrm{H}}(x)$. For a random function H , we denote by $\mathrm{H}^{x^{*} \rightarrow y^{*}}$ a function such that $\mathbf{H}^{x^{*} \mapsto y^{*}}(x)=\mathbf{H}(x)$ for $x \neq x^{*}$ and $\mathbf{H}^{x^{*} \mapsto y^{*}}\left(x^{*}\right)=y^{*}$. The notation $\mathrm{G}^{\mathcal{A}} \Rightarrow y$ denotes an event in which a game G played by \mathcal{A} returns y.

We denote 1 if the Boolean statement is true T and 0 if the statement is false \perp. A binary operation $a \stackrel{?}{=} b$ outputs \top if $a=b$ and outputs \perp otherwise.

[^2]| Game: EUF-CMA $\quad \operatorname{Sign}\left(m_{i}\right)$ | Game: EUF-NMA |
| :---: | :---: |
| $1 \mathcal{Q}:=\emptyset \quad{ }^{1} \sigma_{i} \leftarrow \operatorname{Sig} . \operatorname{Sign}\left(s k, m_{i}\right)$ | $1(v k, s k) \leftarrow \operatorname{Sig} . \operatorname{KeyGen}\left(1^{\lambda}\right)$ |
| $2(v k, s k) \leftarrow \operatorname{Sig}$. KeyGen $\left(1^{\lambda}\right) \mathbf{2}^{2} \mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\}$ | $2\left(m^{*}, \sigma^{*}\right) \leftarrow \mathcal{A}_{\text {nma }}(v k)$ |
| $3\left(m^{*}, \sigma^{*}\right) \leftarrow \mathcal{A}_{\text {cma }}^{\text {Sign }}(v k) \quad 3$ return σ_{i} | 3 return Sig.Verify ($\left.v k, m^{*}, \sigma^{*}\right)$ |
| 4 if $m^{*} \in \mathcal{Q}$ then | |
| 5 return 0 | |
| 6 return Sig.Verify $\left(v k, m^{*}, \sigma^{*}\right)$ | |

Fig. 2: EUF-CMA and EUF-NMA games

2.2 Digital Signature and Trapdoor Function

Definition 1 (Digital Signature). A digital signature scheme Sig consists of three algorithms:

Sig.KeyGen (1^{λ}): This algorithm takes the security parameter 1^{λ} as input and outputs a verification key $v k$ and a signing key sk.
Sig.Sign $(s k, m)$: This algorithm takes a signing key sk and a message m as input and outputs a signature σ.
Sig. $\operatorname{Vrfy}(v k, m, \sigma)$: This algorithm takes a verification key $v k$, a message m, and a signature σ as input, and outputs \top (acceptance) or \perp (rejection).

We say Sig is correct if, for all $(v k, s k) \leftarrow \operatorname{Sig} . \operatorname{KeyGen}\left(1^{\lambda}\right)$ and for all $m \in \mathcal{M}$, $\operatorname{Pr}[\operatorname{Sig} . \operatorname{Vrfy}(v k, m, \operatorname{Sig} . \operatorname{Sign}(s k, m))=\perp]$ is negligible.

Definition 2 (Security of Signature). Let Sig be a signature scheme. Using games given in Fig. 2, we define advantage functions of adversaries playing EUF-CMA (Existential UnForgeability against Chosen-Message Attack) and EUF-NMA (No-Message Attack) games against Sig as $\operatorname{Adv}_{\mathrm{Sig}}^{\mathrm{EUF}} \mathrm{CMA}\left(\mathcal{A}_{\mathrm{cma}}\right)=$ $\operatorname{Pr}\left[E U F-C M A \mathcal{A}_{\text {cma }} \Rightarrow 1\right]$ and $\operatorname{Adv}_{\text {Sig }}^{\text {EUF-NMA }}\left(\mathcal{A}_{\mathrm{nma}}\right)=\operatorname{Pr}\left[E U F-N M A \mathcal{A}_{\mathrm{nma}} \Rightarrow 1\right]$, respectively. Also, we define an advantage function for an SEUF-CMA (strong EUF-CMA) game as $\operatorname{Adv}_{\mathrm{Sig}}^{\mathrm{SEUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right)=\operatorname{Pr}\left[\mathrm{sEUF}-\mathrm{CMA} \mathcal{A}_{\mathrm{cma}} \Rightarrow 1\right]$, where the sEUF-CMA game is identical to the EUF-CMA game except that Line 4 of the game is changed as " if $\left(m^{*}, \sigma^{*}\right) \in \mathcal{Q}$ then" and Line 2 of the signing oracle is changed as " $\mathcal{Q}:=\mathcal{Q} \cup\left\{\left(m_{i}, \sigma_{i}\right)\right\}$ ". We say Sig is EUF-CMA-secure, sEUF-CMA-secure, or EUF-NMA-secure if its corresponding advantage is negligible for any efficient adversary in the security parameter.

Definition 3 (Trapdoor Function). A trapdoor function T consists of three algorithms:

Gen $\left(1^{\lambda}\right)$: This algorithm takes the security parameter 1^{λ} as input and outputs a function F with a trapdoor I of F .
$\mathrm{F}(x)$: This algorithm takes $x \in \mathcal{X}$ and deterministically outputs $\mathrm{F}(x) \in \mathcal{Y}$.
$\mathrm{I}(y)$: This algorithm takes $y \in \mathcal{Y}$ and outputs $x \in \mathcal{X}$, s.t., $\mathrm{F}(x)=y$, or outputs \perp.

Game: INV	Game: OW	Game: CR
${ }_{1}(\mathrm{~F}, \mathrm{l}) \leftarrow \mathrm{Gen}\left(1^{\lambda}\right)$	$\mathrm{I}^{\mathbf{1}(\mathrm{F}, \mathrm{l}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)}$	
$\begin{array}{ll}2 & y \leftarrow \& \\ 3 & x^{*} \leftarrow \mathcal{B}_{\text {inv }}(\mathrm{F}, y)\end{array}$	$2 x \leftarrow \mathcal{D}_{\mathcal{X}}$ $\mathbf{3} y:=\mathrm{F}(x)$	$2\left(x_{1}^{*}, x_{2}^{*}\right) \leftarrow \mathcal{B}_{\text {cr }}(\mathrm{F})$
$3 x^{*} \leftarrow \mathcal{B}_{\text {inv }}(\mathrm{F}, y)$	$\begin{array}{ll} 3 & y:=\mathrm{F}(x) \\ 4 & x^{*} \leftarrow \mathcal{B}_{\text {ow }}(\mathrm{F}, y) \end{array}$	3 return $\mathrm{F}\left(x_{1}^{*}\right) \stackrel{?}{=} \mathrm{F}\left(x_{2}^{*}\right)$

Fig. 3: INV (non-INVertibility), OW (One-Wayness), and CR (CollisionResistance) games

Definition 4 (Security of Trapdoor Function). Let T be a trapdoor function. Using games given in Fig. 3, we define advantage functions of adversaries playing the INV (non-INVertibility) ${ }^{7}$, OW (One-Wayness), and CR (CollisionResistance) games against T as $\operatorname{Adv}_{\top}^{\mathrm{INV}^{\prime}}\left(\mathcal{B}_{\text {inv }}\right)=\operatorname{Pr}\left[\mathrm{INV}^{\mathcal{B}_{\text {inv }}} \Rightarrow 1\right], \operatorname{Adv}_{\top}^{\mathrm{OW}}\left(\mathcal{B}_{\mathrm{ow}}\right)=$ $\operatorname{Pr}\left[\mathrm{OW}^{\mathcal{B}_{\mathrm{ow}}} \Rightarrow 1\right]$, and $\operatorname{Adv}_{\mathrm{T}}^{\mathrm{CR}}\left(\mathcal{B}_{\mathrm{cr}}\right)=\operatorname{Pr}\left[\mathrm{CR}^{\mathcal{B}_{\mathrm{cr}}} \Rightarrow 1\right]$, respectively. We say T is non-invertible, one-way, or collision-resistant if its corresponding advantage is negligible in the security parameter for any efficient adversary.

2.3 Preimage-Sampleable Function

In the ROM, hash-and-sign is EUF-CMA-secure when instantiated with a preimage-sampleable function (PSF) [30]. We first define its weakened version.
Definition 5 (Weak Preimage-Sampleable Function (WPSF)). A WPSF T is a trapdoor function that is equipped with an additional function SampDom(F), which takes as input $\mathrm{F} \in \mathcal{Y}^{\mathcal{X}}$ and outputs some $x \in \mathcal{X}$.

We then review PSF:
Definition 6 (Preimage-Sampleable Function (PSF) [30]). A WPSF T is said to be a PSF if it satisfies three conditions for any $(\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$:

Condition 1: $\mathrm{F}(x)$ is uniform over \mathcal{Y} for $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$.
Condition 2: $x \leftarrow \mathrm{I}(y)$ follows a distribution of $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$ given $\mathrm{F}(x)=y$.
Condition 3: $\mathfrak{I}(y)$ outputs x satisfying $\mathrm{F}(x)=y$ for any $y \in \mathcal{Y}$.
If \top is collision-resistant PSF, it satisfies the above conditions plus the following:
Condition 4: For any $y \in \mathcal{Y}$, the conditional min-entropy of $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$ given $\mathrm{F}(x)=y$ is at least $\omega(\log (\lambda))$.

In the proof of EUF-CMA security, a trapdoor function may not be a PSF, but it must be a WPSF that satisfies a relaxed version of Condition 2 that ensures indistinguishability between $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$ and $x \leftarrow \mathrm{I}(y)$. To define this relaxed condition, we introduce a game shown in Fig. 4.

[^3]| Game: PS_{b} | Sample $_{0}()$ | Sample $_{1}()$ |
| :---: | :---: | :---: |
| $1(\mathrm{~F}, \mathrm{l}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$ | 1 repeat | $1 x_{i} \leftarrow$ SampDom(F) |
| $2 b^{*} \leftarrow \mathcal{D}_{\text {ps }}^{\text {Sample }_{b}}(\mathrm{~F})$ | $2 \quad y_{i} \leftarrow \$ \mathcal{Y}$ | 2 return x_{i} |
| 3 return ${ }^{*}$ | $3 \quad x_{i} \leftarrow \mathrm{I}\left(y_{i}\right)$ | |
| | 4 until $x_{i} \neq \perp$
 5 return x_{i} | |

Fig. 4: PS (Preimage Sampling) game

Game: M-EUF-CMA	$\operatorname{Sign}\left(j, m_{i}\right)$
$1 \quad \mathcal{Q}:=\emptyset$	$1 \sigma_{i} \leftarrow \operatorname{Sig} . \operatorname{Sign}\left(s k_{j}, m_{i}\right)$
2 for $j \in\left[q_{\text {key }}\right]$ do	$2 \mathcal{Q}:=\mathcal{Q} \cup\left\{\left(j, m_{i}\right)\right\}$
$3 \quad\left(v k_{j}, s k_{j}\right) \leftarrow \operatorname{Sig} . \operatorname{KeyGen}\left(1^{\lambda}\right)$	3 return σ_{i}
5 if $\left(j^{*}, m^{*}\right) \in \mathcal{Q}$ then	
6 return 0	
7 return Sig.Verify $\left(v k_{j^{*}}, m^{*}, \sigma^{*}\right)$	

Fig. 5: M-EUF-CMA (Multi-key EUF-CMA) game

Definition 7 (Preimage Sampling (PS) Game). Let T be a WPSF. Using a game defined in Fig. 4, we define an advantage function of an adversary playing the PS game against T as $\operatorname{Adv}_{\mathrm{T}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=\left|\operatorname{Pr}\left[\mathrm{PS}_{0}^{\mathcal{D}_{\mathrm{ps}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{PS}_{1}^{\mathcal{D}_{\mathrm{ps}}} \Rightarrow 1\right]\right|$. We say T is preimage-simulatable if its advantage is negligible for any efficient adversary.

2.4 Security Games in Multi-key/Multi-instance Settings

Definition 8 (Security of Signature in Multi-key Setting [38]). Let Sig be a signature scheme. Using a game given in Fig. 5, we define advantage functions of adversaries playing the M-EUF-CMA and M-sEUF-CMA (Multikey EUF-CMA/sEUF-CMA) games against Sig as $\operatorname{Adv}_{\mathrm{Sig}}^{\mathrm{M}-E U F-C M A}\left(\mathcal{A}_{\mathrm{cma}}{ }^{\mathrm{m}}\right)=$ $\operatorname{Pr}\left[\mathrm{M}-E U F-C M A \mathcal{A}^{\mathcal{A}_{\text {cmam }}} \Rightarrow 1\right]$ and $\operatorname{Adv}_{\mathrm{Sig}}^{\mathrm{M}-\mathrm{sEUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}{ }^{\mathrm{m}}\right)=\operatorname{Pr}\left[\mathrm{M}-\mathrm{sEUF}-\mathrm{CMA}{ }^{\mathcal{A}_{c m a} \mathrm{~m}} \Rightarrow 1\right]$, where the M-sEUF-CMA game is identical to the M-EUF-CMA game except that Line 5 of the game is changed as "if $\left(j^{*}, m^{*}, \sigma^{*}\right) \in \mathcal{Q}$ then" and Line 2 of the signing oracle is changed as " $\mathcal{Q}:=\mathcal{Q} \cup\left\{\left(j, m_{i}, \sigma_{i}\right)\right\}$ ". We say sig is M-EUF-CMA-secure or M-sEUF-CMA-secure if its corresponding advantage is negligible for any efficient adversary in the security parameter.

Definition 9 (INV, CR, and PS in Multi-instance Setting). Let T be a trapdoor function or WPSF. Using games given in Fig. 6, we define advantage functions of adversaries playing the M-INV, M-CR, and M-PS (Multi-instance non-invertibility, collision resistance, and preimage sampling) games against T as $\operatorname{Adv}_{\mathrm{T}}^{\mathrm{M}-\mathrm{INV}}\left(\mathcal{B}_{\text {invm}}\right)=\operatorname{Pr}\left[\mathrm{M}-\mathrm{INV} V^{\mathcal{B}_{\text {invm }}} \Rightarrow 1\right], \operatorname{Adv}_{\mathrm{T}}^{\mathrm{M}-\mathrm{CR}}\left(\mathcal{B}_{\mathrm{crm}}\right)=\operatorname{Pr}\left[\mathrm{M}-\mathrm{CR}^{\mathcal{B}_{\mathrm{crm}}} \Rightarrow 1\right]$, and $\operatorname{Adv}_{\mathrm{T}}^{\mathrm{M}-\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}^{m}}\right)=\left|\operatorname{Pr}\left[\mathrm{M}-\mathrm{PS}_{0}^{\mathcal{D}_{\mathrm{psm}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{M}-\mathrm{PS}_{1}^{\mathcal{D}_{\mathrm{ps}}}{ }^{\mathrm{m}} \Rightarrow 1\right]\right|$, respectively. We

$\begin{aligned} & \text { GAME: } \mathrm{M} \text {-INV } \\ & \hline \mathbf{1} \text { for } j \in\left[q_{\text {inst }}\right] \text { do } \\ & \mathbf{2}\left(\mathrm{F}_{j}, I_{j}\right) \overleftarrow{\$}_{\$} \operatorname{Gen}\left(1^{\lambda}\right) \\ & \mathbf{3} y_{j} \leftarrow_{\$} \mathcal{Y} \\ & \left.\mathbf{4}\left(j^{*}, x^{*}\right) \leftarrow \mathcal{B}_{\text {invm }}\left\{\left(\mathrm{F}_{j}, y_{j}\right)\right\}_{j \in\left[q_{\text {inst }}\right)}\right) \\ & \mathbf{5} \text { return } \mathrm{F}_{j^{*}}\left(x^{*}\right) \stackrel{?}{=} y_{j^{*}} \end{aligned}$		
		$\begin{aligned} & \frac{\operatorname{Sample}_{1}(j)}{1} \begin{array}{l} x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{j}\right) \\ 2 \text { return } x_{i} \end{array} \end{aligned}$

Fig. 6: M-INV, M-CR, and M-PS (Multi-instance INV, CR, and PS) games

HaS[T, H].KeyGen(1^{λ})	$\underline{\mathrm{HaS}[\mathrm{T}, \mathrm{H}] . \operatorname{Sign}(\mathrm{I}, m)}$	$\underline{\mathrm{HaS}[\mathrm{T}, \mathrm{H}] . \operatorname{Vrfy}(\mathrm{F}, m,(r, x))}$
$\begin{aligned} & (F, I) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right) \\ & \text { return }(F, I) \end{aligned}$	$\begin{aligned} & \text { repeat } \\ & \quad r \leftarrow \$ \mathcal{R} \\ & x \leftarrow \mathrm{I}(\mathrm{H}(r, m)) \\ & \text { until } x \neq \perp \\ & \text { return }(r, x) \end{aligned}$	1 return $\mathrm{F}(x) \stackrel{?}{=} \mathrm{H}(r, m)$

Fig. 7: Algorithms of the probabilistic hash-and-sign with retry
say T is multi-instance non-invertible, multi-instance collision-resistant, or multiinstance preimage-simulatable if its corresponding advantage is negligible in the security parameter for any efficient adversary.

2.5 Hash-and-Sign Paradigm

Fig. 7 shows algorithms of the probabilistic hash-and-sign with retry, and $\mathrm{HaS}[\mathrm{T}, \mathrm{H}]$ is a signature scheme using a trapdoor function T and a hash function H . If $\mathrm{HaS}[\mathrm{T}, \mathrm{H}]$. Sign outputs a signature without retry, $\mathrm{HaS}[\mathrm{T}, \mathrm{H}]$ instantiates the probabilistic hash-and-sign. If r is empty, $\mathrm{HaS}[\mathrm{T}, \mathrm{H}]$ instantiates the deterministic hash-and-sign.

2.6 Quantum Random Oracle Model (QROM)

In the ROM, a hash function $\mathrm{H}: \mathcal{R} \times \mathcal{M} \rightarrow \mathcal{Y}$ is modeled as a random function $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$. The random function is under the control of the challenger, and the adversary makes queries to the random oracle (random oracle queries) to compute the hash values. In the ROM, the challenger can choose $y \leftarrow_{\$} \mathcal{Y}$ and program $\mathrm{H}:=\mathrm{H}^{(r, m) \mapsto y}$ for queried (r, m) on-the-fly instead of choosing $\mathrm{H} \leftarrow_{\$}$ $\mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$ at the beginning (lazy sampling technique).

In the QROM, the adversary makes queries to H in a superposition of many different values, e.g., $\sum_{(r, m)} \alpha_{r, m}|r, m\rangle|y\rangle$. The challenger computes H and gives

Game: AR_{b}	$\operatorname{Repro}\left(m_{i}\right)$
$1 \mathrm{H}_{0} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$	$1 r_{i} \leftarrow \mathcal{D}_{\mathcal{R}}$
$2 \mathrm{H}_{1}:=\mathrm{H}_{0}$	$2 y_{i} \leftarrow \$ \mathcal{Y}$
$3 b^{*} \leftarrow \mathcal{D}_{\mathrm{ar}}^{\left\|\mathrm{a}_{\mathrm{r}}\right\rangle}{ }^{*}$,Repro ${ }^{\text {a }}$)	$3 \mathrm{H}_{1}:=\mathrm{H}_{1}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}$
4 return b^{*}	4 return r_{i}

Fig. 8: AR (Adaptive Reprogramming) game
a superposition of the results to the adversary, $\sum_{(r, m)} \alpha_{r, m}|r, m\rangle|y \oplus \mathrm{H}(r, m)\rangle$. Due to the nature of superposition queries in the QROM, traditional proof techniques like lazy sampling used in the ROM cannot be directly applied in the QROM. However, some works enable one to adaptively reprogram H in the security game $[58,35,23,32]$. Among the works, we use the tight adaptive reprogramming technique [32] and the measure-and-reprogram technique [23]. Also, we use the semi-classical O2H technique [1].

2.7 Proof Techniques in QROM

We introduce three techniques employed in proving the main theorem.
Tight Adaptive Reprogramming Technique [32]: Fig. 8 shows a game called AR (Adaptive Reprogramming) game, in which the adversary $\mathcal{D}_{\text {ar }}$ attempts to distinguish H_{0} (no reprogramming) from H_{1} (reprogrammed by Repro). For i-th reprogramming query, the challenger reprograms H_{1} for $r_{i} \leftarrow \mathcal{D}_{\mathcal{R}}$ and $y_{i} \leftarrow_{\delta} \mathcal{Y}$, and gives r_{i} to $\mathcal{D}_{\text {ar }}$. Let ϵ be a bound on the maximum probability of $r \leftarrow \mathcal{D}_{\mathcal{R}}$, that is, $\max _{\hat{r} \in \mathcal{R}} \operatorname{Pr}\left[r=\hat{r}: r \leftarrow \mathcal{D}_{\mathcal{R}}\right] \leq \epsilon$. A distinguishing advantage of the AR game is defined by $\operatorname{Adv}_{\mathrm{H}}^{\mathrm{AR}}\left(\mathcal{D}_{\mathrm{ar}}\right)=\left|\operatorname{Pr}\left[\operatorname{AR}_{0}^{\mathcal{D}_{\mathrm{D}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{AR}_{1}^{\mathcal{D}_{\mathrm{ar}}} \Rightarrow 1\right]\right|$.
Lemma 1 (Tight Adaptive Reprogramming Technique [32, Proposition 2]). For any quantum AR adversary $\mathcal{D}_{\mathrm{ar}}$ issuing at most $q_{\text {rep }}$ classical reprogramming queries and $q_{\text {qro }}$ (quantum) random oracle queries to H_{b}, the distinguishing advantage of the AR game is bounded by

$$
\operatorname{Adv}_{\mathrm{H}}^{\mathrm{AR}}\left(\mathcal{D}_{\mathrm{ar}}\right) \leq \frac{3}{2} q_{\text {rep }} \sqrt{q_{\text {qro }}} \epsilon .
$$

Especially, if $\mathcal{D}_{\mathcal{R}}$ is the uniform distribution $\mathbf{U}(\mathcal{R})$, then ϵ is equal to $\frac{1}{|\mathcal{R}|}$.
Measure-and-Reprogram Technique [23]: Let \mathcal{A} be a quantum adversary playing a search-type game making $q_{\text {qro }}$ quantum queries to $\mathrm{H} \leftarrow_{\S} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$. A two-stage algorithm S comprises S_{1} and S_{2}, and it operates with black-box access to \mathcal{A} as follows:

1. Choose $(i, b) \leftarrow_{\varsigma}\left(\left[q_{\text {qro }}\right] \times\{0,1\}\right) \cup\left\{\left(q_{\text {qro }}+1,0\right)\right\}$.
2. Run \mathcal{A} with H until i-th query.
3. Measure i-th query and output (r, m) as the output of S_{1}.
4. Given a random θ, reprogram $\mathrm{H}^{\prime}=\mathrm{H}^{(r, m) \mapsto \theta}$.
5. If $i=q_{\text {qro }}+1$, then go to Step 8 .
6. Answer i-th query with $\mathrm{H}($ if $b=0)$ or $\mathrm{H}^{\prime}($ if $b=1)$.
7. Run \mathcal{A} with H^{\prime} until the end.
8. Output \mathcal{A} 's output z (possibly quantum) as the output of S_{2}.

Then, the following lemma holds for S and \mathcal{A} :
Lemma 2 (Measure-and-Reprogram Technique [23, Theorem 2]). For any quantum adversary \mathcal{A} issuing at most $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$, there exists a two-stage algorithm S given uniformly chosen θ such that for any $(\hat{r}, \hat{m}) \in \mathcal{R} \times \mathcal{M}$ and any predicate V ,

$$
\begin{aligned}
& \operatorname{Pr}\left[(r, m)=(\hat{r}, \hat{m}) \wedge \mathrm{V}(r, m, \theta, z):(r, m) \leftarrow \mathrm{S}_{1}^{\mathcal{A}}(), z \leftarrow \mathrm{~S}_{2}^{\mathcal{A}}(\theta)\right] \\
& \geq \frac{1}{\left(2 q_{\mathrm{qro}}+1\right)^{2}} \operatorname{Pr}\left[(r, m)=(\hat{r}, \hat{m}) \wedge \mathrm{V}(r, m, \mathrm{H}(r, m), z):(r, m, z) \leftarrow \mathcal{A}^{|\mathrm{H}\rangle}()\right]
\end{aligned}
$$

Semi-classical O2H Technique [1]: We define punctured oracle following [12].
Definition 10 (Punctured Oracle [12, Definition 1]). Let $\mathcal{S} \subset \mathcal{R} \times \mathcal{M}$ be a set. Let $\mathrm{f}_{\mathcal{S}}: \mathcal{R} \times \mathcal{M} \rightarrow\{0,1\}$ be a predicate that returns 1 if and only if $(r, m) \in \mathcal{S}$. Punctured oracle $\mathrm{H} \backslash \mathcal{S}$ (H punctured by \mathcal{S}) of $\mathrm{H} \in \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$ runs as follows: on input (r, m), computes whether $(r, m) \in \mathcal{S}$ in an auxilliary qubit $\left|\mathrm{f}_{\mathcal{S}}(r, m)\right\rangle$, measures $\left|\mathrm{f}_{\mathcal{S}}(r, m)\right\rangle$, runs $\mathrm{H}(r, m)$, and returns the result. Let FIND be an event that any of measurements of $\left|\mathrm{f}_{\mathcal{S}}(r, m)\right\rangle$ returns 1.

The answer from the oracle $\mathrm{H} \backslash \mathcal{S}$ depends on the measurement results. Let us consider a query $\sum_{(r, m)} \alpha_{r, m}|r, m\rangle|y\rangle . \mathrm{H} \backslash \mathcal{S}$ computes $\sum_{(r, m)} \alpha_{r, m}|r, m\rangle|y\rangle\left|\mathrm{f}_{\mathcal{S}}(r, m)\right\rangle$ and measures the third register. If the result is 0 , then the query is transformed to $\sum_{(r, m) \notin \mathcal{S}} \alpha_{r, m}|r, m\rangle|y\rangle|0\rangle$ and $\mathrm{H} \backslash \mathcal{S}$ returns $\sum_{(r, m) \notin \mathcal{S}} \alpha_{r, m}|r, m\rangle|y \oplus \mathrm{H}(r, m)\rangle$ to the adversary. If the results is 1 (and thus, FIND $=\top$ holds), $\mathrm{H} \backslash \mathcal{S}$ returns $\sum_{(r, m) \in \mathcal{S}} \alpha_{r, m}|r, m\rangle|y \oplus \mathrm{H}(r, m)\rangle$ to the adversary. Thus, if FIND $=\perp$, then the adversary cannot obtain any information on $\mathrm{H}(r, m)$ for $(r, m) \in \mathcal{S}$. Hence, we have the following:

Lemma 3 (Indistinguishability of Punctured Oracles [1, Lemma 1]). Let $\mathrm{H}_{0}, \mathrm{H}_{1}: \mathcal{R} \times \mathcal{M} \rightarrow \mathcal{Y}$ and $\mathcal{S} \subset \mathcal{R} \times \mathcal{M}$, and z be a bitstring. ($\mathcal{S}, \mathrm{H}_{0}, \mathrm{H}_{1}$, and z are taken from arbitrary joint distribution satisfying $\mathrm{H}_{0}(r, m)=\mathrm{H}_{1}(r, m)$ for any $(r, m) \notin \mathcal{S}$.) For any quantum adversary \mathcal{A} and any event E ,

$$
\operatorname{Pr}\left[\mathrm{E} \wedge \mathrm{FIND}=\perp: b \leftarrow \mathcal{A}^{\left|\mathrm{H}_{0} \backslash \mathcal{S}\right\rangle}(z)\right]=\operatorname{Pr}\left[\mathrm{E} \wedge \mathrm{FIND}=\perp: b \leftarrow \mathcal{A}^{\left|\mathrm{H}_{1} \backslash \mathcal{S}\right\rangle}(z)\right]
$$

The following lemma provides a bound on the advantage gap between the original game and a game with a punctured oracle by considering the probability of FIND $=T$.

Lemma 4 (Semi-classical O2H Technique [1, Theorem 1]). Let H: $\mathcal{R} \times$ $\mathcal{M} \rightarrow \mathcal{Y}$ and $\mathcal{S} \subset \mathcal{R} \times \mathcal{M}$, and z be a bitstring. (\mathcal{S}, H, and z are taken from arbitrary joint distribution.) For any quantum adversary \mathcal{A} issuing at most $q_{\text {qro }}$ (quantum) random oracle queries to H ,

$$
\begin{aligned}
\mid \operatorname{Pr}\left[1 \leftarrow \mathcal{A}^{|\mathrm{H}\rangle}(z)\right]-\operatorname{Pr}[1 \leftarrow & \left.\mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z) \wedge \mathrm{FIND}=\perp\right] \mid \\
& \leq \sqrt{\left(q_{\mathrm{qro}}+1\right) \operatorname{Pr}\left[\mathrm{FIND}=\top: b \leftarrow \mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z)\right]}
\end{aligned}
$$

Furthermore, the following provides a bound on $\operatorname{Pr}\left[\operatorname{FIND}=\top: b \leftarrow \mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z)\right]$.

Lemma 5 (Search in Semi-classical Oracle [1, Theorem 2 and Corollary 1]). Let \mathcal{A} be a quantum adversary issuing at most $q_{\text {qro }}$ (quantum) random oracle queries to H . Let $\mathcal{B}^{|\mathrm{H}\rangle}(z)$ be an algorithm that runs as follows: Picks $i \leftarrow_{\$}\left[q_{\mathrm{qro}}\right]$, runs $\mathcal{A}^{|\mathrm{H}\rangle}(z)$ until just before i-th query, measures a query input register in the computational basis, and outputs the measurement outcome as (r, m). Then,

$$
\operatorname{Pr}\left[\operatorname{FIND}=\top: b \leftarrow \mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z)\right] \leq 4 q_{\text {qro }} \operatorname{Pr}\left[(r, m) \in \mathcal{S}:(r, m) \leftarrow \mathcal{B}^{|\mathrm{H}\rangle}(z)\right]
$$

In particular, if for each $(r, m) \in \mathcal{S}, \operatorname{Pr}[(r, m) \in \mathcal{S}] \leq \epsilon$ (conditioned on z, on other oracles \mathcal{A} has access to, and on other outputs of H), then

$$
\operatorname{Pr}\left[\mathrm{FIND}=\top: b \leftarrow \mathcal{A}^{|\mathrm{H} \backslash \mathcal{S}\rangle}(z)\right] \leq 4 q_{\mathrm{qro}} \epsilon
$$

3 Existing Security Proofs

We review the existing security proofs, including our own, and summarize them in Table 2.

Security Proof in the ROM [6, 30, 53]: Let $\mathrm{T}_{\text {psf }}$ be a PSF. A reduction of INV \Rightarrow EUF-CMA of $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}\right]$ in the ROM is given by the lazy sampling and programming. The INV adversary $\mathcal{B}_{\text {inv }}$, given a challenge (F, y), simulates the EUF-CMA game played by an adversary $\mathcal{A}_{\mathrm{cma}}$ as follows: For a random oracle query $(r, m), \mathcal{B}_{\text {inv }}$ returns $\mathrm{F}(x)$ for $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$ and stores (r, m, x) in a database \mathcal{D}. If $(r, m, x) \in \mathcal{D}$ with some x, then $\mathcal{B}_{\text {inv }}$ gives $\mathrm{F}(x)$ to $\mathcal{A}_{\text {cma }}$. For a signing query $m, \mathcal{B}_{\text {inv }}$ chooses (r, x) by $r \leftarrow{ }_{\$} \mathcal{R}$ and $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$. If $(r, m, *) \notin \mathcal{D}, \mathcal{B}_{\text {inv }}$ returns (r, x) and stores (r, m, x) in \mathcal{D}; otherwise $\mathcal{B}_{\text {inv }}$ returns stored (r, x). From Condition 1 of PSF ($\mathrm{F}(x)$ is uniform), $\mathcal{B}_{\text {inv }}$ can use $\mathrm{F}(x)$ as an output of the random function. Also from Conditions 2 and $\mathbf{3}, \mathcal{B}_{\text {inv }}$ can simulate an honestly generated signature $x_{i} \leftarrow \mathrm{I}\left(\mathrm{H}\left(r_{i}, m_{i}\right)\right)$ by $x_{i} \leftarrow \operatorname{SampDom}(\mathrm{~F})$. To win the INV game, $\mathcal{B}_{\text {inv }}$ gives his query y to $\mathcal{A}_{\mathrm{cma}}$ in one of $\left(q_{\mathrm{sign}}+q_{\mathrm{ro}}+1\right)$ queries to H . If $\mathcal{A}_{\mathrm{cma}}$ outputs a valid signature $\left(m^{*}, r^{*}, x^{*}\right)$ and $\mathrm{H}\left(r^{*}, m^{*}\right)=y$ holds,

Table 2: Summary of the existing and our security proofs. In "Conditions of PSF", \checkmark indicates this condition of PSF (see Definition 6) is necessary, and $\checkmark^{1} / \checkmark^{2}$ indicate that Condition 2 is relaxed as "A bound δ on average of $\delta_{\mathrm{F}, \mathrm{I}}$ is negligible" and " $\epsilon_{\mathrm{ps}}=\operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)$ is negligible". In "Target scheme", $\mathrm{d} / \mathrm{p} / \mathrm{pr}$ stand for the deterministic hash-and-sign, probabilistic hash-and-sign, and probabilistic hash-and-sign with retry.

Security proof	Security Bound	Assumption	Conditions of PSF	Target scheme
			1234	
[14]	$\frac{1}{1-2^{-\omega(\log (\lambda))}} \epsilon_{\mathrm{cr}}$	CR	$\checkmark \checkmark \checkmark \checkmark$	d/p
[61]	$2 \sqrt{\left(q_{\text {sign }}+\frac{8}{3}\left(q_{\text {sign }}+q_{\text {gro }}+1\right)^{4}\right) \epsilon_{\text {ow } / \text { inv }}}$	OW/INV	$\checkmark \checkmark \checkmark-$	d/p
ext. of [59]	$4 q_{\text {sign }}\left(q_{\text {qro }}+1\right)\left(2 q_{\text {qro }}+1\right)^{2} \epsilon_{\text {ow } / \text { inv }}$	OW/INV	$\checkmark \checkmark \checkmark-$	d/p
[41]	$\left(2\left(q_{\text {qro }}+q_{\text {sign }}+1\right)+1\right)^{2} \epsilon_{\text {ow } / \text { inv }}$	OW/INV	$\checkmark \checkmark \checkmark-$	d/p
[17]	$\frac{1}{2}\left(\epsilon_{\text {nma }}+\frac{8 \pi}{\sqrt{3}} q_{\mathrm{qro}}^{\frac{3}{2}} \sqrt{\delta}+q_{\text {sign }}\left(\delta+\frac{q_{\text {sign }}}{\|\mathcal{R}\|}\right)\right)$	EUF-NMA	$-\checkmark^{1} \checkmark-$	p
ours	$\begin{gathered} \left(2 q_{\text {qro }}+1\right)^{2} \epsilon_{\text {inv }}+\epsilon_{\mathrm{ps}}+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\text {qro }}+1}{\|\mathcal{R}\|}} \\ +2\left(q_{\text {qro }}+2\right) \sqrt{\frac{q_{\mathrm{sig} n}^{\prime}-q_{\mathrm{sign}}}{\|\mathcal{R}\|}} \end{gathered}$	INV	$-\checkmark^{2}--$	p / pr
ours	$\begin{aligned} & \epsilon_{\mathrm{nma}}+\epsilon_{\mathrm{ps}}+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{\|\mathcal{R}\|}} \\ & \quad+2\left(q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sigg} n}-q_{\mathrm{sign}}}{\|\mathcal{R}\|}} \end{aligned}$	EUF-NMA	$-\checkmark^{2}-$	p / pr
ours	$\left(2 q_{\mathrm{qro}}+1\right)^{2} \epsilon_{\mathrm{ow} / \mathrm{inv}}+\frac{3}{2} q_{\mathrm{sign}} \sqrt{\frac{q_{\mathrm{sign}}+q_{\mathrm{qro}}+1}{\|\mathcal{R}\|}}$	OW/INV	$\checkmark \checkmark \checkmark-$	p

$\mathcal{B}_{\text {inv }}$ can win the INV game by outputting x^{*}. Since $\mathrm{H}\left(r^{*}, m^{*}\right)=y$ holds with $\frac{1}{q_{\text {sign }}+q_{\mathrm{ro}}+1}$, we have $\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{T}_{\text {ps }}, \mathrm{H}\right]}^{\mathrm{EUF}]}\left(\mathcal{A}_{\mathrm{cmac}}\right) \leq\left(q_{\mathrm{sign}}+q_{\mathrm{ro}}+1\right) \operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)$, where $\mathcal{A}_{\text {cma }}{ }^{\text {c }}$ is an adversary who makes only classical queries ${ }^{8}$.

Sakumoto et al. [53] extended the above proof to the probabilistic hash-andsign with retry assuming non-PSF trapdoor functions. For a random oracle query $(r, m), \mathcal{B}_{\text {inv }}$ returns $y \leftarrow_{\$} \mathcal{Y}$ and saves (r, m, y) in the database \mathcal{D}^{\prime}. For a signing query $m_{i}, \mathcal{B}_{\text {inv }}$ takes $r_{i} \leftarrow_{\$} \mathcal{R}$ and $x_{i} \leftarrow \operatorname{SampDom}(\mathrm{~F})$. If $\left(r_{i}, *, *\right) \in \mathcal{D}^{\prime}, \mathcal{B}_{\text {inv }}$ aborts the game; otherwise, $\mathcal{B}_{\text {inv }}$ stores $\left(r_{i}, m_{i}, \mathrm{~F}\left(x_{i}\right)\right)$ in \mathcal{D}^{\prime} and outputs $\left(r_{i}, x_{i}\right)$. There is an issue in the programming $\mathrm{F}(x)$ instead of $y \leftarrow_{\$} \mathcal{Y}$. Since we do not assume Condition 1 of PSF, $\mathrm{F}(x)$ is not necessarily uniform. Therefore, the output of H becomes biased, and their security proof is flawed.

[^4]Security Proof by Semi-constant Distribution [61]: Zhandry showed the reduction from the OW assumption of trapdoor permutation in the QROM using a technique called semi-constant distribution, which leads to a reduction from the INV assumption of PSF. $\mathcal{B}_{\text {inv }}$ simulates the EUF-CMA game by generating signatures without the trapdoor as the above security proof in the ROM. Instead of adaptively programming $\mathrm{H}, \mathcal{B}_{\text {inv }}$ replaces H as $\mathrm{H}^{\prime}=\mathrm{F}(\operatorname{DetSampDom}(\mathrm{F}, \widetilde{\mathrm{H}}(r, m))$), where DetSampDom is a deterministic function of SampDom and $\widetilde{\mathrm{H}} \leftarrow_{\$} \mathcal{W}^{\mathcal{R}} \times \mathcal{M}$ is a random function to output randomness for DetSampDom [14]. From Condition $1, \mathrm{H}^{\prime}$ is indistinguishable from H .

The INV adversary $\mathcal{B}_{\text {inv }}$ programs H^{\prime} that outputs y with probability ϵ (semiconstant distribution). In the signing oracle, if $\mathbf{H}^{\prime}\left(r_{i}, m_{i}\right)$ outputs $y, \mathcal{B}_{\text {inv }}$ aborts this game. A bound on the statistical distance between the random function and the programmed one with the semi-constant distribution is $\frac{8}{3}\left(q_{\mathrm{sign}}+q_{\text {qro }}+\right.$ $1)^{4} \epsilon^{2}$ [61, Corollary 4.3]. When $\mathcal{A}_{\text {cma }}$ wins the EUF-CMA game, $\mathcal{B}_{\text {inv }}$ can win the INV game with probability $(1-\epsilon)^{q_{\mathrm{sig}}} \epsilon \approx \epsilon-q_{\text {sign }} \epsilon^{2}$. Minimizing the bound $\frac{1}{\epsilon} \operatorname{Adv}_{T_{\text {ps }}}^{\mathrm{INV}}+\left(q_{\text {sign }}+\frac{8}{3}\left(q_{\text {sign }}+q_{\text {qro }}+1\right)^{4}\right) \epsilon$ gives [61, Theorem 5.3]

$$
\operatorname{Adv} \underset{\text { HaS }[\text { Tpsf }, H]}{\text { EUF.CMA }}\left(\mathcal{A}_{\text {cma }}\right) \leq 2 \sqrt{\left(q_{\text {sign }}+\frac{8}{3}\left(q_{\text {sign }}+q_{\text {qro }}+1\right)^{4}\right) \operatorname{Adv}_{T_{\text {pf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)} .
$$

Application of Lifting Theorem [59]: Yamakawa and Zhandry gave the lifting theorem for search-type games. As an application of the lifting theorem, they showed $\operatorname{Adv} v_{\text {Sig }}^{\text {EUF-NMA }}\left(\mathcal{A}_{\text {nma }}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\text {Sig }}^{\mathrm{EUF}-\mathrm{NMA}}\left(\mathcal{A}_{\text {nmac }}\right)$, where $\mathcal{A}_{\text {nmac }}$ is an EUF-NMA adversary making classical queries to H [59, Corollary 4.10]. For a hash-and-sign signature $\mathrm{HaS}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}\right]$, they showed $\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{Tpss}^{2}, H\right]}^{\mathrm{EUF}-\mathrm{HMA}}\left(\mathcal{A}_{\text {cma }}\right) \leq$ $4 q_{\text {sign }} \operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{T}_{\text {ps }}, \mathrm{H}\right]}{\mathrm{EUF}}\left(\mathcal{A}_{\text {nma }}\right)$ [59, Theorem 4.11]. Extending the results of [59] using the security proof in the ROM, we have a bound:

$$
\operatorname{Adv} \underset{\text { Has }[\text { Tps } f, H]}{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq 4 q_{\mathrm{sign}}\left(q_{\mathrm{qro}}+1\right)\left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right) .
$$

Reduction from EUF-NMA for WPSF [17]: The security proofs mentioned above hold only if the underlying trapdoor function is PSF. To relax the conditions on trapdoor functions, Chailloux and Debris-Alazard gave EUF-NMA \Rightarrow EUF-CMA for the probabilistic hash-and-sign ${ }^{9}$. The authors assumed a WPSF with Condition 3 and a weaker version of Condition 2, that is, there is a bound δ on the average of statistical distance $\delta_{F, I}=\Delta(\operatorname{SampDom}(F), \mathrm{I}(\mathrm{U}(\mathcal{Y})))$ over all $(\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$. Let $\mathrm{T}_{\text {wpsf }}$ be a WPSF. The EUF-NMA adversary $\mathcal{A}_{\text {nma }}$ replaces the random function H by H^{\prime}, which outputs $\mathrm{H}(r, m)$ with probability $\frac{1}{2}$ and $F(\operatorname{DetSampDom}(F, w))$ with probability $\frac{1}{2}$. A bound on the advantage of

[^5]distinguishing H from H^{\prime} is $\frac{8 \pi}{\sqrt{3}} q_{q \mathrm{roo}}^{3 / 2} \sqrt{\delta}$. The authors gave [17, Theorem 2]
\[

$$
\begin{equation*}
\operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{~T}_{\text {wps },}, \mathrm{H}\right]}{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \frac{1}{2}\left(\operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{~T}_{\text {wps } f}, \mathrm{H}\right]}{\mathrm{EUF}-\mathrm{NMA}}\left(\mathcal{A}_{\mathrm{nma}}\right)+\frac{8 \pi}{\sqrt{3}} q_{\mathrm{qro}}^{\frac{3}{2}} \sqrt{\delta}+q_{\text {sign }}\left(\delta+\frac{q_{\text {sign }}}{|\mathcal{R}|}\right)\right) . \tag{1}
\end{equation*}
$$

\]

Reduction from Collision-resistance [14]: Boneh et al. [14] gave a reduction from the CR of a PSF $T_{p s f}$ to the sEUF-CMA security of $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}\right]$. The CR adversary $\mathcal{B}_{\text {cr }}$ given F simulates the sEUF-CMA game for $\mathcal{A}_{\text {cma }}$. For a random function $\widetilde{\mathrm{H}} \leftarrow_{\$} \mathcal{W}^{\mathcal{R}} \times \mathcal{M}, \mathcal{B}_{\text {cr }}$ replaces H as $\mathrm{H}^{\prime}(r, m)=\mathrm{F}(\operatorname{DetSampDom}(\mathrm{F}, \widetilde{\mathrm{H}}(r, m)))$, where H and H^{\prime} are indistinguishable from Condition 1. Also, $\mathcal{B}_{\mathrm{cr}}$ simulates the signing oracle using Conditions 2 and 3. If $\mathcal{A}_{\mathrm{cma}}$ wins, then $\mathrm{F}\left(x^{*}\right)=$ $\mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)=\mathrm{F}\left(x^{\prime}\right)$ holds for $x^{\prime}=\operatorname{DetSampDom}\left(\mathrm{F}, \widetilde{\mathrm{H}}\left(r^{*}, m^{*}\right)\right)$. When $x^{*} \neq x^{\prime}$, $\mathcal{B}_{\text {cr }}$ can obtain a collision pair $\left(x^{*}, x^{\prime}\right)$. Since $x^{*} \neq x^{\prime}$ holds with probability $1-2^{-\omega(\log (\lambda))}$ (see Condition 4),

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{psf}}, \mathrm{H}\right]}^{\mathrm{SEUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \frac{1}{1-2^{-\omega(\log (\lambda))}} \operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{CR}}\left(\mathcal{B}_{\mathrm{cr}}\right) \tag{2}
\end{equation*}
$$

Concurrent Work [41]: Liu, Jiang, and Zhao [41] showed OW \Rightarrow EUF-CMA for the deterministic/probabilistic hash-and-sign based on trapdoor permutations in the QROM. Their reduction can be extended to INV \Rightarrow EUF-CMA for the deterministic/probabilistic hash-and-sign based on PSFs. As in [18, 14, 61], the random function H is replaced as $\mathrm{H}^{\prime}=\mathrm{F}(\operatorname{DetSampDom}(\mathrm{F}, \widetilde{\mathrm{H}}(m)))$ to answer the signing queries without using the trapdoor. From Condition 1, this modification does not incur any security loss. Then, their reduction uses the measure-andreprogram technique [23, Theorem 2] (see Lemma 2 in Section 2.7) as in our security proof. Their reduction has a security bound that includes $q_{\text {sign }}$ in the multiplicative loss: ${ }^{10}$

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{psf}}, H\right]}^{\mathrm{EUF}] \mathrm{HMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq\left(2\left(q_{\text {qro }}+q_{\text {sign }}+1\right)+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{INV}}\left(\mathcal{A}_{\text {inv }}\right) \tag{3}
\end{equation*}
$$

4 New Security Proof

The main theorem is as follows:
Theorem 1 (INV \Rightarrow EUF-CMA (Main Theorem)). For any quantum EUF-CMA adversary $\mathcal{A}_{\text {cma }}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]$ issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exist an INV adversary $\mathcal{B}_{\mathrm{inv}}$ of $\mathrm{T}_{\mathrm{wpsf}}$ and a PS adversary $\mathcal{D}_{\mathrm{ps}}$ of $\mathrm{T}_{\mathrm{wpsf}}$ issuing $q_{\text {sign }}$ sampling queries such that

$$
\begin{align*}
& \operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\text {wps },}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq\left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\boldsymbol{T}_{\text {wpsf }}}^{\text {INV }}\left(\mathcal{B}_{\mathrm{inv}}\right)+\operatorname{Adv}_{\boldsymbol{T}_{\text {wpsf }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right) \\
&+\frac{3}{2} q_{\text {sign }}^{\prime} \sqrt{\frac{q_{\text {sign }}^{\prime}+q_{\text {qro }}+1}{|\mathcal{R}|}}+2\left(q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\text {sign }}}{|\mathcal{R}|}} \tag{4}
\end{align*}
$$

[^6]where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries, and the running times of $\mathcal{B}_{\mathrm{inv}}$ and $\mathcal{D}_{\mathrm{ps}}$ are about that of $\mathcal{A}_{\mathrm{cma}}$.

If $\mathcal{A}_{\mathrm{cma}}$ makes only classical random oracle queries q_{r} times, then

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\text {wpsf }}, \mathrm{H}\right]}^{\mathrm{EUF}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq & \left(q_{\mathrm{ro}}+1\right) \operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right) \\
& +q_{\mathrm{sign}}^{\prime} \frac{q_{\text {sign }}^{\prime}+q_{\mathrm{ro}}+1}{|\mathcal{R}|}+\left(q_{\mathrm{ro}}+1\right) \frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}
\end{aligned}
$$

Proof. In the beginning, we show that we can set $q_{\text {sign }}^{\prime}$ as $q_{\text {sign }}^{\prime}=\frac{c}{\rho} q_{\text {sign }}$ for some constant $c>1$, where $\rho=\operatorname{Pr}\left[x \neq \perp: y \leftarrow_{\$} \mathcal{Y}, x \leftarrow \mathrm{I}(y)\right]$. In $q_{\text {sign }}^{\prime}$ trials, at least $q_{\text {sign }}$ signatures are generated if the number of successful trials (where $\mathrm{I}(\mathrm{H}(r, m))$ outputs a preimage) is q_{sign} or more. Let S be a random variable for the number of successful trials. $\mathbb{E}(S)=\rho q_{\mathrm{sign}}^{\prime}=c q_{\mathrm{sign}}$ holds. From the Chernoff bound, we have $\operatorname{Pr}[S \leq(1-\gamma) \mathbb{E}(S)] \leq e^{-\frac{1}{2} \gamma^{2} \mathbb{E}(S)}$. Substituting $\gamma=\frac{\mathbb{E}(S)-q_{\text {sign }}+1}{\mathbb{E}(S)}$, the LHS becomes $\operatorname{Pr}\left[S \leq q_{\text {sign }}-1\right]$ that is a probability that we cannot generate $q_{\text {sign }}$ signatures with $q_{\text {sign }}^{\prime}$ trials. Since we set $q_{\text {sign }}^{\prime}=\frac{c}{\rho} q_{\text {sign }}$, the exponent of the RHS becomes $-\frac{\left((c-1) q_{\text {sign }}+1\right)^{2}}{2 c q_{\text {sign }}} \geq-\frac{c-1}{2 c} q_{\text {sign }}$ and the bound on $\operatorname{Pr}\left[S \leq q_{\text {sign }}-1\right]$ becomes negligible for $q_{\mathrm{sign}}=\omega(\log (\lambda))$.

In the upcoming proof, we will explain the proofs in parallel for both the ROM and QROM. For the figures, we will use notations assuming the QROM.

EUF-NMA \Rightarrow EUF-CMA: Figs. 9 and 10 show the games and simulations described below. Without loss of generality, we assume that $\mathcal{A}_{\mathrm{cma}}$ makes a query $\left(r^{*}, m^{*}\right)$ (the final ouput) to H . Then, the total number of queries to H is $q_{\mathrm{ro}}+1$ (classical) or $q_{\text {qro }}+1$ (quantum).

Game G_{0} (EUF-CMA game): This is the original EUF-CMA game and $\operatorname{Pr}\left[G_{0}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right]=\operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{T}_{\text {wpf }}, \mathrm{H}\right]}{\mathrm{EUF}]}\left(\mathcal{A}_{\mathrm{cma}}\right)$ holds.
Game G_{1} (adaptive reprogramming of H): The signing oracle Sign ${ }^{\mathrm{H}}$ uniformly chooses y_{i} and reprograms $\mathrm{H}:=\mathrm{H}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}$ until $\mathrm{I}\left(y_{i}\right)$ does not output \perp (see Lines 3 to 5 in $\operatorname{Sign}^{\mathrm{H}}$ for G_{1}). Considering the number of retries, H is reprogrammed for at most $q_{\text {sign }}^{\prime}$ times.
$R O M$: When the signing oracle has not chosen the same r_{i} in Line 2 of Sign ${ }^{\mathrm{H}}$ more than twice, and the chosen r_{i} has not been queried to H in advance, there is no difference in the advantages between G_{0} and G_{1}. Therefore, $\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A c m a}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq q_{\mathrm{sign}}^{\prime} \frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{ro}}+1}{|\mathcal{R}|}$ holds.
QROM: The AR adversary $\mathcal{D}_{\text {ar }}$ can simulate $\mathrm{G}_{0} / \mathrm{G}_{1}$ (the top row of Fig. 10). If $\mathcal{D}_{\text {ar }}$ plays $\mathrm{AR}_{0}, \mathcal{D}_{\mathrm{ar}}$ simulates G_{0}; otherwise it simulates G_{1}. From Lemma 1, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq \operatorname{Adv}_{\mathrm{H}}^{\mathrm{AR}}\left(\mathcal{D}_{\mathrm{ar}}\right) \leq \frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{gign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}$.
Game G_{2} (pre-choosing r for unsuccessful trials): In the beginning, the challenger chooses $r \leftarrow_{\$} \mathcal{R}$ for $q_{\text {sign }}^{\prime}-q_{\text {sign }}$ times and keeps them in a sequence \mathcal{S} (elements of \mathcal{S} are ordered and may be duplicated.). In the signing oracle, $r_{i}=\mathcal{S}[c t r]$ is used for reprogramming if $\mathrm{I}\left(y_{i}\right)$ outputs \perp for $y_{i} \leftarrow_{\$} \mathcal{Y}$ (see

Fig. 9: Games for EUF-NMA \Rightarrow EUF-CMA. The modifications from the previous game are highlighted in red text.

Lines 6 and 9 of Sign^{H} for G_{2}), where $\mathcal{S}[j]$ is j-th element of \mathcal{S} and $c t r$ is a counter that increments just before using $\mathcal{S}[c t r]$.
ROM and QROM: In G_{1}, the challenger can choose r_{i} in the beginning since r_{i} is chosen independently of m_{i} queried by $\mathcal{A}_{\text {cma }}$. Also, r_{i} is always uniformly chosen whatever $\mathbf{I}\left(y_{i}\right)$ outputs. Therefore, the challenger can use r_{i} chosen in the beginning only when $\mathrm{I}(y)$ outputs \perp. Hence, $\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right]=$ $\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}}=1\right]$ holds.

\begin{tabular}{|c|c|}
\hline ${ }_{\underline{\mathcal{D}_{a r}}}^{\underline{\left.\mathrm{H}_{b}\right\rangle}() \text { simulates } \mathrm{G}_{0} / \mathrm{G}_{1}}$ \& $\mathrm{Sign}^{\mathrm{H}_{6} \text {,Repro }}\left(m_{i}\right)$

\hline $1 \mathcal{Q}^{1}=\emptyset$ \& 1 repeat

\hline $2(\mathrm{~F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$ \& ${ }_{2} \quad r_{i} \leftarrow \operatorname{Repro}\left(m_{i}\right)$

\hline \& 4 until $x_{i} \neq \perp$

\hline 4
5
5
return 0 \& $5 \mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\}$

\hline 6_{6} return $\mathrm{F}\left(x^{*}\right) \stackrel{?}{=} \mathrm{H}_{b}\left(r^{*}, m^{*}\right)$ \&

\hline $\mathcal{D}_{\text {ds }}^{\text {Sample }}(\mathrm{F})$ simulates $\mathrm{G}_{4} / \mathrm{G}_{5}$ \& $\mathrm{Sign}^{\boldsymbol{H}, \text { Sample }_{6}\left(m_{i}\right)}$

\hline $1 \mathcal{Q}:=\emptyset$ \& $1 x_{i} \leftarrow \operatorname{Sample}_{b}()$

\hline $2 \mathrm{H} \leftarrow_{S} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$ \& ${ }^{2} r_{i} \leftarrow_{\text {c }} \mathcal{R}$

\hline \& 3

4
4

\hline | ${ }^{3} \mathcal{S}:=\emptyset$ |
| :--- |
| 5 for $j \in\left[q_{\text {sign }}^{\prime}-q_{\text {sign }}\right]$ do | \&

\hline $$
\begin{aligned}
& 5 \text { for } j \in \notin q_{\text {'ii }} \\
& 6 \leftarrow \& \& \mathcal{R}
\end{aligned}
$$ \&

\hline $7 \mathcal{S}:=\mathcal{S} \cup\{r\}$ \&

\hline 8 $\mathcal{S}^{\prime}:=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}$ \&

\hline $9\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\text {cma }}^{\text {Sign, }}$ / $\left.\dagger \backslash S^{\prime}\right\rangle(\mathrm{F})$ \&

\hline 10 if $m^{*} \in \mathcal{Q} \vee$ FIND $=\top$ then \&

\hline 11 return 0 \&

\hline 12 return $\mathrm{F}\left(x^{*}\right) \stackrel{?}{=} \mathrm{H}\left(r^{*}, m^{*}\right)$ \&

\hline $\mathcal{A}_{\text {dma }}{ }^{(H)}(\mathrm{F})$ simulates G_{5} \& $\mathrm{Sign}^{\mathrm{H}^{\prime}\left(m_{i}\right)}$

\hline $1 \mathcal{Q}:=\emptyset$ \& $1 x_{i} \leftarrow \operatorname{SampDom}(\mathrm{~F})$

\hline $2 \mathrm{H}^{\prime}:=\mathrm{H}$ \& $2 r_{i} \leftarrow_{s} \mathcal{R}$

\hline 3 FIND := \perp \& $3 \mathrm{H}^{\prime}:=\mathrm{H}^{\prime\left(r_{i}, m_{i}\right) \rightarrow \mathrm{F}\left(x_{i}\right)}$

\hline ${ }^{4} \mathcal{S}:=\emptyset$ \& ${ }_{4} \mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\}$

\hline ${ }_{5}$ for $j \in\left[q^{\prime}{ }_{\text {sign }}-q_{\text {sign }}\right]$ do \& 5 return (r_{i}, x_{i})

\hline $$
\begin{array}{ll}
\begin{array}{l}
6 \leftarrow \mathcal{R} \\
\boldsymbol{T} \\
\mathcal{S} \\
\hline=\mathcal{S} \cup\{r\}
\end{array}
\end{array}
$$ \&

\hline 8 $\mathcal{S}^{\prime}:=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}$ \&

\hline 9 $\left(m^{*}, r^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\text {cma }}^{\text {sign }, \mid H^{\prime} \backslash S^{\prime}}$ ((F) \&

\hline 10 if $m^{*} \in \mathcal{Q} \vee$ FIND $=T$ then \&

\hline 11 return 0 \&

\hline 12 return $\mathbf{F}\left(x^{*}\right) \stackrel{?}{=} \mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)$ \&

\hline
\end{tabular}

Fig. 10: Simulations for EUF-NMA \Rightarrow EUF-CMA

Game G_{3} (puncturing H): Let $\mathcal{S}^{\prime}=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}$ be a set induced by \mathcal{S}. Instead of $\mathrm{H}, \mathcal{A}_{\text {cma }}$ makes queries to $\mathrm{H} \backslash \mathcal{S}^{\prime}\left(\mathrm{H}\right.$ punctured by $\left.\mathcal{S}^{\prime}\right)$. Also, G_{3} outputs 0 if FIND $=\top$ (see the definitions of $\mathbf{H} \backslash \mathcal{S}^{\prime}$ and FIND in Definition 10).
ROM: Since $\mathbf{H} \backslash \mathcal{S}^{\prime}$ is purely classical, FIND becomes \top with at most ($q_{\mathrm{ro}}+$
 $Q R O M$: We use Lemma 4 to bound $\left|\operatorname{Pr}\left[\mathrm{G}_{2}^{A_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{3}^{A_{\mathrm{cma}}} \Rightarrow 1\right]\right|$. Suppose that $\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[1 \leftarrow \mathcal{A}_{\mathrm{cma}}^{\text {Sign, }|\mathrm{H}\rangle}(\mathrm{F})\right]$. Since G_{3} uses $\mathrm{H} \backslash \mathcal{S}^{\prime}$ and outputs 0 if FIND $=T$, we have $\operatorname{Pr}\left[\mathrm{G}_{3}^{A_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[1 \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F}) \wedge \mathrm{FIND}=\perp\right]$

Game: G_{4}^{\prime}	$\operatorname{Sign}^{\mathrm{H}}\left(m_{i}\right)$ for G_{4}^{\prime}
$1 \mathcal{Q}:=\emptyset$	1 repeat
$2 \mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$	$2 \quad y_{i} \leftarrow \$ \mathcal{Y}$
$3 \mathcal{S}:=\emptyset$	$3 \quad x_{i} \leftarrow \mathrm{I}\left(y_{i}\right)$
4 for $j \in\left[q_{\text {sign }}^{\prime}\right]$ do	4 until $x_{i} \neq \perp$
$5 \quad r \leftarrow \$ \mathcal{R}$	$5 r_{i} \leftarrow \$ \mathcal{R}$
$6 \quad \mathcal{S}:=\mathcal{S} \cup\{r\}$	$6 \mathrm{H}:=\mathrm{H}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}$
$7 \mathcal{S}^{\prime}=\{(r, m): r \in \mathcal{S}, m \in \mathcal{M}\}$	$7 \mathcal{Q}:=\mathcal{Q} \cup\left\{m_{i}\right\}$
$8(\mathrm{~F}, \mathrm{l}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$	8 return $\left(r_{i}, x_{i}\right)$
$\left.9 \quad\left(r^{\prime}, m^{\prime}\right) \leftarrow \mathcal{B}_{\text {cma }}^{\text {Sign, }} \mathrm{H}\right\rangle(\mathrm{F})$	
10 return $\left(r^{\prime}, m^{\prime}\right) \stackrel{?}{\in} \mathcal{S}^{\prime}$	

Fig. 11: A game G_{4}^{\prime} used in the application of Lemma 5

$$
\begin{align*}
& \text { and } \operatorname{Pr}\left[\mathrm{FIND}=\top: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]=\operatorname{Pr}\left[\mathrm{FIND}=\top: b \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F})\right] . \text { Then, } \\
& \qquad\left|\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq \sqrt{\left(q_{\mathrm{qro}}+2\right) \operatorname{Pr}\left[\mathrm{FIND}=\top: \mathrm{G}_{3}^{\mathcal{A c m a}^{\mathrm{cm}}} \Rightarrow b\right]} \tag{5}
\end{align*}
$$

by Lemma 4. We will show a bound on Eq. (5) after defining G_{4}.
Game G_{4} (reprogramming only for successful trials): The signing oracle reprograms $\mathrm{H}:=\mathrm{H}^{\left(r_{i}, m_{i}\right) \mapsto y_{i}}$ only for $r_{i} \leftarrow \mathcal{R}, y_{i} \leftarrow_{\delta} \mathcal{Y}$, and $x_{i} \leftarrow \mathrm{I}\left(y_{i}\right)$ satisfying $x_{i} \neq \perp$. Notice that $\mathcal{A}_{\text {cma }}$ makes queries to the punctured oracle $\mathrm{H} \backslash \mathcal{S}^{\prime}$.
ROM: Since $\mathcal{A}_{\text {cma }}$ cannot distinguish whether H is reprogrammed for $(r, m) \in$ \mathcal{S}^{\prime} if FIND $=\perp, \operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]$ holds.
$Q R O M$: If the measurements of $\left|\mathrm{f}_{\mathcal{S}^{\prime}}(r, m)\right\rangle$ are 0 for all queries $(\mathrm{FIND}=\perp)$, then $\mathcal{A}_{\text {cma }}$'s queries never contain any $(r, m) \in \mathcal{S}^{\prime}$ and $\mathcal{A}_{\text {cma }}$ cannot obtain $\mathrm{H}(r, m)$ for $(r, m) \in \mathcal{S}^{\prime}$. Hence, if FIND $=\perp$, then $\mathcal{A}_{\mathrm{cma}}$ cannot distinguish whether H is reprogrammed at $(r, m) \in \mathcal{S}^{\prime}$ in G_{3} or not in G_{4} and we have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{FIND}=\perp: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]=\operatorname{Pr}\left[\mathrm{FIND}=\perp: \mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right] \tag{6}
\end{equation*}
$$

(as Lemma 3). Especially, if G_{3} or G_{4} outputs 1, then FIND should be \perp (Line 12 of $\mathrm{G}_{3}-\mathrm{G}_{5}$). Thus, $\operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]$ holds. Moreover, $\operatorname{Pr}\left[\mathrm{FIND}=\mathrm{T}: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]=\operatorname{Pr}\left[\mathrm{FIND}=\mathrm{T}: \mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]$ holds from Eq. (6).

Let G_{4}^{\prime} be a game given in Fig. 11 (identical to G_{4} except that $\mathcal{B}_{\mathrm{cma}}$ outputs $\left(r^{\prime}, m^{\prime}\right)$ and H is not punctured). Choosing $j \leftarrow_{\$}\left[q_{\text {qro }}+1\right]$, $\mathcal{B}_{\text {cma }}$ runs $\mathcal{A}_{\text {cma }}$ playing G_{4}. Just before $\mathcal{A}_{\mathrm{cma}}$ makes j-th query to $\mathrm{H}, \mathcal{B}_{\mathrm{cma}}$ measures a query input register of $\mathcal{A}_{\mathrm{cma}}$ and outputs the measurement outcome as $\left(r^{\prime}, m^{\prime}\right)$. Since the oracles of G_{4}^{\prime} reveal no information on $\mathcal{S}, \mathcal{B}_{\mathrm{cma}}$ has no information on \mathcal{S}; therefore, $\operatorname{Pr}\left[\mathrm{G}_{4}^{\prime} \mathcal{B}_{\mathrm{cma}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[r^{\prime} \in \mathcal{S}\right] \leq \frac{q_{\mathrm{ign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}$ holds. Hence, $\operatorname{Pr}\left[\right.$ FIND $\left.=\top: \mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right] \leq 4\left(q_{\text {qro }}+1\right) \frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{gign}}}{|\mathcal{R}|}$ holds from Lemma 5 and an upper bound on Eq. (5) is $2\left(q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {igig }}-q_{\text {sigg }}}{|\mathcal{R}|}}$.
Game G_{5} (simulating the signing oracle by SampDom): The signing oracle generates signatures by $r_{i} \leftarrow{ }_{\$} \mathcal{R}$ and $x_{i} \leftarrow \operatorname{SampDom}(\mathrm{~F})$.
$R O M$ and $Q R O M$: The PS adversary $\mathcal{D}_{\text {ps }}$ can simulate G_{4} / G_{5} as in the second row of Fig. 10. If $\mathcal{D}_{\text {ps }}$ plays PS_{0}, the procedures of the original and simulated G_{4} are identical. If $\mathcal{D}_{\mathrm{ps}}$ plays PS_{1}, he simulates G_{5}. Thus, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq \operatorname{Adv}_{\mathrm{T}_{\mathrm{wpsf}}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)$.

We show that the EUF-NMA adversary $\mathcal{A}_{\text {nma }}$ can simulate G_{5} as in the bottom row of Fig. 10. In the simulation, $\mathcal{A}_{\text {cma }}$ makes queries to $\mathrm{H}^{\prime} \backslash \mathcal{S}^{\prime}$, where H^{\prime} outputs whatever H outputs except for $\left\{\left(r_{i}, m_{i}\right)\right\}_{i \in\left[q_{\mathrm{sign}}\right]}$. Since $m^{*} \notin \mathcal{Q}$ holds if $\mathcal{A}_{\mathrm{cma}}$ wins, $\mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)=\mathrm{H}\left(r^{*}, m^{*}\right)$ holds for $\left(m^{*}, r^{*}, x^{*}\right)$ that $\mathcal{A}_{\mathrm{cma}}$ returns. Therefore, $\mathcal{A}_{\mathrm{nma}}$ wins his game if $\mathcal{A}_{\text {cma }}$ wins the EUF-CMA game. Hence, $\mathcal{A}_{\text {nma }}$ can perfectly simulate G_{5} with the same number of queries and almost the same running time as $\mathcal{A}_{\text {cma }}$, and $\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right] \leq \operatorname{Adv} \mathrm{HaS}_{\mathrm{Ha}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]}^{\mathrm{EUF}}\left(\mathcal{A}_{\mathrm{nma}}\right)$ holds. We finally stress that the number of queries $\mathcal{A}_{\text {nma }}$ made to H is $q_{\text {qro }}$ rather than $q_{\text {qro }}+q_{\text {sign }}$ since $\mathcal{A}_{\text {nma }}$ never queries to its random oracle in the simulation of the signature.

Summing up, we have

$$
\begin{align*}
& +\frac{3}{2} q_{\text {sign }}^{\prime} \sqrt{\frac{q_{\text {sign }}^{\prime}+q_{\text {qro }}+1}{|\mathcal{R}|}}+2\left(q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\text {sign }}}{|\mathcal{R}|}} . \tag{7}
\end{align*}
$$

INV \Rightarrow EUF-NMA: We use different techniques for the ROM and the QROM.
$R O M$: Given a challenge y, the INV adversary $\mathcal{B}_{\text {inv }}$ randomly picks one of queries to H and reprograms H and $\mathrm{H}^{(r, m) \mapsto y}$. If $\mathcal{A}_{\text {nma }}$ wins his game with $\left(m^{*}, r^{*}, x^{*}\right)$ and $\mathrm{H}\left(r^{*}, m^{*}\right)=y$ holds, $\mathcal{B}_{\text {inv }}$ can win the INV game with x^{*}. Since $\mathrm{H}\left(r^{*}, m^{*}\right)=y$ holds with probability $\frac{1}{q_{\mathrm{ro}}+1}, \operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{T}_{\text {wps }}, \mathrm{H}\right]}{\text { EUUFNMA }}\left(\mathcal{A}_{\text {nma }}\right) \leq\left(q_{\mathrm{ro}}+1\right) \operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)$.
QROM: We use Lemma 2. Let S be a two-stage algorithm that consists of S_{1} and S_{2} and runs $\mathcal{A}_{\text {nma }}$ in the EUF-NMA game as follows:

1. Choose $(i, b) \leftarrow_{\$}\left(\left[q_{\text {qro }}\right] \times\{0,1\}\right) \cup\left\{\left(q_{\text {qro }}+1,0\right)\right\}$.
2. Run $\mathcal{A}_{\text {nma }}$ with H until i-th query.
3. Measure i-th query and output (r, m) as the output of S_{1}.
4. Given a random θ, reprogram $\mathrm{H}^{\prime}=\mathrm{H}^{(r, m) \mapsto \theta}$.
5. If $i=q_{\text {qro }}+1$, then go to Step 8 .
6. Answer i-th query with $\mathrm{H}($ if $b=0)$ or $\mathrm{H}^{\prime}($ if $b=1)$.
7. Run $\mathcal{A}_{\text {nma }}$ with H^{\prime} until the end.
8. Output $\mathcal{A}_{\text {nma }}$'s output $\left(m^{*}, r^{*}, x^{*}\right)$ as the output of S_{2}.

The INV adversary $\mathcal{B}_{\text {inv }}$ runs S . Since y is uniform in the INV game, $\mathcal{B}_{\text {inv }}$ can set the input for S_{2} as $\theta:=y$. When the predicate is $\mathrm{F}(x) \stackrel{?}{=} \mathrm{H}(r, m)$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[(r, m)=(\hat{r}, \hat{m}) \wedge \mathrm{F}(x)=y:(r, m) \leftarrow \mathrm{S}_{1}^{\mathcal{A}_{\mathrm{nma}}}(),(m, r, x) \leftarrow \mathrm{S}_{2}^{\mathcal{A}_{\mathrm{nma}}}(y)\right] \\
\geq & \frac{1}{\left(2 q_{\mathrm{qro}}+1\right)^{2}} \operatorname{Pr}\left[(r, m)=(\hat{r}, \hat{m}) \wedge \mathrm{F}(x)=\mathrm{H}(r, m):(m, r, x) \leftarrow \mathcal{A}_{\mathrm{nma}}^{|\mathrm{H}\rangle}(\mathrm{F})\right],
\end{aligned}
$$

for any $(\hat{r}, \hat{m}) \in \mathcal{R} \times \mathcal{M}$ from Lemma 2 . By summing over all $(\hat{r}, \hat{m}) \in \mathcal{R} \times \mathcal{M}$,

$$
\begin{align*}
\operatorname{Pr}[\mathrm{F}(x)=y: & \left.(r, m) \leftarrow \mathrm{S}_{1}^{\mathcal{A}_{\mathrm{nma}}}(),(m, r, x) \leftarrow \mathrm{S}_{2}^{\mathcal{A}_{\mathrm{nma}}}(y)\right] \\
& \geq \frac{1}{\left(2 q_{\mathrm{qro}}+1\right)^{2}} \operatorname{Pr}\left[\mathrm{~F}(x)=\mathrm{H}(r, m):(m, r, x) \leftarrow \mathcal{A}_{\mathrm{nma}}^{|\mathrm{H}\rangle}(\mathrm{F})\right] \tag{8}
\end{align*}
$$

Notice that the probability in the RHS of Eq. (8) is the EUF-NMA advantage. Also, $\operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{INv}}\left(\mathcal{B}_{\text {inv }}\right) \geq \operatorname{Pr}\left[\mathrm{F}(x)=y:(r, m) \leftarrow \mathrm{S}_{1}^{\mathcal{A}_{\text {nma }}}(),(m, r, x) \leftarrow \mathrm{S}_{2}^{\mathcal{A}_{\text {nma }}}(y)\right]$ holds since $\mathcal{B}_{\text {inv }}$ runs S. Hence, we have

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{HaS}^{\mathrm{EU}}\left[\mathrm{~T}_{\text {wpsf }}, \mathrm{H}\right]}^{\mathrm{EUF}[\mathrm{HMA}}\left(\mathcal{A}_{\text {nma }}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right) \tag{9}
\end{equation*}
$$

From Eqs. (7) and (9), we have Eq. (4).
Theorem 1 has the following two advantages:

Advantage 1 (Wide applications): Our reduction gives security proofs for codebased and MQ-based hash-and-sign signatures. Relaxation of Condition 2 is necessary for such applications. The existing security proofs replace the random function H with H^{\prime} all at once, requiring statistical indistinguishability between H and H^{\prime}. On the other hand, our proof adaptively reprograms H in each signing query. This approach enables us to provide the security proof under a weaker assumption compared to the one required by PSF, namely, a trapdoor function is WPSF and preimage-simulatable. When considering the PS advantage, the use of computational indistinguishability leads to further relaxation of requirements for the trapdoor function.

Advantage 2 (Tighter proof): Our reduction is tighter than the existing ones [61, 59]. While we cannot guarantee the optimality of our reduction, we can infer from several observations that a multiplicative loss of $\left(2 q_{\text {qro }}+1\right)^{2}$ appears to be unavoidable in the generic (black-box) reduction. The reduction incurs a loss of the number of queries to H, even in the ROM (see Section 3). Second, the security loss of a generic reduction from ROM to QROM using the lifting theorem [59] is at least $\left(2 q_{\text {qro }}+1\right)^{2}$. Third, in the Fiat-Shamir paradigm, a generic reduction from arbitrary ID schemes incurs the same security loss (see Remark 4).

We give some remarks on Theorem 1.
Remark 1. If $\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]$ adopts the probabilistic hash-and-sign, then $q_{\text {sign }}^{\prime}=$ $q_{\text {sign }}$ holds and the last term of Eq. (4) becomes 0 .

Remark 2. We have a tight reduction in EUF-NMA \Rightarrow EUF-CMA with the security bound of Eq. (7). Comparing this bound with the one presented in [17] (refer to Eq. (1) in Section 3), we observe that our requirement for $\mathrm{T}_{\text {wpsf }}$ is weaker, and there are no square-root terms associated with Condition 2.

Remark 3. When the underlying trapdoor function is PSF (or trapdoor permutation), we have:

$$
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{psf}}, \mathrm{H}\right]}^{\mathrm{EUF}]-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq\left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\frac{3}{2} q_{\mathrm{sign}} \sqrt{\frac{q_{\text {sign }}+q_{\text {qro }}+1}{|\mathcal{R}|}} .
$$

As $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}\right]$. Sign produces a signature without retry (Condition 3), $q_{\text {sign }}^{\prime}=$ $q_{\text {sign }}$ holds. In the PS game, the outputs of I and $\operatorname{SampDom}(F)$ are equivalent due to Condition 2, resulting in $\operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=0$. This bound is tighter than existing ones for $\mathrm{HaS}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}\right]$ (see Table 2).

Remark 4. Grilo et al. showed a tight reduction of EUF-NMA \Rightarrow EUF-CMA in the Fiat-Shamir paradigm, assuming that the underlying ID scheme is honest verifier zero-knowledge (HVZK) [32, Theorem 3]. Also, Don et al. gave a generic reduction in the Fiat-Shamir transform of arbitrary ID schemes with a security loss $\left(2 q_{\text {qro }}+1\right)^{2}$ [24, Theorem 8]. The above reductions use the tight adaptive reprogramming technique and the measure-and-reprogram technique.

4.1 Extension to sEUF-CMA Security

If F is injective, $\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, H\right]$ is SEUF-CMA secure.
Corollary 1 (INV \Rightarrow sEUF-CMA). Suppose that F of $\mathrm{T}_{\text {wpsf }}$ is an injection. For any quantum sEUF-CMA adversary $\mathcal{A}_{\text {cma }}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}\right]$ issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exist an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {wpsf }}$ and a PS adversary $\mathcal{D}_{\mathrm{ps}}$ of $\mathrm{T}_{\mathrm{wpsf}}$ issuing q_{sign} sampling queries such that

$$
\begin{align*}
& \operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\text {wpsf }, ~ H}\right.}^{\mathrm{SEUF}]-\mathrm{MAA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq\left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\operatorname{Adv}_{\mathrm{T}_{\text {wpsf }}^{\mathrm{PS}}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right) \\
&+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\text {sign }}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}+2\left(q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}} \tag{10}
\end{align*}
$$

where $q_{\text {sign }}^{\prime}$ is a bound on the total number of queries to H in all the signing queries, and the running times of $\mathcal{B}_{\mathrm{inv}}$ and $\mathcal{D}_{\mathrm{ps}}$ are about that of $\mathcal{A}_{\mathrm{cma}}$.

Proof. The sEUF-CMA game outputs 0 if $\left(m^{*}, r^{*}, x^{*}\right) \in \mathcal{Q}^{\prime}$. Due to the injection of F , if $\left(m^{*}, r^{*}\right)=\left(m_{i}, r_{i}\right)$, it implies $x^{*}=x_{i}$. Therefore, we can rephrase the condition for outputting 0 as follows: the game outputs 0 if $\left(m^{*}, r^{*}\right) \in \mathcal{Q}^{\prime}$, where $\mathcal{Q}^{\prime}=\left\{\left(m_{i}, r_{i}\right)\right\}_{i \in\left[q_{\text {sign }}\right]}$. With this reinterpretation, we demonstrate that the same bound as Eq. (7) holds for EUF-NMA \Rightarrow SEUF-CMA.

In Corollary 1, we can use the same games as defined in Theorem 1, and the bound on $\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right|$ remains unchanged. In the simulation of G_{5} (see the bottom row of Fig. 10), $\mathcal{A}_{\text {cma }}$ uses $\mathrm{H}^{\prime} \backslash \mathcal{S}^{\prime}$ reprogrammed on $\left\{\left(r_{i}, m_{i}\right)\right\}_{i \in\left[q_{\text {sign }}\right]}$ instead of the original H . By $\left(m^{*}, r^{*}\right) \notin \mathcal{Q}^{\prime}, \mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)=$ $\mathrm{H}\left(r^{*}, m^{*}\right)$ holds and $\mathcal{A}_{\mathrm{nma}}$ can win his game if $\mathrm{F}\left(x^{*}\right)=\mathrm{H}^{\prime}\left(r^{*}, m^{*}\right)$. Therefore, $\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right] \leq \operatorname{Adv} \underset{\mathrm{HaS}\left[\mathrm{T}_{\text {wps }}, \mathrm{H}\right]}{\mathrm{EUF}-\mathrm{NMA}}\left(\mathcal{A}_{\text {nma }}\right)$ holds. Hence, Eq. (7) holds.

4.2 Applications of New Security Proof

By applying Theorem 1, we can establish security proofs for Wave [2], the original/modified UOV signatures [39, 53], the modified HFE signature [53], and MAYO [10]. Additionally, by utilizing Corollary 1, we can provide a security proof for the modified CFS signature [20]. Essentially, it is sufficient to directly apply Theorem 1 or Corollary 1; however, we need to derive bounds on the PS advantage, denoted by ϵ_{ps}. We briefly explain ideas behind bounding ϵ_{ps} (see the complete proofs in Appendix B).

Modified CFS signature: An invertible subset of \mathcal{Y}, that is, $\mathcal{Y}^{\prime}=\{y: \mathrm{I}(y) \neq \perp\}$, is a set of decodable syndromes of a Goppa code and the domain \mathcal{X} of F is a set of corresponding errors. Given the relationship between \mathcal{X} and \mathcal{Y}^{\prime}, there exists a one-to-one correspondence between $x \in \mathcal{X}$ and $y \in \mathcal{Y}^{\prime}$, and consequently, F is an injection (Corollary 1 is applied). Therefore, a preimage generated after retries is uniform over \mathcal{X}, and thus, $\operatorname{SampDom}(F)$, that is, $x \leftarrow_{\$} \mathcal{X}$, can perfectly simulate the preimage. Hence, $\epsilon_{\mathrm{ps}}=0$ holds.
Wave: Wave adopts the probabilistic hash-and-sign (Eq. (7) is applied.) and its trapdoor function is average trapdoor $\operatorname{PSF}(A T P S F)$ [17] that is a special case of WPSF satisfying:

1. There is a bound δ on the average of $\delta_{\mathrm{F}, \mathrm{I}}$ over all $(\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$, where $\delta_{\mathrm{F}, \mathrm{I}}=\Delta(\operatorname{SampDom}(\mathrm{F}), \mathrm{I}(\mathrm{U}(\mathcal{Y})))$ is a statistical distance between SampDom (F) and $\mathrm{I}(y)$ for $y \leftarrow_{\$} \mathcal{Y}$ (relaxed Condition 2).
2. $\mathrm{I}(y)$ outputs x satisfying $\mathrm{F}(x)=y$ for any $y \in \mathcal{Y}$ (Condition 3).

Applying the union bound over $q_{\text {sign }}$ signing queries, we have $\epsilon_{\mathrm{ps}} \leq q_{\mathrm{sign}} \delta$.
Original UOV signature: Since there is no known statistical bound on ϵ_{ps}, we must assume the computational hardness of the PS game.
Modified UOV/HFE signatures: Since a preimage generated after retries follows a uniform distribution as shown in [53], $x \leftarrow \operatorname{SampDom}(\mathrm{~F})$, that is, $x \leftarrow_{\$} \mathcal{X}$, can perfectly simulate the preimage; therefore, we have $\epsilon_{\mathrm{ps}}=0$.
MAYO: MAYO adopts the probabilistic hash-and-sign (Eq. (7) is applied.) and its trapdoor I iteratively retries a part of x called vinegar variables until a specific condition is met. If I consistently outputs x without needing to retry the vinegar variables, then SampDom $(F)\left(x \leftarrow_{\$} \mathcal{X}\right)$ can perfectly simulate the preimage, and $\epsilon_{\mathrm{ps}}=0$ holds. Let τ be a bound on the probability of I retrying the vinegar variables. MAYO's parameter sets ensure that $1-q_{\text {sign }} \tau>\frac{1}{2}$ holds, where the expected $q_{\text {sign }}$ aligns with the security levels [10].

QR-UOV [29], PROV [26], and GeMSS [16] are provable secure since they follow the modified UOV/HFE signatures. If Rainbow [22] makes the same modification as the modified UOV signature, the scheme can be provably secure.

4.3 Extenstion to Security Proof of Fiat-Shamir with Aborts

The Fiat-Shamir with aborts paradigm [42] shares a similar structure with the probabilistic hash-and-sign with retry. Concurrent works by Devevey et al. [21]
and Barbosa et al. [3] demonstrate reductions of EUF-NMA \Rightarrow EUF-CMA for the Fiat-Shamir with aborts. Devevey et al. rely on the strong HVZK assumption [21, Definition 6], which allows for statistical simulation of protocol outputs even in cases of failure. Their proof uses the tight adaptive reprogramming technique to alter the signing oracle such that the EUF-NMA adversary can simulate using the statistical HVZK. In contrast, Barbosa et al. assume a weaker assumption called accepting HVZK assumption, which assumes that protocol outputs can be statistically simulated if the protocol does not fail [3, Definition 1]. This assumption closely aligns with the idea that a trapdoor function is statistically preimage-simulatable (see Definition 7). Essentially, their approach aligns with ours, involving the adaptive reprogramming followed by canceling the reprogramming during retries.

Given the structural similarity to the probabilistic hash-and-sign with retry, it is natural to explore the possibility of establishing a security proof for the Fiat-Shamir with aborts using the same techniques as presented in Theorem 1. In Appendix G, we present an alternative tight reduction of EUF-NMA \Rightarrow EUF-CMA for the Fiat-Shamir with aborts. The security bound, assuming the accepting HVZK, is almost identical to that of Barbosa et al. [3, Theorem 2].

5 Security Proof of Hash-and-Sign with Prefix Hashing in Multi-key Setting

In prefix hashing, the hash function H includes a small unpredictable portion of the verification key. Let $\mathrm{H}: \mathcal{U} \times \mathcal{R} \times \mathcal{M} \rightarrow \mathcal{Y}$ be a hash function and $\mathrm{HaS}^{\mathrm{ph}}[\mathrm{T}, \mathrm{H}, \mathrm{E}]$ be a signature scheme adopting the probabilistic hash-and-sign with retry and prefix hashing, where $\mathrm{E}: \mathcal{Y}^{\mathcal{X}} \rightarrow \mathcal{U}$ is a deterministic function to extract a small unpredictable part of F into a key ID $u \in \mathcal{U}$. We assume that $E(F)$ is uniform over \mathcal{U} for $(\mathrm{F}, \mathrm{I}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)^{11}$. For a message m, $\mathrm{HaS}^{\mathrm{ph}}[\mathrm{T}, \mathrm{H}, \mathrm{E}]$. Sign repeats $r \leftarrow_{\$} \mathcal{R}$ and $x \leftarrow \mathrm{I}(\mathrm{H}(\mathrm{E}(\mathrm{F}), r, m))$ until $x \neq \perp$ holds, and outputs (r, x). For a verification key F , a message m, and a signature $(r, x), \mathrm{HaS}^{\mathrm{ph}}[\mathrm{T}, \mathrm{H}, \mathrm{E}] . \mathrm{Vrfy}$ verifies by $\mathrm{F}(x) \stackrel{?}{=} \mathrm{H}(\mathrm{E}(\mathrm{F}), r, m)$.

We show that M-INV \Rightarrow M-EUF-CMA and M-CR \Rightarrow M-sEUF-CMA hold without any security loss in the number of keys $q_{\text {key }}$ (see Lemma 8 in Appendix D and Lemma 9 in Appendix E). We note that there exist trivial reductions: $\operatorname{Adv}_{\top}^{\mathrm{M}-\mathrm{INV}}\left(\mathcal{B}_{\text {invm }}\right) \leq q_{\text {key }} \operatorname{Adv}_{\mathrm{T}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)$ and $\operatorname{Adv}_{\mathrm{T}}^{\mathrm{M}-\mathrm{CR}}\left(\mathcal{B}_{\text {crm }}\right) \leq q_{\text {key }} \operatorname{Adv}_{\mathrm{T}}^{\mathrm{CR}}\left(\mathcal{B}_{\text {cr }}\right)$. To address this issue, we propose a generic method to show reductions from INV or CR by assuming the hardness of the computational problem on keys' distributions.

Let $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$ be verification keys generated by Gen of a trapdoor fucntion T. Given a verification key $\mathrm{F}^{\prime}: \mathcal{X}^{\prime} \rightarrow \mathcal{Y}^{\prime}$ generated by Gen' of another trapdoor function T^{\prime}, we simulate $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$ by $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$, where $\mathrm{L}_{j}: \mathcal{Y}^{\prime} \rightarrow \mathcal{Y}$ and $\mathrm{R}_{j}: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$. Let \mathcal{D}_{L} and \mathcal{D}_{R} be some distributions of L_{j} and R_{j}. We note that

[^7]| GAME: ST_{b} | $\underline{\text { NewKey }}$ () | $\mathrm{NewKey}_{1}()$ |
| :---: | :---: | :---: |
| $1\left(\mathrm{~F}^{\prime}, \mathrm{I}^{\prime}\right) \leftarrow \mathrm{Gen}^{\prime}\left(1^{\lambda}\right)$ | $1{ }^{1}\left(\mathrm{~F}_{j}, \mathrm{l}_{j}\right) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$ | ${ }_{1} \mathrm{~L}_{j} \leftarrow \mathcal{D}_{\mathrm{L}}$ |
| $2 b^{*} \leftarrow \mathcal{D}_{\text {st }}^{\text {NewKey }}{ }_{\text {b }}()$ | 2 return F_{j} | ${ }_{2} \mathrm{R}_{j} \leftarrow \mathcal{D}_{\mathrm{R}}$ |
| 3 return b^{*} | | $\text { з } \mathrm{F}_{j}:=\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}$ |

Fig. 12: ST (Sandwich Transformation) game
the domains and ranges of F^{\prime} and F_{j} 's may differ. We define a new game to give a bound on the distinguishing advantage of $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$ and $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}_{j \in\left[q_{\text {kee }}\right]}$.
Definition 11 (ST (Sandwich Transformation) Game). Let T and T^{\prime} be trapdoor functions. Using a game given in Fig. 12, we define an advantage function of an adversary $\mathcal{D}_{\text {st }}$ playing the ST game against T and T^{\prime} as $\mathrm{Adv}_{\mathrm{T}, \mathrm{T}^{\prime}}^{\mathrm{ST}}\left(\mathcal{D}_{\text {st }}\right)=$ $\left|\operatorname{Pr}\left[\mathrm{ST}_{0}^{\mathcal{D s t}^{\mathrm{st}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{ST}_{1}^{\mathcal{D}_{\mathrm{st}}} \Rightarrow 1\right]\right|$.

We have the following reductions assuming some conditions on L_{j} and R_{j} (see the proofs in Appendices D and E.).

Lemma 6 (INV + ST \Rightarrow M-EUF-CMA). Let T^{\prime} be a trapdoor function with $\mathrm{F}^{\prime}: \mathcal{X}^{\prime} \rightarrow \mathcal{Y}$. Suppose that $\mathrm{L}_{j}: \mathcal{Y} \rightarrow \mathcal{Y}$ and $\mathrm{R}_{j}: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$ are used to simulate F_{j} by $\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}$ in the ST game, where L_{j} is a bijection.

For any quantum M-EUF-CMA adversary $\mathcal{A}_{\text {cmam }}$ of $\mathrm{HaS}{ }^{\mathrm{Sh}}\left[\mathrm{T}_{\text {wpss }}, \mathrm{H}, \mathrm{E}\right]$ with $q_{\text {key }}$ keys and issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{L}} \times \mathcal{R} \times \mathcal{M}$, there exist an INV adversary $\mathcal{B}_{\text {inv }}$ of T^{\prime}, an M -PS adversary $\mathcal{D}_{\mathrm{psm}}$ of $\mathrm{T}_{\text {wpsf }}$ with $q_{\text {key }}$ instances and issuing $q_{\text {sign }}$ sampling queries, and an ST adversary $\mathcal{D}_{\text {st }}$ of $\left(\mathrm{T}_{\text {wpsf }}, \mathrm{T}^{\prime}\right)$ issuing $q_{\text {key }}$ new key queries such that

$$
\begin{align*}
& \operatorname{Adv}_{\text {Hasphr } \left.^{\text {M-EUF-CMA }} \mathrm{T}_{\text {wss }}, \mathrm{H}, \mathrm{E}\right]}^{\mathrm{M}}\left(\mathcal{A}_{\text {cmam }}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}^{\prime}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\operatorname{Adv}_{\mathrm{T}_{\text {wosf }}}^{\text {M-PS }}\left(\mathcal{D}_{\text {pssm }}\right) \\
& +\operatorname{Adv}_{\mathrm{T}_{\text {wes },}, T^{\prime}}\left(\mathcal{D}_{\text {st }}\right)+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\text {qro }}+1}{|\mathcal{R}|}} \\
& +2\left(q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\text {sign }}}{|\mathcal{R}|}}+\frac{q_{\text {key }}^{2}}{|\mathcal{U}|}, \tag{11}
\end{align*}
$$

where $q_{s \text { sign }}^{\prime}$ is a bound on the total number of queries to H in all the signing queries and the running times of $\mathcal{B}_{\mathrm{inv}}, \mathcal{D}_{\mathrm{ps}} \mathrm{m}$, and $\mathcal{D}_{\mathrm{st}}$ are about that of $\mathcal{A}_{\mathrm{cmam}}$.

Lemma 7 ($\mathbf{C R}+\mathbf{S T} \Rightarrow$ M-sEUF-CMA). Let T^{\prime} be a trapdoor function with $\mathrm{F}^{\prime}: \mathcal{X}^{\prime} \rightarrow \mathcal{Y}$. Suppose that $\mathrm{L}_{j}: \mathcal{Y}^{\prime} \rightarrow \mathcal{Y}$ and $\mathrm{R}_{j}: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$ are used to simulate F_{j} by $\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}$ in the ST game, where L_{j} and R_{j} are injections.

For any quantum M-sEUF-CMA adversary $\mathcal{A}_{\text {cmam }}$ of $\mathrm{Ha} \mathrm{S}^{\mathrm{ph}}\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}, \mathrm{E}\right]$ with q_{key} keys and issuing at most q_{sign} classical queries to the signing oracle and q_{qro} (quantum) random oracle queries to $\mathrm{H} \leftarrow{ }_{\delta} \mathcal{Y}^{\mathcal{U}} \times \mathcal{R} \times \mathcal{M}$, there exist a CR adversary
$\mathcal{B}_{\mathrm{cr}}$ of T^{\prime} and an ST adversary $\mathcal{D}_{\mathrm{st}}$ of $\left(\mathrm{T}_{\mathrm{psf}}, \mathrm{T}^{\prime}\right)$ issuing q_{key} new key queries such that

$$
\operatorname{Adv}_{\mathrm{HaS} \text { ph }\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}, \mathrm{E}\right]}^{\mathrm{M}-\mathrm{SEU}}\left(\mathcal{A}_{\mathrm{cmam}}\right) \leq \frac{1}{1-2^{-\omega(\log (\lambda))}}\left(\operatorname{Adv}_{\mathrm{T}^{\prime}}^{\mathrm{CR}}\left(\mathcal{B}_{\mathrm{cr}}\right)+\operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}, \mathrm{~T}^{\prime}}^{\mathrm{ST}^{\prime}}\left(\mathcal{D}_{\mathrm{st}}\right)\right)+\frac{q_{\mathrm{key}}^{2}}{|\mathcal{U}|},
$$

where the running times of $\mathcal{B}_{\mathrm{cr}}$ and $\mathcal{D}_{\mathrm{st}}$ are about that of $\mathcal{A}_{\mathrm{cmam}}$.
In Appendix F, we apply the generic method to some frameworks of hash-and-sign signatures in lattice-based, code-based, and MQ-based cryptography. To bound the ST advantage, we introduce multi-instance variants of established computational problems in code-based and MQ-based cryptography, that is, permutation/linear equivalence [51] and morphism of polynomials [50].

Open problems: There are two open problems for the generic method. First, the computational problems used for bounding the ST advantage have not been studied deeply; therefore, future studies are necessary to guarantee the hardness of the problems. Second, we currently fail to use the generic method to show the M-EUF-CMA security under adaptive corruptions of signing keys. Solving this issue is the second open problem.

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semiclassical oracles. In: Boldyreva and Micciancio [13], pp. 269-295. https://-doi.org/10.1007/978-3-030-26951-7_10 5, 12, 13, 14
2. Banegas, G., Carrier, K., Chailloux, A., Couvreur, A., Debris-Alazard, T., Gaborit, P., Karpman, P., Loyer, J., Niederhagen, R., Sendrier, N., et al.: Wave. Tech. rep., National Institute of Standards and Technology (2023), available at https: //wave-sign.org/wave_documentation.pdf 6, 25, 35, 39
3. Barbosa, M., Barthe, G., Doczkal, C., Don, J., Fehr, S., Grégoire, B., Huang, Y.H., Hülsing, A., Lee, Y., Wu, X.: Fixing and mechanizing the security proof of fiat-shamir with aborts and dilithium. In: Handschuh and Lysyanskaya [33], pp. 358-389. https://doi.org/10.1007/978-3-031-38554-4_12 7, 26, 50, 53
4. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: On the computational hardness of the code equivalence problem in cryptography. Advances in Mathematics of Communications 17(1), 23-55 (Feb 2023). https://doi.org/10.3934/amc.2022064, /article/id/62fa202b4cedfd0007b8b288 48
5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93. pp. 62-73. ACM Press (Nov 1993). https://doi.org/10.1145/168588.168596 2, 9
6. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with RSA and Rabin. In: Maurer [43], pp. 399-416. https://doi.org/10.1007/3-540-68339-9_34 2, 5, 14
7. Belsley, E.D.: Rates of convergence of Markov chains related to association schemes. Harvard University (May 1993) 41
8. Beullens, W.: Not enough LESS: An improved algorithm for solving code equivalence problems over \mathbb{F}_{q}. In: Dunkelman, O., Jr., M.J.J., O'Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 387-403. Springer, Heidelberg (Oct 2020). https://-doi.org/10.1007/978-3-030-81652-0_15 48
9. Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 348-373. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5_13 42
10. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.: MAYO. Tech. rep., National Institute of Standards and Technology (2023), available at https: //pqmayo.org/assets/specs/mayo.pdf 6, 25, 35, 38, 42, 43
11. Beullens, W., Chen, M.S., Ding, J., Gong, B., Kannwischer, M.J., Patarin, J., Peng, B.Y., Schmidt, D., Shih, Cheng-Jhih Tao, C., Yang, B.Y.: UOV. Tech. rep., National Institute of Standards and Technology (2023), available at https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/ round-1/spec-files/UOV-spec-web.pdf 36, 40
12. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs of CCA security in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61-90. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7__3 13
13. Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part II, LNCS, vol. 11693. Springer, Heidelberg (Aug 2019) 28, 30
14. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41-69. Springer, Heidelberg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_3 3, 5, 15, 16, 17, 46
15. Bouillaguet, C., Fouque, P.A., Véber, A.: Graph-theoretic algorithms for the "isomorphism of polynomials" problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 211-227. Springer, Heidelberg (May 2013). https://doi.org/10.1007/978-3-642-38348-9_13 49
16. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem, J.: GeMSS. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/ post-quantum-cryptography-standardization/round-3-submissions 6, 25, 38
17. Chailloux, A., Debris-Alazard, T.: Tight and optimal reductions for signatures based on average trapdoor preimage sampleable functions and applications to codebased signatures. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 453-479. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45388-6_16 3, 4, 5, 9, 15, 16, 17, 23, 25, 35, 40
18. Chatterjee, S., Das, M.P.L., Pandit, T.: Revisiting the security of salted UOV signature. In: Isobe, T., Sarkar, S. (eds.) Progress in Cryptology - INDOCRYPT 2022. LNCS, vol. 13774, pp. 697-719. Springer, Heidelberg (Jan 2022) 2, 17
19. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157-174. Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-456821_10 2, 39
20. Dallot, L.: Towards a concrete security proof of Courtois, Finiasz and Sendrier signature scheme. In: WEWoRC 2007. LNCS, vol. 4945, pp. 65-77. Springer, Heidelberg (Jul 2007) 6, 25, 34, 39
21. Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D.: A detailed analysis of fiatshamir with aborts. In: Handschuh and Lysyanskaya [33], pp. 327-357. https://-doi.org/10.1007/978-3-031-38554-4_11 7, 25, 26
22. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y., Kannwischer, M.J., Patarin, J.: Rainbow. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/ post-quantum-cryptography-standardization/round-3-submissions 6, 25, 37
23. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 602-631. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56877-1_21 6, 12, 13, 17
24. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transformation in the quantum random-oracle model. In: Boldyreva and Micciancio [13], pp. 356-383. https://doi.org/10.1007/978-3-030-26951-7_13 24
25. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.: Faster latticebased KEMs via a generic fujisaki-okamoto transform using prefix hashing. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2722-2737. ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484819 4
26. Faugere, J.C., Fouque, P.A., Macario-Rat, G., Minaud, B., Patarin, J.: PROV. Tech. rep., National Institute of Standards and Technology (2023), available at https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/ round-1/spec-files/prov-spec-web.pdf 6, 25, 37
27. Faugère, J.C., Perret, L.: Polynomial equivalence problems: Algorithmic and theoretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30-47. Springer, Heidelberg (May / Jun 2006). https://doi.org/10.1007/11761679_3 49
28. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO'86. LNCS, vol. 263, pp. 186-194. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-477217_12 2
29. Furue, H., Ikematsu, Y., Hoshino, F., Kiyomura, Y., Saito, T., Takagi, T.: QRUOV. Tech. rep., National Institute of Standards and Technology (2023), available at http://info.isl.ntt.co.jp/crypt/qruov/files/NISTPQC_QRUOV.pdf 6, 25, 37
30. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 197-206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407 2, 5, 9, 14, 43, 47, 48
31. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281-308 (1988). https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017 2
32. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 637-667. Springer, Heidelberg (Dec 2021). https://-doi.org/10.1007/978-3-030-92062-3_22 3, 5, 7, 12, 24, 33
33. Handschuh, H., Lysyanskaya, A. (eds.): CRYPTO 2023, Part V, LNCS, vol. 14085. Springer, Heidelberg (Aug 2023) 28, 30
34. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 275-304. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03326-2_10 2, 9
35. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hashbased signatures. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 387-416. Springer, Heidelberg (Mar 2016). https://doi.org/10.1007/978-3-662-49384-7_15 12
36. Ikematsu, Y., Nakamura, S., Santoso, B., Yasuda, T.: Security analysis on an ElGamal-like multivariate encryption scheme based on isomorphism of polynomials. In: Yu, Y., Yung, M. (eds.) Information Security and Cryptology - Inscrypt 2021. LNCS, vol. 13007, pp. 235-250. Springer, Heidelberg (Oct 2021) 49
37. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552-586. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_18 7
38. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 33-61. Springer, Heidelberg (Aug 2016). https://-doi.org/10.1007/978-3-662-53008-5_2 10
39. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT'99. LNCS, vol. 1592, pp. 206-222. Springer, Heidelberg (May 1999). https://doi.org/10.1007/3-540-48910-X_15 2, 25, 35, 40
40. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Transactions on Information Theory 28(3), 496-511 (May 1982), https://ieeexplore.ieee. org/document/1056498 48
41. Liu, Y., Jiang, H., Zhao, Y.: Tighter post-quantum proof for plain FDH, PFDH and GPV-IBE. Cryptology ePrint Archive, Report 2022/1441 (2022), https://eprint. iacr.org/2022/1441 6, 7, 15, 17, 32
42. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598-616. Springer, Heidelberg (Dec 2009). https://doi.org/10.1007/978-3-642-10366-7_35 7, 25
43. Maurer, U.M. (ed.): EUROCRYPT'96, LNCS, vol. 1070. Springer, Heidelberg (May 1996) 28, 31
44. Menezes, A., Smart, N.: Security of signature schemes in a multi-user setting. Designs, Codes and Cryptography 33(3), 261-274 (Nov 2004), https://link.springer. com/article/10.1023/B:DESI.0000036250.18062.3f 4
45. Morozov, K., Roy, P.S., Steinwandt, R., Xu, R.: On the security of the Courtois-Finiasz-Sendrier signature. Open Mathematics 16(1), 161-167 (Mar 2018). https://doi.org/doi:10.1515/math-2018-0011, https://doi.org/10. 1515/math-2018-0011 34
46. NIST: Submission requirements and evaluation criteria for the postquantum cryptography standardization process (Jan 2017), https://csrc. nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/ call-for-proposals-final-dec-2016.pdf 4
47. NIST: Call for additional digital signature schemes for the post-quantum cryptography standardization process (Sep 2022), https://csrc.nist.gov/csrc/media/ Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf 3, 6
48. NIST: Status report on the third round of the nist post-quantum cryptography standardization process (Sep 2022), https://csrc.nist.gov/publications/detail/ nistir/8413/final 2
49. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer [43], pp. 33-48. https://-doi.org/10.1007/3-540-68339-9_4 2, 35
50. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of polynomials. In: Nyberg, K. (ed.) EUROCRYPT'98. LNCS, vol. 1403, pp. 184-200. Springer, Heidelberg (May / Jun 1998). https://doi.org/10.1007/BFb0054126 28, 49
51. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Transactions on Information Theory 43(5), 1602-1604 (Sep 1997), https://ieeexplore.ieee.org/ document/623157 28, 48
52. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National Institute of Standards and Technology (2022), available at https://csrc.nist.gov/ Projects/post-quantum-cryptography/selected-algorithms-2022 47
53. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and HFE signature schemes against chosen-message attack. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011. pp. 68-82. Springer, Heidelberg (Nov / Dec 2011). https://doi.org/10.1007/978-3-642-25405-5_5 2, 4, $5,6,9,14,15,25,36,37,38,40,41$
54. Sendrier, N.: Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193-1203 (2000) 48
55. Sendrier, N., Simos, D.E.: The hardness of code equivalence over and its application to code-based cryptography. In: Gaborit, P. (ed.) Post-Quantum Cryptography 5th International Workshop, PQCrypto 2013. pp. 203-216. Springer, Heidelberg (Jun 2013). https://doi.org/10.1007/978-3-642-38616-9_14 48
56. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: 35th FOCS. pp. 124-134. IEEE Computer Society Press (Nov 1994). https://doi.org/10.1109/SFCS.1994.365700 2
57. Szepieniec, A., Preneel, B.: Block-anti-circulant unbalanced Oil and Vinegar. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 574-588. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-38471-5_23 49
58. Unruh, D.: Quantum position verification in the random oracle model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 1-18. Springer, Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44381-1_1 12
59. Yamakawa, T., Zhandry, M.: Classical vs quantum random oracles. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 568-597. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77886-6_20 3, 4, 5, 15, 16, 23
60. Yamakawa, T., Zhandry, M.: Verifiable quantum advantage without structure. In: 63rd FOCS. pp. 69-74. IEEE Computer Society Press (Oct / Nov 2022). https://doi.org/10.1109/FOCS54457.2022.00014 3
61. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. Cryptology ePrint Archive, Report 2012/076 (2012), https://eprint.iacr. org/2012/076 3, 4, 5, 15, 16, 17, 23

A Issue with Security Proof of [41]

We have identified a flaw in the proof of $\mathrm{OW} \Rightarrow$ EUF-CMA presented in Theorem 2 of the latest version published on January 28, 2023 [41]. Let $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{tdp}}, \mathrm{H}\right.$] be a signature scheme adopting the deterministic hash-and-sign, where $\mathrm{T}_{\text {tdp }}$ is a
trapdoor permutation and $\mathrm{H} \in \mathcal{Y}^{\mathcal{M}}$. In the security proof, the random function $\underset{\sim}{\mathrm{H}}$ is replaced by $\mathrm{H}=\mathrm{F}(\widetilde{\mathrm{H}}(m))$, where $\widetilde{\mathrm{H}} \leftarrow_{\$} \mathcal{X}^{\mathcal{M}}$, and the signing oracle returns $\widetilde{\mathrm{H}}(m)$. The security proof relies on the measure-and-reprogram technique [32] and involves a two-stage algorithm S composed of S_{1} and S_{2}, which interacts with $\mathcal{A}_{\text {cma }}$ in the modified EUF-CMA game. The algorithm S behaves as follows:

1. Choose $(i, b) \leftarrow_{\Phi}([q] \times\{0,1\}) \cup\{(q+1,0)\}$.
2. Run $\mathcal{A}_{\text {cma }}$ with $\widetilde{\mathrm{H}}$ until i-th query.
3. Measure i-th query and output m as the output of S_{1}.
4. Given a random θ, reprogram $\widetilde{\mathbf{H}}^{\prime}=\widetilde{\mathbf{H}}^{m \mapsto \theta}$.
5. If $i=q+1$, then go to Step 8 .
6. Answer i-th query with $\widetilde{\mathrm{H}}$ (if $b=0$) or $\widetilde{\mathrm{H}}^{\prime}($ if $b=1)$.
7. Run $\mathcal{A}_{\text {cma }}$ with $\widetilde{\mathrm{H}^{\prime}}$ until the end.
8. Output $\mathcal{A}_{\mathrm{cma}}$'s output (m^{*}, x^{*}) as the output of S_{2}.

The authors argue that the following inequality holds from Lemma 2.

$$
\begin{align*}
& \operatorname{Pr}\left[x=\theta: m \leftarrow \mathrm{~S}_{1}^{\mathcal{A}_{\mathrm{cma}}}(),(m, x) \leftarrow \mathrm{S}_{2}^{\mathcal{A}_{\mathrm{cma}}}(\theta)\right] \\
& \geq \frac{1}{(2 q+1)^{2}} \operatorname{Pr}\left[x=\widetilde{\mathrm{H}}(m):(m, x) \leftarrow \mathcal{A}_{\mathrm{cma}}^{|\mathrm{H}\rangle}(\mathrm{F})\right] . \tag{12}
\end{align*}
$$

In the original version published on October 22, 2022, the index i is chosen from all the queries to $\widetilde{\mathrm{H}}\left(q=q_{\text {qro }}+q_{\text {sign }}\right)$, while in the latest version, it is chosen only from queries to $\widetilde{\mathrm{H}}$ outside the signing oracle ($q=q_{\text {qro }}$). The latter implies that, within the signing oracle, query inputs for \widetilde{H} are not measured and $\widetilde{\mathrm{H}}$ is not reprogrammed.

If we carefully examine the proof of the measure-and-reprogram technique [32, Theorem 2], we find issues with the latest version's approach. In the proof, the measure-and-reprogram technique relies on the assumption that when applying $\mathbb{1}-|m\rangle\langle m|$ (where $\mathbb{1}$ is the identity operator) onto the query input register at the i-th query, the quantum states in the following two cases are identical:

- Answers the i-th query by \widetilde{H} and responds to subsequent queries by \widetilde{H}^{\prime}.
- Answers the i-th query by $\widetilde{\mathrm{H}}^{\prime}$ and responds to subsequent queries by $\widetilde{\mathrm{H}}^{\prime}$.

If i indicates the index of queries to \widetilde{H} outside the signing oracle, either $\widetilde{\mathbf{H}}$ (in the first case) or $\widetilde{\mathrm{H}}^{\prime}$ (in the second case) is queried in the signing oracle between the i-th and ($i+1$)-th queries. Due to this difference in the signing oracle's behavior, the quantum states are not necessarily identical. The authors claim that queries to $\widetilde{\mathrm{H}}$ within the signing oracle can be disregarded based on the observation that when $\mathcal{A}_{\text {cma }}$ does not output 0 , it implies that the observed m has not been queried for the signing oracle. However, they need to clearly demonstrate how this fact affects the above assumption and Eq. (12).

B Security Proofs of Hash-and-sign Signatures by Theorem 1 and Corollary 1

This section shows the applications of Theorem 1 and Corollary 1 to some codebased and MQ-based hash-and-sign signatures.

B. 1 Code-based Cryptography

Application to the Modified CSF Signature: Dallot [20] proposed a modification to the CFS signature, that is, the adaption of the probabilistic hash-and-sign with retry. For the details of the (modified) CFS signature, see Appendix C.1. Let $\mathrm{T}_{\mathrm{cfs}}=\left(\mathrm{Gen}_{\mathrm{cfs}}, \mathrm{F}_{\mathrm{cfs}}, \mathrm{I}_{\mathrm{cfs}}\right)$ be the underlying trapdoor function of the modified CFS signature and $\mathcal{X}_{n, \leq t}=\left\{x \in \mathbb{F}_{2}^{n}: 0<\operatorname{hw}(x) \leq t\right\}$ be a domain of $\mathrm{F}_{\mathrm{cfs}}$, where $\mathrm{hw}(x)$ denotes a Hamming weight of $x . \mathrm{F}_{\mathrm{cfs}}=U H_{0} P\left(\mathrm{~F}_{\mathrm{cfs}}: \mathcal{X}_{n, \leq t} \rightarrow\right.$ $\left.\mathbb{F}_{2}^{n-k}\right)$ consists of a parity-check matrix of an (n, k)-binary Goppa code $H_{0} \in$ $\mathbb{F}_{2}^{(n-k) \times n}$, an invertible matrix $U \in \mathbb{F}_{2}^{(n-k) \times(n-k)}$, and a permutation matrix $P \in \mathbb{F}_{2}^{n \times n}$. Since we assume that the (n, k)-binary Goppa code can decode up to t errors, one-to-one correspondence exists between $\mathcal{X}_{n, \leq t}$ and $\mathcal{Y}_{\text {dec }}=\left\{y \in \mathbb{F}_{2}^{n-k}\right.$: $y\left(U^{-1}\right)^{T}$ is decodable $\}$. Therefore, $\mathrm{F}_{\mathrm{cfs}}: \mathcal{X}_{n, \leq t} \rightarrow \mathbb{F}_{2}^{n-k}$ is an injection. Using the fact, Morozov et al. gave a reduction of INV \Rightarrow sEUF-CMA in the ROM [45, Theorem 3.1]. We show that the modified CFS signature is SEUF-CMA-secure in the QROM, assuming that $\mathrm{T}_{\mathrm{cfs}}$ is non-invertible.

Proposition 1 (INV \Rightarrow sEUF-CMA (Modified CFS Signature)). For any quantum sEUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{cfs}}, \mathrm{H}\right]$ issuing at most q_{sign} classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {cfs }}$ such that

$$
\begin{aligned}
\operatorname{Adv}_{\underset{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{cs}}, H\right]}{\mathrm{SEUF}-\mathrm{HMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq}\left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\mathrm{cfs}}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right) & +\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}} \\
& +2\left(q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}}
\end{aligned}
$$

where $q_{\text {sign }}^{\prime}$ is a bound on the total number of queries to H in all the signing queries and the running time of $\mathcal{B}_{\mathrm{inv}}$ is about that of $\mathcal{A}_{\mathrm{cma}}$.

Proof. When we define $\operatorname{SampDom}\left(\mathrm{F}_{\mathrm{cfs}}\right)$ as $x \leftarrow_{\$} \mathcal{X}_{n, \leq t}, \mathrm{~T}_{\mathrm{cfs}}$ becomes WPSF. Since $F_{c f s}$ is an injection, we can apply Corollary 1 to the modified CFS signature. In the PS game, we show that SampDom $\left(\mathrm{F}_{\mathrm{cfs}}\right)$ in Sample $_{1}$ can perfectly simulate x_{i} output by Sample ${ }_{0}$. From the one-to-one correspondence between $\mathcal{X}_{n, \leq t}$ and $\mathcal{Y}_{d e c}, x \leftarrow \mathrm{I}_{\mathrm{cfs}}(y)$ for $y \leftarrow_{\$} \mathcal{Y}_{\text {dec }}$ follows $\mathrm{U}\left(\mathcal{X}_{n, \leq t}\right)$. Also, Sample ${ }_{0}$ outputs x_{i} after retrying $y_{i} \leftarrow_{\$} \mathbb{F}_{2}^{n-k}$ until $\mathrm{I}_{\mathrm{cfs}}\left(y_{i}\right) \neq \perp$ holds; therefore y_{i} is uniformly chosen from $\mathcal{Y}_{\text {dec }}$. Hence, the distribution of x_{i} output by Sample ${ }_{0}$ is equivalent to that of $x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{\mathrm{cfs}}\right)$ and, thus, $\operatorname{Adv}_{\mathrm{T}_{\mathrm{css}}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=0$ holds.

Application to Wave: Wave is a practical and unbroken hash-and-sign signature [2]. See Appendix C. 2 for the details. Wave adopts the probabilistic hash-and-sign (without retry) and Wave's trapdoor function $\mathrm{T}_{\text {wave }}=\left(\mathrm{Gen}_{\text {wave }}, \mathrm{F}_{\text {wave }}, \mathrm{I}_{\text {wave }}\right)$ is ATPSF [17] (see Section 4.2). We show that Wave is EUF-CMA-secure using one of the conditions of ATPSF.

Proposition 2 (INV \Rightarrow EUF-CMA (Wave)). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {wave }}, \mathrm{H}\right]$ issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {wave }}$ such that
$\operatorname{Adv}_{\mathrm{HaS}\left[\boldsymbol{T}_{\text {wave }}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq\left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathbf{T}_{\text {wave }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+q_{\text {sign }} \delta+\frac{3}{2} q_{\text {sign }} \sqrt{\frac{q_{\text {sign }}+q_{\text {qro }}+1}{|\mathcal{R}|}}$,
where the running time of $\mathcal{B}_{\text {inv }}$ is about that of $\mathcal{A}_{\text {cma }}$.
Proof. Since Twave is ATPSF [17] that is a special case of WPSF, we can apply Theorem 1 to Wave. From the first condition of ATPSF, there is a bound δ on the expectation of $\delta_{\mathrm{F}, \mathrm{I}}=\Delta\left(\operatorname{SampDom}\left(\mathrm{F}_{\text {wave }}\right), \mathrm{I}_{\text {wave }}(\mathrm{U}(\mathcal{Y}))\right)$; therefore, $\operatorname{Adv}_{\mathrm{T}_{\text {wave }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right) \leq$ $q_{\text {sign }} \delta$ holds from the union bound.

Compared with the existing reduction using Eq. (1) [17], the factor of δ is not a square root in our reduction. Also, its security can be proved on the basis of hardness assumption of the syndrome decoding since there is a tight reduction from the syndrome decoding to the INV of $\mathrm{T}_{\text {wave }}$ [17, Proposition 8].

B. 2 Multivariate-quadratic-based Cryptography

Many schemes based on the UOV [39] and HFE [49] signatures have been proposed. Sakumoto et al. proposed modifications of the schemes adopting the probabilistic hash-and-sign with retry. We prove that the original/modified UOV signatures and the modified HFE signature are EUF-CMA-secure in the QROM if their trapdoor functions are non-invertible. Also, we prove the EUF-CMA security of MAYO [10].

Application to the Original UOV Signature: We briefly review the Original UOV scheme. For the details, see Appendix C.3. Let $T_{\text {uov }}=\left(\operatorname{Gen}_{\text {uov }}, F_{\text {uov }}, I_{\text {uov }}\right)$ be a trapdoor function used in the original UOV signature. $\mathrm{F}_{\text {uov }}=\mathrm{P} \circ \mathrm{S}\left(\mathrm{F}_{\text {uov }}: \mathbb{F}_{q}^{n} \rightarrow\right.$ \mathbb{F}_{q}^{o}) consists of a multivariate quadratic map $\mathrm{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{o}$ and an invertible affine map $S: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$. Variables in P are called vinegar variables $z^{v} \in \mathbb{F}_{q}^{v}$ and oil variables $z^{o} \in \mathbb{F}_{q}^{o}$, where $n=v+o$. By design of $\mathrm{P}, \mathrm{P}\left(z^{v}, \cdot\right)$ becomes a set of linear functions on oil variables z^{o} by fixing z^{v}. $\mathrm{I}_{\text {uov }}$ chooses $z^{v} \leftarrow_{\$} \mathbb{F}_{q}^{v}$ and obtains z^{o} after retrying z^{v} until $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=\mathrm{H}(r, m)\right\} \neq \emptyset$ holds (or $\mathrm{P}\left(z^{v}, z^{o}\right)$ has full-rank). See Fig. 13 for the signing algorithm and $I_{\text {uov }}$.

We show the EUF-CMA security of the original UOV signature in the QROM if it adopts the probabilistic hash-and-sign.

HaS $\left[\mathrm{T}_{\text {uov }}, \mathrm{H}\right] . \operatorname{Sign}\left(\mathrm{I}_{\text {uov }}, m\right)$	$\mathrm{I}_{\text {uov }}(y)$	
$1 \mathrm{r} \leftarrow_{\$} \mathcal{R}$	1 repeat	
$2 x \leftarrow \mathrm{I}_{\text {uov }}(\mathrm{H}(r, m))$	$2 z^{v} \leftarrow_{8} \mathbb{F}_{q}^{v}$	
3 return (r, x)	3 until $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=y\right\} \neq \emptyset$	
	$4 z^{o} \leftarrow_{\$}\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=y\right\}$	
	$5 x:=\mathrm{S}^{-1}\left(z^{v} \\| z^{\circ}\right)$	
	6 return x	

Fig. 13: Signature generation algorithm of the original UOV signature

Proposition 3 (INV \Rightarrow EUF-CMA (Original UOV Signature)). For any quantum EUF-CMA adversary $\mathcal{A}_{\text {cma }}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {uov }}, \mathrm{H}\right]$ issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and q_{qro} (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$, there exist an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {uov }}$ and a PS adversary $\mathcal{D}_{\mathrm{ps}}$ of $\mathrm{T}_{\text {uov }}$ issuing $q_{\text {sign }}$ sampling queries such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{HaS}[\text { uov }, \mathrm{H}]}^{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq & \left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {uov }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)+\operatorname{Adv}_{\mathrm{T}_{\text {uov }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right) \\
& +\frac{3}{2} q_{\mathrm{sign}} \sqrt{\frac{q_{\text {sign }}+q_{\text {qro }}+1}{|\mathcal{R}|}}
\end{aligned}
$$

where the running times of $\mathcal{B}_{\text {inv }}$ and $\mathcal{D}_{\mathrm{ps}}$ are about that of $\mathcal{A}_{\mathrm{cma}}$.
Proof. Defining SampDom $\left(\mathrm{F}_{\text {uov }}\right)$ as $x \leftarrow \$ \mathbb{F}_{q}^{n}$, $\mathrm{T}_{\text {uov }}$ becomes WPSF; therefore, we can apply Theorem 1.

If $T_{\text {uov }}$ is preimage-simulatable $\left(\operatorname{Adv}_{T_{\text {uov }}}^{P S}\left(\mathcal{D}_{\mathrm{ps}}\right)\right.$ is negligible $)$, the original UOV signature is provable secure. However, we must consider the computational indistinguishability of $x \leftarrow \mathrm{I}_{\text {uov }}(y)$ for $y \leftarrow{ }_{\$} \mathbb{F}_{q}^{o}(b=0)$ and $x \leftarrow_{\$} \mathbb{F}_{q}^{n}(b=1)$ in the PS game since the former x is not uniform. Note that we can apply Proposition 3 to the UOV signature scheme recently submitted to the NIST PQC standardization [11] ${ }^{12}$.

Application to the Modified UOV Signature: Sakumoto et al. [53] proposed the modified UOV signature to solve the problem of the original one, that is, the non-uniformity of $x \leftarrow \mathrm{I}_{\text {uov }}(y)$. For the details, see Appendix C.3. Let $\mathrm{T}_{\text {muov }}=$ ($\mathrm{Gen}_{\text {muov }}, \mathrm{F}_{\text {muov }}, I_{\text {muov }}$) be a trapdoor function used in the modified UOV signature $\left(\right.$ Gen $_{\text {muov }}=G_{\text {en }}^{\text {uov }}$ and $\left.F_{\text {muov }}=F_{\text {uov }}\right)$ and Fig. 14 depicts $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, H\right]$.Sign and $I_{\text {muov }}$. The modified UOV signature retries r instead of z^{v} and $I_{\text {muov }}$ is divided into two functions; $I_{\text {muov }}^{1}$ and $I_{\text {muov }}^{2} \cdot I_{\text {muov }}^{1}$ chooses $z^{v} \leftarrow{ }_{\$} \mathbb{F}_{q}^{v}$ and $I_{\text {muov }}^{2}$ finds z^{o} after retrying r until $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=\mathrm{H}(r, m)\right\} \neq \emptyset$ holds. Considering the difference in the signing procedure, we show the EUF-CMA security of the modified UOV signature in the QROM.

[^8]```
HaS[\mp@subsup{\textrm{T}}{\mathrm{ muov }}{},\textrm{H}].\operatorname{Sign}(\mp@subsup{\textrm{I}}{\mathrm{ muov }}{},m)}\quad\underline{\mp@subsup{\textrm{I}}{\mathrm{ muov (}}{1}
 1 z
 2 repeat 2 return z}\mp@subsup{z}{}{v}\quad2 return \perp
 r\leftarrow$\mathcal{R }
 x\leftarrow I 2muov
 until }x\not=\perp 5 return
 return (r,x)
```

Fig. 14: Signature generation algorithm of the modified UOV signature

Proposition 4 (INV $\Rightarrow$ EUF-CMA (Modified UOV Signature)). For any quantum EUF-CMA adversary $\mathcal{A}_{\text {cma }}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, \mathrm{H}\right]$ issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {muov }}$ such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\text {muov }}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{HMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq & \left(2 q_{\text {qro }}+1\right)^{2} \operatorname{Adv}_{\mathbf{T}_{\text {muov }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)
\end{aligned}+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}} .
$$

where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries and the running time of $\mathcal{B}_{\mathrm{inv}}$ is about that of $\mathcal{A}_{\mathrm{cma}}$.

Proof. Defining SampDom $\left(\mathrm{F}_{\text {muov }}\right)$ as $x \leftarrow_{\$} \mathbb{F}_{q}^{n}$, $\mathrm{T}_{\text {muov }}$ becomes WPSF. Considering the signing procedure of the modified UOV signature, we modify the signing oracles of $\mathrm{G}_{0}-\mathrm{G}_{4}$ in the proof of Theorem 1 and Sample $_{0}$ of the PS game by adding $z^{v} \leftarrow \mathrm{I}_{\text {muov }}^{1}()$ in the beginning and replacing $x_{i} \leftarrow \mathrm{I}\left(y_{i}\right)$ with $x_{i} \leftarrow \mathrm{I}_{\text {muov }}^{2}\left(z^{v}, y_{i}\right)$. Then, $\mathcal{D}_{\text {ps }}$ playing the modified PS game can simulate $\mathrm{G}_{4}(b=0)$ and $\mathrm{G}_{5}(b=1)$. Hence, we can apply Theorem 1 to the modified UOV signature. In Sample 0 of the PS game, $x_{i} \leftarrow \mathrm{I}_{\text {muov }}^{2}\left(z^{v}, y\right)$ for $z^{v} \leftarrow \mathrm{I}_{\text {muov }}^{1}()$ after retrying $y$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{n}\right)$ form [53, Theorem 1] (we show the proof sketch in Appendix C.3); therefore, $x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{\text {muov }}\right)$ in Sample ${ }_{1}$ is indistinguishable form $x_{i}$ output by Sample ${ }_{0}$. Hence, $\operatorname{Adv}_{\mathrm{T}_{\text {muv }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=0$ holds.

We can apply Proposition 4 to QR-UOV [29] and PROV [26] without modification. For Rainbow [22], it requires the same modification as the modified UOV signature.

Application to the Modified HFE Signature: The modified HFE signature proposed by Sakumoto et al. [53] is designed for the same purpose as the modified UOV signature. For the details, see Appendix C.4. Let $T_{\text {mhfe }}=\left(G_{m h f e}, F_{\text {mhfe }}, I_{\text {mhfe }}\right)$ be a trapdoor function used in the modified HFE scheme. We show that the modified HFE signature is EUF-CMA secure.

Proposition 5 (INV $\Rightarrow$ EUF-CMA (Modified HFE Signature)). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {mhfe }}, \mathrm{H}\right]$ issuing at most $q_{\mathrm{sign}}$
classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R} \times \mathcal{M}}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {mhfe }}$ such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{mhfe}}, \mathrm{H}\right]}^{\mathrm{EUF}-\mathrm{HMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq & \left(2 q_{\mathrm{qro}}+1\right)^{2} \operatorname{Adv}_{\mathrm{T}_{\text {mhfe }}}^{\mathrm{INV}}\left(\mathcal{B}_{\mathrm{inv}}\right)
\end{aligned}+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}
$$

where $q_{\mathrm{sign}}^{\prime}$ is a bound on the total number of queries to H in all the signing queries and the running time of $\mathcal{B}_{\mathrm{inv}}$ is about that of $\mathcal{A}_{\mathrm{cma}}$.

Proof. Since $\mathrm{F}_{\text {mhfe }}$ has a domain $\mathbb{F}_{q}^{n}$, we can define SampDom $\left(\mathrm{F}_{\text {mhfe }}\right)$ as $x \leftarrow \mathbb{F}_{q}^{n}$. Then, $\mathrm{T}_{\text {mhfe }}$ becomes WPSF and we can apply Theorem 1 to the modified HFE scheme. The authors of [53] showed that $x \leftarrow \mathrm{I}_{\text {mhfe }}(y)$ after retrying $y$ is uniformly distributed over $\mathbb{F}_{q}^{n}$ (we show the proof sketch in Appendix C.4). Therefore, in the PS game, $x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{\text {mhfe }}\right)$ in Sample $_{1}$ is indistingushable from $x_{i}$ output by Sample $_{0}$, and thus, $\operatorname{Adv}_{\mathrm{T}_{\text {mhfe }}}^{\mathrm{PS}}\left(\mathcal{D}_{\mathrm{ps}}\right)=0$ holds.

We can apply Proposition 5 to GeMSS [16].
Application to MAYO: MAYO, proposed by Beullens [10], is a signature scheme that adopts the probabilistic hash-and-sign and its trapdoor function is based on UOV. For the details, see Appendix C.5. Let $T_{\text {mayo }}=\left(\operatorname{Gen}_{\text {mayo }}, F_{\text {mayo }}, I_{\text {mayo }}\right)$ be a trapdoor function used in MAYO. $\mathrm{I}_{\text {mayo }}$ finds a preimage $x=x^{v}+x^{o}$ of $y$ for a multivariate quadratic map $\mathrm{P}^{*}: \mathbb{F}_{q}^{k n} \rightarrow \mathbb{F}_{q}^{m}$. Once $x^{v}$ is uniformly chosen from $\left(\mathbb{F}_{q}^{n-o} \times\left\{0^{o}\right\}\right)^{k} \subset \mathbb{F}_{q}^{k n}$, where $0^{o}$ denotes a vector of $o 0 \mathrm{~s}, \mathrm{P}^{*}\left(x^{v}+x^{o}\right)=y$ becomes a linear system of equations for $x^{o}$. $I_{\text {mayo }}$ outputs a preimage after retrying $x^{v}$ until $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ has full rank. If $\mathrm{I}_{\text {mayo }}$ outputs $x$ without needing to retry $x^{v}$, $x$ is uniformly distributed over $\mathbb{F}_{q}^{k n}$. Let $\tau$ be a bound on the probability that $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ does not have full rank for a random $x^{v}$. MAYO is EUF-CMAsecure in the ROM [10, Theorem 1] assuming that $q_{\text {sign }} \tau<\frac{1}{2}$. Under the same assumption, we show the EUF-CMA security of MAYO in the QROM.

Proposition 6 (INV $\Rightarrow$ EUF-CMA(MAYO)). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{HaS}\left[\mathrm{T}_{\text {mayo }}, \mathrm{H}\right]$ issuing at most $q_{\mathrm{sign}}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{R}} \times \mathcal{M}$, there exists an INV adversary $\mathcal{B}_{\text {inv }}$ of $\mathrm{T}_{\text {mayo }}$ such that

$$
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\text {mayo }}, \mathrm{H}\right]}^{\mathrm{EUF}]}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \frac{\left(2 q_{\text {qro }}+1\right)^{2}}{1-q_{\mathrm{sign}} \tau} \operatorname{Adv}_{\mathbf{T}_{\text {mayo }}}^{\text {INV }}\left(\mathcal{B}_{\text {inv }}\right)+\frac{3}{2} q_{\text {sign }} \sqrt{\frac{q_{\text {sign }}+q_{\text {qro }}+1}{|\mathcal{R}|}},
$$

where the running time of $\mathcal{B}_{\text {inv }}$ is about that of $\mathcal{A}_{\mathrm{cma}}$.
Proof. We apply Theorem 1 with defining an intermediate game $\mathrm{G}_{1}^{\prime}$. $\mathrm{G}_{1}^{\prime}$ is identical to $\mathrm{G}_{1}$ except that $\mathrm{G}_{1}^{\prime}$ aborts and outputs 0 whenever $\mathrm{I}_{\text {mayo }}$ retries $x^{v}$. The probability that $\mathrm{G}_{1}^{\prime}$ does not abort while $q_{\text {sign }}$ signing queries is at least
$1-q_{\text {sign }} \tau$. Therefore, $\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right] \leq \frac{1}{1-q_{\text {sign }} \tau} \operatorname{Pr}\left[\mathrm{G}_{1}^{\prime} \mathcal{A}_{\text {cma }} \Rightarrow 1\right]$ holds. We define SampDom $\left(\mathrm{F}_{\text {mayo }}\right)$ as $x \leftarrow_{\$} \mathbb{F}_{q}^{k n}$. The adversary of $G_{5}$ perfectly simulates the signing oracle in the case that $\mathrm{G}_{1}^{\prime}$ does not abort by using his oracle since $x \leftarrow \mathrm{I}_{\text {mayo }}(y)$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{k n}\right)$. Therefore, the view of the adversary is identical in the simulated one with the case that $G_{1}^{\prime}$ does not abort, and thus $\operatorname{Pr}\left[\mathrm{G}_{1}^{\prime} \mathcal{A}_{\mathrm{cma}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{c m a}} \Rightarrow 1\right]$ holds. Since the EUF-NMA adversary can simulate $\mathrm{G}_{5}, \operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right] \leq \operatorname{Adv} \mathrm{HaS}_{\mathrm{Ha}\left[\mathrm{T}_{\text {mayo }}, \mathrm{H}\right]}^{\mathrm{EUF}[\mathrm{NMA}}\left(\mathcal{A}_{\mathrm{nma}}\right)$ holds, which yields the claimed bound.

## C Review of Hash-and-sign Signatures

## C. 1 Modified CFS Signature [20]

The modified CFS signature adopts the probabilistic hash-and-sign with retry. Let $\mathrm{T}_{\mathrm{cfs}}=\left(\mathrm{Gen}_{\mathrm{cfs}}, \mathrm{F}_{\mathrm{cfs}}, \mathrm{I}_{\mathrm{cfs}}\right)$ be a trapdoor function used in the modified CFS signature. We assume that an $(n, k)$-binary Goppa code can decode up to $t$ errors. $\operatorname{Gen}_{\text {cfs }}$ generates a parity-check matrix $H_{0} \in \mathbb{F}_{2}^{(n-k) \times n}$ of the $(n, k)$-binary Goppa code, an invertible matrix $U \in \mathbb{F}_{2}^{(n-k) \times(n-k)}$, and a permutation matrix $P \in \mathbb{F}_{2}^{n \times n}$, and outputs $H=U H_{0} P \in \mathbb{F}_{2}^{(n-k) \times n}$ as $\mathrm{F}_{\mathrm{cfs}}$ and $\left(U, H_{0}, P\right)$ as $\mathrm{I}_{\mathrm{cfs}}$. On input $x \in \mathcal{X}_{n, \leq t}=\left\{x \in \mathbb{F}_{2}^{n}: 0<\operatorname{hw}(x) \leq t\right\}$, the function $\mathrm{F}_{\mathrm{cfs}}$ computes a syndrome $y:=x H^{T} \in \mathbb{F}_{2}^{n-k}$. On input $y \in \mathbb{F}_{2}^{n-k}$, the trapdoor $I_{\text {cfs }}$ composed of $\left(U, H_{0}, P\right)$ computes an error vector as follows: It decodes $y\left(U^{-1}\right)^{T}$ using $H_{0}$ to obtain $x^{\prime}$, and outputs an error vector $x=x^{\prime}\left(P^{-1}\right)^{T}$; if $y\left(U^{-1}\right)^{T}$ is not decodable, it outputs $\perp$. Since the $(n, k)$-binary Goppa code can decode up to $t$ errors, which is our assumption, there is a one-to-one correspondence between $\mathcal{X}_{n, \leq t}$ and $\mathcal{Y}_{\text {dec }}=\left\{y \in \mathbb{F}_{2}^{n-k}: y\left(U^{-1}\right)^{T}\right.$ is decodable $\}$. Therefore, $\mathrm{F}_{\mathrm{cfs}}$ is injective and $\boldsymbol{I}_{\mathrm{cfs}}(y)$ outputs a preimage for $y \leftarrow{ }_{\$} \mathbb{F}_{2}^{n-k}$ with probability $\frac{\left|\mathcal{Y}_{\text {dec }}\right|}{\left|\mathbb{F}_{2}^{n-k}\right|}=\frac{\left|\mathcal{X}_{n, \leq t}\right|}{\left|\mathbb{F}_{2}^{n-k}\right|}$. As shown in [19], $\frac{\left|\mathcal{X}_{n, \leq t}\right|}{\left|\mathbb{F}_{2}^{n-k}\right|} \approx \frac{1}{t!}$ holds and we can take $q_{\text {sign }}^{\prime}=c t!q_{\text {sign }}$ for some constant $c>1$ in Proposition 1.

We show that a preimage $x$ output by $\mathrm{HaS}\left[\mathrm{T}_{\text {cfs }}, \mathrm{H}\right]$. Sign follows $\mathrm{U}\left(\mathcal{X}_{n, \leq t}\right)$. Initially, $x \leftarrow \mathrm{I}_{\mathrm{cfs}}(y)$ for $y \leftarrow \$ \mathcal{Y}_{\text {dec }}$ follows $\mathrm{U}\left(\mathcal{X}_{n, \leq t}\right)$ from the one-to-one correspondence between $\mathcal{X}_{n, \leq t}$ and $\mathcal{Y}_{\text {dec }}$. Subsequently, $\mathrm{HaS}\left[\mathrm{T}_{\text {cfs }}, \mathrm{H}\right]$. Sign outputs $x$ after retrying $y \leftarrow_{\$} \mathbb{F}_{2}^{n-k}$ until $\mathrm{I}_{\text {cfs }}(y) \neq \perp$ holds; therefore the chosen $y$ follows $\mathrm{U}\left(\mathcal{Y}_{\text {dec }}\right)$. Hence, $x$ output by $\mathrm{HaS}\left[\mathrm{T}_{\mathrm{cfs}}, \mathrm{H}\right]$. Sign follows $\mathrm{U}\left(\mathcal{X}_{n, \leq t}\right)$.

## C. 2 Wave [2]

Wave adopts the probabilistic hash-and-sign. Let $T_{\text {wave }}=\left(\operatorname{Gen}_{\text {wave }}, F_{\text {wave }}, I_{\text {wave }}\right)$ be a trapdoor function used in Wave and $H \in \mathbb{F}_{q}^{(n-k) \times n}$ be a parity-check matrix for an $(n, k)$-code over $\mathbb{F}_{q} . \mathcal{X}_{n, t}=\left\{x \in \mathbb{F}_{q}^{n}: \operatorname{hw}(x)=t\right\}$ denotes a set of vectors $x \in \mathbb{F}_{q}^{n}$ whose Hamming weight is exactly $t$, where $t$ is chosen such that $\mathrm{F}_{\text {wave }}: \mathcal{X}_{n, t} \rightarrow \mathbb{F}_{q}^{n-k}$ is a surjection. Gen wave outputs a parity-check matrix $H \in \mathbb{F}_{q}^{(n-k) \times n}$ for an $(n, k)$-code over $\mathbb{F}_{q}$ as $F_{\text {wave }}$ and parity-check matrices of
generalized $(U, U+V)$-codes as $\mathrm{I}_{\text {wave }}$. On input $x \in \mathcal{X}_{n, t}$, the function $\mathrm{F}_{\text {wave }}$ computes a syndrome $y:=x H^{T} \in \mathbb{F}_{q}^{n-k}$. On input $y \in \mathbb{F}_{q}^{n-k}$, the trapdoor $\mathrm{I}_{\text {wave }}$ outputs an element of $\mathcal{X}_{n, t}$. Since a description of $\mathrm{I}_{\text {wave }}$ is out of the scope of this paper, we omit the description.
$\mathrm{T}_{\text {wave }}$ satisfies the conditions of ATPSF [17, Definition 2] and we can take a statistical bound on the distinguishing advantage of honestly generated signatures and simulated ones.

## C. 3 Original/Modified UOV Signature [39, 53]

Let $\mathrm{T}_{\text {uov }}=\left(\mathrm{Gen}_{\text {uov }}, \mathrm{F}_{\text {uov }}, \mathrm{I}_{\text {uov }}\right)\left(\right.$ resp., $\left.\mathrm{T}_{\text {muov }}=\left(\operatorname{Gen}_{\text {muov }}, \mathrm{F}_{\text {muov }}, \mathrm{I}_{\text {muov }}\right)\right)$ be a trapdoor function used in the original (resp., modified) UOV signature. Note that $G e n_{\text {uov }}=G_{\text {en }}^{\text {muov }}$ and $F_{\text {uov }}=F_{\text {muov }}$. Gen nov generates an invertible affine map $\mathrm{S}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ and a multivariate quadratic map $\mathrm{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{o}$ defined as $\mathrm{P}=$ $\left(p_{1}, p_{2}, \ldots, p_{o}\right)$, where

$$
p_{k}\left(z^{v}, z^{o}\right)=\sum_{i \in[v+o]} \sum_{j \in[v]} \alpha_{i, j}^{k} z_{i} z_{j}
$$

and outputs $\mathrm{P} \circ \mathrm{S}$ as $\mathrm{F}_{\text {uov }}$ and $(\mathrm{P}, \mathrm{S})$ as $\mathrm{I}_{\text {uov }}$. Variables in P are called vinegar variables $z^{v}=\left(z_{1}, z_{2}, \ldots, z_{v}\right) \in \mathbb{F}_{q}^{v}$ and oil variables $z^{o}=\left(z_{v+1}, z_{v+2}, \ldots, z_{v+o}\right) \in$ $\mathbb{F}_{q}^{o}$, where $n=v+o$. On input $y \in \mathbb{F}_{q}^{o}$, $\mathrm{I}_{\text {uov }}$ chooses $z^{v} \leftarrow \$ \mathbb{F}_{q}^{v}$ and outputs $x=\mathrm{S}^{-1}\left(z^{v} \| z^{o}\right)$ by solving a linear equation system $\mathrm{P}\left(z^{v}, \cdot\right)=y$. There is possibly no solution. In the original UOV signature, $\mathrm{I}_{\text {uov }}$ retries $z^{v}$ until $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=y\right\} \neq \emptyset$ holds or $\mathrm{P}\left(z^{v}, \cdot\right)$ has full rank [11] (see Fig. 13). Since $x \leftarrow \mathrm{I}_{\mathrm{uov}}(y)$ for $y \leftarrow_{\$} \mathbb{F}_{q}^{o}$ is not uniformly distributed, we must assume the computational indistinguishability of $x \leftarrow \mathrm{I}_{\text {uov }}(y)$ for $y \leftarrow_{\$} \mathbb{F}_{q}^{o}$ and $x \leftarrow_{\$} \mathbb{F}_{q}^{n}$ for the provable security.

The modified UOV signature adopts the probabilistic hash-and-sign with retry and does not retake the vinegar variables $z^{v}$. The signing procedure of the modified UOV signature (see Fig. 14) is different from the other signature schemes adopting the probabilistic hash-and-sign with retry. $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, \mathrm{H}\right]$ using $I_{\text {muov }}^{1}$ and $I_{\text {muov }}^{2}$ generates a signature as follows: $I_{\text {muov }}^{1}$ chooses vinegar variables $z^{v}$ uniformly at random. Fixing $z^{v}, \mathrm{P}$ becomes a set of linear functions on oil variables $z^{o} . I_{\text {muov }}^{2}$ finds a preimage of PoS by solving a linear equation system and taking the inverse of S . If there is no solution, $\mathrm{I}_{\text {muov }}^{2}$ outputs $\perp$ and $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, \mathrm{H}\right]$ retries $r$ and executes $\mathrm{I}_{\text {muov }}^{2}$ again without retrying $z^{v}$. Sakumoto et al. showed that preimages generated by $\mathrm{HaS}\left[\mathrm{T}_{\text {muov }}, \mathrm{H}\right]$.Sign are uniformly distributed over $\mathbb{F}_{q}^{n}$. For completeness, we give the proof sketch.

In the beginning, $z^{v}$ is uniformly chosen, that is, $z^{v}$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{v}\right)$. By fixing $z^{v}, \mathrm{P}\left(z^{v}, \cdot\right)$ becomes a set of linear functions containing $o \times o$ matrix whose rank is determined by choice of $z^{v}$ if solutions exist. When the rank is $i, \mathrm{P}\left(z^{v}, \cdot\right)$ becomes a $q^{o-i}$-to- 1 mapping for each element in the range $\mathbb{F}_{q}^{o}$. There are only $q^{i}$ possible outputs of H satisfying $\left\{z^{o}: \mathrm{P}\left(z^{v}, z^{o}\right)=\mathrm{H}(r, m)\right\} \neq \emptyset$. When H is a random function, one of the $q^{i}$ outputs is uniformly chosen after some retries.

Once the output is fixed, one of $q^{o-i}$ solutions is uniformly chosen. In this way, $z^{o}$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{o}\right)$ and thus $x=\mathrm{S}^{-1}\left(z^{v} \| z^{o}\right)$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{n}\right)$.

In Proposition 4, we cannot take $q_{\text {sign }}^{\prime}$ as in the other schemes since the probability that $I_{\text {muov }}\left(z^{v}, y\right)$ outputs $\perp$ varies depending on $z^{v}$. We set $q_{\text {sign }}^{\prime}=$ $q_{\text {retry }} q_{\text {sign }}$, where $q_{\text {retry }}$ is a bound on the number of queries to H in each signing query. Let $X_{i}$ be a random variable for the number of queries to H in $i$-th queries and $X=\sum_{i=1}^{q_{\mathrm{sign}}} X_{i}$. We have

$$
\operatorname{Pr}\left[X_{i}>q_{\mathrm{retry}}\right]=\sum_{j=1}^{o} p_{j}\left(1-q^{j-o}\right)^{q_{\text {retry }}}
$$

where $p_{j}$ is a probability that $\mathrm{P}\left(z^{v}, \cdot\right)$ has rank $j$ for $z^{v} \leftarrow_{\$} \mathbb{F}_{q}^{v}$. It is known that a random $o \times o$ matrix over $\mathbb{F}_{q}$ has rank $o-a$ for $a \in\{0,1, \ldots, o\}$ with a probability [7]:

$$
\begin{equation*}
\frac{1}{q^{a^{2}}} \cdot \frac{\prod_{k=1}^{o}\left(1-q^{-k}\right) \prod_{k=a+1}^{o}\left(1-q^{-k}\right)}{\prod_{k=1}^{o-a}\left(1-q^{-k}\right) \prod_{k=1}^{a}\left(1-q^{-k}\right)} \tag{13}
\end{equation*}
$$

When we assume that $\mathrm{P}\left(z^{v}, \cdot\right)$ becomes a random $o \times o$ matrix for any $z^{v}$, $p_{j}$ follows Eq. (13). Since $X>q_{\text {sign }}^{\prime}$ implies $\exists i, X_{i}>q_{\text {retry }}, \operatorname{Pr}\left[X>q_{\text {sign }}^{\prime}\right] \leq$ $q_{\text {sign }} \operatorname{Pr}\left[X_{i}>q_{\text {retry }}\right]$ holds. To determine an appropriate value for $q_{\text {sign }}^{\prime}=q_{\text {retry }} q_{\text {sign }}$ in the security bound, we need to take $q_{\text {retry }}$ such that $q_{\text {sign }} \operatorname{Pr}\left[X_{i}>q_{\text {retry }}\right]$ is negligible for the security parameter.

## C. 4 Modified HFE Signature [53]

The modified HFE signature adopts the probabilistic hash-and-sign with retry. Let $\mathrm{T}_{\text {mhfe }}=\left(\operatorname{Gen}_{\text {mhfe }}, \mathrm{F}_{\text {mhfe }}, \mathrm{I}_{\text {mhfe }}\right)$ be a trapdoor function used in the modified HFE signature and $\phi: K \rightarrow \mathbb{F}_{q}^{n}$ be a standard linear isomorphism $\phi\left(a_{0}+a_{1} x+\right.$ $\left.\cdots+a_{n-1} x^{n-1}\right)=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $K=\mathbb{F}_{q}[x] / g(x)$ for an irreducible polynomial $g(x)$ of degree $n$. Gen mhfe generates invertible affine maps ( $\mathrm{S}, \mathrm{S}^{\prime}$ ) over $\mathbb{F}_{q}^{n}$ and a central map P:K $\rightarrow K$ defined as

$$
\mathrm{P}(X)=\sum_{\substack{(i, j) \in[n] \times[n] \\ \text { s.t. } q^{i-1}+q^{j-1}<d}} \alpha_{i, j} X^{q^{i-1}+q^{j-1}}+\sum_{\substack{i \in[n] \\ \text { s.t. } q^{i-1}<d}} \beta_{i} X^{q^{i-1}},
$$

where $\alpha_{i, j}, \beta_{i} \in K$, and outputs $\mathrm{S}^{\prime} \circ \phi \circ \mathrm{P} \circ \phi^{-1} \circ \mathrm{~S}$ as $\mathrm{F}_{\text {mhfe }}$ and $\left(\mathrm{P}, \mathrm{S}, \mathrm{S}^{\prime}\right)$ as $\mathrm{I}_{\mathrm{mhfe}}$. On input $y \in \mathbb{F}_{q}^{n-m}$, $\mathrm{I}_{\text {mhfe }}$ computes a preimage $x \in \mathbb{F}_{q}^{n}$ as in Fig. 15.

As in the modified UOV signature, the authors of [53] showed that preimages generated by $\mathrm{HaS}\left[\mathrm{T}_{\text {mhfe }}, \mathrm{H}\right]$. Sign are uniformly distributed over $\mathbb{F}_{q}^{n}$. We give the proof sketch.

When H is a random function, each $z \in \mathbb{F}_{q}^{n}$ is chosen with probability $\frac{1}{q^{n}}$. With probability $\frac{\left|\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\}\right|}{N}, \mathrm{I}_{\text {mhfe }}$ chooses $z^{\prime}$ out of $\left|\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\}\right|$ elements,

$$
\begin{aligned}
& I_{\text {mhfe }}(y) \\
& 1 y^{\prime} \leftarrow_{\$} \mathbb{F}_{q}^{m} \\
& 2 z:=\phi^{-1}\left(\mathrm{~S}^{\prime-1}\left(y \| y^{\prime}\right)\right) \\
& 3 \quad i \leftarrow \$[N] \\
& 4 \text { if } 1 \leq i \leq\left|\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\}\right| \text { then } \\
& \text { return } \perp \\
& 6 \quad z^{\prime} \leftarrow_{\$}\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\} \\
& 7 x:=\mathrm{S}^{-1}\left(\phi\left(z^{\prime}\right)\right) \\
& 8 \text { return } x
\end{aligned}
$$

Fig. 15: Trapdoor of the modified HFE signature
where $N$ is set as $d$ in general. Therefore, for any $x \in \mathbb{F}_{q}^{n}, \mathrm{HaS}\left[\mathrm{T}_{\text {mhfe }}, \mathrm{H}\right]$. Sign outputs $x$ with probability

$$
\frac{1}{q^{n}} \cdot \frac{\left|\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\}\right|}{N} \cdot \frac{1}{\left|\left\{z^{\prime}: \mathrm{P}\left(z^{\prime}\right)=z\right\}\right|}=\frac{1}{q^{n} N}
$$

Hence, preimages output by $\mathrm{HaS}\left[\mathrm{T}_{\text {mhfe }}, \mathrm{H}\right]$. Sign are uniformly distributed over $\mathbb{F}_{q}^{n}$. Also, $I_{\text {mhfe }}$ does not output $\perp$ with probability $\sum_{x \in \mathbb{F}_{q}^{n}} \frac{1}{q^{n} N}=\frac{1}{N}$, and we can take $q_{\text {sign }}^{\prime}=c N q_{\text {sign }}$ for some constant $c>1$ in Proposition 5 .

## C. 5 MAYO [10]

MAYO adopts the probabilistic hash-and-sign. Let $T_{\text {mayo }}=\left(\operatorname{Gen}_{\text {mayo }}, F_{\text {mayo }}, I_{\text {mayo }}\right)$ be a trapdoor function used in MAYO. Gen mayo generates a multivariate quadratic $\operatorname{map} \mathrm{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$ with a subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension $o$ called oil space such that $\mathrm{P}(x)=0$ for any $x \in \mathcal{O}$, and outputs P as $\mathrm{F}_{\text {mayo }}$ and a basis of $\mathcal{O}$ as $\mathrm{I}_{\text {mayo }}{ }^{13}$. Let $\mathrm{P}(x)=\left(p_{1}(x), \ldots, p_{m}(x)\right)$, where $p_{i}(x): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is a multivariate quadratic polynomial. The polar form of $p(x)$ is defined as

$$
p^{\prime}(x, y):=p(x+y)-p(x)-p(y),
$$

which is bilinear. We define the polar form of multivariate quadratic map $\mathrm{P}(x)$ to be $\mathrm{P}^{\prime}(x, y)=\left(p_{1}^{\prime}(x, y), \ldots, p_{m}^{\prime}(x, y)\right)$.

Let $\mathcal{I}=\{(i, j) \in[k] \times[k]: i<j\}$ and $\left\{E_{i j}\right\}_{(i, j) \in \mathcal{I}}$ be a set of invertible matrices such that $E=\left\{E_{i, j}\right\}$ is nonsingular. We set $\left\{E_{i j}\right\}_{(i, j) \in \mathcal{I}}$ as a system parameter. On input $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{F}_{q}^{k n}, \mathrm{~F}_{\text {mayo }}$ computes $y=\mathrm{P}^{*}(x)=$ $\sum_{i \in[k]} E_{i, i} \mathrm{P}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{I}} E_{i, j} \mathrm{P}^{\prime}\left(x_{i}, x_{j}\right)$. In MAYO, $\mathrm{P}^{*}: \mathbb{F}_{q}^{k n} \rightarrow \mathbb{F}_{q}^{m}$ is conjectured to be non-invertible. Therefore, the INV game of $\mathrm{T}_{\text {mayo }}$ is defined as: given $\left(\mathrm{P},\left\{E_{i j}\right\}_{(i, j) \in \mathcal{I}}, y\right)$, find $x^{*}=\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)$ satisfying $\sum_{i \in[k]} E_{i, i} \mathrm{P}\left(x_{i}^{*}\right)+$ $\sum_{(i, j) \in \mathcal{I}} E_{i, j} \mathrm{P}^{\prime}\left(x_{i}^{*}, x_{j}^{*}\right)$ [10, Definition 2]. On input $y \in \mathbb{F}_{q}^{m}$, $\mathrm{I}_{\text {mayo }}$ computes $x$ as in Fig. 16. Let $x, x^{o}$ and $x^{v}$ be vectors over $\mathbb{F}_{q}^{k n}$. $I_{\text {mayo }}$ finds a preimage $x=x^{v}+x^{o}$ of $y$ for $\mathbb{P}^{*}$. In the beginning, $x^{v}$ is uniformly chosen from $\left(\mathbb{F}_{q}^{n-o} \times\left\{0^{o}\right\}\right)^{k} \subset \mathbb{F}_{q}^{k n}$,

[^9]```
Imayo
\mp@subsup{\textrm{P}}{}{*}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{k}{}):=\mp@subsup{\sum}{i\in[k]}{}\mp@subsup{E}{i,i}{}\textrm{P}(\mp@subsup{x}{i}{})+\mp@subsup{\sum}{(i,j)\in\mathcal{I}}{}\mp@subsup{E}{i,j}{}\mp@subsup{\textrm{P}}{}{\prime}(\mp@subsup{x}{i}{},\mp@subsup{x}{j}{})
repeat
    x
until P*}(\mp@subsup{x}{}{v}+\mp@subsup{x}{}{o})\mathrm{ has full rank
x o}\leftarrow{\mp@subsup{{}{}{o}:\mp@subsup{P}{o}{*}(\mp@subsup{x}{}{v}+\mp@subsup{x}{}{o})=y
6}x=\mp@subsup{x}{}{v}+\mp@subsup{x}{}{o
return }
```

Fig. 16: Trapdoor of MAYO
where 0^{o} denotes a vector of o s. Fixing $x^{v}, \mathrm{P}^{*}\left(x^{v}+x^{o}\right)=y$ becomes a linear system of equations for $x^{o} \in \mathcal{O}^{k}$. If $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ has full rank, $\mathrm{I}_{\text {mayo }}$ outputs $x^{v}+x^{o}$ by solving $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)=y$. Otherwise, $\mathrm{I}_{\text {mayo }}$ retries x^{v}. The probability that $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ does not have full rank is bounded by $\tau=\frac{q^{k-n+o}+q^{m-k o}}{q-1}[10$, Lemma 1].

A preimage $x \leftarrow \mathrm{I}_{\text {mayo }}(y)$ is uniform over $\mathbb{F}_{q}^{k n}$ if $\mathrm{I}_{\text {mayo }}$ does not retry x^{v} in the signature generation [10, Lemma 2]. Since this property is necessary for applying Theorem 1, we show the proof sketch.

First, x^{v} is uniformly chosen from $\left(\mathbb{F}_{q}^{n-o} \times\left\{0^{o}\right\}\right)^{k}$ if $I_{\text {mayo }}$ does not retry x^{v}. Next, x^{o} is uniformly chosen from \mathcal{O}^{k} since $\mathrm{P}^{*}\left(x^{v}+x^{o}\right)$ has full rank. Hence, the output $x=x^{v}+x^{o}$ follows $\mathrm{U}\left(\mathbb{F}_{q}^{k n}\right)$ since $\left(\mathbb{F}_{q}^{n-o} \times\left\{0^{o}\right\}\right)+\mathcal{O}=\mathbb{F}_{q}^{n}$ holds.

C. 6 GPV Framework [30]

Signature schemes based on the GPV framework adopt the deterministic or probabilistic hash-and-sign. Let $\mathrm{T}_{\mathrm{gpv}}=\left(\mathrm{Gen}_{\mathrm{gpv}}, \mathrm{F}_{\mathrm{gpv}}, \mathrm{I}_{\mathrm{gpv}}\right)$ be a trapdoor function used in the GPV framework. Gen gpv outputs a full-rank matrix $A \in \mathbb{Z}_{q}^{n \times m}$ generating a q-ary lattice Λ as $\mathrm{F}_{\mathrm{gpv}}$ and a matrix B generating Λ_{q}^{\perp} that is orthogonal to Λ modulo q as $\mathrm{I}_{\mathrm{gpv}}$. The function $\mathrm{F}_{\mathrm{gpv}}$ computes $y=x A^{T}$ for a short vector $x \in\left\{x \in \mathbb{Z}^{m}:\|x\| \leq s \sqrt{m}\right\}$, where s is a Gaussian parameter. The trapdoor $\mathrm{I}_{\mathrm{gpv}}$ outputs a short vector x for $y \in \mathbb{F}_{q}^{n}$ using B. $\mathrm{T}_{\mathrm{gpv}}$ is a collision-resistant PSF (see Definition 6) whose security is based on the hardness of the short integer solution (SIS) problem [30, Theorem 4.9].

D Proof of Lemma 6

First, we extend Theorem 1 to prove the following lemma:
Lemma 8 (M-INV \Rightarrow M-EUF-CMA). For any quantum M-EUF-CMA adversary $\mathcal{A}_{\text {cmam }}$ of $\mathrm{HaS}{ }^{\mathrm{ph}}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}, \mathrm{E}\right]$ with $q_{\text {key }}$ keys and issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{U}} \times \mathcal{R} \times \mathcal{M}$, there exist an $\mathrm{M}-\mathrm{INV} \mathcal{B}_{\text {invm }}$ of $\mathrm{T}_{\text {wpsf }}$ with $q_{\text {key }}$ instances and an M-PS adversary $\mathcal{D}_{\mathrm{ps}}{ }^{\mathrm{m}}$ of $\mathrm{T}_{\text {wpsf }}$ with $q_{\text {key }}$ instances and issuing q_{sign} sampling

$$
\begin{array}{|l}
\hline \frac{\text { GAME: } \text { M-EUF-NMA }}{\text { G for } j \in\left[q_{\text {kevy }}\right] \text { do }} \\
\mathbf{2} \quad\left(v k_{j}, s k_{j}\right) \leftarrow \text { Sig.KeyGen }\left(1^{\lambda}\right) \\
\mathbf{3}\left(j^{*}, m^{*}, \sigma^{*}\right) \leftarrow \mathcal{A}_{\text {nmam }}\left(\left\{v k_{j}\right\}_{j \in\left[q_{\text {ke] }}\right]}\right) \\
\text { 4 return Sig.Verify }\left(v k_{j^{*}}, m^{*}, \sigma^{*}\right) \\
\hline
\end{array}
$$

Fig. 17: M-EUF-NMA (Multi-key EUF-NMA) game
queries such that

$$
\begin{align*}
& +\frac{3}{2} q_{\text {sign }}^{\prime} \sqrt{\frac{q_{\text {sign }}^{\prime}+q_{\text {qro }}+1}{|\mathcal{R}|}}+2\left(q_{\text {qro }}+2\right) \sqrt{\frac{q_{\text {sign }}^{\prime}-q_{\text {sign }}}{|\mathcal{R}|}}+\frac{q_{\text {key }}^{2}}{|\mathcal{U}|}, \tag{14}
\end{align*}
$$

where $q_{\text {sign }}^{\prime}$ is a bound on the total number of queries to H in all the signing queries and the running times of $\mathcal{B}_{\mathrm{inv}^{\mathrm{m}}}$ and $\mathcal{D}_{\mathrm{ps}^{\mathrm{m}}}$ are about that of $\mathcal{A}_{\mathrm{cma}^{\mathrm{m}}}$.

Proof. We prove two reductions; M-EUF-NMA \Rightarrow M-EUF-CMA and M-INV \Rightarrow M-EUF-CMA, where M-EUF-NMA stands for multi-key EUF-NMA. We define an advantage function of the M-EUF-NMA game given in Fig. 17 as $\operatorname{Adv}_{\text {Sig }}^{\text {M-EUF-NMA }}\left(\mathcal{A}_{\text {nmam }}\right)=\operatorname{Pr}\left[M-E U F-N M A \mathcal{A}_{\text {nmam }} \Rightarrow 1\right]$. Without loss of generality, we assume that adversaries make random oracle queries while fixing key ID u to be one of the $q_{\text {key }}$ verification keys.

M-EUF-NMA \Rightarrow M-EUF-CMA:

Game G_{0} (M-EUF-CMA game): This is the original M-EUF-CMA game and $\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{c m a}} \Rightarrow 1\right]=\operatorname{Adv} \underset{\mathrm{HaSh}\left[\mathrm{T}_{\text {wpsf }}, \mathrm{H}, \mathrm{E}\right]}{\mathrm{M}]}\left(\mathcal{A}_{\mathrm{cmam}}\right)$ holds.
Game G_{1} (adaptive reprogramming and puncturing of H): In the same manner as G_{4} of Theorem 1, the challenger chooses $r \leftarrow_{\$} \mathcal{R}$ for $q_{\text {sign }}^{\prime}-q_{\text {sign }}$ times and keeps them in a sequence \mathcal{S}, punctures H by $\mathcal{S}^{\prime}=\{u \in \mathcal{U}, r \in \mathcal{S}, m \in$ $\mathcal{M}\}$, and outputs 0 if FIND $=\top$. Also, the signing oracle reprograms $\mathrm{H}:=$ $\mathrm{H}^{\left(\mathrm{E}\left(\mathrm{F}_{j}\right), r_{i}, m_{i}\right) \mapsto y_{i}}$ after repeating $r_{i} \leftarrow \mathcal{R}$ and $y_{i} \leftarrow_{\$} \mathcal{Y}$ until $\mathrm{I}_{j}\left(y_{i}\right)$ does not output \perp. In Theorem 1, we can derive the bounds on the advantage gaps of $G_{0} / G_{1}, G_{1} / G_{2}$, and G_{3} / G_{4} by analyzing the number of queries to H, the number of times H is reprogrammed, and the number of punctured points of H. Since these numbers are the same in both the single-key and multi-key settings, we have

$$
\begin{aligned}
\mid \operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cma}} \mathrm{~m}} \Rightarrow 1\right]- & \operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right] \mid \\
& \leq \frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}+2\left(q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}}
\end{aligned}
$$

Game G_{2} (simulating the signing oracle by SampDom): The signing oracle reprograms $\mathrm{H}:=\mathrm{H}^{\left(\mathrm{E}\left(\mathrm{F}_{j}\right), r_{i}, m_{i}\right) \mapsto \mathrm{F}_{j}\left(x_{i}\right)}$ for $r_{i} \leftarrow \mathcal{R}$ and $x_{i} \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{j}\right)$,
and outputs $\left(r_{i}, x_{i}\right)$. Since the M-PS adversary can simulate $\mathrm{G}_{1} / \mathrm{G}_{2}$, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{1}^{A_{c m m}^{c m}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{2}^{A_{\text {cmm }}} \Rightarrow 1\right]\right| \leq \operatorname{Adv}_{\mathrm{T}_{\text {wps }}}^{\mathrm{M}-\mathrm{PS}}\left(\mathcal{D}_{\text {psm }}\right)$.

Since the M-EUF-NMA adversary $\mathcal{A}_{\text {nmam }}^{\text {wnsp }^{m}}$ can simulate G_{2} by SampDom,

As above, we have

$$
\begin{align*}
& +\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\frac{q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1}{|\mathcal{R}|}}+2\left(q_{\mathrm{qro}}+2\right) \sqrt{\frac{q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}}{|\mathcal{R}|}} . \tag{15}
\end{align*}
$$

M-INV \Rightarrow M-EUF-NMA:
Game G_{3} (M-EUF-NMA game): This is the original M-EUF-NMA game and

Game G_{4} (abort with the collision on key IDs): When a collision on the key IDs is detected, G_{4} aborts and outputs 0 . From the collision probability of uniformly chosen key IDs, $\left|\operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]\right| \leq \frac{q_{\text {eev }}^{2}}{|u|}$.

We use Lemma 2 to show a reduction from the M-INV assumption of $\mathrm{T}_{\text {wpsf }}$. The M-INV adversary $\mathcal{B}_{\text {invm }}$ given $\left\{\left(\mathrm{F}_{j}, y_{j}\right)\right\}_{j \in\left[q_{\text {key }}\right]}$ runs a two-stage algorithm S that runs $\mathcal{A}_{\text {nmam }}$ playing G_{4}. In the second stage, the input θ of S_{2} is chosen from $\left\{y_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$. A two-stage algorithm S composed of S_{1} and S_{2} operates as follows:

1. Choose $(i, b) \leftarrow_{\delta}\left(\left[q_{\text {qro }}\right] \times\{0,1\}\right) \cup\left\{\left(q_{\text {qro }}+1,0\right)\right\}$.
2. Run $\mathcal{A}_{\text {nmam }}$ with H until i-th query.
3. Measure i-th query and output (u, r, m) as the output of S_{1}.
4. Given a random θ, reprogram $\mathrm{H}^{\prime}=\mathrm{H}^{(u, r, m) \mapsto \theta}$.
5. If $i=q_{\text {qro }}+1$, then go to Step 8 .
6. Answer i-th query with H (if $b=0$) or $\mathrm{H}^{\prime}($ if $b=1)$.
7. Run $\mathcal{A}_{\text {nmam }}$ with H^{\prime} until the end.
8. Output $\mathcal{A}_{\text {nmam's }}$ output $\left(j^{*}, m^{*}, r^{*}, x^{*}\right)$ as the output of S_{2}.

Since there is no collision on key IDs, $\mathcal{B}_{\text {invm }}$ can understand the target key of the observed random oracle query. If $u=\mathrm{E}\left(\mathrm{F}_{j}\right), \mathcal{B}_{\text {invm }}$ sets $\theta=y_{j}$, reprograms H as $\mathrm{H}^{\prime}:=\mathrm{H}^{(u, r, m) \mapsto y_{j}}$, and uses $\mathrm{F}_{j}(x) \stackrel{?}{=} \mathrm{H}(u, r, m)$ as the predicate. From Lemma 2, we have the following for any $\hat{j} \in\left[q_{\text {key }}\right]$:

$$
\begin{aligned}
& \operatorname{Pr}\left[j=\hat{j} \wedge \mathrm{~F}_{j}(x)=y_{j}:\left(\mathrm{E}\left(\mathrm{~F}_{j}\right), r, m\right) \leftarrow \mathrm{S}_{1}^{\mathcal{A}}(),(j, m, r, x) \leftarrow \mathrm{S}_{2}^{\mathcal{A}}\left(y_{j}\right)\right] \\
\geq & \frac{1}{\left(2 q_{\text {qro }}+1\right)^{2}} \operatorname{Pr}\left[j=\hat{j} \wedge \mathrm{~F}_{j}(x)=\mathrm{H}\left(\mathrm{E}\left(\mathrm{~F}_{j}\right), r, m\right):(j, m, r, x) \leftarrow \mathcal{A}_{\text {nmam }}^{|\mathrm{H}\rangle}\left(\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {keej }}\right)}\right)\right]
\end{aligned}
$$

By summing over all $\hat{j} \in\left[q_{\text {key }}\right]$, we have $\operatorname{Adv}_{T_{\text {wost }}}^{\mathrm{M}-\mathrm{INV}}\left(\mathcal{B}_{\text {invm }}\right) \geq \frac{1}{\left(2 q_{\text {qor }}+1\right)^{2}} \operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]$. We obtain Eq. (14) by combining the two reductions.

Then, we extend the proof of M-INV \Rightarrow M-EUF-NMA in Lemma 8 by introducing a new game G_{5}. In G_{5}, the verification keys $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$ are replaced with $\left\{L_{j} \circ \mathrm{~F}^{\prime} \circ \mathrm{R}_{j}\right\}$, where $\mathrm{F}^{\prime}: \mathcal{X}^{\prime} \rightarrow \mathcal{Y}$ is generated by Gen' of the trapdoor function T^{\prime}. The ST adversary $\mathcal{D}_{\text {st }}$ can simulate $\mathrm{G}_{4} / \mathrm{G}_{5}$ by setting the verification keys based on the outcomes of querying NewKey ${ }_{b}$. When $\mathcal{D}_{\text {st }}$ plays ST_{0}, we simulate G_{4}; otherwise, we simulate G_{5}. This leads to $\left|\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]\right| \leq$ $\operatorname{Adv}_{\mathrm{T}_{\text {wps }}, \mathrm{T}^{\prime}}^{\mathrm{ST}}\left(\mathcal{D}_{\text {st }}\right)$.

To apply Lemma 2, we assume that the INV adversary $\mathcal{B}_{\text {inv }}$ against T^{\prime} employs a two-stage algorithm S within G_{5}. As with Lemma $8, \mathcal{B}_{\text {inv }}$ possesses knowledge of the target key for the observed query. When the observed value targets the j-th verification key, $\mathcal{B}_{\text {inv }}$ sets $\mathrm{L}_{j}(y)$ as the input to S_{2}. Because L_{j} is bijective, $\mathrm{L}_{j}(y)$ for $y \leftarrow_{\$} \mathcal{Y}$ follows a uniform distribution. When $\mathcal{A}_{\text {nmam }}$ submits x for $\mathrm{F}_{j}, \mathcal{B}_{\text {inv }}$ returns $\mathrm{R}_{j}(x)$. If $\mathrm{L}_{j}\left(\mathrm{~F}\left(\mathrm{R}_{j}(x)\right)\right)=\mathrm{L}_{j}(y)$ holds, since L_{j} is a bijection, we conclude that $\mathrm{F}\left(\mathrm{R}_{j}(x)\right)=y$. In summary, $\mathcal{B}_{\text {inv }}$ can win the INV game by submitting $\mathrm{R}_{j}(x)$, yielding $\operatorname{Adv}_{\mathrm{T}^{\prime}}^{\mathrm{INV}^{\prime}}\left(\mathcal{B}_{\text {inv }}\right) \geq \frac{1}{\left(2 q_{\text {qro }}+1\right)^{2}} \operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]$. Therefore, we have:

By combining Eq. (15) and Eq. (16), we arrive at Eq. (11).

E Proof of Lemma 7

First, we show a reduction of M-CR \Rightarrow M-sEUF-CMA extending the single-key version of [14, Theorem 2].

Lemma 9 (M-CR \Rightarrow M-EUF-CMA). For any quantum M-sEUF-CMA adversary $\mathcal{A}_{\mathrm{cmam}}$ of $\mathrm{HaS}^{\mathrm{ph}}\left[\mathrm{T}_{\mathrm{psf}}, \mathrm{H}, \mathrm{E}\right]$ with $q_{\text {key }}$ keys and issuing at most $q_{\text {sign }}$ classical queries to the signing oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow_{\$} \mathcal{Y}^{\mathcal{U} \times \mathcal{R} \times \mathcal{M}}$, there exist an $\mathrm{M}-\mathrm{CR} \mathcal{B}_{\mathrm{cr}}$ of $\mathrm{T}_{\text {psf }}$ with $q_{\text {key }}$ instances such that

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{HaS}\left[\mathrm{~T}_{\mathrm{pf}}, \mathrm{H}\right]}^{\mathrm{M}]}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \frac{1}{1-2^{-\omega(\log (\lambda))}} \operatorname{Adv}_{\mathrm{T}_{\mathrm{psf}}}^{\mathrm{M}-\mathrm{CR}}\left(\mathcal{B}_{\mathrm{crm}}\right)+\frac{q_{\mathrm{key}}^{2}}{|\mathcal{U}|}, \tag{17}
\end{equation*}
$$

where the running times of $\mathcal{B}_{\mathrm{crm}}$ and $\mathcal{D}_{\mathrm{st}}$ are about that of $\mathcal{A}_{\mathrm{cmam}}$.
Proof. We define a sequence of games as follows:
Game G_{0} (M-sEUF-CMA game): This is the original M-sEUF-CMA game and $\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cmam}}} \Rightarrow 1\right]=\operatorname{Adv}_{\mathrm{HaS}}^{\mathrm{M}-\mathrm{SEL}}\left[\mathrm{T}_{\text {psf }}, \mathrm{H}, \mathrm{E}\right]\left(\mathcal{A}_{\mathrm{cma}}\right)$ holds.
Game G_{1} (abort with collision on key IDs): When a collision of the key IDs is detected, G_{1} aborts and outputs 0 . We have $\left|\operatorname{Pr}\left[G_{0}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]-\operatorname{Pr}\left[G_{1}^{\mathcal{A}_{\text {nmam }}} \Rightarrow 1\right]\right| \leq$ $\frac{q_{\text {kev }}^{2}}{|\mathcal{Z}|}$.

Game G_{2} (replacing H with H^{\prime}): This game replaces H with H^{\prime} satisfying

$$
\mathrm{H}^{\prime}\left(\mathrm{E}\left(\mathrm{~F}_{j}\right), r, m\right)=\mathrm{F}_{j}\left(\operatorname{DetSampDom}\left(\mathrm{~F}_{j}, \widetilde{\mathrm{H}}\left(\mathrm{E}\left(\mathrm{~F}_{j}\right), r, m\right)\right)\right),
$$

where DetSampDom is a deterministic function of SampDom and $\widetilde{H}: \mathcal{U} \times \mathcal{R} \times$ $\mathcal{M} \rightarrow \mathcal{W}$ is another random function to output randomness for DetSampDom. Since $\mathrm{E}\left(\mathrm{F}_{j}\right) \neq \mathrm{E}\left(\mathrm{F}_{j^{\prime}}\right)$ for any $j, j^{\prime} \in\left[q_{\text {key }}\right]$, we can uniquely identify F_{j} based on $\mathrm{E}\left(\mathrm{F}_{j}\right)$. Therefore, it is feasible to program H^{\prime}. From Condition 1 of PSF, $\mathrm{F}_{j}(x)$ is uniform for $x \leftarrow \operatorname{SampDom}\left(\mathrm{~F}_{j}\right)$. Therefore, H and H^{\prime} follow the same distribution and $\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{nmam}}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{nmam}}} \Rightarrow 1\right]$ holds.
The M-CR adversary $\mathcal{B}_{\text {crm }}$ can simulate G_{2}. From Conditions 2 and $\mathbf{3}$, the M-CR adversary $\mathcal{B}_{\text {crm }}$ can simulate the signing oracle. When responding to the i-th signing query m_{i} for the j-th verification key $\mathrm{F}_{j}, \mathcal{B}_{\text {crm }}$ returns $\left(r_{i}, x_{i}\right)$, where $r_{i} \leftarrow_{\$} \mathcal{R}$ and $x_{i}:=\operatorname{DetSampDom}\left(\mathrm{F}_{j}, \widetilde{\mathrm{H}}\left(\mathrm{E}\left(\mathrm{F}_{j}\right), r_{i}, m_{i}\right)\right)$. If the M-sEUF-CMA adversary $\mathcal{A}_{\mathrm{cmam}}$ wins the game by submitting $\left(j^{*}, m^{*}, r^{*}, x^{*}\right), \mathrm{F}_{j^{*}}\left(x^{*}\right)=\mathrm{F}_{j^{*}}\left(x^{\prime}\right)$ holds, where $x^{\prime}=\operatorname{DetSampDom}\left(\mathrm{F}_{j^{*}}, \widetilde{\mathrm{H}}\left(\mathrm{E}\left(\mathrm{F}_{j^{*}}\right), r^{*}, m^{*}\right)\right)$). From Condition 4, $x^{*} \neq x^{\prime}$ holds with probability $1-2^{-\omega(\log (\lambda))}$, and we thus have Eq. (17).

Then, we show a reduction of $\mathrm{CR} \Rightarrow \mathrm{M}-\mathrm{CR}$. We define a sequence of games as follows:

Game G_{0} (M-CR game): This is the original M-CR game and $\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{B}_{\mathrm{crm}}} \Rightarrow 1\right]=$ $\operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{M}-\mathrm{R}}\left(\mathcal{B}_{\mathrm{cr}^{m}}\right)$ holds.
Game G_{1} (replacing verification keys): We replace F_{j} with $L_{j} \circ F^{\prime} \circ R_{j}$. Since the
ST adversary can simulate $\mathrm{G}_{0} / \mathrm{G}_{1}$, we have $\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{B}_{\mathrm{crm}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{B}_{\mathrm{crm}}} \Rightarrow 1\right]\right| \leq$ $\operatorname{Adv} \underset{T_{\text {psf }}, T^{\prime}}{S T}\left(\mathcal{D}_{\text {st }}\right)$.
The $C R$ adversary $\mathcal{B}_{\text {cr }}$ simulates G_{1} as follows: Given F^{\prime}, $\mathcal{B}_{\text {cr }}$ gives $\left\{\mathrm{L}_{j} \circ \mathrm{~F}^{\prime} \circ\right.$ $\left.\mathrm{R}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$ to $\mathcal{B}_{\text {crm }}$. When $\mathcal{B}_{\text {crm }}$ submits $\left(j^{*}, x_{1}^{*}, x_{2}^{*}\right), \mathcal{B}_{\text {cr }}$ outputs $\left(\mathrm{R}_{j^{*}}\left(x_{1}^{*}\right), \mathrm{R}_{j^{*}}\left(x_{2}^{*}\right)\right)$. Suppose that $\mathrm{L}_{j^{*}}\left(\mathrm{~F}\left(\mathrm{R}_{j^{*}}\left(x_{1}^{*}\right)\right)\right)=\mathrm{L}_{j^{*}}\left(\mathrm{~F}\left(\mathrm{R}_{j^{*}}\left(x_{2}^{*}\right)\right)\right)$ holds. Since $\mathrm{L}_{j^{*}}$ and $\mathrm{R}_{j^{*}}$ are injective, $\mathrm{F}\left(\mathrm{R}_{j^{*}}\left(x_{1}^{*}\right)\right)=\mathrm{F}\left(\mathrm{R}_{j^{*}}\left(x_{2}^{*}\right)\right)$ holds and $x_{1}^{*} \neq x_{2}^{*} \operatorname{implies} \mathrm{R}_{j^{*}}\left(x_{1}^{*}\right) \neq \mathrm{R}_{j^{*}}\left(x_{2}^{*}\right)$. Therefore, $\mathcal{B}_{\text {cr }}$ can win the CR game and can perfectly simulate G_{4}. Therefore, we have

Combining Eq. (18) with Eq. (17), we obtain the security bound of Lemma 7.

F Applications of Generic Method in Multi-key Setting

In this section, we explore the applications of the generic method presented in Lemma 7 for lattice-based cryptography and Lemma 6 for code-based and MQ-based cryptography. Rather than focusing on specific schemes such as FALCON [52], our paper applies the generic method to frameworks of the schemes, such as the GPV framework [30]. We leave the applicability to the specific schemes for future works.

Lattice-based Cryptography: We apply the generic method to the GPV framework (see Appendix C.6) [30]. For Lemma 7, we design simulation of verification keys by $\left\{L_{j} A R_{j}\right\}_{j \in\left[q_{\text {kee }}\right]}$ where L_{j} is an $n \times n$ invertible matrix over \mathbb{F}_{q} and R_{j} is an $m \times m$ signed permutation matrix. In the GPV framework, the domain of the trapdoor function is a set of short vectors $\left\{x \in \mathbb{Z}^{m}:|x| \leq s \sqrt{m}\right\}$, where s is a Gaussian parameter. Accordingly, we define R_{j} as an orthogonal matrix to ensure $\|x\|=\left\|x R_{j}^{T}\right\|$, and any integer orthogonal matrices are signed permutation matrices, characterized by non-zero entries ± 1. Then, the ST advantage is bounded by an advantage of the following problem.

Definition 12 (Multi-instance Signed Permutation Equivalence).
Given matrices $\left\{G_{j}\right\}_{j \in\left[q_{k e y}\right]}\left(G_{j} \in \mathbb{F}_{q}^{n \times m}\right)$, do there exist a matrix $G \in \mathbb{F}_{q}^{n \times m}$, $n \times n$ invertible matrices $\left\{L_{j}\right\}_{j \in\left[q_{\text {qeer }}\right]}$ over \mathbb{F}_{q}, and $m \times m$ signed permutation matrices $\left\{R_{j}\right\}_{j \in[\text { qhey }]}$ over \mathbb{F}_{q} such that $G_{j}=L_{j} G R_{j}$?

This problem is a variant of the well-studied problem called code equivalence in code-based cryptography [51]. The code equivalence is defined as: Given a pair of matrices $\left(G, G^{\prime}\right)$, do there exist an invertible matrix L and an isometric matrix R such that $G^{\prime}=L G R$? There are variations of this problem in terms of R. When R is a permutation matrix (resp., generalized permutation matrix), this problem is called permutation equivalence (resp., linear equivalence)[55].

In lattice-based cryptography, there is a closely related problem called lattice isomorphism, that is, given a pair of lattice bases $\left(B, B^{\prime}\right)$, do there exist a unimodular matrix L and an orthogonal matrix R such that $B^{\prime}=L B R$? The conditions on L and R are required to keep the geometry of lattices; however, it is not necessary for our purpose.

Any variants of the code equivalence listed above are in the complexity class coAM and not conjectured to be NP-hard [51]. Also, there are some algorithms for the permutation equivalence and linear equivalence. In the general case, Leon's algorithm solves the problems by enumerating all the codewords with Hamming weight w for some w [40], and Beullens [8] recently improved this algorithm. The complexity of this approach grows exponentially with w, and we cannot solve the problems with low $w[4]$. There is a special case where we can easily solve the permutation equivalence with the Support Splitting Algorithm (SSA) proposed by Sendrier [54]. The SSA runs in $O\left(m^{3}+m^{2} q^{h} \ln (m)\right)$, where h is a dimension of the hull space of a code, that is, the intersection between the code and its dual code [4]. Therefore, the SSA can efficiently solve the permutation equivalence if the dimension of the hull space is low. Note that the SSA does not apply to the case with an empty hull.

Code-based Cryptography: We apply the generic method to a trapdoor function using a parity-check matrix $H \in \mathbb{F}_{q}^{n \times m}$ as in the modified CFS signature and Wave (see Appendices C. 1 and C.2). For Lemma 6, we simulate verification keys by $\left\{L_{j} H R_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$, where L_{j} is an $m \times m$ invertible matrix over \mathbb{F}_{q} and R_{j} is an $n \times n$ generalized permutation matrix over \mathbb{F}_{q}. In the modified CFS signature and Wave, the domain of the trapdoor function is a set of vectors whose Hamming weight is either a constant or bounded by a constant. To ensure this, we define
R_{j} as a generalized permutation matrix that preserves the Hamming weights of vectors. Then, the ST advantage is bounded by an advantage of the following problem.
Definition 13 (Multi-instance Linear Equivalence). Given matrices $\left\{G_{j}\right\}_{j \in\left[q_{\text {key }}\right]}\left(G_{j} \in \mathbb{F}_{q}^{n \times m}\right)$, do there exist a matrix $G \in \mathbb{F}_{q}^{n \times m}, n \times n$ invertible matrices $\left\{L_{j}\right\}_{j \in\left[q_{\mathrm{key}}\right]}$ over \mathbb{F}_{q}, and $m \times m$ generalized permutation matrices $\left\{R_{j}\right\}_{j \in\left[q_{\mathrm{key}}\right]}$ over \mathbb{F}_{q} such that $G_{j}=L_{j} G R_{j}$?
As mentioned in the previous paragraph, some algorithms exist for the (singleinstance) linear equivalence.

Multivariate-quadratic-based Cryptography: We assume a trapdoor function of the original/modified UOV signature or the modified HFE signature. Let $\mathrm{F}: \mathbb{F}_{q}^{n^{\prime}} \rightarrow$ \mathbb{F}_{q}^{m} and $\mathcal{F}_{j}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$ be a multivariate quadratic map $\left(n^{\prime} \geq n\right)$. For Lemma 6 , we simulate verification keys by $\left\{\mathrm{L}_{j} \circ \mathrm{~F} \circ \mathrm{R}_{j}\right\}_{j \in\left[q_{\text {key }}\right]}$, where L_{j} is an invertible affine map over \mathbb{F}_{q} and R_{j} is an affine map over \mathbb{F}_{q}. Then, the ST advantage is bounded by an advantage of the following game.

Definition 14 (Multi-instance Decision Morphism of Polynomials).
Given multivariate quadratic maps $\left\{\mathrm{F}_{j}\right\}_{j \in\left[q_{k \mathrm{ky}}\right]}$, do there exist a multivariate quadratic map F and affine maps $\left\{\mathrm{L}_{j}\right\}_{j \in\left[q_{\mathrm{kev}}\right]}$ and $\left\{\mathrm{R}_{j}\right\}_{j \in\left[q_{\mathrm{ke}}\right]}$ over \mathbb{F}_{q} such that $\mathrm{F}_{j}=\mathrm{L}_{j} \circ \mathrm{~F} \circ \mathrm{R}_{j}$?

The (single-instance) decision morphism of polynomials, that is, given a pair of multivariate quadratic maps (F, F^{\prime}), do there exist affine maps L and R such that $F^{\prime}=L \circ F \circ R$?, is proven NP-complete [50]. If L and R are invertible affine maps, this problem is called decision isomorphism of polynomials that is in the complexity class coAM and not conjectured to be NP-hard [50]. For signature schemes with some structures in their verification key, only invertible R may preserve the structures, e.g., only block-anti-circulant matrices can maintain a structure of BAC-UOV [57]; therefore, we need to use invertible R as in the decision isomorphism of polynomials for such signature schemes.

A search version of the isomorphism of polynomials has been well-studied. Bouillaguet, Fouque, and Véber [15] studied and surveyed the algorithms for the isomorphism of polynomials. Their algorithms run in $O\left(q^{n}\right) \cdot \operatorname{poly}(n, q)$, $O\left(q^{2 n / 3}\right) \cdot \operatorname{poly}(n, q)$, or $O\left(q^{n / 2}\right) \cdot \operatorname{poly}(n, q)$ assuming that $n=m$. The Gröbnerbased algorithm proposed by Faugère and Perret [27] can efficiently solve random instances of an inhomogeneous version of the problem. We also note that if L and R are very structured, then the problems become easier (see, e.g., [36]).

G Security Proof of Fiat-Shamir with Aborts

We define a 3 -round public-coin identification scheme with aborts.
Definition 15 (3-round Public-coin Identification Scheme with Aborts). A 3-round public-coin identification scheme with aborts, denoted as ID, consists of four algorithms:

Game: $\mathrm{A}-\mathrm{HVZK}{ }_{b}$	Sample ${ }_{0}()$	$\underline{\text { Sample }}$ ()
$1 \quad(p k, s k) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$	1 repeat	$1{ }^{1}\left(w_{i}, c_{i}, z_{i}\right) \leftarrow \operatorname{Sim}(p k)$
$2 b^{*} \leftarrow \mathcal{D}^{\text {Sample }_{b}}(p k)$	$2 \quad\left(w_{i}, s t_{i}\right) \leftarrow \mathrm{P}_{1}(s k)$	2 return (w_{i}, c_{i}, z_{i})
3 return b^{*}	$3 \quad c_{i} \leftarrow_{\$} \mathcal{C}$	
	$4 \quad z_{i} \leftarrow \mathrm{P}_{2}\left(s k, w_{i}, c_{i}, s t_{i}\right)$	
	5 until $z_{i} \neq \perp$	
	6 return $\left(w_{i}, c_{i}, z_{i}\right)$	

Fig. 18: Accepting HVZK Game

FSwA [ID, H].KeyGen(1 ${ }^{\lambda}$)	$\underline{\text { FSwA }}$ [ID, H]. $\operatorname{Sign}(s k, m)$	$\underline{\mathrm{FSwA}[\mathrm{ID}, \mathrm{H}] . \mathrm{V}(p k, m,(w, z))}$
$\mathbf{1}(p k, s k) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$	1 repeat	$1 \quad c:=\mathrm{H}(w, m)$
2 return $(p k, s k)$	$\begin{array}{ll} \mathbf{2} & (w, s t) \leftarrow \mathrm{P}_{1}(s k) \\ \mathbf{3} & c:=\mathrm{H}(w, m) \end{array}$	2 return $\mathrm{V}(p k, w, c, z)$
	$4 \quad z \leftarrow \mathrm{P}_{2}(s k, w, c, s t)$	
	$\begin{aligned} & 5 \text { until } z \neq \perp \\ & 6 \text { return }(w, z) \end{aligned}$	

Fig. 19: Algorithms of the Fiat-Shamir with aborts

Gen $\left(1^{\lambda}\right)$: This algorithm takes the security parameter 1^{λ} as input and outputs a public key pk and a secret key sk.
$\mathrm{P}_{1}(s k)$: This algorithm takes a secret key sk as input and outputs a commitment $w \in \mathcal{W}$ and a state st.
$\mathrm{P}_{2}(s k, w, c, s t)$: This algorithm takes a secret key sk, a commitment $w \in \mathcal{W}$, a randomly chosen challenge $c \leftarrow_{\$} \mathcal{C}$, and a state st as input and outputs a response $z \in \mathcal{Z}$ or outputs \perp.
$\mathrm{V}(p k, w, c, z)$: This algorithm takes a public key $p k$, a commitment $w \in \mathcal{W}$, a challenge $c \in \mathcal{C}$, and a response $z \in \mathcal{Z}$ (a transcript) as inputs and outputs \top (acceptance) or \perp (rejection).

Let Sim denote a simulator for ID, which takes a public key $p k$ as its input and yields a transcript in the form of (w, c, z) as its output. To establish the indistinguishability between a transcript generated honestly and one generated through simulation, we introduce an accepting HVZK game.
Definition 16 (Accepting HVZK (A-HVZK) Game [3, Definition 1]). Let ID be a 3-round public-coin identification scheme with aborts. Using a game defined in Fig. 18, we define an advantage function of an adversary playing the A-HVZK game against ID as $\operatorname{Adv}_{\mathrm{ID}}^{\mathrm{A}-\mathrm{HVZK}}\left(\mathcal{D}_{\mathrm{zk}}\right)=\mid \operatorname{Pr}\left[\mathrm{A}-\mathrm{HVZK}_{0}^{\mathcal{D}_{\mathrm{zk}}} \Rightarrow 1\right]-$ $\operatorname{Pr}\left[\mathrm{A}-\mathrm{HVZK}_{1}^{\mathcal{D}^{2 k}} \Rightarrow 1\right] \mid$. We say ID is accepting HVZK if its advantage is negligible for any efficient adversary.

We can construct a signature scheme, denoted as FSwA[ID, H], from ID as depicted in Fig. 19. The security reduction for this scheme can be provided using the same techniques as presented in Theorem 1.

Theorem 2 (EUF-NMA \Rightarrow EUF-CMA). For any quantum EUF-CMA adversary $\mathcal{A}_{\mathrm{cma}}$ of $\mathrm{FSwA}[\mathrm{ID}, \mathrm{H}]$ issuing at most q_{sign} classical queries to the signing
oracle and $q_{\text {qro }}$ (quantum) random oracle queries to $\mathrm{H} \leftarrow{ }_{\$} \mathcal{C}^{\mathcal{W}} \times \mathcal{M}$, there exist an EUF-NMA adversary $\mathcal{A}_{\mathrm{nma}}$ of $\mathrm{FSwA}[\mathrm{ID}, \mathrm{H}]$ issuing q_{qro} (quantum) random oracle queries to H and an A-HVZK adversary $\mathcal{D}_{\mathrm{zk}}$ of ID issuing q_{sign} sampling queries such that

$$
\begin{align*}
& \operatorname{Adv}_{\mathrm{FSwA}[\mathrm{ID}, \mathrm{H}]}^{\mathrm{EUF}-\mathrm{CMA}}\left(\mathcal{A}_{\mathrm{cma}}\right) \leq \operatorname{Adv}_{\mathrm{FSwA}[\mathrm{ID}, \mathrm{H}]}^{\mathrm{EUF}-\mathrm{NMA}}\left(\mathcal{A}_{\mathrm{nma}}\right)+\operatorname{Adv}_{\mathrm{lD}}^{\mathrm{A}-\mathrm{HVZK}}\left(\mathcal{D}_{\mathrm{zk}}\right) \\
&+\frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\left(q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1\right) \epsilon}+4\left(q_{\mathrm{qro}}+2\right) \sqrt{\left(q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}\right) \epsilon} \tag{19}
\end{align*}
$$

where $q_{\text {sign }}^{\prime}$ is a bound on the total number of queries to H in all the signing queries, $\max _{\hat{w} \in \mathcal{W}} \operatorname{Pr}\left[w=\hat{w}:(w\right.$, st $\left.) \leftarrow \mathrm{P}_{1}(s k)\right] \leq \epsilon$ holds except with negligible probability, and the running times of $\mathcal{A}_{\mathrm{nma}}$ and $\mathcal{D}_{\mathrm{zk}}$ are about that of $\mathcal{A}_{\mathrm{cma}}$.

Proof. As in Theorem 1, we can set $q_{\text {sign }}^{\prime}=\frac{c}{\rho} q_{\text {sign }}$ for some constant $c>1$, where $\rho=\operatorname{Pr}\left[z \neq \perp:(w, s t) \leftarrow \mathrm{P}_{1}(s k), c \leftarrow_{\$} \mathcal{C}, z \leftarrow \mathrm{P}_{2}(s k, w, c, s t)\right]$. To show Eq. (19), we use a sequence of games defined in Fig. 20.

Game G_{0} (EUF-CMA game): This is the original EUF-CMA game and $\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Adv}_{\mathrm{FSwA}[\mathrm{ID}, \mathrm{H}]}^{\mathrm{EUF}}\left(\mathcal{A}_{\mathrm{cma}}\right)$ holds.
Game G_{1} (adaptive reprogramming of H): The signing oracle Sign ${ }^{\mathrm{H}}$ adaptively reprograms H . This reprogramming occurs as $\mathrm{H}:=\mathrm{H}^{\left(w_{i}, m_{i}\right) \mapsto c_{i}}$, where $\left(w_{i}, s t_{i}\right) \leftarrow \mathrm{P}_{1}(s k)$ and $c_{i} \leftarrow \mathcal{C}$, and this process repeats until $\mathrm{P}_{2}\left(s k, w_{i}, c_{i}, s t_{i}\right)$ no longer outputs \perp. The AR adversary $\mathcal{D}_{\text {ar }}$ can simulate the games G_{0} and G_{1}. When $\mathcal{D}_{\text {ar }}$ playes $A R_{0}$, it simulates G_{0}; othereise, it simulates G_{1}. According to Lemma 1 , the difference between $\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{c m a}} \Rightarrow 1\right]$ and $\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]$ can be bounded as follows:

$$
\left|\operatorname{Pr}\left[\mathrm{G}_{0}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq \operatorname{Adv}_{\mathrm{H}}^{\mathrm{AR}}\left(\mathcal{D}_{\mathrm{ar}}\right) \leq \frac{3}{2} q_{\mathrm{sign}}^{\prime} \sqrt{\left(q_{\mathrm{sign}}^{\prime}+q_{\mathrm{qro}}+1\right) \epsilon}
$$

Game G_{2} (pre-generating transcripts): At the start, the challenger pre-generates $q_{\text {sign }}$ accepting transcripts for ID along with non-accepting ones. An accepting transcript is stored as $\left(w_{i}, c_{i}, z_{i}\right)$, and non-accepting transcripts (excluding responses) are stored in \mathcal{S}_{i}. During the i-th signing query, the signing oracle reprograms H as $\mathrm{H}^{\left(w, m_{i}\right) \mapsto c}$ for $(w, c) \in \mathcal{S}_{i}$ as well as for $\left(w_{i}, c_{i}\right)$. This pre-generation of transcripts is feasible since they are chosen independently of queried messages m_{i} from $\mathcal{A}_{\mathrm{cma}}$ in G_{1}, ensuring that $\operatorname{Pr}\left[\mathrm{G}_{1}^{\mathcal{A}_{c m a}} \Rightarrow 1\right]=$ $\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]$.
Game G_{3} (puncturing H): Let $\mathcal{S}=\left\{w:(w, *) \in \bigcup_{i} \mathcal{S}_{i}\right\}$ and $\mathcal{S}^{\prime}=\{(w, m)$: $w \in \mathcal{S}, m \in \mathcal{M}\}$. We define a punctured oracle $\mathrm{H} \backslash \mathcal{S}^{\prime}$ and an event FIND as in Definition 10. In $\mathrm{G}_{3}, \mathcal{A}_{\mathrm{cma}}$ makes queries to $\mathrm{H} \backslash \mathcal{S}^{\prime}$, and G_{3} outputs 0 if FIND $=\top$. Assume that $\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[1 \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},|\mathrm{H}\rangle}(\mathrm{F})\right]$. Since G_{3} differs from G_{2} in two aspects: the use of $\mathrm{H} \backslash \mathcal{S}^{\prime}$ and the output of 0 when FIND $=\top, \operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]=\operatorname{Pr}\left[1 \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F}) \wedge \mathrm{FIND}=\perp\right]$ and

$\begin{aligned} & \text { GamE: } \mathrm{G}_{0}-\mathrm{G}_{1} \\ & \hline \mathbf{1} \mathcal{\mathcal { Q }}:=\emptyset \\ & 2 \mathrm{H} \leftarrow \$ \mathcal{C}^{\mathcal{W} \times \mathcal{M}} \\ & 3 \quad(p k, s k) \leftarrow \mathrm{Gen}\left(1^{\lambda}\right) \\ & 4\left(m^{*}, w^{*}, z^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\text {Sign }\|\mathrm{H}\rangle}(p k) \\ & \mathbf{5} \text { if } m^{*} \in \mathcal{Q} \text { then } \\ & 6 \quad \text { return } 0 \\ & \mathbf{7} c^{*}:=\mathrm{H}\left(w^{*}, m^{*}\right) \\ & 8 \\ & \text { return } \mathrm{V}\left(p k, w^{*}, c^{*}, z^{*}\right) \end{aligned}$	
Game: G_{2} $\mathcal{Q}:=\emptyset$ $\mathrm{H} \leftarrow{ }_{\$} \mathcal{C}^{\mathcal{W} \times \mathcal{M}}$ $(p k, s k) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$ for $i \in\left[q_{\text {sign }}\right]$ do $\mathcal{S}_{i}:=\emptyset$ repeat $(w, s t) \leftarrow \mathrm{P}_{1}(s k)$ $c \leftarrow \mathcal{C}$ $z \leftarrow \mathrm{P}_{2}(s k, w, c, s t)$ if $z=\perp$ then $\mathcal{S}_{i}:=\mathcal{S}_{i} \cup\{(w, c)\}$ else $\left(w_{i}, c_{i}, z_{i}\right):=(w, c, z)$ until $z \neq \perp$ $\left(m^{*}, w^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\text {Sign, }\|\mathrm{H}\rangle}(p k)$ if $m^{*} \in \mathcal{Q}$ then return 0 $c^{*}:=\mathrm{H}\left(w^{*}, m^{*}\right)$ return $\mathrm{V}\left(p k, w^{*}, c^{*}, z^{*}\right)$	```Game: \(\mathrm{G}_{3}-\mathrm{G}_{4}\) \(\mathcal{Q}:=\emptyset\) \(\mathrm{H} \leftarrow_{\$} \mathcal{C}^{\mathcal{W} \times \mathcal{M}}\) \((p k, s k) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)\) \(\mathcal{S}=\emptyset\) for \(i \in\left[q_{\text {sign }}\right]\) do \(\mathcal{S}_{i}:=\emptyset\) repeat \((w, s t) \leftarrow \mathrm{P}_{1}(s k)\) \(c \leftarrow \mathcal{C}\) \(z \leftarrow \mathrm{P}_{2}(s k, w, c, s t)\) if \(z=\perp\) then \(\mathcal{S}_{i}:=\mathcal{S}_{i} \cup\{(w, c)\}\) \(\mathcal{S}:=\mathcal{S} \cup\{w\}\) else \(\left(w_{i}, c_{i}, z_{i}\right):=(w, c, z)\) until \(z \neq \perp\) \(\mathcal{S}^{\prime}=\{(w, m): w \in \mathcal{S}, m \in \mathcal{M}\}\) FIND \(=\perp\) \(\left(m^{*}, w^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left\|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(p k)\) if \(m^{*} \in \mathcal{Q} \vee F\) IND \(=\top\) then return 0 \(c^{*}:=\mathrm{H}\left(w^{*}, m^{*}\right)\) return \(\mathrm{V}\left(p k, w^{*}, c^{*}, z^{*}\right)\)```
```Game: \(\mathrm{G}_{5}\) \(\mathcal{Q}:=\emptyset\) \(\mathrm{H} \leftarrow{ }_{\$} \mathcal{C}^{\mathcal{W} \times \mathcal{M}}\) \((p k, s k) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)\) for \(i \in\left[q_{\text {sign }}\right]\) do repeat \((w, s t) \leftarrow \mathrm{P}_{1}(s k)\) \(c \leftarrow \mathcal{C}\) \(z \leftarrow \mathrm{P}_{2}(s k, w, c, s t)\) until \(z \neq \perp\) \(\left(w_{i}, c_{i}, z_{i}\right):=(w, c, z)\) \(\left(m^{*}, w^{*}, x^{*}\right) \leftarrow \mathcal{A}_{\mathrm{cma}}^{\text {Sign, }\|\mathrm{H}\rangle}(p k)\) if \(m^{*} \in \mathcal{Q}\) then return 0 \(c^{*}:=\mathrm{H}\left(w^{*}, m^{*}\right)\) return \(\mathrm{V}\left(p k, w^{*}, c^{*}, z^{*}\right)\)```	```Game: \(\mathrm{G}_{6}\) \\ \(\mathcal{Q}:=\emptyset\) \\ \(\mathrm{H} \leftarrow_{\$} \mathcal{C}^{\mathcal{W} \times \mathcal{M}}\) \\ \((p k, s k) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)\) \\ for \(i \in\left[q_{\text {sign }}\right]\) doNone```

Fig. 20: Games for EUF-NMA $\Rightarrow$ EUF-CMA for Fiat-Shamir with aborts. The modifications from the previous game are highlighted in red text.
$\operatorname{Pr}\left[\mathrm{FIND}=\top: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]=\operatorname{Pr}\left[\mathrm{FIND}=\top: b \leftarrow \mathcal{A}_{\mathrm{cma}}^{\mathrm{Sign},\left|\mathrm{H} \backslash \mathcal{S}^{\prime}\right\rangle}(\mathrm{F})\right]$ hold. Applying Lemma 4,

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\mathrm{G}_{2}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq \sqrt{\left(q_{\mathrm{qro}}+2\right) \operatorname{Pr}\left[\mathrm{FIND}=\top: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]} \tag{20}
\end{equation*}
$$

We will show a bound on Eq. (20) after defining $G_{4}$.
Game $G_{4}$ (reprogramming only for successful trials): The signing oracle reprograms $\mathrm{H}:=\mathrm{H}^{\left(w_{i}, m_{i}\right) \mapsto c_{i}}$ only for accepting transcripts. It's important to note that $\mathcal{A}_{\text {cma }}$ makes queries to the punctured oracle $\mathrm{H} \backslash \mathcal{S}^{\prime}$. If FIND $=\perp$, then $\mathcal{A}_{\mathrm{cma}}$ cannot obtain $\mathrm{H}(w, m)$ for $(w, m) \in \mathcal{S}^{\prime}$. Therefore, if FIND $=\perp, \mathcal{A}_{\mathrm{cma}}$ cannot distinguish whether H is reprogrammed at $(w, m) \in \mathcal{S}^{\prime}$ in $\mathrm{G}_{3}$ or not in $\mathrm{G}_{4}$. From Lemma 3, we have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{FIND}=\perp: \mathrm{G}_{3}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]=\operatorname{Pr}\left[\mathrm{FIND}=\perp: \mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right] \tag{21}
\end{equation*}
$$

Especially, if $\mathrm{G}_{3}$ or $\mathrm{G}_{4}$ outputs 1 , then FIND must be $\perp$. Therefore, we conclude that $\operatorname{Pr}\left[\mathrm{G}_{3}^{\mathcal{A}_{c m a}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\text {cma }}} \Rightarrow 1\right]$. Also, $\operatorname{Pr}\left[\mathrm{FIND}=\mathrm{T}: \mathrm{G}_{3}^{\mathcal{A}^{\mathrm{cma}}} \Rightarrow b\right]=$ $\operatorname{Pr}\left[\mathrm{FIND}=\mathrm{\top}: \mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right]$ holds from Eq. (21).

We show a bound on Eq. (20). Let $\mathrm{G}_{4}^{\prime}$ be a modified $\mathrm{G}_{4}$ played by $\mathcal{B}_{\text {cma }}$. $\mathcal{B}_{\text {cma }}$ outputs $\left(w^{\prime}, m^{\prime}\right)$ and wins the game if $\left(w^{\prime}, m^{\prime}\right) \in \mathcal{S}^{\prime}$. Choosing $j \leftarrow_{\$}$ $\left[q_{\text {qro }}+1\right], \mathcal{B}_{\text {cma }}$ runs $\mathcal{A}_{\text {cma }}$ playing $G_{4}$. Just before $\mathcal{A}_{\text {cma }}$ makes $j$-th query to $\mathrm{H}, \mathcal{B}_{\mathrm{cma}}$ measures a query input register of $\mathcal{A}_{\mathrm{cma}}$ and outputs the measurement outcome as $\left(w^{\prime}, m^{\prime}\right)$. The oracles of $\mathrm{G}_{4}^{\prime}$ reveal no information on $\mathcal{S}$ and $\mathcal{S}^{\prime}$. If we assume that $\max _{\hat{w} \in \mathcal{W}} \operatorname{Pr}\left[w=\hat{w}:(w, s t) \leftarrow \mathrm{P}_{1}(s k)\right] \leq \epsilon$ holds, then $\operatorname{Pr}\left[\mathrm{G}_{4}^{\prime \mathcal{B}}{ }^{\mathrm{cma}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[w^{\prime} \in \mathcal{S}\right] \leq\left(q_{\mathrm{sign}}^{\prime}-q_{\text {sign }}\right) \epsilon$ holds. From Lemma 5 , we have

$$
\operatorname{Pr}\left[\mathrm{FIND}=\top: \mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow b\right] \leq 4\left(q_{\mathrm{qro}}+1\right)\left(q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}\right) \epsilon .
$$

Hence, an upper bound on Eq. (20) is $2\left(q_{\text {qro }}+2\right) \sqrt{\left(q_{\text {sign }}^{\prime}-q_{\text {sign }}\right) \epsilon}$.
Game $\mathrm{G}_{5}$ (Canceling the punctuation on H ): The challenger no longer punctures H , and we remove the unused $\mathcal{S}_{i}, \mathcal{S}$, and $\mathcal{S}^{\prime}$ from the game. By applying Lemma 4, we obtain the same bound as Eq. (20):

$$
\left|\operatorname{Pr}\left[\mathrm{G}_{4}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq 2\left(q_{\mathrm{qro}}+2\right) \sqrt{\left(q_{\mathrm{sign}}^{\prime}-q_{\mathrm{sign}}\right) \epsilon}
$$

Game $G_{6}$ (simulating the signing oracle by $\operatorname{Sim}$ ): The challenger generates $\left(w_{i}, c_{i}, z_{i}\right) \leftarrow \operatorname{Sim}(p k)$ for $i \in\left[q_{\mathrm{sign}}\right]$. The A-HVZK adversary $\mathcal{D}_{\mathrm{zk}}$ can simulate $\mathrm{G}_{5}$ and $\mathrm{G}_{6}$. If $\mathcal{D}_{\mathrm{zk}}$ plays $\mathrm{A}-\mathrm{HV} \mathrm{ZK}_{0}$, the procedures of the original and simulated $\mathrm{G}_{5}$ are identical. If $\mathcal{D}_{\mathrm{zk}}$ plays $\mathrm{A}-\mathrm{HVZK}{ }_{1}$, he obviously simulates $\mathrm{G}_{6}$. Therefore, we have:

$$
\left|\operatorname{Pr}\left[\mathrm{G}_{5}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{G}_{6}^{\mathcal{A}_{\mathrm{cma}}} \Rightarrow 1\right]\right| \leq \operatorname{Adv}_{\mathrm{lD}}^{\mathrm{A}-\mathrm{HVZK}}\left(\mathcal{D}_{\mathrm{ps}}\right)
$$

Since $\mathrm{G}_{6}$ can be simulated without using $s k$, the EUF-NMA adversary $\mathcal{A}_{\text {nma }}$ can simulate $\mathrm{G}_{6}$. Summing up, we have Eq. (19) for EUF-NMA $\Rightarrow$ EUF-CMA.

Notice that Theorem 2 does not yield a worse bound than [3, Theorem 2], except for a factor of 2 in the last term of Eq. (19).


[^0]:    * Part of the work done while at NTT Corporation.

[^1]:    ${ }^{3}$ For PSF, tight reductions exist both from OW to INV and from INV to OW.
    ${ }^{4}$ Zhandry [61] proved the EUF-CMA security by assuming that the trapdoor permutation is one-way. The security proof applies to a case where the PSF is either one-way or non-invertible.
    ${ }^{5}$ A signer chooses $r$, computes $m^{\prime}=\mathrm{H}(r, m)$, and signs on $m^{\prime}$ by using a signing algorithm of the signature scheme for fixed-length messages, and outputs $(r, \sigma)$.

[^2]:    ${ }^{6}$ Although the deterministic hash-and-sign is not in our scope, it can be transformed into the probabilistic one with a small tweak.

[^3]:    ${ }^{7}$ In general, non-invertibility of trapdoor functions is called one-wayness [30, 53, 17]. We make a distinction between them depending on the way to choose challenges (INV follows [34] and OW follows [5]).

[^4]:    ${ }^{8} \operatorname{Adv}_{\mathrm{T}_{\text {psf }}}^{\mathrm{INV}}\left(\mathcal{B}_{\text {inv }}\right)=\operatorname{Adv} \mathrm{T}_{\text {psf }}^{\mathrm{OW}}\left(\mathcal{B}_{\text {ow }}\right)$ holds $\left(\mathcal{D}_{\mathcal{X}}\right.$ is defined as $\operatorname{SampDom}(\mathrm{F})$ in the OW game (see Fig. 3)) since the OW adversary can simulate the INV game by giving a uniform $y=\mathrm{F}(x)$ to the INV adversary, and vice versa.

[^5]:    ${ }^{9}$ The authors of [17] defined a problem called claw with random function problem; however, its definition is identical to EUF-NMA game for hash-and-sign.

[^6]:    ${ }^{10}$ In the latest version of [41], a term $q_{\text {sign }}$ has been removed from Eq. (3); however, we have identified a flaw in the proof (see Appendix A).

[^7]:    ${ }^{11}$ If unpredictable parts do not exist or are computationally expensive to include in H , a fixed nonce can be used instead (the nonce is put in the verification key).

[^8]:    ${ }^{12}$ The UOV signature scheme [11] retries the vinegar variable $z^{v}$ until $\mathrm{P}\left(z^{v}, \cdot\right)$ becomes full rank. As a consequence of retrying $z^{v}, z^{v}$ is not uniform.

[^9]:    ${ }^{13}$ The notation of UOV in MAYO follows [9] which is a generalization of the traditional description of Appendix C.3.

