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Abstract

Being capable of updating cryptographic algorithms is an inevitable and essential practice in
cryptographic engineering. This cryptographic agility, as it has been called, is a fundamental
desideratum for long term cryptographic system security that still poses significant challenges
from a modeling perspective. For instance, current formulations of agility fail to express the
fundamental security that is expected to stem from timely implementation updates, namely the
fact that the system retains some of its security properties provided that the update is performed
prior to the deprecated implementation becoming exploited.

In this work we put forth a novel framework for expressing updateability in the context
of cryptographic primitives within the universal composition model. Our updatable ideal
functionality framework provides a general template for expressing the security we expect from
cryptographic agility capturing in a fine grained manner all the properties that can be retained
across implementation updates. We exemplify our framework over two basic cryptographic
primitives, digital signatures and non-interactive zero-knowledge (NIZK), where we demonstrate
how to achieve updateability with consistency and backwards-compatibility across updates in
a composable manner. We also illustrate how our notion is a continuation of a much broader
scope of the concept of agility introduced by Acar, Belenkiy, Bellare, and Cash in Eurocrypt
2010 in the context of symmetric cryptographic primitives.

1 Introduction
A lesson we all know well is that cryptographic implementations are not forever. And while in
theory, switching between implementations may be as easy as wiping a whiteboard, in cryptographic
engineering, transitioning between implementations of the same primitive can be very challenging.
This was exemplified in the efforts of deprecating MD5 and SHA-1 that were brought about by the
attacks of [WY05] and [WYY05] which eventually culminated to a complete collapse of collision
resistance for these functions, [SSA+09] [SBK+17]. Despite significant communication efforts and
the practical attacks that were developed, the functions lingered for years, see for example [Ras17].

Developing computer systems in a way that they are capable of updating the underlying
cryptographic implementations they use has been an important engineering objective for over a
decade. It is the main objective behind the concept of cryptographic agility [Sul09], that promotes
software engineering practices that facilitate the easy swapping of cryptographic algorithms. Agility
has been identified as a key requirement in standardization of cryptographic systems, see e.g., the
NIST report on post-quantum security [CJL+16] and remains a much discussed topic in cryptographic
engineering circles and one that is also, still, not sufficiently researched, cf. [OPM22].
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Given the above state of affairs, an important question is whether there is a way to formally
study implementation updates in cryptographic systems and even realize them in a safe manner.
In [ABBC10] cryptographic agility is given a formal treatment identifying it as a special case of
the problem of key-reuse between cryptographic algorithms. While key re-use is important security
consideration in cryptographic systems and indeed highly relevant in the context of updates, we
argue that cryptographic implementation updateability and agility itself, is a much broader and
not sufficiently understood topic. The reason is that “agility” as defined in [ABBC10] “is about
individually secure schemes sharing a key. It is not about what happens when a scheme is broken and
replaced by another that is (hopefully) secure.” However it is clear that in a broader cryptographic
engineering context, the agility desideratum is exactly about broken cryptographic algorithms
and the need to update them. Indeed, it is in this context that the term is mentioned in [Sul09]
and [CJL+16], where the objective is to move from broken hash function implementations and,
respectively, broken classical cryptographic algorithms, to ones that are more secure. As stated
explicitly in [Sul09], agility is about “an administrator [who] might choose to replace an algorithm
that was recently broken with one still considered secure.”

At first sight, this direction might seem hopeless: a security collapse of a cryptographic algorithm
seems catastrophic for security. Key material may be exposed, privacy of past transactions can
be compromised and integrity of future interactions can be at risk. Furthermore, even attempting
to model security in this setting seems problematic. How to model an event like an “efficient
algorithm for factoring is just discovered” in the timeline of events of a cryptographic system? The
cryptographic assumptions that are used to assemble the conditional statements in the security
theorems we are so fond of have a truth-value that is universal and definite — it is not meant to
change in the course of the system deployment based on our understanding.

Contrary to these theoretical barriers, security practitioners have no issue to envision the concept
of a secure update. They know that taking advantage of the specifics of the system at hand, an
update process can be followed to sanitize the parts that are deemed vulnerable and provided
that such process is completed on time —prior to an algorithm compromise or other adversarial
exploit— the system will retain a fair amount of its security properties. This final point is the main
motivation behind our work that bridges the cryptographic theoretical design and modeling toolset
with the engineering practices of software updates. We study the notion of cryptographic agility in
UC which allows us to master the complexity of interactions present in computer systems where
multiple cryptographic modules interact with each other. Such a composable definition of what a
secure update system for a cryptographic task ideally is, allows us not only to theoretically reason
about the security properties of update protocols, but also to rely on the composition theorem to
construct complex systems with clear security semantics that contain updatable modules.

1.1 Contributions

We present a novel modeling of cryptographic agility within the setting of Universal Composition
and illustrate it with concrete protocols for important cryptographic primitives. Our results include:

A generic framework for updates. Our model framework captures the concept of securely
updating a cryptographic implementation in the form of a generic update functionality we denote
by UF

SttUp,UpPred that is parameterized by a class of ideal functionalities F as well as two programs
UpPred and SttUp. Each member of the class F is indexed by a particular implementation and
provides the same interface to the users who engage with it. At any given time the session participants
of the functionality are connected to a particular member of F which initially is a designated
member F0 for all parties. As time passes, participants, even in different sessions, may initiate an
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update to another implementation, by pointing to another member of F . While the interface of
UF

SttUp,UpPred contains that of the members of F , the additional update interface of UF
SttUp,UpPred

enables users of the functionality to coordinate an update. The security properties of the update
are captured by a state-update function SttUp and the update predicate UpPred. SttUp represents
the (ideal) initialization of the state of the updated functionality (as a function of its history), and
UpPred dictates the circumstances under which a party successfully completes the update:

• Security across updates. In the most simple parameterization, UpPred ≡ 1 and SttUp ≡ ∅,
amounting to a “clean install”, we have that the new primitive substitutes the old one
without retaining any properties or guarantees from the past instantiation. There are many
reasons that a “clean install” is a very limiting way of approaching the concept of updatable
cryptographic primitives. One thing is that key material has to be re-generated. A more
crucial downside however is that backwards compatibility is lost — something highly desirable
from an engineering perspective and difficult to attain as pointed out in [JPS13]. This can
be a very serious consideration since the updated system may still need to interoperate
with components using the previous algorithm. Our framework captures naturally such
considerations by suitably defining via the SttUp program which portion of the past state,
such as of functionality Fi−1, should be retained when updating to the functionality Fi during
the i-th update.

• Update coordination patterns. Updating the implementation of a particular primitive requires
some action by all participants engaged in a certain execution session. This may be done by
varying degrees of coordination and our framework is capable of doing this by programming
the UpPred predicate to grant the update successfully at the right conditions. For instance,
the update predicate could demand that all parties transition in tandem, or could ensure the
update unifies a set of parties currently working with different versions.

Fine-grain corruption interface. By specializing the UC corruption model to capture explicit
subroutine corruptions, we are able to propose a unified modeling tool capturing the seemingly
different security breaches of (1) corrupted implementations, (2) key leakage, or (3) failed security
assumptions, without having to declare parties affected by such failures as fully corrupted. While
such a fine-grain look at corruption is of independent interest, in the context of updates, such
a formalization is important because it allows us to express advanced features of updates. For
example, we can capture that if an update happens prior to any of the above failures, the system
is uninterruptedly secure. We can also capture that as long as a party is not fully corrupted (but
suffering from any of the above failures), an update regains the party’s full security guarantees.

Updatable Signatures and NIZKs. We present two extensive studies applying our framework
to the setting of digital signatures and non-interactive zero-knowledge schemes. In both cases,
we explore the ramifications of the requirement of consistency, backwards compatibility across
updates, and healing from sub-corruptions. In particular, the desideratum is that past signatures
and NIZKs still verify after an update, while mitigating any side-effects by a collapsed cryptographic
implementation, in the sense of regaining security after the update takes place. We achieve this via
an update process that transfers information about the state onwards, while eliminating algorithmic
dependencies on previous versions which may be compromised. In the signature case, we obtain a
general and provably secure blueprint of how computer systems can become post-quantum ready
today without sacrificing efficiency. In the NIZK case, we show that more effort is required by the
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prover to ensure the preservation of soundness of the proof system across updates while ensuing
that no leakage occurs due to the update system itself.

Comparison with previous notion. Finally, for completeness, we demonstrate how our
framework subsumes the concept of agility as defined in [ABBC10]. Following that work, we focus
on pseudorandom functions (PRFs) and we show what exact type of an updatable PRF functionality
in our framework corresponds to their agility notion. Expectedly, the result does not account for
(adaptive) corruptions since agility in [ABBC10] is equated to key reuse and hence it fundamentally
requires the protection of the key as algorithms are being swapped across updates.

1.2 Related Work

As mentioned above, our work recasts the issue of cryptographic agility in the universal composition
setting taking a broader view of what cryptographic agility means compared to [ABBC10] who con-
sider it a special case of key sharing across primitives. This notion is subsumed within our framework,
which in a similar manner, can also accommodate protocol substitution attacks [BPR14, FM18].
Our work also relates to key-insulated cryptosystems [DKXY03] and key-evolving cryptography
[Fra06] in the sense that our notion can encompass forward security with previous key compromise.
The important distinction though of our cryptographic agility framework is that we do not outsource
the version coordination to the users and the fact that implementations of the underlying primitive
can be independent; in contrast, key-insulated and key-evolving cryptographic primitives require a
single monolithic implementation that has the users themselves specify at each invocation which
version of the key they engage with. The case of “updatable encryption” [LT18, BDGJ20] is similar.
Another treatment of a specific primitive in the context of software updates is given in the context
of blockchain protocols in [CKKZ20]. In the context of key exchange [BBF+16], agility has been
casted as having a configurable selection of multiple protocol and cipher modes that can be chosen
via running a negotiation protocol. In our agility framework such negotiations can take arbitrary
form between parties and culminate to a particular input to the updatable functionality which will
be then be responsible for facilitating the coordination steps needed for parties to implement the
switch to the negotiated mode of operation. It follows that it is straightforward to express the
concept of downgrade attacks as well as the concept of downgrade-resilience (cf. [BBF+16]), by
suitably restricting to environments that prohibit honest parties from “shooting themselves in the
foot” and agreeing to switch (downgrade) to a weak implementation. Finally, we note that our topic
bears a superficial resemblance to the concept of “cryptography with updates” [ACJ17] which in fact
relates to incremental cryptography [BGG94], as well as to firewall-based constructions [CMNV22]
that tame dishonest behavior by sanitizing the messages from a cryptographic protocol. Recently
Poettering et al. [PR22] propose a forward secure signature scheme suitable to authenticate software
versions by the vendors with two main features: first, assuming secure erasures, the scheme is
forward secure, and second, based on a natural incentive structure, the scheme enjoys a particular
self-enforcement mechanism that strongly disincentivizes coercion attacks in which vendors are
forced, e.g. by nation state actors, to misuse or disclose their keys.

1.3 Notation

We denote the security parameter with λ ∈ N. A randomized algorithm A is running in probabilistic
polynomial time (PPT) if there exists a polynomial p(·) such that for every input x the running
time of A(x) is bounded by p(|x|). We call a function negl : N→ R+ negligible if for every positive
polynomial p(λ) a λ0 ∈ N exists, such that for all λ > λ0 : ϵ(λ) < 1/p(λ). We denote by [n] the set
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{1, . . . , n} for n ∈ N. We use “=” to check equality of two different elements (i.e. a = b then...) and
“←” as the assigning operator (e.g. to assign to a the value of b we write a← b). A randomized
assignment is denoted with a

$←− alg, where alg is a randomized algorithm and the randomness used
by alg is not explicit. If the randomness is explicit we write a := alg(x; r) where x is the input and
r is the randomness. Let v be a sequence of elements (vector); by v[i] we mean the i-th element of
v. Analogously, for a bi-dimensional vector M , we denote with M [i, j] the element identified by the
i-th row and the j-th column of M .

2 UC Basics and Corruption Models

2.1 Overview

We use the UC framework [Can20] in this work and give here a brief overview.
Protocol and protocol instances. A protocol π is an algorithm for a distributed system formalized as
an interactive Turing machine (ITM) with several tapes. For this paper, we are mainly referring to
three tapes: (1) the input tape, holding inputs written by a calling program, (2) the subroutine-
output tape, which holds return values from called programs, and (3) the backdoor tape which
formalizes the interaction of an ITM with the adversary (for example to capture corruption modes).
Of great formal interest are the so-called structured protocols that are protocols that consist of a
shell part that takes care of model-related instructions such as corruption handling, and a body
part that encodes the actual cryptographic protocol. The body can again consist of a protocol
(consisting of shell and body) which yields a sequence of shells. Towards defining a UC execution,
UC defines an ITM instance (denoted ITI), which is defined as the pair M = (µ, id), where µ is
the description of an ITM and id = (sid||pid) is its identity, consisting of a session identifier sid and
a party identifier pid. An instance is associated with a Turing machine configuration, which can
be seen as this machine’s state. An instance or session of a protocol π, with respect to a session
identifier sid, is defined as a set of ITIs (π, id1), (π, id2), . . . with idi = sid||pidi. Each such ITI is
referred to as a (main) party, and the extended instance is the transitive closure of machines spawned
as a consequence of running π, in particular, it encompasses all the subroutines.
Ideal Functionalities. A special type of protocols are ideal protocols that formalize the idealization
of a cryptographic task. They are represented by an ideal functionality and its specification is
usually referred to by F . An instance of this functionality can be thought of as a “trusted third
party”. Parties are formally represented as dummy machines that forward inputs and outputs to
and from this particular ITI, respectively. F therefore has to specify all outputs generated for each
party, and the amount of information the ideal-world adversary learns (via the backdoor tape) and
what its active influence is via its interaction with F . Functionalities directly handle the corruption
requests by an adversary (and usually adjust their behavior based on this information). We denote
the corruption set maintained by parties by C and this will play an essential role in our treatment.
Execution of a protocol, adversary, and corruption models. In a UC execution, an environment is
allowed to spawn a session of a protocol µ. Often, this is either a real protocol π or an instance of
some ideal functionality running with dummy parties. Additionally, the environment is allowed to
invoke the adversary. The adversary can communicate with other ITIs by writing (only) on their
respective backdoor tapes. This tape is used to model security properties provided by functionalities
(e.g., a secure channel could leak the length of the message via the backdoor tape). The backdoor
tapes are also used to model party corruption. The corruption model is formally specified by how
machines react to these messages on the backdoor tape. The plain UC model does not prescribe any
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specific corruption model, but there is a standard corruption mode that we describe in more detail
below in Section 2.2 as it is relevant to this work because we are going to propose an extension to it.
UC emulation and composition. While UC emulation is a very general notion, we are only interested
in the special case that a protocol π UC-realizes an ideal functionality F : A protocol π UC-realizes
F , if for any (efficient) real-world adversary A there is an (efficient) ideal-world adversary (the
simulator) S such that no (efficient) environment can distinguish the (real) execution of protocol π
from the (ideal) execution of F . This emulation notion is composable: if a protocol π1 UC-realizes
F1, and another protocol π2 uses F1 as a subroutine to UC-realize some other functionality F2,
then one can replace invocations of F1 by invocations to π1 and the composed protocol (consisting
of π2 calling π1) UC-realizes F2.

Standard functionalities. In this work, we will make use of the standard formalism of signatures,
non-interactive zero-knowledge (NIZK), and pseudo-random functions (PRFs). We defer the
preliminaries to Section A in the supplementary material.

2.2 Fine-grained Corruption Model

The standard way of modeling byzantine corruptions in UC has two important aspects: when a
machine is corrupted, the adversary takes full control over the future input-output behavior(and
learns all previous inputs and outputs). Second, the machine reports itself as corrupted to a
corruption aggregation ITI that aggregates all corruption information of an extended session. In
more detail, this aggregation machine records corruptions within the main session and is further
made aware of all subroutines and their respective session-IDs in order to be able to (recursively)
retrieve the corruption status via the corruption aggregation machines of those invoked (sub)sessions.
In this way, the environment receives “genuine” information about the corruption set in an execution.
The corruption aggregation is identified by a special PID A . When invoked to report the corruption
set, in the standard party-wise (pid-wise) corruption model, the machine reports the list of known
party identities that are listed as corrupted.

This is however only a restricted use of the entire formalism put forth in [Can20]. In general,
if a machine with (extended) identity id := (π, sid, pid) is registered as corrupted, the corruption-
aggregation machine can store any function f(id) to model a fine-grained level of corruption and not
just report pid. Similarly, an ideal functionality, which models all interaction including the faithful
reporting of the corruption information can report a more fine-grained set of corrupted machines.

In our model, we follow pid-wise corruption with the following simple addition. Let π be a
protocol and let H be a dedicated hybrid functionality invoked only by a single party (imagine H to
be a private memory functionality of party pid). Then we allow the corruption aggregation machine
to report two kinds of information: f(ρ, s, p) = p if ρ is any other code than H (as usual, the entire
party is considered corrupted in this case). If ρ corresponds to the ideal protocol for H, then the
entire identity is revealed, i.e., the session, the party-id and the label of the functionality. A protocol
in this model has hence two corruption modes: session sid of π run by party pid follows the standard
corruption mechanism except that when its hybrid functionality H obtains the corruption message
to corrupt party pid, the protocol reports (H, pid, s) where s is the session-id within which H was
invoked. If H models a local memory, then this corruption mode allows to corrupt the memory of a
party without corrupting the entire party.

Ideal-world correspondence. In the ideal world, the realized functionality F must support
more complex corruption instructions to reflect the different corruption states that are possible
based on the fine-grained information contained in C (note that since corruption is modeled in UC
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as part of the protocol execution, it is the functionality that is responsible for the reporting in the
ideal execution). Instead of just reacting on ordinary party corruptions, our ideal functionalities
will incorporate specific instructions to reflect the more fine-grained model. For example, an ideal
functionality F will allow backdoor messages from the adversary to specify that e.g. a memory of
some party pid is corrupted, upon which the security would downgrade to the extent defined by the
functionality F , which is presumably less severe than when the functionality receives an ordinary
request to corrupt the full party pid.

Recall from [Can20] that standard PID-wise corruption in the ideal world refers to a minimally
supported interface of a functionality when a party P is (fully) corrupted. In particular, at the
point the party is corrupted via a corruption message on the functionality’s backdoor tape, the
functionality outputs to the adversary all the values received from P and output to P so far.
External inputs to P are ignored and given to the adversary, and the adversary is free to specify
any message to be output by P (that is, externally written by the dummy protocol for P without
changing the state of the functionality). Moreover, the adversary can decide to formally invoke
the functionality with (input, P, v) upon which the functionality executes its defined instructions
for input v as coming from P (based on the current state which includes the corruptions status of
parties).

2.3 Further Conventions Relevant to this Work

State, behavior, and functionality classes. Without loss of generality we assume that each
instance of a functionality manages a state data-structure which encodes all the information relevant
for its input-output behavior (such as inputs that the functionality receives and the output that
it provides). We describe the state of a functionality by means of a variable state. Note that the
behavior of a functionality (defined as a Turing machine in UC) can equivalently be described using
a state-transition model, i.e., as a sequence of conditional probability distributions (defined for
output space Y , input space X and state space S) pF

(Y,Si)|(X,Si−1)((y, statei)|(x, statei−1)) for i > 0
assuming an initial well-defined state state0. The formal inputs correspond to the content of the
respective input tapes and the outputs define the content on the outgoing message tape. We give a
quick overview of this correspondence in Section B for completeness.

We introduce the notion of a class of functionalities F , which in its full generality can be
thought as being defined by a language L ⊆ {0, 1}⋆ such that a functionality F belongs to F if
the state state of any instance of F satisfies state ∈ L and its initial state (representing the initial
configuration before any interaction) as ⊥. Further, we assume that the corruption set (which the
functionality has to export e.g. to the environment) is represented by an explicit state variable C.
That is, we write state = (state′, C) (initially, the corruption set is empty). We assume that we have
a fixed party universe P and our functionalities interact with this set (of party identifiers). However,
it is easy to extend the treatment to dynamic party sets [BCH+20].

Functionalities running arbitrary code. We will specify functionalities that receive code or
algorithm, say alg, as part of their input from some caller which they are expected to execute on
certain inputs x. In order for this to be unproblematic [Can20] defines how an ideal functionality
evaluates alg(x): instead of running it internally, the functionality invokes a new subroutine (a
new machine) that executes alg. Since the runtime of any new machine depends on the so-called
import it receives (until it runs out of import), the execution of alg can therefore be made safe as
follows: whenever the party receives the request to execute alg on input x, it expects the calling
party to provide the import for this, which it relays to the subroutine executing alg. This way, the
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algorithm’s runtime uses up the runtime budget of the entity instructing the execution of alg on
input x. In order to keep the descriptions simple, we assume the above mechanism implicitly.

3 Our Model for Updatable Functionalities

3.1 A Fine-Grained Corruption Model for Update Systems

Intuitively, we want to be able to capture sub-routine corruption (and not consider it as a full
corruption) because it is updates that will make parties recover from sub-routine corruptions. To
make this idea more precise, we introduce a generic modeling tool that captures subversion of any
kind building on top of Section 2.2. That is, we introduce a machinery by which we formally model
that a certain algorithm used by a party P becomes insecure (without P being corrupted). Our
machinery can be seen as a particular way to model the leakage of secret keys, subverted and broken
algorithms.

Corruptions in the real world. To model real-world attacks on specific cryptographic schemes
(e.g., the adversary gets access to secret keys of the honest parties, or installs a malware into the
machine of the honest users that changes the behavior of the cryptographic algorithms, or obtains
access to inputs due to a broken algorithm), we introduce a new modeling technique.

We present a functionality FComp (Figure 1) that internally runs arbitrary procedures and stores
all the input-output pairs. This device is corruptible in the sense that upon corruption (with respect
to a certain party P ) the adversary gets full access to the memory and can also fully control it. It is
a sub-routine corruption, and thus the party P does not become corrupted automatically.

The functionality FComp can be used as a modeling tool to express, in a fine-grained way, which
parts of a system we do consider as potentially risky and vulnerable (it need not stand for a
real-world object such as a computing module). This includes three important special cases:

• If we believe some cryptographic key material is more exposed than others (e.g., because
a long-term private key is stored on a hardware device, while a short-term key is stored
in memory), one can formally model key exposure by introducing FComp for computations
involving the short-term key.

• As a second use case, if we want to study the impact on security that a deployed algorithm
has in case it turns out to be unsafe (such as algorithms vulnerable to quantum attacks), this
potential attack surface is modeled by formally running the algorithm in question on FComp
(without the expectation that this is a special hardware of any sort).

• The abstraction further can capture security assumptions that might be broken at some
point. Consider for example the DDH assumption, that is, the assumption that in some
group G = ⟨g⟩ random triples (ga, gb, gc) are indistinguishable from DH triples of the form
(ga, gb, gab) (where the exponents a,b, and c are picked at random). We can capture the case
where the DDH assumption does not hold (anymore) by having the algorithm that generates
the DH triple be run inside FComp, and model the case that the DDH assumption fails by
leaking toward the adversary (via the sub-corrupt command) the randomness used to generate
the triples, hence giving a noticeable distinguishing advantage to the adversary.
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Functionality FComp

The functionality maintains a corruption set denoted by C (initially empty).

1. Upon receiving a command (initialize, sid, {alg}i∈[λ]) from an honest party P store
({alg}i∈[λ], P, sid) and send ({alg}i∈[λ], P ) to A.

2. Upon receiving a command (query, sid, alg, input) from an honest party P .

• If P /∈ C then if the tuple (alg, P ) is stored then compute output ← alg(input), store
(input, output, P ) and return output to P (note that the input also specifies the random tape
for alg).

• If P ∈ C then send (input, sid, P ) to A.

3. Upon receiving (output, P ) from A, where P ∈ C send output to P .

4. Upon receiving (sub-corrupt, P ) from A return all the entries (·, P ) stored so far to A and add
P to C.

Figure 1: Functionality FComp.

Corruptions in the ideal world. As soon as we have a more fine-grained corruption model in
the real world, we must reflect it in the ideal world, too as explained in Section 2.2. In particular,
the corruption mode is more fine grained and the corruption set C does contain not only party
identities but also particular “(sub-)sessions”. Consequently, ideal functionalities can give more
fine-grained guarantees depending on which subroutines are corrupted.

More concretely, in the case that the real-world protocol is formulated w.r.t. FComp, the ideal
functionality accepts inputs (sub-corrupt, id, P ) for id = (FComp, ssid) on its backdoor tape and
add (FComp, ssid, P ) to C (and thus reports this extended identity as corrupted). The subsequent
behavior of the functionality can thus be dependent on which subroutine is corrupted to give a
fine-grained analysis of what happens when which subroutine is corrupted.

In the same spirit, additional modes for further subroutines can be specified. Note that a
functionality with a fine-grained corruption model will typically manage subroutine identities that
reflect the subroutines of its realizing protocol (e.g., an identity denoting a CRS). Of course, it
will always be possible to abstract the naming conventions and impose an ordering of subroutines
(to keep the definition of the ideal functionality independent of the exact resources realizing it).
However, we stick to the more suggestive notation for clarity.

Update Systems: healing from sub-corruptions. For a given functionality F in the standard
corruption model (i.e., maintaining a corruption set consisting of the identifiers of corrupted parties),
one can formally extend its behavior to the more detailed case of sub-corruptions by making the
effect of sub-corruption equivalent to full corruption: the code of the functionality considers P
as corrupted as soon as P gets standard corrupted or there is some entry (id, P ) ∈ C for some id
(which happens if just some subroutine of P , like FComp, is corrupted). We denote this extension
of a standard functionality to the more fine grain setting by F̂ . Based on the above corruption
model, the goal of an update system can now be understood in a concise way: an update system
should guarantee that even if a party P is sub-corrupted in some instance of, say, functionality F̂
(and thus can still perform updates as it is not fully corrupted) then after the update to the new
functionality F̂ ’, P should regain its desired security guarantees (until the adversary decides to
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sub-corrupt again). Hence, the update is healing the party P and formally corresponds to removing
the sub-corruptions entries from the corruption set of the updating protocol instance.

Example: signatures. We show two examples for fine-grained corruptions with standard func-
tionalities in Section A for completeness. The standard signature functionality FS

SIG for example
can be modeled as being subject to sub-corruptions yielding the induced functionality F̂S

SIG. As we
will see later, the protocol realizing F̂S

SIG is a UC signature protocol as described in Section 2 where
the algorithms are executed formally on FComp. On the other hand, recall that FS

SIG is realized by a
signature protocol which is modeled as not being sub-corruptible e.g. to express a different security
assumption or more trusted setup. In order to differentiate the two modeling assumptions, we refer
to the latter as a cold signature scheme. An analogous treatment applies to other cryptographic
primitives.

3.2 The Update Functionality

We present the update functionality UF
SttUp,UpPred in Figure 2 and describe its defining elements here.

The update functionality serves as the abstract ideal goal that any real-world update mechanism
(defined for a cryptographic primitive or scheme) must satisfy. The functionality is parameterized by
three elements: first, by a class of functionalities (or ideal specifications) F between which transitions
(aka updates) are performed, where we demand that there is a dedicated root functionality that we
simply call F0. Second, a function UpPred, which, depending on the current state of the system and
inputs by parties, decides whether an update is either in progress, failed, or succeeded. And finally,
a function SttUp which determines the initial state of the new instance of a functionality after a
successful update. For any concrete update system, the above three elements fully determine the
corresponding ideal update process.

Basic mode of operation. UF
SttUp,UpPred maintains a rooted graph UpGraph where each node v

stores an instance of an ideal functionality (see Section 2 for the formal definition of an instance).
In particular, the values v.function and v.ssid determine the code and session of the functionality,
respectively (formally, we speak of sub-sessions not to confuse it with the session of the update
system as a whole). The root node contains the description of F0 and its initial state is the initial
configuration of F0. The maintained graph is by construction a directed acyclic graph (DAG) for
reasons outlined below. We follow the convention that for two nodes v and v′ we call v′ a child of v
if there is a directed edge from v to v′. Likewise, we call v a parent of v′ in this case. As we will see,
the directed paths away from the root constitute update paths of parties.

At any point in time, every party is assigned to one instance in this DAG structure to which its
inputs are relayed toward, and from which it receives the outputs. It is worth to point out that
formally following the concept of structured protocols, this makes the actions described in Figure 2
to be shell-code (cf. Section 2) as the code deals only with model-related instructions, i.e., how to
re-direct inputs and outputs to the correct instances, which are executed as part of the body. The
DAG structure models several natural aspects of update systems. For example, a child node v′ of v
typically contains in v′.function the description of an updated version of v.function. For example, if v
is a leaf of UpGraph (i.e., does not have children) then v.function represents an updated functionality
that some subset of parties is currently using. In fact, the update functionality will ensure that
if parties which start off, say, in the same node vi, agree on the new code, and agree on the same
session id, then their inputs and outputs once the update completes are received and returned from
the same new instance. On the other hand, the model supports that parties might split and fork
into different versions, or to merge previously split parties again into the same, updated session.
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Functionality UF
SttUp,UpPred

A rooted, directed acyclic graph UpGraph is maintained, which is initialized with only the root node
v0 with v0.function := F0. The functionality maintains the lists UpdateReqF which are lazily created
and initially empty. The functionality manages the vector PartiesFunctions. For each P ∈ P initially set
PartiesFunctions[P ]← v0.
Interaction with most up-to-date functionality per party:

• If I := (input, sid, x) is received from a party P ∈ P (formally sent via a dummy party that has
matching party and session identifiers), set v ← PartiesFunctions[P ]. Then invoke the instance of
v.function on input (v.ssid, x) from P .

• If I := (input-adv, sid, x, v) is received from the adversary (on the backdoor tape), where v
specifies a node of UpGraph then invoke the instance v.function on value (v.ssid, x) on its backdoor
tape. Otherwise, ignore the input.

• Upon subroutine-output generation by an instance v that specifies an output value y and destination
entity D then output y to D. ▷ See Remark 1.

• Upon any other output produced by an instance v destined for the backdoor tape of the adversary,
forward the output to the adversary.

Update Process:

• If I := (update, sid,F) for F ∈ F is received from P check that UpdateStatusP,F ̸= Done and
that for all F ′ ̸= F : UpdateStatusP,F ′ ̸= Updating. If the check succeeds then append (sid, P )
to UpdateReqF and set UpdateStatusP,F ← Updating. Ignore the input if the check fails. Send
(update_notification, sid, UpdateReqF , P,F) to A.

• If I := (GrantUpdate, sid, P, ssid,F ′, aux) for F ′ ∈ F from the adversary A, then evaluate the
predicate b ← UpPred(P, ssid,F ′, UpdateReqF ′ , UpdateStatusP,F , PartiesFunctions, UpGraph, aux)
and do the following:

– If b = ⊥ then output (P, ssid, b = ⊥) to A.
– If b = 0 then append (Fail, P, sid, ssid) to UpdateReqF ′ and set UpdateStatusP,F ′ ← Done.

Output (Fail, sid, ssid,F ′) to P .
– If b = 1 then append (Success, P, sid, ssid) to UpdateReqF ′ , set UpdateStatusP,F ′ ← Done,

and perform the following tasks to complete the update.
1. Let v ← PartiesFunctions[P ].
2. If there is no node v′ in UpGraph with v′.function = F ′ and v′.ssid = ssid, then create

this node as a child of v: initialize v′.function← F ′, v′.ssid← ssid, and v′.state = (⊥, ∅).
Otherwise, let v′ be the already existing node and define v′ to be a child of v in UpGraph.

3. Parse v′.state as (s, C). Assign PartiesFunctions[P ] ← v′ and Compute state′ ←
SttUp(v, P, UpdateReqF ′ , PartiesFunctions, UpGraph, aux), and update v′.state ←
(state′, C).

4. Output (Success, sid, ssid,F ′) to P .

Corruption: Upon party corruption of party P via a direct corruption message or via a corruption
message to its current instance PartiesFunctions[P ], party P is marked as corrupted and the standard UC
corruption mode applies to UF

SttUp,UpPred. The functionality further reports upon request the aggregated
corruption set consisting of all corrupted parties and all reported sub-corruptions (if any) of the instances
in UpGraph. ▷ See Section 3.1 for corruption model.

Figure 2: The Generic UC Ideal Update Mechanism.
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Furthermore, we demand that in principle, the corruption status of parties is cleared when the
new instance starts. This is in essence what captures the basic requirements on a useful update.
We note in passing that clearing the corruption status makes only a non-trivial difference when
we model sub-corruptions. For full corruptions in the pid-wise corruption model, an attacker can
without loss of generality continue to corrupt a party in any instance. Our abstract update therefore
captures the requirement that an update system can heal from the less-severe corruptions.

To give an example, if some subset of parties decides to switch to a new functionality, let us call
it F ′, then we would add a new node v′ to UpGraph as a child of v. At a high level, we use UpGraph
to take track of all the updates between instances that occur. The reason why we need to keep
track of all the functionalities is that not all the parties might update at the same time. Hence,
some parties might still want to use the old functionalities.1 In the code, PartiesFunctions is used to
store which party is registered to what functionality (i.e., to which node the party is assigned. Any
time that a party P queries UF

SttUp,UpPred with the command (input, sid, x), UF
SttUp,UpPred derives the

actual instance of a program F this party P is currently talking to and executes the instance of F .

Updating functionalities and security-relevant parameters. UF
SttUp,UpPred can receive an

update command update from any party P that is willing to update to a new specification F . We
demand that each party is part of at most one update process by maintaining a flag UpdateStatusP,F .
The command update comes with an input that specifies the new version. We choose to represent
this by the label of the ideal specification for simplicity. If clear from the context, this could also be
an index into the functionality class, or any unique label we desire. UF

SttUp,UpPred keeps track of all
the update requests and of the identifier of the parties that sent the update command by means of
a data structure UpdateReq. Whether an update for a party P succeeds depends on a predicate
called UpPred. If the adversary admits party P to update, UpPred decides whether the update can
actually be performed. It is therefore the predicate that specifies the ideal conditions for an update
to go through (and has to be made concrete in concrete applications).

As said above, the functionality only mandates an abstract update structure such that parties
can only be updated along paths in the graph and only if they are willing to update (and, as
indicated above, that they have some minimal guarantee whether they are interacting with the same
instance. We point out that the predicate also steers whether a party that has been inactive the
entire time can fast-forward to a more recent version.

Last but not least, core of an update mechanism is to offer a useful form of state preservation.
For example, with signatures, we have to ensure that legitimate past signatures still verify (in case
of an honest signer) whereas the signature scheme is consistent for verifiers. On an abstract level,
the state preservation property of an update mechanism for the class F is given by the function
SttUp(.) which defines how the state of the “new” functionality depends on the ancestor states
when an update is made.

In Figure 3 we provide graphical illustration of an execution of UF
SttUp,UpPred: the initial configu-

ration of UF
SttUp,UpPred, denoted with A, maintains only one node representing the functionality F0

and the parties p1, . . . , p5 registered to it. From this initial configuration, p1 and p2 update to a new
functionality F1, and a new node is created in the graph. Similarly, the parties (p3, p4) update to
F2, thus yielding to the creation of a new node (represented in the configuration B). The adversary
then can send any input on the adversarial interface of F2, in this example we assume that F2 allows
the sub-corruption of the registered parties, and in particular assume that p3 gets corrupted this
way. This concludes the description of the configuration we denote with B. We have assumed that
all the parties that wanted to update manage to do so, but we recall that it is the update-predicate

1We call old functionalities all the functionalities that are not in the leaves of UpGraph.
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that mandates whether an update will be successful, depending on the adversarial influence, and
the current configuration of the graph. At this point, p3 and p4 may fear that the functionality F2
has been compromised, and decide to reinitiate F2. This can be done by letting the parties update
to F2. We note that this creates a new node in the graph with a sub-session identifier ssid′

2 ̸= ssid2.
The state state′

2 depends on state2, hence some of the work done by the previous instantiation of F2
may be preserved (how much is preserved is expressed by the state-update function SttUp). We
stress that in this configuration, denoted with C, F2 now treats p3 like an honest party, (i.e., it
heals from the sub-corruption). In the final configuration (denoted with D) some of the nodes that
were initially in F0 merge again in a new functionality denoted with F3.

Abstract properties of update systems. At this abstract level of defining updates, we can
make two natural basic observations: first, a so-called clean install is always possible and corresponds
to the case where no state from the past must be preserved and hence is one of the simplest forms
of an update. We formally state this in Lemma C.1 in Section C. Second, it is the (amount of)
state preservation that steers the complexity and assumptions of any update system. Intuitively, if
state preservation is required, some joint view from the past is retained once the update completes
and the state-update formalism is precisely the idealization of that real-world process where parties
must reach some agreement. While intuitively clear, in Section C we show how one can formalize
this claim.

3.3 Concluding remarks

We conclude this section on the model with two important observations.
Remark 1 (On Subroutine Outputs). As specified in the ideal system in Figure 2, subroutine
outputs by functionalities towards some party P are provided to that party. This holds even if the
functionality is not the most recent one. We leave it to the higher-level protocol to decide what
happens with such outputs by “old” session. Note that one can always define a filter protocol that,
based on the sub-session identifier of the most recent functionality, blocks all outputs not belonging
to that session. This has the effect that any party only interacts locally with the most recent
functionality. We do not hardcode this behavior in the generic update functionality. Observing the
old session could turn out useful in settings where a party monitors participation in prior sessions
or to detect whether another party is active in two protocol versions. In such cases, further useful
actions could be taken thanks to more transparency, which are outside the scope of a pure update
protocol.

Remark 2. Our DAG based formulation enables the modeling of arbitrary update patterns. We
note that even though we do not formally allow cycles in the graph, an update pattern oscillating
between functionalities is still easy to capture by assigning unique labels in each invocation of
update. This, for instance, can capture different “ciphersuite” negotiation interactions that occur
in the context of key-exchange protocols. Furthermore, multi-parent nodes in the graph open up the
opportunity to design more complex update procedures where a set of parties initially diverges from
a single functionality and subsequently converges to a single functionality. Such modeling capability
can come handy if one wishes to capture complex multiparty settings such as that of a distributed
ledger where parties may diverge due to an implementation difference and subsequently negotiate
the merging of their states as part of a “convergence” update. We note that studying such complex
mechanisms is beyond the scope of our current exposition — nevertheless we believe it is essential
that an update framework should be capable to facilitate them.
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Figure 3: Sample execution of UF
SttUp,UpPred.

4 Updatable Signatures
Ideal signatures under subroutine corruptions. Let F̂S

SIG be the signature functionality
supporting sub-routine corruptions (i.e., it behaves exactly like the signature functionality but it
allows for sub-corruption as described in Section 3.1, see Section A for the formal definition). In this
section, we design the protocol Π̂S

DS (Figure 4) which realizes F̂S
SIG relying on FComp. The following

statement is immediate:

Lemma 4.1. If ΠS
DS realizes FSIG (Figure 11) then Π̂S

DS realizes F̂S
SIG in the FComp-hybrid model.

Recall from Section 3.1 that a scheme is modeled using FComp to indicate the belief that the
honest usage can turn out to be unsafe. Recall the distinction to a signature scheme that we assume
to actually be safe under honest usage in that it realizes FSIG (and thus subroutine corruptions of
an honest party are not a concern), which are referred to as cold schemes.
Remark 3. In our update mechanisms, we make use of cold vs. hot signature keys as a way to
recover from sub-corruptions across updates and to reflect different trust assumptions. We point out
that our security goal necessitates a form of “authenticated communication” post sub-corruption
and is enabled by this cold signature mechanism. We make that choice due to two reasons: first, it
is a practical assumption (in particular when accessing cold keys only rarely or hardware tokens are
assumed) and second, because it allows us to describe a generic approach to post-quantum readiness
as described in Section 4.3.

4.1 Ideal Updatable Signature System

We want to provide a scheme that implements the update system for signatures. More formally, we
describe a protocol to UC-realize UFSIG

SttUpSIG,UpPredSIG
for FSIG := {F̂S,DSi

SIG }i, where FSIG denotes the
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Protocol Π̂S
DS

Initialization
Let DS = (KGen, Sign, Ver) be the signature scheme. Each party P ∈ P sends to FComp the input
(initialize, sid, {KGen, Sign, Ver}).

Key Generation:
Upon receiving the command I := (input, sid, key-gen) S sends (query, sid, KGen, 1λ) to FComp and
upon receiving (vk, sk) outputs (verification-key, sid, vk).

Signing and Verification:
– Upon receiving the command I := (sign, m) the signer send (query, sid, KGen, (sk, m)) to FComp.

Upon receiving (m, σ) from FComp output (signature, sid, m, σ).
– Upon receiving the command I = (verify, vk, m, σ) send (query, sid, Ver, (vk, m, σ)) to FComp, and

upon receiving a reply b output (verified, sid, m, b).

Figure 4: Corruptible signature

family of signature functionalities as defined above which are formally indexed with DSi. Note that
S (the signer identity) appears as an explicit identifier in this family.

To formalize the ideal update for signatures, we first define how SttUpSIG and UpPredSIG work.
The state stateSIG of a signature functionality (aside of the corruption set) is represented by the
verification key of the sender and the set of tuples (vk, m, σ, b) stored by the functionality (we refer
to Section A for a more detailed discussion).

• UpPredSIG: On input (P, ssid,F ′, UpdateReqF ′ , UpdateStatusP,F ′ , PartiesFunctions, UpGraph, 0λ)
do the following: if P appears in UpdateReq and UpdateStatusP,F ′ = Updating then let
v ← PartiesFunctions[P ] and perform the following steps to compute the decision (otherwise,
return ⊥):

– If P is the signer of instance v and UpGraph has no node v′ with v′.function = F ′ and
v′.ssid = ssid then return 1.

– Else, if P is not the signer and if there is a node v′ with v′.function = F ′ and v′.ssid = ssid
that is a child of v and (S, vk) ∈ v′.state then do the following.

∗ If S is honest then return 1.
∗ If S is corrupted then let MP be the set of all the pairs (m, σ) s.t. (P, vk, m, σ, 1) ∈

v.state and let M be the set of all the pairs (m, σ) for which a tuple (·, vk, m, σ, 1) is
stored in v′.state, if MP ⊆M then return 1.

– Return 0.

The update predicate thus ensures that it only allows a party to transition, if it can be guaranteed
that the party will remain consistent with respect to the set of messages it has seen and successfully
verified. Furthermore, as long as the signer is honest, the update graph UpGraph is a chain of
instances of the signature functionality. We next define the state updates:

• SttUpSIG: On input SttUp(v⋆, P, UpdateReq, PartiesFunctions, UpGraph, aux) first obtain the
instance v ← PartiesFunctions[P ] (note that by definition, v⋆ is the parent node of v party P
is updating from):
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– If P is the signer in instance v⋆ and P is honest, define the new state s and insert the
tuple (P, vk) ∈ v⋆.state as well as all tuples (S, vk, m, σ, 1) ∈ v⋆.state.

– Else, if P is the signer for the instance v⋆ and P is corrupted then define an empty state
s, and set s← aux.

– If P is not the signer then set s← v.state.
– Return s.

The definition means that we keep all generated signatures of the honest signer, even if the signer
has been sub-corrupted. If instead the signer is fully corrupted, then we let the adversary decide
the state of the updated functionality.

4.2 The Protocol and Security Statement

The main underlying primitives that we use to realize our update system are a cold signature scheme
DSc and a message registry that we formally introduce in Section D. At a very high level, DSc will
be used only during the update phase by the signer to authenticate the information that concerns
the updates which are sent to each individual verifier. We prove that as long as the security of
DSc holds then our scheme realizes the updatable functionality UFSIG

SttUpSIG,UpPredSIG
. Our approach is

justified by the fact that DSc might be a particularly inefficient signature scheme, but at the same
time difficult to attack. Given the inefficiency of DSc, it might not be practical to directly use it as
a signature scheme, hence we use it just to support an update between one signature scheme and
another (which are more efficient than DSc but they might be compromised more easily). In order
to provide the security guarantees we modularize our construction with a simple cryptographic
primitive we call a message registry. The primitive uses three algorithms (Gen, Add, Vmr) and enables
to deposit messages to a “container”, a process that may generate a witness, while given a message
and witness one can verify reliably whether the message is in the container. A message registry
can be trivially realized information theoretically, or cryptographically for more efficiency. We give
more details in Appendix D.

Equipped with these tools, our update system works as follows. The signer registers his cold
verification-key to a PKI2, and starts issuing signatures using the (sub-corruptible) signature
functionality F̂S,DS0

SIG ∈ FSIG while the verifier simply uses the same functionality to verify the
signatures. The signer keeps the memory of all the signatures he issues (by recording them in the
message registry), and the verifiers do something similar, i.e., memorizing valid signatures.

When the signer wants to update, he hashes the message registry, together with the description
of the new functionality he wants to update to (let us call it F̂S,DS⋆

SIG ) and a verification key freshly
generated by querying F̂S,DS⋆

SIG . Then he signs the hash with the cold signature scheme and sends
the signature, the message registry, F̂S,DS⋆

SIG and the new verification key to each verifier.
If a verifier has received an update command for the functionality F̂S,DS⋆

SIG (which is the same
functionality he receives from the signer, then), and if all the information are authenticated as
described above, then the verifier does the following. He checks whether all the signatures he
has ever verified are contained in the message registry received from the signer, and if this is the
case then the verifier will accept the update. The reason for this check is to maintain consistency
throughout the updates. That is, if a verifier has verified successfully a signature for a message m,
then any verifier registered to the same functionality must correctly verify the same pair, even if the
verification of m happened in a previous epoch.

2This enables authenticated communication from the honest signer to other parties. In the protocol, we also store
the initial verification key of the signer for efficiency and simplicity, as otherwise, the first update message would have
to include it.
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To fully enable consistency, we also need to modify how the verification procedure works after
an update. The verifier now, upon receiving a message and a signature, would first check if the pair
is valid with respect to the new key by querying F̂S,DS⋆

SIG . If it is, then the verifier memorizes the
pair as before, if instead F̂S,DS⋆

SIG returns 0, then the verifier looks in the message registry (received
during the update) for the pair. If there is a match, the verifier outputs 1, else he returns 0.

The overall idea is simple, but we need to deal with some subtle technicalities to be able to prove
that the scheme does realize UFSIG

SttUpSIG,UpPredSIG
. The first is related to the fact that in UFSIG

SttUpSIG,UpPredSIG
the sub-session identifiers play an important role since they define to which node in the graph
(maintained by UFSIG

SttUpSIG,UpPredSIG
) each party should be registered to. In the real world protocol the

ssid is computed by hashing the descriptor of F̂S,DS⋆
SIG with the message registry the signer sends

during the update. The idea is that we want verifiers with the same sub-session identifier to share
the same history of signed messages (i.e., they are registered to the same functionality with the
same state). The collision resistance of the hash function guarantees that if two verifiers accept an
update for the same ssid, then they must have received the same message-registry and the same
functionality descriptor from the adversary, creating the correct connection between ideal and real
world. A final technicality is that we must keep the honest signer key the same across epochs to be
compatible with standard signatures (this is an important aspect looking ahead on Section 4.4).
The full description of the protocol is given in Figures 5 and 6.
Remark 4. It is instructive to compare the above construction to a simple construction that works as
follows: during the update, simply sign the message set with the next instance of the signature public
key. There are two drawbacks of this update system compared to our proposal: first, the party has
to update its record with the PKI (and hence revoke the old one as it might become compromised
later). Second, while the system meets the minimal requirement that we have uninterrupted security
as long as the security breach of a scheme always happens “after an update” to the next version,
the simple construction falls short in enabling the honest signer to regain security after a security
breach of the current implementation. In particular, our SttUpSIG demands that an honest signer
(despite being subcorrupted) regains full security in the updated session, while for the above simpler
protocol, the update guarantees are lost when the active key is compromised (since the most recent
update messages can be equivocated by an attacker). Note that an even stronger PKI with a richer
interface could salvage the scheme (in spirit along the lines of our construction), but assuming such
a strong PKI does not appear to be a practical assumption. In contrast, our scheme works with the
basic CA-functionality of Canetti [Can03] and hence with the minimal root of trust (just a single
key per signer must be distributed authentically in the beginning), which is easily seen to be a
necessary assumption to achieve any non-trivial form of state preservation. We elaborate on this
crucial aspect when we discuss the benefits of our construction in the larger context of post-quantum
readiness in Section 4.3.

Theorem 4.2. Assume (GenH, H) is a collision-resistant hash function, DSc is a (cold) signature
scheme which is only used during the update, and (Gen, Add, Vmr) is a Message Registry then ΠS,up

SIG
realizes UFSIG

SttUpSIG,UpPredSIG
for the function family defined above in the standard PKI hybrid model.

Proof. Let A be an arbitrary polynomial-time adversary. We will describe a corresponding polyno-
mial time ideal process adversary S such that no non-uniform polynomial-time environment can
distinguish whether ΠS,up

SIG is running in the real-world with parties p1, . . . , pn and the adversary A
or in the ideal process running with UFSIG

SttUpSIG,UpPredSIG
, S and the dummy parties p̃1, . . . , p̃n.

We assume that UFSIG
SttUpSIG,UpPredSIG

is initialized with the root v0 with v0.ssid = 0 and v0.function =
F̂S,DS0

SIG . The simulator S maintains an initially empty set of sub-corrupted parties SubC the list
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Protocol ΠS,up
SIG - Part I

Initialization
All the parties initially interact to the root functionality F̂S,DS0

SIG ∈ FSIG. Each party P ∈ P initializes
VersionP ← 0, sidP ← sid (where sid is the session-ID of the protocol instance), MP ← ∅, and defines
VerP which on input (vk, m, (σ, w)) sends (verify, sidP , vk, m, σ) to F̂S,DS0

SIG and returns whatever F̂S,DS0
SIG

returns.

Key Generation:
Upon receiving the command I := (input, sid, key-gen) S does the following.

– Send (key-gen, sidS) to F̂S,DS0
SIG thus obtaining vk0.

– Compute (vkc, skc)← KGenc(1λ) and k
$←− GenH(1λ)

– Register (vk0, vkc, k) with the PKI.

– Generate trap, A $←− Gen(1λ) and define Sign which is a stateful algorithm that on input m does the
following steps.

– Send (sign, m) to F̂S,DS0
SIG and upon receiving (signature, sid, m, σ) continue.

– Compute A′, w $←− Add(trap, A, (m, vk0, σ)).
– Set A← A′ and return (m, (σ, w)).

Return (verification-key, sid, vk0).

Signing and Verification:
– Upon receiving the command I := (input, sid, y),

– if y = (sign, m) and I is received by the signer, then run Sign(m) and return whatever Sign
returns.

– if y = (verify, vk, m, (σ, w)) and I is received by a party P then run VerP on input
(vk, m, (σ, w)) to receive (verified, sid, m, b); add (m, vk, (σ, w)) to MP if b = 1, and finally
return (verified, sid, m, b).

Figure 5: Updatable signatures: initialization and operation.

pNodes (that maintains the association between parties, sub-session identities and verification keys)
initialized with pNodes[pi]← (0, F̂S,DS0

SIG , vk0) for all pi ∈ P. S works as follows.

• All the honest parties simulated by S in the real world are initialized as described in ΠS,up
SIG .

• If pi receives (update_notification, UpdateReq, pi, F̂S,DS⋆
SIG ) from UFSIG

SttUpSIG,UpPredSIG
and pi

is a verifier then add (pi, F̂S,DS⋆
SIG ) to waiting; if pi is an honest signer then set sidpi ←

Hk(A||F̂S,DS⋆
SIG ) and do the following

1. Send (key-gen, sidpi) to F̂S,DS⋆
SIG (the simulator internally runs F̂S,DS⋆

SIG ) thus obtaining
(vk⋆, sk⋆).

2. Set Version← Version + 1.
3. Compute σc ← Signc(skc, Version||vk⋆||h), define τ ← F̂S,DS⋆

SIG ||Version||vk⋆||A||h||σc

and send τ to each verifier.
4. Set pNodes[pi]← (sidpi , F̂S,DS⋆

SIG , vk⋆) and send (GrantUpdate, sid, pi, sidpi , F̂S,DS⋆
SIG , 0λ)
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Protocol ΠS,up
SIG - Part II

Update:
– If the signer S receives the command I := (update, sid, F̂S,DS⋆

SIG ) (with F̂S,DS⋆

SIG ∈ FSIG then she sets
sidS ← Hk(A||F̂S,DS⋆

SIG ) does the following steps.

1: Send (key-gen, sidS) to F̂S,DS⋆

SIG thus obtaining vk⋆.
2: Redefine Sign. On input m, Sign does the following steps.

– Send (sign, sidS , m) to F̂S,DS⋆

SIG and upon receiving (signature, sidS , m, σ) continue.

– Compute A′, w $←− Add(trap, A, (m, vk0, σ)).
– Set A← A′ and return (m, (σ, w)).

3: Set Version← Version + 1.
4: Compute σc ← Signc(skc, Version||vk⋆||h), define τ ← F̂S,DS⋆

SIG ||Version||vk⋆||A||h||σc and
send τ to each verifier.

– If a party P receives the command I := (update, sid, F̂S,DS⋆

SIG ), if F̂S,DS⋆

SIG ∈ FSIG then she does the
following steps.

1: Wait to receive τ from the signer S. Once the message τ is received, first retrieve the signer’s
public keys and hash key (vk0, vkc, k) from the PKI. Then parse τ as F||Version||vk⋆||A||h||σc,
check if Verc(vkc, Version||vk⋆||h, σc) = 1 and h = Hk(A||F) and F = F̂S,DS⋆

SIG and Version >
VersionP and ∧(m,vk0,(σ,w))∈MP Vmr(A, w, (m, σ, vk0)). If the check fails then ignore the input,
else set AP ← A, sidP ← h, set VersionP ← Version and redefine VerP as follows.
VerP (vk ′, m, (σ, w)):

– If vk ′ = vk0, then send (verify, sidP , vk⋆, m, σ) to F̂S,DS⋆

SIG ; upon receiving
(verified, sidP , m, b), if b = 1 then append (m, vk0, (σ, w)) to MP and return 1. If
b = 0 then return Vmr(A, w, (m, σ, vk0)).

– else return 0.

Figure 6: Updatable signatures: update step

• Let pi be an honest real-world verifier simulated by S. If pi receives τ from a corrupted signer,
then do the following

– Parse τ as F||Version||vk⋆||A||h||σc and send I := (update, sid,F) to UFSIG
SttUpSIG,UpPredSIG

on the behalf of the corrupted signer.
– Upon receiving (update_notification, UpdateReq, S,F) from UFSIG

SttUpSIG,UpPredSIG
where

S is the corrupted signer do the following.
∗ Compute ssid← Hk(A||F̂S,DS⋆

SIG )
∗ Send I := (GrantUpdate, sid, S, ssid,F , 0λ) to UFSIG

SttUpSIG,UpPredSIG
.

– If there is an entry (pi, F̂S,DS⋆
SIG ) in waiting then do the following else stop.

1. Check if Verc(vkc, Version||vk⋆||h, σc) = 1 and h = Hk(A||F) and F = F̂S,DS⋆
SIG and

Version > Versionpi and ∧(m,vk,w)∈Mpi
Vmr(A, w, (m, vk)). If the check fails then

ignore the input, else set Api ← A, sidpi ← h, set Versionpi ← Version.
2. Set pNodes[pi]← (sidpi , F̂S,DS⋆

SIG , vk⋆) and send (GrantUpdate, sid, pi, sidpi , F̂S,DS⋆
SIG , 0λ)

to UFSIG
SttUpSIG,UpPredSIG
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• If the signer S receives (sign, sid, m) from UFSIG
SttUpSIG,UpPredSIG

then set (sidS ,F , vk)← pNodes[S]
send (sign, sidS , m) to F . Upon receiving I = (signature, sidS , m, σ) from F do the following

– Compute A′, w $←− Add(trap, AS , (m, vk0, σ)) and set AS ← A′
S .

– Forward I = (signature, sidS , m, (σ, w)) to UFSIG
SttUpSIG,UpPredSIG

.

• If the party pi receives I = (verify, sid, m, (σ, w), vk ′) from UFSIG
SttUpSIG,UpPredSIG

then set (sidS ,F , vk)←
pNodes[pi], send I = (verify, sidpi , m, σ, vk) to F . Upon receiving (verified, sid, m, b), if
b = 1 then append (m, vk0, σ) to Mp1 and return (verified, sid, m, 1). If b = 0 then set
d← Vmr(Api , w, (m, σ, vk0)) and return (verified, sid, m, 1) to UFSIG

SttUpSIG,UpPredSIG

• If the party pi receives any command I = (. . . , sid, . . . ) from UFSIG
SttUpSIG,UpPredSIG

the set
(sidS ,F , vk)← pNodes[pi], send I to F and forward the reply obtained from the functionality
to UFSIG

SttUpSIG,UpPredSIG
.

We note that there are only three reasons why the simulation could fail: 1) After the update to
a functionality F̂S,DS⋆

SIG with sub-session-id ssid, the state of a functionality (which is maintained by
UFSIG

SttUpSIG,UpPredSIG
) does not contain a tuple (m, (σ, w)) that is instead contained message registry A

of an honest verifier that accepted to update to F̂S,DS⋆
SIG with sub-session-id ssid; 2) Two (or more)

honest verifiers (p1, p2) accepted in the real world to update to a functionality with sub-session-id
ssid but after the update the two verifiers accept two different message registries; 3) In the real
world a verifier accepted to update to a functionality with sub-session-id ssid for which the signer
is honest, but this functionality (with the same ssid) does not appear in the graph maintained by
UFSIG

SttUpSIG,UpPredSIG
in the ideal world.

Case 1) implies that the message registry A of an honest verifier contains a tuple T := (m, vk, σ)
but the honest signer has never added T to the message registry he sent during the update. However,
this can happen only with negligible probability as otherwise, we would be able to contradict the
security of the message registry. If case 3) happens it must be because Hk(A||F) = Hk(A′||F)
where A ̸= A′. Hence, this even can happen only with negligible probability because of the collision
resistance of H. If a real-world honest verifier accepts to update to a functionality where the signer
is honest, it must be because she received the update information properly signer with respect to
the cold-key of the honest signer. We recall that any time that an honest signer sends this update
information, our simulator also requests UFSIG

SttUpSIG,UpPredSIG
to create a new node in the graph (this is

a consequence of the honest signer receiving the command update). Hence, if case 3) happens it
must be that the honest signer did not receive an update command which yielded to the creation
of a functionality with sub-session-id ssid , but the verifier received a valid signature for update
information that yielded an honest verifier to update to a functionality with sub-session-id ssid.
Given that we have excluded that any of the previous case can happen, and given that the PKI
provides the correct cold-key for any given signer, the only reason why 3) can occur is because the
cold-signature scheme has been forged. But by assumption, this can happen only with negligible
probability.

4.3 Practical Impact: Preparation for Post-Quantum Readiness

Our construction in Section 4.2 is written in a formal language that abstracts a few key components.
First, FComp models the belief about which parts of the system might fail by reasoning about two
types of signatures: hot and cold; second, the construction is based on signature functionalities and
thus fully generic, and third, our solution just requires a very simple root of trust (CA without
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updates). It is important to map these abstractions to real-world use cases to appreciate the value
of the protocol.

Assume you had a signing service that currently cannot afford to sign with anything less efficient
than (DL-based) systems like ECDSA or EdDSA. At the same time, you would like to be ready to
transition to a signature scheme that is based, say, on lattices as soon as either (i) the quantum
threat (against authentication schemes) becomes real or (ii) a post-quantum signature scheme has
been developed with efficiency as ECDSA and widely deployed to enable a frictionless operation
post-transition.

When you “flip the switch” to the new signature algorithm, your system should definitely not
forget the documents it has signed in the past. Clearly, if all you do is to sign old documents
issued earlier with a new secret key, then an attacker can impersonate your service unless you
cryptographically connect your new key to your old key to preserve the link. This latter step requires
interaction, either through a (post-quantum ready) PKI that allows you to record your key update,
or via a direct method (as in our solution) secured by an additional scheme that remains secure
despite the threat (the cold signature scheme).

Therefore, when used to prepare for a transition in the context of post-quantum readiness, our
scheme has the following features.

• When the initial public key is distributed (before the quantum threat is practical), our
construction does not rely on a quantum secure PKI since we do not have to update our key in
the PKI, but we secure the update ourselves based on this initial root of trust (e.g., downloaded
by parties or stored in the browser). This is an important feature for another reason: the
developer of a post-quantum ready PKI for example cannot rely itself on a post-quantum
secure PKI as this would end up in a circular dependency.

• The update itself is secured by a post-quantum secure signature (corresponding in the formal
model to what we call cold signature scheme). Since we do not use it often, this can be a
signature scheme that is not very efficient or even limited, and therefore be based on extremely
conservative assumptions like one-way functions.

• The system we transition to can be some new algorithm that was not known at the time we
set up the initial public key. We can transition to the most favorite signing algorithm at the
point of the update. This means that the decision of which post-quantum signature to use
in the daily business can be deferred to the point when the need arises (where presumably a
better understanding of post-quantum signatures will facilitate more efficient schemes).

Our protocol gives a way to be post-quantum ready w.r.t. signatures without relying on external
post-quantum secure services to be ready, and without committing now to the signature scheme
used after the transition.

4.4 A Succinct Representation of the Update System

It is interesting to see how a “compiled” version of UFSIG
SttUpSIG,UpPredSIG

formally compares to the
standard signature functionality. While intuitively clear based on the above statements, we can
make the claim more formal by introducing the following protocol πS

upd that wraps the update system
in the most obvious way to obtain an abstraction that then looks like a signature functionality with
updates:

1. All machines keep track of a local counter ep of the number of successful updates, initially
ep← 0.
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2. On input (key-gen, sid) or (sign, sid, m) the signer S issues this command to UFSIG
SttUpSIG,UpPredSIG

and returns the result to the caller.

3. On (verify, sid, m, σ, vk ′) relay the verification request to UFSIG
SttUpSIG,UpPredSIG

and return any
answer to the caller.

4. On (update, sid) for signer S, issue the update request (update, sid, F̂S,DSep+1
SIG ) to UFSIG

SttUpSIG,UpPredSIG
and return any answer to the caller. Upon a successful update notification (Success, ssid, F )
set ep← ep + 1. If the update fails, abort the execution.

5. On (update, sid), issue the update request (update, sid, F̂S,DSep+1
SIG ) to UFSIG

SttUpSIG,UpPredSIG
. Upon

a successful update notification (Success, ssid′, F̂S,DSep+1
SIG ) set ep← ep + 1. If the update fails

or the identities do not match, abort the execution.

In Figure 7 we describe the concise signature functionality with updates that the above protocol
realizes, and which has the following features: we have consistency throughout the execution of
the system as long as the signer is not fully corrupted. This means that no party will see a tuple
(m, σ, vk) fail to verify if it did successfully verify in the past. Next, if the signer updates before
it is sub-corrupted, the set of signed messages remains exactly the set of messages formed by the
messages that were input by the signer. In this case, every verifier in the same epoch as the signer
enjoys the normal unforgeability guarantees—and always with respect to the one registered public
key of the signer—despite the fact that forgeries are allowed for older epochs or during periods of
signer sub corruptions. We can summarize this observation as a lemma.

Lemma 4.3. Protocol πS
upd defined above UC-realizes F⋆,S

SIG .

Proof. We first describe the simulator S for this construction that interacts with F⋆,S
SIG . The simulator

internally emulates the instance of UFSIG
SttUpSIG,UpPredSIG

. It behaves as follows from inputs from F⋆,S
SIG :

• On receiving (key-gen, sid), (sign, sid, m), or (verify, sid, m, σ, v′) from a particular party P ,
hand the corresponding input to the emulated instance epP of the session UFSIG

SttUpSIG,UpPredSIG
and

send to the environment the output that is produced. Return the answer from the environment
(which is either (verification-key, sid, v), (signature, sid, m, σ), or (verified, sid, m, ϕ))
to any of these requests back to the very same instance and forward the reply to F⋆,S

SIG to
produce the matching output towards P .

• On receiving (SignerAdvances, sid, epS) the simulator S simulates the update request
(update_notification, sid, UpdateReqF , S, F̂S,DSepS+1

SIG ) (where each UpdateReqF is simply
filled with all parties that want to update to F ) to the environment.

• On receiving (Update, sid, P ), the simulator S simulates the update request analogous
to above, i.e., by sending (update_notification, sid, UpdateReqF , P, F̂S,DSepP +1

SIG ) to the
environment.

• On receiving (GrantUpdate, sid, P, ssid, F ′, aux), the simulator internally evaluates the
request on its running instance. If the update is successful, it returns (AllowUpdate, sid, 1)
to F⋆,S

SIG , and if the update is not successful, it returns (AllowUpdate, sid, 1) to F⋆,S
SIG .

This simulation yields an execution that is indistinguishable from an execution of πup. This is
obvious before the first update, as both worlds simply talk to an ideal signature functionality they
have an identical behavior by definition. Furthermore, if the signer ever gets sub-corrupted, both
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worlds weaken the ideal unforgeability guarantees and the simulator is free to decide on the outputs
by S. Regarding the updates, as long as the signer is honest, the update, i.e., epoch changes
can only be triggered by the signer by definition of UpPredSIG, as otherwise, no child node exists.
Furthermore, the update graph is in fact a chain: the only admissible ssid for everyone is the ssid
obtained by the signer S when the update succeeds and the functionality must be the one requested
by the signer, because an honest signer only performs one update a time and UpPredSIG would
only let this one update go through and otherwise the update fails. Thus, as long as the signer is
honest, both systems behave identically. We are thus left with analyzing the case that the signer
becomes fully corrupted. To this end, let ep∗ denote the epoch during which the signer becomes
fully corrupted. We observe that the ideal system lifts the unforgeability and global consistency
guarantees and the simulator is free to decide the output of a signature verification. The only
restriction that is maintained is local consistency. However, by definition of UpPredSIG, no matter
what transition a party P does, local consistency is retained also in the real world. This concludes
the proof.

5 Non-interactive Zero-Knowledge Proof Systems
We define the update system for non-interactive zero-knowledge proof systems. The update protocol
follows a similar pattern, but is privacy-preserving admitting no more leakage about the witnesses
beyond what is leaked due to corruptions.

5.1 The NIZK Functionality

NIZK with subroutine corruption. We define the NIZK functionality from [GOS12] in
our framework, which simply means that, as in the previous section, we formally equip it with
the standard sub-routine corruption mode as outlined in Section 3.1 and Section A and refer
to Section A.2.1 for a description of FNIZK. Recall that a proof system is called a UC-NIZK scheme
if, cast as a straightforward UC protocol ΠPS , UC-realizes FNIZK (for simplicity, we focus on the
use-case with one specific prover). For full generality of our modular update system, we formalize
several forms of CRS corruptions (as our security statements do hold w.r.t. any such form of
corruption), by formally defining a CRS functionality in Figure 13 in Section A that outlines several
assumptions about the corruptibility of the CRS. Note that we only capture leakage about the CRS,
as subversion is captured by our formalism using the computation devices FComp.

Analogously to the previous section, the subroutine-corruptible version is denoted by F̂NIZK,
which is UC-realized by running the proof system in the FComp-hybrid world (modeling algorithm
subversion), and in the FCRS-hybrid world (where we drop the reference to the scheme because it is
not relevant for our considerations below) to model CRS-corruption. The protocol is called Π̂PS
and we have the following lemma analogous to the previous section.

Lemma 5.1. If PS is a proof system such that ΠP
PS UC-realizes FP

NIZK in the FCRS-hybrid model
then Π̂P

PS realizes F̂NIZK in the (FComp,FCRS)-hybrid model.

Proof. The only difference between Π̂P
PS and ΠP

PS is that the algorithms Prove and Vrfy are executed
on FComp by the former. If no subroutine-corruptions on FComp occur, then the simulator S, which
exists by assumption (simulating w.l.o.g. against the dummy real-world adversary) provides an
indistinguishable ideal execution w.r.t. Π̂P

PS in the same corruption model. In case of subroutine
corruptions of FComp for prover P, the behavior in both worlds is equivalent to a full corruption of P
which can be simulated by instructing S to corrupt P and providing back the information obtained
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Functionality F⋆,S
SIG

The functionality interacts with parties P ∈ P and initializes epP ← 0, MP ← ∅ for all P ∈ P, as well
as a setM← ∅. The function is parameterized by the signer identity S ∈ P . The corruption set consists
of identities P ∈ P, (full corruption) or (FComp, s, P ) for P ∈ P (subroutine corruption).

• Upon receiving (key-gen, sid) from signer S for the first time, hand (key-gen, sid) to the
A. Upon receiving (verification-key, sid, vk) from A, verify that no entry (·, m, ·, vk, 1) is
recorded and ignore the reply if there is such an entry. Else, record the pair (S, vk) and output
(verification-key, sid, vk) to S. Otherwise, ignore the request.

• Upon receiving (sign, sid, m) is received from signer S, send (sign, sid, m) to A. Upon receiving
I = (signature, sid, m, σ) from A, verify that no entry (ep, m, σ, vk, 0) for any ep is stored. If it is,
then ignore the reply. Else, send (signature, sid, m, σ) to S, and store the record (epS , m, σ, vk, 1)
in M. Additionally, store the record (m, σ, vk, 1) in MS .

• Upon receiving (verify, sid, m, σ, vk ′) from some party P , hand (verify, sid, m, σ, vk ′) to the
adversary. Upon receiving (verified, sid, m, ϕ) from the adversary do:

1. If vk ′ = vk and S ̸∈ C, and the entry (epP , m, σ, vk, 1) ∈ M is recorded, then set f ← 1.
(Completeness)

2. Else, if vk ′ = vk and S ̸∈ C and (·, epP , S) ̸∈ C, and if no entry (epP , m, ·, vk, 1) is already
stored, then set f ← 0 and record the entry (epP , m, σ, vk, 0). (Unforgeability)

3. Else, if the entry (epP , m, σ, vk ′, f ′) ∈M is recorded and S ̸∈ C then let f ← f ′. (Consistency
across all parties in epoch)

4. Else, if the entry (m, σ, vk ′, f ′) ∈MP is recorded, then let f ← f ′. (Local consistency)
5. Else, let f ← ϕ. If S ̸∈ C, record the entry (epP , m, σ, vk ′, ϕ).

Store the tuple (m, σ, vk ′, f) in MP if the result is f = 1. Output (verified, sid, m, f) to P .

• Upon receiving (Update, sid) from signer S, output (SignerAdvances, sid, epS) to the adversary.
Upon receiving (AllowUpdate, sid, d) from the adversary then do the following: if d = 0 then
abort; otherwise set epS ← epS + 1 and store for each record (m, σ, vk, b) ∈ MS the record
(epS , m, σ, vk, b).

• Upon receiving (Update, sid) from some party P ∈ P perform the following: hand (Update, sid, P )
to the adversary. Upon receiving the answer (AllowUpdate, sid, d), do the following: if d = 0,
then abort. If d = 1 and if epP < epS then set epP ← epP + 1 and store for each record
(m, σ, vk, b) ∈MP the record (epP , m, σ, vk, b) in M.

• The functionality follows the fine-grained corruption mode explained in Section 3.1.

Figure 7: The signature functionality F⋆,S
SIG with explicit updates.
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from F̂NIZK when sub-corrupting P. From then on, simulation is trivial, as no private information
is retained, and we have complete control over the output of P. For any other party, i.e., verifier,
simulation is trivial given the equivalence of full party corruption and verifier sub-corruption.

5.2 Ideal Updatable NIZK Proof Systems

The ideal update system that we achieve is fully specified by defining the core functions and noting
that we aim to realize UFNIZK

SttUpNIZK,UpPredNIZK
, for FNIZK := {F̂P,PSi

NIZK }i, the family of NIZK functionalities
as defined above which are formally indexed with PSi. Note that P appears as explicit identifier in
this family.

• UpPredNIZK: On input (P, ssid,F ′, UpdateReqF ′ , UpdateStatusP,F ′ , PartiesFunctions, UpGraph, 0λ)
do the following: if P appears in UpdateReq and UpdateStatusP,F ′ = Updating then let
v ← PartiesFunctions[P ] and perform the following steps to compute the decision (otherwise,
return ⊥):

– If P is the prover of instance v and UpGraph has no node v′ with v′.function = F ′ and
v′.ssid = ssid then return 1.

– Else, if P is not a prover and there is a node v′ with v′.function = F ′ and v′.ssid = ssid
that is a child of v then do the following.

∗ If P is honest then return 1.
∗ If P is corrupted then let MP be the set of all the pairs (x, π) s.t. (P, x, w, π) ∈ v.state

and let M be the all the pairs (x, π) for which a tuple (·, x, w, π) is stored in v′.state,
if MP ⊆M then return 1.

– Return 0.

This is analogous to the previous section: we want to upgrade to a more secure system while
maintaining backwards-compatibility.

• SttUpNIZK: On input SttUp(v⋆, P, UpdateReq, PartiesFunctions, UpGraph, aux) first compute
v ← PartiesFunctions[P ] (note that by definition, v⋆ is the parent node of v party P is
updating from).

– If P is the prover in instance v⋆ and P is honest, define the new state s and insert all
tuples (P, x, w, π) ∈ v⋆.state.

– Else, if P is the prover for the instance v⋆ and P is corrupted then define an empty state
s, and set s← aux.

– If P is not the prover then set s← v.state.
– Return s.

The state update is again similar to the previous update system: all we can guarantee is that if
the prover is honest, all honest parties will upgrade to the next instance and regain all guarantees
from that point onwards. However, if the prover is dishonest, it can decide about the new state,
potentially preventing other parties to proceed with the update.
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Protocol ΠP,up
NIZK - Part I

Initialization
Let DSc = (KGenc, Signc, Verc) be the cold signature scheme. Each party P ∈ P initializes VersionP ← 0,
sidP ← sid (where sid is the session id of the protocol instance), maintains an intially empy set MP and
defines VrfyP which on input (x, π) sends (verify, sid, x, π) to F̂P,PS0

NIZK and returns whatever is returned
by the functionality.
The prover P maintains also a set denoted with W (initially empty) and does the following additional
steps:

– Generate (vkc, skc)← KGenc(1λ) and register vkc with the PKI.
– Define ProveP which is a stateful algorithm that on input statement x and a witness wx performs

the following steps:

– Send (prove, sid, x, wx) to F̂P,PS0
NIZK .

– Upon receiving π from the functionality, add (x, π) to MP and (x, wx) to W and return (x, π).

Proving and Verifying:
– Upon receiving the command I := (input, sid, y),

– if y = (prove, x, wx) and I is received by P, then compute ProveP(x, wx) thus obtaining (x, π)
and return (proof, sid, x, π);

– if y = (verify, x, π) and I is received by a party P that is not the prover then check whether
VrfyP (x, π) = 1. If this is the case, do the following:

∗ add (x, π) to MP ;
∗ return 1.

else return 0.

Figure 8: Updatable Proof Systems - Initial Operation

5.3 Protocol and Security Statement

The protocol is defined in Figures 8 and 9. It follows the same basic idea as in the previous section,
i.e., the prover needs to sign update information that is sufficient to safely move to the next instance
of F̂NIZK while still being backwards compatible. Nevertheless, there is a catch: when a malicious
prover is initiating an update, it should not be possible to “inject” statements x which are not
in the language. Recall that since a verifier’s algorithm might be subverted at the time of the
update, and since we want to implement backwards-compatibility as specified above, we must rely
on a cold-scheme mechanism to detect invalid statements if we want to retain the NIZK security
guarantee for the next epoch (we note that dropping the backwards compatibility requirement
is always possible and we end up with a simple problem as seen in Section C). The cold scheme
mechanism is used in a batch-verification step that happens during the update. We obtain:

Theorem 5.2. Let each proof system PSi be a UC-NIZK systems for NP relation R (with respect to
some corruption mode) in the (FGeni

CRS ,FComp) model, then there is a NIZK update protocol (w.r.t. the
same corruption mode), that is, there is a protocol realizing UFNIZK

SttUpNIZK,UpPredNIZK
for FNIZK based on

a collision-resistant hash function, the availability of a (cold) signature scheme and a PKI, as
well as a cold UC-NIZK scheme for the batch-proof relation R′ = {(x1, . . . , xn), (w1, . . . , wn) |n ∈
N ∧ (xi, wi) ∈ R} which is only used during the update step.
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Protocol ΠP,up
NIZK - Part II

Update:
– If the prover P receives the command I := (update, sid, F̂P,PS⋆

NIZK ) with F̂P,PS⋆

NIZK ∈ FNIZK then P sets
sidP ← H(MP||F̂P,PS⋆

NIZK ) does the following steps.

1: Identify the elements of W and MP as the sequences SW = (xi, wi)i∈[|W |] and SM =
(xi, πi)i∈[|MP|], respectively, such that SW [i, 1] = SM [i, 1].

2: Build the vectors x = (x1, . . . , x|W |) and w = (w1, . . . , w|W |) and send (prove, sid, x, w) to
FP,PSc

NIZK , and receive πup as a reply.
3: Redefine ProveP as follows: on input (x, w), the algorithm does the following:

– Send (prove, sidP, x, wx) to F̂P,PS⋆

NIZK .
– Upon receiving π as a reply, add (x, wx) to W and (x, π) to MP.

4: Set Version← Version + 1 and compute h← H(MP||F̂P,PS⋆

NIZK ).
5: Compute σc ← Signc(skc, Version||h), define τ ← F̂P,PS⋆

NIZK ||Version||MP||h||πup||σc and send
τ to each verifier.

– If a party P (which is not the prover) receives the command I := (update, sid, F̂P,PS⋆

NIZK ) with
F̂P,PS⋆

NIZK ∈ FNIZK, then she does the following steps.

1: Wait to receive τ from the signer and parse it as F||Version||M ||h||π||σc, set sidP
c ←

H(M ||F̂P,PS⋆

NIZK ) and do the following checks: Verc(vkc, Version||h, σc) = 1 (where vkc of P
is obtained from the PKI) and h = H(M ||F) and F = F̂P,PS⋆

NIZK and Version > VersionP and
– build the sequence xM = (x1, . . . , x|M |) from M and send (verify, sid, xM , πup) to FP,PSc

NIZK
and upon receiving b, check if b = 1,

– check if MP ⊆M .
If any of the above checks fails then then ignore the input, else set MP ←M and sidP ← h
and redefine VrfyP on input (x, π) as follows:

– Send (verify, sidP , x, π) to F̂P,PS⋆

NIZK and upon receiving b, if b = 1 then
∗ add (x, π) to MP

∗ return 1.
– else, if (x, π) ∈MP then return 1, else return 0.

Figure 9: Updatable Proof Systems - Update Step

The theorem follows by Lemma 5.3 and by the composition theorem to replace F̂NIZK in ΠP,up
NIZK.

Lemma 5.3. Let FNIZK := {F̂P,PSi
NIZK } be a family of functionalities as defined above which are

formally indexed with PSi. Assuming H is a collision resistant hash function, DSc is a signature
scheme, and the availability of a PKI, then ΠP,up

NIZK realizes UFNIZK
SttUpNIZK,UpPredNIZK

.

Proof sketch. The proof shares a lot of similarities with the proof of the signature update system.
In particular, the simulator S interacts with UFNIZK

SttUpNIZK,UpPredNIZK
and must simulate the real-world

protocol execution (w.r.t. the dummy real-world adversary). Since we work in the hybrid world
F̂NIZK the interaction before the update is straightforward to simulate. During an update, we can
distinguish the two cases whether the prover P is honest (and possibly sub-corrupted) or corrupted.

• If the prover is honest, S computes the update information τ = F̂P,PS⋆
NIZK ||Version||MP||h||πup||σc,
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where MP is obtained by the emulation of hybrid F̂NIZK (where the proofs are given input by
the dummy adversary per instruction by the environment). Similarly, πup is the proof obtained
when the simulator simulates the output (prove, sid, (xi, . . . , x|MP|)) to the environment and
grants the update to every party that receives this information with ssid equal to h. This
simulation works by the same arguments as in the previous section. As long as the cold
signature scheme is not broken and no hash-function collision occurs, there can only be one
instance of the updated proof system where the initial state consists of all prior proofs to
statements proven by P.

• If the prover is dishonest then each update information τi = F̂P,PS⋆
NIZK ||Version||MP||h||πup||σc

sent by the adversary to an honest verifier Pi can be interpreted by S as spawning an instance
of F̂NIZK in session ssid = h = H(Mi||F̂P,PS⋆

NIZK ), where Mi defines the preserved state of the
functionality and PSi matches the update request by the honest (and potentially sub-corrupted)
verifier, i.e., it has received (update, sid, F̂P,PSi

NIZK ). The simulator thus inspects whether πup is
valid and if it is, obtains the witnesses (w1, . . . , w|Mi|). Since P is corrupted at this point by
assumption, all witnesses, by definition of FNIZK are either known by corrupting P in all instances
of F̂NIZK of UFNIZK

SttUpNIZK,UpPredNIZK
or latest at the time when S outputs (verify, sid, P, x, πup) to

the environment (in case πup has never been generated before), upon which the witnesses
(w1, . . . , w|Mi|) must be presented. If all simulated checks succeed for the honest verifier, the
simulator ensures (by proving a respective statement using the corresponding witness in the
name of the corrupted prover) that all tuples (P, xk, wk, π) presented in Mi are indeed in the
state of the session of F̂NIZK to which Pi is currently connected. Subsequently, S grants the
update for Pi with ssid = h. This simulation yields an indistinguishable behavior from the
real world as long as no hash collision occurs, because each ssid refers to a unique set of pairs
(xk, πk) proven to be in R during the update, and a honest verifier only proceeds with the
update if its own set of previously successfully verified statement and proofs is a subset thereof.
Thus, any two verifiers with matching ssid will have the same verification behavior on the the
same set of old statements and new verifications (proofs generated anew in session ssid) are
verified in exactly the same way in both worlds as both are instances of F̂NIZK.

6 Comparison with a Prior Notion of Agility
We start this section by recalling the notion of crypto-agility introduced in [ABBC10] for the case
of pseudo-random functions (the other case treated in [ABBC10], authenticated encryption, could
be represented analogously in our framework). Recall Section 2 and Section A for the standard
definitions.

Definition 6.1 (Compatible PRF schemes). We say that a set S of PRF schemes is compatible if
all schemes prf ∈ S have the same key generator.

Consider the games of Figure 10. In [ABBC10] an adversary is called S-restricted if (1) it
specifies in its queries only schemes from S, (2) it makes only one KeySetup query which is its
first oracle query in any execution, (3) it never repeats an oracle query, and (4) any Fn(prf, x)
query it makes satisfies x ∈ Xκ. (All this must hold with probability 1 regardless of how queries
are answered). S being compatible means the parameter and key generation algorithms invoked
during setup will be the same regardless of the PRF scheme that is provided as input to the function
evaluation oracle.)
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Game FF.PR.Gmb

procedure KeySetup(prf)
– K

$←− prf.KGen(1κ).
– Return K

procedure Fn(prf, x)
– if b = 1 then y ← prf.Eval(K, x) else y

$←− Yκ.
– Return y.

Figure 10: Game FF.PR.Gmb from [ABBC10]. We simplified the description for clarity. We omit the
parameters because they are not relevant for our treatment. We formulate security as an equivalent
distinguishing problem, and not as a bit-guessing problem.

Definition 6.2 (PRF agility). Let AGmb be the output of the adversary in the game FF.PR.Gmb of
Fig. 10. We say that a finite, compatible set S of PRF schemes is agile if |Pr[AGm0 = 1]−Pr[AGm1 =
1]| is negligible for all efficient S-restricted adversaries.

6.1 Comparison with Crypto-Agility from [ABBC10]

In this section, we define a simple update system that leads to the above prior notion of agility. The
instantiation is simple since in [ABBC10] the algorithms are always executed honestly and as such,
no guarantees in the presence of corruptions are given. We can therefore just consider a single party
under the UC static corruption model—we point out that as we have seen in prior sections, our
formalism can capture a much richer corruption model (see for example [JT20] on how to obtain
PRFs with adaptive security in the random oracle model).

6.1.1 Ideal Updatable (Pseudo-) Random Functions

Again, the ideal update system that we achieve is fully specified by defining the core functions and
noting that we aim to realize UFURF

SttUpURF,UpPredURF
, for FURF := {FP,(KGen,Evali)

URF,X ,Y }i, the family of URF
functionalities and formally indexed with prfi, where as explained above, all schemes share the key
generation process and the single party in the system is denoted by P.

• UpPredURF: On input (P, ssid,F ′, UpdateReqF ′ , UpdateStatusP,F ′ , PartiesFunctions, UpGraph) do
the following: if P appears in UpdateReq and UpdateStatusP,F ′ = Updating and return 1 (oth-
erwise, return ⊥).

• SttUpURF: On input SttUp(v⋆, P, UpdateReq, PartiesFunctions, UpGraph, aux), obtain the in-
stance v ← PartiesFunctions[P] (note that by definition, v⋆ is the parent node of v party P is
updating from):

– If P is honest and ∃v′ ∈ UpGraph : v′.function = v.function then initialize a new state
s := v′.state.

– Else, if P is honest and a table has been initialized in v⋆.state, then initialize a new state
s with an empty table T and return s.

– Else return the empty state.
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We observe that if we repeat the function from a previous update, then the queries are answered
consistently (the update graph is actually a chain for an honest P). Furthermore, if we switch to an
entirely new function, then we check whether the initialization event has happened or not.

6.1.2 Protocol and Security Statement

The protocol ΠP,up
URF is specified as follows:

• Upon initialization, party P initializes the empty key sk := ⊥ and the algorithm Eval⋆ := Eval0.

• On input I := (input, sid, y) where y = (Initialize, sid), do the following: if sk = ⊥, execute
sk $←− KGen, otherwise ignore the input.

• On input I := (input, sid, y) where y = (Eval, sid, x), verify that sk ̸= ⊥ and ignore the
request if this does not hold. Otherwise, return s

$←− Eval⋆(sk, x).

• On input I := (update, sid,FP,prfj

URF,X ,Y) with FP,prfj

URF,X ,Y ∈ FURF set Eval∗ := Evalj .

Security statement. Let S be the set containing all the compatible schemes, and the correspond-
ing functionality class FURF indexed with these schemes. We show that the security of the above
update system follows from the requirement of S being agile in the sense of [ABBC10]. We further
show that our simple update system captures the agility notion of [ABBC10].

Theorem 6.3. Let FURF and S be as defined above. The set S is agile if and only if protocol ΠP,up
URF

as defined above realizes UFURF
SttUpURF,UpPredURF

(with respect to static corruption of party P).

Proof. We start the proof by showing that if ΠP,up
URF as defined above realizes UFURF

SttUpURF,UpPredURF

then it is also agile for S. Suppose by contradiction that there exists an adversary Aagile that
contradicts Definition 6.2, then we can construct an environment that distinguishes ideal from real
world. Such an environment works as follows.

• Upon receiving an oracle query KeySetup(prf), from Aagile, initialize the real/ideal world3

with prf and provide the input I := (input, sid, y) with y = (Initialize, sid).

• Upon receiving an oracle query Fn(prf, x) from Aagile then input I := (update, sid,FP,prf
URF,X ,Y)

and if the update is successful then input I := (input, sid, y) where y = (Eval, sid, x).

• If an update ever fails, output 0.

• Return whathever Aagile returns.

From the above description the output of the environment when it interacts with the ideal-
functionality (and any simulator) corresponds to the output of Aagile in FF.PR.Gm0 unless it observes
that an update fails, in which case the output is 0 (an update never fails in the real world). In
the complementary case, the output of the environment corresponds to the output of Aagile in
FF.PR.Gm1 since in the real world, we exactly mimic the game’s oracles. The argument holds for all
simulators in the given class of functionalities FP,(KGen,Evali)

URF,X ,Y , since the simulator does not interact
with these functionalities and only in the ideal world updates can fail. Thus, as long as all updates

3Formaly, the ideal world functionality is initialized by parametrizeing the root node of the graph with FP,prf
URF,X ,Y ,

whereas in the real world the parties have access to scheme prf.

30



are successful, the ideal behaves like FF.PR.Gm0 since all new function values are sampled uniformly
at random from the output domain.

We now want to prove that if ΠP,up
URF is agile then it also realizes UFURF

SttUpURF,UpPredURF
. A simulator

can be specified in a straightforward manner: the simulator always grants an update with what
party P requests. No other interaction with the functionalities is needed. Suppose by contradiction
that there exists an environment E that distinguishes this ideal world from the real world, we now
construct an adversary that contradicts Definition 6.2. Such an adversary works as follows.

• Let FP,prf
URF,X ,Y be the functionality used to initialize the ideal/real-world. Upon receiving

I := (input, sid, y) with y := (Initialize, sid) query the oracle KeySetup(prf).

• Upon receiving I := (update, sid,FP,prfj

URF,X ,Y) from E set prf ← prfj .

• Upon receiving I := (input, sid, y) where y = (Eval, sid, x), check if the pair (prf, x, y) has
been recorded. If this is the case then return y, else query Fn(prf, x), and upon receiving y
from the oracle store (prf, x, y) and return y to the caller.

• Return whatever E returns.

In this case when our adversary is in FF.PR.Gm0 then the output of the environment corresponds
to the output it returns when interacting with the ideal functionality (and corresponds to the output
it returns when interacts in the real world when our adversary is in FF.PR.Gm1). This concludes
the theorem.
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Supplementary Material

A Standard Cryptographic Tools used in this Work

A.1 Digital Signatures

A signature scheme is a triple of ppt algorithms DS = (KGen, Sign, Ver) and is required to satisfy
completeness, consistency, and unforgeability. Completeness captures the case that honestly
generated signatures can be successfully verified, consistency says that one can associate to each
triple (vk, m, σ) (consisting of verification key, message, and signature string) a unique verification
result. Finally, unforgeability is the property that it is computationally infeasible to generate, for a
given honestly generated verification key vk, a signature σ for a message m unless one has seen a
signature on m previously.

In UC, a signature scheme is captured as a UC-protocol πS
SIG, where S is the identity of the

sender, constructed toward realizing an ideal signature functionality FS
SIG (cf. Figure 11 below).

This is achieved by restricting the execution of KGen (and outputting the verification key) and the
execution of Sign to party S, whereas any party can execute Ver. The above set of properties is
equivalent to the statement that πS

SIG UC-realizes FS
SIG (see for example [Can03]). Since we are only

interested in UC security, we omit specifying the classical properties formally.
A signature is often used in combination with a public-key infrastructure to verify the association

of a public key vk with the entity S. This is typically modeled by an ideal PKI functionality that
allows a party S to register a public key vk, and exports the pair (S, vk) to everyone upon request.
We omit the simple specification of this as an ideal functionality and refer to [Can03] for details.

A.1.1 UC Functionality for Signatures

The signature functionality is given below in Figure 11. It is based on [Can03] where the state
variable is made explicit here. We further observe (along the lines noted in [BH04]) that we have to
complete the specification by explicitly specifying the correct behavior upon signer-key registration
depending on the current state of the functionality, to ensure that the expected ideal unforgeability
properties hold no matter when the honest signer is initialized. We note that the respective proofs
given in [Can03] or [BH04] do actually imply this particular behavior (as it is an obvious consequence
of the unforgeability property of signature schemes) and we just write it out explicitly here.

Signature Functionality with Sub-Corruptions. We denote by F̂S
SIG the straightforward

generalization of this functionality to sub-corruptions with the behavior that is identical to the
above, except that it formally accepts on its backdoor tape sub-corruption queries (id, P ) in which
case entries of the form (id, P ) or P are recorded in C (and the functionality reacts to either of
them). See Section 3.1 for more details.
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Functionality FS
SIG

• Upon receiving a value (key-gen, sid) from the signer S, hand (key-gen, sid) to A. Upon
receiving (verification-key, sid, vk) from A, verify that no entry (·, m, ·, vk, 1) is recorded and
ignore the reply if there is such an entry. Else, record the pair (S, vk) in stateSIG and output
(verification-key, sid, vk) to S.

• Upon receiving (sign, sid, m) from party S, send (sign, sid, m) to A. Upon receiving I =
(signature, sid, m, σ) from A, verify that no entry (·, m, σ, vk, 0) ∈ stateSIG is stored and ig-
nore the reply if there is such an entry. Else, send (signature, sid, m, σ) to S, and store the entry
(S, m, σ, vk, 1) in stateSIG.

• Upon receiving a value (verify, sid, m, σ, vk ′) from some party P , hand (verify, sid, m, σ, vk ′) to
the adversary. Upon receiving (verified, sid, m, ϕ) from the adversary do:

1. If (S, vk) ∈ stateSIG ∧ vk ′ = vk and (·, m, σ, vk, 1) ∈ stateSIG, then set f = 1. (This condition
guarantees completeness: If the verification key vk ′ is the registered one and σ is a legitimately
generated signature for m, then the verification succeeds.)

2. Else, if (S, vk) ∈ stateSIG ∧ vk ′ = vk and S ̸∈ C, and ¬∃σ′ : (m, σ′, vk, 1) ∈ stateSIG, then set
f = 0 and record the entry (·, m, σ, vk, 0) in stateSIG. (This condition guarantees unforgeability:
If vk ′ is the registered one, the signer is not corrupted, and never signed m, then the verification
fails.)

3. Else, if there is an entry (·, m, σ, vk ′, f ′) stored, then let f = f ′ . (This condition guarantees
consistency: All verification requests with identical parameters will result in the same answer.)

4. Else, let f = ϕ and record the entry (P, m, σ, vk ′, ϕ) in stateSIG.

Send (verified, sid, m, f) to P .

• The functionality follows the standard corruption mode; in particular, the adversary is activated
on any input from P ∈ C and can decide its return value directly, where C is the corruption set.

Figure 11: The standard Signature functionality.

A.2 UC NIZK

A non-interactive zero-knowledge proof system for an NP relation R is comprised of three algorithms
PS = (Gen, Prove, Vrfy), where Gen outputs a common-reference string (crs), Prove takes as input
crs as well as a statement and a witness (x, w) ∈ R and outputs a proof π. Vrfy takes as input
crs as well as a statement x and a proof π and returns a decision bit. We require from a NIZK
system that it is complete, sound, and zero-knowledge. The above triple of algorithms can be cast in
UC [GOS12, CSW22] and, in its simplest form, be captured analogous to signatures: we assume an
ideal process that outputs crs to all participants, and have a prover P execute the algorithm Prove,
and all other parties execute Vrfy. This protocol is demanded to UC-realize FP

NIZK. Note that there
are several settings of interest that differ in the assumptions that admit UC realization [CSW22].
For example, one could distinguish single prover (per CRS) systems from multiple prover systems,
static vs. adaptive security, or even consider a corruption mode that includes subverting the CRS.
As we will see later, the exact requirements how to obtain FNIZK is not of importance to our update
system. We will show how to formalize all the above corruption modes including subversion and
CRS corruption in later sections. For completeness, the functionalities are given in Figure 12.
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A.2.1 UC Functionality for NIZK

The functionality for UC NIZK is given in Figure 12. We formulate it with respect to a known
prover identity for simplicity. However, other variants are derived easily [GOS12, CSW22]. We
again consider the formal extension to sub-corruption by F̂P

NIIZK.

Functionality FP
NIZK

The functionality is parameterized by an NP relation R.

• Upon receiving (prove, sid, x, w) from P: if R(x, w) = 1 then do the following: send (prove, sid, x)
to A; Upon receiving (proof, sid, x, π) from A store (P, x, w, π) in stateNIZK and output
(proof, sid, x, π) to P.

• Upon receiving (verify, sid, x, π) from a party P : if (·, x, w, π) ∈ stateNIZK return
(verified, x, π, R(x, w)) to P . Else send (verify, sid, P, x, π) to A and parse the reply from
A as (witness, sid, x, w), store (P, x, w, π) in stateNIZK and return (verified, x, π, R(x, w)) to V .

• The functionality follows the standard corruption mode (the adversary is activated on any input
from P ∈ C and can decide its return value directly, where C is the corruption set).

Figure 12: The standard NIZK functionality.

When realizing the sub-corruptible version F̂P
NIIZK of FP

NIZK, the sub-corruption stems not only
from using possibly subverted algorithms to realize it, but from possible subversion or leakage of the
CRS (such as corrupting the CRS ceremony). The CRS for proof systems can thus be generalized
to include various forms of corruption as we show below:

Functionality FGen
CRS

On the first activation, the functionality samples r
$←− {0, 1}λ and runs Gen(1λ; r) thus obtaining crs.

Then it stores crs and r.

• Upon receiving (get-crs, sid) from any party P ∈ P send crs to p.

• Upon receiving (sub-corrupt, sid)a from A mark all subroutines (FCRS, sid, ·) of the party set as
corrupted and reveal the random tape to the adversary.

aIn case of static corruption, this capability must be exercised before anyone obtains the CRS. In case of an
incorruptible CRS, this input is ignored.

Figure 13: A CRS functionality that captures static, adaptive, and incorruptible corruption modes.

A.3 Pseudo-Random Functions

Pseudo-random functions. A pseudo-random function ensemble is a set of functions {fs}s∈{0,1}κ

(with domain Xκ = {0, 1}ℓ(κ) and range Yκ = {0, 1}ℓ(κ) for some function ℓ and security parameter
κ) associated with two efficient algorithms (KGen, Eval) such that Eval(s, x) = fs(x) and such
that the function ensemble {Fκ}κ∈N is pseudo-random, where Fκ := fKGen(1κ). Again we are
interested in the UC formalization of this guarantee. The standard way to capture pseudo-random
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functions in a composable framework4 is to first define a protocol πP
URF which, running in some

session sid (and on some security parameter κ), upon initialization executes s
$←− KGen(1κ) and

subsequently accepts inputs (Eval, sid, x) upon which it returns Eval(s, x). Second, this protocol
must be indistinguishable form an ideal uniformly random function as specified in Figure 14, i.e., no
efficient environment has a non-negligible advantage (in the security parameter κ) in distinguishing
an execution of the real protocol πP

URF and an execution of the ideal protocol, i.e., with FURF,Xκ,Yκ .
Note that we will again leave the security parameter implicit for notational simplicity.

A.3.1 UC Functionality for Random Functions

For completeness, we provide here the UC formalization of a random function in Figure 14 with
(concrete) domains X and Y.

Functionality FP
URF,X ,Y

• Upon receiving (Initialize, sid) from P: if not yet initialized, initialize a new table T for which
T [x] = ⊥ for all x ∈ X . Store T in stateURF.

• Upon receiving (Eval, sid, x) from P: ignore the request if the party is not initialized yet. Else, if
T [x] ̸= ⊥ return T [x] and otherwise choose y

$←− Y, update T [x]← y, store the updated table in
stateURF and return the function value T [x]. (Ignore the request if already initialized.)

• The functionality follows the static corruption mode (the adversary either takes full control of P
upon the first activation, or P remains honest).

Figure 14: UC functionality capturing a random function.

A.4 Hash Functions

A hash function is a pair of probabilistic polynomial- time algorithms (GenH, H) satisfying the
following:

• GenH is a probabilistic algorithm which takes as input a security parameter 1λ and outputs a
key k. We assume that 1λ is implicit in k.

• There exists a polynomial ℓ such that H takes as input a key k and a string x ∈ {0, 1}⋆ and
outputs a string Hk(x) ∈ {0, 1}ℓ(λ).

The collision finding experiment HashCollA(λ)

1. A key k is generated by running GenH(1λ).

2. The adversary A is givens k and outputs x, x′.

3. The output of the experiment is defined to be 1 if and only if x ̸= x′ Hk(x) = Hk(x′) In such
a case we say that A has found a collision.

4In the context of composable PRF security as considered in this work, we focus on the case of static UC corruptions
for simplicity.
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We say that a hash function Π = (GenH, H) is collision resistant if for all probabilistic polynomial
time-adversaries A there exists a negligible function ν such that Pr[HashCollA(λ) = 1] ≤ ν(λ). We
note in passing that in a concrete treatment, one often constructs from an assumed adversary against
a cryptosystem an explicit collision-finding algorithm against an underlying hash-function, which is
more in line with how hash functions are used in practice.

B On the Concept of Input-Output Behavior of Functionalities
Sometimes it is useful to talk about the abstract concept of input-output behavior of machines,
in particular for the main ITIs of a UC execution of a protocol µ, instead of the very low-level
execution model. Here we briefly sketch the basics and refer to the behavior-based models for
details and comparisons [Mau02, MR11, DGMT17]. Let configi denote the configuration of a
system of ITIs after the ith step of an execution. Transitions between configurations can be
modeled generally by conditional probability distributions (defined on the configuration space
C) pµ,Z,A

Ci|Ci−1
(configi|configi−1), defined for all configurations configi−1 reachable from the initial

configuration config0. Clearly, pµ,Z,A
Ci|Ci−1

(configi|configi−1) can only be positive for valid transitions
between two configurations defined by the machine model.5 Based on this, the transition probabilities
pµ,Z,A

C′|C (config′|config) between any two configurations are defined (note that we just deal with
finite executions) for any configuration config reachable from config0 in finite steps. This further
induces the abstract input-output behavior of the main ITIs M = ((sid, P ), µ) of a protocol
session, i.e., the distribution of return values upon receiving input x at a certain point in the
execution. Let config be the configuration in which M is activated and the content of its input
tape is x (written by the environment). The distribution of return values is given by the function
pM,Z,A

Y |(X,C)(y|(x, config)) =
∑

config′ pµ,Z,A
C′|C (config′|config), where the sum ranges over all configurations

ending in a configuration config′ that activates Z on input yx (on the subroutine output tape of
Z) as the answer to x. Note that the concept “the answer yx to x” is only well-defined if there
is a mapping between input and output values as part of the execution model. While it is out of
the scope of this paper to define such a mapping generically, we note that such a concept is rather
intuitive and achievable, e.g. by equipping any input with a unique (per machine) ID and defining
that an output is only an answer to some input if the output quotes that ID explicitly. Note that
such a mapping is often either implicitly assumed in the UC literature or it is assumed that a calling
protocol is able to make the assignment of inputs to outputs.

Finally, observe that when two UC executions are indistinguishable, i.e., execπ,A,Z ≈ execϕ,S,Z ,
then this in particular implies that the input-output behavior of a machine M = ((sid, P ), π) must
be consistent with the input-output behavior of the corresponding machine M ′ = ((sid, P ), ϕ)
in the following sense: given a strategy S of machine Z (interacting with the main ITIs of the
system) and any configurations config(π) and config(ϕ) reachable (and induced by S) with non-
negligible probability, it holds that the two associated distributions pM,Z,A

Y |(X,C)(y|(x, config(π))) and
pM ′,Z,A

Y |(X,C)(y|(x, config(ϕ))) must be computationally close (where x is the provided input to the
machine).

5Recall from [Can20] that the execution of a system of ITIs starts with Z that invokes other machines, that either
execute the instructions of the protocol µ or the adversarial (or simulation) strategy A. This is sufficient to derive
all possible valid transitions between configurations. A configuration corresponds to all machines in their respective
configuration. The initial configuration config0 in UC is well-defined for any execution.
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C Generic Facts about Update Systems
In this section, we employ the abstract model to express some simple facts about UC updates. We
consider the class of functionalities that have the property that their behavior of Fi is independent
of the caller’s code, i.e., their behavior is identical when called by external ITI eid = (ρ, sid, pid) or
eid′ = (ρ′, sid, pid).

Lemma C.1. Let F = {F0,F1, . . . ,Fn} be a set of functionalities with the property that the
behavior of Fi is independent of the caller’s code. If we require that UpPred ≡ 1 and SttUp ≡ ∅ then
there is a simple update mechanism for any such class of functionalities.

Proof. We define a simple protocol π with access to hybrid functionalities F0,F1, . . . ,Fn and
performs the update between them. The protocol works as follows for each party P (that encodes
some session id sid and party id pid). On input I = (input, sid, x) from a party with identity
(·, sid, pid), party P relays this input x to the initial instance of F0 (sub-session can simply be sid).
Upon any subroutine output by F0 send the output to the respective machine. (Note that P does
not need to store any information about the input x or any output.)

On input I := (update, sid,F) for F ∈ F , simply output (Success, sid,F). Upon subsequent
inputs, the party behaves as with the previous case, except that inputs are relayed only to the new
instance F (in session sid) and only outputs from this instance are provided to the callers.

Sketching a simulator S for this protocol is straightforward: whenever activated by functionality
UF

SttUp,UpPred with an output of a simulated instance of a functionality Fi, then S relays this output
to Z as coming from Fi. On input (update_notification, UpdateReqF , P,F), where F ∈ F ,
then S sends (GrantUpdate, sid, P, sid,F) to UF

SttUp,UpPred. Complementary, whenever activated
with input destined for a backdoor tape, S relays this to the corresponding functionality.

It is easy to see that this behavior is indistinguishable from the real world. Note that since the
behavior of functionalities in UF

SttUp,UpPred is assumed to be independent of the code of the caller,
the overlay introduced in the real world will not be noticeable by any environment. Finally, since
UpPred ≡ 1 any update instructed by the simulator will succeed just as in the real world.

We next study what the hard problem behind updates is in general. In view of Section B, let us
state a simple definition.

Definition C.2. An update protocol is trivial if with any UC environment and adversary, no party
ever concludes an update with non-negligible probability.

The following lemma captures our intuition that the hard part of designing an update protocol
is trying to achieve that the behavior after the update must be consistent with a certain preserved
state that is a function of the execution prefix. This is as natural general observation and applies to
any functionality. In more detail, it says that if a set of parties P perform an update (to implement
a new functionality F1), then the observable behavior of these parties must be consistent with
the behavior of F1 with a well-defined initialized state at the time, for example, where the first
honest party completes the update. Two executions are consistent if they have indistinguishable
behavior (despite different code; cf. Section B for more details). For example, when updating a
signature scheme, the difficult part is to agree on the set of previously signed messages w.r.t. which
consistency holds. Otherwise, the behavior is not consistent for at least one party P ∈ P as they
have potentially incompatible sets of verified messages, and can thus never be considered to be in
the same “updated instance” (an environment would have no problem in detecting the mismatch).

Lemma C.3. Let π be a non-trivial update protocol for F = {F0,F1}. The input-output behavior,
for any party P that completes an update from an instance of F0 to an instance of F1, is consistent
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with an ideal execution (w.r.t. some simulator) of F1, where F1 must be initialized with a well-defined
value state, which is a function of the execution prefix until the point when that party P completes
the update.

Proof Sketch. Since π is an update protocol for F , we have that before the first update π ≡ F0.
Let Z denote the environment. Since the update is assumed to be non-trivial and UC-realizes
UF

SttUp,UpPred, there is a sequence of instructions made by Z in the real world such that the execution
prefix records and update success for P . Let further S be the assumed simulator in the ideal
execution. Clearly, since both worlds are assumed to be indistinguishable, the ideal world must
output an update success for P based on the same strategy implemented by Z (cf. Section 3.1, the
strategy corresponds to a sequence of conditional probability distributions that fully describes the
environments behavior). At this point of the first update in the ideal world, UpPred(.) = 1, where
the state state0 of F0 does not change because the input I := (GrantUpdate, sid, P, ssid′,F ′) does
not have any side-effect. Thus if P is the first party to complete the update, then both, state0
and state1 := SttUp(state0, ·) are well-defined. In particular, state1, the initial configuration of F1
is uniquely defined in the ideal world. From Section 3.1 we know that if the real and ideal-world
executions are indistinguishable, this implies that the behavior of the protocol machine of party P
must be consistent with the behavior of party P in the ideal world. By definition of UF

SttUp,UpPred,
the inputs of P (after the update) are provided to F1 and P only receives outputs from F1 (after the
update, possibly influenced by the assumed simulator S), where F1 was initialized with a compatible
state1. The same reasoning applies to any further honest party that completes the update. Again,
the execution prefix defines at the point the update completes defines the state of F1 relative to
which all parties interacting with F1 must have a consistent behavior.

D Message Registry
A Message Registry is a primitive that enables a party to deposit messages into a “container”
structure A; depositing any message produces an associated membership witness w, so that the
primitive’s verification algorithm outputs 1 if and only if the element is in the container. Formally,
the primitive is composed of the following three algorithms (Gen, Add, Vmr).

• trap, A $←− Gen(1λ). We call trap the trapdoor and A the container.

• A′, w $←− Add(trap, A, x) with x ∈ {0, 1}λ

• 0/1 $←− Vmr(A, w, x)

Correctness. Informally, correctness requires that the verification outputs 1 as long as a given
element with its witness is in a container. Let (trap, A) $←− Gen(1λ), A1 := A. For any n ∈ N,
X := (x1, . . . , xn) ∈ {{0, 1}λ}n. ∀i ∈ [n](Ai, wi)

$←− Add(trap, Ai−1, xi) and for any i ≤ j ∈ [n]

Pr
[
1 $←− Vmr(Aj , wi, xi)

]
≥ 1− negl(λ)

Security. We start by defining the oracle O(·). O manages the parameter lastA initialized to A,
where A is the second output of the generation algorithm Gen. On input a value x ∈ {0, 1}λ, O
adds x to set of queries Q, computes A′, w $←− Add(trap, A, x) sets lastA← A′ and returns lastA.

We say that a scheme is secure if the following holds.
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Pr

(trap, A) $←− Gen(1λ), (x, w)← AO(·)(A) :
1 $←− Vmr(lastA, w, x) and x /∈ Q

 ≤ negl(λ)

Instantiating a Message Registry. If we are not interested in how the length of the witnesses
and of the container grows, then we can information theoretically instantiate a message registry
scheme. The construction is straightforward. The generation algorithm outputs no trapdoor (we
denote that by trap := ⊥) and an empty set A = ∅. Add, on input trap, A and an element
x ∈ {0, 1}λ, add x to the set A and returns the update set. The witness w is ⊥. The algorithm
Update, on any input return ⊥. The algorithm Vmr, on input a set A, a witness w and x, ignores w
and return x ∈ A.

The correctness of the scheme comes by inspection. The security also follows immediately since
a set is fully defined by the elements that it contains. Hence, given a set lastA, the adversary has
no way to pretend that an element x belongs to A when x is not already part of lastA. On the
other hand, if x /∈ lastA, and the only way to prevent that x ∈ lastA is by adding x to lastA. But
his would just yield to a set lastA′ ̸= lastA.

In practice, we might be interested in realizing a message registry scheme that enjoys a form of
succinctness. In such a scheme the length of the witness or the length of a container does not grow
linearly with the number of elements added to the container via Add. It is easy to verify that by
relying on a digital signature scheme, we can derive such scheme with computational security. In
this instantiation, the container remains fixed to the public-key of the digital signature. The Add
algorithm signs the message equating the witness to the signature. Verification simply verifies the
digital signature. It is easy to verify that correctness is implied by the correctness of the digital
signautre, while security is implied by unforgeability.
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