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Abstract. Success Rate (SR) is one of the most popular security metrics
measuring the efficiency of side-channel attacks. Theoretical expression
reveals the functional dependency on critical parameters such as number
of measurements and Signal-to-Noise Ratio (SNR), helping evaluators
understand the threat of an attack as well as how one can mitigate it
with proper countermeasures. However so far, existing works have ex-
posed fundamental problems such as: (i) the evaluations are restricted
to a very limited number of distinguishers and the methods in the lit-
erature seem specialized (i.e., hard to be extended). (ii) the evaluations
assume an a-priori perfect leakage model which lacks practical relevance
and ignores the fact that inaccurate profiling may lead to information loss
and distorted SR. In this paper, we tackle above problems by providing
an evaluation framework where different univariate DPA distinguishers
are intuitively unified as linear maximum likelihood attack seeking for
the closest ‘distance’ between vectors in Euclidean space. We argue that
this is an intrinsic property of the DPA mechanism and is independent
of the leakage model. Then, we abstract the concept of SR and derive
the theoretical expression in a geometric way. Finally, the theory allows
a further study on leakage model where we formalize criterion explaining
the impact of model errors as well as guaranteeing robust performance.
We transfer the model effects to a degraded SNR parameter. Experi-
mental results are inline with the theory, confirming that our theoretical
expression coincides with the empirical ones.

Keywords: Success rate · side-channel evaluations · framework · DPA
· side-channel attacks
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1 Introduction

Unintentionally emitting from implementations, physical leakages such as power
consumption [21,24] and electromagnetic radiation [3,17], break the traditional
security model of cryptographic algorithms that assumes an adversary has only
black box access to cryptosystem. These leakages statistically depend on inter-
mediate values that are closely related to the secret key and therefore imply a
new road for frustrating the protection. In the past decade, univariate DPA dis-
tinguishers including Bayes attack [38], Correlation Power Analysis (CPA) [37],
Partition Power Analysis (PPA) [22] and Distance-of-Means (DoM) test together
with its extensions [4, 21, 26, 27] have been proposed. After conquering varied
cryptosystems in real world with unexpected simplicity and effectiveness, the
question “to what extent my device is side-channel resistant and how to mitigate
the threat?” has become a central one of concern.

For this purpose, SR is proposed as a security metric measuring the efficiency
of turning leakages’ information into a key recovery [35]. It comparatively eval-
uates how the effectiveness of side-channel attacks varies across different cryp-
tographic algorithms, physical circuits and adversary’s models, revealing which
attack utilizes maximum information and which device is most vulnerable. To
estimate SR, repeated experiments have been run and empirically univariate
DPA attacks are found susceptible to statistical tests embedded, cryptographic
properties of algorithm, characteristics of hardware implementation, number of
measurements and priori knowledge on leakages. Such way comes with heavy
computation loads. Hence, it raises an explicit requirement to figure out the
underlying relationship among these factors theoretically so that constructive
suggestions can be available for a more reasonable design of countermeasures
that balances the implementation cost with the security improvement provided.

For a long time, evaluators pursued “worst case” evaluation where an hypo-
thetical adversary can perfectly profile the leakage distribution (i.e., the leak-
age model accurately reflects the target device). However, practical constraints
(e.g., how much time or how many measurements are allowed) indicate a crit-
ical problem that all adversaries potentially expose themselves to some biased
models. This intuition was first detailed in [30] and later systematacially stud-
ied in [12] [13], putting forward the concepts of leakage certification. Weak keys
from the perspective of an inaccurate model should be different from those sug-
gested by the perfect one. So, it is still necessary to evaluate the overall security
level of such more practical scenarios and quantify the information loss (an open
problem in [12]). We believe they bring new perspectives for evaluators.

1.1 Related Works

Exact expressions of SR have been investigated. Under the assumption of nullity
of wrong candidates’ correlation coefficients and using Fisher’s Z-transformation,
[23] simply targeted at CPA on a candidate pair and carried out an early study
against SR, which was later extended to candidate set of any size in [36]. In
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subsequent works, [16] for DoM and [31] for CPA and multivariate Bayes at-
tack argued that the assumption was not always satisfied. They launched direct
analysis and found DPA attacks can be approximated using a multivariate nor-
mal cumulative distribution function. Pursuing heuristic of full-key recovery, [37]
studied a variant of SR (defined as confidence) for CPA in terms of key rank
evolution. Specific to distinguishers, these proposed methods suffer from a lack
of generality and fail to disclose the potential relationship between DPA at-
tacks. [15] took a logarithm of Bayes attack and by the central limit theorem
suggested a statistic model. Combining the maximal likelihood estimation un-
der linear regression model with the propositions in [10], they unified CPA and
DoM as equivalent Bayes attacks with unknown system parameters. Though
much more effective, the evaluations are still limited to three distinguishers and
known-model scenarios. Seeking the breakthrough is challenging.

Closed-form expressions of SR based on the so called Success Exponent (SE)
were given by [20]. They exhibited a more explicit functional relationship of the
SR with relevant parameters meanwhile extended the evaluation from additive
distinguishers (e.g., CPA and DoM) to non-additive Mutual Information Anal-
ysis (MIA) [18]. However, the built-in central limit theorem presents soundness
only under the asymptotic condition that adversary tends to sample a large
number of measurements. Besides, squeezing the overall SR by pairwise event
(originally suggested as an evaluation framework in [40]) avoids high-dimensional
complexity of interaction between incorrect keys but may become invalid when
SNR is low. We will illustrate this issue in Subsection 4.2. Since the central limit
theorem again leads to Gaussian distribution, similar to the exact expression of
SR where no closed-form expression exists, they exploited a weak equivalence
preserving the same exponential convergence behavior of SR toward 1.

Heuristic expressions of SR were developed in [41]. The author re-expressed
the statistic model in [15] as a noise vector stretched in the directions of orthonor-
mal eigenvectors of a key-dependent matrix, with the corresponding eigenvalues
as factors. As a heuristic approximation, he replaced those eigenvalues by a
constant that maintains the norm of the product. This allows reducing the high-
dimensional complexity to a two-dimensional integral. Apparently, the method
requires the eigenvalues do not vary too much. Moreover, the expressions of
eigenvectors become valid only when leakages depend on the input of target
cryptographic operation which may not be the case in practice.

Recent works linked SR with information theory. Authors in [9] regarded
side-channel as communication channel and established a Markov chain where
data processing inequality is available to bound the SR with Shannon’s mutual
information between leakages and model. Their result was universal but hardly
concerned side-channel resistance of cryptographic algorithm as they concluded
that SNR was sufficient enough to predict the security level of an implement
under Gaussian noise.

1.2 Our Contributions

In this paper our contributions are as follows:



4 J. Long, C. Wang, C. Ou et al.

- We propose a unified framework which facilitates an in-depth discussion
about to which extent different attacks share a common theoretical basis.
The framework covers a total of 7 popular univariate DPA attacks (much
more than existing works) and captures both profiled model and leakage
distribution, meanwhile being specific enough for us to make concrete state-
ments and sound comparison. We show that these attacks can be unified
as testing vectors in Euclidean space but resorting to different easy-to-
understand geometrical metrics.

- Based on the framework, we present the concepts of “success boundary” and
“success space” to reveal the linear aspect of univariate DPA attacks. We
demonstrate a theoretical derivation of SR where the interference of profiled
model and physical leakages is decoupled. The adversary’s model determines
the shape of success boundary whereas the leakage distribution accounts for
the probability density of the surrounded success space. It allows an easy
quantification of information loss from the aspect of decayed SR.

- At last, we answer two interesting problems about the leakage model: (1)
Exchanging the models of adversary and device, will it result in the same SR?
(2) When model errors are enough to distort SR? Based on our theoretical
expression, we formalize the criterion showing that univariate DPA attack
with a profiled model is equivalent to that with a perfect one but decreased
SNR. The reduction factor can be well expressed by an easy extension of
the proposed confusion coefficients in the literature. It helps us explain and
guarantee robust performance.

1.3 Organization

This paper is organized as follows: preliminaries including leakage model, confu-
sion coefficient, CPA, PPA, Bayes attack, and DoM together with its extensions
are introduced in Section 2. Descriptions of our evaluation framework, the in-
tuitive expressions of univariate DPA attacks and experiments on software im-
plementation are detailed in Section 3. We then theoretically analyze the SR in
Section 4. Experiments on hardware implementation are presented in Sections 5.
Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Side-channel Leakages and Leakage Model

Following the divide-and-conquer strategy, univariate side-channel DPA attacks
consider the secret as a tuple of subkeys and recover them separately. Let k∗ de-
note the target subkey selected at random from a set K : k∗

R←− K, k denote any
possible guessing value and K̄ denote the subset: K̄ = K\{k∗} = {k[1], · · · , k[S]}.
Let t denote the plaintext byte selected at random from another set T : t

R←− T .
Cryptographic algorithm keeps to group operation for closure property (e.g., all
computations in AES take place on Galois field F8

2). Let Im = G(t, k∗) denote
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such operation and Im is the n-bit key-dependent intermediate variable whose
distribution over T is identical for any k ∈ K which gives no evidence about the
secret k∗ (see [10, 20, 25, 29] for similar observations). The leakage function F
is a discrete function describing the physical signal (e.g., voltage for power con-
sumption leakage) leaked during the computation of G. Let x denote the leakage
measurement and it can be expressed as:

x = F ◦ G(t, k∗) + N = φ (t, k∗) + N. (1)

Composite function φ is the leakage model and N is the independent Gaussian
noise with D{N} = σ2

N . Both the cryptographic property of algorithm and the
physical characteristic of underlying hardware circuits determine the resistance
of an implement against univariate side-channel attacks. This intuition is cap-
tured by G and F respectively in this paper and we do not assume any restrictions
on them to make our results well applied to any scenario. At last, let φ̂ denote
the adversary’s counterpart in real attack which may be biased by model errors.

2.2 Confusion Coefficient

Cryptographic algorithms are designed to be robust against cryptanalysis with
two well-known statistical properties [33]: confusion and diffusion. Confusion
makes the statistical relation between the ciphertext and secret key as complex as
possible while diffusion makes the statistical relation between the ciphertext and
plaintext as complex as possible. Proposed in [16] and latter refined in [15], con-
fusion coefficient generalizes the confusion property to the field of side-channel
attack by coupling G and F . That is, for two subkey candidates (ki,kj), outputs
of φ (t, ki) and φ (t, kj) behave differently over the same plaintext byte t. We
abbreviate these variables as φ|ki and φ|kj and the extent to which they are
different from each other determines the difficulty of distinguishing them using
side-channel leakages. For this purpose, the general two-way confusion coefficient
is defined as the averaged squared distance:

κ(ki, kj) = Et{(φ(t, ki)− φ(t, kj))2} = E{(φ|ki − φ|kj)2}. (2)

2.3 Difference-of-Means Attack

Abbreviated as DoM, Difference-of-Means attack targeting a single bit of Im is
the first proposed univariate side-channel attack [21]. It is soon extended to mul-
tiple bits in two ways: the all-or-nothing DoM and the generalized DoM [26,27],
to overcome some algebraic property that leads to failure in the mono-bit set-
ting. Referring to [10], we denote these strategies as SB-DoM, AON-DoM and
G-DoM respectively. DoM classifies measurements into two categories according
to a partition of the range of φ̂. We denote the partition by ΩDoM = {Ω0, Ω1}.
Leakages bundled together are deemed to share the same distribution. Difference
of means is calculated to verify k since incorrect candidates will lead to misclas-
sifications where measurements assigned to the same category actually approach
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random. Let Q denote the total number of measurements and q denote a certain
encryption. Let Im[i] denote the i-th bit. The distinguishers DSB−DoM(Im[i]),
DAON−DoM(Im[1 : n]) and DG−DoM(Im[1 : n]) can be written uniformly:

DSB−DoM(Im[i]) ≃ DAON−DoM(Im[1 : n]) ≃ DG−DoM(Im[1 : n])

= Ê{xq|φ̂(tq,k)∈Ω1
} − Ê{xq|φ̂(tq,k)∈Ω0

} =
∑Q

q|φ̂(tq,k)∈Ω1
xq∑Q

q|φ̂(tq,k)∈Ω1
1
−
∑Q

q|φ̂(tq,k)∈Ω0
xq∑Q

q|φ̂(tq,k)∈Ω0
1
.

(3)
Taking Hamming weight leakage function and i = n (i.e., the least significant
bit) as an example, the range R(φ̂) = {0, 1, · · · , n}. The partition is typically
chosen as: ΩSB−DoM = {{φ̂|Im%2 = 0}, {φ̂|Im%2 = 1}}, ΩAON−DoM =
{0, n}, ΩG−DoM = {{0, · · · , ⌊n2 ⌋}, {⌈

n
2 ⌉, · · · , n}}. Referring to the central-limit

theorem, it is not hard to find that if SNR of the leakage x is decreased to 1/β,
Q has to be multiplied by β for DoM to achieve the same performance.

2.4 Correlation Power Analysis and Partition Power Analysis

Abbreviated as CPA, correlation power analysis is a popular side-channel dis-
tinguisher identifying k∗ by assessing the linear fitting rate between the model
and measurements. It implicitly extends the binary classification of DoM to a
multiple one by incorporating the well-known Pearson’s correlation coefficient:

DCPA(Im[1 : n]) = argmax
k∈K

ρ(xq=1,...,Q, φ̂(k, tq=1,...,Q))

= argmax
k∈K

Ê{xq × φ̂(tq, k)} − Ê{xq} × Ê{φ̂(tq, k)}√
D̂{xq} ×

√
D̂{φ̂(tq, k)}

.
(4)

This notion of multi-classification was latter explicitly formalized in [22] by in-
troducing the partition power analysis (abbreviated as PPA):

DPPA(Im[1 : n]) = argmax
k∈K

m∑
i

αi × Ê{xq|φ̂(tq,k)∈Ωi
}

= argmax
k∈K

m∑
i

αi ×

∑Q

q|φ̂(tq,k)∈Ωi
xq∑Q

q|φ̂(tq,k)∈Ωi
1
,

(5)

where m ≥ 2 denotes the number of partitions and ΩPPA = {Ω0, Ω1, · · · , Ωm}.
Coefficients αi’s are real constants to be determined. Once again taking Ham-
ming weight leakage function as an example, the parameters above can be chosen
as (see Equ.(7) in [22]): ΩPPA = {0, 1, · · · , n}, αi =

Ci
n

2n × (i−
∑n

j=0
Cj

n

2n × j). It
is further argued in [10] that CPA and PPA are asymptotically equivalent.

2.5 Bayes Attack and Summing DoM

Adopting the maximum likelihood method, Bayes attack calculates a probability
density function with k serving as the parameter to be estimated. It is regarded as
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optimal in general whenever a-priori knowledge about the leakage is available [7,
8,19]. Given measurement set, selecting the most likely subkey candidate can be
expressed by the following conditional probability:

DBayes(Im[1 : n]) = argmax
k∈K

Q∏
q=1

P{k|xq} = argmax
k∈K

Q∏
q=1

P{xq|k}. (6)

The proof is given in [34] by stripping off the key-independent terms from the
Bayes formula. At last, the idea of summing distinguishers to define a new one
has been proposed in [4] where the authors performed the SB-DoM for each bit
of Im and then summed the results. We denote this attack as M-DoM and it is
straightforwardly defined as:

DM−DoM(Im[1 : n]) = argmax
k∈K

n∑
i=1

DSB−DoM(Im[i]). (7)

Contrary to the other DoM-s, M-DoM implicitly applies a multi-classification
just like CPA, PPA and Bayes attack, which will be detailed in Subsection 3.4.

3 Geometrical Framework for Univariate DPA Attacks

In this section, we propose a framework to present an intuitive explanation of the
mathematical foundation behind univariate DPA attacks, putting understanding
of their differences and relationship to a higher degree.

3.1 Leakage Space

Geometrical system is an ideal tool for complexity reduction. Based on this, we
introduce leakage space V as a framework and intuitively unifies univariate DPA
distinguishers as maximum likelihood attack (ML-attack).

Definition 1. The leakage space V is an Euclidean space of real number whose
dimension equals to the number of measurements, i.e., V = RQ. The measure-
ment set X is represented by a random point X = (x1, x2, . . . , xQ). The mathe-
matical expectation of X is mapped to a fixed point Θ = (φ (t1, k

∗) , . . . , φ (tQ, k
∗)).

Lemma 1. Since the Gaussian noise N adding to each dimension of X is iden-
tical and mutually independent, the probability density function ϕ in V becomes:

ϕ (X ) =
(

1√
2π × σN

)Q

× exp

(
− 1

2× σ2
N

×
∑Q

q=1 (xq − φ (tq, k
∗))

2

)
=

(
1√

2π × σN

)Q

× exp

(
− r2

2× σ2
N

)
,

(8)

which turns out to be a univariate function of the L2 norm r = ||X⃗ − Θ⃗||.



8 J. Long, C. Wang, C. Ou et al.

Let D(A,B) denote some kind of distance metric between A and B in V. The pro-
cedure of univariate DPA attacks is intuitive: To achieve the goal of key recovery,
the adversary samples an instance X̂ . By Lemma 1 and Chebyshev’s inequality,
he knows that X̂ isotropically centers around its expectation Θ and won’t be too
far from it (i.e., D(X̂ , Θ) is short). Specifically, ∀1 ≤ q ≤ Q,P{|xq−φ (tq, k

∗) | ≥
c} ≤ (σN

c )2. Hence, the adversary then gets an estimation of Θ with his pro-
filed model φ̂ as ξ (k) = (φ̂ (t1, k) , . . . , φ̂ (tQ, k)) whose confidence level naturally
relates to the distance metric D(X̂ , ξ (k)). In the following, we will show that
such metric in the DoM family, CPA, PPA and Bayes attack amount to vector
projection, vector cosine, vector projection and Euclidean distance respectively.
Anyhow, the behavior of seeking the closest distance argmink∈KD(X̂ , ξ (k)) un-
ambiguously suggests that all univariate DPA attacks are ML-attack. In the rest
of paper, descriptions of target (e.g., Im[i]) will be omitted when not necessary.

3.2 Bayes attack

In leakage space V, Bayes distinguisher measures the distance metric:

DBayes(X , ξ (k)) =
Q∏

q=1

P{xq|k} =
Q∏

q=1

fσ̂2
N
(xq − φ̂(tq, k)) = ||X⃗ − ξ⃗ (k) ||2. (9)

Here fσ̂2
N

is the Gaussian density function with a zero mean and estimated
standard deviation σ̂N .

Lemma 2. Bayes distinguisher is a ML-attack selecting candidates according to
the Euclidean distance geometrical metric. Candidate k that corresponds to the
minimum distance ||X⃗ − ξ⃗ (k) || will be regarded as the secret subkey.

From the adversary’s aspect, X mostly takes a random walk in neighborhood
U (ξ (k∗)). The probability that X happens to reach and be observed in another
neighborhood U (ξ (k◦)), and thereafter is closer to ξ (k◦), is relatively low. Re-
garded as “optimal”, Bayes distinguisher captures the nature of X (i.e., the L2
norm in Lemma 1). We provide Fig. 1 for illustration which leaves us an intuitive
impression of what the effectiveness of Bayes attack rests with and how. Specifi-
cally, the overlapped parts between neighborhoods confuse and mislead the dis-
tinguisher. Factors affecting this overlapped space are the size of neighborhood
determined by variance of the electronic noise (i.e., σ2

N ) and the Euclidean dis-
tance between neighborhood centers ||ξ⃗ (k∗)− ξ⃗ (k◦) ||. For the latter, confusion
coefficient on (k∗, k◦), also illustrated in Fig. 1, quantifies its extent (averaged
to one dimension): κ̂ (k∗, k◦) = E{(φ̂|k∗ − φ̂|k◦)2} = E{ ||ξ⃗(k

∗)−ξ⃗(k◦)||2
Q }.



One for All, All for One 9

Fig. 1: A sketch map of Bayes metrics.

3.3 CPA and PPA

Let a = ||X⃗ ||1
||X⃗ ||2

and b(k) = ||ξ⃗(k)||1
||ξ⃗(k)||2

, Pearson’s correlation coefficient presents a
linear relation with Salton’s cosine measure (i.e., see Equ.(13) in [14]):

DCPA(X , ξ (k)) = ρ(xq=1,...,Q, φ̂(k, tq=1,...,Q))

=
Q√

Q− a2 ×
√
Q− b2(k)

× (cos < X⃗ , ξ⃗ (k) > −a× b(k)
Q

).
(10)

Due to the closure property of G, the leakage model φ|k maintains the same
distribution over plaintext byte for any k ∈ K, i.e., E{φ|k∗} = E{φ|k ∈ K̄},
D{φ|k∗} = D{φ|k ∈ K̄}. Thus, we ignore the subtle statistical differences be-
tween sample moments, from which no information can be extracted, and sim-
plify CPA distinguisher as:

DCPA(X , ξ (k)) = cos < X⃗ , ξ⃗ (k) > . (11)

Lemma 3. CPA distinguisher is a ML-attack selecting candidates according to
the vector cosine geometrical metric. Candidate k that corresponds to the maxi-
mum cosine cos < X⃗ , ξ⃗ (k) > will be regarded as the secret subkey.

Owing to the relationship with CPA, the distance metric in PPA is easily derived
and simplified in the same way (i.e., by getting rid of the effect of the sample
moments in correlation coefficient):

DPPA(X , ξ (k)) = Ê{xq × φ̂(tq, k)} = ℧ < X⃗ , ξ⃗ (k) >, (12)

where ℧ < X⃗ , ξ⃗ (k) > denotes the vector projection of ξ⃗ (k) on X⃗ .
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Lemma 4. PPA distinguisher is a ML-attack selecting candidates according to
the vector projection geometrical metric. Candidate k that corresponds to the
maximum projection ℧ < X⃗ , ξ⃗ (k) > will be regarded as the secret subkey.

3.4 DoM and Summing DoM

Inspired from [25], we rewrite Equ.(3) and re-express DoM as follows:

DSB−DoM(Im[i]) ≃ DAON−DoM(Im[1 : n]) ≃ DG−DoM(Im[1 : n]) =∑Q
q=1 xq × Sgnx(|

∏
λ∈Ω0

(φ̂(tq, k)− λ) |)∑Q
q=1 Sgnx(|

∏
λ∈Ω0

(φ̂(tq, k)− λ)|)
−
∑Q

q=1 xq × Sgnx(|
∏

λ∈Ω1
(φ̂(tq, k)− λ) |)∑Q

q=1 Sgnx(|
∏

λ∈Ω1
(φ̂(tq, k)− λ)|)

.

(13)
The step function Sgnx(.) is defined as:

Sgnx(y) =


0, if y ≤ 0

1, else
(14)

Due to the diffusion property of cryptographic algorithm, each bit in the ci-
phertext approaches purely random [16]. As a consequence, the number of mea-
surements in each category of the binary classification is close and tends to
be the same as Q increases. Ignoring the trivial discrepancies and let ψ̂ (tq, k) =
Sgnx(|

∏
λ∈Ω0

(φ̂(tq, k)−λ)|)−Sgnx(|
∏

λ∈Ω1
(φ̂(tq, k)−λ)|) be the profiled model

of the three discussed DoM-s, we withdraw vector ϵ⃗ (k) = (ψ̂ (t1, k) , · · · , ψ̂ (tQ, k))
from Equ.(13) to have the distance metric:

DSB−DoM(X , ξ (k)) ≃ DAON−DoM(X , ξ (k)) ≃ DG−DoM(X , ξ (k)) = ℧ < X⃗ , ϵ⃗ (k) > .
(15)

Apparently, ψ̂ takes integers ±1 for SB-DoM and G-DoM which corresponds
to their non-overlapping binary partition. In contrast, AON-DoM divides R(φ̂)
into three partitions (i.e., the maximum value, the minimum value and the rest).
Those medium values contribute no measurements to the difference-of-means
test so their corresponding outputs of the step function remain 0 all the time.
In this case, ψ̂ takes integers within {−1, 0, 1}. For convenience, in this paper
we only use the maximum and minimum values to represent the partition of
AON-DoM. At last, the distance metric of the summing distinguisher M-DoM
is easily obtained by extending Equ.(13) to multiple bits:

DM−DoM(X , ξ (k)) = ℧ < X⃗ , ϵ⃗′ (k) > . (16)

Here ϵ⃗′ (k) = (ψ̂′ (t1, k) , · · · , ψ̂′ (tQ, k)) and ψ̂
′
(tq, k) =

∑
Im[i] ψ̂ (tq, k) is the

profiled model of M-DoM which is the simple sum of mono-bit models of SB-
DoM. The model ψ̂

′
takes integers within [−n, n] because of the positive and

negative interference of the same leakage sample for different bits of Im, indi-
cating that M-DoM in itself classifies the leakages into at most 2n+1 categories.
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Lemma 5. DoM is ML-attack selecting candidates according to the vector pro-
jection geometrical metric. Candidate k that corresponds to the maximum pro-
jection ℧ < X⃗ , ϵ⃗ (k) > ( ℧ < X⃗ , ϵ⃗′ (k) >) will be regarded as the secret subkey.

For CPA, PPA and Bayes attack, large cosine or small distance leads to large
projection, agreeing with their close performance in practice. We offer Fig. 2
as a summary. By contrast, the DoM family shares a same projection metric.
From these perspectives, the DoM family is in essence equivalent to the others
except for replacing the concrete model values in ξ (k) by some integers. In other
words, the DoM-s additionally map ξ (k) to a simplified counterpart ϵ (k) (ϵ

′
(k))

through the step function Sgnx. In the next subsection, we will experimentally
verify the similar behaviors of the three distance metrics on real leakages and
elaborate how to partition the range of leakage model φ̂ to determine the profiled
model of the DoM family (i.e., ψ̂ and ψ̂′) straightforwardly.

Fig. 2: The three distance metrics in univariate DPA attack.

3.5 Univariate DPA Attacks against Software Implementation

We sampled real leakages from a PRESENT algorithm implemented on an AT-
Mega328p micro-controller whose clock frequency is 16 MHz. We applied a Wa-
veRunner 8104 oscilloscope with a sampling rate of 1 GS/s. As a preliminary,
we performed the HW ρ-test [11] to select the time sample named Point-Of-
Interest (POI) which is illustrated in Fig. 3. It corresponds to the first S-box
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(F4
2 → F4

2) of the first round encryption. The adversary was assumed to have
16 × m measurements for model profiling and estimate the leakage model as
φ̂(y) = Ê{xq|Sbox(k⊕tq)=y} which had been argued in [24,29] that maximized the
attack efficiency. In the experiments, we controlled model errors by adjusting m.

In our first experiment, we set m to 1, 5 and 10000 consecutively to examine
whether CPA, PPA and Bayes attack always approach each other (i.e., this prop-
erty of distance metrics is independent of the leakage model). For convenience,
we list the values of model φ̂ in Table 1 by the order of intermediate variable
Im =Sbox(t⊕k∗) to exhibit some possible rule of the power consumption. As we
can see, the leakages in overall decrease with the Hamming weight of Im which
accords with the negative spike of the selected POI. Experimental results are
displayed in Fig.4. The cosine, projection and Euclidean distance metric show
very similar performance even if the profiled model of adversary becomes terrible
(e.g., for m = 1 the profiled model losses its proper prediction of the real leakages
and the distorted success rates decrease with the number of measurements Q).
Capturing the behaviors by a unified expression is well founded.

In our second experiment, we first partition the range of leakage model φ̂
by looking at Table 1 to obtain the profiled model ψ̂ (ψ̂′) of the DoM family.
We take the fewest profiling measurement case (i.e., largest model errors) as the
example (i.e., m = 1 the first row of Table 1) and list the partition results in
Table 2,3. For SB-DoM, the target is chosen as the least significant bit so we just
have to partition φ̂ in terms of odd and even number of Im and then compare
the averaged model values. Those corresponding to the smaller mean will all be
mapped to −1 while the rest are left to +1. For AON-DoM and G-DoM, we
sort the model values. AON-DoM only cares about the maximum and minimum
values which are the two partitions and mapped to integers ±1. The others
are set to 0. By contrast, G-DoM splits the sorted model values in half from
the middle. All the eight maximum values are mapped to +1 whereas all the
eight minimum values are mapped to −1. The model of the multi-classification
M-DoM is the sum of SB-DoM’s binary model values on every bit of Im.

Then, we apply the DoM-s to the same measurement set as our first exper-
iment and the results are given in Fig.5. To better understanding the relation-
ship of univariate DPA distinguishers and in view of the popularity of CPA, we
conduct the DoM-s in two ways: (i) The original way of performing difference-of-
means where leakages are classified based on the partitions of Table 2 (M-DoM
is instantiated with 4 SB-DoM-s). (ii) Calculating Pearson’s correlation coeffi-
cient using model ψ̂ (ψ̂′) in Table 3. The latter is marked with superscript “†” in
the figure. As shown, the two schemes achieve almost the same performance in
all cases, backing up our reasoning that the DoM family is essentially identical
to CPA, PPA and Bayes attack except for replacing the concrete model values
by some integers. It’s also worth noting that M-DoM seem more robust in the
experiment because only one of the four SB-DoM’s profiled models goes wrong.



One for All, All for One 13

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

POI
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controller.
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Table 1: Leakage models (10−2) on different number of profiling measurements.

m

φ̂ Im
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.68 1.73 1.55 1.73 1.59 1.73 1.55 1.64 1.68 1.55 1.55 1.55 1.46 1.37 1.55 1.51
5 1.66 1.67 1.57 1.56 1.64 1.59 1.57 1.54 1.55 1.55 1.58 1.59 1.52 1.51 1.59 1.45

10000 1.63 1.63 1.59 1.54 1.61 1.57 1.56 1.51 1.51 1.56 1.59 1.54 1.57 1.56 1.55 1.48

Table 2: Partitions of R(φ̂) under m = 1.
Ω

SB-DoM {{1.68,1.55,1.59,1.55,1.68,1.55,1.46,1.55},
{1.73,1.73,1.73,1.64,1.55,1.55,1.37,1.51}}

AON-DoM {{1.37},{1.73}}

G-DoM {{1.37,1.46,1.51,1.55,1.55,1.55,1.55,1.55},
{1.55,1.59,1.64,1.68,1.68,1.73,1.73,1.73}}

M-DoM {{1.55},{1.55,1.55,1.46,1.51},{1.55,1.59,1.64,1.68,1.55,1.37},
{1.68,1.73,1.73,1.55},{1.73}}

Table 3: Leakage models (10−2) of the DoM family under m = 1.

DoM

ψ̂(ψ̂′) Im

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SB-DoM -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
AON-DoM 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0

G-DoM 1 1 -1 1 1 1 -1 1 1 -1 -1 -1 -1 -1 1 -1
M-DoM 2 4 0 2 0 2 -2 0 0 2 -2 0 -2 0 -4 -2

4 Geometrical Evaluation of Univariate DPA Attacks

In the last section, we concluded that univariate DPA attacks boiled down to ML-
attack. In this section, we reveal the linear aspect of them and derive a theoretical
expression of success rate. For presentation purpose, we use the notation Ψ̂ (t, k)

that equals to φ̂ (t, k) for CPA, PPA and Bayes attack, ψ̂ (t, k) for SB-DoM,
AON-DoM and G-DoM, and ψ̂′ (t, k) for M-DoM. Then, vectors ξ⃗ (k), ϵ⃗ (k) and

ϵ⃗′ (k) can all be represented by ⃗̂
Ψ (k).

4.1 Success Boundary

Recalling the analysis in Section 3, a natural next step is to identify a subspace
W ⊆ V that fulfills ∀X ∈ W, k∗ = argmink∈KD(X , Ψ̂ (k)) and hence gives
rise to success of univariate DPA attack. We refer to it as “success space”. In
the following, we first consider the simplest case involving only a candidate pair
(k∗, k◦). By Lemmas 2,3,4,5, when the distinguisher can not tell which candidate
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is more likely to be the secret subkey, we have:

DBayes : ||X⃗ − ξ⃗ (k◦) || = ||X⃗ − ξ⃗ (k∗) ||

DCPA : cos < X⃗ , ξ⃗ (k◦) >= cos < X⃗ , ξ⃗ (k∗) >

DPPA : ℧ < X⃗ , ξ⃗ (k◦) >= ℧ < X⃗ , ξ⃗ (k∗) >

DSB−DoM ≃ DAON−DoM ≃ DG−DoM : ℧ < X⃗ , ϵ⃗ (k◦) >= ℧ < X⃗ , ϵ⃗ (k∗) >

DM−DoM : ℧ < X⃗ , ϵ⃗′ (k◦) >= ℧ < X⃗ , ϵ⃗′ (k∗) >

(17)

The general formulas of above equations are:

DBayes :
(
ξ⃗ (k◦)− ξ⃗ (k∗)

)
X⃗ − 1

2

(
||ξ⃗ (k◦) ||2 − ||ξ⃗ (k∗) ||2

)
= 0

DCPA :
(
ξ⃗ (k◦) /||ξ⃗ (k◦) || − ξ⃗ (k∗) /||ξ⃗ (k∗) ||

)
X⃗ = 0

DPPA :
(
ξ⃗ (k◦)− ξ⃗ (k∗)

)
X⃗ = 0

DSB−DoM ≃ DAON−DoM ≃ DG−DoM : (⃗ϵ (k◦)− ϵ⃗ (k∗)) X⃗ = 0

DM−DoM :
(
ϵ⃗′ (k◦)− ϵ⃗′ (k∗)

)
X⃗ = 0.

(18)
It turns out that for all univariate DPA distinguishers there is a hyperplane
H (k◦, k∗), whose expressions are given in Equ.(18), that linearly divides V into
two parts. We refer to it as “success boundary” and the corresponding normal
vector is denoted as η⃗(k◦, k∗). Such linear property of univariate DPA attacks
makes it easy to recognize the success space W(k◦, k∗) we are looking for since
Ψ̂ (k∗) ∈ W(k◦, k∗). A sketch map is offered in Fig. 6 for illustration. Specifi-
cally, let △ Ψ̂ (k∗)OΨ̂ (k◦) denote the triangle in the figure with O the origin of
V. Combined with the geometric meanings of DPA distinguishers, one can im-
mediately realize that for Euclidean distance metric the success boundary is the
perpendicular bisecting plane of the side Ψ̂ (k∗) Ψ̂ (k◦), for cosine distance metric
it becomes the angular bisecting plane of the angle < Ψ̂ (k∗)OΨ̂ (k◦), and for
projection distance metric it turns to the height plane of the side Ψ̂ (k∗) Ψ̂ (k◦).
Based on these, the statistically close performance of univariate DPA distinguish-
ers can be naturally backed up by the fact that when the triangle approaches an
isosceles one, its three lines are rapidly in one. Approximating the performance
with a unified expression seems well founded. Owing to the arbitrariness of k◦,
it directly leads to the following theorem for the entire candidate set K:

Theorem 1. The success boundary on set K is the union of hyperplanes: Bnd =⋃
k∈K̄H (k, k∗). The success space is the intersection: W =

⋂
k∈K̄W (k, k∗) .

Theorem 1 directly contributes a refined definition of the success rate whose
calculation takes the intuitive form of space integral.

Definition 2. In leakage space V, the success rate of univariate DPA attacks is
the probability of X staying in the success space W without crossing the success
boundary Bnd, i.e, SR = P{X ∈ W}.
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Fig. 6: A sketch map of success boundary and success space.

4.2 Success Rate on Candidate Pair (k∗, k◦)

So far, the interaction of the profiled model φ̂ with the true leakage distribution
φ is now explicitly decoupled in terms of SR: the former determines the shape
of the success spaceW (i.e., Equ.(18)) whereas the latter accounts for its proba-
bility density (i.e., Equ.(8)). In this subsection, we derive the success rate under
candidate pair (k∗, k◦). As disscussed, univariate DPA attacks potentially incor-
porate the same metric to distinguish the secret subkey. Capturing this feature,
we offer a unified expression of SR and further figure out what it depends on
and how. Without loss of generality, we launch a normalization and exploit the
following three extensions of confusion coefficient:

κ(ki, kj) = E{(φ|ki − µ
σE

− φ|kj − µ
σE

)2},

κ̂(ki, kj) = E{( Ψ̂ |ki − µ̂
σ̂E

− Ψ̂ |kj − µ̂
σ̂E

)2},

κ̃(ki, kj) = E{( Ψ̂ |ki − µ̂
σ̂E

− φ|kj − µ
σE

)2}.

(19)

Here Ψ is the counterpart for the true leakage distribution φ. The notations µ (µ̂)
and σE (σ̂E) represent the corresponding mean and standard deviation.

Theorem 2. The SR on candidate pair (k∗, k◦) takes the unified expression:

SR(k◦, k∗) = 0.5 +
1

2
erf

(
κ̃(k∗, k◦)− κ̃(k∗, k∗)√
κ̂(k∗, k◦)× κ(k∗, k◦)

×
√

1

8
× SNR×Q× κ (k∗, k◦)

)
.

(20)
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The error function is defined as: erf(x) = 2√
π
×
∫ x

−∞ e−t2/2dt.

Remark. In view of representativeness, this expression is derived based on the
projection metric but can be valid for any other distance metrics because of the
statistically close performance which have been verified in Subsection 3.5
Proof. The success boundary Bnd in this case is a hyperplane: H(k◦;x) =(
⃗̂
Ψ (k◦)− ⃗̂

Ψ (k∗)
)
x. Having the fact that Ψ̂ (k∗) ∈ W(k◦, k∗), we now check out

whether Θ is at the same side of the success boundary:

H(k◦; Ψ̂ (k∗)) =
(
⃗̂
Ψ (k◦)− ⃗̂

Ψ (k∗)
)
⃗̂
Ψ (k∗) = Q× σ2

E ×
(
− κ̂(k

∗, k◦)

2

)
≤ 0

H(k◦;Θ) =
(
⃗̂
Ψ (k◦)− ⃗̂

Ψ (k∗)
)
Θ⃗ = Q× σ̂E × σE ×

(
−κ̃(k∗, k◦) + κ̃(k∗, k∗)

2

)
.

(21)

For generality, we do not make any assumptions on the profiled function φ̂ so
that it can be arbitrarily wrong. Therefore, the sign of H(k◦;Θ) is uncertain
but it appears that Θ ∈ W(k◦, k∗) if and only if H(k◦;Θ) ≤ 0. To obtain the
success rate P{X ∈ W(k◦, k∗)} = P{X∈W(k◦,k∗)}

P{X∈V} , we first consider a straight line

γ perpendicular to Bnd and address the subproblem P{X∈γ̄}
P{X∈γ} with γ̄ represents

the part in failure space. Let θ = ||γ −Θ|| and L = ||Θ −Bnd||, then we have:

L =
|H(k◦;Θ)|

|| ⃗̂Ψ (k◦)− ⃗̂
Ψ (k∗) ||

=
σE ×

√
Q√

κ̂(k∗, k◦)
∗ | − κ̃(k∗, k◦)

2
+
κ̃(k∗, k∗)

2
|. (22)

The operator | · | denotes getting absolute value. According to Equ.(8) and as-
suming Θ ∈ W(k◦, k∗), we can get:

P{X ∈ γ̄}
P{X ∈ γ}

=

∫ +∞
L

ϕ
(√
r2 + θ2

)
dr∫ +∞

−∞ ϕ
(√
r2 + θ2

)
dr
. (23)

It is noteworthy that:

ϕ
(√

r2 + θ2
)
=

(
1√

2π × σN

)Q

exp

(
−r

2 + θ2

2× σ2
N

)
= ℏ (θ) · ϕ (r) (24)

where ℏ (θ) = exp
(
− θ2

2σ2
N

)
. Based on this, we further acquire:

P{X ∈ γ̄}
P{X ∈ γ}

=

∫ +∞
L

ϕ (r) dr∫ +∞
−∞ ϕ (r) dr

= 1− ΦσN
(L) = 1− ΦσN

(
−H(k◦;Θ)

|| ⃗̂Ψ (k◦)− ⃗̂
Ψ (k∗) ||

)
,

(25)
which is found independent of θ. For the other case H(k◦;Θ)) > 0, we have:

P{X ∈ γ̄}
P{X ∈ γ}

=

∫ +∞
−L

ϕ (r) dr∫ +∞
−∞ ϕ (r) dr

= 1− ΦσN
(−L) = 1− ΦσN

(
−H(k◦;Θ)

|| ⃗̂Ψ (k◦)− ⃗̂
Ψ (k∗) ||

)
.

(26)
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Interestingly, above results are completely the same. Hence, we do not distinguish
them afterward. In a word, the normal vector η⃗(k◦, k∗) spans a one-dimensional
straight line, but together with the hyperplane H (k◦, k∗) itself, which is essen-
tially a subspace of Q− 1 dimensions, span the whole leakage space V. At last,
the success rate on candidate pair (k∗, k◦) is:

SR(k◦, k∗) =
P{X ∈ W(k◦, k∗)}

P{X ∈ V}
= 1− P{X ∈ γ̄}

P{X ∈ γ}

= 0.5 +
1

2
erf

(
κ̃(k∗, k◦)− κ̃(k∗, k∗)√
κ̂(k∗, k◦)× κ(k∗, k◦)

×
√

1

8
× SNR×Q× κ (k∗, k◦)

)
,

(27)
where SNR = σ2

E/σ
2
N . The equation brings us significant conclusions:

(1) It verifies the prior deduction in Subsection 3.2 that SR is determined by the
overlapped space of the two neighbourhoods. Factors involved are the size
of each neighbourhood which is reflected by σ2

N and the Euclidean distance
between their centers ||Ψ̂ (k∗)− Ψ̂ (k◦) || =

√
Q× σ2

E × κ (k∗, k◦).
(2) SR(k◦) ≥ 0.5. Conducting a univariate DPA attack is always better than

a random guess (whose success rate is exactly 0.5) even for small SNR and in-

adequateQ. The term 1
2
erf

(
κ̃(k∗,k◦)−κ̃(k∗,k∗)√
κ̂(k∗,k◦)×κ(k∗,k◦)

×
√

1
8
× SNR×Q× κ (k∗, k◦)

)
is the gain of effectiveness.

(3) The upper bound approximation in [20, 40] may become inaccurate for low
SNR. This method was designed to squeeze the success rate on set K with
success rate on certain pair (k∗, k). Using our notations, it is expressed as:

SR(K) ≤ min
k∈K̄

SR(k, k∗). (28)

By the second conclusion, this upper bound is always greater than 0.5 which
may disagree with the fact that SR in practice can be much more lower.

Corollary 1. If the adversary exploits the perfect leakage model (i.e., Ψ̂ = Ψ =
φ), then κ̃(k∗, k∗) = 0 and κ(k∗, k◦) = κ̂(k∗, k◦) = κ̃(k∗, k◦). The success rate
on candidate pair (k∗, k◦) becomes:

SR(k◦, k∗) = 0.5 +
1

2
erf

(√
1

8
× SNR×Q× κ (k∗, k◦)

)
. (29)

Model errors are damaging that decay SR. Comparing Equ.(29) with (20) gives
rise to the following criteria judging robustness of SR(k◦, k∗):

Corollary 2. Let C(k◦) = κ̃(k∗,k◦)−κ̃(k∗,k∗)√
κ̂(k∗,k◦)×κ(k∗,k◦)

whose value serves as the criteria:

(1) C(k◦) ≤ 0. The success rate SR(k◦, k∗) will be distorted by model errors and
turn to a monotonously decreasing function of the number of measurements Q.
(2) C(k◦) > 0. Applying a profiled model is equivalent to applying the perfect
one but reducing SNR by factor C2(k◦).
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4.3 Success Rate on Candidate Set K

Now we extend the success rate of univariate DPA attack to the whole can-
didate set K. By Theorem 1, the success boundary in this case is made up of
|K| − 1 hyperplanes: Bnd = ∪k∈K̄H (k, k∗). Recalling Equ.(21) and the fact
that Ψ̂ (k∗) ∈ W, the condition X ∈ W will be satisfied if we restrict X by a
constraint set

{
H(k[1];X ) ≤ 0, · · · , H(k[S];X ) ≤ 0

}
which states that it cannot

cross any hyperplane and must stay at the same side with Ψ̂ (k∗).

Lemma 6. The success rate of univariate DPA attack on set K is expressed as:

SR(K) = P
{
H(k[1];X ) ≤ 0, · · · , H(k[S];X ) ≤ 0

}
. (30)

Significantly, for each constraint H(k;X ) ≤ 0, it corresponds to the case of
candidate pair (k∗, k) analysed in Subsection 4.2 which takes a Gaussian form
of expression. As a result, one can infer that the whole constraint set fol-
lows a multivariate Gaussian distribution with a 1 × S mean vector as µH =
{H(k[1];Θ), . . . ,H(k[S];Θ)}. A Gaussian distribution is totally determined by
its first two moments and to obtain the covariance matrix ΣH , we first reveal
the more complicated confusion relationship among three subkey candidates in
an intuitive way: randomly selecting two of the hyperplanes from Bnd denoted
as H(k[i], k∗) and H(k[j], k∗), we plot them with solid lines in Fig. 7. The inter-
section of the hyperplanes can be measured by cosine of the included angle δ
that is easily calculated through their normal vectors (plotted in dotted lines):

κ̂(k∗, k[i], k[j]) =
η⃗(k[i], k∗) · η⃗(k[j], k∗)

||η⃗(k[i], k∗)|| × ||η⃗(k[j], k∗)||
=

1
2
(κ̂(k∗, k[i]) + κ̂(k∗, k[j])− κ̂(k[i], k[j]))√

κ̂(k∗, k[i])× κ̂(k∗, k[j])
.

(31)
To successfully identify k∗, X has to stay in W(k[i], k[j], k∗) = W

(
k[i], k∗

)
∩

W
(
k[j], k∗

)
as shown by the shadow in Fig 7. A smaller δ implies a broader

success space and a weaker confusion property. On these grounds, the (i, j)
element of the S × S covariance matrix ΣH becomes:

(ΣH)ij = Cov
(
H(k[i];X ), H(k[j];X )

)
= Cov

(
η⃗(k[i], k∗) · X⃗ , η⃗(k[j], k∗) · X⃗

)
= η⃗(k[i], k∗) · η⃗(k[j], k∗)× Cov

(∑Q
q1=1xq1 ,

∑Q
q2=1xq2

)
=

1

2
(κ̂(k∗, k[i]) + κ̂(k∗, k[j])− κ̂(k[i], k[j]))×Q× σ̂2

E × σ2
N .

(32)
Inheriting the independence between encryptions, measurements (xq1 , xq2) have
a nonzero covariance if and only if q1 = q2. In the end, let ΦS

ΣH
denote the cumu-

lative distribution function of the S-dimension normal distribution N (µH , ΣH),
and we obtain the following theorem:

Theorem 3. The SR on candidate set K takes the unified expression:

SR(K) = ΦS
ΣH

(µH) = ΦS
K(

√
Q× SNR

2
× k). (33)
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Fig. 7: A sketch map of hyperplane angle δ.

The 1× S mean vector k = {κ̃(k∗, k[1])− κ̃(k∗, k∗), . . . , κ̃(k∗, k[S])− κ̃(k∗, k∗)}.
The S × S covariance matric Kij =

1
2 (κ̂(k

∗, k[i]) + κ̂(k∗, k[j])− κ̂(k[i], k[j])).
Due to the normalization, the confusion coefficients capture the model errors and
decouple them from the physical property of implementation (i.e., the SNR of
real leakages). They describe the cryptographical features from the perspective
of an adversary with given abilities. This theorem shows new observations:

(1) It covers our deduction for DoM in Subsection 2.3 that if the SNR is de-
creased to 1/β, the number of measurements Q has to be multiplied by β to
achieve the same SR. This is the well-known “Rule of Thumb” [23] and we
now have proved that it is suitable even for inaccurate profiled models.

(2) The models of adversary and device are not commutative. Keeping other
parameters, exchanging the two models will cause differences in SR because
of different covariance matrix K.

Corollary 3. If the adversary exploits the perfect leakage model (i.e., Ψ̂ = Ψ =
φ), then success rate of univariate DPA attacks on set K becomes:

SR(K) = ΦS
K′ (

√
Q× SNR

2
× k

′
). (34)

The 1× S mean vector k
′
= {κ(k∗, k[1]), . . . , κ(k∗, k[S])}. The S × S covariance

matric K
′

ij =
1
2 (κ(k

∗, k[i]) + κ(k∗, k[j])− κ(k[i], k[j])).

The success rate on candidate pair SR(k∗, k[i]) can be seen as the i-th dimen-
sion of the multidimensional Gaussian distributed SR(K). As a result, we extend
Corollary 2 to obtain the sufficient (not necessary) criterion which judges robust-
ness of SR(K) by examining each of its dimensions:
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Corollary 4. The SR(K) of univariate DPA attack will be robust (i.e., not be
distorted by model errors and increase with the number of measurements) if it
satisfies: ∀k ∈ K̄, C(k) = κ̃(k∗,k)−κ̃(k∗,k∗)√

κ̂(k∗,k)×κ(k∗,k)
> 0. The larger the overall criterion

values are, the stronger performance univariate DPA attack achieves.

It confirms that in the perfect model setting, CPA, PPA and Bayes attack (∀k ∈
K̄, C(k) = 1) will always outperform the DoM family (∀k ∈ K̄, C(k) ≤ 1).

5 Experimental Results

The experiments bases on an open data set of hardware implementation (i.e.,
TeSCASE [1]). It contains measurements sampled from an AES on Sasebo-GII
board and the source code can be found in [2]. We additionally consider another
popular model profiling method besides the one mentioned in Subsection 3.5 that
estimates the leakage function as φ̂(y) = Ê{xq|Sbox(k⊕tq)=y} (which is denoted
as Mean-Based (MB) model). The new method is called Regression-Based (RB)
model [32]. It builds leakage function on a binary basis g(y) = {g1(y), · · · ,gB(y)}
whose size is not necessarily the bit length of y. A small basis will converge faster
but a more complex model can gain more accuracy. Profiling the model turns
into estimating the coefficients ci such that φ̂(y) =

∑
jcjgj(y) is the least-square

approximation of the leakages. It has been proven to be optimal when the noise
is Gaussian [5]. In the experiment, we target at the first S-box of the last round
encryption and simply set the binary basis of the RB model as the XOR of Sbox
input and output. This introduces extra assumption errors [12] [13] for RB model
even after intensive profiling. The corresponding POI is displayed in Fig. 8. We
control model errors by restricting profiling measurements (i.e., 100, 000×m).

5.1 CPA, PPA and Bayes Attack against Hardware Implementation

Experimental results of 7 different settings and the corresponding criterion values
are illustrated in Fig.9∼10. For MB model on the full profiling measurement set
(i.e, m=1), theoretical SR-s calculated by Equ.(34) approximated the empirical
ones best and well enough. So, it was treated as the perfect model setting.
Theoretical SR-s of the others 6 settings were calculated by Equ.(33). They are
all represented by lines ‘THEO’. Criterion values C(k) are examined for every
model and subkey candidate k ∈ K̄. They are plotted in red crosses for largest
model error setting and in grey circles for the others. Our observations are:

(a) The RB method is less effective (see Fig.9). It requires 1800 measurements,
compared with 600 measurements of the MB method, to reach 95% success
rate under m = 1. This is mainly because the simple basis based only on
the S-box output bits can not accurately reflect behaviours of the chip so
there are always assumption errors which can not be eliminated even with
full profiling measurement set.
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(b) The RB method converges faster (see Fig.9). SR-s of the RB model under
m = 0.01 achieve a similar tendency as the MB model under m = 0.05.
Increasing m of the RB model to 0.015 (∆=0.005) brings significantly more
improvement of SR than increasing m of the MB model to 0.1 (∆=0.05).

(c) Success rate becomes distorted (i.e., decrease with Q) when the number of
profiling measurements is reduced to an extent (see Fig.10(a)). In this case
nearly half of the criterion values (red crosses) are found less than 0 whereas
all grey circles corresponding to robust SR-s don’t (see Fig.10(b)).

(d) Our theoretical SR-s successfully predict the behaviours of CPA, PPA and
Bayes attack from the setting of inadequate profiling measurements to suf-
ficient profiling measurements.

5.2 G-DoM and AON-DoM against Hardware Implementation

Experimental results of 5 different settings and the corresponding criterion values
are illustrated in Fig.11∼13. The DoM’s models are generated by mapping the
model values of MB and RB models to some integers according to Equ.(13) (just
as we did in Subsection 3.5). Our observations are:

(a) G-DoM is more powerful (see Fig.11(a) and Fig.12(a)). Under the MB model
and m = 1, about 1200 measurements can ensure a 95% success rate for G-
DoM while 8200 measurements are necessary for AON-DoM.

(b) G-DoM is more robust (see Fig.11(b) and Fig.12(b)). Despite the poor per-
formance, SR-s of G-DoM in the largest model error setting still follow an
upward trend. This is the opposite case for AON-DoM.

(c) Profiling method has greater impact on G-DoM (see Fig.11(a) and Fig.12(a)).
Differences between SR-s are significantly bigger for G-DoM under the two
profiling methods on full profiling measurement set. This can be explained
by the fact that AON-DoM only cares about the two extreme model val-
ues where limited differences exist for the MB and RB methods. It can also
answer why RB model converges much faster for AON-DoM (i.e., profiled
model of m = 0.02 achieves almost the same performance as that of m = 1).

(d) The criterion are sufficient but not necessary (see Fig.13). Criterion values
associated with robust SR-s in 4 settings (grey circles) stay positive as ex-
pected. However, a few negative criterion values for robust SR-s of G-DoM
in largest model error setting (i.e, Fig.11(b)) are found. These few distorted
dimensions seems did not play a decisive role in the multidimensional Gaus-
sian distributed SR so it is still upward. In contrast, half of tested criterion
values came out to be negative for AON-DoM in the same setting.

(e) Large criterion values result in strong performance. This observation verifies
the conclusion of Corollary 4. The larger criterion values of G-DoM in overall
confirms the experimental phenomenon that it outperformed AON-DoM.

(f) Our theoretical SR-s precisely predict behaviours of G-DoM in all settings.
Note that for AON-DoM the plaintext bytes corresponding to the maximum
and minimum model values may not appear all the time when Q is small. So,
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Fig. 8: The selected POI from the real leakages of the TeSCASE dataset.
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Fig. 9: Success rates of CPA, PPA and Bayes attack on the TeSCASE dataset.
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Fig. 10: Left: distorted success rates of CPA, PPA and Bayes attack on
the TeSCASE dataset. Right: Criterion values of Mean-Based models and
Regression-Based models of CPA, PPA and Bayes attack.
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its empirical performances are a bit lower than our theoretical SR-s (which
is derived in an average sense) at the beginning but soon get close to them
as Q increases. They are still desirable evaluation tools for AON-DoM.

5.3 SB-DoM and M-DoM against Hardware Implementation

Experimental results and the corresponding criterion values are illustrated in
Fig.14. Performance of SB-DoM (on the least significant bit) and M-DoM were
less than satisfactory in the experiment (i.e., success rates of 2000 measurements
are lower than 2% even with the most effective MB model on full profiling
measurement set). This is probably because the leakage model of the hardware
implemented TeSCASE data set does not strictly follow a type of model like the
Hamming weight but more likely Hamming distance. Classification based only
on a S-box output bit (the original definition of SB-DoM in [21]) will bring about
a lack of relevance (i.e, additional assumption errors). Similar phenomenon has
already been observed in [6] that several incorrect key candidates of hardware
implementation may result in higher distinguishing values and those peaks are
referred to as ghost peaks. Indeed this highlights the necessity of other DPA
distinguishers which are later improvements on this line of research. Therefore,
we did not consider other settings with even worse model. Our observations are:

(a) M-DoM is more robust (see Fig.14(a)). Success rates of SB-DoM are dis-
torted by model errors. Recalling Equ.(7), M-DoM is an improvement of
SB-DoM that simply sums its result on each bit of S-box output. This inte-
gration of more information brings gains in robustness.

(b) Criterion values of M-DoM are in blue crucifixes and of SB-DoM are red
crosses (see Fig.14(b)). Similar to G-DoM, several distorted dimensions of
SR (i.e., negative criterion values) did not defeat the robustness of M-DoM.
Yet, a third of bad criterion values skewed the overall performance of SB-
DoM on the whole candidate set. The criterion are not necessary.

(c) Our theoretical SR-s are able to maintain accuracy in the inferior setting of
univariate DPA distinguisher. They have the potential to be an affordable
evaluation tools in practice.

6 Conclusions

This paper facilitated a better understanding of univariate DPA attack. We
built an evaluation framework centered around leakage space V where different
univariate DPA distinguishers were unified as linear ML-attack. It allowed dis-
cussing their relationship in a straightforward manner. Further, we proposed the
concept of “success space” and derived the theoretical expression of SR which
can work under any (possibly inaccurate) leakage model. Eventually, the criterion
judging robustness of SR were suggested for an in-depth research of model er-
rors. We believe our theory brings a new road for evaluation of other side-channel
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Fig. 11: Success rates of G-DoM on the TeSCASE dataset.
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Fig. 14: Left: Success rates of SB-DoM and M-DoM on the TeSCASE dataset.
Right: Criterion values of Mean-Based models of SB-DoM and M-DoM.

distinguishers, e.g., collision attack [19,28] and mutual information analysis [39].
In the future, we will also extend our research to other security metrics, such as
guessing entropy, and look forward to the “surprises” brought by it.
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