
Bootstrapping for BGV and BFV Revisited

Robin Geelen and Frederik Vercauteren

imec-COSIC, ESAT, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. We unify the state-of-the-art bootstrapping algorithms for
BGV and BFV in a single framework, and show that both schemes can
be bootstrapped with identical complexity. This result corrects a claim by
Chen and Han (Eurocrypt 2018) that BFV is more efficient to bootstrap
than BGV. We also fix an error in their optimized procedure for power-
of-two cyclotomics, which occurs for some parameter sets.
Our analysis is simpler, yet more general than earlier work, in that it
simultaneously covers both BGV and BFV. Furthermore, we also design
and implement a high-level open source software library for bootstrap-
ping in the Magma Computer Algebra System. It is the first library to
support both BGV and BFV bootstrapping in full generality, with all
recent techniques (including the above fixes) and trade-offs.

Keywords: Fully homomorphic encryption · Bootstrapping · Brakerski-
Gentry-Vaikuntanathan · Brakerski-Fan-Vercauteren · Recryption.

1 Introduction

Homomorphic encryption (HE) allows an external party to perform meaningful
computations on encrypted data [39]. During that process, the external party
learns nothing at all about the content of the data. This feature is useful in a
multitude of applications, ranging from secure voting systems [12] and private
set intersection [9] to privacy-preserving machine learning [5].

Homomorphic encryption schemes achieve their goal by evaluating Boolean
or arithmetic circuits over ciphertexts, which has a corresponding effect on the
plaintexts that they encrypt. All current schemes are noise-based, i.e., each ci-
phertext contains a “noise” or “error” term that grows as the computation pro-
gresses along the evaluated circuit. Ciphertexts only decrypt correctly if the noise
is small enough such that it does not interfere with the plaintext. Therefore, when
the noise reaches its upper threshold during circuit evaluation, we need a method
to reduce it back to a lower level before continuing the actual computation. This
idea was first introduced in the influential work of Gentry [20] under the name
bootstrapping or recryption. It enables circuits of arbitrary complexity, possibly
even unknown when the scheme’s parameters are instantiated.

The idea of bootstrapping is to reduce noise by making a scheme decrypt it-
self homomorphically. If the complexity of the scheme’s decryption circuit is low
enough, then the noise term of the resulting ciphertext will be smaller than in the

2 R. Geelen and F. Vercauteren

original one. Schemes without a bootstrapping procedure are called somewhat
homomorphic encryption (SHE) schemes. Schemes augmented with a bootstrap-
ping procedure are referred to as fully homomorphic encryption (FHE) schemes.
They can evaluate arbitrary circuits by chaining arithmetic operations, and in-
serting bootstrapping in appropriate places.

In this paper, we perform a comparative study of two closely related homo-
morphic schemes known as BGV and BFV. Both can evaluate arithmetic circuits
(consisting of additions and multiplications) over a plaintext space modulo some
prime power pr ⩾ 2. These schemes are useful in applications that need exact
arithmetic, such as private information retrieval [14] and oblivious RAM [13].

1.1 Related Work

Homomorphic encryption schemes are divided in multiple generations, depend-
ing on the type of bootstrapping operation they employ. First generation schemes
include, among others, Gentry’s original idea from 2009 [20]. This type of scheme
is no longer used, because it has no advantage over newer constructions. Sec-
ond generation schemes are characterized by a slow and complex bootstrapping
procedure, but they gain a performance benefit from amortizing the recryption
procedure over parallel SIMD computations and a large number of residual mul-
tiplicative levels. Examples are BGV [7] and BFV [6,16] upon which this work is
based. Another well-known scheme is CKKS [10], which allows for approximate
computation over the complex numbers. Finally, the branch of third generation
schemes begins with the work of Gentry et al. [25] who construct a very simple
homomorphic encryption scheme based on matrix multiplication. It was noticed
later that their scheme enables a very fast and simple bootstrapping procedure,
which led to the construction of FHEW [15] and TFHE [11].

BGV bootstrapping was proposed by Gentry et al. [22] and later improved by
Alperin-Sheriff and Peikert [1]. Follow-up works focused on further optimizations
and efficient implementation: the most relevant works to this paper are the
Halevi/Shoup [30] implementation for BGV in HElib,1 and the Chen/Han [8]
implementation for BFV in SEAL.2 Halevi and Shoup support a very practical
and wide range of parameters, whereas Chen and Han have a more restricted
parameter set. It is worth noting that both implementations follow the same
blueprint, even though they support two different schemes. Finally, we note that
much attention was spent recently on bootstrapping for the approximate CKKS
scheme [3,31,34,35]. Most procedures follow again the same outline as BGV and
BFV, but over the complex numbers instead of the integers modulo pr.

Bootstrapping third generation schemes has lower circuit complexity, faster
execution time and less noise growth than second generation schemes. Therefore,
some studies have reported a hybrid approach where the idea is to bootstrap a
second generation ciphertext using a third generation scheme [32,36]. Although
this technique can lead to smaller FHE parameters, none of these studies have

1 See https://github.com/homenc/HElib for bootstrapping in HElib.
2 This implementation was never publicly released.

https://github.com/homenc/HElib

Bootstrapping for BGV and BFV Revisited 3

reported their execution time, and a rough estimate shows that all these methods
are much slower than the state-of-the-art for practical parameters.

1.2 Contributions

We summarize our contributions as follows:

– We give an overview of the state-of-the-art bootstrapping methods for BGV
and BFV. Many details about bootstrapping are currently scattered through-
out the literature, and there is no single article that describes the interrela-
tionship between the two schemes. Furthermore, our analysis unifies boot-
strapping for BGV and BFV, and as a result, shows their equivalence in
time complexity. This adjusts the erroneous claim of Chen and Han [8] who
state that BFV has a more efficient bootstrapping procedure than BGV.
We also correct a second error in the work of Chen and Han that relates to
their optimized linear transformations for power-of-two cyclotomics. Finally,
our comprehensive analysis allows us to draw well-formed conclusions about
asymptotic time complexities and trade-offs in the implementation.

– We develop a high-level software library for BGV and BFV bootstrapping
in the Magma Computational Algebra System.3 Since both schemes follow
an identical bootstrapping blueprint, we cover them via the same interface
and need to implement the recryption procedure only once.

Although our implementation of bootstrapping is much slower than optimized
FHE libraries such as HElib, it represents bootstrapping correctly and in full
generality as a high-level instruction trace. In fact, our library was used in the
DARPA DPRIVE program for hardware benchmarking [19,41]. Specifically, we
imported our implementation in a custom hardware simulator, in order to verify
correctness and to measure performance.

1.3 Outline

We follow a top-down approach: Section 2 starts from the necessary background
about BGV and BFV, considering them as somewhat homomorphic encryption
schemes. Section 3 explains the recryption procedure from a very high level,
encapsulating the precise operation of the involved building blocks. Afterwards,
we gradually work out the two main building blocks: the linear transformations
(Sections 4 and 5) and digit extraction (Section 6). Finally, we compare com-
plexities and trade-offs, and we discuss implementation details.

2 Background

The following sections introduce the necessary definitions and notations for the
somewhat homomorphic version of the BGV and BFV scheme. We also introduce
the notion of SIMD operations over encrypted data.

3 Available at https://github.com/KULeuven-COSIC/Bootstrapping BGV BFV.

https://github.com/KULeuven-COSIC/Bootstrapping_BGV_BFV

4 R. Geelen and F. Vercauteren

2.1 Definitions and Notations

Cyclotomic polynomials. BGV and BFV are built around the ring learning
with errors (R-LWE) problem – a commonly used hardness assumption in cryp-
tography that relies on the theory of cyclotomic number fields. Let m ⩾ 1 be an
integer, and let ωm ∈ C be a primitive mth root of unity. The polynomial

Φm(x) =
∏

j∈Z∗
m

(x− ωj
m)

is called the mth cyclotomic polynomial. Its degree is equal to n = φ(m), where
φ(·) is Euler’s totient function. Although cyclotomic polynomials have complex
roots, it can be proven that they have integer coefficients only [43]. The R-LWE
problem is then defined over the ring R = Z[x]/(Φm(x)), which is a subring of
the cyclotomic number field Km = Q[x]/(Φm(x)).

The set of all automorphisms of Km that fix the base field Q forms a group
under the function composition operator. It is called the Galois group of Km/Q
and is denoted by Gal(Km/Q). Concretely, the automorphisms are given by
τj : x 7→ xj for j ∈ Z∗

m. In fact, the group Gal(Km/Q) is even isomorphic to Z∗
m,

where the group isomorphism is explicitly constructed as j 7→ τj . Sometimes, we
use multiplicative subgroups of Z∗

m: the subgroup generated by g1, . . . , gt ∈ Z∗
m

is denoted by ⟨g1, . . . , gt⟩.

Notations. For an integer N ⩾ 2, we write the quotient ring of R modulo N
as RN = R/NR. All elements of R, RN and Km are shown in bold lower case
letters (e.g., a ∈ R) or explicitly as polynomials (e.g., a(x) ∈ R). Reduction
modulo Φm(x) is implicit. The quotient ring RN is seen as a subset of R with
coefficients in [−N/2, N/2) ∩ Z. We denote the infinity norm on the coefficient
vector of a ring element a ∈ R as ||a||∞. Row vectors are written as v ∈ R1×ℓ.

For a ∈ Km and a positive integer N ⩾ 2, we denote the centered reduction
modulo N by [a]N . More precisely, it is the unique element in NR+a that has all
coefficients in the set [−N/2, N/2). Similarly, we denote coefficient-wise flooring,
ceiling and rounding to the nearest integer by ⌊a⌋, ⌈a⌉ and ⌊a⌉ respectively. The
result is rounded upwards when the input is in Z+ 1/2.

2.2 Somewhat Homomorphic Encryption

This section describes the Brakerski-Gentry-Vaikuntanathan (BGV) and the
Brakerski-Fan-Vercauteren (BFV) schemes. Importantly, both schemes have the
same interface: they encrypt and operate on plaintexts m ∈ Rpr for some prime
power pr ⩾ 2, referred to as the plaintext modulus.4 We focus on this interface,
and where possible, make abstraction of the underlying implementation.

4 In their most general version, BGV and BFV support any positive integer as plain-
text modulus. However, bootstrapping is restricted to prime powers only.

Bootstrapping for BGV and BFV Revisited 5

Ciphertext format. It is not necessary to understand the details of the key
generation and encryption procedures, so instead, we only explain the ciphertext
format. We denote the secret decryption key for BGV and BFV by s ∈ R. A
ciphertext is a vector (c0, c1) ∈ R2

q that satisfies

c0 + c1 · s = m+ pre (mod q) (1)

in the case of BGV. For obvious reasons, the parameter q is called the ciphertext
modulus. For the BFV scheme, a valid ciphertext satisfies

c0 + c1 · s = ⌊(q/pr) ·m⌉+ e (mod q). (2)

The term e is called the noise term, and just after encryption, it is guaranteed
to have small coefficients with respect to q/pr.

Decryption removes the noise term of the ciphertext in order to recover the
message: we first compute the “inner product” with the secret key, which is
identical for both schemes: w ← c0 + c1 · s. Then we retrieve the plaintext as
m← [w]pr for BGV and m← [⌊(pr/q) ·w⌉]pr for BFV. The result is correct if
the coefficients of the noise term are less than ⌊q/(2pr)⌋.

The crucial difference between BGV and BFV is their plaintext encoding. As
already suggested by Equations (1) and (2), the BGV scheme encodes the plain-
text in the “least significant bits” of the ciphertext, whereas BFV uses the “most
significant bits”. In that sense, both schemes can be considered “dual” with only
minor differences in their implementation of homomorphic multiplication [2].

Homomorphic operations. BGV and BFV support the exact same homo-
morphic operations, which can be summarized as follows:

– Addition takes two ciphertexts, and outputs a ciphertext that encrypts the
sum of the underlying plaintexts. Similarly, we can also add a ciphertext and
a plaintext together. Addition is a cheap operation, both in execution time
and noise growth. Adding two ciphertexts increases the number of bits in
the noise by at most one.

– Multiplication takes two ciphertexts, and outputs a ciphertext that encrypts
the product of the underlying plaintexts. The output ciphertext is computed
by tensoring the inputs, and is therefore a tuple of three elements. This can
be reduced back to two elements by means of key switching (explained next).
We can also multiply a ciphertext by a plaintext, and then the result is a stan-
dard tuple of just two elements. Multiplication is much more expensive than
addition, especially in terms of noise growth. Multiplying two ciphertexts
increases the number of bits in the noise by a ring-dependent parameter.

– The product of two ciphertexts consists of three ring elements, as opposed
to only two elements in the standard format. To keep the ciphertext size
under control, we need a post-processing step that converts the ciphertext
back into the standard format. This is done by means of key switching. It is
a very slow operation, but it adds (almost) no noise.

6 R. Geelen and F. Vercauteren

– The BGV scheme requires an extra operation to manage noise magnitude
before each multiplication. This operation is called modulus switching, and
it converts a ciphertext encrypted under modulus q to a different modulus q′.
Modulus switching for the BFV scheme is not required for noise management,
but it can still be applied to speed up the other homomorphic operations as
working with a smaller modulus is more efficient.

– Given a plaintext modulus pr1+r2 and an encryption of pr1m, we perform
exact division to compute an encryption of m under plaintext modulus pr2 .
In the BFV scheme, this operation comes for free; for BGV, the complexity
is similar to multiplication by a constant. This operation does not add noise.

We emphasize that the minor differences between BGV and BFV do not have
a large impact on performance. Recently, Kim et al. [33] studied the differences
between BGV and BFV (without bootstrapping). They obtain similar results for
both schemes, with only negligible differences in terms of noise growth (where
BFV performs somewhat better) and computational complexity (where BGV
performs somewhat better). Another result by Alperin-Sheriff and Peikert [1]
shows that it is even possible to convert a ciphertext from BGV to BFV format
or the other way around.

2.3 Plaintext Slots

Smart and Vercauteren [42] observed that one can encode multiple elements in
a plaintext using the Chinese remainder theorem. The plaintext ring can then
be seen as a vector of “plaintext slots”, enabling homomorphic SIMD operations
in a smaller ring. Concretely, if gcd(m, p) = 1, then the polynomial Φm(x) splits
over Zpr into ℓ distinct irreducible factors of degree d as

Φm(x) = F1(x) · . . . · Fℓ(x) (mod pr). (3)

The parameter d is the multiplicative order of p modulo m, and the number of
factors is ℓ = n/d, where n = φ(m) is the degree of Φm(x).

Remember that the plaintext ring is Rpr = Zpr [x]/(Φm(x)). The Chinese
remainder theorem allows us to write this ring as a direct sum of Zpr -algebras
through the isomorphism

α(x) 7→ (α(x)modF1(x), . . . , α(x)modFℓ(x)) (4)

that sends an element α(x) to its residue classes modulo each factor of Φm(x).
The right-hand side of the isomorphism corresponds to a component-wise addi-
tion and multiplication, and the entries are called the plaintext slots.

It can be proven that the rings Zpr [x]/(Fi(x)) are all isomorphic [22], and we
can therefore talk about a unique slot algebra. That is, let ζ denote the residue
class of x in the ring Zpr [x]/(F1(x)), then we define the slot algebra [28, 29] as
E = Zpr [ζ]. It can be shown that Equation (4) simplifies to

α(x) 7→ {α(ζh)}h∈S , (5)

where S ⊆ Z is any complete system of representatives for Z∗
m/⟨p⟩. As such, the

plaintext slots contain the values α(ζh), where h ranges over S.

Bootstrapping for BGV and BFV Revisited 7

2.4 Hypercube Structure and Permutations

Gentry et al. [23] have shown that arbitrary permutations of the plaintext slots
can be computed homomorphically. The permutations are based on the algebraic
structure of the set S that was introduced in the previous section. This set can
be constructed as

S = {ge11 · . . . · g
et
t | 0 ⩽ ei < ℓi}, (6)

where the number of plaintext slots is equal to |S| = ℓ = ℓ1 · . . . · ℓt.
Equation (6) induces a so-called hypercube structure on the plaintext slots,

where t is the number of dimensions and ℓi is the size of dimension i. A visual-
ization of a three-dimensional hypercube of size 3 × 4 × 3 is given in Figure 1.
Also one hypercolumn in the vertical dimension is highlighted. Each entry in the
hypercube can be seen as storing one of the plaintext slots, indexed by a tuple
of the form (e1, . . . , et) with 0 ⩽ ei < ℓi. Specifically, let h = ge11 · . . . · g

et
t , then

we define the value of plaintext α(x) at the corresponding index to be α(ζh).

Fig. 1: A hypercube and a hypercolumn, adapted from [29]

A basic operation is permuting the plaintext slots circularly along one of
the dimensions of the hypercube. These special permutations are called one-
dimensional “rotations”, and they are much more efficient to compute than
arbitrary permutations. A rotation over 0 ⩽ v < ℓi positions in dimension i
is indicated by ρvi . It maps the plaintext slot from index (e1, . . . , ei, . . . , et) to
index (e1, . . . , e

′
i, . . . , et) with e′i = ei + v (mod ℓi).

A rotation can be implemented by means of the automorphism group of Km.
Let µ be the “mask” obtained by embedding the constant ‘0’ in the plaintext
slots with indices (e1, . . . , ei, . . . , et) where ei < v, and embedding ‘1’ in all other
slots. Then for a plaintext α ∈ Rpr , the rotation ρvi can be computed as

ρvi (α) = µ · τj(α) + (1− µ) · τk(α), (7)

where j = g−v
i (mod m) and k = gℓi−v

i (mod m).

8 R. Geelen and F. Vercauteren

Sometimes, these permutations can even be implemented using just one auto-
morphism instead of two. If the order of gi in Z∗

m is equal to ℓi, then Equation (7)
collapses to ρvi (α) = τj(α). Such a dimension is called “good”; if this is not the
case, the dimension is called “bad”.

Just like addition and multiplication, automorphisms can be computed over
the ciphertext space. However, this operation requires post-processing by means
of key switching (similar to ciphertext multiplication), which makes the resulting
procedure expensive.

3 Bootstrapping Procedure

We now explain the bootstrapping operation – a general transformation from a
somewhat into a fully homomorphic encryption scheme. This idea was proposed
by Gentry [20] and is the only known way to support circuits of unbounded com-
plexity. His construction “refreshes” a ciphertext when the noise term reaches
its maximum level. This is achieved via homomorphic evaluation of a scheme’s
own decryption circuit, relying on an encryption of the secret key under itself,
called the bootstrapping key.

From the above explanation, it follows that a somewhat homomorphic scheme
can be turned into a fully homomorphic scheme if it can evaluate its own decryp-
tion circuit plus at least one more homomorphic operation. This can be realized
by bootstrapping a ciphertext just before the noise level gets too high to evaluate
an addition or multiplication. The idea is schematically represented in Figure 2.
Analogous to regular decryption in the top of the diagram, we evaluate decryp-
tion homomorphically in the bottom. This results in an encryption of the same
plaintext, but with a smaller and fixed noise level depending on the complexity
of decryption. We need to augment the untrusted party with an encryption of
the secret key. This can be done without compromising security of the system,
assuming circular security of the somewhat homomorphic scheme [20].

ct, sk pt

Enc(ct), Enc(sk) Enc(pt)

Dec

Evaluate(Dec)

Enc Dec

Unencrypted
world

Encrypted
world

Fig. 2: Bootstrapping diagram

Bootstrapping for BGV and BFV Revisited 9

3.1 Bootstrapping for BGV and BFV

This section introduces the bootstrapping procedure for BGV and BFV from a
very high level. We explain the functionality of the two main building blocks:
the linear transformations and digit extraction. The details and implementation
of these building blocks are deferred to Sections 4, 5 and 6.

Our derivations are simpler and more general than earlier work: firstly, we
cover BGV and BFV in one analysis, emphasizing the similarities between both
schemes. This is reflected by our implementation that differentiates between
BGV and BFV in just one function call (the inner product); secondly, we start
from a simplified version of decryption that does not require the “make-divisible”
operation from HElib. This greatly simplifies the noise analysis, and moreover,
we show that the same theory can be reused for the BFV scheme.

3.2 Simplifying the Decryption Function

Bootstrapping evaluates decryption homomorphically, so we start by pruning the
decryption circuit as much as possible. In essence, we rewrite decryption such
that it can be evaluated as cheaply as possible in the homomorphic domain. This
is necessary for bootstrapping only, and is not relevant for normal decryption.
Both for BGV and BFV, decryption is rewritten with respect to an additional
parameter e > r that determines the complexity of the resulting procedure;
both the multiplicative depth of bootstrapping and the number of ciphertext
operations will depend heavily on the magnitude of e. Additional information
about the choice of e in a practical setting is provided later.

The BGV scheme. We start from a ciphertext encrypted with respect to a
modulus q = 1 (mod pe), which can be obtained via modulus switching.5 As
shown in Section 3.3, the BGV ciphertext (c0, c1) can then be decrypted as

c′i ← [pe−rci]q, w ← [c′0 + c′1 · s]pe and m← [⌊w/pe−r⌉]pr . (8)

The first step can be interpreted as scaling up the message with an additional
factor of pe−r. The second step is the usual “inner product” of decryption, and
the last step removes the noise.

The BFV scheme. The simplified decryption function follows a similar outline
as BGV. If we start from a ciphertext with respect to a modulus q, then the BFV
ciphertext (c0, c1) can be decrypted via a standard scale-and-round procedure.
More specifically, we compute

c′i ←
[⌊

pe

q
ci

⌉]
pe

, w ← [c′0 + c′1 · s]pe and m← [⌊w/pe−r⌉]pr . (9)

5 This requirement can be relaxed to gcd(q, p) = 1 if we multiply the second part of
Equation (8) by q−1 and the third part by q, where q−1 · q = 1 (mod pe). However,
we only treat q = 1 (mod pe) so that Equation (8) is nearly identical for BFV.

10 R. Geelen and F. Vercauteren

The first step can be interpreted as modulus switching from q to pe. Interest-
ingly, the last two steps are identical to the BGV case.

The duality of BGV and BFV is again highlighted by their very similar decryp-
tion procedure. The only difference is in the first step, which can be interpreted
as either scaling up the message from Equation (1), or scaling down the message
from Equation (2). As we will see later, the main computational bottleneck of
bootstrapping is not in the first step of decryption. This will result in identical
computational complexities for both schemes, when expressed as the number of
primitive homomorphic operations (i.e., when ignoring the differences in com-
plexity resulting from the implementation).

3.3 Determining the Decryption Bound

The performance of bootstrapping depends heavily on the choice of e. If we take
it very large, then performance will deteriorate; however, if we take it very small,
then bootstrapping will fail. The purpose of this section is to find an appropriate
value for e in practice, which can be seen as a trade-off between performance on
the one hand, and failure probability on the other hand.

The BGV scheme. We show correctness of the simplified decryption procedure
and at the same time derive equations for the noise. Let u = c′0 + c′1 · s, then it
follows that

u = pe−r(c0 + c1 · s) = pe−r(m+ pre) (mod q).

Making the reduction modulo q explicit, and following the simplified decryption
procedure, we have

w = [u]pe = [pe−rm+ r]pe for u = pe−r(m+ pre) + qr, (10)

where we have used q = 1 (mod pe). Again, we follow the simplified decryption
procedure and get

[⌊w/pe−r⌉]pr = [m+ ⌊r/pe−r⌉]pr = m

where the last equation is correct if the coefficients of r are upper bounded as
||r||∞ < pe−r/2. Applying the triangle inequality on Equation (10), we have

||r||∞ ⩽ ||(c′0 + c′1 · s)/q||∞ + ||pe−rm/q||∞ + ||pee/q||∞ < pe−r/2.

For practical parameter settings, the second term is negligible compared to the
third term and can be made arbitrarily small compared to the first term; we can
therefore simply ignore it. Letting di = c′i/q, the equation simplifies to

||d0 + d1 · s||∞ + ||pee/q||∞ < pe−r/2. (11)

Bootstrapping for BGV and BFV Revisited 11

The BFV scheme. Consider the rounding error di = c′i− (pe/q) · ci. Filling it
in Equation (9), we get

w = c′0 + c′1 · s =
pe

q
(c0 + c1 · s) + (d0 + d1 · s)

=
pe

q

(
q

pr
m+ e

)
+ (d0 + d1 · s)

= pe−rm+ (d0 + d1 · s) + pee/q (mod pe).

Decryption works properly if the second and third term are small enough so that
they can be removed during the rounding procedure. Formally, we require

||d0 + d1 · s||∞ + ||pee/q||∞ < pe−r/2. (12)

An important observation is that Equations (11) and (12) are identical, so we can
cover BGV and BFV in one analysis. The equations consist of two separate terms.
The first term depends on di and s. Due to the seemingly random properties
of ciphertexts, one can make the heuristic assumption that the coefficients of di

are uniformly distributed in the interval [−1/2, 1/2) and independent of s. The
size of the first term can then be analyzed based on statistical properties of the
secret key. The second term represents the noise and is ciphertext-specific.

Statistical analysis. Halevi and Shoup [30] carry out a heuristic analysis on
Equations (11) and (12). They start from a secret key with coefficients in {0,±1}
and sampled uniformly with Hamming weight equal to a parameter denoted h.
The end result is the probability of a bootstrapping failure. The analysis is quite
extensive, so we will only state the results and give some intuition.

The dominant term in the decryption bound is d1 ·s. Therefore, we compute
the probability that this term exceeds a certain threshold that is parameterized
by a real number k. Specifically, Halevi and Shoup show that

Pr [||d1 · s||∞ > k · C] < D · erfc(k/
√
2), (13)

where erfc is the complementary error function. The parameters are given by

C =
1√
12
· 2t/2 ·

√
h ·

√
φ(m)

m
and D = φ(m),

where m is the cyclotomic index and t is its number of distinct prime factors.6

We conclude that

– The probability of Equation (13) grows proportionally to the lattice dimen-
sion n = φ(m) because of the factor D.

6 In fact, the analysis only holds if the linear transformations from Section 4 exploit
the prime-power factorization of m.

12 R. Geelen and F. Vercauteren

– For constant m and k (which represents constant failure probability), C is
directly proportional to

√
h. Neglecting d0 and e in Equations (11) and (12),

we need to take pe−r/2 proportional to
√
h. The parameter r is usually fixed

by the application, so we take pe proportional to
√
h.

– Choosing a concrete value of e is done by first picking k, depending on the
desired failure probability. Then we compute the smallest e such that the
decryption bound of Equations (11) and (12) is satisfied.

Recall that the complexity of bootstrapping depends on e, which is in term
directly proportional to

√
h. In fact, the situation is similar in the CKKS scheme

for which Bossuat et al. [4] circumvent the problem using a clever trick: they
evaluate CKKS bootstrapping by decrypting homomorphically under a different
secret key s̃ of Hamming weight h̃ < h. This is done by first obtaining an
encryption of the message under s̃ via key switching. Despite the more efficient
attacks on sparse secrets, the proposed method does not hurt security: since key
switching is done at a sufficiently small modulus, we can compensate for the
security loss caused by a sparser secret.

The techniques from Bossuat et al. carry over to BGV and BFV directly:
before homomorphic decryption, we can switch the input ciphertext to a sparse
key s̃. Then the second subequation of Equations (8) and (9) is evaluated homo-
morphically using s̃ instead of s. This requires a slightly different bootstrapping
key, namely an encryption of s̃ under s.

3.4 High-Level Overview of the Bootstrapping Procedure

We are now ready to describe the bootstrapping procedure from a high level.
We differentiate general bootstrapping where the plaintext slots contain elements
from E, and thin bootstrapping where the plaintext slots are restricted to Zpr .

General bootstrapping. The general bootstrapping procedure starts from a
ciphertext with fully packed slots. Bootstrapping consists of the following steps,
which are also shown in Figure 3:

– Inner product: evaluate the first and second subequation of Equation (8)
(for BGV) or Equation (9) (for BFV). The second subequation is evaluated
homomorphically, where we process the bootstrapping key under plaintext
modulus pe. This step is the only one that is different for BGV and BFV.
There also exists a variant of the inner product step which does not require
a bootstrapping key [1], but it is not discussed here.

– Linear transformation: move the noisy coefficients of the encrypted plaintext
into the slots, encoding one coefficient per slot. Since there are d times more
coefficients than slots, we end up with d ciphertexts instead of one.

– Digit extraction: perform a slot-wise rounding procedure on each of the d
ciphertexts. This corresponds to the last subequation of Equation (8) or (9),
and decreases the plaintext modulus from pe to pr.

Bootstrapping for BGV and BFV Revisited 13

– Inverse linear transformation: move the noise-free slots of the encrypted
plaintexts back into the coefficients.

Note that the linear transformations are necessary to do the rounding element-
wise. Digit extraction cannot be done directly on the coefficients as it involves
ciphertext multiplication, which is not coefficient-wise.

Enc(m)

Enc(pv ·m+ e)

Enc(pv ·mℓi + eℓi, . . . , p
v ·mℓ(i+1)−1 + eℓ(i+1)−1) for i = 0, . . . , d− 1

Enc(mℓi, . . . ,mℓ(i+1)−1) for i = 0, . . . , d− 1

Enc(m)

Inner product

Linear transformation

Digit extractions

Inverse linear transformation

Fig. 3: General bootstrapping procedure, adapted from [8]

Thin bootstrapping. The thin bootstrapping procedure starts from a cipher-
text with sparsely packed slots. Bootstrapping consists of the following steps,
which are also shown in Figure 4:

– Linear transformation: move the noise-free slots of the encrypted plaintext
into the coefficients.

– Inner product: evaluate the first and second subequation of Equation (8) (for
BGV) or Equation (9) (for BFV). This step is identical to the corresponding
step from the general bootstrapping procedure.

– Inverse linear transformation: move the noisy coefficients of the encrypted
plaintext back into the slots, encoding one coefficient per slot.

– Digit extraction: perform a slot-wise rounding procedure on the ciphertext.
This step is identical to the corresponding step from the general bootstrap-
ping procedure, except that we only have one ciphertext instead of d.

The main difference with the general bootstrapping procedure is that we exploit
the sparsely packed slots by changing the order of operations: by moving the slots
directly into the coefficients, the number of ciphertexts stays just one. Therefore,
we also require just one digit extraction instead of d.

4 Homomorphic Linear Transformations

Linear transformations are an important aspect of recryption, and essential for
mapping coefficients to slots and back. We will need E-linear and Zpr -linear

14 R. Geelen and F. Vercauteren

Enc(m0, . . . ,mℓ−1)

Enc(m)

Enc(pv ·m+ e)

Enc(pv ·m0 + e0, . . . , p
v ·mℓ−1 + eℓ−1)

Enc(m0, . . . ,mℓ−1)

Linear transformation

Inner product

Inverse linear transformation

Digit extraction

Fig. 4: Thin bootstrapping procedure, adapted from [8]

transformations: the notion of E-linearity is defined with respect to the right-
hand side of Equation (5), which is a module over E; Zpr -linearity follows from
the ring structure of Rpr , which is a module over Zpr .

4.1 One-Dimensional Linear Transformations

We restrict ourselves to the case of one-dimensional linear transformations, i.e.,
transformations that act on the hypercolumns in a certain dimension separately.
Figure 5 shows a schematic representation of a one-dimensional linear transfor-
mation. The 2× 4× 2 hypercube is reinterpreted as a series of hypercolumns in
the vertical dimension. Each hypercolumn is then interpreted as a vector (either
an E-vector or a Zpr -vector), and a matrix multiplication is done for each of the
vectors separately. For example, the input-output relation for an E-linear trans-
formation of the front right hypercolumn is given by the matrix-vector product

γ1
γ2
γ3
γ4

 = M

η1
η2
η3
η4

with M ∈ E4×4. The same is done for all other hypercolumns in the vertical
dimension, where the matrix M may be different for each hypercolumn.

E-linear transformations. A one-dimensional E-linear transformation can be
computed by multiplying each hypercolumn with a matrix M ∈ Eℓi×ℓi . For a
vector α ∈ Eℓi , let αv be the vector obtained by rotating the entries of α by v
positions. Using some algebraic manipulations, it was established by Halevi and
Shoup [26] that we can rewrite the matrix-vector product as

Mα =

ℓi−1∑
v=0

Mvαv (14)

Bootstrapping for BGV and BFV Revisited 15

Independent linear
transformations

Input hypercube Output hypercube

η1

η2

η3

η4

γ1

γ2

γ3

γ4

Fig. 5: A one-dimensional linear transformation

where each Mv is a diagonal matrix.
Now instead of a vector, consider an entire plaintext α ∈ Rpr . Using the

above theory, any one-dimensional E-linear transformation can be written as

L(α) =

ℓi−1∑
v=0

κv · ρvi (α), (15)

where the constants κv are obtained by embedding the diagonal entries of Mv

in the slots. A naive approach can implement Equation (15) with ℓi constant-
ciphertext multiplications and ℓi − 1 rotations. However, Halevi and Shoup [28]
have proposed a baby-step/giant-step algorithm that is cheaper. Their idea is
to write Equation (15) as a double summation, and as such, it requires O(

√
ℓi)

automorphisms only. Their algorithm is slightly more expensive in bad hypercube
dimension than in good dimensions. Since linear transformations are a separate
research direction that can be decoupled from bootstrapping, we omit further
details. We refer to HElib for implementation aspects [28].

Zpr -linear transformations. A one-dimensional Zpr -linear transformation can
be computed using roughly the same strategy as for an E-linear one. We require
one special automorphism, called the Frobenius map σ = τp. It acts on each
plaintext slot individually as the slot-wise Frobenius map σE : β(ζ) 7→ β(ζp).
The slot-wise Frobenius map is a Zpr -linear function from E to E. Conversely,
any Zpr -linear function L : E → E can be written as a linear combination of
Frobenius powers, i.e.,

L(η) =

d−1∑
f=0

θf · σf
E(η). (16)

The constants θf ∈ E can be obtained with field theory for the prime case [40]
and can then be Hensel lifted to the prime-power case [30]. Furthermore, when

the image of L lies in Zpr , the constants are related as θf = σf
E(θ0).

16 R. Geelen and F. Vercauteren

Equation (14) remains valid for Zpr -linear transformations, but now the
matrix entries of M are themselves Zpr -linear maps from E to E. Any one-
dimensional Zpr -linear transformation can therefore be written as

L(α) =

ℓi−1∑
v=0

d−1∑
f=0

κv,f · σf (ρvi (α)), (17)

where the constants κv,f are obtained by embedding appropriate values in the
slots. Those values can be found by considering the diagonal entries of Mv and
solving a system of linear equations to determine the θf ’s from Equation (16).
A naive approach can implement Equation (17) with d · ℓi constant-ciphertext
multiplications, ℓi−1 rotations and (d−1)·ℓi Frobenius powers. However, Halevi
and Shoup [28] have proposed a baby-step/giant-step algorithm that is cheaper
and requires O(d+ ℓi) automorphisms only.

5 The Slot-to-Coefficient Transformation

In this section, we discuss two different methods for mapping plaintext slots to
coefficients and back. This is an essential part of the bootstrapping procedure
from Section 5. Both methods are based on homomorphic linear transformations.
The first one was introduced by Halevi and Shoup [30] and supports a broad
range of parameters. The second one was introduced by Chen and Han [8], but is
more restrictive since it can only be used for power-of-two cyclotomics. However,
the second method can slightly outperform the first one for some parameter sets.

5.1 The General Case

We now explain the evaluation map, which is a linear transformation designed
by Halevi and Shoup [27,30] for HElib. The evaluation map moves the plaintext
slots of some element β(x) into the coefficients of some element α(x). That is,
if the slots of β(x) encode c1, . . . , cn, then the output of the evaluation map is
the element α(x), the coefficients of which are precisely these numbers. We start
with some algebraic background.

The powerful basis. Throughout this section, consider a pairwise coprime
factorization of the cyclotomic index m = m1 · . . . ·mt. The cyclotomic ring R
is then isomorphic to

Z[x]/(Φm(x)) ∼= Z[x1, . . . , xt]/(Φm1
(x1), . . . , Φmt

(xt)),

where the ring isomorphism is given by xi 7→ xm/mi . The representation in
Z[x]/(Φm(x)) is done in the power basis consisting of x0, x1, . . . , xφ(m)−1. On
the other hand, the representation in Z[x1, . . . , xt]/(Φm1

(x1), . . . , Φmt
(xt)) leads

to the powerful basis [37] consisting of xj1
1 · . . . · x

jt
t with 0 ⩽ ji < φ(mi).

Bootstrapping for BGV and BFV Revisited 17

Building the hypercube structure. Recall that the linear transformations
rely on the representative set S for Z∗

m/⟨p⟩. In order to compute the evaluation
map efficiently, it is necessary that S has a special structure corresponding to the
factorization m = m1 · . . . ·mt. Consider the following lemma, where we define
CRT(h1, . . . , ht) to be the unique h ∈ {0, . . . ,m−1} such that h = hi (mod mi).

Lemma 1 ([30, Lemma 4.1]). Consider the integers p and m = m1 · . . . ·mt as
before. Let di be the order of pd1·...·di−1 modulo mi. Then the order of p modulo
m is d = d1 · . . . · dt, which is equal to the degree of the factors in Equation (3).

Moreover, suppose that S1, . . . , St ⊆ Z are such that each Si forms a complete
system of representatives for Z∗

mi
/⟨pd1·...·di−1 ⟩. Then the set S = CRT(S1, . . . , St)

forms a complete system of representatives for Z∗
m/⟨p⟩.

In order to simplify the evaluation map, some additional constraints are placed
on the choice of the sets Si:

– Each group Z∗
mi

/⟨pd1·...·di−1 ⟩ is supposed to be cyclic of order ℓi = φ(mi)/di
and with generator g̃i.

7 The set S can then be built using Equation (6)
by taking gi = CRT(1, . . . , 1, g̃i, 1, . . . , 1). This first restriction allows us to
decompose the evaluation map as a series of one-dimensional linear trans-
formations, namely one for each factor of m.

– We limit ourselves to the case d1 = d and di = 1 for i = 2, . . . , t. This second
restriction results in a Zpr -linear transformation in the first dimension and
an E-linear transformation in the other dimensions.8

Note that with these assumptions, the first dimension of the hypercube can be
good or bad, but the other dimensions are always good.

In the rest of this section, we denote the powerful basis representation of
some element α(x) by α′(x1, . . . , xt). For i = 1, . . . , t, we define

ζi = ζm/mi and ζi,e = ζ
ge
i

i .

It follows from the powerful basis representation that for h = CRT(h1, . . . , ht)
with hi ∈ Z, we have that α(ζh) = α′(ζh1

1 , . . . , ζht
t). Recall that the plaintext

slots of α(x) contain the values α(ζh), where h ranges over S. Equivalently, using
Lemma 1, the plaintext slots hold α′(ζh1

1 , . . . , ζht
t), where the hi’s range over Si,

or even α′(ζ1,e1 , . . . , ζt,et), where the ei’s range over {0, . . . , ℓi − 1}.

The evaluation map. The functionality of the evaluation map is moving slots
to powerful basis coefficients. Halevi and Shoup [30] showed that it can be de-
composed as a series of one-dimensional linear transformations. Suppose that we

7 The non-cyclic case could be handled by multi-dimensional linear transformations.
However, if we exploit the prime-power factorization of m, then this situation can
only occur if m is divisible by 8 [17].

8 Alleviating this restriction would result in intermediate F -linear transformations,
where Zpr ⊆ F ⊆ E. All stages of the evaluation map (explained later) can be
treated as a special case of this situation.

18 R. Geelen and F. Vercauteren

start with the plaintext β(x) and end with the plaintext α(x). Let the powerful
basis coefficients of α(x) be given by cj1,...,jt , i.e.,

α′(x1, . . . , xt) =
∑

j1,...,jt

cj1,...,jt x
j1
1 · . . . · x

jt
t ,

then the plaintext slots of β(x) encode these coefficients in some way. Specifically,
consider a normal element θ from E/Zpr , then the slot at index (e1, . . . , et) holds

β′(ζ1,e1 , . . . , ζt,et) =

d−1∑
f=0

ce1+ℓ1·f,e2,...,et σ
f
E(θ).

We show next that the evaluation map can be decomposed into t stages of one-
dimensional linear transformations, where the output of stage i is denoted βi(x).
The map is such that the slot of βi(x) at index (e1, . . . , et) holds

β′
i(ζ1,e1 , . . . , ζt,et) =

∑
j1,...,ji

cj1,...,ji,ei+1,...,et ζ
j1
1,e1
· . . . · ζjii,ei .

Stage 1. The first stage takes the plaintext β(x) as input and transforms it into
β1(x). Consider the slot of β1(x) at index (e1, . . . , et), and observe that it is a
function of the slots of β(x) at indices (e′1, e2, . . . , et) with 0 ⩽ e′1 < ℓ1. In other
words, the output slot only depends on the input slots of the corresponding
hypercolumn in dimension 1, so the transformation is one-dimensional. It is
easy to see that the transformation is also Zpr -linear, and therefore it can be
implemented using the theory of Section 4.1. Specifically, we need to evaluate
Equation (14) where the element of M at row j + 1 and column k + 1 is

mj+1,k+1 :

d−1∑
f=0

cf σ
f
E(θ) 7→

d−1∑
f=0

cf ζ
k+ℓ1·f
1,j (18)

for cf ∈ Zpr . The matrix is identical for each hypercolumn.

Stages 2, . . . , t. The ith stage takes the plaintext βi−1(x), i.e., the output from
the previous stage, and transforms it into βi(x). Consider the slot of βi(x) at
index (e1, . . . , et), and observe that it is a function of the slots of βi−1(x) at
indices (e1, . . . , ei−1, e

′
i, ei+1, . . . , et) with 0 ⩽ e′i < ℓi. In other words, the out-

put slot only depends on the input slots of the corresponding hypercolumn in
dimension i, so the transformation is one-dimensional. It is easy to see that the
transformation is also E-linear, and therefore it can be implemented using the
theory of Section 4.1. Specifically, we need to evaluate Equation (14) where the
element of M at row j + 1 and column k + 1 is mj+1,k+1 = ζki,j . The matrix is
identical for each hypercolumn.

The correctness of the above procedure follows from the fact that βt(x) = α(x).
This can be proven by observing that βt(x) and α(x) contain the same value in
each plaintext slot. Finally, we note that the evaluation map can be inverted by
running all stages in reverse order and with matrix M−1 instead of M .

Bootstrapping for BGV and BFV Revisited 19

Fully packed slots. In the following paragraphs, we explain how the evalu-
ation map is deployed in the general bootstrapping procedure. Recall that the
evaluation map starts from a ciphertext, the slots of which encode the num-
bers that we are interested in. However, digit extraction operates on sparsely
packed ciphertexts that only encode one element in the constant term of each
slot. We therefore need a packing procedure that converts d ciphertexts (all of
them sparsely packed), into one fully packed ciphertext. Similarly, we need an
unpacking procedure for the inverse evaluation map.

Unpacking. We start from an encryption of a plaintext β that contains d numbers
per slot, encoded using a normal element θ ∈ E. Unpacking can be computed
based on the Frobenius map. Consider the constants κf corresponding to the
linear map that acts on each slot as

L0 :

d−1∑
f=0

cf σ
f
E(θ) 7→ c0 (19)

for cf ∈ Zpe .9 We first precompute σf (β) for f = 0, . . . , d − 1. It can easily be
verified that the ciphertexts

βi =

d−1∑
f=0

κf+i · σf (β)

contain only one of desired numbers per slot. Note that the index is implicitly
reduced modulo d, so κf+d = κf by definition.

Repacking. Conversely, we start from a set of plaintexts βi that contain one
number per slot. Repacking can be computed via the sum

β =

d−1∑
f=0

κf · βf ,

where κ0 contains θ in each slot and κf = σf (κ0).

Sparsely packed slots. Thin bootstrapping starts from a ciphertext with
sparsely packed slots. This gives an opportunity for improving the linear maps,
which we discuss separately for the forward and inverse transformation.

The forward map. The evaluation map can be simplified in this case: since the
plaintext slots encode only a number in the constant term, we can alleviate the
first stage. Indeed, the matrix entries of Equation (14) can be simplified to

mj+1,k+1 : η 7→ ζk1,j · η.

This corresponds to an E-linear transformation identical to stages 2, . . . , t.

9 Recall that the inverse evaluation map is computed with respect to a higher precision
plaintext space modulo pe with e > r. Therefore the constants cf come from Zpe .

20 R. Geelen and F. Vercauteren

The inverse map. The analysis for the inverse evaluation map becomes slightly
more complicated. The inner product step from Section 3.4 generates undesired
coefficients that represent noise and do not correspond to the numbers we are
interested in. Ignoring these extra coefficients would break the procedure, so we
cannot just run the forward map in reverse order [28].

The solution to this problem is to run the inverse evaluation map with some
adaptations, that is, stage 1 can be optimized. Assume that we start from an
encryption of a plaintext u. Since the coefficients of u are not sparse, we cannot
directly implement stage 1 as an E-linear transformation. Instead, consider the
matrix M with entries given by Equation (18), and consider the linear map L0

from Equation (19). We must first apply M−1 to each hypercolumn and then
perform a slot-wise unpacking with L0. This is equivalent to a multiplication with
LM−1, where L is the diagonal matrix containing L0 everywhere. The matrix
LM−1 contains linear maps to the base ring, namely Zpe for both schemes. Hence
each of its entries can be written as

η 7→
d−1∑
f=0

σf
E(θ0 · η)

for some θ0 ∈ E. More specifically, denote by θj,k the constant corresponding to
the jth row and the kth column of LM−1. Moreover, let

TE : η 7→
d−1∑
f=0

σf
E(η)

be the trace map on E. We can now rewrite the matrix as

LM−1 =

TE . . . 0
...

. . .
...

0 . . . TE

 θ1,1 . . . θ1,ℓ1

...
. . .

...
θℓ1,1 . . . θℓ1,ℓ1

 ,

so stage 1 can be decomposed as an E-linear transformation, followed by a slot-
wise trace map. The slot-wise trace map can be efficiently implemented using
the algorithm from HElib [26].

5.2 Power-of-Two Cyclotomics

Chen and Han propose an optimization for the evaluation map that is specific
to power-of-two cyclotomics in conjunction with thin bootstrapping [8]. Their
procedure is also more general in one aspect, namely it does not require the
group Z∗

m/⟨p⟩ to be cyclic. However, their theoretical derivation contains an
error that breaks the recryption procedure for some parameter sets. Specifically,
they claim that the hypercube set S can be chosen in an arbitrary way. As we
will show, this is not true for the coefficient-to-slot transformation.

Bootstrapping for BGV and BFV Revisited 21

Building the hypercube structure. In contrast to Chen and Han, we build
the set S in a slightly more complex way. Specifically, we take

S = {ge11 · g
e2
2 | 0 ⩽ ei < ℓi},

where ℓ1 = 2 and ℓ2 = ℓ/2. The generators g1 and g2 are computed using the
following procedure:

1. Choose g1 of order 2 in Z∗
m/⟨p⟩ such that the quotient group Z∗

m/⟨p, g1⟩ is
cyclic. From all possible options, we take one such that g1 − 1 has a 2-adic
valuation equal to 1.

2. Choose g2 as a generator of the quotient group Z∗
m/⟨p, g1⟩.

Choosing the set S in the above manner is always possible due to the special
structure of the group of invertible integers modulo powers of two [17]. We show
the correctness of this adapted procedure in Lemma 2.

The forward map. The slot-to-coefficient transformation maps a plaintext β
of which the slots encode (α0, . . . , αd(ℓ−1)) to a plaintext α. The functionality
of the transformation is defined as

β 7→ α =

ℓ−1∑
j=0

αdjx
dj . (20)

It can be expressed on the plaintext space as

β 7→
∑
h∈S

κh · τh(β), (21)

where κh are precomputed constants. This can be seen as follows: since the slots
are only sparsely packed, the automorphisms τh act directly as permutations
over Zpr -vectors. These permutations are arbitrary in the sense that they can
map any slot to any other slot. Thus, each slot from the input can influence each
slot from the output. Finally, we note that the constants κh can be computed
by filling in Equations (20) and (21) for ℓ independent input-output pairs, and
then solving the obtained system of linear equations for each slot separately.

The inverse map. The analysis for the inverse evaluation map becomes slightly
more complicated. Similarly to the general case, the inner product step generates
undesired coefficients that represent noise and do not correspond to the numbers
we are interested in. Ignoring these extra coefficients would break the procedure,
so we cannot just run the forward map in reverse order.

In order to remove the undesired coefficients, we run a coefficient selection
procedure that is defined as

n−1∑
j=0

αjx
j 7→ α =

ℓ−1∑
j=0

αdjx
dj .

22 R. Geelen and F. Vercauteren

In other words, we remove the coefficients of which the corresponding exponent
is not divisible by d. This can be efficiently implemented based on the algorithm
of Chen and Han [8]. They use the special automorphism τn/2i+1 that maps

τn/2i+1 : x
2i 7→ −x2i .

That is, it negates the coefficients of x2i·k for odd k, and leaves the coefficients
untouched for even k. This insight is used in a recursive procedure: on input a
plaintext α0, we compute αi+1 = αi + τn/2i+1(αi) for i < log2(d) until we end
up with d ·α = αlog2(d)

. Note that the factor of d is a result from the repeated
summation. Fortunately, it can be compensated by folding an additional factor
of d−1 (mod pe) in the subsequent linear transformation. Remarkably, the cost
of coefficient selection is equal to the slot-wise trace map.

Finally, we map the coefficients of α back into the plaintext slots. Similarly
to the forward linear transformation, this can be done as

α 7→
∑
h∈S

κh · τh(α), (22)

where the constants κh are computed by solving a system of linear equations
based on ℓ independent input-output pairs. The correctness of this procedure is
more difficult to prove, and given in Lemma 2.

Correctness. We now prove the correctness of the optimized linear transfor-
mations for power-of-two cyclotomics. In particular, we need to prove that the
systems of linear equations to compute the constants κh = κh(x) are consistent.
This is trivial for the forward linear map as it can be easily seen that the in-
volved matrix is the identity. However, the analysis for the inverse map is more
complicated, and captured by the following lemma.

Lemma 2. If the set S is generated using the procedure from above, then the
optimized coefficient-to-slot transformation for power-of-two cyclotomics can be
expressed as Equation (22).

Proof. It suffices to prove that the system of linear equations to compute the
constants κh(x) is consistent for each slot. First, note that the functionality of
the inverse map is precisely opposite to Equation (20). Therefore, we have

α(x) =

ℓ−1∑
j=0

αdjx
dj 7→ β(x) =

∑
h∈S

κh(x) · τh(α(x)),

where β(x) contains (α0, . . . , αd(ℓ−1)) in the slots. We compute the constants
κh(x) by successively choosing (α0, . . . , αd(ℓ−1)) as each possible unit vector,
and then solving the obtained system of linear equations for each plaintext slot.
Following this procedure, the system of equations for the first slot becomes ζh1·0 . . . ζhℓ·0

...
. . .

...
ζh1·d(ℓ−1) . . . ζhℓ·d(ℓ−1)

κh1(ζ)

...
κhℓ

(ζ)

 =

1...
0

 ,

Bootstrapping for BGV and BFV Revisited 23

where S = {h1, . . . , hℓ}. All other slots are handled analogously by replacing ζ
with ζh for an appropriate h ∈ S.

It suffices to show that the matrix from the above system (referred to as M
from now on) is invertible. Note that M is a transposed Vandermonde matrix
evaluated in ζh1·d, . . . , ζhℓ·d, and therefore known to be invertible if and only if
all ζhi·d are distinct. Now suppose by contradiction that ζhi·d = ζhj ·d for i ̸= j.
Since ζ is a primitive mth root of unity, it follows that (hi−hj) ·d = 0 (mod m),

or even simpler hi = hj (modm/d). Now let hi = ge11 ·g
e2
2 and hj = gf11 ·g

f2
2 , then

the equations simplify to ge1−f1
1 · ge2−f2

2 = 1 (mod m/d). We need to contradict
this claim for (e1, e2) ̸= (f1, f2) in order to finish the proof.

We can assume without loss of generality that 0 ⩽ e1 − f1 < 2 and that
0 ⩽ e2 − f2 < ℓ/2. In particular, considering positive exponents is sufficient
because negation corresponds to replacing g1 or g2 by its own inverse. Since the
hypercube generation procedure remains valid when either generator is replaced
by its inverse, negative exponents are covered by an analogous proof. With this
simplification, it remains to prove that S \ {1} contains no h = 1 (mod m/d).

The multiplicative group Z∗
m has a very special structure if m is a power of

two [17]. It is non-cyclic, but generated by two elements: the element element −1
of order 2, and the element 5 of order m/4 = n/2. Moreover, the subgroup ⟨5⟩
contains all numbers that are congruent to 1 modulo 4. An example configuration
for m = 32 is drawn in Figure 6. The subfigures show several possibilities for
the subgroup ⟨p⟩ in green, and the quotient group Z∗

m/⟨p⟩ that is represented
by S. All elements h ∈ Z∗

m \ {1} for which h = 1 (mod m/d) are marked by a
red cross. Recall that these elements are not allowed to be in S.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • • •

(a) Cyclic quotient group with p of order d = 2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • •

(b) Cyclic quotient group with p of order d = 4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(c) Non-cyclic quotient group with p of order d = 4

Fig. 6: Possible configurations for the unit group Z∗
m and quotient group Z∗

m/⟨p⟩

The group law of Figure 6 should be interpreted as follows: each subfigure
shows Z∗

m on the left, where the bottom left element with coordinates (0, 0) is

24 R. Geelen and F. Vercauteren

identity; the element to the right of identity with coordinates (1, 0) is 5; the
element above identity with coordinates (0, 1) is −1. Multiplying two elements
is done by summing their coordinates and reducing modulo the grid. Moreover,
each subfigure shows how Z∗

m collapses into the quotient group Z∗
m/⟨p⟩ on the

right. Each coset is indicated by exactly one representative.
In order to prove the lemma, we need to ensure that the hypercube genera-

tion procedure avoids the elements marked by red crosses. For the crosses that
coincide with the subgroup ⟨p⟩, this is trivial because the set S always contains
the representative 1 (which does not have a red cross). However, subfigures 6a
and 6b have one extra cross that does not coincide with ⟨p⟩. In both cases, we
avoid it by taking the first representative such that g1− 1 has a 2-adic valuation
of 1. In other words, we choose g1 from the upper row (which does not contain
any red crosses), because those elements are congruent to 3 modulo 4.

6 Digit Extraction

Digit extraction is the essential step of bootstrapping that removes the actual
noise. Since the entire procedure must be applied homomorphically, it is written
out as a series of polynomial evaluations. We explain two algorithms for digit
extraction: the first one is based on the procedure of Halevi and Shoup [30], and
the second one is developed by Chen and Han [8]. Both procedures were later
improved based on a systematic study of the involved polynomials [18]. However,
those optimizations are too extensive to discuss in this paper.

The functionality is defined as follows: given a number w ∈ Zpe , we remove
its v = e− r least significant digits. Here we always refer to the balanced digits
denoted by wi ∈ {−(p− 1)/2, . . . , (p− 1)/2}, where we have that

w =

e−1∑
i=0

wip
i.

With this notation in mind, the output of digit extraction is formally defined as⌊
w

pv

⌉
=

e−1∑
i=v

wip
i−v,

when given w at the input.10

An important cost measure of digit extraction is the multiplicative depth, i.e.,
the largest number of consecutive multiplications in each possible path of the
evaluated circuit. For example, a polynomial of degree n can be evaluated with
depth ⌈log2(n)⌉ ciphertext-ciphertext multiplications and 1 constant-ciphertext
multiplication. Based on this logarithmic relation, we can convert between the
terms depth and degree.

10 If p = 2, we consider the digits in {0, 1}. Hence the output of digit extraction changes
to ⌊w/pv⌋. However, bootstrapping requires a rounding operation instead of flooring.
Fortunately, this can be fixed by applying the simple equality ⌊x⌉ = ⌊x+ 1/2⌋.

Bootstrapping for BGV and BFV Revisited 25

6.1 The Halevi/Shoup Procedure

The digit extraction procedure of Halevi and Shoup needs the following lemma,
which introduces a polynomial Fe(y) called the lifting polynomial.

Lemma 3 ([30, Corollary 5.5]). For every prime p and exponent e ⩾ 1, there
exists a polynomial Fe(y) ∈ Z[y] of degree p such that for all integers 1 ⩽ e′ ⩽ e,
−p/2 < w0 ⩽ p/2 and w1, it holds that Fe(w0 + pe

′
w1) = w0 (mod pe

′+1).

Algorithm 1 gives the digit extraction procedure from Halevi and Shoup. Each
iteration applies the lifting polynomial in order to remove one additional upper
digit, and thus to extract the least significant digit. Then we use the result to
compute wi+j+1,0 via an iterative procedure consisting of (i) subtraction of the
extracted digit with an adequate number of removed upper digits and (ii) exact
division by p. Observe that wi,j = wi (mod pj+1) for all i < v at the end of the
algorithm. The cost is dominated by ev − v(v + 1)/2 evaluations of the lifting
polynomial, and the degree is pe−1.

Algorithm 1 Halevi/Shoup digit extraction

1: procedure DigitExtract(w, p, e, v)
2: for i← 0 to e− 1 do
3: wi,0 ← w

4: for i← 0 to v − 1 do
5: for j ← 0 to e− i− 2 do
6: wi,j+1 ← Fj+1(wi,j)
7: wi+j+1,0 ← (wi+j+1,0 − wi,j+1)/p

8: return we−1,0

6.2 The Chen/Han Procedure

The digit extraction procedure of Chen and Han needs the following lemma,
which introduces a polynomial Ge(y) called the lowest digit retain polynomial.

Lemma 4 ([8, Section 3.2]). For every prime p and exponent e ⩾ 1, there
exists a polynomial Ge(y) ∈ Z[y] of degree at most (e − 1)(p − 1) + 1 such that
for all integers −p/2 < w0 ⩽ p/2, it holds that Ge(w0 + pw1) = w0 (mod pe).

Algorithm 2 gives the digit extraction procedure from Chen and Han. The main
innovation compared to the Halevi/Shoup procedure is that we apply the lowest
digit retain polynomial directly to the input, resulting in a procedure of lower
multiplicative depth. This is due to the very small degree of the lowest digit
retain polynomial (only (e − 1)(p − 1) + 1 compared to degree pe−1 for e − 1
repetitions of the lifting polynomial). However, note that we still use the lifting
polynomial to compute the intermediate numbers wi+j+1,0, because applying the

26 R. Geelen and F. Vercauteren

polynomial Ge−i(y) would rather increase the multiplicative depth in this place.
Observe that wi,j = wi (mod pj+1) at the end of the algorithm. The cost is
dominated by v evaluations of the lowest digit retain polynomial and v(v− 1)/2
evaluations of the lifting polynomial, and the degree is roughly rpv.

Algorithm 2 Chen/Han digit extraction

1: procedure DigitExtract(w, p, e, v)
2: z ← w
3: for i← 0 to v − 1 do
4: wi,0 ← w

5: for i← 0 to v − 1 do
6: z ← (z −Ge−i(wi,0))/p
7: for j ← 0 to v − i− 2 do
8: wi,j+1 ← Fj+1(wi,j)
9: wi+j+1,0 ← (wi+j+1,0 − wi,j+1)/p

10: return z

7 Implementation and Results

This section discusses asymptotic complexities for the linear transformations and
digit extraction. We also give an overview of the implementation.

7.1 Baby-Step/Giant-Step Algorithms

As already briefly explained, the linear transformations are implemented via a
baby-step/giant-step algorithm. The idea is to rewrite Equation (15) as a double
summation, both of size roughly

√
ℓi, and bring part of the rotation outside the

inner sum. The rotations of the inner sum can then be precomputed and reused
in each iteration of the outer sum. Equation (17) is already in the shape of a
double summation, so the trick can be applied directly in that case. As a result,
linear transformations have the following time complexity:

– A one-dimensional E-linear transformation in a good hypercube dimension
requires 2

√
ℓi +O(1) automorphisms and ℓi constant-ciphertext multiplica-

tions. In a bad hypercube dimension, it requires 3
√
ℓi+O(1) automorphisms

and 2ℓi constant-ciphertext multiplications.
– A one-dimensional Zpr -linear transformation in a good hypercube dimension

requires d+ ℓi − 2 automorphisms and d · ℓi constant-ciphertext multiplica-
tions. In a bad hypercube dimension, it requires 2d+ ℓi − 3 automorphisms
and 2d · ℓi constant-ciphertext multiplications.

Similarly to the linear transformations, we can also evaluate polynomials
using a baby-step/giant-step technique [21, 38]. Here the goal is to reduce the

Bootstrapping for BGV and BFV Revisited 27

number of ciphertext-ciphertext multiplications, because they are much more
costly than scalar-ciphertext multiplications (with scalars from Zpr). Specifically,
we rewrite a polynomial of degree at most n = 2m · k as

F (y) =

n∑
i=0

aiy
i =

n/2−1∑
i=0

aiy
i + yn/2 ·

n/2∑
i=0

ai+n/2y
i.

This trick is applied recursively until we arrive at a set of polynomials of degree
at most k. The powers of y are then precomputed and reused to compute each of
these polynomials. In this process, we can choose the parameters k and m as to
minimize the number of ciphertext-ciphertext multiplications. The asymptotic
time complexity is then 2

√
n+O(log2(n)) ciphertext-ciphertext multiplications

and n constant-ciphertext multiplications. The multiplicative depth is ⌈log2(n)⌉
ciphertext-ciphertext multiplications and 1 constant-ciphertext multiplication.

7.2 Asymptotic Complexities

We can now determine the asymptotic complexities (both time and depth) of
the linear transformations and digit extraction. Everything is broken down into
the most costly operations: multiplications and automorphisms.

Linear transformations. The depth of the linear transformations is 1 constant-
ciphertext multiplication per stage. This needs to be doubled in order to count
the forward and inverse map. The total number of operations is more difficult
to count. Table 1 gives the result for fully packed slots, and Table 2 for sparsely
packed slots. The tables assume that we use the baby-step/giant-step algorithm.
The cost depends on whether the hypercube dimension is good or bad.11 Note
that thin bootstrapping also includes one evaluation of the slot-wise trace map
during the inverse transformation, which costs O(log2(d)) automorphisms.

The optimized linear transformations for power-of-two cyclotomics (explained
in Section 5.2) can be somewhat cheaper than the general version. Their cost is
always given by the first column of Table 2, regardless of whether the hypercube
dimension is good or bad. It also includes one coefficient selection step that costs
exactly log2(d) automorphisms (equal to the slot-wise trace map).

From the applications perspective, the linear transformations of Halevi and
Shoup are better than the transformations from Chen and Han. The former ones
can be decomposed in multiple stages, and therefore scale well for an increasing
number of slots. This comes at the cost of a slight increase in multiplicative
depth. Moreover, non-power-of-two cyclotomics can have a more efficient packing
in the plaintext slots even for small values of p. On the other hand, many FHE
implementations are restricted to power-of-two cyclotomics. In that case, the
Chen/Han version is preferred, because it has no performance drawback in bad
hypercube dimensions.

11 Recall that only the first hypercube dimension can be bad. The cost for stages 2, . . . , t
is therefore only relevant in good hypercube dimensions.

28 R. Geelen and F. Vercauteren

Table 1: Total number of operations for the general linear
transformations and fully packed slots

Stage 1 Stages 2, . . . , t
Good Bad Good

Automorphism d+ ℓ1 − 2 2d+ ℓ1 − 3 2
√
ℓi +O(1)

Multiplication d · ℓ1 2d · ℓ1 ℓi

Table 2: Total number of operations for the general linear
transformations and sparsely packed slots

Stage 1 Stages 2, . . . , t
Good Bad Good

Automorphism 2
√
ℓ1 +O(1) 3

√
ℓ1 +O(1) 2

√
ℓi +O(1)

Multiplication ℓ1 2ℓ1 ℓi

Digit extraction. As already discussed in Section 6, the time complexity and
multiplicative depth of digit extraction depend on the degrees of the lifting
polynomial and the lowest digit retain polynomial. We summarize the results
in Tables 3 and 4. Here we make a difference between scalar-ciphertext multi-
plication and ciphertext-ciphertext multiplication. The results are asymptotic
(constant terms are neglected in appropriate places) and they assume that we
use the baby-step/giant-step algorithm as discussed earlier.

The main advantage of Chen/Han digit extraction is in multiplicative depth.
Whereas the depth of Halevi/Shoup grows linearly in the plaintext precision r,
the depth of Chen/Han grows only logarithmically. This assumes that v = e− r
is constant, which is true for fixed m and h. Moreover, the number of operations
is also different: Chen/Han is a bit more expensive for small parameters, but
becomes asymptotically better due to the square root term.

Table 3: Multiplicative depth of digit extraction

Halevi/Shoup Chen/Han

Scalar e− 1 v

Non-scalar (e− 1) · ⌈log2(p)⌉ v · ⌈log2(p)⌉+ ⌈log2(r)⌉

Table 4: Total number of multiplications for digit extraction

Halevi/Shoup Chen/Han

Scalar v · (r + v/2) · p v · e · p
Non-scalar v · (r + v/2) · 2√p v · (

√
r + v/2 + v/2) · 2√p

Bootstrapping for BGV and BFV Revisited 29

7.3 Implementation Overview

Our high-level Magma implementation of bootstrapping is made publicly avail-
able at https://github.com/KULeuven-COSIC/Bootstrapping BGV BFV. Here
we discuss some aspects of the implementation and the structure of the library.
Our code contains the following subdirectories:

– CRT: this folder contains functions to convert in and out of Double-CRT
format [24]. It is only used for automorphisms, because all other operations
can be handled directly via built-in functionality.

– Crypto: this folder contains the implementation of BGV and BFV. It also
contains an essential file Params.m where the recryption parameters are set.
The implementation does not leverage Double-CRT and RNS data represen-
tation (except for automorphisms), but uses built-in polynomial operations
based on multiprecision arithmetic instead.

– Linear maps: this folder contains the implementation and specification of
the linear transformations. We include both the general version and the
optimized one for power-of-two cyclotomics.

– Digit extraction: this folder contains the Halevi/Shoup and Chen/Han
digit extraction procedures. It also implements that baby-step/giant-step
technique necessary for polynomial evaluation.

– Bootstrapping: this folder contains the general and thin recryption proce-
dures. Switching from BGV to BFV or vice versa can simply be done by
loading a different scheme.

8 Conclusion

Gentry’s bootstrapping technique remains a costly operation in the construction
of fully homomorphic encryption schemes. This article revisited bootstrapping
for BGV and BFV, two second generation schemes that support modular arith-
metic over their plaintext space. Both have an identical recryption procedure,
and are only distinguished by small differences in the implementation of the un-
derlying operations. Our observations are supported by a high-level implemen-
tation in Magma. It is made publicly available, and it can be used by application
developers who want to represent bootstrapping from a high level.

Our comparative study considers several versions of the linear maps involved
in bootstrapping. The Halevi/Shoup version is in general more efficient, because
it can be decomposed as a series of one-dimensional linear transformations. On
the other hand, the Chen/Han version can be slightly more performant when
restricted to power-of-two cyclotomics.

In terms of digit extraction, the procedure of Chen and Han is asymptotically
better for high exponents in the plaintext modulus. The advantage appears both
in time complexity and multiplicative depth. On the other hand, the procedure
of Halevi and Shoup requires less multiplications for a low-precision plaintext
space. We propose that future work concentrates on the digit extraction step.
This remains the bottleneck of bootstrapping because of the high number of key
switching operations involved.

https://github.com/KULeuven-COSIC/Bootstrapping_BGV_BFV

30 R. Geelen and F. Vercauteren

Acknowledgements. This work is supported in part by the European Com-
mission through the Horizon 2020 research and innovation program Belfort ERC
Advanced Grant 101020005 and by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-21-C-0034. The views, opinions,
and/or findings expressed are those of the authors and should not be interpreted
as representing the official views or policies of the Department of Defense or the
U.S. Government. This work was additionally supported in part by CyberSe-
curity Research Flanders with reference number VR20192203. Robin Geelen is
funded in part by Research Foundation – Flanders (FWO) under a PhD Fel-
lowship fundamental research (project number 1162123N). Finally, the authors
would like to thank Kyoohyung Han and Yuriy Polyakov for their review and
Steven Galbraith for spotting an error in an earlier version of this paper.

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Annual Cryptology Conference. pp. 1–20. Springer (2013)

2. Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: Openfhe: Open-source fully homomorphic encryption library. Cryp-
tology ePrint Archive, Paper 2022/915 (2022), https://eprint.iacr.org/2022/915,
https://eprint.iacr.org/2022/915

3. Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Efficient boot-
strapping for approximate homomorphic encryption with non-sparse keys. In: Can-
teaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021.
pp. 587–617. Springer International Publishing, Cham (2021)

4. Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Bootstrapping for ap-
proximate homomorphic encryption with negligible failure-probability by using
sparse-secret encapsulation. Cryptology ePrint Archive, Paper 2022/024 (2022),
https://eprint.iacr.org/2022/024, https://eprint.iacr.org/2022/024

5. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating homomorphic evalu-
ation of deep learning predictions. In: International Symposium on Cyber Security
Cryptography and Machine Learning. pp. 212–230. Springer (2019)

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Annual Cryptology Conference. pp. 868–886. Springer (2012)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. pp. 309–325. ITCS ’12, ACM (2012)

8. Chen, H., Han, K.: Homomorphic lower digits removal and improved fhe boot-
strapping. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 315–337. Springer (2018)

9. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled psi from fully homomorphic
encryption with malicious security. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1223–1237 (2018)

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. Cryptology ePrint Archive, Paper 2016/421 (2016), https:
//eprint.iacr.org/2016/421, https://eprint.iacr.org/2016/421

https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/024
https://eprint.iacr.org/2022/024
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421

Bootstrapping for BGV and BFV Revisited 31

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. Cryptology ePrint Archive,
Paper 2016/870 (2016), https://eprint.iacr.org/2016/870, https://eprint.iacr.org/
2016/870

12. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. European transactions on Telecommunications 8(5),
481–490 (1997)

13. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
oram: A constant bandwidth blowup oblivious ram. In: Theory of Cryptography
Conference. pp. 145–174. Springer (2016)

14. Dong, C., Chen, L.: A fast single server private information retrieval protocol with
low communication cost. In: Computer Security - ESORICS 2014, Lecture Notes
in Computer Science, vol. 8712, pp. 380–399. Springer International Publishing,
Cham (2014)

15. Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption in less
than a second. Cryptology ePrint Archive, Paper 2014/816 (2014), https://eprint.
iacr.org/2014/816, https://eprint.iacr.org/2014/816

16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/144

17. Gauss, C.F.: Disquisitiones arithmeticae. Springer, Berlin (1986)

18. Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On polynomial functions
modulo pe and faster bootstrapping for homomorphic encryption. Cryptology
ePrint Archive, Paper 2022/1364 (2022), https://eprint.iacr.org/2022/1364, https:
//eprint.iacr.org/2022/1364

19. Geelen, R., Van Beirendonck, M., Pereira, H.V., Huffman, B., McAuley, T., Self-
ridge, B., Wagner, D., Dimou, G., Verbauwhede, I., Vercauteren, F., et al.: Basalisc:
Flexible asynchronous hardware accelerator for fully homomorphic encryption.
arXiv preprint arXiv:2205.14017 (2022)

20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

21. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Annual international conference on the theory and applications of
cryptographic techniques. pp. 129–148. Springer (2011)

22. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: International Workshop on Public Key Cryptography. pp. 1–16.
Springer (2012)

23. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Advances in Cryptology – EUROCRYPT 2012, Lecture Notes in
Computer Science, vol. 7237, pp. 465–482. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2012)

24. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:
Annual Cryptology Conference. pp. 850–867. Springer (2012)

25. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. Cryptology
ePrint Archive, Paper 2013/340 (2013), https://eprint.iacr.org/2013/340, https:
//eprint.iacr.org/2013/340

26. Halevi, S., Shoup, V.: Algorithms in helib. Cryptology ePrint Archive, Report
2014/106 (2014), https://eprint.iacr.org/2014/106

https://eprint.iacr.org/2016/870
https://eprint.iacr.org/2016/870
https://eprint.iacr.org/2016/870
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2022/1364
https://eprint.iacr.org/2022/1364
https://eprint.iacr.org/2022/1364
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2014/106

32 R. Geelen and F. Vercauteren

27. Halevi, S., Shoup, V.: Bootstrapping for helib. In: Annual International conference
on the theory and applications of cryptographic techniques. pp. 641–670. Springer
(2015)

28. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in helib. In:
Annual International Cryptology Conference. pp. 93–120. Springer (2018)

29. Halevi, S., Shoup, V.: Design and implementation of helib: a homomorphic en-
cryption library. Cryptology ePrint Archive, Report 2020/1481 (2020), https:
//eprint.iacr.org/2020/1481

30. Halevi, S., Shoup, V.: Bootstrapping for helib. Journal of Cryptology 34(1), 1–44
(2021)

31. Jutla, C.S., Manohar, N.: Sine series approximation of the mod function for boot-
strapping of approximate he. Cryptology ePrint Archive, Paper 2021/572 (2021),
https://eprint.iacr.org/2021/572, https://eprint.iacr.org/2021/572

32. Kim, A., Deryabin, M., Eom, J., Choi, R., Lee, Y., Ghang, W., Yoo, D.: Gen-
eral bootstrapping approach for rlwe-based homomorphic encryption. Cryptology
ePrint Archive, Paper 2021/691 (2021), https://eprint.iacr.org/2021/691, https:
//eprint.iacr.org/2021/691

33. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes
for finite fields. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 608–639. Springer (2021)

34. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-precision bootstrapping of
rns-ckks homomorphic encryption using optimal minimax polynomial approxima-
tion and inverse sine function. In: Canteaut, A., Standaert, F.X. (eds.) Advances in
Cryptology – EUROCRYPT 2021. pp. 618–647. Springer International Publishing,
Cham (2021)

35. Lee, Y., Lee, J.W., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-precision boot-
strapping for approximate homomorphic encryption by error variance minimiza-
tion. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EU-
ROCRYPT 2022. pp. 551–580. Springer International Publishing, Cham (2022)

36. Li, R., Jia, C.: Homomorphic modular reduction and improved bootstrapping for
bgv scheme. In: Information Security and Cryptology, Lecture Notes in Computer
Science, vol. 13007, pp. 466–484. Springer International Publishing, Cham (2021)

37. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 35–54. Springer (2013)

38. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM Journal on Computing 2(1), 60–66 (1973)

39. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Foundations of secure computation 4(11), 169–180 (1978)

40. Roman, S.: Field theory, vol. 158. Springer Science & Business Media (2005)
41. Rondeau, T.: Data protection in virtual environments (DPRIVE) (2020)
42. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs, codes

and cryptography 71(1), 57–81 (2014)
43. Zucca, V.: Towards efficient arithmetic for ring-lwe based homomorphic encryption

(2018)

https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2021/572
https://eprint.iacr.org/2021/572
https://eprint.iacr.org/2021/691
https://eprint.iacr.org/2021/691
https://eprint.iacr.org/2021/691

	Bootstrapping for BGV and BFV Revisited

