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Abstract. We share two small but general observations on the vector-
ization problem for group actions, which appear to have been missed
by the existing literature. The first observation is pre-quantum: explicit
examples show that, for classical adversaries, the vectorization problem
cannot in general be reduced to the parallelization problem. The second
observation is post-quantum: by combining a method for solving systems
of linear disequations due to Ivanyos with a Kuperberg-style sieve, one
can solve the hidden shift problem, and therefore the vectorization prob-
lem, for any finite abelian 2tpk-torsion group in polynomial time and
using mostly classical work; here t, k are any fixed non-negative integers
and p is any fixed prime number.
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1 Introduction

This paper discusses two unrelated aspects of the vectorization problem for
abelian group actions, which specializes to the classical discrete logarithm prob-
lem in the case of exponentiation in finite cyclic groups.

The first formal study of cryptographic group actions was carried out in 1990
by Brassard and Yung [8], but non-discrete-logarithm-based examples go back,
at least, to the work of Brassard and Crépeau from 1986 [6]. However, none of
the early concrete instances were genuinely novel, perhaps with the exception of
finite symmetric groups (or abelian subgroups thereof) acting on sets of graphs,
whose vectorization problem is just the graph isomorphism problem, famously
solved by Babai in 2017 [4, 19]. This situation changed with the independent
works of Couveignes [12] and Rostovtsev–Stolbunov [30, 35], who proposed to
use ideal-class groups acting on sets of elliptic curves over finite fields through
isogenies. Also CSIDH [10] fits within this framework. It is Couveignes who
coined the term vectorization. The isogeny-based construction attracted a lot of
attention, lately, because the corresponding vectorization problem is supposed
to be hard even in the presence of quantum adversaries. At the same time,
being an abelian group action, it inherits many of the features of the celebrated
exponentiation map.

To date, the list of cryptographically interesting group actions remains rather
limited, but since it concerns such a basic and flexible concept, it is well imagin-
able that new constructions remain to be discovered, both for use in a classical



and in a (post-)quantum context, e.g., see [22] for a candidate based on ten-
sors. General statements on the hardness of the vectorization problem help in
understanding the fundamental features and limitations of group-action-based
cryptography. We present two such statements, which are small addenda to the
existing literature, including surveys such as [1, 16, 34], but which appear to
have been missed and therefore seem worth reporting.

A pre-quantum observation. Our first statement is classical and negative
in nature: very simple constructions show that, classically, one cannot expect
in general that the vectorization problem for an abelian group action reduces
in polynomial time to the parallelization problem (unless in the event of cat-
aclysmic discoveries like P=NP). This contrasts with the post-quantum setting,
where the vectorization and parallelization problems become computationally
equivalent [15, 26]. Our conclusion also contrasts with the discrete logarithm
problem, which is believed to be no harder than the computational Diffie–
Hellman problem in view of the Maurer–Wolf reduction [25]. It had already
been pointed out, e.g. by Smith [34, §11] and Gnilke–Zumbrägel [16, p3], that
Maurer–Wolf does not extend to the group action framework. But, as far as we
are aware, the existence of alternative classical reductions was not ruled out yet.
To the contrary: it has been conjectured that such a reduction should exist, see
e.g. [11, §1.2]. The current work refutes this.

A post-quantum observation. Our second observation revisits [9, §3], where
it was shown how to combine a classical (= pre-quantum) method due to Friedl et
al. [14, §3] for solving systems of linear disequations modulo p with a Kuperberg-
style sieve [23]. This led to an easy polynomial-time quantum algorithm which
solves the hidden shift problem, and therefore the vectorization problem, for
groups of the form

Z2t1 × Z2t2 × · · · × Z2tm × Znp , + (1)

while relying mostly on classical computations; in particular, the requirements
in terms of quantum memory are very limited. Here, p is a fixed prime number
and the exponents ti are bounded by a fixed integer t, but n and m can vary
freely. For t = 1 and n = 0 the algorithm specializes to Simon’s method [33].

In [9] it was left unnoticed that a generalization of the method of Friedl et
al. due to Ivanyos [21], capable of solving systems of linear disequations modulo
powers of p, is equally compatible with Kuperberg’s sieve. This allows one to
extend the algorithm from (1) to groups of the form

Z2t1 × Z2t2 × · · · × Z2tm × Zpk1 × Zpk2 × · · · × Zpkn , + (2)

for any fixed prime number p and any number of exponents ti, resp. ki, that are
bounded by fixed integers t, resp. k. Without affecting the polynomial runtime
and the memory-efficiency, that is.

Moreover, as in the case of [9], this extended algorithm can be combined
with Kuperberg’s collimation sieve [24, 28], yielding the following refinement
of [9, Thm. 1.2]:
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Theorem 1. For any fixed prime number p and non-negative integers t, k, there
exists a quantum algorithm for solving the hidden shift problem in any finite
abelian group G,+ with time, query and QROM-complexity

poly(log |G|) · 2O(
√

log |2tpkG|)

and requiring storage of poly(log |G|) qubits.

Here QROM stands for quantum read-only memory; this is also known as quan-
tum random-access classical memory (QRACM), see [24, §2].

Paper organization. In Section 2 we quickly recall the vectorization and par-
allelization problems as well as their connection to the abelian hidden shift
problem. In Section 3 we present examples of group actions proving the non-
equivalence between vectorization and parallelization in a classical context. We
devote a separate Section 4 to solving systems of linear disequations, because a
secondary aim of our paper is to make this interesting problem (which is open
for moduli as small as 6) more widespread in the cryptographic community. In
Section 5 we describe our method for finding hidden shifts in finite abelian 2tpk-
torsion groups, while spending time on recalling the details of its most important
plug-in: Ivanyos’ algorithm from [21]. We take the opportunity to correct a mi-
nor error and to considerably sharpen the estimated runtime. The final Section 6
gives some concluding remarks.
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//www.ams.org//profession/leaders/CultureStatement04.pdf. The paper
was written in the context of the second-listed author’s participation in the
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Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement ISOCRYPT - No. 101020788), by
CyberSecurity Research Flanders with reference number VR20192203, and by
the Research Council KU Leuven under grant number C14/18/067.

2 Vectorization, parallelization and hidden shift

Let G,+ be an abelian group. An action of G on a finite set X is a map

? : G×X → X : (g, x) 7→ g ? x

satisfying 0 ? x = x and g1 ? (g2 ? x) = (g1 + g2) ? x for all g1, g2 ∈ G and all
x ∈ X. Throughout, we make the implicit assumption that the action is only
ever evaluated in elements of G and X that admit an efficient representation, and
that computing this evaluation is efficient as well. The stabilizer of an element
x ∈ X is the subgroup St(x) = { g | g ? x = x } ⊆ G. The orbit of x ∈ X is
the subset Or(x) = { g ? x | g ∈ G } ⊆ X and as soon as G is finite we have
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|Or(x)| · |St(x)| = |G| for all x ∈ X. Two orbits either coincide or are disjoint,
and together the orbits partition X. All elements within one orbit have the
same stabilizer. The action is called free if all stabilizers are trivial. It is called
transitive if there is one orbit, only.

Definition 2. The vectorization problem for ? is about explicitly determining
g mod St(x) upon input of x, g ? x ∈ Or(x).

One basic example of a group action is the exponentiation map

Z∗n ×X : (g, x) 7→ xg

in a finite cyclic group X of order n. Here, the vectorization problem specializes
to the discrete logarithm problem. Note that the generators of X form one orbit,
and when restricting the action to this orbit it becomes free and transitive.

The classical Diffie–Hellman key exchange protocol naturally generalizes from
exponentiation in cyclic groups to arbitrary abelian group actions. Indeed, after
Alice and Bob agree on a base element x ∈ X, Alice acts with a secret g0 ∈ G on
x and sends the result g0 ? x to Bob, and likewise Bob acts with a secret g1 ∈ G
on x and sends g1 ? x to Alice. Both parties can now compute

(g0 + g1) ? x = g1 ? (g0 ? x) = g0 ? (g1 ? x), (3)

which can be fed to a key derivation function; note that (3) uses the assumption
that G is abelian. Breaking this protocol directly relates to:

Definition 3. The parallelization problem for ? is about explicitly determining
(g0 + g1) ? x upon input of x, g0 ? x, g1 ? x ∈ Or(x).

The parallelization problem straightforwardly reduces to the vectorization prob-
lem but the converse reduction, as we will see in Section 3, does not apply in
general. We recall that this story changes in the presence of quantum adversaries,
where the converse reduction does apply [15, 26].

When studying the hardness of vectorization and parallelization, one can
assume that the action is free and transitive. Indeed, it clearly suffices to assume
transitivity because the vectorization problem and the parallelization problem
are formulated within one orbit. But then all x ∈ X have the same stabilizer
S, so we can assume freeness by acting with G/S rather than with G. Free and
transitive actions necessarily satisfy |G| = |X|.

Remark 4. The explicit determination of the stabilizer S can be viewed as an
instance of the hidden subgroup problem in the abelian group G. Quantumly, this
is easy using Shor’s algorithm [32], but classically this may be a hard problem.
Nevertheless, it is possible to compute in G/S without knowing S explicitly,
because testing equivalence mod S is easy: g0−g1 ∈ S if and only if g0?x = g1?x
for whatever x ∈ X (assuming transitivity).

For free actions, the vectorization problem can be viewed as an instance of:
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Definition 5. Given oracle access to injective functions f0, f1 : G → X such
that there exists an s ∈ G such that for all g ∈ G we have f0(g) = f1(g+ s), the
(abelian) hidden shift problem is about finding s.

Indeed, from an input x, s ? x to the vectorization problem we can construct the
functions fi : G→ X as

f0 : g 7→ g ? (s ? x),
f1 : g 7→ g ? x,

which hide the shift s. Assuming access to an oracle for evaluating the func-
tions f0, f1 on arbitrary superpositions over elements of G, there exist quantum
algorithms due to Kuperberg [23, 24] for solving the hidden shift problem in
subexponential time

2O(
√

log |G|) (4)

as well as subexponential quantum space; more precisely the algorithm from [24]
requires storage of poly(log |G|) qubits and an amount (4) of QROM. Kuperberg
studied this in the context of the hidden subgroup problem in the associated
dihedral group Dih(G), which turns out to be equivalent with the hidden shift
problem in G, see [23, §6].

Remark 6. There exist non-injective versions of the abelian hidden shift problem,
where the problem of breaking the Legendre pseudo-random function is arguably
the best-known instance in cryptography. Such versions may be easier to tackle,
quantumly, and will not be considered here; see [18, Ch. 7].

While Kuperberg’s algorithm admits variants with different time-memory
trade-offs, see e.g. [29], none of them breaks through the L|G|(1/2)-barrier in
general. This does not mean that better quantum algorithms are not possible
for special classes of G. Famously, this is true for 2-torsion groups, which can
be handled in polynomial time using Simon’s method [33]. This generalizes to
2t-torsion for any fixed t using Kuperberg’s sieve, see [5]. In a different direction,
it generalizes to p-torsion for any fixed prime p using the aforementioned method
due to Friedl et al. [14]. The latter authors also present a self-reducibility tool,
allowing for a polynomial-time quantum solution to the abelian hidden shift
problem in finite abelian groups of any fixed exponent r. However, this requires
a quantization of otherwise classical post-processing steps, resulting in more
complicated quantum algorithms with more restrictive memory requirements;
in particular the self-reducibility does not seem suitable for obtaining memory-
friendly statements like Theorem 1. As mentioned, in [9, §3] it was shown that
for r = 2tp there exists an easy workaround; we revisit this in Section 5, where
we generalize it to r = 2tpk.

3 Non-equivalence of vectorization and parallelization

We claim that the vectorization problem and the parallelization problem are not
equivalent as soon as one believes in the existence of one-way group homomor-
phisms, see e.g. [7, §5]. This does not contradict the results from [15, 26] because,
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in the presence of quantum adversaries, no such one-way homomorphisms exist.
But pre-quantumly we have several very classical candidates.

The construction is really simple: consider two finite abelian groupsG0,+ and
G1,+ along with an easy-to-compute but hard-to-invert group homomorphism
f : G0 → G1. Then the map

? : G0 ×G1 → G1 : (g, x) 7→ g ? x := x+ f(g)

is a well-defined action of G0 on G1. The vectorization problem amounts to
extracting g from a pair x, x+ f(g), which is of course equivalent to extracting
g from f(g): this is hard by assumption. On the other hand, the parallelization
problem is about computing x+f(g0 +g1) = x+f(g0)+f(g1) from x, x+f(g0)
and x+ f(g1), which is trivial.

Example 7. One classical example of a one-way group homomorphism is the
squaring map

Z∗N , · → Z∗N , · : x 7→ x2

in the unit group of the ring of integers modulo an RSA modulus N . So the
vectorization problem for the corresponding group action (Z∗N × Z∗N ) → Z∗N :
(g, x) 7→ g2x is hard, while parallelization is trivial.

Example 8. A free and transitive example can be obtained from exponentiation

Zn,+ → X, · : g 7→ αg

in a cyclic order-n group X = 〈α〉 in which the discrete logarithm problem is be-
lieved to be hard. The vectorization problem for the corresponding group action
(Zn ×X)→ X : (g, x) 7→ xαg is hard, and parallelization is straightforward.

Interestingly, Example 7 may have been the first non-exponentiation based
group action that saw study in the context of cryptography [6], yet for the
purpose of bit commitment rather than key exchange.

4 Systems of linear disequations and the standard
approach to hidden shift finding

A system of linear disequations over an integer residue ring Zr, for some r > 1,
is a system of the form

a11s1 + a12s2 + . . .+ a1nsn 6= b1,
a21s1 + a22s2 + . . .+ a2nsn 6= b2,

...
am1s1 + am2s2 + . . .+ amnsn 6= bm,

with known aij , bi ∈ Zr, where one wants to solve for s1, . . . , sn. It is an intriguing
(and not very widespread) open problem how to do this in general. Of course,
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for r = 2 one just faces a system of linear equations in disguise. More generally,
for r = p a prime number, one can re-express every disequation as

(ai1s1 + ai2s2 + . . .+ ainsn − bi)p−1 = 1, (5)

thus obtaining a system of non-linear (as soon as p > 2) equations, which can be
fed to a Gröbner basis calculation. Alternatively, if we have unlimited access to
random disequations then we can solve this by linearization: this is the approach
from [14] and it runs in polynomial time for fixed p. This can be generalized to
r = pk for any k ≥ 1, following Ivanyos [21], but away from prime powers we are
clueless about how to approach this problem. Even seemingly harmless rings such
as Z6

∼= Z2×Z3 remain unsolved. Let us stress that the algorithms from [14, 21]
are pre-quantum. This being said, we do not know of quantum algorithms that
perform significantly better than their pre-quantum counterparts (apart from
speed-ups of Grover type [17] in search steps).

Systems of linear disequations naturally show up in the “standard” quantum
approach to solving the hidden shift problem in a finite abelian group G,+,
which can always be assumed to be of the form

Zr1 × Zr2 × · · · × Zrn , +

for integers ri. This standard approach works by generating many phase vectors:

Definition 9. Given a finite abelian group G, let G∨ denote the dual group.
Then for any χ ∈ G∨ and s ∈ G the quantum state

|Ψs(χ)〉 =
1√
2

(|0〉+ χ(s) |1〉)

is called a phase vector over G.

Within our context, the value of s = (s1, s2, . . . , sn) will always be the hidden
shift we are looking for: therefore we drop the subscript and just write |Ψ(χ)〉.
Creating such a phase vector for some uniformly random χ ∈ G∨ is standard
practice and comes at the cost of two quantum Fourier transforms, one call to f0
and one call to f1 [23, 29]. We treat this as a black box and assume throughout
that we have oracle access to phase vectors. We stress that the result of an oracle
call is |Ψ(χ)〉 with χ a uniformly random, known element of G∨. The amplitude
χ(s) is unknown, though.

Phase vectors serve as input to the hidden shift finding algorithms due to
Kuperberg and others [23, 24, 28, 29]. These algorithms proceed by gradually
converting the phase vectors into more interesting ones through a process of
combination and measurement; a basic version of Kuperberg’s sieve will appear
as a subroutine in Section 5.

For now, we just note that when measuring |Ψ(χ)〉 in the |±〉-basis, where as
usual

|±〉 =
|0〉 ± |1〉√

2
,
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we measure ‘−’ with probability |1−χ(s)|2/4. Upon such a measurement we can
conclude that χ(s) 6= 1. Writing

χ : (g1, g2, . . . , gn) 7→ exp
(

2πi
(a1g1
r1

+
a2g2
r2

+ . . .+
angn
rn

))
for known ai, this translates into a disequation

r

r1
a1s1 +

r

r2
a2s2 + · · ·+ r

rn
ansn 6≡ 0 mod r (6)

where r = lcm(r1, r2, . . . , rn) denotes the exponent of G. Querying many phase
vectors leads to a large system of linear disequations, unless s = (0, 0, . . . , 0) in
which case one never measures ‘−’; but this will be noticed quickly (or it can
be tested beforehand). This means that we have effectively reduced the hidden
shift problem over G to the problem of solving a system of linear disequations.
A more formal discussion will be given in Section 5.2.

Remark 10. Clearly, disequations of the form (6) are not arbitrary. The presence
of the cofactors r/ri is totally natural, since we can only expect to determine
si modulo ri. But we also see that each disequation is homogeneous, i.e., all
constants bi are zero. Consequently, this approach will only allow to determine
(s1, s2, . . . , sn) up to multiplication with an unknown scalar λ ∈ Z∗r . This means
that, after solving the system, one is still left with the task of determining this
scalar, e.g., by exhaustive search.

Unfortunately, as mentioned before, the only moduli r for which we have a
solution with polynomial run-time (for fixed r) are prime powers. Our objective
however lies in solving the hidden shift problem and, as shown in [9, §3], it is
possible to get rid of powers of 2 using a Kuperberg-style sieve prior to running
the above reduction. This is recalled, in a generalized setting, in the next section.

5 Finding hidden shifts in 2tpk-torsion groups

This section covers our algorithm for solving the hidden shift problem in finite
abelian 2tpk-torsion groups. It is an adaptation of [9, §3], where we aim for
an incorporation of Ivanyos’ algorithm rather than that of Friedl et al. We can
assume that our group G,+ is of the form (2) with t = t1 ≥ . . . ≥ tm ≥ 1, k =
k1 ≥ . . . ≥ kn ≥ 1 for integers m,n ≥ 0, and p an odd prime. The hidden shift
s is written as s = (s′1, . . . s

′
m, s1, . . . , sn) with s′i ∈ Z2ti and si ∈ Zpki .

5.1 Kuperberg sieve

The goal of this first part of the algorithm is to turn phase vectors over G into
phase vectors over the subgroup H = Zpk1 × . . . × Zpkn . This is done through
Kuperberg’s process of combining phase vectors, which is about merging |Ψ(χ1)〉
and |Ψ(χ2)〉 into |Ψ(χ1χ

±
2 )〉, as follows:
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1. Tensor the two phase vectors together:
|Ψ(χ1)〉 |Ψ(χ2)〉 = 1

2 (|00〉+ χ2(s) |01〉+ χ1(s) |10〉+ χ1(s)χ2(s) |11〉.
2. Perform a CNOT gate on the second qubit:

1
2 (|00〉+ χ2(s) |01〉+ χ1(s) |11〉+ χ1(s)χ2(s) |10〉.

3. Measure the second qubit:
|Ψ(χ1χ

±
2 )〉 = 1√

2
(|0〉+ χ1(s)χ±2 (s) |1〉).

More generally, one can combine q phase vectors |Ψ(χ1)〉 , |Ψ(χ2)〉 . . . , |Ψ(χq)〉
into one phase vector |Ψ(χ1χ

±
2 . . . χ

±
q )〉 by repeating this procedure q − 1 times.

We can use this to obtain phase vectors that are `-divisible for increasing
values of `, in the following sense:

Definition 11. If the character χ ∈ G∨ satisfies

χ2t−`pk = 1

for some 0 ≤ ` ≤ t, then the phase vector |Ψ(χ)〉 is said to be `-divisible.

More precisely, if we let r` denote the largest positive integer for which tr` ≥ t−`,
then one can combine r` + 1 `-divisible phase vectors

|Ψ(χ1)〉 , |Ψ(χ2)〉 , . . . , |Ψ(χr`+1)〉

into a single (`+ 1)-divisible phase vector. Indeed, write every χi as

(g1, . . . , gm, h1, . . . , hn) 7→ exp
(

2πi
(ai,1g1

2t1
+. . .+

ai,mgm
2tm

+
bi,1h1
pk1

+. . .+
bi,nhn
pkn

))
By assumption, for all 1 ≤ j ≤ r` we have 2tj−t+` | ai,j . Setting

ci,j := ai,j/2
tj−t+` mod 2

thus yields r` + 1 vectors of the form (ci,1, . . . , ci,r`) for 1 ≤ i ≤ r` + 1. Further-
more, these vectors are linearly dependent in Z2, which means that there are
coefficients d1, . . . , dr`+1 ∈ Z2 such that

d1c1,j + . . .+ dr`+1cr`+1,j = 0 mod 2

for all 1 ≤ j ≤ r`. We can calculate these coefficients classically, and combine
the phase vectors |Ψ(χi)〉 for which di = 1, in the sense of Kuperberg. The result
is a phase vector |Ψ(χ)〉 for which

χ : (g1, . . . , gm, h1, . . . , hn) 7→ exp
(

2πi
(a1g1

2t1
+ . . .+

amgm
2tm

+
b1h1
pk1

+ . . .+
bnhn
pkn

))
is such that the coefficients aj satisfy 2 | aj

2tj
2t−` for 1 ≤ j ≤ r`. This implies that

the phase vector is in fact (` + 1)-divisible. Note that in the procedure above,
the phase vectors |Ψ(χi)〉 for which di = 0 need not be discarded: they can be
kept aside for possible later use.

Pipelining this procedure for ` = 0, 1, . . . , t − 1 eventually yields a phase
vector |Ψ(χ)〉 where χ ∈ G∨ is such that all the coefficients a1, . . . , am are zero.
This means that χ depends only on h1, . . . , hn. We can therefore interpret this
phase vector as a phase vector over H.
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5.2 Disequations

Now that we have a procedure returning phase vectors over H = Zpk1×. . .×Zpkn ,
we can use these for generating linear disequations over Zpk along the lines
of Section 4. Here we discuss this more formally, while explaining how these
disequations can be solved for (s1, . . . , sn). This follows Ivanyos [21], but we
take the opportunity to fix a small error in step (a) and to provide a sharper
degree bound in step (d), leading to an improved complexity estimate. We stress
that these steps are entirely classical. We need the notion of near uniformity :

Definition 12. Given a probability distribution over a finite set A along with
a subset A′ ⊆ A, we say that the distribution is nearly uniform over A′ with
tolerance c ≥ 1 if Pr(a) = 0 when a ∈ A \A′ and

1

c|A′|
≤ Pr(a) ≤ c

|A′|

when a ∈ A′.

For any finite abelian group G,+ and tolerance c ≥ 1, we formally define
the problems RLD-s(G,c) and RLD-d(G, c), which are the search resp. decision
versions of the homogeneous random linear disequations problem:

Definition 13. RLD-s(G, c) is about finding any generator of a secret cyclic
subgroup 〈s〉 ⊆ G, given access to samples from a nearly uniform distribution
with tolerance c over the subset {χ ∈ G∨ |χ(s) 6= 1 } ⊆ G∨.

It should be clear from the definition that, indeed, one can only hope to find a
generator of 〈s〉 rather than s itself. This directly relates to the fact that the
corresponding linear disequations are homogeneous, see Remark 10.

Definition 14. Given unlimited access to characters χ ∈ G∨ which are consis-
tently sampled from either

– a nearly uniform distribution with tolerance c over {χ ∈ G∨ |χ(s) 6= 1 } for
some fixed s ∈ G \ {0}, or

– a nearly uniform distribution with tolerance c over the entirety of G∨,

the RLD-d(G, c) problem is about deciding which is the case.

Of course, in our case, we will apply these definitions to the group

H = Zpk1 × · · · × Zpkn ,

and the element s in the above problems will take the value of the corresponding
component (s1, . . . , sn) of our hidden shift.
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(a) From finding (s1, . . . , sn) to RLD-s(H, 3) To sample from

H∨s1,...,sn = {χ ∈ H∨ |χ(s1, . . . , sn) 6= 1 },

we use the following method. First, using the Kuperberg sieve from Section 5.1,
we generate a phase vector |Ψ(χ)〉 over H, where it is easy to check that χ ∈ H∨
is uniformly random. We then measure this phase vector in the |±〉-basis. When
measuring ‘+’ we reject the sample and start over. When measuring ‘−’, we
return χj for some uniformly random j ∈ {0, 1, . . . , pk − 1} that is coprime to p.

Note that the overall probability of measuring ‘−’ is

1

|H|
∑
χ∈H∨

|1− χ(s1, . . . , sn)|2

4
=

1− δ(s1,...,sn),(0,...,0)
2

.

If we fail to measure ‘−’ for (say) 128 consecutive times then with overwhelming
probability (s1, . . . sn) = (0, . . . , 0) and we are done. Else, it follows from Bayes’
theorem that the above procedure samples χ ∈ H∨ with probability

1

2ϕ(pk)|H|

pk−1∑
j=0

gcd(j,p)=1

|1− χj(s1, . . . , sn)|2

which equals 0 if χ(s1, . . . , sn) = 1, i.e., if χ /∈ H∨s1,...,sn , and is contained in the
interval [1/2|H|, 2/|H|] in the other case; see [21, Lem. 2]. Therefore the resulting
distribution is nearly uniform over H∨s1,...,sn with tolerance 2|H|/|H∨s1,...,sn | ≤
2p/(p − 1) ≤ 3. Thus, by solving RLD-s(H, 3) we can find a generator of the
cyclic group 〈(s1, . . . , sn)〉; note that there is a small error in the corresponding
statement in Ivanyos’ paper [21, Prop. 1], who reduces to RLD-s(H, 2) instead.
Finding the exact value of (s1, . . . , sn) then amounts to exhaustive search over
a set of size 〈(s1, . . . , sn)〉 ≤ pk.

Remark 15. Test whether a guess (s̃1, . . . , s̃n) is correct can be done as explained
in [9, §3], by transforming phase vectors |Ψ(χ)〉 into

|Ψs(χ)〉 =
1√
2

(|0〉+ χ(s̃1, . . . , s̃n)−1χ(s1, . . . , sn) |1〉)

before measuring it in the |±〉-basis. As soon as we measure ‘−’, the guess is
wrong. If we fail to measure ‘−’ for (say) 128 consecutive times then the guess
was correct with overwhelming probability.

(b) From RLD-s(H, 3) to RLD-d(S, 6) For any subgroup S ⊆ H, we
obtain a distribution on S∨ by restricting the domain of the characters from H
to S. Depending on whether (s1, . . . , sn) ∈ S or not, this distribution is nearly
uniform over

S∨s1,...,sn = {χ ∈ S∨ |χ(s1, . . . , sn) 6= 1 } or the entirety of S∨
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where the tolerance doubles at worst; see [21, Lem. 3]. This can be used to
reduce RLD-s(H, 3) to O(p(k1 + . . .+ kn)) instances of RLD-d(S, 6) for varying
subgroups S ⊆ H, as follows. The first goal is to find a cyclic subgroup containing
(s1, . . . , sn). To this end, we will assume that H is non-cyclic; if H is already
cyclic, we can skip the next paragraph.

We start by setting S = H and repeat the following procedure. Choose an
isomorphism

ι : S
∼=−→ Z

pk
′
1
× . . .× Z

pk
′
r

(7)

with r ∈ {2, . . . , n} and all k′i positive. Pick any two indices i, j ∈ {1, . . . , r} and
consider the p+ 1 index-p subgroups

S(λi:λj) = ι−1{ (x1, . . . , xr) ∈ S |λixi + λjxj ≡ 0 mod p }

with (λi : λj) ∈ P1(Fp) = { (a : 1) | a ∈ Fp } ∪ { (1 : 0) }. We distinguish between
two cases:

(i) if ι(s1, . . . , sn) has zero components at indices i and j then (s1, . . . , sn) ∈
S(λi:λj) for all (λi : λj),

(ii) if not, then (s1, . . . , sn) ∈ S(λi:λj) for exactly one (λi : λj).

Using at most 2 calls of the form RLD-d(S(λi:λj), 6) we can figure out whether
we are in case (i) or (ii), and in the latter case at most p−2 further calls identify
the unique (λi : λj) for which (s1, . . . , sn) ∈ S(λi:λj). In the former case we know

(s1, . . . , sn) ∈
⋂

(λi:λj)∈P1(Fp)

S(λi:λj) = ι−1{ (x1, . . . , xr) |xi ≡ xj ≡ 0 mod p }.

Thus we have replaced S by a subgroup of index p or p2.
Repeating this process eventually leads to a cyclic subgroup

S ∼= Zpk′

of H that contains (s1, . . . , sn). This means that 〈(s1, . . . , sn)〉 = pi−1S, where
i ∈ {1, . . . , k′} is minimal such that a call to RLD-d(piS, 6) reveals near unifor-
mity over the entirety of piS.

(c) Reduction to the case of free modules Reconsider the isomorphism ι
from (7) and write k′ = maxi k

′
i. Through composition of ι with

ε : Z
pk
′
1
× · · · × Z

pk
′
r
↪→ Zr

pk′
: (x1, . . . , xn) 7→

(
x1p

k′−k′1 , . . . , xrp
k′−k′r

)
we can embed S in the free Zpk′ -module Zr

pk′
. We turn our distribution on S∨

into a distribution on Zr∨
pk′

as follows: for any sample χ we can write

χ ◦ ι−1 : (x1, . . . , xr) 7→ e
2πi

(
a1x1

p
k′1

+...+ arxr

p
k′r

)
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and we lift ai to ãi = ai+fp
k′i for some uniformly random f ∈ {0, . . . , pk′−k′i−1}

in order to end up with a character

χ̃ : (x1, . . . , xr) 7→ e
2πi

(
ã1x1+...+ãrxr

pk
′

)
. (8)

The resulting distribution is nearly uniform over either{
ψ ∈ Zr∨

pk′

∣∣∣ ψ(ε(ι(s1, . . . , sn))) 6= 1
}

or all of Zr∨
pk′

depending on whether the distribution on S∨ was nearly uniform over S∨s1,...,sn
or all of S∨. The tolerance is not affected. Thus the calls to RLD-d(S(λi:λj), 6)
from above can be replaced with calls to RLD-d(Zr

pk′
, 6).

(d) Solving RLD-d for free modules From now on we simply assume that

H = Znpk and s = (s1, . . . , sn)

and we recall Ivanyos’ method for solving RLD-d(H, 6); in order to use this
method in the above reduction, one needs to replace k ← k′, n← r, s← ε(ι(s)).
Along the way, we reduce the value D = (p − 1)((2p − 2)k − 1)/(2p − 3) from
Ivanyos’ paper by roughly a factor 2k−1.

Concretely, we let D = pk − 1 and consider the space

V = ZDp [x1,0, . . . , x1,k−1, . . . , xn,0, . . . , xn,k−1]

of polynomials in nk variables of total degree at most D, where each variable
occurs in degree at most p− 1; we can assume D ≤ nk(p− 1). The dimension of
V admits the crude estimate

dimV ≤
(
nk +D

nk

)
= O(nD)

(remember that p and k are treated as fixed constants). We refer the interested
reader to [3, Thm. 5.5] for a precise formula for dimV and to [13] for alternative
upper bounds obtained from Cramér’s theorem. For every character

χ : (x1, . . . , xn) 7→ e
2πi

(
a1x1+...+anxn

pk

)
(9)

that we sample, we add a new row to a matrix M with entries in Zp having
dimV columns, as follows. By applying the base-p expansion map

δ : Zpk → Zkp : x0 + x1p+ . . .+ xk−1p
k−1 7→ (x0, x1, . . . , xk−1)

component-wise to (a1, . . . , an) we end up with a vector of length nk: the cor-
responding row then consists of the evaluations of the monomials in V at this
vector. After sampling N characters, we have M ∈ ZN×dimV

p .
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If our distribution is nearly uniform over the entirety of H∨, then the kernel
of M describes polynomials in V that vanish at N nearly uniformly randomly
sampled points of Znkp . Since V does not contain non-zero polynomials that
vanish everywhere, this kernel must eventually become trivial as N grows. To
estimate how large N must be taken, Ivanyos makes the following beautiful (but
crude) reasoning: if kerM contains a non-zero polynomial P then this polynomial
is non-vanishing in at least about pnk−D/(p−1) points, in view of [3, Cor. 5.26].
Therefore the probability that P gets removed when passing to the next sample,
and therefore the probability that dim kerM drops, is at least roughly

pnk−D/(p−1)

pnk
= p−D/(p−1).

So, incorporating our tolerance c = 6, we can expect about 6pD/(p−1) dimV =
O(nD) samples to be sufficient for revealing that kerM = {0}.

On the other hand, if all characters χ are non-vanishing at (s1, . . . , sn) then
the kernel is never empty. We quickly recall the argument, while highlighting
the source of the improved value of D: this comes from a sharp estimate on the
degree of the carry-polynomial

C =

p−1∑
i=1

(1− (x− i)p−1)

p−1∑
j=p−i

(1− (y − j)p−1) ∈ Zp[x, y]

which for all a, b ∈ Zp satisfies C(a, b) = 1 if a+b ≥ p and C(a, b) = 0 if a+b < p,
thereby explaining its name. Ivanyos, who describes C using Langrange basis
polynomials, provided the naive bound degC ≤ 2p − 2, but from [20, Thm. 1]
applied to C(x + p − 1, y) it follows that the degree is actually p. Through a
repeated use of this carry-polynomial, for any positive integer T it is easy to
construct polynomials Qi ∈ Zp[x1,0, . . . , x1,k−1, . . . , xT,0, . . . , xT,k−1] of degree
at most (degC)i = pi such that

δ(a1 + . . .+ aT ) =
(
Q0

(
δ(a1), . . . , δ(aT )

)
, . . . , Qk−1

(
δ(a1), . . . , δ(aT )

))
(10)

for all a1, . . . , aT ∈ Zpk , see [21, Lem. 5]. Choosing T = (pk−1)n, for every tuple
(a1, . . . , an) coming from a character χ as in (9), we can use (10) to view

δ(a1s1 + . . .+ ansn) = δ(a1 + . . .+ a1︸ ︷︷ ︸+ . . .+ an + . . .+ an︸ ︷︷ ︸+ 0 + . . .+ 0︸ ︷︷ ︸)
×s1 × sn × (T − s1− . . .− sn)

as the evaluation in (δ(a1), . . . , δ(an)) of a tuple of fixed but unknown polyno-
mials

P0, . . . , Pk−1 ∈ Zp[x1,0, . . . , x1,k−1, . . . , xn,0, . . . , xn,k−1],

of degrees satisfying degPi ≤ pi. So we know that χ(s1, . . . , sn) 6= 1 if and only
if the polynomial P obtained from

k−1∏
j=0

(P p−1j − 1)

14



by reduction mod xp1,0− x1,0, . . . , x
p
n,k−1− xn,k−1 vanishes at (δ(a1), . . . , δ(an)).

This is the desired non-zero element of V .

Remark 16. We can also view

δ(a1s1 + . . .+ ansn) = δ(s1 + . . .+ s1︸ ︷︷ ︸+ . . .+ sn + . . .+ sn︸ ︷︷ ︸+ 0 + . . .+ 0︸ ︷︷ ︸)
×a1 ×an × (T −a1− . . .−an)

as a tuple P ′0, . . . , P
′
k−1 of known polynomials evaluated in the unknown entries

of (δ(s1), . . . , δ(sn)). The polynomial

k−1∏
j=0

(P ′p−1j − 1)

then serves as an analogue of (5): gathering enough such polynomials should
allow one the recover the hidden shift (or rather the cyclic subgroup it generates)
using Gröbner bases, or via linearization. We expect this to run in time O(nD),
although a precise runtime analysis of this direct search approach seems hard.

Remark 17. As was suggested to us by Frederik Vercauteren, instead of using
base-p expansions it may be enlightening to work with Witt vector expan-
sions [31, §II.6], for which formulae for addition (i.e., analogues of the above
polynomials Qi) and multiplication have seen more systematic study. But we
will not pursue this track here.

5.3 Kuperberg sieve, again

Once s1, . . . , sn are found, we can define f ′0, f
′
1 : Z2t1 ×· · ·×Z2tm → X by letting

f ′0(g1, . . . , gm) = f0(g1, . . . , gm, 0, . . . , 0)

and

f ′1(g1, . . . , gm) = f1(g1, . . . , gm, s1, . . . , sn).

This gives a new hidden shift problem with hidden shift (s′1, . . . , s
′
m). We solve

this by rerunning Kuperberg’s sieve from Section 5.1. Concretely, we sieve until
we obtain (t−1)-divisible phase vectors. Measuring these in the |±〉-basis results
in linear disequations mod 2 in the least significant bits of s′1, . . . , s

′
m. Of course,

these disequations can be seen as exact equations; also note that both ‘+’ and
‘−’ give rise to an equation. After solving this system of linear equations, we
repeat this process for (t− 2)-divisible phase vectors, obtaining the second most
significant bits. We continue until we have found all of (s′1, . . . , s

′
m).
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5.4 Complexity

The cost of determining (s1, . . . , sn) is dominated by the runs of the decision
algorithm from Step 5.2(d) on the (free module versions of the) groups S(λi:λj)

from Step 5.2(b). There are O(n) such groups to be considered. In order to run
the decision algorithm, we need to prepare

O(nD) characters χ ∈ H∨s1,...,sn (11)

and transform them into characters

χ̃ ∈ Zr∨
pk′
, r ≤ n, k′ ≤ k

via the methods described in Steps 5.2(b-c); the costs of these transformations
are largely dominated by the estimates that follow.

Once we have the characters χ̃ at our disposal, we can build the O(nD) ×
O(nD) matrix M and compute its kernel, requiring O(nDω) time and O(n2D)
space, where ω ≈ 2.373 denotes the Alman–Williams constant [2]. Note that the
same characters (11) can be reused during each run of the decision algorithm.
Each character (11) is obtained by generating O(1) phase vectors over H via the
Kuperberg sieve from Section 5.1 and proceeding as in Step 5.2(a). In turn, each
phase vector over H requires us to combine O(mt) phase vectors over G, and
this combination takes O(mt) quantum gates, O(m) quantum space, O(mt−1+ω)
classical work and O(m2) classical space. Finally, generating a phase vector over
G costs two quantum Fourier transforms over G and one call to f0, f1 each.

If we measure the cost of the quantum Fourier transform by O(log2 |G|) time
and O(log |G|) space [27, §5.1], we arrive at the following overall estimates for
retrieving (s1, . . . , sn):

– O(nDmt(m + n)2) quantum gates, O(m + n) qubits and O(nDmt) oracle
calls to f0, f1,

– O(nDmt−1+ω + nnDω) classical time and O(m2 + n2D) classical space.

The cost of determining (s′1, . . . , s
′
m) once (s1, . . . , sn) is found again amounts

to the combination of O(mt) phase vectors via Kuperberg’s sieve, but now over
the smaller group

Z2t1 × · · · × Z2tm .

So this cost is dominated by the above estimates.
We stress that the implicit constants in the O-notations above strongly de-

pend on p, k, t, which are treated as fixed values. Finally, revisiting Remark 16,
we expect that a direct search variant would reduce the classical runtime from
O(nDmt−1+ω + nnDω) to O(nDmt−1+ω + nDω).

5.5 Hidden shift finding in groups with large 2tpk-torsion

An almost word-by-word copy of the discussion from [9, §5] shows that the
algorithm described in Section 5 naturally merges into Peikert’s “least-significant
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bit first” variant [28] of Kuperberg’s collimation sieve [24]. More concretely, all
one needs to do is make the following adjustments to [9, Alg. 3] and [9, Alg. 4]:
replace each occurrence of p with pk, and at the point where [9, Alg. 1] is invoked,
call the algorithm from Section 5 instead. This yields Theorem 1.

6 Conclusion

In this paper, we have presented two unrelated addenda to the existing literature
on cryptographic group actions.

The first addendum is the observation that, classically, the vectorization
problem does not in general admit a polynomial-time (or even sub-exponential
time) reduction to the parallelization problem. This contrasts with the quan-
tum setting, where both problems were shown to be computationally equiva-
lent [15, 26]. It also contrasts with the special case of exponentiation in finite
cyclic groups, where convincing arguments in favour of the existence of a classical
polynomial-time reduction were provided by Maurer and Wolf [25].

The second addendum is the remark that an algorithm due to Ivanyos [21] for
solving systems of linear disequations over Zpk (p prime, k a positive integer) can
be combined with a Kuperberg-style sieve in order to obtain a polynomial-time
quantum algorithm for solving the hidden shift problem in finite abelian 2tpk-
torsion groups (t a positive integer, p, k, t fixed) that involves mostly classical
work; in particular, the requirements in terms of quantum memory are very
limited. This extends the observation from [9, §3] from k = 1 to arbitrary fixed
values of k. Along the way, we fixed a small error in Ivanyos’ reduction and we
provided a sharper complexity estimate. More importantly, we hope that this
paper succeeds in bringing the intriguing problem of solving systems of linear
disequations to the attention of a wider audience.

As in [9], our algorithm can be merged with Kuperberg’s collimation sieve
into a single quantum algorithm for solving the hidden shift problem in any finite
abelian group G in time

poly(log |G|) · 2O(
√

log |2tpkG|),

where the main memory requirements are in terms of quantum read-only mem-
ory: only polynomially many qubits are needed. The consequences for group-
action based cryptography are as discussed in [9, Ex. 2.3]: the vectorization
problem is weakened by the presence of a large 2tpk-torsion group, however
ideal-class groups, as used by Couveignes [12], Rostovtsev–Stolbunov [30] and
in CSIDH [10], are well-protected against this, in view of the Cohen–Lenstra
heuristics. Nevertheless, wariness of this potential weakness is advisable.
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