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Abstract. Success Rate (SR) is empirically and theoretically a common
metric for evaluating the performance of side-channel attacks. Intuitive
expressions of success rate are desirable since they reveal and explain the
functional dependence on relevant parameters, such as number of mea-
surements and Signal-to-Noise Ratio (SNR), in a straightforward man-
ner. Meanwhile, existing works more or less expose unsolved fundamental
problems, such as strong leakage assumption, difficulty in interpretation
of principle, inaccurate evaluation, and inconsideration of high-order SR.
In this paper, we first provide an intuitive framework that statistical tests
embedded in different univariate DPA attacks are unified as analyzing
and comparing visualized vectors in a Euclidean space by using different
easy-to-understand metrics. Then, we establish a unified framework to
abstract and convert the security evaluations to the problem of finding
a boundary in the Euclidean space. With expressions of the boundary,
judging whether a DPA attack succeeds in sense of oth-order becomes
fairly efficient and intuitive, and the corresponding SR can be calculated
theoretically by integral. Finally, we propose an algorithm that is capable
of estimating arbitrary order of SR effectively. Our experimental results
verify the theory and highlight the superiority. We believe our research
raises many new perspectives for comparing and evaluating side-channel
attacks, countermeasures and implementations.

Keywords: Success rate · side-channel evaluations · framework ·
DPA · side-channel attacks
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1 Introduction

Physical leakages, such as power consumption [16] and electromagnetic radia-
tion [2,11], unintentionally emitted from implementations breaks the traditional
security model of cryptographic algorithms that assumed an adversary has only
black box access to cryptosystem. These leakages statistically depend on certain
intermediate value which is closely related to the secret key and therefore imply
a new road to frustrate the protection. In this paper, we investigate the context
of side-channel attacks, in which adversaries are enhanced with ability to con-
duct several statistical tests on the physical leakages. In the past decade, many
univariate DPA distinguishers like Bayes attack [29], Correlation Power Analysis
(CPA) [28] and Distance-of-Means (DoM) test [16], have been proposed. Such
distinguishers have different performance in practice and their efficiency relies
on the ability of statistical test embedded, which is susceptible to properties
of cryptographic algorithm, physical characteristics of cryptosystem, number of
measurements and assumed knowledge on how the device leaks. How to evalu-
ate their efficiency has become a crucial issue in side-channel evaluations, and
has attracted extensive attention and in-depth research. Related works will be
discussed in Section 1.1 before describing our contributions.

1.1 Related Works

Evaluation of the performance of a given distinguisher provides valuable and in-
structive suggestions about whether and to what extent a cryptosystem or coun-
termeasure is side-channel resistant. Success rate (SR) [27], which indicates the
probability of success, is the most common metric to evaluate the performance
of a side-channel distinguisher under given conditions. The oth-order success rate
can be defined as the probability that secret subkey is one of the first o optimal
candidates. Estimation on SR can be experimental and theoretical. The former
always brings heavy computation loads because of repeated experiments. The
latter estimates SR by revealing its functional relationship with the number of
measurements, SNR, etc. that determines the relationship between correct and
false key candidates, but requires complex derivation.

So far, only a very limited number of distinguishers, such as DoM [10],
CPA [17,25,28] and Bayes attacks [25], can be theoretically evaluated in terms of
success rate. However, these theoretical estimations depend on strong assump-
tions that the leakage follows Gaussian distribution, and its model is perfectly
known. Moreover, the high dimensional expressions involved limit an intuitive
conclusion about what is the functional dependence between those relevant pa-
rameters and how they work. Success rate of CPA can be approximated using
a multivariate normal c.d.f [23], but was found the corresponding matrices are
not of full rank and such a probability density function does not exist [25]. This
results in an obviously restricted and biased estimation of success rate. General-
izing the approach in [25], [17] presented a methodology to estimate the success
rate of higher-order side-channel attacks against masked implementations and
thereby should suffer the same drawbacks.
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Closed-form expressions of success rate based on the so called Success Expo-
nent (SE) were given by [14] and improved in [31]. They extended the evaluations
from additive distinguishers (e.g., CPA and DoM) to some non-additive distin-
guishers like Mutual Information Analysis (MIA) [12], and have achieved desired
results for a large class of distinguishers. However, the estimation is based on the
central limit theorem and only applicable to scenarios that the adversaries have
a large number of measurements. Moreover, the paper barely explains the sound-
ness and superiority of the underlying mathematical foundation: “why exploit an
exponential form to express success rate?” Finally, such closed-form expressions
involve high-dimensional complex statistical functions that are hard to estimate.

Recent work in [7] introduced a lower bound of error rate (i.e., an upper
bound of success rate) given in [3] and linked success rate with mutual informa-
tion to obtain a more precise bound of SR. This bound is based on the relation-
ship between mutual information and random probing, and works under a very
small number of measurements. However, it is valid only for leakages with low
SNR and the bound is loose. The authors in [15] derived the relation between
Perceived Information (PI) given in [24] and SR from a probability-theoretical
perspective. However, the given bound is very loose as well.

It is noteworthy that, in addition to the above problems in the existing
works, there is no discussion on higher-order success rate. Moreover, another
fundamental problem that the intuitive meaning of the statistical tests in dif-
ferent univariate DPA attacks, is still open. Their solutions will help accelerate
development of evaluation against side-channel attacks.

1.2 Our Contributions

In this paper, we tackle the fundamental problem: “what is the intuitive meaning
of the statistical test embedded in different univariate DPA attacks and how to
intuitively evaluate them?” Our main contributions are as follows:

- To facilitate intuitive understanding of different univariate DPA attacks, we
propose a unified framework with concise definitions. The framework allows
a straightforward discussion that to which extent different univariate DPA
attacks share the same foundation of mathematics. Our definitions capture
a large class of DPA attacks whilst being specific enough to allow us to
make concrete statements and sound comparison. We show that by apply-
ing an intuitive framework, statistical tests embedded in different univariate
DPA attacks are unified as analyzing and comparing visualized vectors in a
Euclidean space but using different easy-to-understand metrics. This is an
important contribution towards putting such attacks on a common theoret-
ical basis.

- On the basis of our framework, we abstract the notion of success rate and
establish a unified scheme for evaluating arbitrary order success rate. Specif-
ically, we present the concepts of “success space“ and “success boundary“,
and show that judging whether a DPA attack succeeds in sense of oth-order
becomes fairly efficient and intuitive whenever the corresponding expressions



4 J. Long, C. Wang, C. Ou et al.

of boundary is given. We further demonstrate a rigorous derivation of the-
oretical success rate and raise several significant conclusions in an intuitive
manner.

- Motivated by the challenge of evaluating higher-order success rate and ben-
efiting from the intuition of our framework, we put forward an algorithm
that can estimate success rate of arbitrarily order in a very efficient way. We
believe our algorithm serves as a feasible and effective tool for evaluation of
implementations against side-channel attacks in practice.

Experimental results fully illustrate the superiority of our framework and scheme.

1.3 Organization

The rest of this paper is organized as follows: preliminaries such as side-channel
leakages, CPA, Bayes attack and DoM attack, success rate and confusion coeffi-
cient, are introduced in Section 2 before introducing our works. Concise definition
of our unified framework and the corresponding intuitive expression of different
univariate DPA attacks are detailed in Section 3. We then further theoretically
analyze the intuitive meaning of success rate and generalize its expressions in
Section 4. Experiments on both simulated leakages and measurements sampled
from an ATMega328p micro-controller are presented in Sections 5 and 6 to il-
lustrate the superiority of our evaluation frameworks and schemes. Finally, we
conclude this paper in Section 7.

2 Preliminaries

2.1 Side-Channel Leakages

Let k∗ denote the secret subkey selected at random from a set K : k∗
R←− K, k

denote the corresponding guessing value, the uppercase Q denote the total num-
ber of encryptions conducted while cryptosystem being monitored and sampled
by adversaries, and the corresponding lowercase q denote the q-th encryption
(q = 1, 2, . . . , Q). Let tq denote the q-th encrypted plaintext byte selected at
random from a set T : tq

R←− T , and xq denote the corresponding leakage. Most
side-channel attacks assume a known-plaintext attack scenario with both tq and
xq available to adversaries. Here an identical leakage model can be expressed as:

xq = α · φ (tq ⊕ k∗) + N, (1)

φ actually is a composition of two independent functions, i.e., φ = y · z. Specif-
ically, z represents the S-box operation which is determined by the underlying
cryptographic primitive implemented and y stands for the leakage function rela-
tive and specific to physical characteristics of hardware circuits of the cryptosys-
tem. For example, Hamming weight is one of the most commonly considered
instances of y. N is the additive and independent noise component following
Gaussian distribution, i.e., N ∼ N

(
0, σ2

)
. Without loss of generality and with
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reference to [14], we normalize φ such that the expectation E {φ} = 0 and the
variance D {φ} = E

{
φ2
}
= 0. The Signal-to-Noise Ratio (SNR) is thus equal to

α2/σ2.
For clarity, we use x̂q to denote instance of Gaussian random variable xq,

which is virtually what adversaries possess and used as input to side-channel
distinguishers (e.g., CPA). Finite sample set X = {x̂1, x̂2, . . . , x̂q} then auto-
matically denotes all leakage samples adversaries gather.

2.2 Correlation Power Analysis

Correlation power analysis, abbreviated as CPA, is a well-known side-channel
distinguisher identifying secret subkey k∗ by assessing the linear fitting rate
between the assumed model and measured power consumption [19,22]. Statistical
test embedded in CPA is the well-known Pearson’s correlation coefficient and
CPA is expressed as follows:

DCPA = argmax
k∈K

Q
∑Q

q=1 x̂qφ(tq ⊕ k)−
∑Q

q=1 x̂q

∑Q
q=1 φ(tq ⊕ k)√

Q
∑Q

q=1 x̂
2
q −

(∑Q
q=1 x̂q

)2
√

Q
∑Q

q=1 φ
2(tq ⊕ k)−

(∑Q
q=1 φ(tq ⊕ k)

)2
.

(2)

2.3 Bayes Attack

Based on the maximum likelihood principle, Bayes attack selects subkey can-
didate k by calculating the corresponding probability density function where k
serves as a parameter. This side-channel distinguisher has attracted wide at-
tentions, especially in Template Attacks, and is regarded as “optimal” in gen-
eral [5, 6, 13] when priori knowledge about leakage model is available. Bayes
Attack is written as:

DBayes = argmax
k∈K

Q∏
q=1

P{x̂q|k}

= argmax
k∈K

Q∏
q=1

fσ2(x̂q − α · φ(tq ⊕ k))

(3)

considering our leakage model given in Equation (1). Here fσ2 denotes Gaussian
distribution with the mean value 0 and the standard deviation σ.

2.4 Distance-of-Means Attack

Originally introduced in [16], Distance-of-Means attack, abbreviated as DoM,
employs a binary classification process before conducting a statistical test. Specif-
ically, leakage corresponding to the same binary model value under a candidate
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k will fall into the same class, indicating that they may share vary similar char-
acteristics. Distance-of-Means statistical test is then applied to verify the cor-
rectness of classification under candidate k, and the incorrect candidates will
eventually lead to misclassification where elements assigned to the same class
approach random. In this case, only very limited difference can be detected be-
tween the two classes. Adversaries are able to identify k∗ when a candidate k
satisfies k = k∗. DoM can be written as follows:

DDoM =argmax
k∈Fn

2

∑Q
q=1 x̂q × φ(tq ⊕ k)∑Q

q=1 φ(tq ⊕ k)
−
∑Q

q=1 x̂q × (1− φ(tq ⊕ k))

Q−
∑Q

q=1 φ(tq ⊕ k)
, (4)

where φ(x) ∈ {0, 1}.

2.5 Success Rate

As a generic security metric, success rate [27] of a side-channel adversary is
defined as follows: the adversary A is an algorithm to the target implementation.
Its goal is to select the secret subkey k∗ from all the subkey candidates k ∈ K
by exploiting its collected information. To achieve this goal, we assume that
the output of the adversary A is a score vector s = [s1, s2, . . . , s|K|]. Each score
relates to the probability that the corresponding candidate subkey k is the secret
subkey k∗. A larger score means that the corresponding candidate subkey k
is more likely to be the secret subkey k∗. Finally, we can define an order of
possibilities for the secret subkey k∗ as follows:

g(k∗) =
∑
k∈K

1(sk ≥ sk∗). (5)

The oth-order success rate of the side-channel subkey recovery adversary A is
straightforwardly defined as:

SRo(A) = P[g(k∗) ≤ o]. (6)

2.6 Confusion Coefficient

Let τ denote the output of the leakage function φ, which is a key-dependent
and thereby security-critical intermediate value, i.e., τ = φ (t⊕ k). Referring
to [9, 10], two subkey candidates ki and kj under the same plaintext t may
produce different outputs, which can be denoted as τ |ki and τ |kj respectively.
The behavior of τ |ki and τ |kj affects how difficult it is for side-channel attacks
to distinguish ki(kj) from kj(ki) by leakage measured. The original confusion
coefficient κ, proposed in [10], measures the differences between behavior of τ |ki
and τ |kj under a binary model as:

κ(ki, kj) = P[(τ |ki ̸= τ |kj)]. (7)
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If τ has more than two values, confusion coefficient measures the differences
by calculating the expectation of squared distance [9]. Specifically, this general
two-way confusion coefficient can be defined as:

κ(ki, kj) = E[(τ |ki − τ |kj)2]. (8)

One can easily proof that E[(τ |ki−τ |kj)2] is equal to probability P[(τ |ki ̸= τ |kj)]
under a binary model.

3 Unified Framework for Univariate DPA Attacks

The relationship between efficiency of different univariate DPA attacks is an im-
portant and basic issue of great concern. As discussed in [20], when fed with the
same assumptions about the target device (i.e., with the same leakage model),
the most popular approaches such as DoM test, correlation analysis (CPA) and
Bayes attack, are essentially equivalent in this setting. Differences observed in
practice are not due to differences in the statistical tests but statistical arti-
facts from which no intuition can be extracted. Their work provides a rigorous
mathematical deduction and the experimental results remain convincing. As an
extension and supplement, instead of transforming mathematical expressions
straightforwardly, we propose a unified framework with which the mathemat-
ical foundation behind different univariate DPA attacks can be revealed and
explained in a natural and intuitive manner, putting understanding of the rela-
tionship between them to a higher degree.

3.1 Leakage Feature Space

Euclidean space and coordinate system are suitable ways of intuitively revealing
and explaining the common mathematical principle that different side-channel
distinguishers are based on. For this purpose, we introduce leakage feature space,
denoted as V = RQ, as an effective and unified framework for distinguisher de-
scription and abstraction. This leakage feature space V is a kind of Euclidean
space with flexible number of dimensions, says Q, that is equivalent to the size of
the sample set X. Thereafter, the whole sample set X is bijectively mapped to
a point (vector), denoted as X (X⃗ , respectively), in the leakage feature space V
with element x̂q accounting for the q-th dimensional coordinate value. In other
words, X (X⃗ ) = (x̂1, x̂2, . . . , x̂Q). Obviously, affected by additive Gaussian noise
N, the location of X in V is not fixed and varies under different times of sam-
pling. Thus, we may turn to its mathematical expectation for analysis: E {X} =
(E {x̂1} ,E {x̂2} , . . . ,E {x̂Q}) = (α · φ (t1 ⊕ k∗) , α · φ (t2 ⊕ k∗) , . . . , α · φ (tQ ⊕ k∗)).

It is noteworthy that:

- Compared to X (X⃗ ), E {X} is mapped to a fixed point (vector) that contains
and implies key-dependent side-channel leakage feature under certain secret
key k∗ and certain plaintext set (t1, t2, . . . , tQ). Moreover, the location of
E {X} significantly decides which guessing value k is more difficult to be
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distinguished from k∗ and to what extent. Nevertheless, E {X} is unknown
to adversaries because of uncertainty of the secret key k∗.

- Adversaries observe X (X⃗ ). Given that additive Gaussian noise N applying
to each dimension of X (X⃗ ) is mutually independent, the probability of oc-
currence of event X (X⃗ ) can be expressed as:

P
{
X (X⃗ )

}
=

(
1√
2πσ

)Q

exp

(
− 1

2σ2

∑Q
q=1 (x̂q − α · φ (tq ⊕ k∗))

2

)
=

(
1√
2πσ

)Q

exp

(
− 1

2σ2
|X⃗ − E⃗ {X} |2

)
.

(9)

Interestingly, we find that Pr
{
X (X⃗ )

}
only depends on Euclidean distance

between point X and point E {X}. Hence, we obtain an expression of prob-
ability density function in leakage feature space V as:

ϕ (r) =

(
1√
2πσ

)Q

exp

(
− r2

2σ2

)
, (10)

where r represents Euclidean distance from point E {X}. In virtue of the
famous “3σ” principal of Gaussian distribution, we can easily identify a
sound neighborhood range where X (X⃗ ) randomly walks. Let U (E {X} , 3σ)
denote this neighborhood range and it turns into a suprasphere of radius 3σ
whenever Q > 3. We can always expect that the observed X (X⃗ ) falls in it.

- Adversaries may know an estimation of φ due to Kerckhoffs’s principle and
their efforts to carefully characterize cryptosystem. In side-channel attacks,
adversaries guess k∗ and subsequently calculate {φ (t1 ⊕ k) , φ (t2 ⊕ k) , . . . ,
φ (tQ ⊕ k)}, with k representing the guessing value. Similarly, this process
can be naturally and conveniently abstracted and then mapped to leakage
feature space V by introducing the point ξ (k) = (φ (t1 ⊕ k) , φ (t2 ⊕ k) , . . . ,
φ (tQ ⊕ k)). Obviously, E {X} = α · ξ (k∗).

Thanks to leakage feature space V, we are able to abstract and view stan-
dard univariate DPA side-channel attacks as a process of analyzing potential
‘similarity’ and ‘association’ between distributions of the observed X (X⃗ ) and
ξ (k) in V. Specifically, different statistical tests in DoM test, correlation anal-
ysis(CPA) and Bayes attack are exactly equivalent to detect and measure the
‘similarity’ and ‘association’ from the aspect of vector projection, vector cosine
and vector Euclidean distance respectively. We will demonstrate that our views
of these distinguishers largely inspire novel but straightforward conclusions and
understanding.

3.2 Bayes attack

As introduced in Section 2.3, based on the maximum likelihood principle, Bayes
attack is usually assumed to be much more powerful. One non-negligible draw-
back is that there exists a gap in practice: adversaries have to deal with problem
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of parameters estimation. Probability density function involved can be calcu-
lated if and only if parameters α and σ are properly estimated. In our work, for
better illustration of the underlying mathematical principle, we assumed that
adversaries know the precise α and σ.

In leakage feature space V, Bayes distinguisher follows:

DBayes = argmax
k∈K

Q∏
q=1

P{x̂q|k}

= argmax
k∈K

Q∏
q=1

fσ2(x̂q − α · φ(tq ⊕ k))

= argmin
k∈K

|X⃗ − αξ⃗ (k) |2,

(11)

where fσ2 denotes Gaussian distribution with the mean value 0 and the standard
deviation σ. Equation (11) well shows that Bayes distinguisher selects candidate
k entirely according to Euclidean distance between the observed sample point
X and point α · ξ (k). Candidate k corresponding to the minimum Euclidean
distance is regarded as the secret k∗.

The mathematical principle behind in Bayes distinguisher can be explained
from leakage feature space V perspective: point X mostly takes a random walk in
neighborhood U (α · ξ (k∗) , 3σ). The probability that it happens to reach and be
observed in another neighborhood U (α · ξ (k◦) , 3σ) with k◦ ̸= k∗, and thereafter
is closer to point α·ξ (k◦), is relatively low. By applying Euclidean distance, Bayes
distinguisher measures and tells which neighborhood is most likely the observed
X actually and originally belongs to.

Meanwhile, we can conclude that the effectiveness of Bayes distinguisher is
up to the overlapped part of U (α · ξ (k◦) , 3σ) and U (α · ξ (k∗) , 3σ), which may
confuse and mislead the Bayes distinguisher. Intuitively, confusion coefficient on
plaintext set (t1, t2, . . . , tQ) and (k∗, k◦) is a suitable tool for quantifying such an
overlap, by measuring the Euclidean distance between centers of neighborhoods
as follows:

α2 ·Q · κ (k∗, k◦) =
∑Q

q=1

{
(α · φ(tq ⊕ k∗)− α · φ(tq ⊕ k◦))

2
}

=
∣∣∣αξ⃗(k∗)− αξ⃗(k◦)

∣∣∣2 . (12)

3.3 CPA

CPA is another fairly generic distinguisher that has been well studied. The sta-
tistical test embedded is the well-known Pearson’s correlation coefficient as given
in Equation (2). Due to its complexity, dedicated works [14,20,25] have proposed
several important characteristics of side-channel attack scenario, achieving de-
sired results in simplifying and facilitating the analysis and evaluations of this
distinguisher. Note that we are not indicating that launching direct analysis
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against sample distribution of Pearson’s correlation coefficient, such as using
Fisher z-transformation [4], is unnecessary. Here we briefly illustrate them as
following:

- The first and second moments of sample set X are constant and independent
of guessing value k [25]. In other words, as soon as adversaries finish their
sampling on target cryptosystem, these two moments are determined and
remain constant regardless of side-channel distinguishers used.

- Property of Equal Images under different Subkeys (EIS) [26]. Let A be an
arbitrary set and φ : T × K → A be a mapping for which the images
φ (T × k) ⊂ A are equal for all subkey k ∈ K. Property of EIS indicates that
though the first and second moments of {φ (t1 ⊕ k) , φ (t2 ⊕ k) , . . . , φ (tQ ⊕ k)}
may vary under different guessing key k, there leaves no extra information
about k∗ that can be extracted from these differences.

Based on above characteristics, [14] simplified Pearson’s correlation coeffi-
cient in side-channel attack scenario up to an additive distinguisher DCPA =
argmaxk∈K

∑Q
q=1 x̂q × φ(tq ⊕ k) and subsequently developed a feasible secu-

rity bound for success rate metrics, which has attracted wide attention. Inspired
by their works, we simplify CPA distinguisher in leakage feature space V as
following:

DCPA = argmax
k∈K

∑Q
q=1 x̂q × φ(tq ⊕ k)√∑Q

q=1 x̂
2
q

√∑Q
q=1 φ

2(tq ⊕ k)

= argmax
k∈K

cos < X⃗ , ξ⃗ (k) > .

(13)

The mathematical principle behind is very similar with that of Bayes attack
from leakage feature space V perspective. The main difference is that instead
of measuring Euclidean distance, CPA chooses to measure the so-called “cosine
similarity” between vectors. It is noteworthy that the Euclidean distance |ξ(k∗)−
ξ(k)| has a very close connection with cos < ξ(k∗), ξ(k) >. More specifically, one
can easily proof that |ξ(k∗) − ξ(k)| is a monotonously decreasing function of
cos < ξ(k∗), ξ(k) >. As a result, on one hand, we believe that more or less Bayes
attack links with CPA at a certain extent. On the other hand, we verify that the
effectiveness of CPA distinguisher is also up to the confusion coefficient κ (k∗, k),
which has already been mentioned and investigated in [9, 10].

3.4 DoM Test

Compared to Bayes attack and CPA, DoM test assumes a binary leakage model,
which brings additional noise under the same circumstances. This is because
there are more bits that are not under consideration and their random shifts
produce extra irrelevant “algorithmic noise” [8]. Using our notation and follow-
ing the normalization this means that φ ∈ {−1, 1}. In leakage feature space V
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adversaries select key candidate as:

DDoM = argmax
k∈K

1
2

∑Q
q=1 x̂q × (φ(tq ⊕ k) + 1)

1
4

∑Q
q=1 (φ(tq ⊕ k) + 1)

2
+

1
2

∑Q
q=1 x̂q × (φ(tq ⊕ k)− 1)

1
4

∑Q
q=1 (φ(tq ⊕ k)− 1)

2

= argmax
k∈K

Proj < X⃗ , ϱ⃗ (k) >,

(14)
where ϱ⃗ (k) = ξ⃗(k)+1⃗

|ξ⃗(k)+1⃗|2
+ ξ⃗(k)−1⃗

|ξ⃗(k)−1⃗|2
, 1⃗ is the vector with all dimensions equal 1,

and Proj < X⃗ , ϱ⃗ (k) > represents the projection of ϱ⃗ (k) on X⃗ . Significantly,
the vector projection DoM turns to is determined both by cos < X⃗ , ϱ⃗ (k) > and
|ϱ⃗ (k) |. Though φ ∈ {−1, 1}, property of EIS remains, indicating that we do not
need to concern the differences in |ϱ⃗ (k) |. κ (k∗, k) still plays an important role
in evaluation of DoM attack.

4 Unified Evaluation Framework for Univariate DPA
Attacks

In Section 3, we proposed a unified framework, namely leakage feature space V.
Basing on it, we conclude that different distinguishers of univariate DPA attack
can essentially be unified as a process of analyzing potential ‘similarity’ and ’as-
sociation’ between distributions of the observed X (X⃗ ) and ξ (k), while relying
on diverse similarity measure metrics. As presented in Section 2.1, adversaries
know exactly the plaintext set {t1, t2, · · · , tQ} that corresponds to the leakage
they measured. Hence, the location of point ξ (k) in leakage feature space V re-
mains constant whenever guessing value k is determined. The only random factor
that affects the success (failure) of a univariate DPA attack is the distribution
of X (X⃗ ). From this point of view, one can deduce that the whole leakage fea-
ture space V is at least divided into two parts, of which one represents “success
space”. If X (X⃗ ) falls and is observed in the “success space”, side-channel attacks
succeed. The detailed distribution and shape of “success space” in V depends on
the plaintext set assumed to be known in the most common attack scenarios,
secret key and distinguisher actually used, which will be analyzed and detailed
subsequently.

For better understanding our proposed unified evaluation framework, we start
our elaboration by differentiating secret key k∗ from candidate pair (k∗, k◦) with
k◦ being an arbitrary guessing subkey out of |K| − 1 wrong candidates. Then
we extend our scheme to scenario of all |K| candidates, thus making it more
practical for side-channel evaluations.

4.1 First-Order Boundary of Success Space

To identify the “success space” in leakage feature space V, locating and deter-
mining the corresponding, maybe nonlinear, boundary that surrounds it is of
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particular necessity. The first-order boundary of the success space is the founda-
tion for analysis of the first-order success rate. We can infer that when X (X⃗ ) falls
on the first-order boundary, more than one candidate, of which the probability
to be the secret subkey is completely the same, are ranked simultaneously at
the first place of the score vector. The corresponding status of the side-channel
attack is somewhere between success and failure.

We begin our analysis with the success space under certain candidate pair
(k∗, k◦) and certain plaintext set (t1, t2, . . . , tQ). Let ω denote an arbitrary ele-
ment that belongs to the first-order boundary.

- In Bayes attack, candidate that leads to the minimum Euclidean distance
|X⃗ − αξ⃗ (k) | is considered as the secret subkey. Element of the first-order
boundary in Bayes attack satisfies:

|ω⃗ − αξ⃗ (k◦) | = |ω⃗ − αξ⃗ (k∗) |, (15)

indicating the case where Bayes distinguisher cannot tell which one of (k◦, k∗)
has greater possibility to be the secret subkey. Finally, let ‘T ’ represents
matrix transposition, and we derive the equation of the first-order boundary
in leakage feature space V as:(

ξ⃗ (k◦)− ξ⃗ (k∗)
)T

ω⃗ − α

2

(
|ξ⃗ (k◦) |2 − |ξ⃗ (k∗) |2

)
= 0, (16)

which turns out to be a hyperplane, denoted as HBayes (k
◦), that linearly

divides leakage feature space V into two parts. Between these two parts,
let I1Bayes (k◦) denote the first-order success space, and Ī1Bayes (k

◦) denote the
remaining part (failure space), i.e., V = I1Bayes (k

◦)
⋃
Ī1Bayes (k

◦). Apparently,
ξ (k∗) ∈ I1Bayes (k

◦).
- In CPA, candidate that leads to the maximum cosine cos < X⃗ , ξ⃗ (k) > is

considered as the secret subkey. Element of the first-order boundary in CPA
satisfies:

cos < ω⃗, ξ⃗ (k◦) >= cos < ω⃗, ξ⃗ (k∗) > . (17)

The corresponding equation in CPA is then as:(
ξ⃗ (k◦)

|ξ⃗ (k◦) |
− ξ⃗ (k∗)

|ξ⃗ (k∗) |

)T

ω⃗ = 0, (18)

which is also a hyperplane and is denoted as HCPA (k◦). Similarly, we can
define I1CPA (k◦) and Ī1CPA (k◦).

- In DoM, candidate that leads to the maximum vector projection Proj <
X⃗ , ϱ⃗ (k) > is considered as the secret subkey. Element of the first-order
boundary in DoM satisfies:

Proj < ω⃗, ϱ⃗ (k◦) >= Proj < ω⃗, ϱ⃗ (k∗) > . (19)
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The corresponding equation in DoM is then as:

(ϱ⃗ (k◦)− ϱ⃗ (k∗))
T
ω⃗ = 0, (20)

which is another hyperplane and is denoted as HDoM (k◦). Again, we can
define I1DoM (k◦) and Ī1DoM (k◦).

Based on above deductions, we offer a sketch map in Figure 4.1 for the sake
of intuition. We now extend the first-order boundary of success space under
certain candidate pair (k◦, k∗) to scenario of all |K| candidates. Owing to
the arbitrariness of k◦ from |K| − 1 wrong candidates, one can naturally reason
that the complete nonlinear first-order boundary of success space is consisted of
|K| − 1 linear but provably unparallel hyperplanes in V. More specifically, take
the Bayes attack as an example, the first-order boundary under certain plaintext
set (t1, t2, . . . , tQ) and all |K| candidates can be expressed using the following
|K| − 1 equations:

Bound1Bayes =



(
ξ⃗
(
k1
)
− ξ⃗ (k∗)

)T
ω⃗ − α

2

(
|ξ⃗
(
k1
)
|2 − |ξ⃗ (k∗) |2

)
= 0,(

ξ⃗
(
k2
)
− ξ⃗ (k∗)

)T
ω⃗ − α

2

(
|ξ⃗
(
k2
)
|2 − |ξ⃗ (k∗) |2

)
= 0,

...(
ξ⃗
(
k|K|−1

)
− ξ⃗ (k∗)

)T
ω⃗ − α

2

(
|ξ⃗
(
k|K|−1

)
|2 − |ξ⃗ (k∗) |2

)
= 0,

(21)
where {k1, · · · , k|K|−1} denotes the |K|−1 wrong candidates of the secret subkey.
As a result, the complete first-order success space satisfies:

I1Bayes =
⋂

k∈K\{k∗}

I1Bayes (k) . (22)

Although equations of the first-order boundary in different univariate DPA
attacks seem entirely irrelevant at the first sight, there is a significant and inter-
esting observation: Due to the EIS property and for any given number of leakage
samples Q, the distribution of |ξ⃗ (k) | is independent of Gaussian noise N and is
equal for all subkey candidates k. In other words, biases observed between |ξ⃗ (k) |
are caused by unbalanced plaintext set rather than k. Meanwhile, the variance
of the sample distribution of |ξ⃗ (k) | is a monotonously decreasing function of
Q. Therefore, as σ increases, to achieve the same success rate, it is necessary to
increase Q to make every |ξ⃗ (k) | approach the same level. In conclusion, when
Q → +∞ or balanced plaintext set is in use, statistical artifacts bought by
plaintext set is eliminated and thus all |ξ⃗ (k) | turn to their mathematical expec-
tation, indicating that for ∀k1, k2 ∈ K, k1 ̸= k2 we have |ξ⃗

(
k1
)
| = |ξ⃗

(
k2
)
|. In

this case, one can easily simplify the first-order boundary of different univariate
DPA attacks under certain candidate pair (k∗, k◦) to a unified mathematical
expression: (

ξ⃗ (k◦)− ξ⃗ (k∗)
)T

ω⃗ = 0. (23)



14 J. Long, C. Wang, C. Ou et al.

Fig. 1. A sketch map of boundary and success space.

More importantly, Bayes attack and CPA share the same leakage function
φ, which implies the same expectation of the first-order boundary, and therefore
the same expectation of their first-order success rate, i.e., E

(
I1Bayes

)
= E

(
I1CPA

)
.

This further verifies the conclusion and observation mentioned in [20] that the
efficiency of side-channel attacks using correlation coefficient and a Bayes dis-
tinguisher is statistically close, i.e., the small differences observed in practice are
not due to the statistical test but statistical artifacts brought by unbalanced
plaintext set).

Eventually, the expectation of first-order boundary of different univariate
DPA attacks in scenario of all |K| candidates can be expressed using the following
|K| − 1 equations:

E
{
Bound1

}
=



(
ξ⃗
(
k1
)
− ξ⃗ (k∗)

)T
ω⃗ = 0,(

ξ⃗
(
k2
)
− ξ⃗ (k∗)

)T
ω⃗ = 0,

...(
ξ⃗
(
k|K|−1

)
− ξ⃗ (k∗)

)T
ω⃗ = 0.

(24)

Let η⃗ (k) denote the normal vector of hyperplane H (k) that belongs to the
expectation, then η⃗ (k) = ξ⃗ (k) − ξ⃗ (k∗). To find out the distribution and shape
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of the expectation, we calculate cosine between every two of η⃗ (k) as follows:

cos < η⃗ (k◦) , η⃗
(
k#
)
>=

η⃗ (k◦) · η⃗
(
k#
)

|η⃗ (k◦) ||η⃗ (k#) |

=
κ (k∗, k◦) + κ

(
k∗, k#

)
− κ

(
k#, k◦

)
2
√
κ (k∗, k◦)κ (k∗, k#)

,

(25)

where k◦ and k# denote two different values from |K|−1 wrong candidates. It is
remarkable that the distribution and shape of the expectation of the first-order
boundary is independent of Q and SNR.

4.2 Derivation of First-Order Success Rate

From leakage feature space V perspective, the first-order success rate of a side-
channel attack A is defined as the probability of X (X⃗ ) staying in the success
space I without crossing the first-order boundary. Therefore, the first-order suc-
cess rate in Equation (6) can be re-expressed as:

SR1 (A) = P{X ∈ I1}
P{X ∈ V}

= 1− P{X ∈ Ī1}
P{X ∈ V}

, (26)

where P{X ∈ V} = 1.
In the following, we derive the expression of the first-order success rate. As

a starting point, we begin our derivation under certain candidate pair (k∗, k◦)
and certain plaintext set (t1, t2, . . . , tQ). In this case, the first-order boundary is
a hyperplane H whose equation was given in Section 4.1. To calculate P{X ∈ Ī},
let us first consider straight line γ passing point α · ξ (k∗) (i.e., point E {X})
and whose direction vector is parallel to the normal vector η⃗ of hyperplane H.
Noting that α · ξ (k∗) is the same for Bayes attack and CPA because of the
same underlying leakage function φ. Apparently, γ is divided into two parts by
H as well and similarly we denote the part in space Ī as γ̄. Take advantage of
Equation (10), we get:

P{X ∈ γ̄}
P{X ∈ γ}

=

∫ +∞
L

ϕ (r) dr∫ +∞
−∞ ϕ (r) dr

=

(
1√
2πσ

)Q−1

(1− Φσ2 (L))(
1√
2πσ

)Q−1
= 1− Φσ2 (L) , (27)

where L denotes the Euclidean distance between point α · ξ (k∗) and the first-
order boundary (i.e., the hyperplane H (k◦) in this case) and Φσ2 (.) denotes the
Gaussian cumulative distribution function (cdf) with the mean value 0 and the
standard deviation σ. For certain candidate pair (k∗, k◦) and certain, maybe
unbalanced, plaintext set (t1, t2, . . . , tQ), calculation of L is specific to the dis-
tinguisher used. Specifically, L for Bayes attack is:

LBayes =
||
(
ξ⃗ (k◦)− ξ⃗ (k∗)

)T
αξ⃗ (k∗)− α

2

(
|ξ⃗ (k◦) |2 − |ξ⃗ (k∗) |2

)
||

|ξ⃗ (k◦)− ξ⃗ (k∗) |
, (28)
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L for CPA is:

LCPA =
||
(

ξ⃗(k◦)

|ξ⃗(k◦)|
− ξ⃗(k∗)

|ξ⃗(k∗)|

)T
αξ⃗ (k∗) ||

| ξ⃗(k
◦)

|ξ⃗(k◦)|
− ξ⃗(k∗)

|ξ⃗(k∗)|
|

, (29)

and L for DoM distinguisher is:

LDoM =
|| (ϱ⃗ (k◦)− ϱ⃗ (k∗))

T
αξ⃗ (k∗) ||

|ϱ⃗ (k◦)− ϱ⃗ (k∗) |
. (30)

Note that || · || denotes the operation of getting absolute value and | · | denotes
the operation of getting vector module.

Next, let us consider another straight line β which is parallel to γ. Let θ
denote the Euclidean distance between β and γ. Similarly, we are interested in:

P{X ∈ β̄}
P{X ∈ β}

=

∫ +∞
L

ϕ
(√

r2 + θ2
)
dr∫ +∞

−∞ ϕ
(√

r2 + θ2
)
dr

, (31)

It is noteworthy that:

ϕ
(√

r2 + θ2
)
=

(
1√
2πσ

)Q

exp

(
−r2 + θ2

2σ2

)
= ℏ (θ) · ϕ (r) (32)

where ℏ (θ) = exp
(
− θ2

2σ2

)
. Based on this, we subsequently acquire the result as

follows:
P{X ∈ β̄}
P{X ∈ β}

=
ℏ (θ)

∫ +∞
L

ϕ (r) dr

ℏ (θ)
∫ +∞
−∞ ϕ (r) dr

= 1− Φσ2 (L) , (33)

which is actually the same as Equation (27). Surprisingly, we find that the results
is independent of θ. We draw a conclusion that the normal vector η⃗ (k◦) of
the hyperplane H (k◦) spans the one-dimensional straight line γ, but together
with the hyperplane H (k◦) itself, which is essentially a subspace with Q − 1
dimensions, spans the whole Q-dimensional leakage feature space V. Ultimately,
we derive the expression of SR1 under certain candidate pair (k∗, k◦) and certain
plaintext set (t1, t2, . . . , tQ) as:

SR1 = 1− P{X ∈ Ī}
P{X ∈ V}

= 1− P{X ∈ γ̄}
P{X ∈ γ}

= Φσ2 (L) . (34)

L is determined by α · ξ (k∗) and H which are both specific to the candidate pair
(k∗, k◦) and the plaintext set (t1, t2, . . . , tQ).

In case that one may have particular interests in the expectation of SR1

under the candidate pair (k∗, k◦) but random plaintext set with fixed size Q, we
derive the following results:

E {L} = E


||
(
ξ⃗ (k◦)− ξ⃗ (k∗)

)T
αξ⃗ (k∗) ||

|ξ⃗ (k◦)− ξ⃗ (k∗) |

 =
α
√
Q× κ (k∗, k◦)

2
(35)
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according to Equations (10) and (8), and obtains:

E
{
SR1

}
=Φσ2

(
α
√
Q× κ (k∗, k◦)

2

)

=0.5 +
1

2
erf

(√
1

8
× SNR×Q× κ (k∗, k◦)

)
.

(36)

There are three interesting but very significant observations:
(1) If the SNR is decreased by a factor of m, the number of measurements

Q has to be multiplied by m to achieve the same first-order success rate.
This verifies the well-known “Rule of Thumb” for side-channel attacks as
described in [18].

(2) E
{
SR1

}
≥ 0.5, indicating that conducting a side-channel attack by Bayes,

CPA or DoM is always better than applying a random guess, regardless of
SNR and Q. Further, the second item 1

2 erf
(√

1
8 × SNR×Q× κ (k∗, k◦)

)
can be seen as the gain of effectiveness brought by distinguishers, for the
probability of a candidate randomly chosen from the candidate pair (k∗, k◦)
being the secret subkey is 0.50.

(3) Eventually, we find that the upper bound approximation used in [14, 18]
and the corresponding idea [30] it refers to has a potential drawback. Note
that this upper bound is originally designed to squeeze the success rate of
scenario of all |K| candidates based on a candidate pair (k∗, k). Using our
notations, the upper bound is expressed as:

SR1 ≤ min
k ̸=k∗

P {g(k∗) < g(k)} . (37)

This implies that the upper bound is always greater than 0.50 and thus
disagree with the fact that success rate observed and measured in practice
can be much more lower. In conclusion, squeezing the success rate in scenario
of all |K| candidates by calculating probability of correctly differentiating
secret subkey k∗ from certain candidate pair is somewhat inaccuracy.
Based on above deduction, the first-order success rate SR1 in scenario of all

|K| candidates under certain plaintext set (t1, t2, . . . , tQ) can be calculated by
performing a definite integral as follows:

SR1 =⃝
∫∫∫
I1

ϕ (r) dr. (38)

The first-order boundary restricts the upper and lower bounds of integral op-
eration and the domain of integration is the first-order success space I1 (e.g.,
Equation (22) for Bayes attack). As for E

{
SR1

}
, simply replacing I1 with its

expectation will do the job. It is worth mentioning that according to Equa-
tions (25) and (35), Q and SNR affect E

{
SR1

}
by only affecting the Euclidean

distance L. Therefore, we can further conclude that distribution of E
{
Bound1

}
in leakage feature space V has a close connection to the behavior of φ (measured
by the confusion coefficient) and is totally independent of Q and SNR.
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4.3 From First-Order to Higher-Order Success Rate

Compared to the first-order success rate, higher-order implies an extra meaning
by measuring the remaining workload of the adversary after the attack. To be
specific, the oth-order success rate indicates the probability that the adversary
still has a maximum of o candidates to test after the attack. Therefore, we can
infer that adversary who has ability to conduct additional statistical tests con-
veniently should prefer distinguishers with better success rate of higher-order,
although SR1 may be a bit low. Countermeasures against side-channel attacks
should take these cases into consideration as well. In summary, the evaluation
of higher-order success rate is of great importance and has been a long standing
open problem. So far, however, there are hardly any methods or tools provide effi-
cient and accurate estimation of higher-order success rate. Moreover, concise and
intuitive explanation about the relationship between first-order and higher-order
success rate is necessary for raising clear conclusions on how to estimate them.
To fill this gap, we intuitively extend our first-order success space to higher-order
scenario, and propose an algorithm that is capable of estimating success rate of
arbitrary order in an efficient manner. Most importantly, we answer the question
of why and how SRo can be estimated according to (characteristics of) SR1 and
then put it into practice.

Here the oth-order success rate of a side-channel attack A is defined as the
probability of X (X⃗ ) staying in the success space I without crossing the oth-order
boundary and thus can be re-expressed as:

SRo (A) = P{X ∈ Io}
P{X ∈ V}

= 1− P{X ∈ Īo}
P{X ∈ V}

, (39)

where I(o) represents the oth-order success space I(o) =
⋃
(I(Bound1−

(|K|−1
o−1

)
H)).

The subtraction operation (Bound1 −
(|K|−1

o−1

)
H) indicates that we randomly re-

move o− 1 hyperplanes from the first-order boundary and thereby I(Bound1 −(|K|−1
o−1

)
H) denotes the corresponding success space under this new boundary.

The cancel of o− 1 hyperplanes means that X is allowed to cross at most o− 1
hyperplanes, resulting in at most o − 1 wrong candidates being allowed to be
placed in front of k∗ in the score vector.

Although deriving accurate expression of Bound1 is feasible, calculation of
the integral in Equation (38) appears to be a troublesome and arduous prob-
lem. Besides, the challenge of computing higher-order success rate needs to be
addressed in an efficient and intuitive way. To these ends, based on Monte Carlo
method, we propose an algorithm that is capable of computing arbitrary order
success rate under certain plaintext set in a very efficient way (see Algorithm 1).

Thanks to our unified framework given in leakage feature space V, Algo-
rithm 1 is general for Bayes attack, CPA and DoM. Let H(k, x) denote function

of hyperplane H (k), e.g., H(k;x) =
(
ξ⃗ (k)− ξ⃗ (k∗)

)T
x⃗− α

2

(
|ξ⃗ (k) |2 − |ξ⃗ (k∗) |2

)
for HBayes (k). Algorithm 1 takes the first-order boundary H(k, x) as inputs (e.g.,
Equation (21) for Bayes Attack) and calculates the specified oth-order success
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Algorithm 1: The estimation on the oth-order success rate.
Input: |K| − 1 functions H(k;x), order o, point ξ (k∗).
Output: ˆSRo.

1 Initialize a counter suc = 0;
2 for i from 1 to 10000 do
3 Set success flag of an attack as: sflag = 1;
4 Initialize the position of x in the score vector as pos = 1;
5 Generate random sample x;
6 for k in {k1, · · · , k|K|−1} do
7 if H(k;x)×H(k; ξ (k∗)) ≤ 0 then
8 pos = pos+ 1;
9 if pos ≥ o then

10 sflag = 0; break;
11 end
12 end
13 end
14 suc = suc+ sflag;
15 end
16 ˆSRo = suc/10000;

rate. According to the well-known Bernoulli’s theorem of large numbers in statis-
tics, we estimate the result in Equation (38) by random sampling. Specifically,
we set success flag for an attack as sflag = 1, initialize the position of x in the
score vector as pos = 1, and generate a tremendous number of samples (10, 000
samples in Algorithm 1) according to Equation (10) randomly to simulate the
behavior of X (X⃗ ) (Steps 3 ∼ 5). By calculating frequency of samples falling
in the oth-order success space (Steps 6 ∼ 12), we thus approach SRo (Steps
15 ∼ 17).

Due to expression of the first-order boundary, judging whether a certain sam-
ple falls in the oth-order success space becomes a very simple task. To be specific,
for sample x and a wrong candidate k◦, we calculate H(k◦;x) × H(k◦; ξ (k∗))
and see if it is greater than 0 (Step 7). If not, k◦ is ranked in front of k∗ in the
score vector. This is because ξ (k∗) ∈ I1(k◦) and x is on the other side of H (k◦),
which is thereby the failure space Ī1 (k◦). Thus, by traversing |K| − 1 wrong
candidates (Step 6), we can eventually find out how many hyperplanes x have
crossed. Using the definition of oth-order success rate in Section 4.2, this means
how many hyperplanes are removed from the first-order boundary.

5 Simulated Results

5.1 Validation of the Observations

In this section, we validate the observation in Section 4.2. In order to show that
success rate of differentiating secret k∗ from a candidate pair (k∗, k◦) is always
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greater 0.50 when applying a side-channel distinguisher, we conduct a simulated
experiment where we can set SNR and Q to an extreme level (pretty close to
0). In the experiment, we assume the commonly used Hamming weight leakage
function and AES-128 S-box. The candidate pair (k∗, k◦) is set to (212, 30) by
applying simple random sampling method to set F2

8 which is the K in AES-128
scenario. In Figure 2, Q is fixed to 5 and α is fixed to 1. By increasing σ, SNR
varies from a reasonable level to an extremely low level. In Figure 3, SNR is
fixed to 0.01 and Q varies from 2 to 102. The step length is set to 5 and we
repeat our experiment 2,000 times to get the empirical first-order success rate
under different univariate DPA attacks. Theoretical results are calculated by
Equation (36).
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Fig. 2. SR1 under candidate pair (212, 30) and different SNR.
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Fig. 3. SR1 under candidate pair (212, 30) and different Q.
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Both Figures 2 and 3 clearly illustrate that the observation holds steadily
regardless of SNR and Q. The small interval between the empirical and esti-
mated success rate suggests that Equation 36 is convincing and agrees with the
experimental results.

5.2 Validation of the First-Order Boundary

Our proposed evaluation scheme revolve around the concept of first-order bound-
ary that divides the leakage feature space V into a success space and a failure
space. Algorithm 1 estimates success rate of an arbitrary order totally relying on
the first-order boundary and its effectiveness needs to be tested as well. Thus,
validating correctness of the first-order boundary is of great importance.
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Fig. 4. Theoretical and experimental success rate of Bayes attack - simulated attacks.

We assume the same Hamming weight leakage function and AES-128 S-box
as the ones exploited in Section 5.1. There are three parameters to concern in this
experiment, i.e., the number of measurements Q, the Signal-to-Noise Ratio SNR,
and o the order of success rate. Therefore, for every distinguisher we provide 9
results. For better validation and more quick comparison, we set a high SNR
and repeat our experiment 10,000 times in order to make the empirical oth-order
success rate as accurate as possible. Meanwhile, the step length of Q is set to
1. Theoretical results are calculated by Algorithm 1. The very subtle intervals
in each of Figures 4, 5 and 6 clearly illustrate the superiority of our proposed
first-order boundary that is serves as an ideal tool for evaluation of arbitrary
order success rate. Additionally, curves presented in Figures 4, 5 and 6 show
very similar tendency, thereby agree with Equation (24) and conclusions made
in [20]. Namely, different univariate DPA attacks share the same expectation of
success rate and the differences observed are caused by statistical artifacts.
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Fig. 5. Theoretical and experimental success rate of CPA - simulated attacks.

Let us consider the context of the same number of measurements Q. For
Bayes attack and CPA, the gap observed between different orders of success
rates is relatively narrow in low noise scenario (SNR = 2), since the correct
candidate k∗ will always be placed in the first position in the score vector. As
a result, we can infer that there are few differences between higher-order and
first-order success rate in this case. Interestingly, increased noise first widens the
gap then narrows it by sinking the average position of k∗ in the score vector.
To be specific, SNR = 1 appears to be a medium level in our experiment that
happens to sink the average position of k∗ from the first place to about 2 or 3,
making SR2 and SR3 much more higher than SR1. Subsequently, as the noise
approaches a higher level (SNR = 0.5 and SNR = 0.25), the average position
of k∗ falls out of the first three positions, resulting in the gap turning to narrow
again. For DoM, SNR = 1 seems to be a medium level.

6 Experiments on an ATMega328p Micro-controller

6.1 Experimental Setups

To further validate Bond1, this section shows that our results also hold in prac-
tice. For this purpose, we perform our experiments on an unprotected AES-128
algorithm [1] implemented on an ATMega328p micro-controller with a clock op-
erating frequency of 16 MHz. By randomly encrypting 100,000 plaintexts and
applying a WaveRunner 8104 oscilloscope, we acquire 100,000 power traces as
our data set which are enough for an estimation of α and σ in Equation (1). The
sampling rate is set to 1 GS/s. For better and more quick validation, we perform
CPA to select the sample named Point-Of-Interest (POI) [8] with the highest
Pearson correlation coefficient for the first S-box in the first round to perform
the subsequent experiments.
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Fig. 6. Theoretical and experimental success rate of DoM - simulated attacks.

6.2 Validation of the First-Order Boundary
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Fig. 7. Theoretical and experimental success rate of CPA and Bayes distinguishers -
real measurements.

To highlight the effectiveness of our proposed theory and find out whether
and to what extent our results still make sense for empirical SR under limited
measurements (which can not be told in simulated experiment), we repeat our
real experiment 500 times. Compared to simulated one, gaps more or less ob-
served in Figures 7 and 8 are mainly due to statistical biases introduced by
estimation of system parameters (i.e., α and σ in Equation (1)) and the fact
that practical leakages may be complex and do not strictly follow our assumed
leakage model in Equation (1). Although fewer repetitions make the empirical
SR thrash more violently, the corresponding theoretical SR still provide sound
and effective prediction of it.
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Fig. 8. Theoretical and experimental success rate of DoM - real measurements.

7 Conclusions

To facilitate better and intuitive understanding of different univariate DPA at-
tacks, this paper built a unified evaluation framework from the leakage feature
space V. The framework was centered around a Euclidean space where leak-
age measurement X and the process of guessing subkey k∗ were abstracted and
mapped to visualized vectors (points). Different univariate DPA attacks were
unified as comparing and analyzing vectors but applying different similarity mea-
sure metrics. It allowed discussing the underlying relationship between them in
a straightforward manner. Further, we proposed a unified evaluation framework
for success rate based on the leakage feature space V we provided. By build-
ing equations according to boundary conditions, we obtained the expression of
success spaces in leakage feature space V, making the derivation of success rate
intuitive and easy to understand as well. We concluded that the success rate can
be estimated by doing a density integral in Euclidean space V. Eventually, we
proposed an algorithm for efficient calculation of the integral.

Our evaluation framework on univariate DPA attacks is very intuitive with
strict theoretical proof, and we believe it brings us a new road for evalua-
tion of full-key recovery and other side-channel distinguishers, i.e., collision at-
tack [5, 13, 21]. Secondly, we have not simplified Equation (38) to a closed-from
expression due to complexity of the integral. This facilitates our attempt to
further investigate other properties, if exists, of the first-order boundary and
combined with Equations (25) and (35) to derive the closed-form expression of
arbitrary order success rate. Finally, we will also carry out corresponding re-
search on other security metrics, such as guessing entropy, and look forward to
the “surprises” brought by our evaluation framework.
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