
Network-Agnostic Security Comes
(Almost) for Free in DKG and MPC

Renas Bacho1,2∗, Daniel Collins3†, Chen-Da Liu-Zhang4‡, and Julian Loss1

1 CISPA Helmholtz Center for Information Security
2 Saarland University

3 EPFL
4 HSLU and Web3 Foundation

{renas.bacho@cispa.de,daniel.collins@epfl.ch,
loss@cispa.de,chen-da.liuzhang@hslu.ch

Abstract. Distributed key generation (DKG) protocols are an essential
building block for threshold cryptosystems. Many DKG protocols tol-
erate up to ts < n/2 corruptions assuming a well-behaved synchronous
network, but become insecure as soon as the network delay becomes un-
stable. On the other hand, solutions in the asynchronous model operate
under arbitrary network conditions, but only tolerate ta < n/3 corrup-
tions, even when the network is well-behaved.
In this work, we ask whether one can design a protocol that achieves
security guarantees in either scenario. We show a complete characteriza-
tion of network-agnostic DKG protocols, showing that the tight bound is
ta+2ts < n. As a second contribution, we provide an optimized version of
the network-agnostic multi-party computation (MPC) protocol by Blum,
Liu-Zhang and Loss [CRYPTO’20] which improves over the communica-
tion complexity of their protocol by a linear factor. Moreover, using our
DKG protocol, we can instantiate our MPC protocol in the plain PKI
model, i.e., without the need to assume an expensive trusted setup.
Our protocols incur comparable communication complexity as state-of-
the-art DKG and MPC protocols with optimal resilience in their respec-
tive purely synchronous and asynchronous settings, thereby showing that
network-agnostic security comes (almost) for free.

1 Introduction

The problem of distributed key generation (DKG) has been extensively studied
in the cryptographic literature and is a fundamental building block for threshold

∗The author was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 507237585.

†This work was partially carried out while the author was visiting CISPA.
‡This work was partially carried out while the author was at CMU and NTT Re-

search and supported by the NSF award 1916939, DARPA SIEVE program, a gift
from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for
financial services innovation award, and a Cylab seed funding award.

cryptosystems. It allows a set of n parties to compute a uniform sharing of a
secret key such that a sufficiently large threshold of t + 1 < n parties must
cooperate to reconstruct the secret or compute some function of it. As such,
DKG has met several applications, including key escrow services, password-based
authentication, threshold signing and encrypting, and many more.

Many existing protocols solve DKG for up to t < n/2 malicious corruptions,
assuming that the network is synchronous [Ped91,GJKR99,SBKN21]. In the syn-
chronous model, message delays are upper bounded by some known finite delay
∆ and parties are assumed to have synchronized clocks. These protocols, how-
ever, provide no security guarantees when the network is asynchronous. There-
fore, a more recent line of work has aimed at solving DKG in the asynchronous
network model [KG09,AJM+21,DYX+22]. However, asynchronous protocols in-
herently tolerate at most t < n/3 malicious parties, even when the network
is synchronous. This poses a vexing dilemma for a protocol designer who can
not predict the behaviour of the network. On the one hand, she can choose
a synchronous protocol that tolerates the maximum number of t < n/2 ma-
licious parties. However, such a protocol might lose all security guarantees if
the network ever becomes asynchronous. On the other hand, she can opt for an
asynchronous protocol. While this type of protocol remains secure under arbi-
trary network conditions, it tolerates only t < n/3 corrupted parties even if the
network behaves synchronously.

Motivated by the above discussion, we ask the following question: Is it possi-
ble to design a network-agnostic DKG protocol that achieves security guarantees
in either scenario? Moreover, can we achieve network-agnostic security with no
efficiency overhead, i.e., with the same efficiency as state-of-the-art purely syn-
chronous and asynchonous DKG protocols?

We answer these questions in the affirmative. Our contributions are motivated
by a series of recent works on network-agnostic protocols for various types of con-
sensus [BKL19,BKL21] and multi-party computation [BLL20,ABKL22a,ACC22a]
(MPC). Existing protocols, however, strongly rely on trusted setup, particularly
in the form of threshold cryptosystems [BLL20,DHLZ21]. Thus, the import of
our work lies within replacing this setup at essentially no cost. In more detail,
we show the following results:

– We propose the first network-agnostic DKG protocol. Our protocol tolerates
n/3 < ts < n/2 corrupted parties in the synchronous model and ta < n/3
parties in the asynchronous model where ta and ts can be chosen arbitrarily
subject to ta+2·ts < n. Our protocol is resilience-optimal since we also prove
ta + 2 · ts < n is necessary for network-agnostic DKG. It works in the plain
PKI model5 and allows parties to agree on a field element x for public key
y = gx with only O(λn3) communication complexity. This matches the best
known results in synchrony [SBKN21] and asynchrony [DYX+22]. Thus, our
DKG protocol can be used to efficiently bootstrap trusted key generation
for network-agnostic consensus and MPC protocols.

5In this model, the public keys of corrupted parties can be generated arbitrarily.

2

– As a second contribution, we show an optimized version of network-agnostic
MPC with communication complexity of O(|C|n2) field elements to evalu-
ate a circuit C, that improves a linear factor over the state of the art (in
the setting without the use of multiplicative-homomorphic encryption, see
Section 1.4 for details). This protocol matches the most efficient purely asyn-
chronous MPC protocol assuming the same setup in this setting, consisting
of threshold linear-homomorphic encryption keys and a common reference
string (CRS) for non-interactive zero-knowledge (NIZK) proofs. As an appli-
cation of our DKG protocol, we also obtain the first network-agnostic MPC
protocol with optimal resilience ta + 2 · ts < n in the plain PKI model, with
communication complexity comparable to the previous most communication-
efficient network-agnostic with this resilience (which required the usage of a
trusted setup for linear-homomorphic threshold encryption keys and a CRS
for NIZKs).

In summary, our protocols incur no additional setup assumptions or asymp-
totic overhead over state-of-the-art communication-efficient protocols for the
synchronous and asynchronous network models. This shows that network-agnostic
DKG and MPC essentially come ‘for free’.

1.1 Background and Starting Point

We consider n parties P1, . . . , Pn that communicate over pairwise authenticated
channels. Moreover, we assume that parties share a public key infrastructure
(PKI), and denote Pi’s secret and public key as ski and pki, respectively. We
do not make any assumption on the distributions of corrupted parties’ keys and
assume that they can be maliciously generated. Throughout, we fix thresholds
0 < ta < n

3 ≤ ts <
n
2 such that ta + 2 · ts < n. Our model assumptions can now

be characterized as follows:

– If the model is synchronous, parties are assumed to have synchronized clocks
and messages sent by parties are delivered within some known finite upper
bound ∆. At most ts parties can be maliciously corrupted.

– Otherwise, if the network is asynchronous, messages can be arbitrarily de-
layed, as long as they are never dropped and are delivered within finite time.
Moreover, parties’ clocks can be arbitrarily out of synch. In this case, at
most ta parties may be maliciously corrupted. Note that the network can
never become asynchronous once ta or more parties have been corrupted.

– Parties do not know a priori how the network might behave.

Our goal is to design a distributed key generation (DKG) protocol for parties
to securely distribute a uniform field element x corresponding to some public
key y = gx. Since parties cannot be sure whether the network is synchronous or
not in general, we require that the secret reconstruction threshold be ℓ = ts +1.
With the aim of matching the best known DKG protocols for the synchronous
and asynchronous model, we aim for our DKG to run in O(λn3) communication

3

DKG Protocol Network Adv. Comm. Rounds Setup

Shrestha et al. [SBKN21] sync Static O(λn3) O(n)/O(1) PKI, RO, CRS

Das et al. [DYX+22] async Static O(λn3) O(logn) PKI, RO

Abraham et al. [AJM+21] async Static Õ(λn3) O(1) PKI, CRS
Zhang et al. [ZDL+22] async Static O(λn4) O(1) -

Abraham et al. [AJM+22] async Adaptive Õ(λn3) O(1) PKI, CRS

This work (Section 5) fallback Static O(λn3) O(n) PKI, RO, CRS

Table 1: Comparison table of state-of-the-art DKG protocols. Network denotes
the network model, which is synchronous (sync), asynchronous (async) or either
synchronous or asynchronous (fallback). Adv. denotes the adversarial model,
which is either static or adaptive. Comm. denotes communication complex-
ity in bits. Rounds denotes the (expected) round complexity, where Shrestha
et al. [SBKN21] provide a deterministic and a randomized protocol (determinis-
tic/randomized). Setup denotes the setup assumptions, which include a bulletin
board PKI (PKI), a random oracle (RO) or a common reference string (CRS).
We note that [AJM+21] constructs a shared group element (rather than a field
element) and originally achieves Õ(λn3) communication complexity, which can
be reduced to O(λn3) as detailed in [GLL+22] using their approach. [AJM+22]
requires a powers-of-tau setup.

complexity and be statically secure. In Table 1, we compare the existing state-
of-the-art with our proposed DKG which, as we show, satisfies these aims.

We stress that this goal cannot be achieved by simply running a generic,
network-agnostic MPC protocol [BLL20,DHLZ21], since these protocols require
trusted setup in the form of shared keys (which is exactly the goal we are trying
to achieve).

Network-Agnostic Protocols: A Blueprint. To design an efficient network-
agnostic DKG protocol, a natural approach is to follow the template of previous
works [BKL19,BLL20,BKL21]. Here, the protocol is divided into two compo-
nents, a synchronous component Πs and an asynchronous component Πa. Par-
ties begin by running Πs which performs securely, given that up to ts parties are
corrupted. In this case, parties pass the output vs obtained from Πs to Πa. The
final output of the protocol is the value va output by Πa. Note, however, that
Πa achieves security only against ta corruptions, as it is asynchronous. Thus,
the key challenge is to prevent Πa from simply overwriting the output vs in a
synchronous network, as this would degrade the overall corruption threshold of
the protocol to ta.

To prevent this outcome, the idea is to design Πs and Πa with two special
properties. First, suppose that the network is synchronous and parties agree on
the intermediate value vs passed to the asynchronous componentΠa. In this case,
Πa should simply relay the correct output vs (rather than recomputing it), even
if ts parties are corrupted. Second, if the network is asynchronous, Πa should be
able to compute the correct output va on its own in the presence of ta corruptions.

4

In addition to this, Πs must prevent parties from computing a catastrophically
incorrect intermediate output vs that might violate the overall security properties
of the protocol, given an asynchronous network with ta corrupted parties.

Background: Synchronous DKG. The above discussion shows why naively
running a synchronous DKG and then an asynchronous agreement protocol back-
to-back would not produce a network-agnostic protocol. For the setting of DKG,
this might lead to the resulting secret key not having enough ‘contributions’
from honest parties. Our starting point is the synchronous New-DKG protocol
of Gennaro et al. [GJKR07], which we make amenable to our network model.
Loosely speaking, New-DKG is divided into two phases as follows:

– Sharing Phase. In the first phase, each party performs verifiable secret
sharing (VSS) using Pedersen’s VSS scheme [Ped92] to share two random
polynomials f and f ′ of the same degree. Parties then execute a public
complaint management protocol, since some parties may try to misbehave
and, e.g., not send (correct) shares to some parties. As a result, they agree
on a set of parties Q that honestly executed Pedersen’s VSS.

– Reconstruction Phase. In the second phase, parties then reconstruct their
share of the final secret. To do so, they perform the reconstruction phase of
Feldman’s VSS [Fel87] from the sharing phase with respect to the polynomial
f . The shares of misbehaving parties are reconstructed publicly to ensure
termination.

By committing to a second polynomial f ′, Pedersen’s VSS ensures that shared
secrets are unconditionally hiding and parties can efficiently blindly evaluate f
in the exponent to verify their shares. Then, Q is sufficiently large to ensure that
at least one party must have honestly performed VSS. Thus, the adversary has
no information about the secret when Q is decided.

One may be tempted to design a simpler and more efficient DKG protocol
where parties, as in the so-called Joint-Feldman DKG [GJKR07], run Feldman’s
VSS in parallel. However, Gennaro et al. [GJKR07] highlighted that the adver-
sary can bias the distribution of the public key by manipulating the set Q, thus
precluding security. In general, a rushing adversary can choose to include or ex-
clude the contributions of parties in the final secret which thus precludes any
‘one-round’ DKG protocol from outputting a uniformly random secret.6

In any case, it is not hard to see that the complaint management protocols in
New-DKG fail in asynchrony. This is because the complaints of honest parties may
be arbitrarily delayed on the network, precluding either correctness or liveness.
Dealing with this issue creates additional challenges which we address in the
following section.

1.2 Technical Overview: DKG

A natural idea is to replace Pedersen’s VSS in the first phase with publicly
verifiable secret sharing (PVSS) [CGMA85,Sta96]. The key property of PVSS is

6Note that a possibly biased secret can still be sufficient for applications like thresh-
old signatures, as highlighted in [GJKR07,BL22].

5

that all parties can non-interactively verify whether a given sharing is correct.
We begin by presenting a secure, but excessively expensive strawman solution
which will serve as our starting point.

A Strawman Solution. To ensure that parties agree on PVSS sharings, each
party (acting as the dealer) would first synchronously broadcast their PVSS
sharing. In the second phase, parties could then use the asynchronous common
subset (ACS) protocol of Blum et al. [BKL21] to agree on a common subset of
such sharings. In their protocol, each party provides an input v and the protocol
lets them agree on a common subset of n− ta outputs, given ta corruptions in an
asynchronous network. In addition, their protocol guarantees that if all honest
parties start with the same input v, then the protocol will remain secure for up to
ts corruptions and the output will be the singleton set {v}. These properties have
made their protocol a staple building block in many network-agnostic protocols.

In our scenario, parties would input their common view of all sharings after
the broadcast phase to ACS. Given that the synchronous phase succeeded (i.e.,
the network is synchronous), all parties would input the same view and hence
ACS would allow them to (re-)agree on this view, given at most ts corrupted
parties. If parties have not obtained any output from the synchronous phase,
they would simply input their PVSS dealing as an input to ACS directly. Even
in case the network is asynchronous, parties would still be able to agree on a
subset of n− ta dealings in this manner. From this, they could securely derive a
common secret key7.

Unfortunately, existing network-agnostic ACS protocols [BKL21,ABKL22b]
execute n instances of binary consensus and consequently require O(n) dis-
tributed coin flips, and adapting ACS to the network-agnostic setting without
this requirement is an open problem. As the best known protocol to flip coins
without trusted setup requires O(λn3) communication complexity [GLL+21],
this step alone incurs at least O(λn4) overhead. In addition, the above solu-
tion requires all parties to broadcast O(λn)-sized sets of ciphertexts containing
the parties PVSS dealings. Using existing broadcast protocols, this step would
incur an additional communication overhead of O(λ2n4). Towards building a
network-agnostic DKG with O(λn3) communication complexity, we introduce
novel techniques to overcome the above challenges.

From ACS to Intrusion-Tolerant Consensus. Recall that under synchrony,
all parties are guaranteed to output at least n−ts values from the parallel broad-
cast in our above strawman protocol. However, if the network is asynchronous,
parties are not guaranteed agreement or termination of sufficiently many broad-
cast instances. To cope, our idea is to let parties execute an asynchronous agree-
ment protocol with an intrusion tolerance validity property [MR10]. Intrusion
tolerance guarantees that a decided value is either one that is proposed by an
honest party or a default value ⊥. In addition, we will require that our agree-

7This discussion omits a minor technical detail: the adversary must not be able to
broadcast incorrect messages on behalf of honest parties, even in asynchrony. Ensuring
this, however, is easy using digital signatures.

6

ment protocol satisfies a special validity with termination property for up to ts
corruptions. This property ensures that if all parties input the same value v to
the protocol, they all terminate with this value. (This property was first formal-
ized by Blum et al. [BKL19].) Given this building block, our high-level strategy
(from the view of a party P) is as follows.

– If P correctly outputs in at least n−ts broadcasts, it inputs its set of values to
the intrusion-tolerant consensus protocol ΠIT. Otherwise, it inputs a default
value ⊥′.

– If a set of values is decided upon by ΠIT, P continues with the protocol.
Otherwise, P participates in an execution of an asynchronous DKG protocol
with O(λn3) complexity and reconstruction threshold of ts +1; the protocol
of Das et al. [DYX+22] satisfies these requirements.

In synchrony, by the security of broadcast, all parties will propose the same
set to ΠIT and, by the validity of consensus ΠIT under ts corruptions, this set
will be decided. In this case, parties do not fall back to the asynchronous path
and can cheaply agree on a ts-sharing of a field element x.

In asynchrony, the synchronous path might fail. In this case, however, agree-
ment and intrusion tolerance of ΠIT ensure that all parties securely continue
execution of the synchronous path with the same view or collectively fall back
to asynchronous DKG. In case parties do not fall back, their common view on
the protocol state allows them to securely emulate the synchronous protocol
path. In either scenario, parties agree on a ts-sharing of a field element x, even if
the network behaves asynchronously. The following paragraphs describe how, for
each phase of our protocol, we manage to keep communication below O(λn3).

An Efficient Broadcast Protocol. The first ingredient we propose is an ef-
ficient multivalued synchronous broadcast protocol assuming t < (1 − ϵ) · n
corruptions for any constant ϵ ∈ (0, 1). Tsimos, Loss and Papamanthou [TLP22]
propose an efficient binary broadcast protocol, BulletinBC, that is statically se-
cure. BulletinBC requires O(λ2n2) communication, and is very similar to the
classic Dolev-Strong broadcast protocol [DS83] except to reduce communica-
tion complexity, parties gossip instead of multicast sets of signatures during the
protocol. We modify this protocol and an extension protocol from Nayak et
al. [NRS+20] in Section 3 to build a multivalued synchronous broadcast proto-
col with O(nℓ + λn2) communication complexity where ℓ is the length of the
input message. The best prior known protocol had a communication cost of
O(nℓ+ n3) and so this construction may be of independent interest. In Table 2,
we compare our protocol to other synchronous broadcast protocols from the lit-
erature. We note that the extension protocol from Nayak et al. in combination
with the Byzantine agreement protocol from Momose and Ren [MR21b] yields
a synchronous broadcast protocol with quadratic communication complexity in
the honest majority setting, but assumes trusted setup in the form of thresh-
old signatures. In their paper, Momose and Ren also present a second efficient
Byzantine agreement protocol that does not require trusted setup. However, that
protocol only works with sub-optimal resilience t < (12 − ϵ) · n.

7

Protocol Resil. Adaptive Comm. Rounds Len. Setup

Abraham et al. [ACD+19] 1/2− ϵ Yes Õ(λn+ ℓn) O(1) MV Trusted
Momose-Ren [MR21b] 1/2 Yes O(λn2) O(n) Bin. Trusted
Chan et al. [CPS20] 1− ϵ Yes O(λ2n2) O(λ) Bin. Trusted

Dolev-Strong [DS83] 1 Yes O(λn3 + ℓn) O(n) MV Plain
Momose-Ren [MR21b] 1/2− ϵ Yes O(λn2) O(n) Bin. Plain
Tsimos et al. [TLP22] 1− ϵ No O(λ2n2) O(n) Bin. Plain

Our Protocol 1− ϵ No O(nℓ+ λn2) O(n) MV Plain

Table 2: Comparison table of existing synchronous broadcast protocols. Resil. denotes
the Byzantine corruption threshold as a fraction of the total number of parties, where
ϵ ∈ (0, 1) is a constant. Adaptive denotes whether the adversary is adaptive or not.
Comm. denotes communication complexity in bits for messages of length ℓ when
relevant. Rounds denotes the round complexity. Length denotes whether the protocol
is supports binary (Bin) input or is more general (MV, or multivalued). Setup denotes
the setup assumption regarding the keys, either trusted or plain PKI.

We use our extension protocol for the first phase of DKG. More precisely,
each party Pi broadcasts (1) n Pedersen commitments corresponding to random
polynomials fi and f ′

i , (2) n ciphertexts corresponding to each party Pj ’s share
of Pi’s secret, namely fi(j) and f ′

i(j), and (3) n NIZK proofs that proves cipher-
text j, for each j ∈ [1, n], contains encryptions of values fi(j) and f ′

i(j). This
obviates the need for a complaint management protocol as each party can deter-
mine the well-formedness of each message broadcast themselves. With O(λ)-sized
NIZKs [PHGR13,CGG+20], each party invokes broadcast with an O(λn)-sized
message, and consequently this step incurs O(λn3) communication.

Our Intrusion-Tolerant Consensus Protocol.We adapt a multivalued Byzan-
tine agreement protocol from Mostéfaoui and Raynal [MR17] to ensure intrusion
tolerance and validity under ts corruptions in synchrony. We show in Section 4
that the protocol has O((ℓ + λ)n3 + λn3) communication complexity. As such,
parties cannot simply propose their O(λn2)-sized set of sharings (recall that
such a set contains n− ts sharings each of size O(λn)) to consensus within DKG
without incurring super-cubic complexity.

Efficiently Reconstructing the Final Output. To keep the communication
complexity below O(λn3), we observe that each party does not require the entire
contents of the O(λn2)-sized set to reconstruct their share and the public key
of the final secret. To this end, a party accumulates n ‘personalised’ values,
one per party and each of size O(λn), into an accumulation value z that they
propose to consensus. An accumulation value for party Pi contains a description
of the qualified parties Q, the |Q| ciphertexts Pi needs to reconstruct their share
of the secret

∑
q∈Q fq(i) (alongside

∑
q∈Q f ′

q(i)), and a Pedersen commitment
corresponding to these two summations. By intrusion tolerance, if a non-trivial
value is decided by consensus, the honest party (or parties) who proposed such a
z can send the relevant part and proof of membership in z to each party. By using
an accumulator with accumulation value z of size at most O(λ) [BP97,Lip12],

8

we thus achieve O(λn3) complexity for this step. We emphasize that without the
intrusion tolerance property it would be possible for parties to decide a value
from consensus that does not correspond to an ‘honest’ accumulation value z.
One could bypass intrusion tolerance using a consensus protocol with O(nℓ+λn3)
complexity that ensures external validity on decided values [CKPS01]. However,
it appears difficult to design such a protocol using erasure codes (as is typical)
as parties cannot feasibly evaluate an external validity function on a message
until it is reconstructed.

From each party’s personalized value, they can reconstruct their share of
the secret key but not yet the public key. To reconstruct the public key, it is
tempting to replace the reconstruction phase of New-DKG with another round
of broadcast and agreement. However, this would allow an adversary to bias
the distribution of the shared secret by deciding to fallback to asynchronous
DKG depending on, e.g., the first bit of the reconstructed public key. We there-
fore avoid this by publicly reconstructing the public key using the approach of
Shrestha et al. in [SBKN21]. More precisely, each party Pi computes and mul-

ticasts the value G = g
∑

q∈Q fq(i) and their accumulation value that they prove
is consistent with their Pedersen commitment via an efficient Fiat-Shamir based
NIZK [CGJ+99,SBKN21]. Parties can thus collect ts + 1 valid points in the ex-
ponent of g and then reconstruct the public key by Lagrange interpolation in
the exponent and terminate.

1.3 Technical Overview: MPC

Our starting point is the protocol by Blum, Liu-Zhang and Loss [BLL20], which
gave a network-agnostic MPC given an initial setup for threshold additive-
homomorphic encryption. The protocol is composed of two parts. First, a syn-
chronous MPC with ts-full security when the network is synchronous, and achieves
ta-agreement on output (where the output can either be correct or ⊥) when the
network is asynchronous. Second, a purely asynchronous MPC with full security
resilient to up to ta corruptions. The bottleneck for the communication com-
plexity lies in the first protocol, since it requires the usage of n network-agnostic
Byzantine agreement (BA) protocols per multiplication gate. Given that the
most efficient network-agnostic BA protocol [DHLZ21] incurs quadratic com-
munication, the total communication amounts to O(n3|C|λ + poly(n, λ)) bits.
However, the most communication-efficient MPC in the purely asynchronous
setting (in the same setting, from additive-homomorphic encryption) incurs
O(n2|C|λ+ poly(n, λ)) communication.

In order to decrease a linear factor in the communication, we optimize the
protocol using the well-known offline-online paradigm [Bea92]. The offline phase
generates ℓ Beaver triples with network-agnostic security, where ℓ is the number
of multiplication gates in the circuit: if the network is synchronous and there
are up to ts corruptions, all parties output the same ℓ encrypted random multi-
plication triples, with plaintexts unknown to the adversary; and if the network
is asynchronous and there are up to ta corruptions, each party outputs either ℓ
triples as above, or ⊥. With these triples, one can use standard techniques to

9

achieve an online phase with quadratic communication, where each multiplica-
tion gate is reduced to two public reconstructions [Bea92]. The protocol makes
use of a number of primitives, including 1) an efficient synchronous broadcast
protocol for long messages with weak-validity and 2) a network-agnostic Byzan-
tine agreement protocol. In a simplified form8, the protocol works as follows:

– Each party Pi generates ℓ random encryptions A1
i , . . . , A

ℓ
i , and broadcasts

them using the broadcast for long messages.
– Parties agree on a subset S of parties that received the encryptions using n

instances of network-agnostic BA. If the set has size less than n− ts, output
⊥ and terminate.

– The parties compute ℓ ciphertexts, where each ciphertext is the sum of all
ciphertexts coming from parties in S, i.e. Aj =

∑
k∈S Aj

k.

– Each party Pi generates ℓ random encryptions B1
i , . . . , B

ℓ
i , and ciphertexts

C1
i , . . . , C

ℓ
i where Cj

i = bji ·Ai and bji is the plaintext of Bj
i , and broadcasts

all these values using the broadcast for long messages.
– Again, parties agree on a subset S′ of parties that received the encryptions,

as in Step 2.
– Compute Bj =

∑
k∈S′ B

j
k and Cj =

∑
k∈S′ C

j
k.

– Output the triples (Aj , Bj , Cj) for j = 1, . . . , ℓ.

The communication complexity amounts to n instances of broadcast (note
that the cost of the BA instances is independent of the number of multiplication
gates). Since each broadcast incurs O(nℓ + λn2) bits of communication, the
total communication is O(n2ℓ + λn3), or O(n2) per generated triple (ignoring
additive terms). Intuitively, the protocol generates random triples because each
component contains the contribution of at least an honest party. If the network
is synchronous, all honest parties output the generated triples. However, if the
network is asynchronous, some of the honest parties may not obtain the triples
and output ⊥. This will be enough in the online phase and is handled similarly
as the protocol in [BLL20]. Finally, using the DKG protocol from above, and
the observation that the NIZK proofs can be generated with no setup using the
multi-string honest majority proof system by Groth and Ostrovsky [GO07], we
can base our MPC protocol from plain PKI. This, however, incurs a blowup in
the communication complexity, resulting in a communication complexity that is
comparable to the state of the art of network-agnostic MPC.

1.4 Related Work

In [MR21a], Momose and Ren initiate the study of the network-agnostic setting
where the thresholds for safety and liveness properties are considered separately,
and construct corresponding state machine replication protocols.

8The simplified description tolerates only fail-stop corruptions. To achieve security
against active adversaries, one needs NIZKs at appropriate steps of the protocol. See
Section 6 for details.

10

Distributed Key Generation. Many synchronous DKG protocols assume the exis-
tence of broadcast channels, i.e., that essentially abstract away secure broadcast
and consensus, including the seminal protocol of Gennaro et al. [GJKR07]. In a
recent work, Shrestha et al. [SBKN21] consider when broadcast is no longer as-
sumed (as in our work), and propose a protocol with O(λn3) complexity which is
the state-of-the-art. Canetti et al. [CGJ+99] propose an adaptively-secure DKG
protocol, but almost all other work, including ours, consider static security.

Das et al. [DYX+22] propose an asynchronous DKG protocol with O(λn3)
communication complexity. In order to bypass the need for direct coin flipping
(which incursO(λn3) overhead), they perform a clever reduction to n instances of
binary consensus which uses O(λn2) for coin flips from honest parties. Abraham
et al. use a so-called aggregatable DKG protocol [GJM+21] to also build a pro-
tocol with O(λn3) overhead that only requires an efficient Byzantine agreement
primitive like [GLL+22]. However, the only efficient construction of aggregat-
able DKG we are aware of allows parties to agree on a shared group element
as a secret which can thus be applied only to less standard cryptosystems. The
DKG of Zhang et al. [ZDL+22] does not require a PKI, CRS or the ROM, but
incurs O(λn4) overhead. Recently, Abraham et al. construct asynchronous DKG
with an adaptive security proof [AJM+22], although they require a powers-of-
tau trusted setup which, using the best known asynchronous protocol [DXR22],
implies Õ(λn3) communication overhead overall.

Communication complexity in MPC. The literature in communication complex-
ity is extensive, so we are only able to cover a part of it. In the synchronous model,
solutions with linear communication, i.e. O(λn) bits per multiplication gate, have
been known for a while (see e.g. [HN06,DI06,BTH08,BFO12,GLS19,GSZ20]), for
several settings: t < n/3 without setup and t < n/2 with setup, as well as cryp-
tographic and information-theoretic.

In the asynchronous model, information-theoretic solutions with optimal
resilience t < n/3 were provided by Ben-Or et al. [BKR94], and later im-
proved by Patra et al. [PCR10,PCR08] to O(λn5) per multiplication, and
by Choudhury [Cho20] to O(λn4) per multiplication. Solutions with subop-
timal resilience t < n/4 were achieved with linear communication O(λn)
[SR00,PSR02,CHP13,PCR15]. For cryptographic security and optimal resilience
t < n/3, current solutions require trusted setup, typically in the form of thresh-
old cryptosystems. The works by [HNP05,HNP08,CHLZ21] make use of addi-
tive threshold homomorphic encryption, with the protocols [HNP08,CHLZ21]
communicating O(λn2) per multiplication. The work by Choudhury and Pa-
tra [CP15] achieves O(λn) per multiplication at the cost of using somewhat-
homomorphic encryption, and the work by Cohen [Coh16] achieves communica-
tion independent of the circuit size using fully-homomorphic encryption.

In the setting with network-agnostic security, the protocols [BLL20,DHLZ21]
achieve optimal resilience ta + 2 · ts < n and cryptographic security, with the
first being more communication-efficient withO(λn3) bits per multiplication gate
(using the network-agnostic BA [DHLZ21]). These protocols make use of an ad-
ditive threshold homomorphic encryption scheme, which is generally regarded

11

as a more efficient primitive in practice than those that allow for multiplicative
homomorphism. Further note that if one assumes for example threshold FHE, it
is straightforward to achieve MPC in the network-agnostic setting with commu-
nication independent of the circuit size. [ACC22a] considers perfect security and
achieves resilience ta+3·ts < n and communication complexity O(λn4|C|). Using
the network-agnostic perfectly-secure message transmission protocol of [DLZ23],
one can build network-agnostic MPC over a network with connectivity ℓ given
2 · ta + ts < ℓ also holds. Finally, [ACC22b] considers perfectly-secure MPC
with respect to general adversary structures (Q(3) and Q(4) in synchrony and
asynchrony, respectively) with complexity Õ(λn5|Zs|3cm + n6|Zs|2) bits for ad-
versary structure Zs and multiplication gate count cm, and [AC23] very recently
considers statistical security.

1.5 Paper Organisation

In Section 2, we define our model and relevant cryptographic and distributed
primitives. In Section 3, we present our efficient broadcast protocols. In Sec-
tion 4, we describe our intrusion-tolerant consensus protocol. In Section 5, we
present our DKG protocol and argue for its security. In Section 6, we present
our MPC protocol. In Appendix A, we provide security notions for the crypto-
graphic primitives we use. We then describe the building blocks we need for our
intrusion-tolerant consensus protocol: MV-broadcast and graded consensus in
Appendix B, and a binary consensus protocol in Appendix C. In Appendix D,
we describe a discrete logarithm-based additively homomorphic threshold en-
cryption scheme that can be used in our MPC protocol. Full proofs deferred
from the main body are given in Appendix E. In Appendix F, we present our
extension protocol and proofs. In Appendix G, we then present some figures
deferred from the main body, including our broadcast extension protocol (Fig-
ures 11 and 12), Beaver triple generation protocol (Figure 13) and synchronous
MPC protocol with unanimous output in asynchrony (Figures 14 and 15).

2 Preliminaries and Definitions

Throughout the paper, we consider a network of n parties P1, . . . , Pn that com-
municate over point-to-point authenticated channels. Some fraction of these par-
ties are controlled by an adversary and may deviate arbitrarily from the proto-
col. We call the uncorrupted parties honest and the corrupted parties dishonest.
When we say that a party multicasts a message, we mean that it sends it to all n
parties in the network. We denote the security parameter by λ and the random
variable X output by some probabilistic experiment Π by X ← Π. We denote
the set of integers from a to b by [a, b]. For an element x in a set S, x ← S
denotes x being sampled from S uniformly at random. We sometimes use maps
or key-value stores, which are data structures of the form map[k] = v for lookup
key k which outputs value v.

12

We assume that global parameters par = (G, p, g, h) are fixed and known to
all parties. Here, G is a cyclic group of prime order p with independent generators
g and h. Given (G, p, g), we can choose h appropriately as, e.g., H(1) where H
is a random oracle of the form H : {0, 1}∗ → G∗ = G \ {1}.

Public Key Infrastructure. We assume that the parties have established
a public key infrastructure before the protocol execution, which is a bulletin
board or plain PKI. Namely, each party Pi has an encryption-decryption key
pair (eki, dki) for a public-key encryption scheme and a signing-verification key
pair (ski, vki) for a signature scheme, where eki and vki are known to all parties.
We do not assume that these keys are computed in a trusted manner and instead
we assume only that each party generates them locally and then makes the pub-
lic components known to everybody using a public bulletin board. In particular,
malicious parties may choose their keys arbitrarily, corrupt honest parties after
seeing they generate their keys and choose keys maliciously based on keys reg-
istered by honest parties. We define the function VK(P ′) callable by each party
which takes as input a sequence of parties P ′ = (Pi(1), . . . , Pi(k)) and outputs
the corresponding registered verification keys as a sequence (vki(1), . . . , vki(k)).

Communication Model.Our network has two possible states, the synchronous
and the asynchronous state. When the network is synchronous, all parties begin
the protocol at the same time, the clocks of the parties progress at the same rate,
and all messages are delivered within some known finite time ∆ > 0 (called the
network delay) after being sent. In particular, messages of honest parties cannot
be dropped from the network and are always delivered. Thus, we can consider
protocols that execute in rounds of length ∆ where parties start executing round
r at time (r− 1)∆. When the network is asynchronous, the adversary can delay
messages arbitrarily as long as the messages exchanged between honest parties
are eventually delivered. In contrast to the synchronous model, parties may start
the protocol at different times in an asynchronous network, since their clocks and
processing speeds are not necessarily synchronized. Finally, honest parties do not
know a priori in which type of network they are in.

Adversarial Model. We assume a probabilistic polynomial-time (PPT) adver-
sary that can corrupt up to t parties. The adversary may cause the corrupted
parties to deviate from the protocol arbitrarily. Furthermore, we assume a rush-
ing adversary who may obtain messages sent to it before choosing and sending
messages of its own. Moreover, we assume a static adversary, who chooses which
parties to corrupt before the execution of the protocol begins.

2.1 Cryptographic Primitives

Definitions and properties that we introduce hereafter are only required to hold
with probability 1 − negl(λ). We defer formal definitions of correctness and se-
curity alongside definitions of standard cryptographic primitives like public-key
encryption to Appendix A.

13

We begin by defining non-interactive zero-knowledge proofs (NIZKs). NIZKs
enable a prover to non-interactively (i.e., generate a message that is then verified)
to prove to a verifier the validity of a statement without revealing anything else.

Definition 1 (Non-interactive zero-knowledge proof (NIZK) [Gro06]).
Let R be an NP relation. For pairs (X,ω) ∈ R we call X the statement and ω the
witness. Let L be the language consisting of statements in R. A non-interactive
zero-knowledge proof is a tuple of PPT algorithms (Gen,Prove,Verify) such that:

– Gen: This is a parameter generation algorithm that takes as input the security
parameter λ. It outputs parameters par implicitly input to other algorithms.

– Prove: This is a probabilistic proving algorithm that takes as input a state-
ment X to be proven and the corresponding witness ω where (X,ω) ∈ R. It
outputs a proof π, denoted as π ← Prove(X,ω).

– Verify: This is a deterministic verification algorithm that takes as input a
statement X and a proof π. It outputs an acceptance bit b, denoted as b ←
Verify(X,π).

We assume that NIZKs are of size O(λ). The NIZKs that we use in our DKG
construction can be constructed using efficient, Fiat-Shamir style proofs in the
random oracle model [SBKN21,CGG+20]. Alternatively, one can use SNARKs
with a common reference string setup [PHGR13].

We now define accumulators, a primitive that enables a party to accumulate
several values from some set D into an accumulated value z. At this point, the
party can generate (compact) proofs that verify that a given value is in D. A
secure accumulator is in particular one where ‘invalid’ proofs are hard to forge.

Definition 2 (Cryptographic accumulator). A cryptographic accumulator
is a tuple of PPT algorithms (Gen,Eval,CreateWit,Verify) such that:

– Gen: This is an accumulator key generation algorithm that takes as input the
security parameter λ and an accumulation threshold n. It outputs a (public)
accumulator key ak.

– Eval: This is a deterministic evaluation algorithm that takes as input an
accumulator key ak and a set D = {d1, . . . , dn} to be accumulated. It outputs
an accumulation value z for D, denoted as z ← Eval(ak,D).

– CreateWit: This is a probabilistic witness creation algorithm that takes as
input an accumulator key ak, an accumulation value z for D, and a value
di. It outputs ⊥ if di /∈ D, and a witness wi otherwise, denoted as wi ←
CreateWit(ak, z, di).

– Verify: This takes as input an accumulator key ak, an accumulation value z
for D, a witness wi, and a value di. It outputs an acceptance bit b, denoted
as b← Verify(ak, z, wi, di), where b = 1 when wi proves that di ∈ D.

The helper function CreateWits, denoted as (w1, . . . , wn) ←
CreateWits(ak, z,D) for set D = {d1, . . . , dn}, is shorthand for the n calls
(CreateWit(ak, z, d1), . . . ,CreateWit(ak, z, dn)).

14

Note that the above definition does not consider updates or removals of
elements from the accumulated value z, and so our definition is weaker than
that of much of the literature. We require an accumulator with witnesses w
and accumulation values z of size O(λ). We also require that operations after
ak was generated are deterministic. The classic RSA accumulator satisfies these
requirements with trusted setup in the standard model [BP97]; without trusted
setup, one can use, for instance, the accumulator from Lipmaa in [Lip12]. Looking
ahead, it can be seen that our protocols can use vector commitments instead of
accumulators, which can also be built without trusted setup with constant-sized
openings [CF13].

Definition 3 (Linear erasure codes). We use standard (b, n) Reed-Solomon
codes. A Reed-Solomon (RS) code [RS60] is a linear error correction code in the
finite field F2a , parameterized by n and b with n ≤ 2a − 1, given by the tuple of
algorithms (Encode,Decode) such that:

– Encode: This is an encoding algorithm that takes as input b data symbols
(m1, . . . ,mb) ∈ Fb

2a and outputs a codeword (s1, . . . , sn) ∈ Fn
2a of length n,

denoted as (s1, . . . , sn)← Encode(m1, . . . ,mb). Knowledge of any b elements
of the codeword uniquely determines the input message and the rest of the
codeword.

– Decode: This is a decoding algorithm that takes as input a codeword
(s1, . . . , sn) of length n and outputs b symbols (m1, . . . ,mb) ∈ Fb

2a , denoted
as (m1, . . . ,mb) ← Decode(s1, . . . , sn). It can tolerate up to c errors and d
erasures in codewords (s1, . . . , sn) if and only if n− b ≥ 2c+ d.

Our protocol that uses erasure codes will have b = n− t. Finally, we assume that
parties have a threshold additively homomorphic encryption setup available.
That is, it provides to each party Pi a global public key ek and a private key
share dki.

Definition 4 (Threshold homomorphic encryption). A threshold homo-
morphic encryption scheme is a tuple of PPT algorithms (Keygen,TEnc,TDec)
such that:

– Keygen: This key generation algorithm takes as input integers (t, n) and out-
puts key pair (ek, dk), where ek is the public key, and dk = (dk1, . . . , dkn) is
the list of private keys, denoted as (ek, dk) = Keygen(t,n)(1

λ).
– TEnc: This takes as input an encryption key ek and plaintext m and outputs

an encryption TEncek(m) of m, which we denote explicitly.
– TDec: Given a ciphertext c and a secret key share dki, there is an algorithm

that outputs di = TDecdki(c), such that (d1, . . . , dn) forms a t-out-of-n shar-
ing of the plaintext m = Decdk(c). Moreover, with t + 1 decryption shares
{di}, one can reconstruct the plaintext m = TRec({di}).

It further satisfies the following properties:

– Additively homomorphic: Given ek and two encryptions Encek(a) and
TEncek(b), one can efficiently compute an encryption Encek(a+ b).

15

– Multiplication by constant: Given ek, a plaintext α and an encryption
Encek(a), one can efficiently compute a random encryption Encek(αa).

In Appendix D, we design a discrete logarithm-based additively homomorphic
threshold encryption scheme based on the Elgamal cryptosystem [ElG84] which
essentially is exponential ElGamal encryption where the message is encrypted
bitwise. Looking ahead, it is thus directly compatible with our DKG protocol.
With trusted setup, a threshold encryption scheme can be based on, for example,
the Paillier cryptosystem [Pai99].

2.2 Distributed Primitives

When relevant, our primitives take input from a value set V with |V | ≥ 2; we as-
sume that default value ⊥ ̸∈ V . We distinguish between algorithms that generate
output (generally called liveness), and algorithms that additionally terminate. In
particular, an algorithm may be live but not terminating, since it may need to
still remain online and send more messages to help other parties output. Our
treatment of liveness and termination varies between the primitives we introduce
below. Note that ⊥ is considered as a valid output in each protocol.

We first introduce intrusion-tolerant Byzantine agreement and secure broad-
cast, the two main building blocks we use to build DKG. Byzantine agreement
is a classic primitive that allows parties which each input a value to agree on a
common output value. We define liveness (generating output) and termination
in two separate properties below. We emphasise that our definition captures the
standard Byzantine agreement problem.

Definition 5 (Byzantine agreement). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi begins holding input vi ∈ V .

– Validity: Π is t-valid if the following holds whenever at most t parties are
corrupted: if every honest party’s input is equal to the same value v, then
every honest party outputs v.

– Consistency: Π is t-consistent if whenever at most t parties are corrupted,
every honest party that outputs a value outputs the same value v.

– Liveness: Π is t-live if whenever at most t parties are corrupted, every
honest party outputs a value v ∈ V ∪ {⊥}.

– Termination: Π is t-terminating if whenever at most t parties are corrupted,
every honest party terminates.

– Intrusion tolerance: Π is t-intrusion tolerant if whenever at most t par-
ties are corrupted, every honest party that outputs a value either outputs an
honest party’s input v or ⊥.

– Validity with termination: Π is t-valid with termination if the following
holds whenever at most t parties are corrupted: if every honest party’s input is
equal to the same value v, then every honest party outputs v and terminates.

If Π is t-valid, t-consistent, t-live, and t-terminating, we say it is t-secure.9

If Π is t-secure and is t-intrusion tolerant, we say it is t-secure with intrusion
tolerance.

9We emphasise that t-security does not imply t-intrusion tolerance.

16

In secure broadcast (or just broadcast), parties aim to agree on a value which
is either the value chosen by the designated sender or a default value (in case the
sender is corrupted). Our definition handles termination directly, even in asyn-
chrony (where we only guarantee weak validity). As for Byzantine agreement,
the following captures the standard broadcast primitive.

Definition 6 (Secure broadcast (BC)). Let Π be a protocol executed by
parties P1, . . . , Pn, where a designated party P begins holding input v ∈ V .

– Validity: Π is t-valid if whenever at most t parties are corrupted: if party
P is honest and inputs v, then all honest parties Pj output v.

– Consistency: Π is t-consistent if whenever at most t parties are corrupted,
every honest party outputs the same value v′.

– Liveness: Π is t-live if whenever at most t parties are corrupted, every
honest party outputs a value v′ ∈ V ∪ {⊥}.

– Termination: Π is t-terminating if whenever at most t parties are corrupted,
every honest party terminates.

– External validity: Π is t-externally valid if the following holds whenever at
most t parties are corrupted: if honest party Pi outputs v′, then for validity
predicate Q, Q(v) is true.

– Weak validity: Π is t-weakly valid if whenever at most t parties are cor-
rupted: if P is honest and inputs v, then all honest parties Pi output either
v or ⊥ and terminate upon generating output.

If Π is t-valid, t-consistent, t-live and t-terminating, we say it is t-secure.

Note that weak validity was defined in [BKL19] and external validity was intro-
duced in [CKPS01] for Byzantine agreement.

Following previous work, we introduce a property-based definition of dis-
tributed key generation (DKG) primitive. In DKG, a set of parties collaborates
to share a uniformly random secret. Each party outputs the public key corre-
sponding to the secret, their own secret share and a set of public shares that
parties can use to prove ownership of their share. We restrict our definition to
the case where parties share a uniform field element associated to some group
generated by g, i.e., a public key y = gx and secret x; one can generalise or vary
the definition to capture other settings.

Definition 7 (Distributed key generation (DKG)). Let Π be a protocol
executed by parties P1, . . . , Pn, where each party Pi outputs a secret key share ssi,
a vector of public key shares (ps1, . . . , psn), a public key pk and parties terminate
upon generating output.

– Correctness: Π is (t, d)-correct for d > t if whenever at most t parties are
corrupted, there exists a polynomial f ∈ Zp[X] of degree d− 1 such that for
all i ∈ [1, n], ssi = f(i) and psi = gssi . Moreover, pk = gf(0).

– Consistency: Π is t-consistent if whenever at most t parties are corrupted,
all honest parties output the same public key pk and the same vector of public
key shares (ps1, . . . , psn).

17

– Secrecy: Π is t-secret if the following holds whenever at most t parties are
corrupted: For every (PPT) adversary A, there exists a (PPT) simulator S
with the following property. On input an element y ∈ G and a set of cor-
rupted parties B with |B| ≤ t, S generates a transcript whose distribution is
computationally indistinguishable from A’s view of a run of Π with corrupted
set B in which all honest parties output y as their public key.

– Uniformity: Π is t-uniform if the following holds whenever at most t par-
ties are corrupted: Fix y ∈ G. Then, for every (PPT) adversary A, for every
honest party that outputs public key pk, pk = y holds with probability negli-
gibly close to 1/p, where the probability is taken over A’s randomness (and
not the coins used in setup).

If Π is (t, d)-correct, t-consistent, t-secret, and t-uniform, we say it is (t, d)-
secure.

Our definition is adapted from that of Bacho and Loss [BL22] except we only
require a standard secrecy notion akin to that of Gennaro et al. [GJKR07]. As
we consider static security, our simulator is parametrised by the set of corrupted
parties B chosen by the adversary. Apart from our additional uniformity prop-
erty, the main difference is that we allow the secret threshold to be a value
d that exceeds the number of corruptions t by more than 1. Looking forward,
our DKG protocol will satisfy (ts, d)-security in synchrony and (ta, d)-security
in asynchrony for d = ts + 1. In particular, our protocol achieves ta-secrecy in
asynchrony. The definition of secrecy is not well-defined in asynchrony when
considering more than ta corruptions, because in particular not all parties may
output y (or worse yet they may output different keys). One could define a vari-
ant of secrecy that guarantees ‘secrecy with abort’ but its usefulness is less clear
given only a subset of honest parties could output a secret share.

2.3 Multi-Party Computation

A multi-party computation (MPC) protocol allows n parties P1, . . . , Pn, where
each party Pi has a private input xi, to jointly compute a function over the
inputs f(x1, . . . , xn) in such a way that nothing beyond the output is revealed.

Different levels of security guarantees have been considered in the MPC lit-
erature, such as guaranteed output delivery (a.k.a. full security), where hon-
est parties are guaranteed to obtain the correct output, or security with selec-
tive abort [IOZ14,CL17], where the adversary can choose any subset of parties
to receive ⊥, instead of the correct output. In the case of unanimous abort
[GMW87,FGH+02], the adversary can choose whether all honest parties receive
the correct output or all honest parties receive ⊥ as output.

When the network is asynchronous, it is provably impossible that
the computed function takes into account all inputs from honest parties
[BCG93,BKR94], since one cannot distinguish between a dishonest party not
sending its input, or an honest party’s input being delayed. Hence, we say that
a protocol achieves L-output quality, if the output to be computed contains the

18

inputs from at least L parties. This is modeled in the ideal functionality as al-
lowing the ideal adversary to choose a subset S of L parties. The functionality
then computes f(x1, . . . , xn), where xi = vi is the input of Pi in the case that
Pi ∈ S, and otherwise xi = ⊥.

We describe the ideal functionality Fsec,L
sfe for MPC with full security and

L-output quality below. In addition, we denote the functionality Fsout,L
sfe (resp.

Fsec,L
sfe

– Fsfe is parameterized by a set P of n parties and a function f : ({0, 1}∗ ∪
{⊥})n → ({0, 1}∗)n. For each Pi ∈ P, initialize the variables xi = yi = ⊥. Set
S = P.

– On input (Input, v) from Pi ∈ P, if Pi ∈ S, set xi = v and send a message
(Input, Pi) to the adversary.

– On input (OutputSet, S′) from the ideal adversary, where S′ ⊆ P and |S′| = L,
set S = S′ and xi = ⊥ for each Pi /∈ S.

– Once all inputs from honest parties in S have been input, set each yi =
f(x1, . . . , xn).

– On input (GetOutput) from Pi, output (Output, yi, sid) to Pi.

Fig. 1: Secure Function Evaluation Functionality.

Fuout,L
sfe), the above functionality, where the adversary can selectively choose any

subset of parties to obtain ⊥ as the output (resp. choose that either all honest
parties receive f(x1, . . . , xn) or ⊥).

Definition 8. A protocol π achieves full security (resp. selective abort; unani-

mous abort) with L output-quality if it UC-realizes functionality Fsec,L
sfe (Fsout,L

sfe ;

Fuout,L
sfe).

Since protocols run in a synchronous network typically achieve n-output quality,
we implicitly assume that all synchronous protocols we discuss achieve n-output
quality (unless otherwise specified).

Weak termination. In this work, similar to that of [BLL20], we consider protocols
with the following weaker termination property: we say that a protocol has weak
termination, if parties are guaranteed to terminate upon receiving an output
different than ⊥, but do not necessarily terminate if the output is ⊥.

3 Communication-Efficient Synchronous Broadcast

In this section, we construct a synchronous secure broadcast protocol with
O(ℓn + λn2) communication complexity that tolerates t < (1 − ϵ) · n corrup-
tions with ϵ ∈ (0, 1) for messages of length ℓ. To do so, we adapt the extension

19

protocol proposed by Nayak et al. [NRS+20]. Their protocol, however, relies on a
λ-bit broadcast module with the same corruption tolerance and communication
complexity O(λn2). We therefore first construct such a protocol.

3.1 Short Message Broadcast Module

We present our protocol Πt,ϵ
BC in Figure 2 that allows λ-bit messages to be broad-

cast with O(λn2) communication complexity. We assume the existence of an ag-
gregate signature scheme as. Let R = O(log n) and q = O(1/ϵ) be two constants
that we use in the protocol and the proof in Appendix E.

Πt,ϵ
BC (m

∗)

1. At time 0:
– Set sent[m] = detect[m] = false for all m ∈M and v = ⊥.
– If Pi = P ∗: set σ∗ ← as.Sign(ski,m

∗) and sent[m∗] = detect[m∗] = true,
then multicast (σ∗, Σ = (), P⃗ = (),m∗).

2. For r = 1, . . . , t+R: At time r ·∆: for each m ∈M :
– If received messages (σ,Σ1, P⃗1,m), . . . , (σ,Σj , P⃗j ,m) for distinct

P⃗1, . . . , P⃗j from distinct parties such that for P⃗ = ∪k∈[1,j]P⃗j

(a) For each k ∈ [1, j], as.Verify(VK(P⃗k), Σk,m) = 1;
(b) as.Verify(VK(P ∗), σ,m) = 1;
(c) |P⃗ | ≥ min{r − 1, t}; and
(d) {Pi, P

∗} ̸⊆ P⃗ :

• If sent[m] = false and |{m′ ∈M : sent[m′] = true}| < 2:
∗ Set sent[m] = true.
∗ Compute as.Sign(ski,m) = σ.
∗ Compute as.Combine(Σ′, V K′,m) = σ′, where Σ′ =

(Σ1, . . . , Σj , σ) and V K′ = (VK(P⃗1), . . . ,VK(P⃗j), vki).
∗ For all k ∈ [1, n], send (σj , σ

′, P⃗ ∪{Pi},m) to Pk with probability
q/n.

∗ If detect[m] = false: set detect[m] = true and multicast
(σ, (), (),m).

– If received message (σ, ·, ·,m) such that as.Verify(VK(P ∗), σ,m) = 1:
• If detect[m] = false and |{m′ ∈M : detect[m′] = true}| < 2:

∗ Set detect[m] = true and multicast (σ, (), (),m).
3. At time (t+R+ 1) ·∆:

– If sent = detect and |{m′ ∈M : sent[m′] = true}| = 1: set v = m′. Output
v and terminate.

Fig. 2: Synchronous broadcast (BC) protocol with sender P ∗ for t < (1 − ϵ) · n
and ϵ ∈ (0, 1) from the perspective of party Pi.

Our protocol is similar to BulletinBC ([TLP22], Figure 2), which in turn is
similar to the well-known Dolev-Strong broadcast protocol. Whereas in Dolev-
Strong signatures are multicast to all parties, in BulletinBC signatures are sent

20

to each party only with probability q/n (the gossiping technique). We emphasise
that gossiping does not require a common coin, but only a local source of ran-
domness: parties each locally sample the set of parties to gossip messages to. To
ensure security, BulletinBC thus requires an additional R = O(log n) rounds to
ensure that the ‘gossiped’ message propagates to all parties except with negligi-
ble probability. Notably, we extend BulletinBC to support multivalued broadcast
and improve upon the communication complexity by using an aggregate signa-
ture scheme as = (KeyGen,Sign,Combine,Verify) (Appendix A).

InΠt,ϵ
BC, each party Pi manages two local maps sent, detect : M → {false, true}

with initialization sent[m] = detect[m] = false for all m ∈ M (where M denotes
the message space). In the first step of the protocol, the sender P ∗ multicasts its
signed input value mi and sets sent[mi] = detect[mi] = true. The protocol then
runs t + R rounds as follows. In rounds 1 ≤ r ≤ t + R, for each m ∈ M , if Pi

has 1) received a signature on m signed by the sender P ∗; 2) can form a valid
aggregate signature with min{r − 1, t} signers;10 and 3) they have previously
gossiped/multicast at most one message m′ ̸= m (i.e. |{m′ ∈ M : sent[m′] =
true}| ≤ 1, Pi sets sent[m] = true, computes an aggregate signature on it and
sends this plus P ∗’s signature to each party with probability q/n.

Note if we simply replace the (deterministic) multicast from Dolev-Strong
with probabilistic sending, then consistency may not hold if P ∗ signs more than
two messages above, since condition 3) above implies that honest parties do
not relay all messages. To deal with this, parties keep track of P ∗’s signa-
tures separately. In particular, when Pi receives a signature σ of P ∗ on m, if
detect[m] = false and |{m′ : detect[m] = true}| < 2, Pi multicasts (not gossips)
m and σ and then sets detect[m] = true so all parties receive it.11

Finally, in step 3 of the protocol in round t + R + 1, if the maps sent and
detect are equal and there is only one value m′ ∈ M such that sent[m′] = true,
then Pi outputs this value and terminates; otherwise it outputs ⊥ and ter-
minates. Note if there are two or more messages m such that some honest
party set sent[m] = true, then these honest parties will broadcast the signer’s
signature on each m which all honest parties will process and thus terminate
with |detect| = 2 and output ⊥.

Communication Complexity. Each party gossips at most two messages of
size O(λ + n + ℓ) and multicasts at most two messages of size O(λ + ℓ). Since
q = Θ(λ), each party sends an expected O(λ) messages in each gossip step.
Thus, communication complexity is overall O(λn2 + nλ2 + ℓ(λ + n2)) which,
when ℓ = O(λ), is O(λn2 + λ2n). For n ≥ λ, we have O(λn2 + λ2n) = O(λn2).
For n < λ, there is a trivial solution to achieve O(λn2) communication
complexity. Namely, one can run standard Dolev-Strong broadcast [DS83] with
multi-signatures which has communication complexity O(n3 + λn2 + ℓn2).

10For rounds r ≥ t+ 1 we only require t+ 1 signatures including the sender’s.
11We conjecture that the protocol without these extra messages also satisfies consis-

tency, but the protocol as written has the same asymptotic complexity and therefore
we leave it as future work to prove it.

21

Since n < λ, we have n3 < λn2, and since we have ℓ = O(λ), it follows that
O(n3 + λn2 + ℓn2) = O(λn2).

We defer proofs for results stated in the main body hereafter to Appendix E.

Theorem 1. Let n, t be such that t < (1 − ϵ) · n for some constant ϵ ∈ (0, 1).
Then Πt,ϵ

BC (Figure 2) is t-secure when run on a synchronous network and n-
weakly valid when run on an asynchronous network.

Proof. See Appendix E.1.

3.2 Broadcast Extension Protocol

In Appendix F, we present our broadcast extension protocol which we argue has
communication complexity O(nℓ/ϵ+ λn2) before proving its security.

4 Multivalued Intrusion-Tolerant Consensus

In this section, we construct an intrusion-tolerant Byzantine agreement proto-
col with O((ℓ+ λ)n3) communication complexity from intrusion-tolerant graded
consensus and a binary Byzantine agreement protocol. Graded consensus is a
relaxation of Byzantine agreement/consensus where parties input a value v and
output a value/grade pair (v, g) where g ∈ {0, 1, 2} (other choices of the grade
set are possible). Apart from validity, liveness and intrusion tolerance, graded
consensus satisfies graded consistency which ensures that 1) the grades of all
honest parties never differs by more than 1; and 2) all honest parties output
the same v given they output grade g ≥ 1 (note parties may output (⊥, 0)). In
Appendix B, we formally define and construct a graded consensus protocol with
a high validity threshold and O(ℓn3) communication complexity. Our overall
protocol is a modification Mostéfaoui and Raynal’s asynchronous protocol for
t < n/3 [MR17] which is not framed in terms of graded consensus.

Let Πta,ts
BA be a Byzantine agreement protocol with input domain {0, 1} that

is ta-secure and ts-valid with termination. In Appendix C, we present a modified
version of the protocol from [BKL19] with expected communication complexity
O(λn3) without trusted setup that satisfies these requirements. Let Πta,ts

GC be a
ta-secure and ts-graded valid multivalued graded consensus protocol. We present
intrusion-tolerant Byzantine agreement protocol Πta,ts

IT in Figure 3.
We describe the protocol from the perspective of a party Pi with initial

value vi ∈ V . First, Pi runs the multivalued graded consensus protocol Πta,ts
GC

on input vi and outputs (v, g) (step 2). Then, if g = 2, Pi proposes 1 to Πta,ts
BA

and otherwise proposes 0 (step 3). In particular, if an honest party Pi proposes
1, then by graded consistency, all honest parties output (v, g) from ΠGC with
g ∈ {1, 2}, and so if bit 1 is decided in Πta,ts

BA then all parties can safely output v.
Given this occurs, Pi then signs and multicasts the value v (received previously
from the output of the graded consensus protocol) along with the signature,
otherwise it multicasts ⊥ together with a signature (step 4). In the final phase

22

Πta,ts
IT (vi)

1. Set auxi = ⊥, bp = 0.
2. Run Πta,ts

GC using input vi.
3. Upon receiving output (v, g) from Πta,ts

GC : set auxi = v. If g = 2, set bp = 1.
Run Πta,ts

BA using input bp.
4. Upon receiving output b from Πta,ts

BA : if b = 1, then multicast ⟨commit, auxi⟩i.
Otherwise, multicast ⟨commit,⊥⟩i.

5. Upon receiving ts + 1 signatures of (commit, aux) from distinct parties: multi-
cast ts + 1 such signatures, output aux and terminate.

Fig. 3: Intrusion-tolerant multivalued Byzantine agreement from the perspective
of party Pi.

of the protocol, Pi outputs a value aux (and terminates) if it received that value
with at least ts + 1 valid signatures, ensuring that at least one signature on aux
is from an honest party (step 5).

Communication Complexity. Πta,ts
GC (step 2) has a communication complex-

ity bounded by O(ℓn3) (note it is signature-free). Πta,ts
BA (step 3) has an expected

complexity of O(λn3). The multicast of commit messages in steps 4 and 5 an ad-
ditional complexity of O(λn3+ℓn2) using regular signatures or O(n3+(λ+ℓ)n2)
using aggregate signatures. Thus, the overall expected complexity of Πta,ts

IT is
O((λ+ ℓ)n3).

Theorem 2. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and ta + 2 · ts < n.

Then Byzantine agreement protocol Πta,ts
IT (Figure 3) is ts-valid and ta-secure

with intrusion tolerance.

Proof. See Appendix E.2.

5 Communication-Efficient Network-Agnostic DKG

In this section, we construct our communication-efficient network-agnostic dis-
tributed key generation protocol Πta,ts

DKG with threshold d = ts + 1. We prove it
ts-secure when run over a synchronous network and ta-secure when run over an
asynchronous network. We present ΠDKG in Figure 4 which uses two helper func-
tions that are defined in Figure 5. We recall public parameters par = (G, p, g, h)
introduced in Section 2, where g and h are independent generators of the cyclic
group G of prime order p. ΠDKG relies on the following underlying protocols:

– ΠADKG: an asynchronous DKG protocol. We assume that ΠADKG is (ta, d)-
secure with threshold d = ts+1 and has O(λn3) communication complexity.
The protocol from Das et al. [DYX+22] satisfies these requirements.

23

Πta,ts
DKG

1. Set it = ready = false. Choose two random polynomials fi, f
′
i over Zp of degree

ts: fi(z) = ai0+ai1z+. . .+aitsz
ts , f ′

i(z) = bi0+bi1z+. . .+bitsz
ts . Let zi = ai0.

Then:
(a) For all k ∈ [0, ts], compute Cik = gaikhbik .
(b) For all j ∈ [1, n], compute sij = fi(j), uij = f ′

i(j) and cij =
pke.Enc(ekj , (sij , uij)).

(c) For all j ∈ [1, n], compute πij = nizk1.Prove(X1, ω1 = (sij , uij)).
Let Mi = (Ci = (Ci0, . . . , Cits), ci = (ci1, . . . , cin), πi = (πi1, . . . , πin)). Run n

instances of Π
ts,

1
2

BC-Ext with senders P1, . . . , Pn using external validity predicate
Valid with input Mi in instance i.

2. At time T : Let (M ′
1, . . . ,M

′
n) be the output from the n instances of Π

ts,
1
2

BC-Ext

where M ′
j was output from instance j ∈ [1, n]:

(a) If
∣∣{j ∈ [1, n] : M ′

j ̸= ⊥bc}
∣∣ ≥ n − ts: Compute (L1, . . . , Ln) =

Split(M ′
1, . . . ,M

′
n), acc.Eval(ak, (L1, . . . , Ln)) = z and (w1, . . . , wn) =

acc.CreateWits(ak, z, ((1, L1), . . . , (n,Ln))). Run Πta,ts
IT using input z.

(b) Otherwise, run Πta,ts
IT using input ⊥dkg.

3. Upon receiving output zit from Πta,ts
IT : if zit ∈ {⊥it,⊥dkg}, run ΠADKG. Oth-

erwise, set it = true.

4. Upon setting it = true: if z = zit, for j ∈ [1, n], send (part, Lj , wj) to Pj .

5. Upon receiving (part, Li = (c∗i , C
∗
i , Q), wi): wait until it = true (never satisfied

if ΠADKG is invoked). Then, if zit ̸= ⊥ and acc.Verify(ak, zit, wi, (i, Li)) = 1,
set ready = true.

6. Upon setting ready = true: let xi =
∑

j∈Q sji and x′
i =

∑
j∈Q uji where sji

and uji are decrypted from c∗i using pke.Dec. Compute Di = gxi , C′′
i = gxihx′

i

and π′
i = nizk2.Prove(X2, ω2 = (xi, x

′
i)) where X2 is defined with respect to

A = Di and B = C′′
i . Multicast (recon, Di, π

′
j , Lj = (c∗j , C

∗
j , Q), wj).

7. Upon receiving (recon, Dj , π
′
j , Lj = (c∗j , C

∗
j , Q), wj) for ts + 1 distinct values j

with 1) acc.Verify(ak, zit, wj , (j, Lj)) = 1 and 2) nizk2.Verify(X2, π
′
i) = 1 using

A = Dj and B = C∗
j :

(a) Wait until ready = true.
(b) Consider gF (x), where F (x) is the polynomial defined by Lagrange in-

terpolation of the ts + 1 distinct values Dj = gxj = gF (j) in the expo-
nent. Compute y = gF (0). For j ∈ [1, n], compute psj = gF (j). Output
(xi, (ps1, . . . , psn), y) and terminate.

Fig. 4: DKG protocol with threshold d = ts+1 from the perspective of party Pi.

T denotes the time taken by Π
ts,

1
2

BC-Ext to terminate when run in synchrony. Note
under synchrony that each step will be executed in sequence.

24

Helper functions for Πta,ts
DKG

– Valid(Mj): Return true if and only Mj can be parsed as Mj =
(Ci = (Cj0, . . . , Cjts), cj = (cj1, . . . , cjn), πj = (πj1, . . . , πjn)) and, for all k ∈
[1, n], nizk1.Verify(X1, πjk) = 1.

– Split(M1, . . . ,Mn): Let Q = [q1, . . . , qs] ⊆ [1, n] be the maximal set such that
Mj ̸= ⊥. Then, for j ∈ [1, n]: let c∗j = (cq1j , . . . , cqsj) and C∗

j =
∏

q∈Q C∗
j,q

where C∗
j,q =

∏ts
k=0(Cmk)

jk for each q ∈ Q, and then let Lj = (c∗j , C
∗
j , Q).

Finally, output (L1, . . . , Ln).

Fig. 5: DKG helper functions from the perspective of party Pi.

– ΠBC-Ext: a broadcast protocol with default value ⊥bc. We assume thatΠBC-Ext

is ts-secure when run on a synchronous network, ta-weakly valid on an asyn-
chronous network, and ts-externally valid. For a message of length ℓ, we
require that ΠBC-Ext has communication complexity O(ℓn + λn2). The pro-
tocol ΠBC-Ext defined in Figure 11 satisfies these requirements.

– ΠIT: a multivalued Byzantine agreement protocol with default value ⊥it.
We assume that ΠIT is ta-secure with intrusion tolerance and ts-valid with
termination, and has O(λn3) communication complexity. The protocol ΠIT

defined in Figure 3 satisfies these requirements.

We also assume the existence of a public-key encryption scheme pke =
(KeyGen,Enc,Dec)(Appendix A), an accumulator acc, and a linear erasure cod-
ing scheme rs. Finally, we require two NIZK proof systems nizk1 and nizk2 which
define the following relations:

– nizk1: StatementsX1 and witnesses (sij , uij) ∈ Z2
p, whereX1 is the statement

that
∏ts

k=0(Cik)
jk = gsijhuij and cij is an encryption of (sij , uij) under ekj ,

where variables Cik and cij are as defined in step 1 of ΠDKG.
– nizk2: Statements X2 and witnesses (xi, x

′
i) ∈ Z2

p, where X2 is the statement,

given (public) values A and B, that A = gxi and B = gxihx′
i .

In the following, we give a step-by-step description of ΠDKG (Figure 4).

Step 1: Let Pi be an honest party executing ΠDKG. Pi chooses two ran-
dom polynomials fi, f ′

i of degree ts with coefficients aik and bik in Zp for
k ∈ [0, ts]. In this step, Pi will share points (j, fi(j)) and (j, f ′

i(j)) with each
party Pj , j ∈ [1, n], using public-key encryption scheme pke. As in Pedersen’s
verifiable secret sharing scheme [Ped92], Pi will also compute Pedersen com-
mitments Cik = gaikhbik that allow parties to evaluate the polynomials in
the exponents g and h together. In particular, the inclusion of polynomial f ′

blinds f such that values that contribute to the final secret are hidden from the
adversary until after it has been decided, preventing the adversary from biasing
the secret. In order for all parties to verify that all parties have received correct

25

sharings, Pi will further compute a NIZK πij via nizk1 for each Pj that verifies
that the encrypted values under Pj ’s key are exactly fi(j) and f ′

i(j). All n
parties then invoke ΠBC-Ext (secure broadcast), inputting a message to the i-th
instance containing these Pedersen commitments, encryptions for all n parties
and the corresponding NIZK proofs.

Steps 2 and 3: If the network is synchronous, then by ts-security of ΠBC-Ext and
since at least n− ts honest parties broadcast, all parties will agree on the same
set of values of size ≥ n − ts once all instances of ΠBC-Ext terminate at the
same time T . By ts-external validity of ΠBC-Ext, only messages that are Valid
(Figure 5) – namely, those which are well-formed and contain n valid NIZKs
– can be output. Note in asynchrony that ΠBC-Ext does not satisfy consistency,
so honest parties could output different messages. To resolve this, it would be
natural for parties to execute consensus on the output of ΠBC-Ext that ensures
ts-validity in synchrony and ta-security in asynchrony. However, not all parties
may output n− ts values from ΠBC-Ext, so parties require a mechanism to ‘abort’
if not enough values are obtained from consensus.

We use intrusion-tolerant consensus ΠIT to efficiently solve this problem.
Rather than proposing the entire O(λn2)-sized output of ΠBC-Ext to consensus,
Pi instead proposes an accumulated value z to ΠIT. Intuitively, z accumulates
n values (one per party) each of size O(λn) corresponding to the information
that each party ‘needs’ to eventually reconstruct their secret share and the
common public key; we describe these values further below. If an honest party
does not output enough values from ΠBC-Ext, they instead propose ⊥dkg to ΠIT.
ΠIT guarantees that a decided value is either one proposed by an honest party
or ⊥. Consequently, if ΠIT outputs v ∈ {⊥,⊥dkg}, all honest parties fallback
to ΠADKG. This will not occur in synchrony and may or may not occur in
asynchrony. Otherwise, all honest parties output the same accumulated value z.

Steps 4 and 5: If z ̸∈ {⊥,⊥dkg} is decided by ΠIT, then z must have been pro-
posed by an honest party, say Pj . Assuming this is true, Pj (plus any other honest
party that output z) sends each party their ‘value’ accumulated in z alongside
a proof of membership. Party Pi obtains their value Li this way, where Li is
computed using Split (Figure 5). More precisely, Li contains:

– The same Q for all n parties, corresponding to the ‘qualified’ set of parties
of size ≥ n− ts from which Pj received values from ΠBC-Ext;

– |Q| ciphertexts encrypting fq(i) and f ′
q(i) to Pi for all q ∈ Q; and

– Commitment C∗
j = g

∑
q∈Q fq(i)h

∑
q∈Q f ′

q(i).

These messages allow each party to reconstruct a sharing of a secret
∑

q∈Q fq(0).
After deciding z from ΠIT, Pj sends the relevant part message to all parties,
which parties verify is correct with acc.Verify.

Steps 6 and 7: At this point, Pi has received a valid message of the form
(part, Li = (c∗i , C

∗
i , Q), wi). By decrypting values in c∗i , Pi can deduce its own

26

secret share xi =
∑

j∈Q fj(i) but not necessarily the corresponding public shares

gF (1), . . . , gF (n) and public key gF (0). Thus, parties will collaborate to compute
gx by reconstructing the polynomial F (·) =

∑
j∈Q fj(·) in the exponent of g.

To this end, parties will reveal their share gxi and then compute a proof with
nizk2 that shows that it is consistent with the sharings of polynomials fj(·) and
f ′
j(·) in step 1 of the protocol (which were previously hidden). More precisely,

Pi computes Di = gxi , x′
i =

∑
j∈Q f ′

j(i) (by decryption of c∗i), C
′′
i = gxihx′

i

and π′
j = nizk2.Prove(X2, (xi, x

′
i)). Then, Pi multicasts a reconstruction message

recon containing Di, the proof π′
j and Pi’s value Li alongside wi, the proof of

inclusion in z.
On receipt of a recon message from Pj , Pi can verify that 1) Lj was accumu-

lated in z (using acc.Verify), and 2) the NIZK π′
j is correct and, in particular, is

consistent with the value C∗
i = gx

∗
i hx′∗

i contained in Lj . Because these checks

pass, the value C∗
i must be of the form gxihx′

i computed by a honest party that
output z from ΠIT, and thus the value Dj contained in the recon message must

be of the form g
∑

k∈Q fk(j), i.e. it must be a valid share. When Pi receives ts +1
such values, Pi evaluates F (0) in the exponent of g to derive public key gx

and F (j) for j ∈ [1, n] to derive the n public shares. At this point, Pi terminates.

Communication Complexity. At step 1, each party invokes secure broadcast
with O(λn)-sized input (assuming NIZKs are size O(λ), each which costs O(nℓ+
λn2), so this step incurs O(λn3) overhead. Apart from using generic NIZKs, one
can instantiate nizk1 with O(λ)-sized proofs in a suitable Paillier group under
the decisional composite residuosity assumption [CGG+20]. At step 2, ΠIT takes
O(λn3) communication. If parties invoke ΠADKG, then steps 4 to 7 are ignored,
andΠADKG costs O(λn3) itself. At step 4, O(n) parties send n partmessages, each
of size O(λn), so this incurs O(λn3) overhead. At step 5, O(n) parties multicast
a recon message of size O(λn), incurring O(λn3) overhead, again assuming nizk2
has O(λ)-sized proofs. nizk2 can be instantiated using the efficient NIZK used
in [SBKN21] in the random oracle model in any cryptographic group G. Thus,
ΠDKG has a communication complexity of O(λn3).

Theorem 3. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and ta + 2 · ts < n,
and let d = ts + 1. Assuming a plain PKI, ROM and a CRS, the distributed
key generation protocol Πta,ts

DKG (Figures 4 and 5) is (ts, d)-secure when run on a
synchronous network and (ta, d)-secure when run on an asynchronous network.

Proof. See Appendix E.3.

Corruption Thresholds. Our construction shows that ta + 2 · ts < n corrup-
tions are sufficient to ensure (ts, d)-security in synchrony and (ta, d)-security in
asynchrony for d = ts + 1. We note that it is also necessary :

Lemma 1. Let n, ta, ts be such that ta + 2 · ts ≥ n. If DKG protocol Π is ts-
uniform in a synchronous network, then it cannot also be ta-consistent in an
asynchronous network.

Proof. See Appendix E.4.

27

6 Multi-Party Computation with Asynchronous Fallback

In this section, we describe an optimized version of the MPC protocol with fall-
back by Blum, Liu-Zhang and Loss [BLL20], with communication complexity
O(n2λ) bits per multiplication gate. This matches the asymptotic communica-
tion complexity of the current most efficient purely asynchronous MPC protocols
[HNP08,CHLZ21] in the setting of optimal resilience t < n/3, without the use
of multiplicative-homomorphic threshold encryption schemes.

The protocol makes use of a threshold additive homomorphic encryption
scheme (Keygen,TEnc,TDec,TRec) (which may be generated with our DKG pro-
tocol), NIZKs, where we introduce the required relations in Appendix A.1, and

a secure broadcast protocol Π
ts,1/2
BC that achieves ts-security when the network

is synchronous and ta-weak validity when the network is asynchronous and with
communication complexity O(nℓ+ poly(n, λ)), where ℓ is the input size.

The protocol is divided into two phases: an offline and an online phase.
The offline phase generates Beaver multiplication triples (in encrypted form)
and can be executed without the knowledge of the inputs. In the online phase,
parties distribute their inputs and process the circuit to evaluate in a gate-by-
gate fashion, where addition gates are processed locally and multiplication gates
are processed with the help of the Beaver triples, via two public reconstructions.

Triple Generation. In order to generate Beaver triples (Figure 13, Ap-

pendix G), we make use of a multi-valued broadcast protocol Π
ts,1/2
BC that

is ts-secure when run on a synchronous network and ta-weakly valid that
terminates after Tbc rounds.

Communication Complexity. The communication complexity amounts to n
parallel instances of secure broadcast with input size ℓ encryptions and non-
interactive zero-knowledge proofs, and an additive term (independent of the
number ℓ) corresponding to n parallel instances of BA. This incurs a total com-
munication of O(n2ℓ(|nizk|+ |ciph|)+ poly(n, λ)) bits, where |nizk| and |ciph|
are the size of the proofs and ciphertexts in the protocol.

Lemma 2. Let n, ts, ta be such that ta, ts < n. Πta,ts
triples(ℓ) is an n-party protocol

with communication complexity O(n2ℓ(|nizk|+|ciph|)+poly(n, λ)), where |nizk|
and |ciph| are the size of the proofs and ciphertexts in the protocol, achieving
the following guarantees:

– When the network is synchronous and there are up to ts corruptions, all
parties output the same ℓ encrypted random multiplication triples, with the
plaintexts unknown to the adversary.

– When the network is asynchronous and there are up to ta corruptions, the
output of each party Pi is either ℓ encrypted random multiplication triples
with the plaintexts unknown to the adversary or ⊥.

Proof. See Appendix E.5.

28

Synchronous Protocol with Unanimous Output. We present the syn-
chronous MPC protocol that achieves full security when the network is syn-
chronous and there are ts corruptions, but also achieves unanimous output up
to ta corruptions under an asynchronous network. The protocol is an optimized
version of the one in [BLL20], where the multiplication gates are executed using
Beaver triples generated during an Offline Phase, and incurs a communication
complexity of O(n2) field elements per multiplication gate. We defer the protocol
description to the appendices (Figures 14 and 15), and only provide a high level
description here.

The protocol closely follows the one by Blum, Liu-Zhang and Loss [BLL20],
which uses a setup for threshold additive-homomorphic encryption. This ap-
proach was initially introduced by Cramer, Damgard and Nielsen [CDN01], and
the idea is that parties keep threshold encryptions of the circuit wires and per-
form computations on a gate-by-gate fashion. First, the inputs are distributed
in the form of a threshold encryption. Since the threshold encryption scheme
is additively homomorphic, the addition gates can be performed locally by the
parties. Multiplication gates are processed in a standard manner using Beaver
triples. The only difference in the network-agnostic setting is that in some parts
of the protocol (such as the input distribution, or the triples generation), in the
case the network is asynchronous, there might be information missing (e.g. input
ciphertexts or encrypted triples). For that, the protocol in [BLL20] makes use
of an abort flag. As soon as a party detects that not enough information has
arrived by a certain amount of time, it sets the flag to 1, and stops executing
further steps of the protocol. This can only make the protocol stall, but will not
compromise security. Before the output is decrypted, an agreement on a core-set
sub-primitive also known as ACS (see [BLL20] for details on this primitive) is run
to see whether parties must decrypt or not. This ensures that parties agree on
whether the output was computed. If yes, they can jointly (and safely) decrypt
the output ciphertext. If not, all parties output ⊥.

Lemma 3. Let n, ts, ta be such that 0 ≤ ta < n/3 ≤ ts < n/2 and ta + 2ts <
n. Protocol Πts,ta

smpc has communication complexity O(n2|C|(|nizk| + |ciph|) +
poly(n, λ)) bits, where C is the circuit to evaluate, |nizk| and |ciph| are the size
of the proofs and ciphertexts in the protocol, and satisfies:

– When run in a synchronous network, it achieves full security up to ts cor-
ruptions.

– When run in an asynchronous network, it achieves unanimous output with
weak termination up to ta corruptions and has n− ts output quality.

Proof. See Appendix E.6.

6.1 Protocol Compiler

In this section, we restate the protocol Πts,ta
mpc for secure function evaluation

presented in [BLL20] which tolerates up to ts (resp. ta) corruptions when the
network is synchronous (resp. asynchronous), for any 0 ≤ ta < n

3 ≤ ts < n
2

satisfying ta + 2ts < n. The protocol is based on two sub-protocols:

29

– Πts,ta
smpc is a secure function evaluation protocol which gives full security up to

ts corruptions when run in a synchronous network, and achieves unanimous
output with weak termination up to ta corruptions and has n − ts output
quality when run in an asynchronous network.

– Πta
ampc is a secure function evaluation protocol which gives full security up to

ta corruptions and has n − ta output quality when run in an asynchronous
network.

Theorem 4 ([BLL20]). Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and
ta+2ts < n. Given sub-protocols Πts,ta

smpc and Πta
ampc with the guarantees described

above, there is a protocol Πts,ta
mpc with communication complexity the sum of the

communication of the two sub-protocols, satisfying the following properties:

1. When run in a synchronous network, it achieves full security up to ts cor-
ruptions.

2. When run in an asynchronous network, it achieves full security up to ta
corruptions and has n− ts output quality.

Assuming a setup for linear-homomorphic threshold encryption and a CRS
for NIZKs, the size of the proofs and ciphertexts in Πts,ta

smpc are of size O(λ).
Using Lemma 3 and Theorem 4, and a quadratic asynchronous protocol (see e.g.
[HNP08]) we obtain a protocol Πts,ta

mpc with communication complexity O(n2)
field elements per multiplication gate. This improves over the communication
complexity of the best previous network-agnostic MPC protocol by a linear factor
and matches the current state of the art on purely asynchronous MPC protocols
with the same setup.

Corollary 1. Assuming a setup for linear-homomorphic threshold encryption
and a CRS, there is an MPC protocol Πts,ta

mpc with communication complexity
O(n2|C|λ+ poly(n, λ)) bits, satisfying the following properties:

1. When run in a synchronous network, it achieves full security up to ts cor-
ruptions.

2. When run in an asynchronous network, it achieves full security up to ta
corruptions and has n− ts output quality.

Using Theorem 3 and multi-string NIZKs [GO07], we can base our protocol
on a plain public-key infrastructure, obtaining the first network-agnostic MPC
protocol based on plain PKI, and with communication complexity comparable
with previous state of the art network-agnostic MPC.

Corollary 2. Assuming a plain PKI, there is an MPC protocol Πts,ta
mpc with com-

munication complexity O(n3|C|poly(λ)+poly(n, λ)) bits, satisfying the following
properties:

1. When run in a synchronous network, it achieves full security up to ts cor-
ruptions.

2. When run in an asynchronous network, it achieves full security up to ta
corruptions and has n− ts output quality.

30

Observe that our definition of DKG secrecy is simulation-based. Thus, when
using our DKG protocol to replace the trusted setup to obtain the above results,
in the proofs of the above results in Appendix E, the MPC simulator will execute
the DKG simulator to simulate its messages.

References

ABKL22a. Andreea B. Alexandru, Erica Blum, Jonathan Katz, and Julian Loss. State
machine replication under changing network conditions. In Shweta Agrawal
and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022,
pages 681–710, Cham, 2022. Springer Nature Switzerland.

ABKL22b. Andreea B. Alexandru, Erica Blum, Jonathan Katz, and Julian Loss. State
machine replication under changing network conditions. Cryptology ePrint
Archive, Paper 2022/698, 2022. https://eprint.iacr.org/2022/698.

AC23. Ananya Appan and Ashish Choudhury. Network agnostic mpc with
statistical security. Cryptology ePrint Archive, Paper 2023/820, 2023.
https://eprint.iacr.org/2023/820.

ACC22a. Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. Perfectly-
secure synchronous mpc with asynchronous fallback guarantees. In Pro-
ceedings of the 2022 ACM Symposium on Principles of Distributed Com-
puting, PODC’22, page 92–102, New York, NY, USA, 2022. Association
for Computing Machinery.

ACC22b. Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. Perfectly
secure synchronous mpc with asynchronous fallback guarantees against
general adversaries. Cryptology ePrint Archive, Paper 2022/1047, 2022.
https://eprint.iacr.org/2022/1047.

ACD+19. Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael
Pass, Ling Ren, and Elaine Shi. Communication complexity of byzantine
agreement, revisited. In Peter Robinson and Faith Ellen, editors, 38th
ACM PODC, pages 317–326. ACM, July / August 2019.

AJM+21. Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad
Stern, and Alin Tomescu. Reaching consensus for asynchronous distributed
key generation. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, pages 363–373, 2021.

AJM+22. Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gi-
lad Stern. Bingo: Adaptively secure packed asynchronous verifiable secret
sharing and asynchronous distributed key generation. Cryptology ePrint
Archive, Paper 2022/1759, 2022. https://eprint.iacr.org/2022/1759.

BCG93. Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure
computation. In 25th ACM STOC, pages 52–61. ACM Press, May 1993.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
420–432. Springer, Heidelberg, August 1992.

BFO12. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest minor-
ity. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 663–680. Springer, Heidelberg, August 2012.

31

https://eprint.iacr.org/2022/698
https://eprint.iacr.org/2023/820
https://eprint.iacr.org/2022/1047
https://eprint.iacr.org/2022/1759

BGLS03. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham, edi-
tor, EUROCRYPT 2003, volume 2656 of LNCS, pages 416–432. Springer,
Heidelberg, May 2003.

BKL19. Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with
optimal asynchronous fallback guarantees. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 131–150.
Springer, Heidelberg, December 2019.

BKL21. Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic broad-
cast protocol for arbitrary network conditions. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of
LNCS, pages 547–572. Springer, Heidelberg, December 2021.

BKR94. Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure com-
putations with optimal resilience (extended abstract). In Jim Anderson
and Sam Toueg, editors, 13th ACM PODC, pages 183–192. ACM, August
1994.

BL22. Renas Bacho and Julian Loss. On the adaptive security of the threshold bls
signature scheme. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’22, page 193–207, New
York, NY, USA, 2022. Association for Computing Machinery.

BLL20. Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. Always have a
backup plan: Fully secure synchronous MPC with asynchronous fallback.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 707–731. Springer, Heidelberg, Au-
gust 2020.

BP97. Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-
stop signature schemes without trees. In Walter Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 480–494. Springer, Heidelberg,
May 1997.

BTH08. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with
linear communication complexity. In Ran Canetti, editor, TCC 2008, vol-
ume 4948 of LNCS, pages 213–230. Springer, Heidelberg, March 2008.

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In Birgit Pfitzmann, ed-
itor, EUROCRYPT 2001, volume 2045 of LNCS, pages 280–299. Springer,
Heidelberg, May 2001.

CF13. Dario Catalano and Dario Fiore. Vector commitments and their appli-
cations. In International Workshop on Public Key Cryptography, pages
55–72. Springer, 2013.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. UC non-interactive, proactive, threshold ECDSA with iden-
tifiable aborts. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1769–1787. ACM Press, November
2020.

CGJ+99. Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and
Tal Rabin. Adaptive security for threshold cryptosystems. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 98–115.
Springer, Heidelberg, August 1999.

CGMA85. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
fiable secret sharing and achieving simultaneity in the presence of faults. In

32

26th Annual Symposium on Foundations of Computer Science (sfcs 1985),
pages 383–395. IEEE, 1985.

CHLZ21. Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On
communication-efficient asynchronous MPC with adaptive security. In
Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043
of LNCS, pages 35–65. Springer, Heidelberg, November 2021.

Cho20. Ashish Choudhury. Optimally-resilient unconditionally-secure asyn-
chronous multi-party computation revisited. Cryptology ePrint Archive,
Report 2020/906, 2020. https://eprint.iacr.org/2020/906.

CHP13. Ashish Choudhury, Martin Hirt, and Arpita Patra. Asynchronous mul-
tiparty computation with linear communication complexity. In Yehuda
Afek, editor, Distributed Computing, pages 388–402, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

CKPS01. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure
and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference, pages 524–541. Springer, 2001.

CL17. Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery
in secure multiparty computation. Journal of Cryptology, 30(4):1157–1186,
October 2017.

Coh16. Ran Cohen. Asynchronous secure multiparty computation in constant
time. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-
Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 183–
207. Springer, Heidelberg, March 2016.

CP15. Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous
mpc with linear communication complexity. In Proceedings of the 2015 In-
ternational Conference on Distributed Computing and Networking, ICDCN
’15, New York, NY, USA, 2015. Association for Computing Machinery.

CPS20. T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Sublinear-round byzan-
tine agreement under corrupt majority. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II,
volume 12111 of LNCS, pages 246–265. Springer, Heidelberg, May 2020.

DHLZ21. Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient
byzantine agreement and multi-party computation with asynchronous fall-
back. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part I,
volume 13042 of LNCS, pages 623–653. Springer, Heidelberg, November
2021.

DI06. Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation.
In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
501–520. Springer, Heidelberg, August 2006.

DLZ23. Giovanni Deligios and Chen-Da Liu-Zhang. Synchronous perfectly secure
message transmission with optimal asynchronous fallback guarantees. Fi-
nancial Cryptography and Data Security, 2023.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

DXR22. Sourav Das, Zhuolun Xiang, and Ling Ren. Powers of tau in asyn-
chrony. Cryptology ePrint Archive, Paper 2022/1683, 2022. https:

//eprint.iacr.org/2022/1683.
DYX+22. Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris

Kokoris-Kogias, and Ling Ren. Practical asynchronous distributed key
generation. In 2022 IEEE Symposium on Security and Privacy (SP), pages
2518–2534, 2022.

33

https://eprint.iacr.org/2020/906
https://eprint.iacr.org/2022/1683
https://eprint.iacr.org/2022/1683

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg, Au-
gust 1984.

Fel87. Paul Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In 28th Annual Symposium on Foundations of Computer Science (sfcs
1987), pages 427–438. IEEE, 1987.

FGH+02. Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and
Adam Smith. Detectable byzantine agreement secure against faulty ma-
jorities. In Aleta Ricciardi, editor, 21st ACM PODC, pages 118–126. ACM,
July 2002.

GJKR99. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 295–
310. Springer, Heidelberg, May 1999.

GJKR07. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. Jour-
nal of Cryptology, 20(1):51–83, January 2007.

GJM+21. Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad
Stern, and Alin Tomescu. Aggregatable distributed key generation. In
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 147–176. Springer, 2021.

GLL+21. Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Efficient asynchronous byzantine agreement without private setups.
arXiv preprint arXiv:2106.07831, 2021.

GLL+22. Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Efficient asynchronous byzantine agreement without private se-
tups. In 42nd IEEE International Conference on Distributed Computing
Systems, ICDCS 2022, Bologna, Italy, July 10-13, 2022, pages 246–257.
IEEE, 2022.

GLS19. Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient uncon-
ditional MPC with guaranteed output delivery. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of
LNCS, pages 85–114. Springer, Heidelberg, August 2019.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

GO07. Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
323–341. Springer, Heidelberg, August 2007.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Hei-
delberg, December 2006.

GSZ20. Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery
comes free in honest majority MPC. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
618–646. Springer, Heidelberg, August 2020.

34

HN06. Martin Hirt and Jesper Buus Nielsen. Robust multiparty computa-
tion with linear communication complexity. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 463–482. Springer, Heidel-
berg, August 2006.

HNP05. Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic
asynchronous multi-party computation with optimal resilience (extended
abstract). In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 322–340. Springer, Heidelberg, May 2005.

HNP08. Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous
multi-party computation with quadratic communication. In Luca Aceto,
Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume
5126 of LNCS, pages 473–485. Springer, Heidelberg, July 2008.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386.
Springer, Heidelberg, August 2014.

KG09. Aniket Kate and Ian Goldberg. Distributed key generation for the internet.
In 2009 29th IEEE International Conference on Distributed Computing
Systems, pages 119–128. IEEE, 2009.

Lip12. Helger Lipmaa. Secure accumulators from euclidean rings without trusted
setup. In Feng Bao, Pierangela Samarati, and Jianying Zhou, editors,
ACNS 12, volume 7341 of LNCS, pages 224–240. Springer, Heidelberg,
June 2012.

MR10. Achour Mostéfaoui and Michel Raynal. Signature-free broadcast-based
intrusion tolerance: never decide a byzantine value. In International Con-
ference On Principles Of Distributed Systems, pages 143–158. Springer,
2010.

MR17. Achour Mostéfaoui and Michel Raynal. Signature-free asynchronous byzan-
tine systems: from multivalued to binary consensus with t < n/3, O(n2)
messages, and constant time. Acta Informatica, 54(5):501–520, 2017.

MR21a. Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1686–1699, 2021.

MR21b. Atsuki Momose and Ling Ren. Optimal Communication Complexity of
Authenticated Byzantine Agreement. In Seth Gilbert, editor, 35th Inter-
national Symposium on Distributed Computing (DISC 2021), volume 209
of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–
32:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

NRS+20. Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang.
Improved Extension Protocols for Byzantine Broadcast and Agreement. In
Hagit Attiya, editor, 34th International Symposium on Distributed Com-
puting (DISC 2020), volume 179 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 28:1–28:17, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 223–238. Springer, Heidelberg, May 1999.

35

PCR08. Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient asyn-
chronous multiparty computation with optimal resilience. Cryptology
ePrint Archive, Report 2008/425, 2008. https://eprint.iacr.org/2008/
425.

PCR10. Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Efficient statisti-
cal asynchronous verifiable secret sharing with optimal resilience. In Kaoru
Kurosawa, editor, ICITS 09, volume 5973 of LNCS, pages 74–92. Springer,
Heidelberg, December 2010.

PCR15. Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient asyn-
chronous verifiable secret sharing and multiparty computation. Journal of
Cryptology, 28(1):49–109, January 2015.

Ped91. Torben P. Pedersen. A threshold cryptosystem without a trusted party
(extended abstract) (rump session). In Donald W. Davies, editor, EU-
ROCRYPT’91, volume 547 of LNCS, pages 522–526. Springer, Heidelberg,
April 1991.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252. IEEE Computer Society Press, May
2013.

PSR02. B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asynchronous uncondi-
tionally secure computation: An efficiency improvement. In Alfred Menezes
and Palash Sarkar, editors, INDOCRYPT 2002, volume 2551 of LNCS,
pages 93–107. Springer, Heidelberg, December 2002.

RS60. Irving S Reed and Gustave Solomon. Polynomial codes over certain fi-
nite fields. Journal of the society for industrial and applied mathematics,
8(2):300–304, 1960.

SBKN21. Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kartik Nayak. Syn-
chronous distributed key generation without broadcasts. Cryptology ePrint
Archive, Paper 2021/1635, 2021. https://eprint.iacr.org/2021/1635.

SR00. K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multi-
party distributed computation. In Bimal K. Roy and Eiji Okamoto, editors,
INDOCRYPT 2000, volume 1977 of LNCS, pages 117–129. Springer, Hei-
delberg, December 2000.

Sta96. Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 190–199. Springer,
Heidelberg, May 1996.

TLP22. Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. Gossiping
for communication-efficient broadcast. Springer-Verlag, 2022.

ZDL+22. Haibin Zhang, Sisi Duan, Chao Liu, Boxin Zhao, Xuanji Meng, Shengli
Liu, Yong Yu, Fangguo Zhang, and Liehuang Zhu. Practical asynchronous
distributed key generation: Improved efficiency, weaker assumption, and
standard model. Cryptology ePrint Archive, Paper 2022/1678, 2022.
https://eprint.iacr.org/2022/1678.

36

https://eprint.iacr.org/2008/425
https://eprint.iacr.org/2008/425
https://eprint.iacr.org/2021/1635
https://eprint.iacr.org/2022/1678

A Deferred Definitions and Security Notions

We first provide a standard definition for public-key encryption.

Definition 9 (Public-key encryption (PKE)). A public key encryption
scheme is a tuple of PPT algorithms (KeyGen,Enc,Dec) such that:

– KeyGen: This is a key generation protocol that takes as input the security
parameter λ. It outputs a public-secret key pair (ek, dk), denoted as (ek, dk)←
KeyGen(λ).

– Enc: This is a probabilistic encryption algorithm that takes as input a public
key ek and a message m ∈ {0, 1}∗ (a bit string). It outputs a ciphertext c,
denoted as c← Enc(ek,m).

– Dec: This is a deterministic decryption algorithm that takes as input a de-
cryption key dk and a ciphertext c. It outputs a message m, denoted as
m← Dec(dk, c), where possibly m = ⊥ denoting failure.

Next, we define aggregate signatures. In an aggregate signature scheme, a
party can use their signing key to sign a message individually. All parties can
also call Combine to combine several (possibly already aggregated) signatures
with respect to the same message to form a new signature on the same message.
As usual, signatures can also be verified via Verify. We emphasise that Combine
and Verify are non-interactive algorithms in this work.

Definition 10 (Aggregate signatures). An aggregate signature scheme is a
4-tuple of PPT algorithms (KeyGen,Sign,Combine,Verify) such that:

– KeyGen: This is a key generation protocol that takes as input the security
parameter λ and outputs n independent public-secret key pairs (vki, ski), i ∈
[1, n].

– Sign: This is a probabilistic signing algorithm that takes as input a secret
key ski and a message m ∈ {0, 1}∗. It outputs a signature σi, denoted as
σi ← Sign(ski,m).

– Combine: This is a deterministic signature combining algorithm that takes
as input a sequence of signatures Σ = (σi(1), . . . , σi(k)), the corresponding
sequence of sets of verification keys V K = (vki(1), . . . , vki(k)) and a message
m. It outputs either an aggregate signature σ with respect to public keys
∪j∈[1,k]vki(j), denoted as σ ← Combine(Σ,V K,m), or ⊥.

– Verify: This is a deterministic signature verification algorithm that takes as
input a message m, an aggregate signature σ, and the set of verification keys
V K = {vk1, . . . , vkk} corresponding to σ. It outputs an acceptance bit b,
denoted as b← Verify(V K, σ,m), where 1 denotes acceptance.

Note that signatures can be iteratively combined, i.e., Combine can take signa-
tures previously output from Sign or Combine as input. We sometimes write ⟨m⟩i,
which is defined as (m,σ) where σ ← Sign(ski,m). For a single verification key
vk (resp. signature σ), we sometimes write vk (resp. σ) instead of {vk} (resp.
{σ}) as input to Combine and Verify.

37

One can instantiate aggregate signatures of size O(λ) + P in the random oracle
model, where P is the size of representing the signers (in our work P = n using
a bitmask and PKI for parties to map indices to public keys locally) [BGLS03].
Similarly, we require individual (non-aggregated) signatures of size O(λ). We
implicitly assume domain separation when signing messages in protocols we
introduce.

We introduce relevant security definitions for a public key encryption scheme
(PKE), an aggregate signature scheme, a cryptographic accumulator and a non-
interactive zero-knowledge proof (NIZK). We begin with the definition of CPA-
security of a PKE scheme.

Definition 11 (CPA-Security of PKE). Let ΠPKE = (KeyGen,Enc,Dec) be
a public key encryption scheme. For b ∈ {0, 1} and an algorithm A, define ex-
periment CPAA

ΠPKE
(λ, b) as follows:

1. Run the key generation algorithm and get (ek, dk)← KeyGen(λ).
2. Run A on input (ek, dk) and get a pair of same-length messages m0,m1.
3. Compute the ciphertext c← Enc(ek,mb) and run A on input c.
4. When A returns b′ ∈ {0, 1}, the experiment returns b′.

We say that ΠPKE has indistinguishable encryptions against chosen plaintext
attacks (CPA-security) if for all PPT algorithms A, we have

|Pr[CPAA
ΠPKE

(λ, 1) = 1]− Pr[CPAA
ΠPKE

(λ, 0) = 1]| ≤ negl(λ).

We proceed with the definition of a collision-resistant accumulator, which we see
as the notion of a secure accumulator.

Definition 12 (Collision-Resistant Accumulator). Let ΠAcc = (Gen,Eval,
CreateWit,Verify) be a cryptographic accumulator. For set size n and an algo-
rithm A, define experiment CRA

ΠAcc
(λ, n) as follows:

1. Run the generation algorithm and get ak ← Gen(λ, n).
2. Run A on input (n, ak) and get ({d1, . . . , dn}, d′, w′).
3. Compute the accumulation value z ← Eval(ak, {d1, . . . , dn}).
4. If d′ /∈ {d1, . . . , d′} and Verify(ak, z, w′, d′) = 1, the experiment returns 1.

Otherwise it returns 0.

We say that ΠAcc is collision-resistant or secure if for all PPT algorithms A and
any n, we have Pr[CRA

ΠAcc
(λ, n) = 1] ≤ negl(λ).

We proceed with the definition of the security of an aggregate signature scheme,
which is given by the unforgeability (under chosen message attack) of aggregate
signatures.

Definition 13 (Unforgeability under Chosen Message Attack). Let
ΠAggSgn = (KeyGen,Sign,Combine,Verify) be an aggregate signature scheme. For

an algorithm A, define experiment UF-CMAA
ΠAggSgn

(λ) as follows:

38

1. Run the key generation algorithm and get public-secret key pair (vki, ski). A
is given a public key vk1.

2. At any time of the experiment, A gets access to a signing oracle that answer
queries of the following type: When A submits a message m ∈ {0, 1}∗ of its
choice, return σ1 ← Sign(sk1,m).

3. A outputs k − 1 additional public keys vk2, . . . , vkk for some k ≥ 1 and a
message m∗. A outputs an aggregate signature σ∗ with respect to public keys
V K = {vk1, . . . , vkk} and message m∗.

4. If Verify(V K, σ∗,m∗) = 1 and m∗ was not queried previously by A, the ex-
periment returns 1. Otherwise it returns 0.

We say that ΠAggSgn is unforgeable under chosen message attack (UF-CMA) or

just secure if for all PPT algorithms A, we have Pr[UF-CMAA
ΠAggSgn

(λ) = 1] ≤
negl(λ).

We end this section with some security notions for a non-interactive zero-
knowledge proof. For this, we require perfect completeness, zero-knowledge and
simulation-sound extractability. Henceforth, we let R be an NP relation and L
the corresponding language. Our definitions are the standard ones from [Gro06].

Definition 14 (Perfect Completeness of NIZK). Let ΠNIZK =
(Gen,Prove,Verify) be a non-interactive zero-knowledge proof. For an algo-
rithm A, define experiment PerfCompA

ΠNIZK
(λ) as follows:

1. Run the parameter generation algorithm and get par ← Gen(λ).
2. Run A on input par and get (X,w)← A(par).
3. Compute the proof π ← Prove(X,w).
4. If (X,w) ∈ R and Verify(X,π) = 1, the experiment returns 1. Otherwise it

returns 0.

We say that ΠNIZK has perfect completeness if for all algorithms A, we have
Pr[PerfCompA

ΠNIZK
(λ) = 1] = 1.

Definition 15 (Zero-Knowledge of NIZK). Let ΠNIZK = (Gen,Prove,Verify)
be a non-interactive zero-knowledge proof. Let S = (S1,S2) be a pair of PPT al-
gorithms (called the simulator). Furthermore, let S′(par, τ,X,w) = S2(par, τ,X)
if (X,w) ∈ R and S′(par, τ,X,w) = 0 if (X,w) /∈ R. For an algorithm A, we
define the advantage of A as

Adv-ZKA,S
ΠNIZK

(λ) = |Pr[par ← Gen(λ) : AProve(par,·,·)(par) = 1]

− Pr[(par, τ)← S1(λ) : A
S′(par,τ,·,·)(par) = 1]|.

We say that ΠNIZK has zero-knowledge if there exists a simulator S as above such
that for all non-uniform PPT algorithms A, we have Adv-ZKA,S

ΠNIZK
(λ) ≤ negl(λ).

Definition 16 (Simulation-Soundness of NIZK). Let ΠNIZK =
(Gen,Prove,Verify) be a non-interactive zero-knowledge proof. Let S = (S1,S2) be

39

a pair of PPT algorithms (called the simulator). For an algorithm A, we define
the advantage of A, where Q is the list of simulation queries and responses, as

Adv-ssA,SΠNIZK
(λ) = Pr[(par, τ)← S1(λ), (X,π)← AS2(par,τ,·)(par) :

w ← Verify(par,X, π) = 1, (X,π) /∈ Q,X /∈ L].

We say that ΠNIZK has simulation soundness if there exists a simulator S as above
such that for all non-uniform PPT algorithms A, we have Adv-ssA,SΠNIZK

(λ) ≤
negl(λ).

A.1 Multi-Party Zero-Knowledge Protocols

Let us assume a binary relation R, consisting of pairs (x,w), where x is the
statement, and w is a witness to the statement. A zero-knowledge proof allows a
prover P to prove to a verifier V knowledge of w such that R(x,w) = 1. We are
interested in zero-knowledge proofs for three types of relations, parameterized
by a threshold encryption scheme with public encryption key ek:

1. Proof of Plaintext Knowledge: The statement consists of ek, and a ciphertext
c. The witness consists of a plaintext m and randomness r such that c =
TEncek(m, r).

2. Proof of Correct Multiplication: The statement consists of ek, and ciphertexts
c1, c2 and c3. The witness consists of a plaintext m1 and randomness r1, r3
such that c1 = TEncek(m1, r1) and c3 = m1 · c2 + TEncek(0; r3).

3. Proof of Correct Decryption: The statement consists of ek, a ciphertext c,
and a decryption share d. The witness consists of a decryption key share dki,
such that d = TDecdki(c).

Assuming a PKI infrastructure and honest majority, one can realize a Non-
interactive Zero-Knowledge Proof (NIZK) system (without the need to assume
a trusted CRS setup) using the multi-string honest majority NIZK by Groth
and Ostrovsky [GO07]. This, however, comes with a blowup of n · poly(λ) in
the size of the proof. A formal specification of a multi-string zero-knowledge
functionality appropriate for our use can be found in [BLL20]. By distributing
the NIZK proof with a (multivalued) secure broadcast protocol Πta,ts

BC that is
ts-secure in synchrony and ta-weak-validity when the network is asynchronous,
we obtain the following lemma:

Lemma 4. Let R be a relation. Let n, ts, ta be such that ta, ts < n/2. Assuming
honest majority, there is a protocol that realizes the multi-party zero-knowledge
functionality for P as prover with the following guarantees:

1. When run in a synchronous network, it achieves full security up to ts cor-
ruptions.

2. When run in an asynchronous network, it achieves security with selective
abort up to ta corruptions.

40

B Graded Consensus from MV-Broadcast

We introduce two primitives that we use to build intrusion-tolerant Byzantine
agreement in Section 4, both of which are weaker primitives and thus do not re-
quire additional assumptions in asynchrony to solve (i.e. coin flipping). Looking
forward, neither primitive guarantees termination itself but will terminate when
used in our Byzantine agreement protocol. We note that for our MV-broadcast
and graded consensus protocols in this section we assume that at most one mes-
sage per ‘type’ is accepted by a party (which is trivial to implement). This step is
taken in order to ensure security of the protocols and bound their communication
complexity.

B.1 Towards Intrusion Tolerance: MV-Broadcast

The first primitive is MV-broadcast which was defined in [MR17] for the asyn-
chronous setting. The goal of MV-broadcast is to ‘filter’ messages for consensus:
parties input a value v and output a set S such that each value inside was ei-
ther MV-broadcasted by an honest party (validity 1) or is a default value. It
guarantees a limited form of agreement on values (validity 2 and inclusion). For
MV-broadcast, we consider default value ⊥mv ̸∈ V .

Definition 17 (Multivalued broadcast (MV-broadcast) [MR17]). Let Π
be a protocol executed by parties P1, . . . , Pn, where each party Pi begins holding
input vi ∈ V .

– Validity 1: Π achieves t-validity 1 if whenever at most t parties are cor-
rupted, if an honest party outputs a set S such that v ∈ S and v ̸= ⊥mv,
then v was input by an honest party.

– Validity 2: Π achieves t-validity 2 if the following holds whenever at most t
parties are corrupted: if every honest party’s input is equal to the same value
v, then no honest party outputs a set containing ⊥mv.

– Inclusion: Π achieves t-inclusion if the following holds whenever at most t
parties are corrupted: if honest Pi and Pj output sets Si and Sj respectively,
then Si = {w} ⇒ w ∈ Sj (note w = ⊥mv is possible).

– Liveness: Π achieves t-liveness if whenever at most t parties are corrupted,
every honest party outputs a set S where each v ∈ S is such that v ∈ V ∪
{⊥mv}.

– Validity with liveness: Π achieves t-validity with liveness if the following
holds whenever at most t parties are corrupted: if every honest party’s input
is equal to the same value v, every honest party outputs the set S = {v}.

In [MR17], validity 1 and validity 2 are denoted as justification and obligation,
respectively. We additionally define validity with liveness which our protocol will
satisfy with ts corruptions in synchrony. We present our MV-broadcast construc-
tion in Figure 6.

Πta,ts
MV works as follows. Consider honest Pi with input value vi ∈ V . For each

v ∈ V , Pi manages tracks two local initially empty sets M1(v) and M2(v). There

41

Πta,ts
MV (vi)

1. Set output = ready = false and M2(v) = ∅ for all v ∈ V .
2. For every v ∈ V , let M1(v) be the (initially empty) set of parties from which

Pi has received (mv1, v).
3. Multicast (mv1, vi).
4. Upon receiving (mv1, v) messages on the same value v (possibly ⊥mv) from

n− ts distinct parties: if ready = false, set ready = true and multicast (mv2, v).
5. Upon receiving (mv1, v) messages on the same value v from ts + 1 distinct

parties: if (mv1, v) not yet multicast, multicast (mv1, v).
6. Upon receiving (mv1, vmax) for vmax such that vmax = argmaxv′∈V |M1(v

′)|:
if | ∪v′∈V M1(v

′)| − |M1(vmax)| ≥ ts + 1 and (mv1,⊥mv) not yet multicast,
multicast (mv1,⊥mv).

7. Upon having | ∪v∈V M2(v)| ≥ n − ts: if output = false, set output = true and
output {v : |M2(v)| > 0}.

Updating M2(v):

(i) Upon receiving (mv2, v) from Pj : if previously received messages (mv1, v) on
the same value from n− ts distinct parties, set M2(v) = M2(v) ∪ {j}.

(ii) Upon receiving (mv1, v) messages on the same value v from n − ts distinct
parties: set M2(v) = M2(v) ∪ {j : Pj previously sent (mv2, v)}.

Fig. 6: MV-broadcast from the perspective of party Pi.

are two types of messages multicast by Pi, (mv1, v) and (mv2, v) for v ∈ V .
The distinction between mv1 and mv2 is simply to multicast (mv2, v) as soon as
enough (mv1, v) messages (on the same value v) were received, which is tracked
via the set M1(v). By definition, M1(v) is the set of parties from which Pi has
received a (mv1, v) message. On the other hand, M2(v) keeps track of whether
value v is validated (was input by an honest party) or not.

After variable initialisation, Pi multicasts (mv1, vi) (step 3). For a given
v, on first receipt of (mv1, v) from ts + 1 parties, Pi multicasts it (step 5).
On first receipt of (mv1, v) from n − ts parties for any v (step 4), Pi sets
ready = true and multicasts (mv2, v) i.e. Pi champions v for output. At this
time, M2(v) is also updated (step (i)), If too many values were received, i.e.
| ∪v′∈V M1(v

′)| − |M1(vmax)| ≥ ts + 1 where vmax = argmaxv′∈V |M1(v
′)|, then

Pi signals this by multicasting (mv1,⊥mv) (step 6). At any time, Pi updates
the set M2(v) as M2(v) = M2(v) ∪ {j} after it receives proposal (mv2, v) by
party Pj whenever Pi has received the message (mv1, v) from ≥ n − ts distinct
parties. Finally, when Pi first receives n − ts (mv2, w) messages where n − ts
(mv1, w) messages were also received (on possibly different values w), captured
by the predicate | ∪v∈V M2(v)| ≥ n− ts in step 7, Pi outputs {v : |M2(v)| > 0}.

Communication Complexity. We argue in the following that the commu-
nication complexity of our MV-broadcast protocol ΠMV is bounded by O(n3).

42

Having a look at Figure 6, we see that every honest party multicasts at most
one message of the form (mv2,−) (line 4). Furthermore, a message of the form
(mv1, v) for some v ̸= ⊥mv is multicast if it was received from at least ts + 1
distinct parties, ensuring that the message had to come from at least one honest
party (line 5). In particular, an honest party only mv1-multicasts at most n− ts
times. Moreover, every honest party multicasts at most one message of the form
(mv1,⊥mv) (line 6). As a result, the overall communication complexity of ΠMV

is bounded by O(n3).

Theorem 5. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and ta + 2 · ts < n.

Then MV-broadcast protocol Πta,ts
MV (Figure 6) satisfies ts-validity 1, ts-validity

2, ts-valid with liveness, ta-inclusion and ta-liveness.

We prove this by proving the following lemmas.

Lemma 5. Let ts < n/2. Then Πta,ts
MV achieves ts-validity 1.

Proof. Recall that a party Pi only outputs values v such that |M2(v)| > 0 (line
7, Figure 6). In order to prove ts-validity 1, we show that no honest party Pi

adds a value v ∈ V to M2(v) such that (mv1, v) was multicast only by dishonest
parties. For this, let there be ts dishonest parties that multicast (mv1, v) such
that (mv1, v) is not multicast by any honest party. Since ts + 1 > ts, no honest
party echoes the value v and thus v can be received only from the dishonest
parties (line 5). As a consequence, no honest party Pi receives (mv1, v) from
n−ts > ts distinct parties and so M2(v) is never populated by Pi (line ’Updating
M2(v)’ (i) and (ii)). ⊓⊔

Lemma 6. Let ts < n/2. Then Πta,ts
MV achieves ts-validity with liveness.

Proof. In order to prove ts-validity with liveness, we show that if every honest
party’s input is equal to the same value v ∈ V , then every honest party outputs
the set S = {v}.

Let every honest party multicast (mv1, v) on the same value v ∈ V (line
3, Figure 6). As argued in the previous proof, no honest party echoes a value
w different from v (line 5) Therefore, at most ts values different from v are
multicast as (mv1,−) messages. Now we consider an honest party Pi in the
worst case execution, in which the ts dishonest parties multicast (mv1, w) on the
same value w ̸= v. In that case, |M1(v)| increases monotonically from 0 to n− ts
and |M1(w)| increases monotonically from 0 to ts. There are the following two
cases.

(i) Suppose that |M1(w)| ≥ |M1(v)|. In this case, the predicate |
⋃

v′∈V M1(v
′)|−

|M1(vmax)| ≥ ts + 1 in line 6 reduces to |M1(v)| ≥ ts + 1 and returns false,
since |M1(v)| ≤ |M1(w)| ≤ ts. Hence, Pi never multicasts (mv1,⊥mv) (line
6).

(ii) Suppose that |M1(v)| ≥ |M1(w)|. In this case, the predicate |
⋃

v′∈V M1(v
′)|−

|M1(vmax)| ≥ ts + 1 in line 6 reduces to |M1(w)| ≥ ts + 1 and returns false,
since |M1(w)| ≤ ts. Hence, Pi never multicasts (mv1,⊥mv) (line 6).

43

As a result, no honest party multicasts (mv1,⊥mv). Therefore, no honest
party Pi receives (mv1,⊥mv) from n − ts > ts distinct parties and M2(⊥mv) is
never populated by Pi (line ’Updating M2(v)’ (i) and (ii)). The same is true for
the value w. Consequently, every honest party outputs the same set S = {v}
(line 7). ⊓⊔

Lemma 7. Let ts < n/2. Then Πta,ts
MV achieves ts-validity 2.

Proof. This follows directly from ts-validity with liveness. ⊓⊔

Lemma 8. Let ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
MV achieves ta-inclusion.

Proof. In order to prove ta-inclusion, we show that if honest parties Pi and Pj

output sets Si and Sj respectively, then Si = {w} implies w ∈ Sj (note that
w = ⊥mv is possible).

Let honest party Pi output the set Si = {w} (line 7, Figure 6). This is
conditioned on | ∪v∈V M2(v)| ≥ n− ts by line 7 and implies that Pi has received
(mv2, w) from at least n−ts distinct parties by definition of the set M2(−) in line
’Updating M2(v)’ (i) and (ii). Now consider an honest party Pj ̸= Pi. Before Pj

outputs the set Sj , it has received messages (mv2,−) from n−ts distinct parties,
that is from at least n− ts− ta > ts honest parties. Since (n− ts)+ (ts+1) > n,
it follows that there is an honest party Pk that sent the same message (mv2, v)
to both Pi and Pj . But since Pi has received only messages (mv2, w) from n− ts
parties, it follows that v = w and thus w ∈ Sj . ⊓⊔

Lemma 9. Let ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
MV achieves ta-liveness.

Proof. In order to prove ta-liveness, we show that every honest party outputs
some set. For this, we first show that every honest party eventually multicasts
some (mv2,−) message (line 4, Figure 6). We consider the following predicate
P : There is a value v ∈ V such that after some finite time at least ts + 1 honest
parties have multicast (mv1, v). Consider the following two cases.

(i) The predicate P is satisfied. In this case, every honest party eventually mul-
ticasts (mv1, v) by construction of Πta,ts

MV (line 5). Since there are at least
n− ta ≥ n− ts honest parties, ready eventually is set to true by every honest
party due to delivering (mv1, v) from n− ts distinct parties (line 4).

(ii) The predicate P is not satisfied. We consider an honest party Pi. Let vmax =
maxv′∈V |M1(v

′), i.e. the most frequent mv1 value received, and let r be the
number of honest parties that multicast (mv1, vmax). Since P is not satisfied,
r ≤ ts. Since there are at least n − ta honest parties, Pi receives at least
n − ta + k messages (mv1,−) with some k ∈ [0, ta]. At most r + k of these
parties sent message (mv1, vmax) to Pi, and therefore at least (n− ta + k)−
(r+ k) = n− ta− r of them sent values different from vmax to Pi. But since
n−ta−r ≥ n−ta−ts > ts, the predicate |

⋃
v′∈V M1(v

′)|−|M1(vmax)| ≥ ts+1
in line 6 is satisfied and Pi multicasts (mv1,⊥mv) (line 6). Analogously, this
applies to all honest parties. And thus, every honest party receives messages
(mv1,⊥mv) from at least n− ta ≥ n− ts distinct parties. As a result, ready
becomes eventually true for every honest party (line 4).

44

This concludes our initial assertion that every honest party eventually multicasts
some message (mv2,−) (by setting ready to true) by line 4.

For the final step, we show that every honest party eventually receives vali-
dated messages (mv2,−) from at least n− ts distinct parties and thus outputs a
set (namely {v : M2(v) ̸= ∅}) by line 7. Here, by a validated message (mv2, w) we
mean one such that the party has also received messages (mv1, w) on the same
value w from at least n− ts distinct parties (as is declared in line 4). By the pre-
vious assertion, each honest party Pi multicasts some message (mv2, vi) where
vi is such that |M1(vi)| ≥ n− ts. Since (n− ts)− ta > ts, at least ts + 1 honest
parties have multicast (mv1, vi). Thus, every honest party eventually multicasts
(mv1, vi) and for every honest party Pj we have |M1(vi)| ≥ n− ta ≥ n− ts. As a
consequence, every honest party Pj adds {j} to its set M2(vi). Since this proof
hitherto also applies to every honest party Pj (in place of Pi), eventually every
honest party receives validated messages (mv2,−) from at least n− ta ≥ n− ts
distinct parties and thus outputs the set {v : M2(v) ̸= ∅} (line 7). ⊓⊔

B.2 Validity-Optimized Graded Consensus

Next, we define a graded consensus primitive. In graded consensus, each party
inputs a value but outputs both a value v ∈ V ∪ {⊥} and a corresponding
grade g ∈ {0, 1, 2}. Binary graded consensus (i.e., where V = {0, 1}) was pre-
viously considered for building network-agnostic binary agreement in [BKL19].
Our primitive will also require an intrusion tolerance property that we define
below.

Definition 18 (Graded consensus). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi begins holding input vi ∈ V .

– Graded validity: Π achieves t-graded validity if the following holds when-
ever at most t parties are corrupted: if every honest party’s input is equal to
the same value v, then all honest parties output (v, 2).

– Graded consistency: Π achieves t-graded consistency if the following holds
whenever at most t parties are corrupted: (1) If two honest parties output
grades g, g′, then |g − g′| ≤ 1. (2) If two honest parties output (v, g) and
(v′, g′) with g, g′ ≥ 1, then v = v′.

– Liveness: Π achieves t-liveness if whenever at most t parties are corrupted,
every honest party outputs (v, g) with either v ∈ V and g ≥ 1, or v = ⊥ and
g = 0.

– Intrusion tolerance: Π achieves t-intrusion tolerance if whenever at most
t parties are corrupted, if (v, g) is output by an honest party and g ≥ 1, then
v was input by an honest party.

We construct a multivalued graded consensus protocol Πta,ts
GC (Figure 7) Our

protocol requires two (implicitly domain separated) instances of Πta,ts
MV which we

denote by MV1 and MV2 with default values ⊥mv1 and ⊥mv2 respectively.
Πta,ts

GC works as follows. Suppose (honest) Pi inputs vi. In addition to mes-
sages from MV-broadcast, ΠGC uses two message types, namely (init, v) and

45

Πta,ts
GC (vi)

1. Set output = false, val = ⊥, aux = ⊥.
2. For every v ∈ V , let R(v) be the set of parties from which Pi has received

(msg, v) for msg ∈ {init, echo}. Initially, set R(v) = ∅ for all v ∈ V .
3. Multicast the message (init, vi).
4. Upon receiving (init, v) messages on the same value v from ts + 1 distinct

parties: if v ̸= vi and (echo, v) not yet multicast, multicast (echo, v).
5. Upon receiving (msg, v) for some msg ∈ {init, echo} and v when output = false:

(a) If v ̸= vi and |R(v)| ≥ ts + 1, set output = true and val = ⊥rd.
(b) If |R(v)| ≥ n− ts, set output = true and val = v.
(c) If | ∪v′∈V R(v′)| −m ≥ ts + 1 for m = maxv′∈V |R(v′)|, set output = true

and val = ⊥rd.
(d) If output = true, run MV1 using input val.

6. Upon receiving output S1 from MV1: if S1 = {v}, set aux = v. Run MV2 using
input aux.

7. Upon receiving output S2 from MV2:
(a) If S2 = {v} and v ̸∈ {⊥rd,⊥mv1,⊥mv2,⊥}, output (v, 2).
(b) Otherwise, if ∃ v ∈ S2 s.t. v ̸∈ {⊥rd,⊥mv1,⊥mv2,⊥}, output (v, 1).
(c) Otherwise, output (⊥, 0).

Fig. 7: Multivalued graded consensus from the perspective of party Pi.

(echo, v) for some v ∈ V . After initialising variables, Pi multicasts (init, vi) (and
doesn’t send init messages hereafter). On receipt of messages (msg, v) (where
msg ∈ {init, echo} from ts + 1 parties (and thus an honest party input v), Pi

multicasts (echo, v) if not yet done. Except for these steps, communication takes
place through MV1 and MV2.

Let R(v) be the set of parties from which Pi has received a message of the
form (init, v) or (echo, v) (step 2). Then, whenever Pi receives a message (msg, v),
Pi checks some conditions to determine whether it can input a value to MV1

(after which the conditions are ignored). If |R(v)| ≥ ts +1 and v ̸= vi, Pi inputs
⊥rd to MV1, indicating disagreement between two honest parties. Similarly, if
|∪v′∈V R(v′)|−maxv′∈V |R(v′)| ≥ ts+1, Pi inputs ⊥rd to MV1. If |R(v)| ≥ n−ts,
indicating enough parties received v, Pi inputs v to MV1.

Then, Pi eventually outputs a set S1 from MV1. If |S| = {v}, Pi runs MV2

with that input; otherwise Pi runs MV2 on input ⊥ (step 6). On outputting S2

from MV2 (step 2), if S2 = {v} and not a default value, then it outputs (v, 2).
Otherwise, if S2 contains a non-default value, Pi outputs that value and g = 1;
else, Pi outputs (⊥, 0).

Communication Complexity.We argue in Lemma 14 that the communication
complexity of our graded consensus protocol Πta,ts

GC is bounded by O(n3).

46

Theorem 6. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and ta + 2 · ts < n.

Then graded consensus protocol Πta,ts
GC (Figure 7) satisfies ts-graded validity, ts-

intrusion tolerance, ta-graded consistency and ta-liveness.

We prove this by proving the following lemmas.

Lemma 10. Let ts < n/2. Then Πta,ts
GC achieves ts-graded validity.

Proof. In order to prove ts-graded validity, we show that if every honest party’s
input is equal to the same value v, then all honest parties output (v, 2). Let
every honest party multicast (init, v) (line 3, Figure 7). Since there are at most
ts < ts + 1 dishonest parties, no honest party echoes a value different from v
(line 4). Therefore, from the perspective of every honest party Pi the set R(w) is
of size ≤ ts for every w ̸= v. In particular, conditions (a) and (c) of line 5 are not
satisfied for the value v. On the other hand, since there are at least n− ts honest
parties that multicast (init, v), it is |R(v)| ≥ n − ts, and Pi sets output = true
and val = v (line 5, condition (b)). As this applies to every honest party, each of
them run MV1 on the same input v (line 5 (d)). Now, ts-validity with liveness
from MV1 ensures that every honest party outputs the set S1 = {v}. As a result,
each of them sets aux = v and runs MV2 again on input v (line 6). The same
argument yields that every honest party outputs the set S2 = {v}. Finally, as
v /∈ {⊥rd,⊥mv1,⊥mv2,⊥}, every honest party outputs (v, 2) (line 7 (a)). ⊓⊔

Lemma 11. Let ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
GC achieves ta-graded

consistency.

Proof. In order to prove ta-graded consistency, we show that (1) if two honest
parties output grades g, g′, then |g−g′| ≤ 1, and (2) if two honest parties output
(v, g) and (v′, g′) with g, g′ ≥ 1, then v = v′.

For the first clause, assume that there are two honest parties Pi and Pj

where Pi outputs (v, 2). This means Pi’s output S2 from MV2 is S2 = {v} with
v /∈ {⊥rd,⊥mv1,⊥mv2,⊥} (line 7 (a), Figure 7). By ta-inclusion of MV2, every
honest party Pj outputs a set S2 such that v ∈ S2 and therefore cannot output
grade g′ = 0 for its final decision (line 7 (c)). This proves the first clause.

For the second clause, consider two honest parties Pi and Pj that output
(v, g) and (v′, g′) respectively with g, g′ ≥ 1. We write S2(Pk) for the output
set S2 from MV2 of party Pk; for the output set S1 we likewise define S1(Pk).
In particular, v ∈ S2(Pi) and v′ ∈ S2(Pj) with v, v′ /∈ {⊥rd,⊥mv1,⊥mv2,⊥}
(line 7 (a) and (b)). By ta-inclusion of MV2, it follows that v ∈ S2(Pj) and thus
{v, v′} ⊆ S2(Pj). By ts-validity 1 of MV2, v

′ was input by some honest party
Pk to MV2. In particular, aux = v′ for party Pk and thus S1(Pk) = {v′} (line
6). Analogously, there is some honest party Pl that input v to MV2 and hence
S1(Pl) = {v}. But by ta-inclusion of MV1, it follows that v = v′, which concludes
the proof. ⊓⊔

Lemma 12. Let ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
GC achieves ta-liveness.

47

Proof. In order to prove ta-liveness, we show that every honest party outputs
(v, g) with either v ∈ V and g ≥ 1, or v = ⊥ and g = 0 (line 7, Figure 7). We
consider the following predicate P : There is a value v ∈ V such that after some
finite time at least ts + 1 honest parties have multicast (init, v). Consider the
following two cases.

(i) The predicate P is satisfied. It follows that every honest party eventually
multicasts (echo, v) (if not yet multicast (init, v)) (line 4). As there are at
least n − ta ≥ n − ts honest parties, the predicate |R(v)| ≥ n − ts in line
5 (b) becomes eventually true for every honest party and each of them sets
output = true and runs MV1 (line 5 (d)). By ta-liveness of MV1, every honest
party outputs some set S1 and runs MV2 on input aux (line 6). And by ta-
liveness of MV2, every honest party outputs some set S2 and finally outputs
some graded value (v, g) (line 7). The requirement [v ∈ V and g ≥ 1, or
v = ⊥ and g = 0] is trivially satisfied by construction of Πta,ts

GC in its final
step (line 7).

(ii) The predicate P is not satisfied. This means there is no value v that is
multicast (init, v) by at least ts + 1 honest parties. We consider an honest
party Pi. Let vmax be its most often received value from distinct parties as
defined in line 5 (c) and let r be the number of honest parties that multicast
(init, vmax). By assumption, we have r ≤ ts. Let k ∈ [0, ta] be the number of
distinct dishonest parties from which Pi has received the message (init, vmax).
Clearly, at most ts + k ≥ r + k distinct parties have sent the value vmax to
Pi. Now assume that the waiting predicates [|R(v)| ≥ n− ts] and [for w ̸= vi
and |R(w)| ≥ ts+1] in line 5 (a) and (b) are never satisfied (otherwise Pi sets
output = true and proceeds with the execution of MV1). Since Pi does not
terminate at these predicates, it receives a message from each honest party,
that is from at least n− ta parties. Hence, Pi receives messages from at least
n− ta+k distinct parties. As a consequence, at least (n− ta+k)− (ts+k) =
n − ta − ts > ts distinct parties have sent values different from v to Pi. As
a result, the predicate | ∪v′∈V R(v′)| − |R(vmax)| ≥ ts + 1 in line 5 (c) is
eventually satisfied and Pi runs MV1 on input val = ⊥rd. Therefore, every
honest party runs MV1 on some input (line 5 (d)) and the remainder of the
proof proceeds as in the previous case.

⊓⊔

Lemma 13. Let ts < n/2. Then Πta,ts
GC achieves ts-intrusion tolerance.

Proof. In order to prove ts-intrusion tolerance, we show that no honest party Pi

outputs a graded value (v, g) with g ≥ 1 that was multicast (init, v) by dishonest
parties only. For this, let there be ts dishonest parties that multicast (init, v)
such that (init, v) is not multicast by any honest party. Since ts + 1 > ts, no
honest party echoes (echo, v) the value v and thus v can be received only from
the ts dishonest parties (line 4, Figure 7). As a consequence, for every honest
party Pi it is |R(v)| ≤ ts < n − ts and thus no honest party sets val equal to v
(line 5 (b)). The claim follows from ts-validity 1 of MV1 and MV2. ⊓⊔

Finally, we bound the complexity of the protocol.

48

Lemma 14. Let ts < n/2. The total communication complexity of the graded
consensus protocol Πta,ts

GC is bounded by O(n3).

Proof. First, we show that each honest party may echo at most one message
(echo,−). For this, let n = 2ts + 1. Consider an honest party Pi. Clearly, Pi

receives at most one message (init,−) from any other party, as it otherwise
would know that the sender is dishonest. In order to multicast message (echo, v)
for some v ̸= vi, Pi needs to receive (init, v) from ts + 1 distinct parties (line
4, Figure 7). Since n = (ts + 1) + (ts), it follows that Pi can echo at most one
message (echo,−). This gives a communication complexity of O(n2) up to line
5 (c).

Next, we show that the communication complexity of MV1 is bounded by
O(n3). Having a look at Figure 6, we see that every honest party multicasts at
most one message of the form (mv2,−) (line 4). Furthermore, a message of the
form (mv1, v) for some v ̸= ⊥mv is multicast if it was received from at least ts+1
distinct parties, ensuring that the message had to come from at least one honest
party (line 5). In particular, an honest party only mv1-multicasts at most n− ts
times. Moreover, every honest party multicasts at most one message of the form
(mv1,⊥mv) (line 6). As a result, the overall communication complexity of MV1

is bounded by O(n3). Getting back to Figure 7, line 5 (d) and line 6 give two
instances of the MV-broadcast protocol with communication complexity O(n3),
so that the overall communication complexity of Πta,ts

GC is bounded by O(n3).
⊓⊔

C Binary Agreement Protocol

We present a Byzantine binary agreement protocol Πta,ts
BA . Let Πts

GC be a
(binary) graded consensus protocol, i.e. takes as input a value in {0, 1} where
each party outputs a value v ∈ {0, 1,⊥} and a grade g ∈ {0, 1, 2}. We require
that Πts

GC satisfies ts-graded validity and is ta-secure: the protocol from [BKL19]
(Figure 4) satisfies these properties with O(n2) communication complexity. We
also require a coin-flip mechanism CoinFlip which allows all parties to generate
and know an unbiased binary value Coinr ∈ {0, 1} for r ≥ 2. Upon receiving
input r ≥ 2 from ts + 1 parties, the coin flip mechanism generates an unbiased
coin Coinr ∈ {0, 1} and sends (r,Coinr) to all parties. In particular, if at most
ts parties are corrupted, at least one honest party must send r to CoinFlip
before the adversary can learn the coin Coinr. We will rely on a p̃-weak coin
flip with p̃ = 1/3, where honest parties agree on the coin only with probability
p̃ < 1. This comes with an increase in the expected round complexity by a
factor of O(1/p̃) = O(1). Our coin flip mechanism is the one from [GLL+21]
(Algorithm 4), which costs only O(λn3) bits and has expected constant rounds
(and ensures that with probability at least 1/3, all honest parties output an
unbiased common coin).

Our asynchronous Byzantine agreement protocol Πta,ts
BA (Figure 8) works as

follows. We describe it from the perspective of a party Pi with input value vi.

49

In the protocol, we say message (commit, b, σ) from party Pi (as in ‘Termination
procedure’, steps (i) and (ii)) is valid if b ∈ {0, 1} and σ is a valid signature from
Pi on (commit, b), i.e σ ← ⟨commit, b⟩i. Also, we say that a set of signatures is
a certificate for b (as in step (i) and (ii)) if the set contains valid signatures on
(commit, b) from at least ts + 1 distinct parties.

As usual, at the beginning helper variables are set (step 1). Afterwards,
the protocol proceeds in round defined by the parameter r. In such a round,
Pi first runs the graded consensus protocol Πts

GC on input b = vi with (b, g)
being the output (step 2). Note that for rounds r < 3 we set the coin to some
deterministic default value (which does not affect the safety of the algorithm).
We do this because we can can then assume our coin flip mechanism only works
in asynchrony (and thus use the algorithm from [GLL+21]) so that when we
show ts-validity with termination, it will also hold that the coin is never used.
Otherwise, CoinFlip(r) is invoked.

Then, if g < 2, Pi runs Πts
GC on input Coinr (step 4), otherwise on input b

(steps 4 and 5), with (b′, g) being the output. Now if g > 0, set b = b′ (step 5). In
case g = 2, the next step is done only once (which is guaranteed by setting helper
variable cm to true): compute the signature σ on (commit, b) and multicast the
message (commit, b, σ) (step 7). Finally, the next round starts by increasing r by
one (step 8) with a small restriction: As soon as Pi computes a commit message,
it only executes one additional round of the protocol and then stops (this is
ensures by the variable stop in steps 7 and 8). Furthermore, party Pi terminates
and ends the protocol as soon as (i) it receives valid commit messages on the
same value b from at least ts+1 distinct parties (before termination, Pi combines
the signatures into a certificate Σ, multicasts (notify, b, Σ) and outputs b), or (ii)
it receives (notify, b, Σ) with Σ being a certificate on messages (commit, b) for
the same value b (before termination, Pi multicasts (notify, b, Σ) and outputs b).

The purpose of the stop variable is to ensure that the communication com-
plexity of the protocol stays bounded. The protocol is well-defined and termi-
nates, since we have the following: if one honest party set cm = true in round r,
then all parties set cm = true in (at most) round r+1. We sketch the argument
for this claim in the following. We will say a party commited if it sets cm = true.
Suppose an honest party commited in round r. By construction, it must have
g = 2 and by graded consistency of Πts

GC, it is |g − g′| ≤ 1 for all g′ output by
honest parties. Therefore, all honest parties output g = 1 or g = 2. Furthermore,
graded consistency implies that if one honest party outputs (v, g = 2), then all
honest parties output the same v, and so all honest parties will input v in the
next round. Again by graded validity, all honest parties will output g = 2 from
the first execution of Πts

GC and by similar arguments every honest party will have
commited in that round (we will see this argumentation more thoroughly in the
proof for ts-graded validity below).

We have the following theorem.

Theorem 7. Let ta ≤ ts and ta+2 · ts < n. Then ΠBA achieves ts-validity with
termination and is ta-secure.

50

Πta,ts
BA (vi)

1. Set cm = output = false, stop = 0, b = vi, and r = 1.
While output = false do:

2. Run Πts
GC on input b. Let (b, g) be the output.

3. If r < 3, set Coinr = 1. Otherwise, let Coinr ← CoinFlip(r).
4. If g < 2, set b = Coinr.
5. Run Πts

GC on input b. Let (b′, g) be the output.
6. If g > 0, set b = b′.
7. If g = 2 and cm = false:

– Set cm = true and stop = r + 1.
– Compute σ ← ⟨commit, b⟩i.
– Multicast (commit, b, σ).

8. If stop > r, set r = r + 1 (and repeat from step 2).

Termination procedure:

(i) Upon receiving (valid) commit messages (commit, b, σ) on the same value b
from ts + 1 distinct parties:
• Combine the signatures into a certificate Σ = (σ1, . . . , σts+1).
• Multicast (notify, b, Σ).
• Output b, set output = true, and terminate.

(ii) Upon receiving (notify, b, Σ) such that Σ contains valid signatures on commit
messages (commit, b) on the same value b from ts + 1 distinct parties:
• Multicast (notify, b, Σ).
• Output b, set output = true, and terminate.

Fig. 8: Binary agreement protocol from the perspective of party Pi.

51

Proof. First, we prove the ts-validity with termination. For this, assume all hon-
est parties initially hold the same value v ∈ {0, 1}. All honest parties use v as
input in the first execution of the graded consensus protocol Πts

GC (step 2). By
ts-graded validity of Πts

GC, all honest parties output (v, 2) from that execution.
Thus, all honest parties run a second instance of Πts

GC using input v (step 5),
again receiving (v, 2) as output. Therefore, all honest parties multicast a com-
mit message on v (step 7). Additionally, by the stop variable, all honest parties
will only execute one additional round of the protocol. Furthermore, the hon-
est parties will receive at most ts < ts + 1 commit messages on some w ̸= v.
Therefore, all honest parties eventually receive valid commit messages on v from
n − ts ≥ ts + 1 distinct parties, output v, and terminate (step (i) and (ii) of
’Termination procedure’).

The proof of the ta-security follows the same argumentation as the proof of
Lemma 11 in [BKL19] and therefore we skip it here.

D Threshold Additively Homomorphic Encryption
Scheme

We provide a discrete logarithm-based threshold additively homomorphic en-
cryption scheme for our MPC protocol in Section 6. For our scheme, we choose
a bitwise procedure of the usual (threshold) Elgamal encryption in the ex-
ponent. To this end, the encryption of an ℓ-bit long message m with binary
representation m = m1 . . .mℓ is given by the string c = c1 . . . cℓ where ci is
a regular Elgamal encryption of bit mi for all i ∈ [1, ℓ]. The decryption is
also done bitwise. This approach allows us to get an additively homomorphic
scheme. More formally, our (t, n)-threshold homomorphic encryption scheme
Σ = (Keygen,TEnc,TDec,TRec) is defined as follows.

– Keygen: On input the security parameter λ and the pair (t, n), sample a
uniformly random polynomial f(X) = d + a1X + . . . + atX

t ∈ Zp[X] of
degree t and return the key pair (ek, dk), where ek = gd is the public key and
dk = (dk1, . . . , dkn) with dki = f(i) for i ∈ [1, n] is the list of private keys.

– TEnc: On input the public key ek and a message m = m1 . . .mℓ ∈ {0, 1}∗,
sample uniformly random integers r1, . . . , rℓ ← Zp and return the encryption
TEncek(m) = c1 . . . cℓ where ci = (ci,1, ci,2) = (gri , gmi · ekri) for i ∈ [1, ℓ].

– TDec: On input a secret key share dkj and a ciphertext c = c1 . . . cℓ, return

the jth decryption share TDecdkj (c) = m
(j)
1 . . .m

(j)
ℓ where m

(j)
i = (c

dkj
i,1 , ci,2)

for i ∈ [1, ℓ].

– TRec: On input the public key ek and t + 1 decryption shares
{TDecdkj (c)}j∈S , reconstruct the plaintext m as follows. For i ∈ [1, ℓ],
compute cdi,1 = gdri = ekri by Lagrange interpolation in the exponent

and obtain hi = ci,2 · (ekri)−1. By comparing hi to g0, g1, . . . , gpoly(λ), ob-
tain mi = DLg(hi) (which might be non-binary) and return the plaintext
m = m12

ℓ−1 + . . .+mℓ2
0 ∈ {0, 1}∗.

52

Note that for the reconstruction algorithm, we explicitly allow the discrete log-
arithm mi = DLg(hi) of hi to be a non-binary value, even though in the encryp-
tion procedure this value is binary. This extension gives the scheme its additively
homomorphic property defined as follows.

– Additively homomorphic: On input the public key ek and two encryptions
(w.l.o.g. of the same size ℓ-bit) TEncek(m) = c1 . . . cℓ,TEncek(m

′) = c′1 . . . c
′
ℓ,

compute Ci = (ci,1c
′
i,1, ci,2c

′
i,2) for i ∈ [1, ℓ] and return their encrypted sum

TEncek(m+m′) = C1 . . . Cℓ.

We emphasize the following crucial observation. By adding only polynomial
many messages m ∈ {0, 1}∗, the elements hi (as explained in the TRec algo-
rithm above) remain in the domain of g0, g1, . . . , gpoly(λ), so that TRec is able to
efficiently compute the discrete logarithms of the hi’s by simple comparison. We
note that security of our scheme directly follows from the security of (threshold)
Elgamal encryption (applied to every bit).

E Deferred Security Proofs

E.1 Proof of Theorem 1

Towards this goal, we begin by modeling probabilistic dissemination by the pro-
cedure AddRandomEdges (Figure 9) and prove some results used to prove ts-
security of our BC protocol. The techniques that follow are from [TLP22], where
however they use binary input instead of multivalued one.

– Input: Set of n nodes W , disjoint subsets
S2, S3 ⊂W , S ⊂W \ (S2 ∪ S3), integer q ≤ n.

– Output: The graph G.
1. Let G be the empty graph with node set W .
2. For every u ∈ S and v ∈W , add an edge {u, v}

to G with probability q/n.
3. Return graph G.

Fig. 9: AddRandomEdges(W,S2, S3, S, q) procedure.

AddRandomEdges is defined over a set of nodes W that is partitioned into
three disjoint subsets S1, S2, S3 ⊂ W with S1 = W \ (S2 ∪ S3). The way
AddRandomEdges works is as follows. At the beginning, we have an empty graph
G with node set W . Now given S ⊂ S1, AddRandomEdges adds the edge {u, v}
to the graph G with probability q/n for every pair of nodes u ∈ S and v ∈W . At
the end, the resulting graph with all the added edges is output. In the context
of our protocol, S will be the set of parties that send a message m at a specific

53

round r and S2 will be the set of parties that have not received m in a previous
round. An edge from u ∈ S to v ∈ W represents that party u sends m to party
v in round r. Our goal is to determine how many parties in S2 receive message
m for the first time during round r. For this, we define the following indicator
random variables.

Definition 19. Let G ← AddRandomEdges(W,S2, S3, S, q). For all u ∈ S2, let
Zu ∈ {0, 1} with Zu = 1 if and only if u has nonzero degree in G.

We find that the number of nodes in S2 with nonzero degree in G is at
least twice the number of nodes in S. This will allow us to show that messages
propagate exponentially fast in our broadcast protocol. The proof of the following
lemma can be found in the Appendix of [TLP22] (Proof of Lemma 1).

Lemma 15. Let (S1, S2, S3) be a partition of n nodes into (disjoint) sets with
τ = |S1| ≤ ϵn/3, |S2| = ϵn− |S1|, |S3| = n− ϵn, where ϵ ∈ (0, 1) is a constant.
Let S ⊂ S1 with |S| ≥ 2τ/3, and let {Zu}u∈S2

be the random variables defined
above. Then for q ≥ 15/ϵ, we have

Pr

[∑
u∈S2

Zu ≥ 2τ

]
= 1− p, where p = max

{
ϵn · e−ϵq/9,

(e
2

)−ϵq/4
}
.

For our proof of ts-security and ta-weak validity, we define the following sets
of parties w.r.t. a value m ∈ V and a round r:

1. S(m, r): honest parties Pi that set sent[m] = true at round r.
2. S1(m, r): honest parties Pi that set sent[m] = true by round r.
3. S2(m, r): honest parties Pi that still have sent[m] = false in round r.

Additionally, we let S3 be the set of malicious parties (in particular, |S3| =
n − ϵn). Before we start we our proof of security for the Core BC Protocol,
we show that the number of parties that receive a message at round r̃ that
was sent at round r < r̃ increases exponentially with r̃ − r (with overwhelming
probability). The proof of the following theorem can be found in the Appendix
of [TLP22] (Proof of Lemma 2) with the difference that their set V is of order
2. However, this difference does not have any impact on the proof itself and
therefore the same proof applies for our case of V being of order ≥ 2.

Lemma 16. For a specific value m ∈ V , let r be the first round of the Core BC
Protocol Πt,ϵ

BC where an honest party Pi sets sent[m] = true. Let R = ⌈log3(ϵn)⌉,
and let p be as in Lemma 15. Then we have the following bounds:

1. For all rounds ρ such that r ≤ ρ ≤ r+R and |S1(m, ρ− 1)| ≤ ϵn/3, we have
with probability at least (1− p)ρ−r that

|S(m, ρ)| ≥ 2/3 · |S1(m, ρ)| and |S1(m, ρ)| ≥ 3ρ−r.

2. Let r̃ > r be a round such that |S1(m, r̃ − 1)| > ϵn/3. Then |S1(m, r̃)| = ϵn
with probability at least (1− p̃)(1− p)r̃−r−1 where p̃ = ϵn · e−2ϵq/9.

54

For the proofs hereafter, we let R = ⌈log3(ϵn)⌉ and q = Θ(λ), where λ is
the security parameter. Furthermore, all our statements hold with probability
1− negl(λ).

Lemma 17. Let ts < (1 − ϵ) · n. Then Πts,ϵ
BC achieves ts-consistency when run

in a synchronous network.

Proof. Let M = {m1, . . . ,mk} be the set of messages for which at least one
honest party sets sent[mi] ← true during one run of the protocol. We consider
three cases separately, namely when |M| = 0, |M| = 1 and |M| > 1. Suppose
first that |M| = 0. Then all honest parties will never update v and consequently
output ⊥ at step 3.

Suppose |M| = 1. We show that if an honest party Pi sets sent[m] = true for
some value m ∈ V at some round r, then by the end of the protocol all honest
parties have set sent[m] = true with probability 1 − negl(λ). We consider the
following two cases.

(i) Suppose r < ts + 1. For this, we distinguish the two cases S1(m, r) > ϵn/3
and S1(m, r) ≤ ϵn/3. If S1(m, r) > ϵn/3, then by item 2 of Lemma 16 all ϵn
honest parties set sent[m] = true by the next round with probability at least
(1− p̃)(1− p)(r+1)−r−1 = 1− ϵn · e−2ϵq/9. Since n = poly(λ), this probability
is 1− negl(λ). On the other hand, if S1(m, r) ≤ ϵn/3, let r0 := r+R− 1. In
case S1(m, r0) > ϵn/3, again the previous case applies. Otherwise, item 1 of
Lemma 16 tells us that at round r0 +1 = r+R we get S1(m, r+R) ≥ 3R =
3⌈log3(ϵn)⌉ ≥ 3log3(ϵn) = ϵn with probability at least (1− p)R. Since −p ≥ −1
and R ≥ 1, Bernoulli’s inequality applies and gives (1− p)R ≥ 1− pR. Since
n = poly(λ) and q = Θ(λ), this probability is 1− negl(λ).

(ii) Suppose r ≥ ts + 1. Suppose an honest party Pi sets sent[m] = true at some
round r ≥ ts + 1. Then, Pi has received a valid multisignature on m of
degree at least ts+1 and |{m′ ∈M : sent[m′] = true}| ≤ 1. In particular, an
honest party Pj already set sent[m] = true at some round r′ < ts+1. Hence,
former case (i) applies to honest party Pj . Ultimately, all honest parties set
sent[m] = true by the end of the protocol with probability 1− negl(λ).

Finally, suppose that |M| ≥ 2. By the above logic, sent[m] was set to true for
an honest party Pi in round r < ts + 1 for each m ∈ M . By construction of
ΠBC, Pi will set detect[m]← true and multicast (σ, (), (),m) if not already done,
where σ is the signature of the designated sender P ∗ on message m. Thus, in
the next round (given R ≥ 1), all honest parties will receive (σ, (), (),m), which
correctly verifies. If |M| = 2, then all honest parties will set detect[m] = true for
both messages, and consequently at step 3 all output ⊥ by construction of the
protocol. If |M| > 2, then it follows that for the first two messages that each
honest party receives, they will set detect[m]← true, and similarly output ⊥. ⊓⊔

Lemma 18. Let ts < (1 − ϵ) · n. Then Πts,ϵ
BC achieves ts-liveness and ts-

termination when run in a synchronous network.

55

Proof. This follows trivially from the fact that all parties will terminate at step
3 after some finite amount of time regardless of whether or not they change the
value v they output. ⊓⊔

Lemma 19. Let ts < (1− ϵ) · n. Then Πts,ϵ
BC achieves ts-validity when run in a

synchronous network.

Proof. In order to prove ts-validity, we show that if the sender P ∗ is honest and
inputs m ∈ V , then all honest parties output v = m. This directly follows from
the proof of ts-consistency and the fact that no honest party sets sent[m]← true
on a message not signed by P ∗. After R = ⌈log3(ϵn)⌉ rounds, all honest parties
have set sent[m] = true with probability 1− negl(λ) and will output v = m. ⊓⊔

Lemma 20. Let ta ≤ ts and ta+2 ·ts < n. Then Πts,ϵ
BC achieves ta-weak validity

even when run in an asynchronous network.12

Proof. In order to prove ta-weak validity, we show that if the sender P ∗ is honest
and inputs m = mj ∈ V , then all honest parties output either v = mj or v = ⊥.
This directly follows from the proof of ts-validity in the synchronous case: in
case an honest party does not receive a valid multisignature on mj by the end
of the protocol run, it just outputs v = ⊥. ⊓⊔

E.2 Proof of Theorem 2

Lemma 21. Let ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
IT achieves ts-validity

with termination. It follows that Πta,ts
IT achieves ta-validity.

Proof. In order to prove ts-validity with termination, we show that if every
honest party’s input is equal to the same value v, then every honest party outputs
w and terminates. First, suppose that all honest parties receive output b from
Πta,ts

BA and output v from Πta,ts
GC before terminating (line 3 and 4, Figure 3).

Since all parties input v into Πta,ts
GC , by ts-graded validity of Πta,ts

GC all parties

eventually receive output (v, 2) from Πta,ts
GC (line 3). By construction of Πta,ts

IT ,

all honest parties then propose bp = 1 to Πta,ts
BA (line 3). By the ts-validity of

Πta,ts
BA , all honest parties eventually output b = 1 from Πta,ts

BA (line 4). All n− ts
honest parties Pi then multicast ⟨commit, v⟩i: since n − ts ≥ ts + 1, all honest
parties eventually deliver enough valid (commit, v) signatures (line 5). Moreover,
since ts + 1 > ts, no honest party receives a valid commit message for any other
v′ ̸= v.

Suppose now that some honest Pi terminates before both outputting from
Πta,ts

GC and outputting b from Πta,ts
BA . That is, Pi delivered ts+1 valid ⟨commit, v⟩i

messages from distinct parties before multicasting ts+1 signatures to all honest
parties (line 5), since by the ts-validity of Πta,ts

BA , bit b = 0 is never output by

12Note that n-weak validity trivially follows.

56

Πta,ts
BA .13 Similarly, honest parties only multicast their individual commitmessage

upon Πta,ts
GC outputting a value (which must be (v, 2) as argued above). It follows

that all honest parties output the same v and terminate either on receipt of Pi’s
signatures or otherwise (line 5). ⊓⊔

Lemma 22. Let ta ≤ ts and ta+2 ·ts < n. Then Πta,ts
IT achieves ta-consistency.

Proof. Suppose that all honest parties that terminate receive output from Πta,ts
BA

and Πta,ts
GC before terminating; we argue similarly to above Lemma 21 if this

is not the case. Suppose that some honest party outputs (v, 2) from graded
consensus (line 3). Then, by ta-graded consistency, all honest parties output
(v, g) with the same v where g ∈ {1, 2}, which all honest parties eventually do
by ta-liveness. Consider the first honest party who outputs b from Πta,ts

BA (line
4); by ta-agreement and ta-liveness all honest parties output the same b. Thus,
all honest parties eventually multicast ⟨commit, v⟩i if b = 1 or ⟨commit,⊥⟩i if
b = 0 (line 4). It follows that all honest parties who terminate output the same
v by a similar argument to above.

Otherwise, if no party outputs (v, 2), then by ta-graded consistency no honest
party proposes bp = 1 to Πta,ts

BA , and so by ts-validity all parties output b = 0.
Thus, as no honest party Pi multicasts ⟨commit, v⟩i for v ̸= ⊥ and ts + 1 > ta
(line 4), all parties who terminate agree on output ⊥. ⊓⊔

Lemma 23. Let ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
IT achieves ta-liveness

and ta-termination.

Proof. Note that, in Πta,ts
IT , ta-liveness holds if and only if ta-termination holds

since all parties terminate directly after outputting.
Suppose that all honest parties that terminate receive output fromΠta,ts

BA and

Πta,ts
GC before terminating; we argue similarly to above Lemma 21 if this is not

the case. By the ta-liveness of Πta,ts
GC , all honest parties that output eventually

output (v, g) (line 3), and by ta-agreement and ta-liveness of Πta,ts
BA , all honest

parties output the same b (line 4). All honest parties then multicast the same
signed (commit, v) pair (line 4), and then since n− ta > ts + 1 and similarly to
before all honest parties eventually output a value and terminate (line 5). ⊓⊔

Lemma 24. Let ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
IT achieves ts-intrusion

tolerance.

Proof. This follows similarly from the proof of ts-validity with termination,
Lemma 21. Suppose that some honest party Pi outputs (v, 2) from the graded
consensus, i.e. Πta,ts

GC (line 3). By its ts-intrusion tolerance, v must have been

input to Πta,ts
GC , and thus Πta,ts

IT , by an honest party. Then by ts-consistency of

13Note that this argument still holds even though not every party may actually input
a value v to Πta,ts

BA (thus precluding ts-validity). This is because these executions where
some parties terminate before inputting v are indistinguishable from executions where
these same parties input v and then halt for an indefinite period of time. Thus, the
safety property contained in ts-validity holds.

57

Πta,ts
GC , all honest parties who output will output (v, g) with g ≥ 1 (line 3). Thus,

if 1 is output by all honest parties in Πta,ts
BA (by properties of Πta,ts

BA), it follows
that auxi = v will be output by all honest parties; otherwise, ⊥ will be output.
Thus, ts-intrusion tolerance holds in this case.

Suppose now that no honest party outputs (v, g) from Πta,ts
GC such that g = 2.

By construction of Πta,ts
IT , no honest party sets bp = 1 (note all parties output

from Πta,ts
GC by its ts-liveness) and thus all honest parties propose bp = 0 to

Πta,ts
BA . By ts-validity of Πta,ts

BA , it follows that all honest parties decide 0, and

thus by construction of Πta,ts
IT will eventually output ⊥. That is, they will not

output a value proposed by a dishonest party. ⊓⊔

E.3 Proof of Theorem 3

Lemma 25. Let 0 ≤ ta < n/3 ≤ ts < n/2, ta + 2 · ts < n and d = ts + 1. Then
distributed key generation protocol Πta,ts

DKG (Figure 4) achieves (ts, d)-correctness
and ts-consistency when run in a synchronous network and (ta, d)-correctness
and ta-consistency when run in an asynchronous network.

Proof. First, suppose that at most ts parties are corrupted and that the network
is synchronous.

Note that all parties terminate the n instances of ΠBC-Ext at time T (ts-
liveness) with the same values (M ′

1, . . . ,M
′
n) (ts-consistency) at step 2. By ts-

validity and ts-external validity of ΠBC-Ext and since at least n − ts parties are
honest, at least n−ts instances of ΠBC-Ext terminate with valid input from honest
parties. Thus, all honest parties satisfy the condition at step 2(a) and invoke
Split with the same input. Since acc.Eval and acc.CreateWits are deterministic,
all honest parties invoke Πta,ts

IT with the same input z. Thus by ts-validity of
ΠIT all honest parties output z.

By n-external validity of ΠBC-Ext, each value M ′
i ̸= ⊥bc output by instance

i is of the form (Ci = (Ci0, . . . , Cits), ci = (ci1, . . . , cin), πi = (πi1, . . . , πin)). By
the completeness and soundness of nizk1, each cij is an encryption of (sij , uij) =
(fi(j), f

′
i(j)) under ekj for polynomials fi, f

′
i defined by the values in Ci in the

exponent of g, h. Note that Split is defined such that each message Lj contains:

– The same set of qualified parties Q;
– c∗j , i.e. encryptions of fq(j) under pkj for q ∈ Q; and
– C∗

j =
∏

q∈Q C∗
j,q where C∗

j,q is fq(j) and f ′
q(j) evaluated in the exponent of

g and h respectively. Thus, C∗
j is

∑
q∈Q f ′

q(j),
∑

q∈Q f ′
q(j) evaluated in the

exponent of g, h.

By construction of steps 4 and 5 and the security of acc, all honest parties even-
tually reach step 6 on receipt of their valid part message derived from the output
of the n instances of ΠBC-Ext which all parties agree on. Each party then multi-
casts a recon message. Similarly to the above, by the security and correctness of
acc and nizk2, all honest parties eventually reach step 7. By construction, each
honest party performs Lagrange interpolation in the exponent of g with respect
to ts + 1 valid shares with respect to the polynomial F (·) =

∑
q∈Q fq(·).

58

Now, ts-consistency follows since all honest parties evaluate F (·) at 0 in the
exponent to derive the same y and at [1, n] to derive the same sequence sequence
(ps1, . . . , psn). (ts, d)-correctness follows where the polynomial F in the definition
of DKG (Definition 7) is as described above.

Suppose now that the network is asynchronous and at most ta parties are
corrupted. By n-external validity of ΠBC-Ext, all non-bottom messages that hon-
est parties output at the beginning of step 2 satisfy Valid(), and by construction
all parties then invoke ΠIT with some input.

– Suppose that honest party Pi outputs v ∈ {⊥it,⊥dkg} from ΠIT. Then
all honest parties eventually (ta-consistency) output the same value v (ta-
validity). It follows that no honest party sets ready = true. Since all honest
parties thus invokeΠADKG, (ta, d)-correctness and ta-consistency follows from
the (ta, d)-security of ΠADKG.

– Otherwise, by ta-intrusion tolerance (and ta-security) ofΠIT, all parties even-
tually output the same value zit which is such that zit was proposed by an
honest party, say Pi. Similarly to the synchronous case, Pi must have output
at least n − ts well-formed values M ′

i at step 2, and then at step 4 sent
valid part messages to all parties. Thus, all honest parties eventually set
ready = true. Since there are at least ts +1 honest parties and by similar ar-
guments to the synchronous case, it follows that all parties eventually reach
step 7, from which the two claimed properties similarly follow.

We note also that honest parties can terminate upon generating output since
they do not send any new messages thereafter. ⊓⊔

Lemma 26. Let 0 ≤ ta < n/3 ≤ ts < n/2, ta + 2 · ts < n. Then distributed key
generation protocol Πta,ts

DKG (Figure 4) achieves ts-secrecy and ts-uniformity when
run in a synchronous network and ta-secrecy and ta-uniformity when run on an
asynchronous network.

Proof. We first consider secrecy. We follow the same high-level strategy used in
previous work [GJKR99,GJKR07,SBKN21]. We construct a simulator S which
takes as input a public key y, and the set of initially corrupted parties by ad-
versary A (recall we consider static corruptions), which w.l.o.g. we write as
B = {P1, . . . Pt} with t ≤ ts. A controls the network and co-ordinates the ac-
tions of parties in B. To prove ts-secrecy, we show that S can simulate interaction
with A such that, conditioned on the output public key being y, the view of the
run from A’s perspective is indistinguishable from one where the specification
of ΠDKG is exactly executed. We present the simulator S in Figure 10.

We first assume synchrony with at most ts corruptions. Note, as argued in
Lemma 25, that all honest parties in ΠDKG eventually output the same value z
from ΠIT, and thus no honest party invokes ΠADKG. Then, since S is specified
to perfectly simulate steps 1 to 5 of ΠDKG (step 1 of Figure 10), A’s view is
identically distributed to that of a run of ΠDKG until the condition at step 2 of
Figure 10 is satisfied.

The simulation strategy after this point is essentially that of the simulator
in Figure 10 of [SBKN21]. The goal is to ‘hit’ (in the language of [GJKR99])

59

Simulator S(y,B) for Πta,ts
DKG

1. Simulate for G by locally executing steps 1 to 5 of ΠDKG (Figure 4) until
any party Pi ∈ G outputs a value v ∈ {⊥it,⊥dkg} from Πta,ts

IT . In this case,
begin executing the simulator for ΠADKG with input (y,B) (while continuing
to simulate steps 1 to 5 of ΠDKG) and ignore steps 2 to 4 below; when ΠADKG

produces output o for Pi ∈ G, output o and terminate.
2. Upon the first party Pi ∈ G reaching step 6 of ΠDKG with ready = true:

(a) Let Pj ∈ G be a party that executed step 4 of Figure 4 with it = bc = true
and z = zit. Consider the set of messages M of the form (part, Lk =
(c∗k, C

∗
k , Q), wk) that it sent to Pk for each k ∈ [1, n].

(b) For q ∈ Q, compute polynomials fq(y) fromM by Lagrange interpolation
of ts+1 points (sqk, k) obtained by decrypting ts+1 ciphertexts cqk using
simulated secret keys dkk (where Pk ∈ G).

(c) For k ∈ [1, ts], compute xj =
∑

j∈Q fj(k) using polynomials fj(y) de-

rived above. Let gF (y) be the exponential w.r.t. g of the polynomial
defined by Lagrange interpolation in the exponent of the ts + 1 points
{(0, y), (1, gx1), . . . , (ts, g

ts)}.
(d) For k ∈ [t + 1, n], compute Dk = gF (k), and compute C′′

k as in step 6 of
Figure 4. Run the nizk1 simulator with respect to (Dk, C

′′
k) which outputs

π′
k. Compute Mk = (recon, Dk, π

′
k, Lk, wk) where (Lk, wk) is derived from

(part, Lk, wk) ∈M.
3. Upon party Pi ∈ G reaching step 6 of Figure 4 with ready = true: instead of

executing step 6, simulate Pi multicasting Mi for Mi defined above.
4. Upon party Pi ∈ G reaching step 7 of Figure 4 simulate locally.

Fig. 10: Simulator for Πta,ts
DKG (Fig. 4) from the perspective of the simulator S

interacting with adversary A, where B = {P1, . . . , Pt} is the set of parties that
A initially corrupts, where t ≤ ts (resp. t ≤ ta) in synchrony (resp. asynchrony),
and G = {Pt+1, . . . , Pn} (without loss of generality). We refer to a party Pi’s
local variables from Figure 4 directly when clear from context.

the input public key y by modifying the contribution of one or more simulated
parties to the final secret from the view of A. Recall that at step 6 of ΠDKG, a
party Pk’s share of the final secret is computed as

∑
j∈Q sjk where each value

sjk corresponds to (the y-coordinate of) a point on a polynomial fj(·) and is
derived by decryption using dkk. In particular, A knows, for each j ∈ Q, at most
ts points on fj(·), since by the security of pke, except with nelglgible probability,
the other encryptions give A any information about their contents. Moreover,
the simulator cannot ‘lie’ about these points since A decrypted cipertexts to
learn this information. Thus, S’s strategy is to modify the values (recon, . . .)
multicast by honest parties (the simulator) at line 6 of ΠDKG to force the public
key to be exactly y = gx.

Consider the first party Pi to reach step 6 of ΠDKG with ready = true (step 2
of Figure 10). By ts-intrusion tolerance of ΠIT, there exists an honest party Pj

that correctly executes step 4 of ΠDKG. Note that the simulator has the state of

60

the ≥ n− ts honest parties and thus can reconstruct all polynomials fk(·) where
k ∈ Q (in particular using information that Pj sent in part messages as written in
Figure 10). To ‘hit’ y = gx, the simulator needs to send reconmessages consistent
with a polynomial F (·) such that F (0) = x. To this end, S reconstructs such a
polynomial F (·) in the exponent of g by interpolating t points from the ‘real’
secret plus the point (0, y).

Note that at the end of step 6, each Pj ∈ G sends a message of the form
Mj = (recon, Dj , π

′
j , Lj = (c∗j , C

∗
j , Q), wj), where Lj and wj are contained in

part messages sent at step 4 and (due to the security of accumulator acc and
ΠIT) cannot be changed in the simulation. For each Pj ∈ G, we therefore set
Dj = gF (j) and use the zero-knowledge property of nizk2 to simulate a proof that
is consistent with Lj . More precisely, S simulates a proof for nizk2 that proves
knowledge of (F (j), x∗) such that Dj = gF (j) and C∗

j = gF (j)hx∗
for some x∗.

By the same argument in [SBKN21], recon messages are correctly distributed
and moreover verification passes at step 7 for A’s corrupted parties, from which
secrecy follows.

We now consider ts-uniformity, where the aim is to show, for an a priori fixed
y′ ∈ G, the probability that the protocol run outputs y′ is negligibly close to
1/p. By ts-correctness and ts-consistency, all parties output a share of the secret
x =

∑
j∈Q xq, where xj = fj(0) sampled uniformly in step 1. Note that the final

secret is build from the sharings of |Q| ≥ n−ts parties. Since n−2ts ≥ 1, at least
one honest party’s contribution is included in x, and as argued the adversary
has no informatione except with negligible probability about the contributions
of honest parties until after Q has been fixed. Uniformity then follows from the
fact that fj(0) is uniformly sampled.

Suppose now that the network is asynchronous and there are at most ta
corruptions. Suppose that one honest party outputs zit ̸∈ {⊥dkg,⊥it}. Then,
since ΠIT is ta-secure with intrusion tolerance, all honest parties will eventually
output zit, where zit was proposed by an honest party. Since we did not use the
synchrony of the network in the proof follows from above in this case. Otherwise,
by ta-security, all honest parties will invoke ΠADKG. The result then follows from
the (ta, d)-security of ΠADKG. ⊓⊔

E.4 Proof of Lemma 1

Our proof (sketch) is very similar to that of [BKL19] for Byzantine agreement,
except that we rely on ts-uniformity instead of ts-validity to reach a contra-
diction. Let ta + 2 · ts = n. Partition the n parties into sets S0, S1, Sa with
|S0| = |S1| = ts and |Sa| = ta. Consider an experiment E where communication
between S0 and S1 is blocked by the adversary but all messages are otherwise
delivered in ∆ time, and two virtual copies of Sa, namely S0

a and S1
a, exist that

interact only with parties in S0 ∪S0
a and S1 ∪S1

a respectively. We construct two
executions:

1. In execution 1, the network is synchronous, and parties in S1 are corrupted
and abort immediately.

61

2. In execution 2, the network is asynchronous, parties in Sa are corrupted
and execute two independent runs of the protocol as S0

a and S1
a, and all

communication between S0 and S1 is delayed indefinitely.

In execution 1, the view of honest parties S0∪S0
a is distributed identically to the

views of S0∪S0
a in E. Then ts-uniformity guarantees that all parties in S0 output

a uniformly random secret. Similarly, all parties in S1 output a secret which is
uniform, and since S0 and S1 are disjoint, they must be independent. In execution
2, the view of honest parties S0∪S1 is distributed identically to S0∪S1 in E. But
this violates ta-consistency because, except with negligible probability, the keys
output by S0 and S1 are different (since they are independent and uniform). ⊓⊔

E.5 Proof of Lemma 2

Assume the network is synchronous and there are up to ts corruptions. The

sub-protocols Π
ts,1/2
BC and Πta,ts

BA are secure, and therefore all parties agree on
the same set S. Moreover, the set has size at least n− ts, since each tuple from

an honest party Pi is correctly distributed via Π
ts,1/2
BC due to validity, and by

validity of Πta,ts
BA , all honest parties include Pi in the set S. This implies that

each Ai is an encryption of a sum of values that includes at least an honest
party’s value (since n − ts > ts). Moreover, the ciphertexts from the adversary
are chosen independently of the ciphertext from honest parties due to the zero-
knowledge proofs of plaintext knowledge, and therefore all parties compute the
same tuple of encryptions of random values A1, . . . , Aℓ, with plaintexts unknown
to the adversary.

Each tuple (Ai, Bi, Ci) then encodes a correct multiplication triple. This is
because all parties agree on the same set S′, and each Bi is an encryption of a
sum of values that include an honest value, and Ci contains the product of the
plaintexts from Ai and Bi due to the proof of correct multiplication.

Now assume the network is asynchronous and there are up to ta corruptions.

The only difference is that the sub-protocol Π
ts,1/2
BC only provides weak validity.

This means that the sets S or S′ are not guaranteed to have size n−ts, given that
after time Tbc many of the honest parties may have obtained ⊥. Moreover, even
if any of the sets do contain n − ts parties, it is not guaranteed that all honest
parties received their broadcasted values. However, any party that receives all
the broadcasted values will output ℓ encrypted random multiplication triples
with the plaintexts unknown to the adversary. In any other case, the output
is ⊥. ⊓⊔

E.6 Proof of Lemma 3

We prove each of the cases individually. We simulate in the hybrid where parties
have access to a PKI infrastructure. [If a setup for threshold additive homomor-
phic encryption is given, skip the first step where the key generation keys are
simulated.]

62

Case 1: Synchronous network. We describe the simulator Sim for the case where
the network is synchronous and there are up to ts corruptions.

– Threshold Encryption Key Generation: The simulator Sim uniformly samples
public key y and then runs internally the simulator for the DKG S(y,B),
where B is the set of corrupted parties.

– Triple Generation: Emulate the triples protocol. For that, the simulator em-
ulates an execution of the protocol generating all the intermediate values
on behalf of the honest parties. That is, for each honest party Pj , it gener-
ates random values aij , i ∈ [1, ℓ] and encrypts these values and emulates all
broadcasted messages (for the zero-knowledge proofs, it emulates accepted
proofs). Then, it emulates the n instances of BA to agree on a set S. If the
size of the set is less than n− ts, then it emulates the party outputting ⊥ in
the triple generation protocol. Otherwise, it computes the values Ai for each
i ∈ [1, ℓ]. Similarly, the execution is emulated to possibly obtain the values
Bi and Ci. If no triples have been computed for Pj , set the local variable
abortj = 1.

– Input Distribution: Emulate the messages of the broadcast protocol. This
means that, on behalf of each honest party, emulate the broadcast protocol
using an encryption of 0 as the input. Also, emulate the Fmzk functionality
by outputting 1 on behalf of each honest parties, and from each corrupted
party, on input (c, (x, r)) check that c = Encek(x, r) and output 1 to the
adversary and 0 otherwise. The simulator waits for max{Tbc, Tzk}. For each
honest party Pj , it keeps track of the correct encrypted inputs Ij that Pj

received. If the number of correct ciphertexts is less than n−ts, the simulator
does not compute on its ciphertexts on his behalf and sets a local variable
abortj = 1.

– Addition Gates: Sim simply adds the corresponding ciphertexts locally.

– Multiplication Gates: Sim locally computes the ciphertexts X⊟A and Y ⊟B,
and The simulator emulates the threshold decryption sub-protocol for each
of these values: it sends threshold decryption shares of both ciphertexts to all
parties, and outputs 1 when emulating Fmzk on behalf of them. After waiting
for Tdec, it locally computes the output ciphertext of the multiplication gate
as in the protocol.

– Output Determination: For each party Pj , emulate the messages in the asyn-
chronous common subset protocol with the corresponding input (either a ci-
phertext, which is the result of the computation, or ⊥ in the case abortj = 1).
If the output is a single ciphertext c, emulate the threshold decryption sub-
protocol.

– Threshold Decryption: In a multiplication gate, simply compute the decryp-
tion shares and emulate the sending messages. In the Output Determination
stage, Sim obtains the output y of the computation, and adjusts the shares
such that the shares decrypt to y. In both cases, the simulator always out-
puts 1 on behalf of the honest parties indicating that the proofs of correct
decryptions are correct.

63

Case 2: Asynchronous network. The only difference with respect to the case
where the network is synchronous, is that the protocol BCts,ta only provides
weak-validity. In the simulation, it implies that the simulator will also need to
simulate the ⊥ messages from the broadcast protocols, and not simulate on
behalf of the honest parties which stop participating in the protocol after they
aborted.

We define a series of hybrids to argue that no environment can distinguish
between the real world and the ideal world.

Hybrids and security proof.

Hybrid 1. This corresponds to the real world execution. Here, the simulator
knows the inputs and keys of all honest parties.

Hybrid 2. We modify the real-world execution in the zero-knowledge proofs. In
the case of a synchronous network, when a corrupted party requests a proof of
any kind from an honest party, the simulator simply gives a valid response with-
out checking the witness from the honest party. In the case of an asynchronous
network, the simulator is allowed to set outputs to ⊥ as the real-world adversary.

Hybrid 3. This is similar to Hybrid 2, but the computation of the decryption
shares is different. Here, the simulator obtains the output y from the ideal func-
tionality, and if it is not ⊥, it computes the decryption shares of corrupted
parties, and then adjusts the decryption shares of honest parties such that the
decryption shares (d1, . . . , dn) form a secret sharing of the output value y.

Hybrid 4. We modify the previous hybrid in the Input Stage. Here, the hon-
est parties, instead of sending an encryption of the actual input, they send an
encryption of 0.

Hybrid 5. We modify the previous hybrid so that the keys generated from the
DKG protocol are generated according to the simulator of the DKG protocol.

Hybrid 6. This corresponds to the ideal world execution.
In order to prove that no environment can distinguish between the real world

and the ideal world, we prove that no environment can distinguish between any
two consecutive hybrids.

Claim 1. No efficient environment can distinguish between Hybrid 1 and Hy-
brid 2.

Proof. This follows trivially, since the honest parties always send a valid witness
to Fmzk in the case of a synchronous network. In the case of an asynchronous
network, the simulator chooses the set of parties that get ⊥ as the real-world
adversary.

64

Claim 2. No efficient environment can distinguish between Hybrid 2 and Hy-
brid 3.

Proof. This follows from properties of a secret sharing scheme and the security of
the threshold encryption scheme. Given that the threshold is ts+1, any number
corrupted decryption shares below ts + 1 does not reveal anything about the
output y. Moreover, one can find shares for honest parties such that (d1, . . . , dn)
is a sharing of y.

Claim 4. No efficient environment can distinguish between Hybrid 3 and Hy-
brid 4.

Proof. This follows from the semantic security of the used threshold encryption
scheme.

Claim 5. No efficient environment can distinguish between Hybrid 4 and Hy-
brid 5.

Proof. This follows from the secrecy property of the distributed key generation
protocol.

Claim 6. No efficient environment can distinguish between Hybrid 4 and Hy-
brid 5.

Proof. The simulator in the ideal world and the simulator in Hybrid 5 emulate
the joint behavior of the ideal functionalities exactly in the same way.

We conclude that the real world and the ideal world are indistinguishable.
Finally, let us argue why the protocol has weak termination. Observe that
when the protocol outputs ⊥, parties do not terminate. This is because the
protocol Πts,ta

acs does not guarantee termination, i.e. might need to run forever
(see [BKL21]). However, when parties have agreement on a ciphertext to de-
crypt (in particular, this is the case when the network is synchronous), the
threshold decryption sub-protocol ensures that honest parties can jointly collect
ts + 1 ≤ n − ts ≤ n − ta decryption shares, decrypt the ciphertext and termi-
nate. ⊓⊔

F Broadcast Extension Protocol and Proofs

F.1 Broadcast Extension Protocol for Dishonest Majority

We construct our broadcast extension protocol Πt,ϵ
BC-Ext which, for t < (1− ϵ) ·n,

allows for broadcast with O(nℓ/ϵ+λn2) communication complexity. This implies
a O(nℓ + λn2) honest majority broadcast algorithm by setting ϵ = 1

2 . Let Πt,ϵ
BC

be a broadcast protocol (e.g. the one in Section 3) that terminates after T time
with default value ⊥bc. we explicitly specify the core protocol in Figure 11 which
makes use of several helper functions defined in Figure 12. Our protocol is very

65

Πt,ϵ
BC-Ext(m

∗)

1. At time 0:
– Set o = ⊥ and happy = 0.
– Set dist = share = recon = false and Σ = V K = P⃗ = D⃗ = ⊥.
– If Pi = P ∗: set o = m∗ and happy = 1. Compute D⃗ =

EncodeBlocks(m∗, n − t) = (D1, . . . , Dn) and z∗ = acc.Eval(ak, D⃗). In-
voke Πt,ϵ

BC with sender P ∗ using input z∗.
2. At time T : If z ̸= ⊥bc is output by Πt,ϵ

BC : for r = 1, . . . , t+R:
(a) At time T + (2r − 2) ·∆:

– If happy = 1 and dist = false:
• Set dist = true.
• If Pi = P ∗: multicast (as.Sign(ski,HAPPY), {Pi}). Otherwise,

compute σ = MultiSign(Σ,V K), then for all j ∈ [1, n], send
(σ, P⃗ ∪ {Pi}) to Pj with probability q/n.

• Compute (w1, . . . , wn) = acc.CreateWits(ak, z, D⃗).
• For all j ∈ [1, n], send (wit, sj , wj) to Pj (where the j-th element

of D⃗ is (j, sj)).
(b) At time T + (2r − 1) ·∆:

– If share = false and received (wit, si, wi) such that
acc.Verify(ak, z, w, (i, si)) = 1:
• Set share = true and multicast (wit, si, wi).

(c) At time T + 2r ·∆:
– If recon = false:
• For j ∈ [1, n], let (wit, sj , wj) be the first message (wit, ·, ·) received

from Pj (set to (wit,⊥,⊥) if not received).
• Set S = (((1, s1), w1), . . . , ((n, sn), wn)).
• Compute M = Reconstruct(S, ak, z, t) and D⃗ =

EncodeBlocks(M,n− t).
• If acc.Eval(ak, D⃗) = z, recon = false, HappyCheck(r) = true and

Valid(M) (HappyCheck checks r signatures were received):
∗ Set happy = 1, o = M and recon = true.
∗ Invoke SigCombine(r).

3. At time T + 2 · (t+R) ·∆: Output o and terminate.

Fig. 11: BC extension protocol with sender P ∗ for t < (1 − ϵ) · n and ϵ ∈ (0, 1)
from the perspective of party Pi with respect to external validity predicate Valid.

close to the dishonest majority broadcast protocol of Nayak et al. [NRS+20]
(Figure 3 there). The only notable difference (modulo presentation differences)
is that parties gossip signatures similar to ΠBC rather than multicasting.

Πt,ϵ
BC-Ext works as follows. In the first step, the sender P ∗ splits up its input

message m∗ into n blocks D = {D1, . . . Dn} using the erasure coding scheme rs
(t+1 blocks suffice to reconstruct message m∗), where block Dj corresponds to
party Pj . Then P ∗ accumulates D into an accumulation value z using acc except
that Dj is accumulated as (j,Dj). P

∗ then invokes the broadcast protocol Πt,ϵ
BC

66

Helper functions for Πt,ϵ
BC-Ext

– MultiSign(Σ,V K): Compute as.Sign(ski,HAPPY) = σi. Compute

as.Combine(Σ′, V K′,HAPPY) = σ′, where Σ′ = (Σ, σ) and V K′ = (V K, vki).
Output σ′.

– HappyCheck(r): Output true if and only if received messages

(Σ1, P⃗ 1), . . . , (Σj , P⃗ j) for distinct P⃗ 1, . . . , P⃗ j from distinct parties such

that for P⃗ = ∪k∈[1,j]P⃗ k

1. For each k ∈ [1, j], as.Verify(VK(P⃗ k), Σk,HAPPY) = 1;
2. |P⃗ | ≥ min{r, t+ 1}; and
3. Pi ̸∈ P⃗ .

– SigCombine(r): Consider the messages (Σ1, P⃗1), . . . , (Σj , P⃗j) received that lead
to HappyCheck(r) outputting true.
• Set Σ = as.Combine(Σ = (Σ1, . . . , Σj), (VK(P⃗1), . . . ,VK(P⃗j)),HAPPY),

V K = ∪k∈[1,j]VK(P⃗k) and P⃗ = ∪k∈[1,j]P⃗k.

– EncodeBlocks(m, b): Divide m into b evenly sized blocks m1, . . . ,mb of length⌈
ℓa
b

⌉
where ℓ = log2 m and a = min{i : n ≤ 2i − 1}. Compute (s1, . . . , sn) =

rs.Encode(m1, . . . ,mb). Output ((1, s1), . . . , (n, sn)).

– Reconstruct((((1, s1), w1), . . . , ((n, sn), wn)), ak, z, d0): For j ∈ [1, n]: If
acc.Verify(ak, z, wj , (j, sj)) = 0, set sj = ⊥. Compute m1, . . . ,mb =
rs.Decode(s1, . . . , sn) and m = (m1 | · · · | mb). Output m.

Fig. 12: BC extension protocol (Fig. 11) helper functions from the perspective
of party Pi.

on input z; note that z is of size O(λ). Suppose that value z ̸= ⊥ is output by
each honest party; if z = ⊥, all honest parties output ⊥.

Similar to ΠBC from the previous subsection, the protocol proceeds in t+R
rounds. Let z ̸= ⊥ be the output from ΠBC. Supposing that P ∗ is honest, once
ΠBC terminates, P ∗ first multicasts a signature on message HAPPY (after setting
their own variable happy to true). Then, P ∗ computes witnesses wj corresponding
to block Dj for j ∈ [1, n], and sends each party their respective block and the
witness wj (step 2(a)). On receipt of their witness (which they can verify is
valid), Pi multicasts their block and share (step 2(b)). Note that Pi multicasts a
block at most once. Pi then waits ∆ time and collects blocks from all parties. On
receipt of the first message (wit, sj , wj) from Pj , Pi can determine whether it is
valid (and was accumulated in z) via acc.Verify(ak, z, wj , (j, sj)). Finally, after ∆
time, if Pi has received enough valid blocks, Pi can reconstruct a messagem (step
2(c)). Then, by splitting up m, re-accumulating the blocks and comparing the
output with z (output by ΠBC), Pi can determine whether they reconstructed a
message that all other parties are able to or not. If so, they set variable happy = 1.

Suppose an honest party sets happy = 1. Then, that party splits up the
message it learnt (or input to ΠBC-Ext, if it is the sender P ∗) into blocks,
propagates signatures via gossip, and propagates blocks and their corresponding

67

witnesses to each party individually. Our proofs show in particular that all
parties will eventually output the message, even when using gossip in step 2(a).

Communication Complexity. Each party participates in ΠBC where the
sender’s input is of size O(λ)14, which, using Πt,ϵ

BC from Figure 2, requires O(λn2)
communication. Each party sends at most one wit message to each party at step
2(b), which costs O(n(ℓ/b+ λ) = O(ℓ/ϵ+ λn) for each party (recall b = n− t).
The sender multicasts an O(λ)-sized message, and all parties gossip at most one
message of size O(λ+ n), which costs an expected O(λ2 + λn) per party. Thus
the protocol incurs O(nℓ/ϵ+ λn2 + λ2n) = O(nℓ/ϵ+ λn2) communication.

Theorem 8. Let n, t be such that t < (1 − ϵ) · n for constant ϵ ∈ (0, 1). Then
Πt,ϵ

BC-Ext (Figures 11 and 12) is t-secure when run on a synchronous network and
n-weakly valid when run on an asynchronous network.

F.2 Proof of Theorem 8

Hereafter, we let R = ⌈log3(ϵn)⌉ and q = Θ(λ), where λ is the security parame-
ter. Furthermore, all our statements hold with probability 1− negl(λ).

Lemma 27. Let ts < (1− ϵ) · n. Then Πts,ϵ
BC-Ext achieves ts-liveness when run in

a synchronous network.

Proof. In order to prove ts-liveness, we show that every honest party outputs a
value v′ and terminates. But this is clear from the protocol Πts,ϵ

BC-Ext, especially
step 3. ⊓⊔

Lemma 28. If an honest party Pi reaches item (i) of step 2 of Πts,ϵ
BC-Ext by setting

happy = 1 and dist = false and invokes the instructions of this step with input
message m ∈ V , then every honest party Pj outputs σj = m.

Proof. By ts-consistency of the Core BC Protocol Πts,ϵ
BC , the output zi of Π

ts,ϵ
BC

is the same at every honest party. If an honest party executes item (i) of step 2
with message m, then by definition zi = acc.Eval(ak,EncodeBlocks(m,n− t)). If
another honest party Pj sets σj = m′ after initialization, then it has to satisfy
acc.Eval(ak,EncodeBlocks(m′, n − t)) = zj = zi. By the properties of the Reed-
Solomon code, the same codewords correspond to the same message. So if m ̸=
m′, then D⃗ ̸= D⃗′. In particular, there exists a component Di = (i, si) ∈ D⃗

such that Di /∈ D⃗′. But a witness for Di /∈ D′ with respect to the accumulation
value zi = acc.Eval(ak, D⃗) = acc.Eval(ak, D⃗′) exists, which happens only with
probability negl(λ) by security of the cryptographic accumulator. Therefore, we
may assume m = m′ and only need to show that every other honest party Pj

sets σj to a value.
Suppose that Pi executes item (i) of step 2 in some round r. In that

case, Pi computes witnesses (w1, . . . , wn) = acc.CreateWits(ak, z, D⃗) and sends

14To tame the communication complexity, that parties should disregard messages
signed by a (dishonest) sender in ΠBC that are larger than the prescribed size O(λ).

68

(wit, sj , wj) to each party Pj (where the j-th element of D⃗ is (j, sj)). In item
(ii) of step 2 of the same round r, every honest party can verify and multicast
the valid (wit, sj , wj) to all the other parties if it has not done that already in
a previous round. Note that verification of the tuples (wit, sj , wj) can be done
safely because of the security of the accumulator. In item (iii) of step 2, every
honest party gets at least n − ts correct coded values, since there are at least
n − ts honest parties. In particular, every party Pj can identify the corrupted
values and remove them, of which there are at most ts. By the properties of the
Reed-Solomon code, Pj with happy = 0 is able to recover the message m. Now,
the exact same analysis as in the proof of ts-consistency of the Core BC Protocol
Πt,ϵ

BC shows that with probability 1−negl(λ) after sufficiently many rounds in the
domain [1, t+R], every honest parties Pj has set its value happy = 1 and σj = m.
Note that an honest party does not set its output again in future rounds, since
the multisignature already contains its signature. Once Pj sets σj , it will skip
item (ii) of step 2 in all future round and the value of σj will not be changed.
Therefore, in step 3 all honest parties output m and terminate. ⊓⊔

Lemma 29. Let ts < (1− ϵ) · n. Then Πts,ϵ
BC-Ext achieves ts-validity when run in

a synchronous network.

Proof. In order to prove ts-validity, we show that if the sender Pj is honest and
inputs m = mj ∈ V , then all honest parties output v = mj . In round r = 1, the
sender executes item (i) of step 2 with messagemj . By the previous lemma, every
honest party Pi outputs σi = mj by the end of the protocol and terminates. ⊓⊔

Lemma 30. Let ts < (1− ϵ) ·n. Then Πts,ϵ
BC-Ext achieves ts-consistency when run

in a synchronous network.

Proof. In order to prove ts-consistency, we show that every honest party outputs
the same value σ′. If all honest parties output ⊥, then they trivially output the
same value σ′ = ⊥. Therefore, assume some honest party Pi outputs σi = m ̸= ⊥.
In case Pi is the sender, ts-validity of Πts,ϵ

BC-Ext tells us that all honest parties
output m. So assume that Pi is not the sender. If Pi sets σi = m ̸= ⊥ in item
(iii) of step 2 of round 1 ≤ r ≤ ts, then Pi will execute the distribution item
(i) of step 2 with message m in the next round r + 1. By Lemma 28, all honest
parties output the same value σ′ = m. On the other hand, if Pi sets σi = m ̸= ⊥
in round r ≥ ts +1, then it receives a multisignature of degree at least ts +1. In
particular, one of these signatures comes from an honest party Pj ̸= Pi that has
sent its signature (with probability q/n) and executed item (i) of step 2 in some
previous round 1 ≤ r′ ≤ ts. Again by Lemma 28, all honest parties (including
Pi) output m′ and therefore m′ = m. So every honest party outputs the same
value σ′ = m. ⊓⊔

Lemma 31. Let ta ≤ ts and ta + 2 · ts < n. Then Πts,ϵ
BC-Ext achieves ta-weak

validity even when run in an asynchronous network.

Proof. In order to prove ta-weak validity, we show that if the sender Pj is honest
and inputs m = mj ∈ V , then all honest parties output either v = mj or

69

v = ⊥. This is clear from the proof of ts-validity in the synchronous case and
the construction of the protocol Πts,ϵ

BC-Ext. ⊓⊔

G Deferred Figures

We provide some deferred figures from the main body. In particular, we pro-
vide both our Beaver triple generation protocol (Figure 13) and synchronous
MPC protocol with unanimous output in asynchrony (Figures 14 and 15) from
Section 6.

Πta,ts
triples (ℓ)

– Each Pj computes random values a1
j , . . . , a

ℓ
j and computes corresponding en-

cryptions A1
j , . . . , A

ℓ
j , where A

i
j = TEnc(ai

j). Then, use the multi-valued broad-

cast protocol with weak-validity Π
ts,1/2
BC to broadcast all these values. Also use

the multi-party zero-knowledge Fmzk to prove plaintext knowledge of the ci-
phertexts. Wait for Tbc time.

– Let Si be the subset of the parties succeeding with the proof towards party
Pi. Run n times the protocol Πta,ts

BA , each one to decide for each party Pj ’s
proof. Input 1 to party j’s BA if and only if j ∈ Si. Wait for Tba.

– Let S be the subset of the parties for which Πta,ts
BA outputs 1. Check that

|S| ≥ n− ts. If not, output ⊥ and terminate.
– Compute Ai =

∑
k∈S Ai

k.

– Each Pj computes random values b1j , . . . , b
ℓ
j and computes corresponding en-

cryptions B1
j , . . . , B

ℓ
j , where Bi

j = TEnc(bij) and Ci
j = bij · Ai. Then, use the

multi-valued broadcast protocol Π
ts,1/2
BC to broadcast all these values. Also use

the multi-party zero-knowledge Fmzk to give proofs of correct multiplication
for each (Bi

j , A
i, Ci

j). Wait for Tbc time.
– Let S′

i be the subset of the parties succeeding with the proof towards party
Pi. Run n times the protocol Πta,ts

BA , each one to decide for each party Pj ’s
proof. Input 1 to party j’s BA if and only if j ∈ Si. Wait for Tba.

– Let S′ be the subset of the parties for which Πta,ts
BA outputs 1. Check that

|S′| ≥ n− ts. If not, output ⊥ and terminate.
– Compute Bi =

∑
k∈S′ B

i
k and Ci =

∑
k∈S′ C

i
k.

– Output the triples (Ai, Bi, Ci) for each i = 1 . . . , ℓ.

Fig. 13: Beaver Triple Generation.

70

Πts,ta
smpc (Pi)

Let cM be the number of multiplication gates in the circuit.

Key Generation. The protocol generates threshold additive homomorphic
encryption keys, using the protocol Πta,ts

DKG (see Section 5). [Of course, if a setup
for threshold additive homomorphic encryption is given, skip this step.]

Offline Phase.

– Parties jointly run the protocol Πta,ts
triples (ℓ) to generate ℓ = cM Beaver

multiplication triples.

Let xi denote the input value of party Pi. Let abort = 0 if a sequence of triples is
received from the offline phase. Otherwise, set abort = 1.

Input Distribution.

– Pi computes TEnc(xi) and broadcasts using Π
ts,1/2
BC the ciphertext TEnc(xi)

and uses the multi-party zero-knowledge functionality Fmzk to prove
knowledge of the plaintext of TEnc(xi) towards all parties. Wait until
max{Tbc, Tzk} clock ticks passed.

– If there is a broadcast or zero-knowledge proof that has not terminated, or
the number of correct encryptions received is less than n− ts inputs, set
abort = 1. Continue participating in the sub-protocols, but do not compute
any ciphertext.

Addition Gates. Input: X = TEnc(x), Y = TEnc(y). Output: Z = TEnc(z).

– Pi locally computes Z = X ⊞ Y .

Fig. 14: Synchronous MPC with unanimous output (part 1).

71

Multiplication Gates. Input: X = TEnc(x), Y = TEnc(y), and a triple (A,B,C).
Output: Z = TEnc(z).

– Pi locally computes X ⊟A and Y ⊟B, and sends threshold decryption
shares of both ciphertexts to all parties. In addition, use the zero-knowledge
functionality Fmzk to prove correct decryption of the decryption shares with
respect to the ciphertexts.

– Upon receiving ts + 1 decryption shares with correct proofs of decryption for
each of the two ciphertext, reconstruct the plaintexts x− a and y − b.

– Compute E = TEnc((x− a) · (y − b); e), where e is the neutral element of the
randomness space. Then compute Z = E ⊞ [(x− a)B]⊞ [(y − b)A]⊞ C.

– Output Z.

Output Determination. Input x, where x = ci is the output ciphertext of the
circuit if abort = 0, and otherwise x = ⊥.

– Pi executes the protocol Πts,ta
acs with x as input. Let Si be the output of the

protocol.
– If Si = {c}, execute the Threshold Decryption sub-protocol on c, and after

an output is given, terminate. Else, output ⊥.

Threshold Decryption. Input: ciphertext c.

– Pi computes its decryption share si sends it to every other party.
– Pi proves that the value si is a correct decryption share of c bilaterally.
– Once ts + 1 correct decryption shares are collected, send the list to every

party and output the corresponding plaintext.

Fig. 15: Synchronous MPC with unanimous output (part 2).

72

	Network-Agnostic Security Comes (Almost) for Free in DKG and MPC

