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Abstract. In this paper, we present an original algorithm to generate session keys and a subsequent generalized 

ElGamal-type cryptosystem. The scheme here presented has been designed to prevent both linear and 

brute force attacks using on one hand rectangular matrices, and on the other achieving very high 

complexity. Moreover, analytical attacks are NP-complete. An interesting result of our protocol is that 

the secret shared key is an invariant obtained from both public and private information using usual 

multiplications of matrices, either in numerical or ���  polynomial fields so that both sorts of 

operations could be eventually combined to increase even more the security against classical and 

quantum attacks.  
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1. Introduction 

As it is very well known generating secure key exchange algorithms is a priority for 

implementing asymmetric protocols [16]. The idea of public key cryptography goes back 

to the work of James Ellis [7] and the seminal work of Diffie-Hellman [6] which was the 

first practical solution universally used in SSL, TLS, SSH, IPsec, PKI, Signal, etc. 

On the other hand, the imminent appearance of quantum computers able to implement 

Shor's and Grover's algorithms [2] which seriously affect the currently used cryptographic 

methods, led to the current research efforts in Post Quantum Cryptography (PQC). 

This paper was inspired by E. Stickels’s proposals [24] which were cryptanalyzed by V. 

Shpilrain [19] and C. Mullan [18]. More recently, S. Kanwal and R. Ali [11] published an 

interesting protocol but it was also cryptanalyzed by J. Liu et al. [14]. A natural alternative 



 

 

was to use rank-deficient matrices but this has been cryptanalyzed by F.Virdia using Jordan 

canonical forms[26]. 

It is worthwhile to point out that in the NIST competition for standardization of post-

quantum protocols [20], there is none based on the use of non-commutative algebraic 

systems [19], those dedicated to key exchange protocols (KEP) and their canonical 
asymmetric cryptosystems, derived using a generalized ElGamal scheme. This paper aims 

to provide an alternative solution in this regard. 

 

2. The notation used in this work 

p: prime integer, Zp: set of non-negative residuals mod p, products in Zp (represented by 

dots), ||: concatenation, Det[A]: the determinant of matrix A, AT: transpose of matrix A, 

A(i, j): matrix component of the i-th row and j-th column, ∈���	: random uniform selection 

in a closed interval, ⨁ : bitwise XOR. 

 

3. Paper organization 

First, we present an overall description of the proposed algorithms and the corresponding 

protocols, the proof that Alice and Bob will derive a common key, security considerations, 

and finally some experimental results and a discussion. 

  

4. Overall description 

The algorithm starts by choosing a prime p shared by Alice and Bob who generate two 

rectangular matrices each, the first one with more rows than columns and the second one 

with inverse dimensions, and t is the number of iterations. For each iteration and every 

entry, a random integer s ∈���	  [(p-1)/2, p -1] is chosen as the module, employing the 

algorithm given in [5].  The entries of the generated matrices are randomly selected from 

Zs. 

Following this scheme, Alice calculates two matrices A1k and B1k in each cycle (k=1,…,t) 

and computes Uk utilizing the matrix product 

Uk = A1k . B1k (mod p)   (k=1,2,3,…,t) 

The vector U=(U1, U2, U3, …, Ut) is sent to Bob. Analogously Bob computes 

Vk = A2k . B2k (mod p)   (k=1,2,3,…,t) 

and the vector V=(V1, V2, V3,…, Vt) is sent to Alice. 

 

We prove that: 

A-KEYk = Det[A1k
T . Vk. B1k

T] (mod p) 

and 

B-KEYk = Det[A2k
T

 .Uk. B2k
T] (mod p) 

are equal in each k-cycle. 

 

Finally, Alice computes the hashing of A-CONCAT = A-KEY1 || A-KEY2 ||… || A-KEYt, 

and Bob the hashing of B-CONCAT = B-KEY1 || B-KEY2 ||… || B-KEYt which are equal, 

and hence this is the shared key. 

We must observe this protocol is highly parameterizable since we can change the 
dimensions of the matrices, the number of cycles, the primes, etc. The numerical results 



A New Post-Quantum Key Agreement Protocol and Derived Cryptosystem Based on Rectangular Matrices  

 

 

3 

(see below) show a very complex shared key can be obtained in a fraction of a second 

using a standard I7 processor. 

 

5. Key exchange algorithm 

ALGORITHM 1: PQC multiKEP    

COMMENTS 

The key Exchange Algorithm (KEP) uses several cycles as defined below.  

INPUT: see the initial configuration. 

OUTPUT: shared session key of 512-bits. 

INITIAL CONFIGURATION (PUBLIC VALUES): 

p: a shared prime number that can be obtained randomly. 

rows[X|, columns[X]: dimensions of the matrices X:{A, B}, where 

rowsA=columnsB, columnsA=rowsB and rowsA > columnsA. 

rowsA is a value whose maximum is a predefined rowmax value. Our 

proposal is rowmax=100, rowsA  ∈���	  [5, rowmax] and columnsA  

 ∈���	  [4, rowsA-1]. 

t: number of iterations 

H( ): hashing SHA3-512. 

 

ALICE 

1. for k=1 to t 

2. for i=1 to rowsA 

3. for j=1 to columnsA 

4. s  ∈���	  [(p-1)/2, p -1]   

5. A1k (i,j) = s 

6. next i 

7. for i=1 to rowsB 

8. for j=1 to columnsB 

9. s  ∈���	  [(p-1)/2, p -1]   

10.    B1k (i,j) = s 

11. next j 

12. next i 

13. Uk = A1k . B1k (mod p) 

14. next k 

15. Send the vector U = (U1, … , Ut) to Bob 

BOB 

16. for k=1 to t 

17. for i=1 to rowsA 

18. for j=1 to columnsA 

19. s  ∈���	  [(p-1)/2, p -1]   

20.     A2k (i,j) = s 

21. next i 

22. for i=1 to rowsB 



 

 

23. for j=1 to columnsB 

24. s  ∈���	  [(p-1)/2, p -1]   

25.     B2 k (i,j) = s 

26. next j 

27. next i 

28. Vk = A2k . B2k (mod p) 

29. next k 

30. Send the vector V = (V1, … ,Vt) to Alice   

SESSION KEY OBTAINED BY ALICE 

31. for k=1 to t 

32.        A-KEYk = Det[A1k
T

 . Vk. B1k
T] (mod p)   

33. next k   

34. A-CONCAT = A-KEY1 || A-KEY2 ||… || A-KEYt 

35. KEYalice =H( A-CONCAT )  

 

SESSION KEY OBTAINED BY BOB 

36. for k=1 to t 

37.        B-KEYk = Det[A2k
T

 .Uk. B2k
T] (mod p)   

38. next k   

39. B-CONCAT = B-KEY1 || B-KEY2 ||… || B-KEYt 

40. KEYbob =H( B-CONCAT )  

 

6. Algorithm 1:  keys equality proof 

Lemma 1: 

The keys given by Algorithm 1 are equal, that is KEYalice = KEYbob 

 

Proof: it is very simple taking into account the elementary properties det(X)=det(��), 

det(XY)=det(X)det(Y),  (��)� = ����  where X, Y are square matrices of the same 

dimension We have to prove that  for every k (all operations (mod p) ) 

 

Det[A1k
T

 . Vk  . B1k
T)= Det[A2k

T
 .Uk . B2k

T]   

Since Vk = A2k . B2k  and Uk = A1k. B1k the keys can be written as follows 

 

KEYalice= Det[A1k
T

 .Vk. B1k
T) = Det[A1k

T
 . A2k. B2k . B1k

T) =  

= Det[(A2k
T.A1k)T. (B1k.B2k)T] 

and  

KEYbob= Det[A2k
T.Uk . B2k

T]= Det[A2k
T. A1k . B1k . B2k

T] ∎ 
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7. Derived cipher algorithm 

ALGORITHM 2: PQC multiKEP + ElGamal cipher  

Observation: Vector U was received by Bob 

Insert here algorithm 1 (up to line 29.) 

BOB CIPHERS A MESSAGE TO ALICE 

30. msg = 512-bit message from Bob 

31. for k=1 to t 

32.        B-KEYk = Det[A2k
T

 . Uk. B2k
T] (mod p)   

33. next k   

34. B-CONCAT = B-KEY1 || B-KEY2 ||… || B-KEYt 

ELGAMAL (C, D): 

35. C = V    (* see Algorithm 1 *) 

36. D = H[ B-CONCAT ] ⨁  msg 

37. Send (C, D) to Alice 

ALICE RECOVERS THE MESSAGE FROM BOB 

38. for k=1 to t 

39.        A-KEYk = Det[A1k
T . Ck. B1k

T] (mod p)   

40. next k   

41. A-CONCAT = A-KEY1 || A-KEY2 ||… || A-KEYt 

42. msg =H[ A-CONCAT ] ⨁ D 

 

The above algorithms can be enhanced by combining modular operations in Zp with 

polynomial multiplications in a finite field like ��� , see Discussion below [12, 4]. A 

convenient choice would be m=8 and any of the 30 primitive polynomials of that order 

[13]. 

 

8. KEP and ELGAMAL cipher protocols 

It is necessary to define a protocol allowing for an interchange of information between 

Alice and Bob asynchronously to achieve the following objectives: 

 

 deferred communications 

 check the integrity of the exchanged information 

 mutual authentication to avoid attacks from active adversaries (e.g. man-in-the-

middle) 

 block replay attacks 

 availability of the exchanged information 

 perfectly defined formats 

 

The following protocol aims at fulfilling these requirements. 



 

 

PROTOCOL: KEP AND CIPHER PUBLIC DATA EXCHANGES 

INPUT: any kind of data to be exchanged between entities. 

OUTPUT: encapsulated message (msg). 

INITIAL CONFIGURATION: 

msg: any kind of information to be exchanged between entities. 

Universal-Keyed Message Authentication Code (UMAC): here proposed to 

assure strong symmetric authentication [3, 10]. 

ID: any elsewhere predefined and sender-receiver shared identification Tag.  

K: sender-receiver shared key.  

Tag: a smart label that can store any sort of information from identification 

numbers as a brief description for each entity. Here the tag is Tag = HMAC-

SHA3-512 (HM ∥ Nonce). See Fig 1 and more in [3]  

HM : NHK(msg1) ∥ NHK(msg2) ∥ · · · ∥ NHK(msgr) ∥ Len, see NH definition 

in [3].  

Nonce: pseudorandom and unique number that changes with each generated 

tag.  

Timestamp: formatted date and time.  

 

MESSAGE AUTHENTICATION 

1. Acquire K and msg 

2. Define a fixed-length Nonce 

3. Generate UMAC/SHA3-512/ID/Data 

4. Encapsulate the concatenation of: [ msg || UMAC/SHA3-512 (HM || 

Nonce)  || Timestamp] into a file 

5. Send the file and nonce to the receiver 

 

MESSAGE VALIDATION  

1. Acquire at any time the sent file 

2. Recover msg and UMAC/SHA3-512 (HM || Nonce)   

3. Verify integrity and sender’s identity using K, Nonce, and msg 

4. Accept or Dismiss msg according to the verification result 

 

9. SECURITY AGAINST BRUTE FORCE ATTACKS 

Lemma 2: 

 

The complexity of attacking Algorithm 1 by brute force is given by (ndim . q)2. t,  

where p is the shared prime , q=
���

�
+ 1 and  ndim=rowsA.columnsA. 

  

Proof: 

 

To obtain the session key the attacker has to factorize matrices Uk = A1k . B1k (mod 

p), k=1,…,t where the maximum value that can appear in every entry (i, j) is p-1, 

independently of ndim (see Algorithm 1). Thus, defining q=
���

�
+ 1; for each entry of 
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each matrix, it is necessary to try q values, that is (ndim.q)2 possibilities. The attack is 

successful only if the factorization can be obtained for each k=1,…,t, something that 

can be easily avoided by choosing appropriate parameters ∎ 

 

Example:  

If p = 2147483647, ndim=100.90, t =10, then the complexity is ~ 274 

 

10. Security against analytical attacks 

 

The factorizations Uk = A1k . B1k (mod p), k=1,…,t can be solved in Uk ∈ Rn×n , A1k ∈ 

Rn×m , B1k ∈ Rm×n (real realm), using the SVD (Singular Value Decomposition) if there are 

no restrictions regarding the nonnegativity of the factors, but if they are imposed as in our 

proposal, then Vavasis and references therein [25] proved that the problem is NP-hard in 

the continuous case. For the Boolean case, N. Gillis [9] wrote: “…for exact factorizations, 

the rank-one problem is trivial. For higher ranks, Boolean factorization is equivalent to 

finding a rectangle covering of the matrix U. This is equivalent to the so-called biclique 

problem (given a bipartite graph defined by U, find the smallest number of complete 

bipartite subgraphs that cover the graph) which is NP-complete as proved in [22]. (sic)”. 

The Boolean NP-complete complexity was formally proven by Miettinen and Neumann 

[17]. 

 

11. Semantic security of algorithm 2  

 

A formal description of this feature is given in APPENDIX A. Here we provide an informal 
view of this aspect, based on concepts mostly derived from Bellare’s work [1]. In a 
nutshell, semantical security measures the resistance of any encryption algorithm to attacks 
using chosen plaintext or ciphertext selected by the attacker, who has access to the 
encryption and decryption modules working as oracles; without knowledge of the key 
selected for enciphering [1].  The semantic security term is strongly related to other 
definitions: the one-way functions and the non-malleability of ciphertexts.   
Indistinguishability under chosen plaintext attack (represented as IND-CPA) is equivalent 
to the property of semantic security and is considered a basic requirement for 
most provably secure public-key cryptosystems [1]. One-way refers to bidirectional 
functions that have a probabilistic-polynomial time algorithm that converts domains into 
codomains, but no such algorithm is known that inverts the procedure. Non-malleability 
refers to the resistance to modify slightly the ciphertext to obtain meaningful recovered 
plaintext [1]. The next concept to define is the indistinguishability of different ciphertexts 
of two similar but different plaintexts, an attacker could not assign a ciphertext of one of 
them to any one of the plaintexts. This feature is generally presented as a game between a 
challenger (the algorithm defender) and an adversary (the algorithm attacker) [1].  The 
challenger generates a key pair PK, SK (public key and secret key respectively), based on 
any security parameter k (which can be the key size in bits), and publishes PK to the 
adversary. The challenger retains SK. Here we describe the adaptative version of the game. 
The adversary may perform any number of encryptions, decryptions, or any other 
operations. (The adversary is a probabilistic polynomial Turing Machine) [1]. Eventually, 
the adversary submits two distinct chosen plaintexts m0 and m1 to the challenger (of the 

same length). The challenger selects a bit b ∈ {0, 1} uniformly at random, and sends the 
challenge ciphertext C = E (PK, mb) back to the adversary. The adversary is free to perform 
any number of additional computations or decryptions (except C, this step is the adaptative 
phase of the attack). Finally, its outputs in polynomial time a guess for the value of b [1].  



 

 

The adversary wins the game if it guesses the bit b, and winning means the algorithm is 
not indistinguishable and secure, else the algorithm reaches the strongest available security 
level: IND-CCA2. (Indistinguishable chosen ciphertext adaptative attack). Formally, a 
cryptosystem is indistinguishable under an adaptative chosen ciphertext attack if no 

adversary can win the above game with probability p greater than 1/2+ ∈k, where ∈k ≤ 1/πK 

(πK arbitrary polynomial function) and ∈k is defined as a negligible function in the security 
parameter k [1]. For Algorithm 2 we prove the IND-CPA security level and explain how 
it could be easily adapted to reach the IND-CCA2 security level. The use of the UMAC 
function [3] in our Protocol fills this need in such a way that the practical implementation 
of Algorithms 1 and 2 culminates with the desired provable-security level. 
 

12. NIST PQC security level of algorithm 2 

 

NIST bases its classification on the range of security strengths offered by the existing NIST 

standards in symmetric cryptography, which NIST expects to offer significant resistance 
to quantum cryptanalysis. In particular, NIST defines a separate category for each of the 

following security requirements [21]. As previously described in the brute-force attack 

section, reasonable parameters exceed largely Level-1 PQC security. 

 

13. A toy numerical example 

 Shared parameters:  shared prime p = 5303, rowA=3, columnsA=2,  t=2 
 

ALICE 

 
Iteration 1 

 

Alice     A11 =   

              1123  341  

                  14  238  

               1041   13  

 

Alice     B11= 

             1525 1019 1561  

             1561  716  862  

                 

Alice  U1 =  

           1707 4410 5290  

            446 4372 4284  

          1009 4184 2883  

Iteration 2 

 

Alice A12 =  

    665 1338  

    622     38  

    505 1617  

              

Alice B12=  

    925 1412  598  

    364  463  409  

                

Alice U2 =  

   4436 4695  978  

    549 4954  379  

    416 3406 3500 

BOB 

 
Iteration 1 

 

Bob A21 =  

    802 2435  

   1206 3408  

    707 3723  

             

Bob B21=  

    1174 2805 1242  

    3110  814  550  

                   

Bob V1 =  

   3083 5209 2014  

   3429  159 4847  

   4831 2322 3791  

Iteration 2 

 

Bob A22 =  

     656   13  

   1900  107  

    611 1537  

 

Bob B22 =  

   2192 1270  845  

   820 1022 2194  

 

 Bob V2 =  

     893 3229 4815  

   4837 3429  117  

  1182 2858 1374 
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Alice computes A-KEYk = Det[A1k
T .Vk. B1k

T] (mod p)   for k=1, 2 

A-KEY1 = 3207  

A-KEY2 = 2121  

Alice’s key = 

0c3322f92446b51e3372d2a7bd2b81265bb96f32fa38562e4c02414e3c73d85ca4b358363b8792461d4033c1d76

23589c0f6c07ab01e33b6a7294019e125c779  

Bob computes B-KEYk = Det[A2k
T .Uk . B2k

T] (mod p)   for k=1, 2 

B-KEY1 = 3207  

B-KEY2 = 2121  

Bob’s key = 

0c3322f92446b51e3372d2a7bd2b81265bb96f32fa38562e4c02414e3c73d85ca4b358363b8792461d4033c1d76

23589c0f6c07ab01e33b6a7294019e125c779 

 

Example of the cipher algorithm 

Bob ciphers a message to Alice 

B-KEY =  32072121 

PLAINTEXT msg (formatted as a 64-byte string with spaces appended on the right) = "This is a secret 

communication.” 

CIPHERTEXT C =   

     3083  5209  2014        893 3229 4815 

     3429    159  4847  4837 3429   117 

     4831  2322  3791  1182  2858 1374 

CIPHERTEXT D =  

(88,91,75,138,4,47,198,62,82,82,161,194,222,89,228,82,123,218,0,95,151,77,56,71,47,99,53,39,83,29,246,124,

132,147,120,22,27,167,178,102,61,96,19,225,247,66,21,169,224,214,224,90,144,62,19,150,135,9,96,57,193,5,

231,89) 

Alice recovers the message  

A-KEY =  32072121 

RECOVERED msg =  “This is a secret communication.” 

 

14. Numerical experiments 

Programmed in RUST  

OS: Windows 10 Pro (64 bits) 

Processor: Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz    

RAM: 8,00 GB 

The CPU times reported in the following Table 1 are the mean values of 10 runs for each combination of the 

variables, prime p = 231-1= 2147483647 (~31 bits) 

 

rowsA columnsA Cycles Complexity  

 

CPU time in 

milliseconds 

5 4 10 ~272 0.94 

5 4 20 ~273 1.15 

5 4 100  ~275 2.69 

6 5 10  ~273 0.99 

6 5 20             ~274 1.39 

6 5 100 ~276 3.95 

20 19 10 ~280 8.92 

20 19 20 ~281 13.45 

20 19 100 ~284 74.47 

100 99 10 ~289 755.38 

100 99 20 ~291 1503.54 

100 99 100 ~293 7488.44 

Table1. Algorithm 1 complexity and throughput time as a function 

 of the parameters.  



 

 

 

Using 128 bits integers in RUST with prime p = 18446744073709551113 (~64 bits): 

 

rowsA columnsA Cycles Complexity  

 

CPU time in 

milliseconds 

5 4 10 ~2138 1.29 

6 5 10 ~2139 0.98 

20 19 10 ~2146 26.84 

100 99 10 ~2156 3203.48 

Table 2. Algorithm 1 complexity and throughput time as a function 

 of the parameters.  

15. Discussion 

 

Algorithm 1 has been implemented in different computer languages and shows that 

extremely high complexity can be achieved in fractions of a second on a standard I7 

processor. The fact that by modifying the input variables (number of rows, columns, 
primes, iterations) practically any security level can be easily obtained without resorting 

to multiple precision, leads to very fast implementations. Depending upon the computer 

architecture and software implementation, larger primes can be used for reaching higher 

complexity levels. 

An easy enhancement – which will be reported in a forthcoming paper - is to use 

���  polynomial fields, recurring to very fast field multiplications based on hard-coded 

discrete logarithm tables of any field generator base, on some steps. In such a way the lack 

of uniformity in the operations constitutes an additional barrier to possible algebraic 

attacks. This proposal could be very easily implemented without downgrading 

performance [4].  

It is particularly important to use the UMAC function in the Protocol because it is similar 

to Merkle's trees for PQC digital signatures [2] and also plays the role of achieving 

maximal semantic security [1] and simultaneously strengthens its post-quantum character. 

Note: as Black et al. [3] state "the security of UMAC is rigorously proven, in the sense of 

giving exact and quantitatively strong results which demonstrate an inability to forge 

UMAC-authenticated messages assuming an inability to break the underlying 

cryptographic primitive. (sic)”  

 

16. Conclusions 

The algorithms presented in this paper are such that very high complexity can be reached 
using small primes, normal precision, and small rectangular matrices, leading to very fast 

computer implementations. 
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· 

APPENDIX A:  SEMANTIC SECURITY OF ALGORITHM 2  

Definitions:  

Security levels are usually defined by pairing each goal (OW: one-way, IND: indistinguishability, NM: non-
malleability) with an attack model like IND-CPA or IND-CCA2 [1]. 

Non-commutative rectangular matrices structure (NCRMS):  the regular multiplication of non-square 
matrices is only defined if the number of columns of the first factor equals the number of rows of the second one 
and non-square matrices are in general non-commutative, concerning regular multiplication in Zp, except with 
Hadamard multiplication of equal dimensioned matrices [12, 22]. This is the irregular structure used in algorithm 

2. 

 FSP problem over NCRMS: Assuming an attack against Uk (alternatively Vk), any vector term individually 
token, we define the Factorization-Search Problem (FSP) [18] over non-commutative structures as the one-way 

trapdoor function (OWTF), assumed to be computationally intractable, as follows: 

FSP: given a matrix U*
k, , find the rectangular matrices A1k, and B1k such that A1k. B1k (mod p) = U*

k .  

Note: FSP problem over NCRMS is NP-complete as exposed before at Point 10 security against analytical attacks. 

Theorem 1. For a plaintext message uniformly distributed in the plaintext message space, the algorithm 2 
cryptosystem is all-or-nothing secure against CPA under the FSP assumption if H( ) hash function is a random 

oracle [15]. 

Proof. On the one hand, if the FSP problem is tractable over NCRMS, for any given ciphertext pair (C, D), it is 
easy to compute a-key[k], repeating the procedure t-times, and then extract the plaintext   

msg = H( A-CONCAT ) ⨁ D. 

On the other hand, suppose there exists an efficient adversary A with access to the random oracle H against the 

above cryptosystem; that is, given public or openly transmitted data and ciphertext then A outputs msg with a 
non-negligible advantage s.  

If the adversary’s advantage s is non-negligible, he makes an H-query on a trial A-CONCAT and recovers the 
msg, Otherwise, if H is modeled as a cryptographic secure hash algorithm [15], A’s advantage should be 

negligible no matter what he can compute before making such a query.  

Thus, we can solve the FSP problem over NCRMS with the non-negligible probability s. This contradicts the 

holding of the FSP assumption. ∎ 
 

The above theorem says that algorithm 2 reaches the weak security, i.e. the IND-CPA, but using the technique 

due to Fujisaki-Okamoto [8], the protocol could be easily converted to IND-CCA2 security, using random-salt 
concatenation of the msg. 

 

 

 


