
On Polynomial Functions Modulo pe and Faster
Bootstrapping for Homomorphic Encryption

Robin Geelen1 , Ilia Iliashenko2 , Jiayi Kang1 , and Frederik Vercauteren1

1 imec-COSIC, KU Leuven, Leuven, Belgium
firstname.lastname@esat.kuleuven.be
2 CipherMode Labs, Los Angeles, USA

ilia@ciphermode.com

Abstract. In this paper, we perform a systematic study of functions
f : Zpe → Zpe and categorize those functions that can be represented
by a polynomial with integer coefficients. More specifically, we cover the
following properties: necessary and sufficient conditions for the existence
of an integer polynomial representation; computation of such a represen-
tation; and the complete set of equivalent polynomials that represent a
given function.
As an application, we use the newly developed theory to speed up boot-
strapping for the BGV and BFV homomorphic encryption schemes. The
crucial ingredient underlying our improvements is the existence of null
polynomials, i.e. non-zero polynomials that evaluate to zero in every
point. We exploit the rich algebraic structure of these null polynomials
to find better representations of the digit extraction function, which is
the main bottleneck in bootstrapping. As such, we obtain sparse polyno-
mials that have 50% fewer coefficients than the original ones. In addition,
we propose a new method to decompose digit extraction as a series of
polynomial evaluations. This lowers the time complexity from O(

√
pe) to

O(
√
p

4√
e) for digit extraction modulo pe, at the cost of a slight increase

in multiplicative depth. Overall, our implementation in HElib shows a
significant speedup of a factor up to 2.6 over the state-of-the-art.

Keywords: Homomorphic encryption · Bootstrapping · Polyfunctions.

1 Introduction

Homomorphic encryption (HE) allows computations on encrypted data with-
out knowledge of the secret key. In the past 15 years, there have been tremen-
dous improvements in HE protocols, both in speed and applicability. In spite
of these efforts, homomorphic encryption remains extremely slow compared to
unencrypted computations and further speedups are required.

Homomorphic computations are typically realized as arithmetic circuits, i.e.
sequences of additions and multiplications that implement a desired function-
ality. In the lattice-based schemes BGV [6] and BFV [5, 10], these operations
are performed over (extensions of) Zpe , where p is a prime number and e is

https://orcid.org/0000-0003-4684-3532
https://orcid.org/0000-0002-9549-1003
https://orcid.org/0000-0002-1093-7978
https://orcid.org/0000-0002-7208-9599

2 R. Geelen et al.

a positive integer.3 Functions on Zpe have rather interesting properties. First,
only a limited class of functions can be described by polynomials with integer
coefficients, the so-called polyfunctions (short for polynomial functions). Second,
the polynomials that represent a given polyfunction are always non-unique and
we can therefore try to find the polynomial representation that is most efficient
to evaluate homomorphically.

An example application that can benefit from the study of polyfunctions
is bootstrapping – the ciphertext refreshing procedure that enables unbounded
fully homomorphic encryption. This procedure is necessary because lattice-based
schemes include a noise term that grows when we evaluate an arithmetic circuit.
Bootstrapping reduces the noise back to a lower level, which enables further
evaluation of homomorphic additions and multiplications. Since its introduction
by Gentry in 2009 [11], the latency and throughput of bootstrapping were im-
proved several orders of magnitude in many subsequent works [8, 13, 15], but it
remains the main bottleneck to achieve fully homomorphic encryption.

1.1 Related Work

Polyfunctions. Research into polyfunctions has a long history. Already in 1921,
Kemper [17] studied elementary structures of polyfunctions over Zm for a com-
posite integer m. This early research represents polynomials in the monomial ba-
sis {Xi}i=0,1,.... However, since the mid-1960s, much of the literature [7,9,16,23]
started to use the falling factorial basis {X · (X − 1) · . . . · (X − i)}i=0,1,.... The
reason for this shift is that the falling factorial polynomials almost directly give
rise to non-trivial null polynomials (i.e. polynomials that by definition evaluate
to zero in every point when interpreted modulo some prime power pe).

Null polynomials result in equivalent representations of the same polyfunc-
tion f : Zpe → Zpe . Specifically, two polynomials F (X), H(X) ∈ Z[X] represent
the same function f if and only if their difference F (X)−H(X) is a null poly-
nomial. Equivalently, the set of all possible representations of f is obtained as
F (X) + Ope , where Ope is the set of all null polynomials modulo pe. In other
words, there exists a one-to-one correspondence between polyfunctions and col-
lections of equivalent polynomials:

polyfunction f : Zpe → Zpe ⇐⇒ F (X) +Ope .

Bootstrapping. The first bootstrapping procedure for BGV was proposed by
Gentry et al. [13] for encryption of single bits, and improved by subsequent re-
search [1]. The most relevant works for this paper are from Halevi and Shoup [15],
and Chen and Han [8]. Halevi and Shoup proposed a bootstrapping method
that works for the more general plaintext space Zpe . Their technique relies on a
“digit removal” procedure, which involves repeated homomorphic evaluation of
3 Some protocols for secure multi-party computation [3] also work over Zpe , which

makes our study of polyfunctions even more widely applicable. However, improve-
ments in multi-party computation are not the direct focus of this paper.

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 3

the lifting polynomial and has degree pe−1 in total. Chen and Han introduced an
additional digit extraction polynomial (sometimes called the lowest digit retain
polynomial) that has a much lower degree equal to (p − 1) · (e − 1) + 1. Lower
degrees are typically favored in homomorphic encryption.

In practice, polynomial evaluations account for most of the computational
cost of bootstrapping: in the implementation of HElib, they are altogether 3×
to 50× more expensive than all other operations combined [15]. This situation
is exactly the same for BGV and BFV, because both schemes have an identical
bootstrapping procedure.

1.2 Our Contributions

The aim of this paper is to further develop the theory of polyfunctions with a
focus on cryptographic applications. New insights in these polyfunctions allow
us to significantly accelerate HE bootstrapping.

Polyfunctions. In the first part of the paper (Section 3), we study polyfunctions
modulo pe. This includes the following:

– In Section 3.1, we study the complete set of null polynomials modulo pe

(denoted by Ope) as to obtain the set of all equivalent polyfunction repre-
sentations. A novel element of our approach is also restricting Ope to contain
only polynomials of bounded degree. When doing so, the resulting set forms a
lattice structure, and we can find small-coefficient representations by solving
the closest vector problem in this lattice. This is interesting in homomorphic
encryption, because small coefficients lead to less noise growth.

– In Section 3.3, we extend Newton interpolation from the real numbers to Zpe .
Our method always returns a polynomial representation of the lowest degree
when given a polyfunction as input. When given a function that is not a
polyfunction, our method can detect this and returns an error.

– In Section 3.5, we discuss several properties of polyfunctions that are espe-
cially relevant for HE bootstrapping. In particular, we consider the class of
even and odd polyfunctions that satisfy respectively f(−a) = f(a) (mod pe)
and f(−a) = −f(a) (mod pe) for a ∈ Z. We show that each such function
can be represented by a sparse polynomial with only even- or odd-exponent
terms. Evaluating such a sparse representation is asymptotically cheaper by
a factor of

√
2.

Bootstrapping. In the second part of the paper (Sections 4 and 5), we apply
the newly developed theory to speed up BGV and BFV bootstrapping. The
most expensive component of bootstrapping, both in degree and execution time,
is evaluation of the digit extraction polynomial. In order to accelerate it, we
apply the following improvements:

– We propose multiple methods to obtain better representations of the digit
extraction function. First, we show that this function is either even or odd,

4 R. Geelen et al.

and can therefore be represented as a polynomial with only 50% of the coef-
ficients. Second, we propose a new technique to decompose digit extraction
in multiple stages. Let ge be the digit extraction function modulo pe, then we
write it as ge = ge,e′ ◦ ge′ . In our algorithm, both ge′ and ge,e′ are evaluated
using polynomials of much smaller degree than the direct approach. As a
consequence, we lower the time complexity for digit extraction from O(√pe)
to O(√p 4√

e), at the cost of ⌈log2 p⌉ increase in multiplicative depth.
– In order to fully benefit from the optimized digit extraction polynomials,

we revise the digit removal procedure of Chen and Han [8]. Our improved
algorithm utilizes the digit extraction polynomial exclusively, without relying
on the lifting polynomial. We implemented our new bootstrapping algorithm
in HElib, and observe that it is up to 2.6 times faster than the state-of-the-
art. Our code is made publicly available.4

2 Preliminaries

2.1 Notations

For prime p and integer exponent e ⩾ 1, the set of functions from Zpe to itself
is denoted by Fpe . Moreover, we write the evaluation of a polynomial F (X) at
X = a as F (a) or sometimes F (X)|X=a.

Let νp(·) denote the p-adic valuation function defined as

νp(m) =

{
max{k ∈ N : pk | m} if m ̸= 0

∞ if m = 0.

It generalizes to the rational numbers as νp(m/n) = νp(m)−νp(n), and we call a
rational number p-integral if its p-adic valuation is non-negative. Let µ(·) denote
the Smarandache function defined as

µ(k) = min{i ∈ N : k | i!} .

Observe that νp(·) and µ(·) are complementary in some sense. Specifically, it
follows directly from the above definitions that µ(pe) is the smallest integer for
which νp(µ(p

e)!) ⩾ e. A few example instances of νp(n!) and µ(pe) for p = 2 are
listed in Tables 1 and 2.

Table 1: Examples of ν2(n!)

n 1 2 3 4 5 6 7 8 9 10
ν2(n!) 0 1 1 3 3 4 4 7 7 8

Table 2: Examples of µ(2e)

e 1 2 3 4 5 6 7 8 9 10
µ(2e) 2 4 4 6 8 8 8 10 12 12

4 See https://github.com/KULeuven-COSIC/Bootstrapping_Polyfunctions.

https://github.com/KULeuven-COSIC/Bootstrapping_Polyfunctions

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 5

2.2 Newton Interpolation over R

The Falling Factorial Basis. The Newton interpolation method relies on
the so-called falling factorial polynomials. Those polynomials are indexed by an
integer i ⩾ 0 and defined as

(X)i =

i−1∏
k=0

(X − k) ∈ Z[X],

where by definition we set (X)0 = 1. When reduced modulo pe, these polynomials
exhibit very specific properties that will be studied later in this paper.

Let Pn ⊆ Z[X] be the set of polynomials of degree at most n. Obviously, the
set {Xi | 0 ⩽ i ⩽ n} forms a basis for Pn when seen as a module over Z. We
refer to it as the monomial basis. Similarly, also the set {(X)i | 0 ⩽ i ⩽ n} forms
a basis for Pn, known as the falling factorial basis.

Newton Interpolation. Consider a collection of n+1 data points (i, yi) ∈ R2

for i = 0, . . . , n.5 Using Newton interpolation, we can find a polynomial F (X)
of degree at most n that interpolates these data points. Concretely, write the
polynomial F (X) ∈ R[X] in the format

F (X) = c0 + c1(X)1 + c2(X)2 + . . .+ cn(X)n. (1)

Then we can uniquely determine the falling factorial coefficients ci such that

F (i) = yi, ∀0 ⩽ i ⩽ n.

The coefficients can be computed from forward differences, as introduced in the
following definition.

Definition 1. The i-th forward difference of a function f : R → R, evaluated
at j ∈ Z, is recursively defined as

∆if(j) =

{
f(j) if i = 0

∆i−1f(j + 1)−∆i−1f(j) if i > 0.

We will now apply these forward differences to a polynomial F (X). Note that
we slightly abuse notation and consider a polynomial as a function in X. As
shown in Figure 1, the value of ∆iF (X)|X=j for i, j = 0, 1, . . . , n can be derived
from Definition 1. Each element in this triangle is defined as αi,j = ∆iF (X)|X=j ,
and computed as the difference between the element above and the element above
left. We only show rows for i = 0, . . . , n, because all following rows are zero for
a polynomial of degree n. This is easily seen by computing

∆ (X)i = (X + 1)X · . . . · (X − i+ 2)−X(X − 1) · . . . · (X − i+ 1)

= i(X)i−1,
(2)

5 In a more general version, we could consider the data points (xi, yi). For our purpose,
however, it is sufficient to choose xi = i.

6 R. Geelen et al.

and using the result in Equation (1). Note that Equation (2) is the analogue of
taking the derivative of the monomial Xi.

The coefficients of the interpolating polynomial F (X) can now be computed
as ci = αi,0 = ∆iF (X)|X=0/i!. This result is achieved by taking the i-th forward
difference of both sides of Equation (1), and again filling in Equation (2). This
leads to the interpolating polynomial

F (X) = α0,0 + α1,0(X)1 +
α2,0

2!
(X)2 + · · ·+

αn,0

n!
(X)n. (3)

Note the analogy with the Taylor series of a function.
Finally, the following relations are useful:

α0,j =

j∑
v=0

(
j

v

)
αv,0, (4a)

αi,0 =

i∑
v=0

(−1)i+v

(
i

v

)
α0,v. (4b)

These equations establish a relationship between the elements in the first row
and the diagonal of Figure 1.

α0,0 α0,1 α0,2 · · · α0,n

α1,0 α1,1 · · · α1,n−1

α2,0 · · · α2,n−2

. . .
...

αn,0

Fig. 1: Evaluation of forward differences with αi,j = ∆iF (X)|X=j .

The above theory generalizes directly to polynomial rings over any field.
However, the subject of this paper is polynomials over Zpe , which is not a field
in general.

2.3 Polyfunctions Modulo pe

Definition 2. Let f ∈ Fpe be a function from Zpe to itself. If there exists a
polynomial F (X) ∈ Z[X] that satisfies F (a) = f(a) (mod pe) for all a ∈ Z, then
f is a polyfunction modulo pe and F (X) is a representation of f .6

6 We define the evaluation of a function f ∈ Fpe at an integer a in the natural way,
by implicitly converting a to its residue class modulo pe.

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 7

As a corollary of the theory in Section 2.2, all functions from the field Fp to
itself are polyfunctions. A unique representation of degree less than p is obtained
by starting from all data points and applying Newton interpolation. However,
the situation is different for functions modulo pe: first, not all functions are
described by integer polynomials modulo pe, regardless of the degree; second,
polyfunctions always have a non-unique representation of the lowest degree due
to the existence of null polynomials [16, 19,21,23].

Null Polynomials Modulo pe. We define a null polynomial as follows.

Definition 3. An element O(X) ∈ Z[X] is called a null polynomial modulo pe

if the function f ∈ Fpe that it represents maps every element to zero. In other
words, we have that O(a) = 0 (mod pe) for all a ∈ Z.

Observe that the evaluation of the falling factorial polynomial (X)i at any
integer is divisible by i!. Hence it is a null polynomial modulo pe if νp(i!) ⩾ e.
Also the other direction holds: if (X)i is a null polynomial modulo pe, then
evaluating it at X = i gives (X)i |X=i = i!, and therefore νp(i!) ⩾ e. Following
the notation defined earlier, we find that the smallest possible value of i for
which (X)i is a null polynomial modulo pe, is equal to i = µ(pe).

2.4 Lattices

Definition 4. The set L ⊆ Rn is a lattice if there exist R-linearly independent
vectors b1, . . . ,bk ∈ Rn such that

L =

{
k∑

i=1

xibi | xi ∈ Z

}
.

The set of vectors B = {b1, . . . ,bk} constitute a basis, and k is called the rank.
A lattice is called q-ary for an integer q if qZn ⊆ L ⊆ Zn.

For a lattice vector v ∈ L, the length ∥v∥ denotes its Euclidean norm (2-
norm). We will rely on the closest vector problem (CVP):

Definition 5 (Closest vector problem (exact form)). Consider a lattice
L ⊆ Rn and a vector t ∈ Rn, CVP asks to recover a lattice vector v ∈ L such
that ∥t− v∥ = miny∈L ∥t− y∥.

Lattices have been studied extensively in cryptography due to the conjectured
intractability of certain lattice problems, such as the shortest vector problem
(SVP) and the closest vector problem (CVP). The hardness of these problems
is used as the security foundation of many cryptosystems, including the BGV
and BFV schemes. However, we will use lattices for a different reason, namely
the study of polynomial representations with small coefficients.

8 R. Geelen et al.

2.5 Homomorphic Encryption

We are interested in homomorphic encryption schemes that support arithmetic
circuits over Zpe . In the literature, those schemes are known as BGV [6] and
BFV [5, 10]. Both schemes have the same interface, and only differ from each
other in terms of the underlying implementation.

Homomorphic Operations. Next to the usual key generation, encryption and
decryption, homomorphic encryption schemes have two extra procedures to eval-
uate additions and multiplications over the ciphertexts that they encrypt. Both
procedures can either take two ciphertexts, or one ciphertext and one plaintext.
Moreover, there is one special division operation, which takes a ciphertext that
encrypts a message m known to be divisible by p. It outputs a new cipher-
text that encrypts m/p, but under plaintext modulus pe−1 instead of pe. This
operation fails if the input message is not divisible by p.

Plaintext Batching. BGV and BFV can batch multiple elements of Zpe per
plaintext [22]. Specifically, the plaintext ring is isomorphic to Zℓ

pe , where addition
and multiplication are defined component-wise. Each copy of Zpe is called a
plaintext slot, and can be operated on homomorphically and in parallel. This
is sometimes referred to as SIMD operations due to the resemblance in parallel
computing architectures.

The above explanation is actually a special case of a more general technique.
Given a polynomial F (X) ∈ Z[X] that is irreducible modulo p, we can define the
Galois ring E = Zpe [X]/(F (X)) ⊇ Zpe . The plaintext rings of BGV and BFV
are then isomorphic to Eℓ, again with component-wise addition and multiplica-
tion. We refer to this more general version as fully packed slots. If the slots are
restricted to encode elements from the subring Zpe (like explained above), then
they are called sparsely packed.

Bootstrapping. Every HE ciphertext contains a special component called the
noise. When evaluating homomorphic additions and multiplications, the noise
gets larger depending on the complexity of the involved operations. The decryp-
tion function removes the noise, but only works correctly if the noise is small
enough (depending on the chosen scheme parameters).

To enable circuits that consist of an unlimited number of additions and multi-
plications, we need a method to reduce the ciphertext noise without decrypting
directly. This is achieved via bootstrapping. The idea is to decrypt a cipher-
text homomorphically by evaluating the scheme’s own decryption circuit. This
reduces noise and allows further evaluation of additions and multiplications.
Bootstrapping comes in two variants: the slots of the encrypted message can ei-
ther be fully packed or sparsely packed. We refer to the first situation as general
bootstrapping, and the second one as thin bootstrapping. Finally, we emphasize
that BGV and BFV have an identical bootstrapping procedure. All optimiza-
tions for one scheme therefore carry over to the other one immediately.

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 9

3 Systematic Study of Polyfunctions

3.1 Null Polynomials

The set of null polynomials modulo pe can be described in the falling facto-
rial basis. This was already noticed by Singmaster [21] who proved the general
structure of this set. We formulate an adapted version in the following theorem,
where we additionally take into account null polynomials of bounded degree.
Our theorem is proven based on the same outline as Singmaster’s proof.

Theorem 1. A polynomial O(X) ∈ Z[X] is a null polynomial modulo pe of
degree at most n if and only if there exist a0, . . . an ∈ Z such that

O(X) =

n∑
i=0

ai ·Oi(X), with Oi(X) = pmax(e−νp(i!),0) · (X)i . (5)

In this equation, the exponent of p equals 0 if i ⩾ µ(pe).

Proof. (⇐) As already pointed out in Section 2.3, the evaluation of (X)i at any
integer is divisible by pνp(i!). Therefore, each term in Equation (5) evaluated at
any integer is divisible by pmax(e,νp(i!)) ⩾ pe. Since each term is a null polynomial
modulo pe, so is their linear combination.

(⇒) We prove the following assertion for 0 ⩽ m ⩽ n+ 1 by applying induction
on m:

O(X) =

n∑
i=m

bi · (X)i +

m−1∑
i=0

ai ·Oi(X), (6)

for some ai, bi ∈ Z.
The base case m = 0 is trivial since the second sum is empty, and the first

sum amounts to writing a polynomial in the falling factorial basis. It is therefore
possible to find appropriate constants bi that satisfy Equation (6).

Now suppose that Equation (6) was established for some m < n+ 1, that is

O(X) = bm · (X)m +

n∑
i=m+1

bi · (X)i +

m−1∑
i=0

ai ·Oi(X).

Evaluating both sides at X = m gives

0 = O(m) = bm ·m! (mod pe).

Taking the p-adic valuation of the right-hand side gives

νp(bm ·m!) = νp(bm) + νp(m!) ⩾ e =⇒ νp(bm) ⩾ e− νp(m!).

The constants bi are integers, so it follows that νp(bm) ⩾ max(e−νp(m!), 0). We
can therefore write bm = am · pmax(e−νp(m!),0) for some am ∈ Z, which results in

O(X) =

n∑
i=m+1

bi · (X)i +

m∑
i=0

ai ·Oi(X).

10 R. Geelen et al.

This expression replaces m by m+1 in Equation (6) and thereby completes the
induction. The final result follows by setting m = n+ 1 in Equation (6).

Corollary 1. Each null polynomial modulo pe of degree n < µ(pe) is divisible
by pe−νp(n!), where divisibility is defined in the polynomial ring Z[X]. Therefore,
all monic null polynomials have degree at least µ(pe).

Corollary 2. The set of all null polynomials modulo pe is obtained directly from
Theorem 1 by allowing an arbitrarily large (but finite) degree n.

The Null Lattice. Adopting the notation from Equation (5), the set of null
polynomials of degree at most n is given by

O(n)
pe =

{
n∑

i=0

ai ·Oi(X) | ai ∈ Z

}
⊆ Pn.

When considering polynomials as coefficient vectors, it can easily be seen that
the above set forms a pe-ary lattice with basis vectors Oi(X). For convenience of
notation, we will not make a difference between polynomials and lattice vectors:
the set O(n)

pe inherits all properties from Section 2.4, including the norm.

3.2 Cosets of Equivalent Polynomials

A representation F (X) of a polyfunction f is never unique. That is, given a null
polynomial O(X), we can construct an equivalent polynomial H(X) = F (X) +
O(X) that represents the same polyfunction. The set of all representations of a
polyfunction forms the coset F (X)+Ope . Moreover, the set of all representations
of degree at most n forms the coset F (X) +O(n)

pe (assuming that deg(F) ⩽ n).
As explained in Section 2.3, (X)µ(pe) is a monic null polynomial modulo pe,

which implies that we can always divide by it (using Euclidean division) to obtain
a representation of degree less than µ(pe). This proves the following lemma.

Lemma 1 (Small degree representation [16]). Each polyfunction f ∈ Fpe

has a representation of degree strictly less than µ(pe).

Although Euclidean division always returns a representation of degree less
than µ(pe), it is not necessarily minimized. In order to guarantee the lowest
possible degree, one has to consecutively divide by Oi(X) for i = µ(pe), . . . , 0.
This leads to the canonical representation of Keller and Olson [16].

Theorem 2 (Canonical representation [16]). Let f ∈ Fpe be a polyfunction,
then there exists a unique canonical representation

F (X) =

µ(pe)−1∑
i=0

ci(X)i

with 0 ⩽ ci < pe−νp(i!).

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 11

From Theorem 2, we can compute the number of canonical representations,
which is equal to the number of polyfunctions modulo pe. This is done by adding
the total number of possibilities for the coefficients ci, which gives

vol
(
O(µ(pe)−1)

pe

)
= expp

µ(pe)−1∑
k=0

e− νp(k!)

 = expp

(
e∑

k=1

µ(pk)

)
, (7)

where vol(·) denotes the volume of a lattice and expp(·) the exponential function
with base p. The first equality highlights the one-to-one correspondence between
polyfunctions and equivalent representations of degree less than µ(pe), obtained
as cosets modulo the null lattice. The second equality was proven by Specker et
al. [23] and not repeated here for brevity.

Note that, although a canonical representative can be chosen in a unique
manner, it is not necessarily the most convenient polynomial to evaluate homo-
morphically. Later we study the digit extraction polynomial in FHE bootstrap-
ping, where we take a different representative than the canonical choice.

Finally, we compare the number of functions in Fpe to the number of poly-
functions from Equation (7). Since a function is uniquely determined by its
input-output pairs, the total number of functions equals (pe)p

e

= pe·p
e

. This
expression is typically much larger than Equation (7) for e ⩾ 2, so only very few
functions are representable by polynomials.

Example 1. There are 28·2
8 ≈ 10617 functions in F28 , while only 250 ≈ 1015 of

them are polyfunctions as computed from Equation (7).

3.3 Existence of Polynomial Representation

In this section, we examine whether a given function f ∈ Fpe is a polyfunction
or not. We extend the Newton interpolation method to functions modulo pe, and
return a representation of the lowest degree if f is a polyfunction.

Consider a function f ∈ Fpe that is defined by pe data points (i, f(i)) ∈ Z2
pe

for i = 0, . . . , pe − 1. We will now use reduced forward differences, which are
similar to the regular forward difference defined earlier, but include an extra
reduction modulo pe in the set {0, . . . , pe − 1}.

Definition 6. The reduced i-th forward difference of a function f ∈ Fpe , eval-
uated at j ∈ Z, is defined as

∆if(j) = ∆if(j) (mod pe).

The values ∆if(j) for i = 0, 1, . . . , µ(pe) and j = 0, . . . , pe−1 can be derived
from Definition 6. This is shown in Figure 2, where αi,j = ∆iF (X)|X=j .

The relations in Section 2.2 such as Equations (2), (4a), and (4b) still hold
modulo pe. Moreover, we will show later that the interpolating polynomial from
Equation (3) is also valid for polyfunctions over Zpe .

12 R. Geelen et al.

α0,0 α0,1 α0,2 · · · α0,µ(pe) · · · α0,pe−1

α1,0 α1,1 · · · α1,µ(pe)−1 · · · α1,pe−2

α2,0 · · · α2,µ(pe)−2 · · · α2,pe−3

. . .
...

...
αµ(pe),0 · · · αµ(pe),pe−µ(pe)−1

Fig. 2: Evaluation of reduced forward differences with αi,j = ∆iF (X)|X=j .

Polynomial Representation. In order to examine if a function f ∈ Fpe is a
polyfunction, we introduce a new lemma.

Lemma 2. Let F (X) ∈ Q[X] be a polynomial of degree less than µ(pe) with
evaluation function f . Then f interpreted modulo pe is a polyfunction if and
only if the coefficients of F (X) are p-integral.

Proof. (⇐) If the coefficients of F (X) are p-integral, then it can be coerced into
Z[X] by replacing all denominators by their multiplicative inverse modulo pe.

(⇒) Since f is a polyfunction, there exists a representation H(X) ∈ Z[X] of
degree less than µ(pe). The polynomial O(X) = H(X) − F (X) also has degree
less than µ(pe), and its evaluation function modulo pe is zero. Writing

O(X) =

µ(pe)−1∑
i=0

ai
bi
· (X)i,

where ai/bi is a fraction in simplest form, it suffices to prove νp(bi) = 0 for all i.
Assume on the contrary that νp(bi) = maxj{νp(bj)} = c > 0, then pc ·O(X)

can be coerced into a null polynomial modulo pc+e. Since the degree of this null
polynomial is strictly less than µ(pe) ⩽ µ(pc+e), it follows from Corollary 1 that

pc · ai
bi

= 0 (mod p).

From νp(bi) = c, it follows directly that ai = 0 (mod p). Hence both ai and bi are
divisible by p, which contradicts the fact that ai/bi is in its simplest form.

Remark 1. A polynomial F (X) ∈ Q[X] with non-p-integral coefficients can still
represent a (poly)function f ∈ Fpe , for example if its degree is at least µ(pe).
However, it is not directly possible to evaluate such a function homomorphically.

Now we introduce a simple way to decide whether a given function f ∈ Fpe

is a polyfunction, relying on the reduced forward differences from Figure 2.

Theorem 3. A function f ∈ Fpe is a polyfunction if and only if the following
two criteria are satisfied:

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 13

1. For all i < µ(pe), we have νp(αi,0) ⩾ νp(i!). Note that αi,0 are the diagonal
elements of Figure 2.

2. All elements in the last row of Figure 2 are zero.

Proof. (⇐) Consider the polynomial

F (X) =

pe−1∑
i=0

αi,0

i!
· (X)i ∈ Q[X]. (8)

Following Equation (3), this polynomial interpolates f in all data points. Now
we are given that all elements in the last row of Figure 2 are zero, thus so are all
values in the next row (which is not displayed). Hence αi,0 = 0 for all i ⩾ µ(pe).
Therefore, we can terminate the summation of Equation (8) earlier and get

F (X) =

µ(pe)−1∑
i=0

αi,0

i!
· (X)i ∈ Q[X]. (9)

Now it remains to prove that the coefficients of F (X) are p-integral, and then
the result follows immediately from Lemma 2. Considering Equation (9), this is
trivial since we are given that νp(αi,0) ⩾ νp(i!) for all i < µ(pe).

(⇒) If f is a polyfunction, it has a representation F (X) of degree less than µ(pe).
Hence it follows from Equation (2) that ∆µ(pe)F (X) is zero in every point, which
proves the second criterion of the theorem.

Consider again the polynomial of Equation (9). Following the same line of
reasoning as in the first part of this proof, it is a representation of f modulo pe.
According to Lemma 2, we know that F (X) must have p-integral coefficients,
which implies νp(αi,0) ⩾ νp(i!) for all i < µ(pe).

Interestingly, Equation (9) gives a polynomial representation F (X) obtained
by Newton interpolation restricted to {0, 1, . . . , µ(pe)− 1}, i.e. only information
about f(i) for i < µ(pe) has been used. Condition 1 of Theorem 3 can be inter-
preted as restricting the coefficients of F (X) to p-integral values. Condition 2 is a
consistency requirement: F (a) = f(a) (mod pe) for each a ∈ {µ(pe), . . . , pe−1}.
Finally, we note that also different interpolation methods could be used.

Corollary 3. If f is a polyfunction, then Equation (9) gives a representation
of the lowest degree.

Proof. It was already proven that the polynomial F (X) from Equation (9) can
be coerced into a representation in Z[X], so it remains to show that its degree is
minimal. Suppose that n is the largest integer such that αn,0 ̸= 0, and assume
on the contrary that there exists a representation H(X) whose degree is less
than n. Then O(X) = H(X) − F (X) is a null polynomial modulo pe, with
leading monomial (αn,0/n!) ·Xn. It follows from Corollary 1 that

αn,0

n!
= 0 (mod pe−νp(n!)),

and thus αn,0 = 0 (mod pe), leading to a contradiction.

14 R. Geelen et al.

3.4 Bit and Digit Extraction Function

As an example, we apply the previously developed theory to the bit extraction
function – a polyfunction that is useful in the part about FHE bootstrapping.

Example 2. Let ge ∈ F2e be the bit extraction function defined as

ge : Z2e → Z2e : a 7→ a (mod 2) ,

where reduction modulo 2 is done in the set {0, 1}. Its forward differences are
shown in Figure 3, which should be closely compared to Figure 2. The reduced
forward differences are computed via reduction modulo 2e. It can easily be veri-
fied in Table 1 that the diagonal elements αi,0 = (−2)i−1 satisfy ν2(αi,0) ⩾ ν2(i!),
and that all elements on the last row are congruent to zero modulo 2e. Therefore,
the bit extraction function is a polyfunction.

0 1 0 · · · 1 · · · 0 · · · 1
1 −1 · · · 1 · · · −1 · · · 1

−2 · · · 2 · · · −2 · · · 2
. . .

...
...

...
(−2)i−1 · · · −2i−1 · · · 2i−1

. . .
...

...

(−2)µ(2
e)−1 · · · 2µ(2e)−1

Fig. 3: Forward differences of the bit extraction function.

Following Corollary 3, the polynomial

Ge(X) =

e∑
i=1

(−2)i−1

i!
· (X)i (10)

is a representation of ge of the lowest degree. It follows that there does not exist
a bit extraction polynomial of degree less than e. Finally, the complete set of
representations is easily obtained as Ge(X) +O2e .

More generally, we define the digit extraction function modulo pe for any
prime p from its balanced digit decomposition. Denote the balanced digits of
w ∈ Zpe by wi ∈ {−(p− 1)/2, . . . , (p− 1)/2} such that

w =

e−1∑
i=0

wip
i,

then we define the map ge ∈ Fpe as

ge : Zpe → Zpe : w 7→ w0.

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 15

Analogously to the previous example, we can show that ge is a polyfunction and
obtain a representation of the lowest degree. In the general case, there does not
exist a digit extraction polynomial of degree less than (p − 1)(e − 1) + 1. The
complete set of representations is obtained by adding Ope .

3.5 Further Properties of Polyfunctions

Not every function is a polyfunction modulo pe. For example, the function

f(a) =

{
1 if a = 0

0 otherwise

is not a polyfunction for e > 1, because it is not congruence preserving. More
specifically, all polyfunctions satisfy the following lemma.

Lemma 3 (Congruence preservation [7,9,16,17]). Let f be a polyfunction
modulo pe, then for any a ∈ Z, we have

f(a+ pk) = f(a) (mod pk), ∀k ⩽ e. (11)

Proof. Let F (X) be a representation of f . Since a polynomial is built from
additions and multiplications only, we know that

F (a+ pk) = F (a) (mod pk).

Since pk | pe, we can directly replace F by f . This completes the proof.

Congruence preservation is not a sufficient condition to be a polyfunction [4].
In Section 3.3 - Theorem 3, we derived a necessary and sufficient condition for a
function to be a polyfunction based on reduced forward differences [17], which
is consistent with the analytical characterization by Carlitz [7] and further leads
to a representation of the lowest degree.

We can also give a sufficient but unnecessary condition for a function to be
a polyfunction. A function that satisfies

f(a+ p) = f(a) (mod pe), ∀a ∈ Z, (12)

is said to have period p and is always a polyfunction. A representation can be
derived as follows.

Lemma 4 (Adapted from [14]). The polynomial U(X) = 1−Xφ(pe) satisfies
the following property modulo pe:

∀a ∈ Z : U(a) =

{
1 if p | a
0 otherwise,

where φ(·) is Euler’s totient function.

16 R. Geelen et al.

A representation for a function f with period p is

F (X) =

p−1∑
k=0

f(k) · U(X − k), (13)

from which we can construct the set of complete representations F (X)+Ope . A
well-known example is the digit extraction function.

As shown by the next example, having period p is a sufficient, but not a
necessary condition for a function to be a polyfunction.

Example 3. As computed in Example 1, there are 28·2
8 ≈ 10617 functions in F28 ,

while only 250 ≈ 1015 of them are polyfunctions. From these polyfunctions, only
28·2 ≈ 105 have period 2.

Even and Odd Polyfunctions. We construct a new lemma to find sparse
representations of even and odd polyfunctions.

Lemma 5. Let f ∈ Fpe be an even (resp. odd) polyfunction, that is, f(−a) =
f(a) (mod pe) (resp. f(−a) = −f(a) (mod pe)) for a ∈ Z. Moreover, assume
that f has a degree-n representation. Then the following holds:

– If p is an odd prime, then f has a representation F (X) of degree at most n,
which contains only even (resp. odd) exponents.

– If p = 2, and we consider f modulo pe−1 instead of pe, then it has a rep-
resentation F (X) of degree at most n, which contains only even (resp. odd)
exponents.

Proof. Consider a representation H(X) ∈ Z[X] of f that has degree equal to n.
Due to the evenness (resp. oddness) of f , the polynomial H ′(X) = H(−X) (resp.
H ′(X) = −H(−X)) is an equivalent representation of f .

Now we consider the integer polynomial

F (X) =
H(X) +H ′(X)

2
, (14)

which contains only even (resp. odd) exponents and has degree at most n. By
evaluating Equation (14) in any a ∈ Z, we see that F (a) = f(a) (mod pe) for
an odd prime p, and F (a) = f(a) (mod pe−1) for p = 2. Hence F (X) is also a
representation of f , and it can easily be checked that it contains only even (resp.
odd) exponents.

4 Faster Bootstrapping for BGV and BFV

This section explains our improved bootstrapping techniques for BGV and BFV,
leveraging the observations from the first part of the paper. Both general and thin
bootstrapping involve two important components: the linear transformations and
digit removal. We do not propose adaptations to the linear transformations, and

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 17

leave them unchanged in the implementation. Our improvements are inside the
digit removal step, and follow from the polyfunctions theory. Since digit removal
is 3× to 50× more expensive than the linear transformations [15], any speedup
leads to an almost equal effect in the entire bootstrapping procedure.

4.1 Cost Model

Amdahl’s law [2] states that the speedup gained by optimizing a single part of
an algorithm is limited to the fraction of time that the improved part is used. In
order to accelerate digit removal, we must therefore concentrate on the slowest
and most commonly used FHE operations. The true bottleneck of digit removal
is non-scalar multiplication, i.e. multiplication of two ciphertexts. For an example
parameter set with ring dimension N = 216, non-scalar multiplication in HElib
is 7× more expensive than its scalar counterpart.

An approach that follows our cost model is the baby-step/giant-step algo-
rithm for evaluating a set of polynomials with scalar coefficients in a common
non-scalar point [12,20]. It can asymptotically evaluate m degree-n polynomials
with 2

√
mn non-scalar multiplications. Therefore, our implementation uses this

algorithm for polynomial evaluation.
Although not the focus of this paper, digit removal is also costly in terms of

multiplicative depth (which is by definition the maximal number of multiplica-
tions encountered in each possible input-output path). Our approach accelerates
bootstrapping without significantly affecting the multiplicative depth of digit
removal. This is achieved by exclusive use of low-degree polynomials.

4.2 Digit Removal Algorithm

The digit removal procedure removes the v least significant digits of its input
w ∈ Zpe for a given prime number p and v < e. Formally, for odd p, denote the
balanced digits of w ∈ Zpe by wi ∈ {−(p− 1)/2, . . . , (p− 1)/2} such that

w =

e−1∑
i=0

wip
i.

Digit removal is then defined as the map

w 7→
⌊
w

pv

⌉
=

e−1∑
i=v

wip
i−v.

In other words, it consecutively scales and rounds the input. This is necessary in
bootstrapping to remove the noise. To evaluate the procedure homomorphically,
it is written as a series of polynomial evaluations and divisions.

Note that the balanced digit representation only exists for odd prime num-
bers. If p = 2, we need to consider the digits in {0, 1}, which causes the output
of digit removal to be ⌊w/pv⌋. However, bootstrapping requires a rounding op-
eration instead of flooring. This can be fixed by applying the simple equality
⌊x⌉ = ⌊x+ 1/2⌋ just before digit removal.

18 R. Geelen et al.

Existing Digit Removal Algorithms. Digit removal uses the following no-
tation: we write wi,j for any integer of which the least significant digit is wi,
and the next j least significant digits are all zeros. Formally, this means that
wi,j = wi (mod pj+1). Moreover, we require two well-known polynomials:

– The lifting polynomial Fe(X) ∈ Z[X] satisfies Fe(wi,j) = wi,j+1 for j ⩽ e.
In other words, it allows us to compute a valid wi,j+1 from any given wi,j

by zeroing one extra digit.
– The digit extraction polynomial Ge(X) ∈ Z[X] satisfies Ge(wi,0) = wi,e−1,

which allows us to compute a valid wi,e−1 from any given wi,0 by zeroing
e−1 extra digits. In other words, it is a representation of the digit extraction
function ge introduced in Section 3.3.

It can be proven that the above polynomials always exist [8]. Their degrees are
respectively p and (e− 1)(p− 1) + 1.

The high-level idea of digit removal is to use the lifting polynomial and/or
digit extraction polynomial to extract the least significant digit of the input w.
The result is then subtracted from w and divided by p, and this is repeated
until enough digits are removed. A suitable choice of lifting and digit extraction
polynomials ensures a low multiplicative depth of the resulting procedure. Digit
removal is visualized in the trapezoid of Figure 4 for an example parameter set
of e = 5 and v = 3. The procedure works as follows:

– We start from w0,0 = w in the first row, and then compute the numbers on
its right via a series of polynomial evaluations. The choice of polynomials
depends on the chosen algorithm, and is explained later.

– In the second row, we first compute w1,0 = (w−w0,1)/p and then repeat the
same procedure from the first row.

– In the last row, we similarly compute w2,0 = ((w − w0,2)/p − w1,1)/p and
again repeat the same procedure from the first and second row.

– The result is obtained as (((w−w0,4)/p−w1,3)/p)−w2,2/p. This is omitted
from the figure.

In summary, the first digit of each row is computed by subtracting the digits on
the same diagonal and dividing by p. All other digits are obtained via a series
of polynomial evaluations, starting from the first digit in its row. Finally, the
result is obtained by subtracting the last digit of each row from the input and
dividing by p.

w0,0 w0,1 w0,2 w0,3 w0,4

w1,0 w1,1 w1,2 w1,3

w2,0 w2,1 w2,2

Fig. 4: Visualization of digit removal for e = 5 and v = 3.

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 19

Until now, we have only specified operations between rows, which are identical
for all methods that we will discuss (including our own). Existing digit removal
procedures differ in how they compute digits within the same row. Two different
methods have been proposed for this: the first one is from Halevi and Shoup [15],
and the second one from Chen and Han [8].

Halevi/Shoup Digit Removal. This procedure computes each number in the
trapezoid (except for the first one in each row) by applying the lifting polynomial
to the number on its left. In other words, we use the identity wi,j+1 = Fe(wi,j).
The cost is dominated by ev − v(v + 1)/2 evaluations of the lifting polynomial.
The degree of this procedure is roughly pe−1.

Chen/Han Digit Removal. This procedure computes the last number of each
row by applying the digit extraction polynomial to the first number of the same
row. In other words, we use the identity wi,j = Gj+1(wi,0). All other digits are
computed identical to the Halevi/Shoup procedure; but note that some digits
are not used and can therefore be omitted. In the example of Figure 4, we do
not need to compute w0,3, w1,2 and w2,1.

The cost of Chen/Han digit removal is dominated by v(v − 1)/2 evaluations
of the lifting polynomial and v evaluations of the digit removal polynomial.
However, its main advantage is in degree, which is roughly equal to rpv with
r = e− v. During bootstrapping, the parameter r represents the precision of the
plaintext space, i.e. plaintexts are computed modulo pr. As such, the Chen/Han
procedures has asymptotically lower degree than Halevi/Shoup for high-precision
plaintext spaces.

4.3 Faster Digit Removal

In the following sections, we apply five changes to the original Chen/Han digit
removal procedure. The first adaptation relates to digit removal itself, and is a
better method to evaluate the polynomials of each row. The other improvements
follow from polyfunctions theory.

Adapted Row Computation. As already mentioned earlier, digit removal can
be analyzed row per row, where Halevi and Shoup take a different approach than
Chen and Han. In contrast to both these versions, we propose a method that
uses the digit extraction polynomial exclusively, without relying on the lifting
polynomial. Specifically, we compute each element of the trapezoid by applying a
suitable digit extraction polynomial to the first element in the same row. This has
two advantages: firstly, all polynomials can be evaluated simultaneously using
the baby-step/giant-step technique. Due to the 2

√
mn complexity, this leads to

a performance benefit over evaluating all polynomials separately. Secondly, this
method works well in conjunction with our next optimization (finding a more
efficient representation of the digit extraction polynomial).

In instantiating our method, we need to avoid depth increase of the resulting
procedure as much as possible. In particular, we have to be careful with the

20 R. Geelen et al.

path along the evaluated circuit of largest depth, referred to as the critical path.
Any depth increase in the critical path causes a corresponding depth increase in
the entire procedure. The critical path of Chen/Han digit removal is depicted
in Figure 5. It runs via the vertical dimension first, because the depth grows
linearly there and logarithmically in the horizontal dimension.

w0,0 w0,1 w0,2 w0,3 w0,4

w1,0 w1,1 w1,2 w1,3

w2,0 w2,1 w2,2

Fig. 5: Critical path of digit removal for e = 5 and v = 3.

In a first attempt, we can compute each digit as wi,j ← Gj+1(wi,0). In some
cases, however, we can do better by reusing computed elements. In particular, we
can set wi,k ← wi,j for k < j without affecting correctness; however, also this is
not always desirable because it can lead to a depth increase of the digit removal
procedure. For example, it is never beneficial to take wi,1 ← wi,j in terms of
noise growth, because wi,1 lies on the critical path. Our implementation takes
the heuristic approach of computing wi,j ← Gj+1(wi,0) for each value of j + 1
that is a power of 2, and setting wi,j ← wi,j+1 otherwise. This heuristic does
not increase the multiplicative depth compared to Chen/Han digit removal.

Even and Odd Functions. The digit extraction function for p = 2 is an even
function. Following Lemma 5, we can find a representation of degree e + 1 or
less that contains only even exponents. Specifically, we write the digit extraction
polynomial as Ge(X) = F (X2) for some polynomial F (X) of degree ⌊(e+ 1)/2⌋.
Such polynomials can be evaluated more efficiently than regular ones by first
computing X2 before applying a standard baby-step/giant-step method. This
requires asymptotically

√
2mn non-scalar multiplications for evaluating m poly-

nomials of degree n.
Similarly to the case above, the digit extraction function for an odd prime p

is an odd function. Following Lemma 5, we can find a representation of degree
(e − 1)(p − 1) + 1 that contains only odd exponents. Specifically, we write the
digit extraction polynomial as Ge(X) = X ·F (X2) for some polynomial F (X) of
degree (e−1)(p−1)/2. Such polynomials can be evaluated more efficiently than
regular ones, using one the methods of Lee et al. [18]. Their first method omits
unused powers of X in the baby-step, and can be evaluated with optimal mul-
tiplicative depth. Their second method first evaluates F (X2) using the strategy
from above, and then multiplies by X. This increases the depth by at most one.
Both methods require asymptotically

√
2mn non-scalar multiplications for eval-

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 21

uating m polynomials of degree n. All experiments in Section 5 are conducted
with the first variant.

Function Composition. We propose a new method to obtain the digit extrac-
tion function modulo pe by decomposing it as ge = ge,e′ ◦ ge′ for some e′ < e. In
our method, the relevant domain of ge,e′ is therefore no longer Z, but rather the
range of ge′ . Our analysis starts from the following definitions.

Definition 7. Let f ∈ Fpe be a function from Zpe to itself. If there exists a
polynomial F (X) ∈ Z[X] that satisfies F (a) = f(a) (mod pe) for all a ∈ S ⊆ Z,
then f is a polyfunction modulo pe over S and F (X) is a representation of f .

Definition 8. An element O(X) ∈ Z[X] is called a null polynomial modulo pe

over S ⊆ Z if the function f ∈ Fpe that it represents maps every element from S
to zero. In other words, we have that O(a) = 0 (mod pe) for all a ∈ S.

The inner function ge′ can directly be represented as a polynomial in the
even or odd representation. For the outer function ge,e′ , we can use the adapted
definitions from above, where we define the set

S =
{
k + i · pe

′
: − (p− 1)/2 ⩽ k ⩽ (p− 1)/2 and i ∈ Z

}
. (15)

This coincides with the range of ge′ . For p = 2, we slightly need to change the
definition of S and allow 0 ⩽ k ⩽ 1.

Since digit extraction is an idempotent operation, one possible representation
of ge,e′ is Ge(X). But the domain of ge,e′ is restricted to S, so we can find other
representations by adding null polynomials that satisfy Definition 8. Therefore,
our problem reduces to studying null polynomials over S, which we can construct
as follows. Consider

Hj(X) =

{
(X)j if p = 2(
X + p−1

2

)
j

if p is an odd prime.
(16)

To ease notation, we also write H(X) = Hp(X). Moreover, let

(X)i,j =

(
i−1∏
k=0

H(X − k · pe
′
)

)
Hj(X − i · pe

′
) (17)

for 0 ⩽ j < p. Then we can adapt Theorem 1 as follows.

Theorem 4. A polynomial O(X) ∈ Z[X] is a null polynomial modulo pe over
the set S from Equation (15) of degree at most n if and only if there exist ai,j ∈ Z
such that

O(X) =
∑

0⩽d(i,j)⩽n

ai,j ·Oi,j(X), with Oi,j(X) = pmax(e−i·e′−νp(i!),0) · (X)i,j .

In this equation, the function d(i, j) = p · i+ j denotes the degree of Oi,j(X). It
is also implicitly assumed that 0 ⩽ j < p.

22 R. Geelen et al.

Proof. (⇐) Evaluating Equation (17) at any a ∈ S gives

(X)i,j |X=a =

(
i−1∏
k=0

H(a− k · pe
′
)

)
Hj(a− i · pe

′
). (18)

From the definition of H(X) in Equation (16) and the restriction to S, it follows
that H(a) is divisible by pe

′
. In fact, exactly one factor of H(X) will be divisible

by pe
′
when evaluated at X = a. Let X− q be this linear factor where 0 ⩽ q ⩽ 1

(if p = 2) or −(p−1)/2 ⩽ q ⩽ (p−1)/2 (if p is odd), then we can set a−q = α·pe′

for some α. Equation (18) is then divisible by

i−1∏
k=0

(
a− q − k · pe

′
)
=

i−1∏
k=0

(
α · pe

′
− k · pe

′
)
= pi·e

′
· (X)i |X=α.

As already pointed out in Section 2.3, the evaluation of (X)i at any integer is
divisible by pνp(i!). Hence our result is divisible by pi·e

′+νp(i!), and it follows that
Oi,j(X)|X=a is divisible by pmax(e,i·e′+νp(i!)) ⩾ pe. Any Z-linear combination of
these Oi,j(X) is thus a null polynomial modulo pe over S.

(⇒) We prove the following assertion for 0 ⩽ m ⩽ n+ 1 by applying induction
on m:

O(X) =
∑

m⩽d(i,j)⩽n

bi,j · (X)i,j +
∑

0⩽d(i,j)<m

ai,j ·Oi,j(X), (19)

for some ai,j , bi,j ∈ Z.
The base case m = 0 is trivial since the second sum is empty, and the first

sum amounts to writing a polynomial in the basis given by (X)i,j . It is therefore
possible to find appropriate constants bi,j that satisfy Equation (19).

Now suppose that Equation (19) was established for some m < n+1, that is

O(X) = bi′,j′ · (X)i′,j′ +
∑

m<d(i,j)⩽n

bi,j · (X)i,j +
∑

0⩽d(i,j)<m

ai,j ·Oi,j(X),

with d(i′, j′) = m. Evaluating both sides at X = a with a = i′ ·pe′ + j′ (if p = 2)
or a = i′ · pe′ + j′ − (p− 1)/2 (if p is odd) gives

0 = O(a) = bi′,j′ ·
i′−1∏
k=0

(X)p |X=(i′−k)·pe′+j′ · (j
′)! (mod pe).

Taking the p-adic valuation of the right-hand side and following a similar line of
reasoning as in the first part of this proof, we get

νp

bi′,j′ ·
i′−1∏
k=0

(X)p |X=(i′−k)·pe′+j′ · (j
′)!

 = νp(bi′,j′) + i′ · e′ + νp((i
′)!) ⩾ e.

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 23

The constants bi′,j′ are integers, so νp(bi′,j′) ⩾ max(e− i′ · e′ − νp((i
′)!), 0). We

can therefore write bi′,j′ = ai′,j′ ·pmax(e−i′·e′−νp((i
′)!),0) for some ai′,j′ ∈ Z, which

results in

O(X) =
∑

m<d(i,j)⩽n

bi,j · (X)i,j +
∑

0⩽d(i,j)⩽m

ai,j ·Oi,j(X).

This expression replaces m by m+1 in Equation (19) and thereby completes the
induction. The final result follows by setting m = n+ 1 in Equation (19).

To study the degree of null polynomials restricted to the set S, we consider
an adapted variant of the Smarandache function that takes two inputs:

µp(e, e
′) = min{i ∈ N : e′ · i+ νp(i!) ⩾ e}.

Then it is clear that

Oµp(e,e′),0(X) =

µp(e,e
′)−1∏

k=0

H(X − k · pe
′
) (20)

is a monic null polynomial of degree p · µp(e, e
′) ≈ p · ⌈e/e′⌉.

Now we have all ingredients available to find a better representation of ge,e′ .
Starting from Ge(X), we can apply Euclidean division and reduce it modulo the
null polynomial of Equation (20). This results in a representation Ge,e′(X) that
has degree strictly less than p · ⌈e/e′⌉. This can be much smaller than the degree
of Ge(X), which is equal to (e− 1)(p− 1) + 1.

For odd primes p, the function ge,e′ is odd and we can directly choose Ge,e′(X)
with only odd-exponent terms. However, if p = 2 then −S ⊈ S, hence ge,e′ is not
defined for all inputs from −S. The function is therefore not even, and we cannot
directly choose Ge,e′(X) with only even-exponent terms. One possible solution
is to allow −1 ⩽ k ⩽ 1 in Equation (15) instead of 0 ⩽ k ⩽ 1. However, this
increases the degree of the polynomial from Equation (20) by 50%, hence also
the degree of the resulting polynomial representation. We did not incorporate
this solution in our implementation.

Finally, we note that the set of null polynomials modulo pe over S of degree
bound n still forms a pe-ary lattice. This lattice is given by ∑

0⩽d(i,j)⩽n

ai,j ·Oi,j(X) | ai,j ∈ Z

 ⊆ Pn,

where the basis vectors are Oi,j(X).

Asymptotic Complexities. We now analyze the asymptotic depth and time com-
plexities of our composite approach. Specifically, its depth is bounded by

⌈log2 ((p− 1) · (e′ − 1) + 1)⌉+
⌈
log2

(
p ·
⌈ e
e′

⌉)⌉
≈ ⌈log2 e⌉+ 2 · ⌈log2 p⌉,

24 R. Geelen et al.

counting only non-scalar multiplications. The first term comes from ge′ and the
second one from ge,e′ . When compared to the regular Ge(X), there is a depth
increase of ⌈log2 p⌉. Note that we can also apply function composition multiple
times in a row, and then the depth will increase with ⌈log2 p⌉ per stage. In terms
of scalar multiplications, there is a depth increase of 1 for each stage of function
composition. For the sake of noise control, our approach favors a small number
of stages and a low value of p.

Performance-wise, we make a difference between scalar and non-scalar mul-
tiplications. The baby-step/giant-step technique can asymptotically evaluate a
polynomial of degree n with 2

√
n non-scalar and n scalar multiplications. If the

polynomial is even or odd, these numbers reduce to respectively
√
2n and n/2. As

such, we have the following time complexities for the digit extraction function:

– For p = 2, the original method can evaluate the digit extraction polynomial
asymptotically with

√
2e non-scalar and e/2 scalar multiplications. Our com-

posite approach reduces this to respectively
√
2e′+2

√
2e/e′ and e′/2+2e/e′.

The number of non-scalar multiplications is minimal if e′ = 2
√
e, which gives

4
4√
e non-scalar and 2

√
e scalar multiplications. Since p = 2, this analysis as-

sumes that Ge,e′(X) has both even- and odd-exponent terms.
– For larger values of p, the original method can evaluate the digit extraction

polynomial asymptotically with
√
2pe non-scalar and pe/2 scalar multiplica-

tions. Our composite approach reduces this to respectively
√
2p(
√
e′+

√
e/e′)

and (p/2) · (e′ + e/e′). The number of non-scalar multiplications is minimal
if e′ =

√
e, which gives 2

√
2p

4√
e non-scalar and p

√
e scalar multiplications.

Since p ̸= 2, this analysis assumes that Ge,e′(X) has only odd-exponent
terms. Moreover, the degree of Ge(X) is approximated as pe.

In conclusion, our method reduces the number of non-scalar multiplications from
O(√pe) to O(√p 4√

e) asymptotically. The number of scalar multiplications are
reduced from O(pe) to O(p

√
e).

Table 3 shows the number of operations to evaluate digit extraction, com-
paring the Halevi/Shoup and Chen/Han method to our approach. The even and
odd entries represent the standard version (without function composition). The
tuples represent the indices (e, e′, e′′) of the digit extraction function, where e′′

is the index of the innermost function and e is the index of the outermost func-
tion. All tuples are chosen to minimize the number of non-scalar multiplications.
It is clear from the table that our composite method works especially well for
low p and high e, where the performance benefits can be fully exploited without
a significant depth increase. On the other hand, it turns out that even for large
values of e (up to 256), splitting in more than 2 stages does not (much) increase
performance anymore.

Lattices. Another method to find better polynomial representations is via lat-
tice problems. Given a polynomial F (X) and the null lattice, we can solve the
closest vector problem to find a null polynomial O(X) that lies closest to F (X).
The representation F (X) − O(X) is then equivalent to the original one, but it
has smaller coefficients. This leads to less noise growth in FHE ciphertexts.

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 25

Table 3: Non-scalar depth and operation count for the digit extraction function.

p e method depth #(non-scalar mults) #(scalar mults)

2

64

H/S 63 63 0
C/H 6 16 64

Our even 6 12 32
(64, 16) 7 9 15

256

H/S 255 255 0
C/H 8 33 256

Our even 8 25 128
(256, 32) 9 15 31

(256, 67, 16) 10 13 22

3

64

H/S 126 126 0
C/H 7 24 127

Our odd 7 20 64
(64, 16) 9 16 22

(64, 25, 8) 10 15 24

256

H/S 510 510 0
C/H 9 49 511

Our odd 9 38 256
(256, 24) 11 23 40

(256, 92, 8) 12 21 58

This lattice trick can also be combined with all earlier described techniques.
For even or odd functions, we can start from a lattice that only contains even
or odd null polynomials. These can be found via simple linear algebra on the
original null lattice. For the function composition approach, we can start from
the null lattice restricted to the set S as defined earlier.

Example 4. The advantage of using lattices is demonstrated on the bit extraction
polynomial. Our method was able to find the following representations for p = 2:

– Bit extraction modulo 28 can be done with G8(X) = 13X8 − 12X6.
– Starting from the result modulo 28, bit extraction modulo 225 can be done

with G25,8(X) = 6X5 − 15X4 + 10X3.

Both polynomials have remarkably small coefficients, since they are defined mod-
ulo 28 and 225 respectively.

Multivariate Approach. We considered one more strategy to compute better
polynomial representations based on multivariate equations. The idea is to write
out consecutive digit extraction polynomials in a pattern that minimizes the
non-scalar multiplications. This gives a system of non-linear equations, which
can be solved for the coefficients of the digit extraction polynomial. Although
this strategy does not generalize to higher parameters, we were able to find bit
extraction polynomials for e ⩽ 16 that can be evaluated with ⌈log2 e⌉ non-scalar
multiplications, which is provably minimal. These instances are listed in Table 4.

26 R. Geelen et al.

Table 4: Recursive evaluation of the bit extraction polynomial.

e Ge(X)

2 X2

4 G2(X)2

8 112 ·G2(X) + (94 ·G2(X) + 121 ·G4(X))2

16 11136 ·G4(X) + (28504 ·G2(X) + 8968 ·G4(X)−G8(X)) ·
(15364 ·G4(X) + 14115 ·G8(X))

5 Implementation and Performance

We implemented our new digit removal procedure for the BGV scheme in HElib.
For two reasons, we did not implement it for the BFV scheme: firstly, there is no
software library that supports BFV bootstrapping; secondly, BGV and BFV are
known to be equivalent in terms of bootstrapping, and only differ in some minor
implementation details. Therefore, any performance discrepancy would reflect
the underlying arithmetic operations and not our improvements.

We give experimental results for general bootstrapping in Table 5 and for
thin bootstrapping in Table 6. The tables show capacity (number of bits in the
noise) and execution time. The factorization of the parameter m determines the
complexity of the linear maps (explained in [15]), but is not relevant for digit
removal. The regular plaintext modulus is pr, which is augmented to pe during
bootstrapping. The function composition method was not used for these tables,
since its effect is thoroughly analyzed in Section 5.1. All experiments were run
on a single-threaded Intel® CoreTM i7-6700HQ CPU with 8 GB memory and
Ubuntu 22.04.1 LTS installed.

The “improvement” in the last row of Tables 5 and 6 was computed in the
amortized sense, i.e. as the ratio

improvement =
old execution time
new execution time

· new remaining capacity
old remaining capacity

.

We achieve a significant improvement for all tested parameter sets, ranging from
1.3× to 2.6×. The speedups are higher for general bootstrapping than for thin
bootstrapping. The reason is that the general version requires multiple digit
removals, whereas the thin version requires only one. In terms of noise capacity,
the advantage also tends to be in our direction. This is likely a consequence of
two facts: we replaced the lifting polynomial by the digit extraction polynomial
of lower degree; and the coefficients of our polynomials are smaller due to the
lattice trick.

5.1 Function Composition

Our implementation also includes the function composition approach, which is
asymptotically cheaper for high-precision plaintext spaces (i.e. large values of r

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 27

and e). We demonstrate its benefit in Table 7 for plaintext moduli up to 259. For
technical reasons (not inherent to the BGV scheme), HElib does not support
more than 59 bits of precision, so we could not test with higher values than this.
Furthermore, bootstrapping is only supported for pe < 230 [15], so it is impossible
to run bootstrapping with the parameter sets from Table 7. We therefore show
the results for digit extraction only. Finally, note that the parameters e and e′

have the same meaning as in Section 4.3.

Table 5: General bootstrapping in HElib (original/ours).

Cyclotomic index m 127 · 337 101 · 451 43 · 757
Number of slots 2016 1000 2268
Params (p, r, e) (2, 8, 15) (17, 4, 6) (127, 2, 4)

Security level (bits) 81 78 66
Number of digit removals 21 40 14

Capacity
(bits)

Initial 1151 1136 1134
Linear maps 100 147 140
Digit extract 307/298 541/514 671/712
Remaining 744/753 448/475 323/282

Execution
time (sec)

Linear maps 134 150 290
Digit extract 2014/743 2665/1879 1407/863
Total 2248/877 2815/2029 1697/1153

Improvement 2.6× 1.5× 1.3×

Table 6: Thin bootstrapping in HElib (original/ours).

Cyclotomic index m 127 · 337 101 · 451 43 · 757
Number of slots 2016 1000 2268
Params (p, r, e) (2, 8, 15) (17, 4, 6) (127, 2, 4)

Security level (bits) 81 78 66

Capacity
(bits)

Initial 1151 1136 1134
Linear maps 137 174 164
Digit extract 267/260 445/435 604/640
Remaining 747/754 517/527 366/330

Execution
time (sec)

Linear maps 35 32 31
Digit extract 105/35 65/46 101/64
Total 140/70 97/78 132/95

Improvement 2.0× 1.3× 1.3×

The table has four values per column: the original built-in implementation;
our standard method without function composition; our method with partial
function composition; and our method with full function composition. The third

28 R. Geelen et al.

value of each column (partial function composition) is generated by applying
function composition to each row of Figure 5, except for the last one. The mo-
tivation for this is as follows. Since the bottom right element of Figure 5 lies on
the critical path, it determines the multiplicative depth of digit removal. Turning
this argument around, we can reduce the depth by not applying function compo-
sition in the last row. In other words, there is a depth-efficiency trade-off, where
function composition favors efficiency and the standard method favors depth.

The “speedup” in the last row of Table 7 was computed as the ratio between
the original approach and our three methods:

speedup =
old execution time
new execution time

.

This cost measure ignores the remaining noise capacity, because we cannot run
the full bootstrapping procedure and therefore don’t have this number available.
Again, we achieve major speedups compared to HElib’s built-in digit removal,
ranging from 1.6× to 2.8×. Since digit removal is the main bottleneck, boot-
strapping would exhibit almost identical speedups.

Table 7: High-precision digit removal in HElib (original/our standard
method/partial function composition/full function composition).

Cyclotomic index m 42799 63973
Number of slots 2016 2592
Params (p, r, e, e′) (2, 51, 59, 16) (3, 32, 37, 6)

Security level (bits) 80 77
Capacity
(bits)

Initial 1137 1335
Digit extract 1049/991/970/1006 1142/1047/1103/1170

Execution time (sec) 180/100/67/64 191/151/124/119
Speedup 1.8×/2.7×/2.8× 1.3×/1.5×/1.6×

6 Conclusion

Although polynomial functions over rings are commonly used in cryptography,
their properties are currently not well understood. This paper contributed to the
analysis of such polyfunctions, including existence, computation and equivalence
of polynomial representations, among other things.

Our theory is directly applicable to FHE bootstrapping: we found sparse rep-
resentations (either even or odd) for the digit extraction function, which is the
bottleneck in bootstrapping; we also proposed a new method to decompose digit
extraction into multiple stages, each of which can be evaluated with a polynomial
of low degree. Altogether, we observed speedups of up to 2.6× for bootstrapping
and up to 2.8× for digit removal, including our function composition approach.

On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 29

Finding the optimal way to evaluate the polynomials during bootstrapping, tak-
ing into account both noise growth and execution time, remains an interesting
open problem.

Acknowledgements. This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) under Contract No.
HR0011-21-C-0034. The views, opinions, and/or findings expressed are those
of the authors and should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Government. This work
was additionally supported in part by CyberSecurity Research Flanders with
reference number VR20192203, and in part by the Research Council KU Leu-
ven grant C14/18/067. Robin Geelen is funded in part by Research Foundation –
Flanders (FWO) under a PhD Fellowship fundamental research (project number
1162123N).

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Annual Cryptology Conference. pp. 1–20. Springer (2013)

2. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18-20, 1967, spring joint com-
puter conference. pp. 483–485 (1967)

3. Araki, T., Barak, A., Furukawa, J., Keller, M., Lindell, Y., Ohara, K., Tsuchida,
H.: Generalizing the spdz compiler for other protocols. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. pp. 880–
895 (2018)

4. Bhargava, M.: P-orderings and polynomial functions on arbitrary subsets of
dedekind rings. Journal für die reine und angewandte Mathematik (Crelles Jour-
nal) 1997(490-491), 101–128 (1997), https://doi.org/10.1515/crll.1997.490.101

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Annual Cryptology Conference. pp. 868–886. Springer (2012)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012: 3rd Innova-
tions in Theoretical Computer Science. pp. 309–325. Association for Computing
Machinery (Jan 2012). https://doi.org/10.1145/2090236.2090262

7. Carlitz, L.: Functions and polynomials (mod pn). Acta Arithmetica 9(1), 67–78
(1964), http://eudml.org/doc/207463

8. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE
bootstrapping. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2018, Part I. Lecture Notes in Computer Science, vol. 10820,
pp. 315–337. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78381-9_12

9. Chen, Z.: On polynomial functions from Zn to Zm. Discrete Mathematics 137(1-3),
137–145 (1995)

10. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/2012/144

https://doi.org/10.1515/crll.1997.490.101
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
http://eudml.org/doc/207463
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
http://eprint.iacr.org/2012/144

30 R. Geelen et al.

11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing. pp. 169–178.
ACM Press (May / Jun 2009). https://doi.org/10.1145/1536414.1536440

12. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Annual international conference on the theory and applications of
cryptographic techniques. pp. 129–148. Springer (2011)

13. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key Cryp-
tography – PKC 2012. pp. 1–16. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

14. Guha, A., Dukkipati, A.: An algorithmic characterization of polynomial functions
over Zpn . Algorithmica 71(1), 201–218 (2015)

15. Halevi, S., Shoup, V.: Bootstrapping for helib. Journal of Cryptology 34(1), 1–44
(2021)

16. Keller, G., Olson, F.R.: Counting polynomial functions (mod pn). Duke Mathe-
matical Journal 35(4), 835–838 (1968)

17. Kempner, A.J.: Polynomials and their residue systems. Transactions of the Amer-
ican Mathematical Society 22(2), 240–288 (1921)

18. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: Optimal minimax polynomial
approximation of modular reduction for bootstrapping of approximate homo-
morphic encryption. Cryptology ePrint Archive, Paper 2020/552 (2020), https:
//eprint.iacr.org/archive/2020/552/20200803:084202

19. Li, S.: Null polynomials modulo m. arXiv preprint math/0510217 (2005)
20. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-

essary to evaluate polynomials. SIAM Journal on Computing 2(1), 60–66 (1973)
21. Singmaster, D.: On polynomial functions (mod m). Journal of Number Theory

6(5), 345–352 (1974)
22. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs, codes

and cryptography 71(1), 57–81 (2014)
23. Specker, E., Hungerbühler, N., Wasem, M.: The ring of polyfunctions over Z/nZ

(2021)

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://eprint.iacr.org/archive/2020/552/20200803:084202
https://eprint.iacr.org/archive/2020/552/20200803:084202

	On Polynomial Functions Modulo pe and Faster Bootstrapping for Homomorphic Encryption

