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Abstract

We present a proof of security of the original random oblivious transfer extension protocol of Keller,
Orsini, and Scholl (CRYPTO ’15), without altering that protocol as written. Our result circumvents a
recent negative result of Roy (CRYPTO ’22), which shows that a key lemma in the original proof of KOS
is false. Our proof leverages a new simulation strategy, and a careful analysis of the protocol’s “correlation
check”. Our proof is asymptotic in nature, but suggests possible avenues for concrete security analysis.

1 Introduction

The oblivious transfer extension protocol of Keller, Orsini and Scholl [KOS15, Fig. 7] (henceforth “KOS”)
remains state-of-the-art, years after its introduction; it attains OT extension using only κ base OTs. Key
to that protocol is a certain “correlation check”, in which a number of extension OTs are “sacrificed” in a
linear combination. This check is very difficult to analyze. In recent work, Roy [Roy22, § 4.1] disproves a
key lemma [KOS15, Lem. 1], upon which that protocol’s security analysis relies. This latter work invalidates
the security proof [KOS15, Thm. 1], as originally written.

In a recent update to their work, Keller, Orsini and Scholl propose an adjusted variant of their protocol
[KOS22, Fig. 10]; essentially, they suggest a special case of Roy’s construction [Roy22]. Though the efficiency
of the updated protocol seems comparable to the original, it is more complex, and uses different ideas. Indeed,
we note that the analysis of [Roy22] is very theoretically involved.

It is of interest to analyze the security of [KOS15, Fig. 7] as originally written; this open problem is
noted explicitly by Roy [Roy22, § 1.1], for example. This problem’s motivation is not merely theoretical. In
fact, many, currently-deployed production systems incorporate—and hence rely on the security of—[KOS15,
Fig. 7], as originally written; the original version of that protocol is also simpler, and is easier to implement.
Finally, it seems plausible that our proof techniques could be applied “in the reverse direction” to the work
of [Roy22], and, in particular, that they could simplify that work, and yield analogous communication–
computation tradeoffs in the malicious setting. We leave this latter task as a future research direction.

In this work, we prove the security of KOS’s random OT extension protocol [KOS15, Fig. 7], without
modifying that protocol. In doing so, we circumvent the failure of [KOS15, Lem. 1]. We briefly recall the
details of that protocol. Informally, the rough idea of the correlation check of [KOS15, Fig. 7] is to control the

row-vectors (xi)
l′−1
i=0 the receiver submits to the correlated OT with errors hybrid functionality Fκ,l′

COTe. If the
receiver is honest, then each row xi ∈ Fκ

2 is necessarily “monochromatic” (in the sense that its components
are identical); if the receiver’s rows xi are not monochromatic, then the corrupt receiver may facilitate the
distinguisher’s learning certain bits of the sender’s correlation vector ∆ ∈ Fκ

2 , by means of brute-force queries
to the random oracle. The correlation check, at first glance, is quite natural. It prescribes that the parties

jointly sample random elements (χi)
l′−1
i=0 from F2κ , using a coin-flipping functionality, that they subject their

intermediate values—i.e., those they obtained from Fκ,l′

COTe—to a linear combination using these coefficients,

and finally that they exchange the results. Specifically, the sender and receiver, having received (qi)
l′−1
i=0 and

(ti)
l′−1
i=0 , respectively, from F

κ,l′

COTe, compute q :=
∑l′−1

i=0 χi ·qi and t :=
∑l′−1

i=0 χi ·ti, respectively; the (honest)
receiver moreover computes x :=

∑l′−1
i=0 χi · xi, where (xi)

l′−1
i=0 is its choice vector. Finally, the receiver sends

x and t to the sender, who computes q
?
= t+x ·∆. All multiplications here take place in the binary field F2κ .
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Informally, the correlation check controls whether the individual equations qi
?
= ti + xi · ∆ hold, for

each i ∈ {0, . . . , l′ − 1}, or—equivalently—whether the vector (qi + ti + xi ·∆)
l′−1
i=0 ∈ Fl′

2κ is the zero vector.
In actuality, however, the correlation check merely checks whether this latter vector resides within the

random hyperplane in Fl′

2κ given by the coefficients (χi)
l′−1
i=0 . The difficulty is that the corrupt receiver sees

these coefficients, and the resulting hyperplane, before sending its combination results x and t; as a result,
the receiver could conceivably act adaptively. Indeed, this is precisely the subtlety overlooked by [KOS15,
Thm. 1]; we refer to [Roy22, § 4.1] for discussion. In particular, a dishonest receiver, conceivably, could

choose x and t such a way that the vector (qi + ti + xi ·∆)
l′−1
i=0 in question—though nonzero—nonetheless

resides within this hyperplane, and thus causes the check to pass. (In fact, the receiver can set x and t

arbitrarily, in general, without making reference to the values (xi)
l′−1
i=0 and (ti)

l′−1
i=0 .)

We briefly sketch the technical details of our proof. Our treatment of the corrupt sender is similar to that
of [KOS15, Thm. 1] (though we supply certain details which were omitted from that proof). Our treatment of
the corrupt receiver—the more difficult case—relies on a new simulation strategy for that case, as well as on
careful analyses both of the distinguisher’s resulting success conditions and of the protocol’s correlation check.
We first introduce the majority rule extraction strategy xi := MAJκ(xi); here, MAJκ : {0, 1}κ → {0, 1} is
the standard majority function on κ bits.

We then prove our simulator’s security in roughly two steps. First, we characterize explicitly just how
much—and how, precisely—the corrupt receiver must “cheat” in order to hand the distinguisher a non-
negligible advantage (under our simulation strategy). We argue that it’s necessary that the adversary submit

a matrix (xi)
l′−1
i=0 for which the failure of monochromaticity is extreme, in a certain precise sense which we

presently sketch. Following [KOS15], we write ei := xi + xi · (1, . . . , 1) for the “error vector” containing the
minority bits of xi. We show that bits of the choice vector ∆ may be learned by the distinguisher only by
means of brute-force queries of the form H(i ∥ ti + ei ∗∆), where, by induction, ei introduces few new bit
positions not already learned (say, fewer than log2 κ of them). On the other hand, the distinguisher may
successfully distinguish the real and ideal distributions only if it manages to query H(i ∥ ti + ei ∗∆), where
here ei is some majority vector. We accordingly identify a key condition whereby a majority vector ei can
be gradually “assembled” by means of a sequence of minority vectors ei; we say that the adversary’s initial
matrix is flagrant if this particular condition holds (see Definition 3.3).

We first argue that—barring the adversary’s submitting a flagrant initial matrix—the distinguisher nec-
essarily achieves a negligible advantage. Our proof involves a careful analysis of the distinguisher’s queries.
Roughly, we demonstrate that, in this case, throughout these queries, the distribution describing the pro-
jection of the unknown correlation vector ∆ onto certain bits of each given majority vector ei nonetheless
remains, in distinguisher’s eyes, statistically close to a mixture of uniform distributions on high-dimensional
subspaces. This structure theorem yields the desired indistinguishability in this case.

We finally show that, if the adversary does submit a flagrant initial matrix, it necessarily subsequently
fails the correlation check with overwhelming probability. We show this by carefully analyzing the correlation

check. We argue that—up to a uniform resampling of the random combination coefficients (χi)
l′−1
i=0 used in

the check—we may freely assume that the matrix (ei)
l′−1
i=0 is in reduced row-echelon form, and that, under the

hypothesis of flagrancy, the reduced matrix must contain Ω( κ
log2 κ

) pivots. These pivots impose independently

random F2-linear conditions on the unknown vector ∆. We show that, with overwhelming probability (over

the choice of (χi)
l′−1
i=0 ), the resulting F2-linear operator on ∆ cannot even be approximated in rank by a field

element x. This latter argument relies on a counting argument in Fκ×κ
2 , and a union bound.

Informally, our analysis shows that, whenever the adversary cheats “enough” to materially help the
distinguisher, even an adaptive choice of x will fail to help the adversary pass the check; indeed, in this case,

with overwhelming probability—over the coefficients (χi)
l′−1
i=0 —there simply does not exist a field element x ∈

F2κ which makes the receiver’s chance of passing non-negligible (in the hidden choice vector ∆). Essentially,
we show that a matrix X over F2 with suitably many independently random columns is unlikely to reside

“near” any field element x. It follows that—with overwhelming probability over (χi)
l′−1
i=0 —regardless of the

adversary’s choice of x, the rank of the linear map defining the correlation check is at least log2 κ; this implies
the desired result. Our argument has a coding-theoretic flavor, and may be of independent interest.

We note that our analysis is asymptotic, and seems to leave open the protocol’s concrete security. We
discuss this matter further in Remark 3.11 below.
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2 Background and Notation

We identify {0, 1} ∼= F2 as sets. We write κ and s throughout for a computational and statistical security
parameter, respectively. We occasionally identify vectors in {0, 1}κ ∼= Fκ

2 with subsets of {0, . . . , κ−1}, in the
obvious way. We use the ∗ symbol to denote bitwise AND in Fκ

2 , and write w for Hamming weight. We use
the symbol \ to denote set subtraction. We fix a field structure on F2κ—that is, an irreducible polynomial
of degree κ in F2[X]—and identify F2κ with the F2-vectorspace Fκ

2 , by means of the basis (1, X, . . . ,Xκ−1).
We write · for field multiplication. In what follows, we make extensive use of linear and affine-linear algebra
over F2, without further comment; for this, we suggest the reference Cohn [Coh82, §5].

Following [KOS15, § 2], given an l′ × κ matrix x, we write (xi)
l′−1
i=0 for its rows. We write xi for the

bitwise complement of a row-vector xi ∈ Fκ
2 , and xi for the complement of a bit xi ∈ F2. We write

MAJκ : {0, 1}κ → {0, 1} for the majority function on κ bits, defined specifically by xi 7→ w(xi) ≥ κ
2 .

Given two probability distributions Y0 and Y1 on {0, 1}κ, the statistical distance between Y0 and Y1 is de-
fined to be 1

2 ·
∑

y∈{0,1}κ |Pr[Y0 = y]− Pr[Y1 = y]|. We recall the definition of secure two-party computation

(see e.g. Lindell [Lin17, § 6.6.2]).

2.1 Oblivious transfer

We recall background material on oblivious transfer, following [KOS15].

FUNCTIONALITY 2.1 (Fκ
Rand—coin-flipping functionality [KOS15, Fig. 5]).

The security parameter κ and players S and R are fixed.

• Upon receiving (rand, i) from both players, Fκ
Rand samples χi ← Fκ

2 , and outputs (rand, i, χi) to
both players.

FUNCTIONALITY 2.2 (Fκ,l
COTe—correlated OT with errors [KOS15, Fig. 2]).

The security parameter κ, the number l of resulting OTs, and players S and R are fixed.

• Upon receiving (initialize,∆) from S, where ∆ ∈ Fκ
2 , F

κ,l
COTe stores ∆.

• Upon receiving
(
extend, (xi)

l−1
i=0

)
from R, where each xi ∈ Fκ

2 , F
κ,l
COTe samples ti ← Fκ

2 for each

i ∈ {0, . . . , l − 1}, and outputs
(
extend, (ti)

l−1
i=0

)
to R. Fκ,l

COTe sets qi := ti + xi ∗ ∆ for each

i ∈ {0, . . . , l − 1}, and outputs
(
extend, (qi)

l−1
i=0

)
to S.

We note that Fκ,l
COTe can be securely instantiated by the protocol of [KOS15, Fig. 3].

We moreover recall the random OT functionality:

FUNCTIONALITY 2.3 (Fκ,l
ROT—random OT functionality [KOS15, Fig. 6]).

The security parameter κ, the number l of resulting OTs, and players S and R are fixed.

• Upon receiving
(
extend, (xi)

l−1
i=0

)
from R, Fκ,l

ROT samples (vi,0,vi,1) ← Fκ
2 × Fκ

2 for each i ∈

{0, . . . , l − 1}. Fκ,l
ROT outputs

(
extend, (vi,0,vi,1)

l−1
i=0

)
to S and

(
extend, (vi,xi

)
l−1
i=0

)
to R.

For self-containedness, we finally recall the full protocol for Fκ,l
ROT, as in [KOS15, Fig. 7].

PROTOCOL 2.4 (ΠROTκ,l—random OT protocol [KOS15, Fig. 7]).
The parameters κ and l, and players S and R, are fixed. R has input bits (x0, . . . , xl−1).
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• The parties write l′ := l + κ+ s. S samples ∆← Fκ
2 , and sends (intialize,∆) to Fκ,l′

COTe.

• R samples random bits xi ← F2, for i ∈ {l, . . . , l′ − 1}. For each i ∈ {0, . . . , l′ − 1}, R constructs

the monochromatic vector xi := xi · (1, . . . , 1). R sends
(
extend, (xi)

l′−1
i=0

)
to Fκ,l′

COTe. S and R

receive
(
extend, (qi)

l′−1
i=0

)
and

(
extend, (ti)

l′−1
i=0

)
, respectively, from Fκ,l′

COTe.

• For each i ∈ {0, . . . , l′ − 1}, both parties submit (rand, i) to Fκ
Rand, and receive (rand, i, χi). R

sends x :=
∑l′−1

i=0 χi ·xi and t :=
∑l′−1

i=0 χi ·ti to S. S sets q :=
∑l′−1

i=0 χi ·qi, and checks q
?
= t+x·∆.

• For each i ∈ {0, . . . , l − 1}, R sets vi,xi := H (i ∥ ti), and outputs (vi,xi)
l−1
i=0. For each i ∈

{0, . . . , l − 1}, S sets vi,0 := H (i ∥ qi) and vi,1 := H (i ∥ qi +∆), and outputs (vi,0,vi,1)
l−1
i=0.

3 Security proof

We now prove the security of Protocol 2.4 (which itself is identical to [KOS15, Fig. 7]).

Theorem 3.1. In the FRO,Fκ
Rand,F

κ,l′

COTe hybrid model, Protocol 2.4 securely computes Functionality 2.3.

Proof. We define an appropriate simulator S.

Corrupt sender. We first handle the case in which S is corrupt. Our treatment of this case is similar to
that of [KOS15, Thm. 1]. Given a real-world adversary A corrupting S, S operates in the following way.

1. As S has no input, S immediately receives
(
extend, (vi,0,vi,1)

l−1
i=0

)
from Fκ,l

ROT.

2. S intercepts A’s message (initialize,∆) intended for Fκ,l′

COTe. For each i ∈ {0, . . . , l′−1}, S generates
qi ← Fκ

2 randomly. S moreover programs the random oracle so that, for each i ∈ {0, . . . , l − 1},
H (i ∥ qi) := vi,0 and H (i ∥ qi +∆) := vi,1. S finally simulates Fκ,l′

COTe sending A
(
extend, (qi)

l′−1
i=0

)
.

3. For each i ∈ {0, . . . , l′− 1}, S samples χi ← Fκ
2 randomly, and simulates Fκ

Rand sending A (rand, i, χi).

S draws x← Fκ
2 , computes q :=

∑l′−1
i=0 χi · qi, and sets t := q+ x ·∆. S sends A t and x, as if from R.

The perfection of this simulation is self-evident, except perhaps for the distribution of x. For self-
containedness, we present a full proof of the relevant lemma, whose proof is omitted from [KOS15, Lem. 2].

Lemma 3.2. Given a random κ× (κ+ s) matrix X over F2, where s ≥ 0, Pr[rank(X) = κ] ≥ 1− 2−s.

Proof. We incorporate arguments which are somewhat classical, but which were made explicit by Brent, Gao
and Lauder [BGL03]. For each fixed value s ≥ 0, the probability that the random matrix X’s κ rows are
independent is equal to the probability that each of its successive rows resides outside of the linear subspace
spanned by its previous rows. This probability is given by product expression below, which we manipulate
in the following way:

(1− 2−s−1) · · · · · (1− 2−s−κ) ≥ 1−
(
2−s−1 + · · ·+ 2−s−κ

)
(by the inequality [BGL03, § 4].)

= 1− 2−s ·
(
2−1 + · · ·+ 2−κ

)
≥ 1− 2−s.

This completes the proof of the lemma.

The second summand of the quantity x =
∑l−1

i=0 χi · xi +
∑l′−1

i=l χi · xi computed by the receiver can be

viewed as the image of (xi)
l′−1
i=l ∈ Fκ+s

2 under the linear map Fκ+s
2 → Fκ

2 defined by the matrix:χl · · · χl′−1

 .
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The lemma implies that, with probability at least 1− 2s over the choice of (χi)
l′−1
i=l , the map induced by this

matrix is surjective; it follows that, in the real-world distribution, with overwhelming probability, the image

of the uniformly random point (xi)
l′−1
i=l ∈ Fκ+s

2 under this matrix is itself uniform in Fκ
2 , and so perfectly

hides the first term
∑l−1

i=0 χi · xi. This completes the treatment of the corrupt sender.

Corrupt receiver. We now handle the case in which the receiver R is corrupt. Given a real-world
adversary A corrupting the receiver R, S operates as follows.

1. S simulates the existence of Fκ,l′

COTe, including S’s role. S begins by sampling ∆← Fκ
2 , as S would.

2. Upon intercepting A’s message
(
extend, (xi)

l′−1
i=0

)
intended for Fκ,l′

COTe, S proceeds in the following way.

For each i ∈ {0, . . . , l − 1}, S assigns xi := MAJκ(xi). S submits the choice vector
(
extend, (xi)

l−1
i=0

)
to Fκ,l

ROT, and receives
(
extend, (vi,xi

)
l−1
i=0

)
from Fκ,l

ROT.

3. S randomly samples ti ← Fκ
2 for each i ∈ {0, . . . l′ − 1}. For each i ∈ {0, . . . l′ − 1}, S writes qi :=

ti+∆∗xi. S programs the random oracle so that, for each i ∈ {0, . . . l−1}, H (i ∥ qi + xi ·∆) := vi,xi
.

S finally returns
(
extend, (ti)

l′−1
i=0

)
to A, as if from Fκ,l′

COTe.

4. For each i ∈ {0, . . . , l′− 1}, S samples χi ← Fκ
2 randomly, and simulates Fκ

Rand sending A (rand, i, χi).

Upon receiving x and t from A, S independently computes q :=
∑l′−1

i=0 χi ·qi, and runs the correlation

check q
?
= t + x ·∆. If the check fails, S submits (abort) to Fκ,l

ROT; otherwise, S proceeds, and Fκ,l
ROT

releases the output to the ideal honest party S.

We now claim that the resulting real and ideal distributions are computationally indistinguishable. We fix a
distinguisher D attacking these distributions. Following [KOS15], for each i ∈ {0, . . . , l′ − 1}, we abbreviate
ei := xi + xi · (1, . . . , 1), where xi is as extracted by S above; we note that necessarily MAJκ(ei) = 0. We
observe that the strings qi + xi ·∆ and qi + xi ·∆ respectively equal ti + ei ∗∆ and ti + ei ∗∆; all of these
latter quantities are known to the distinguisher except for ∆. If the correlation check fails, then the real and
ideal distributions are identical. Conditioned on the correlation check succeeding, the simulation is perfect
except for the fact that, for each i ∈ {0, . . . , l − 1}, in the real world, the relation vi,xi

= H (i ∥ qi + xi ·∆)
holds, whereas, in the ideal world, vi,xi

is independently random.
For notational purposes, given x ∈ F2κ , we introduce the map Fx : Fκ

2 → Fκ
2 defined by:

Fx : ∆ 7→
l′−1∑
i=0

χi · qi + x ·∆+ t =

l′−1∑
i=0

χi · (ti + xi ∗∆) + x ·∆+ t;

all quantities above are viewed as fixed constants, known to the distinguisher, except for the unknown ∆.
Clearly, Fx : Fκ

2 → Fκ
2 is an F2-affine linear map. We argue that we may assume once and for all that A

submits an “honest” value t =
∑l′−1

i=0 χi · ti. Indeed, our below arguments depend only on the dimension

of the affine subspace {∆ ∈ Fκ
2 | Fx(∆) = 0}, and not on its contents; A’s use of a value t ̸=

∑l′−1
i=0 χi · ti

has the effect of replacing this subspace either with an affine-linear subspace of Fκ
2 of equal dimension or

with the empty affine subspace (i.e., depending on whether t +
∑l′−1

i=0 χi · ti resides within the image of

∆ 7→
∑l′−1

i=0 χi · (xi ∗∆) + x ·∆ or not). If the subspace is empty, then the correlation check is guaranteed
to fail, and the simulation becomes trivially secure.

We thus simplify our definition, and write:

Fx : ∆ 7→
l′−1∑
i=0

χi · (xi ∗∆) + x ·∆.

In other words, we superficially ignore the affine offset, and refer to rank(Fx) and ker(Fx) throughout (though,
technically speaking, we allow the latter subspace to be a nonempty affine subspace).

We first formulate a necessary (though not necessarily sufficient) condition for the distinguisher’s success.
We identify vectors in Fκ

2 with subsets of {0, . . . , κ− 1} in what follows.
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Definition 3.3. Given a (truncated) initial matrix (xi)
l−1
i=0 submitted by A, we write (ei)l−1

i=0 for the resulting
list of minority vectors, and run the following algorithm:

1: mark each element of the list (ei)
l−1
i=0 white, and initialize d := ∅.

2: for r ∈ {0, . . . , l − 1} do
3: for i ∈ {0, . . . , l − 1} do
4: if 0 < |ei \ d| < 2 · log2 κ then
5: mark ei black.
6: overwrite d ∪= ei.
7: break.

If, now, |ei \ d| < 2 · log2 κ holds for any i ∈ {0, . . . , l − 1}, then we say that (xi)
l−1
i=0 is flagrant.

Informally, the data (xi)
l−1
i=0 is flagrant if, by iteratively including new rows whose minority vectors ei

each introduce fewer than 2 · log2 κ new bits, one can eventually get close to a majority vector ei. We note
that the vector d will necessarily eventually stabilize, in at most l iterations of the outer loop 2.

Remark 3.4. It is somewhat subtle—but true—that the vector d produced by Definition 3.3 depends only
on the rows (ei)

l−1
i=0, and not on their ordering. As we appear not to need this fact directly, we omit its proof.

We argue that D can distinguish the real and ideal worlds only by means of flagrant initial matrices.
Roughly, we argue that D necessarily gains little information about the bits of ∆ outside of d throughout its
queries; indeed, we show that, in D’s view, the distribution of the projection

{
d ∗∆

∣∣∆}
of ∆ onto the bits

outside of d remains statistically close to a mixture of uniform distributions on high-dimensional subspaces.

Lemma 3.5. If (xi)
l−1
i=0 is not flagrant, then the real and ideal distributions are indistinguishable.

Proof. We first note that we may freely assume that rank(Fx) < log2 κ, and prove the result only in this
setting; indeed, the event in which rank(Fx) ≥ log2 κ and A passes the correlation check occurs with

probability at most 2− log2 κ in the random vector ∆, which is negligible. We recall that the real and ideal
distributions are identical unless D queries H(i ∥ ti + ei ∗ ∆), for some i ∈ {0, . . . , l − 1}. On the other

hand, D may learn information about ∆ by means of brute-force queries of the form vi,xi

?
= H (i ∥ ti + r),

where i ∈ {0, . . . , l− 1} and r ∈ {ei ∗∆ |∆ ∈ ker(Fx)}; specifically, upon each such query, D may rule in or
out (i.e., depending on whether equality holds) the candidate r for the value of the projection ei ∗∆. We
argue that we may assume that D never submits a query H (i ∥ ti + r) for which r ̸= ei ∗∆ but nonetheless
vi,xi

= H (i ∥ ti + r) holds; indeed, each such query yields a spurious equality with only negligible probability
(over the random oracle’s coins). In particular, we assume below that vi,xi

= H (i ∥ ti + r) implies r = ei∗∆.
We write d for the vector assembled by Definition 3.3. We write W := {d ∗∆ |∆ ∈ ker(Fx)} for the

image of the projection of ker(Fx) onto d, and Y :=
{
d ∗∆

∣∣∆ ∈ ker(Fx)
}
for ker(Fx)’s projection onto d.

For each w ∈W , we write Y w :=
{
d ∗∆

∣∣ d ∗∆ = w ∧∆ ∈ ker(Fx)
}
; that is, Y w is the projection onto d of

those ∆ ∈ ker(Fx) whose projection d ∗∆ = w onto d is suitably prescribed. Each Y w is an affine subspace
of Y . In fact, as w ∈W varies, the corresponding sets Y w yield a family of nonempty, disjoint—though not
necessarily distinct, in that different w may yield identical Y w—affine subspaces of Y , of equal dimension.
Indeed, each Y w may be viewed as (the isomorphic projection onto d of) the intersection in Fκ

2 between
ker(Fx) and the

∣∣d∣∣-dimensional affine-linear subspace {∆ ∈ Fκ
2 | d ∗∆ = w}. By hypothesis on rank(Fx),

even in the extreme case in which these subspaces intersect transversely in Fκ
2 , we necessarily nonetheless

have dim(Y w) >
∣∣d∣∣ − log2 κ. In any case, as the intersecting affine subspaces {∆ ∈ Fκ

2 | d ∗∆ = w}, as
w ∈W varies, are parallel, the dimensions of the resulting intersections Y w ⊂ Y are identical.

We now study D’s posterior distribution Y :=
{
d ∗∆

∣∣∆}
regarding ∆, and, in particular, how this

distribution evolves as a result of D’s queries to the oracle. Clearly, Y is supported within Y . We first note
the natural conditional expansion:

Y =
∑
w∈W

Pr[d ∗∆ = w] · (Y | Y w) ; (1)

we recall once more that unequal vectors w ∈W may nonetheless yield equal sets Y w. We now claim that,
roughly, this expansion represents Y as a mixture of distributions which are statistically close to uniform:
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Condition. For each w ∈W , the conditional Y |Y w is either empty or statistically close to uniform on Y w.

We argue that D’s queries preserve the condition. We first extract the following technical claim:

Claim 3.6. Let the distribution Y on Y satisfy the condition, and fix a vector f for which |f \ d| ≥ 2 · log2 κ.
For y← Y sampled randomly, the probability that D outputs f ∗ y in polynomial time is negligible.

Proof. We let Y and f be as in the hypothesis of the claim. We write Zw := {f ∗ y | y ∈ Y w} and Z :=
{f ∗ y | y← Y} for the projections onto f of each set Y w and of Y, respectively. By hypothesis on f , as
each dim(Y w) >

∣∣d∣∣ − log2 κ, we see that each dim(Zw) > log2 κ. Moreover, for fixed w∗ ∈ W and

arbitrary w ∈ W , the affine subspaces Zw∗
and Zw of

{
f ∗ d ∗∆

∣∣∆ ∈ Fκ
2

}
are either disjoint or identical,

and in any case are parallel and of equal dimension. Each Z | Zw∗
is thus a mixture of those distributions

{f ∗ y | y← Y | Y w} for which Zw = Zw∗
. Using our hypothesis on Y, and the surjectivity of each such Y w’s

projection onto Zw∗
, we see that each element in this mixture is either empty or statistically close to uniform

on Zw∗
; we conclude that Z | Zw∗

too is. We see that Z is a mixture of close-to-uniform distributions on
superpolynomially-sized sets; as f ∗y for y← Y random is just a sample from Z, the conclusion follows.

We now argue by induction that D’s queries preserve the condition. We note that, initially, Y | Y w is
exactly uniform on Y w for each w ∈ W , and that the condition clearly holds. We now consider the effect

on Y of an arbitrary query vi,xi

?
= H (i ∥ ti + r), say, where r ∈ {ei ∗∆ |∆ ∈ ker(Fx)}, or, equivalently, of

the information r
?
= ei ∗∆. We treat two separate cases, corresponding to whether ei

?
⊂ d.

We first consider the case ei ⊂ d. We write Wr := {w ∈W | ei ∗w = r}; clearly, Wr ⊂W is a nonempty
affine-linear subspace. We note that the effect of the information r = ei ∗ ∆ is to set Pr[d ∗ ∆ = w] := 0
for each w ̸∈ Wr; similarly, the effect of the information r ̸= ei ∗ ∆ is to set Pr[d ∗ ∆ = w] := 0 for each
w ∈ Wr. In each case, the information merely reallocates certain coefficients in the mixture expression (1);
the condition is nonetheless clearly preserved.

We now treat the case ei ̸⊂ d. In this case, Definition 3.3 implies that in fact |ei \ d| ≥ 2 · log2 κ holds.
We first argue that we may assume that D’s query fails, in the sense that r ̸= ei ∗∆. Indeed, by induction,
we have that the condition holds on Y. As d ∗∆ is distributed exactly according to Y (by definition), the

claim, applied to the vector f := ei, implies that the equality d ∗ r ?
= ei ∗d ∗∆ holds with at most negligible

probability; we see that, with overwhelming probability, d ∗ r ̸= d ∗ei ∗∆, and hence r ̸= ei ∗∆. By analogy
with the above, we write Wr := {w ∈W | ei ∗w = d ∗ r}. For each w ̸∈Wr, the information r ̸= ei ∗∆ has
no effect on Y|Y w. On the other hand, for eachw ∈Wr, the information r ̸= ei∗∆ has the effect of excluding
from consideration those candidates d ∗∆ in Y w

r ⊂ Y w, where we write Y w
r :=

{
y ∈ Y w

∣∣ ei ∗ y = d ∗ r
}
.

To show that the condition is preserved, we show that the ratio |Y w
r | / |Y w| is negligible for each w ∈ Wr.

Each Y w
r ⊂ Y w is a linear subspace, obviously contained in the linear subspace

{
d ∗∆

∣∣ ei ∗ d ∗∆ = d ∗ r
}

of dimension
∣∣d \ ei∣∣. Using our above estimate on dim(Y w), we see that:

dim(Y w)− dim(Y w
r ) >

∣∣d∣∣− ∣∣d \ ei∣∣− log2 κ = |d ∩ ei| − log2 κ = |ei \ d| − log2 κ ≥ log2 κ,

where, in the final equality, we use our hypothesis |ei \ d| ≥ 2 · log2 κ. We thus see that |Y w
r | / |Y w| is

negligible. By this fact, and our inductive hypothesis whereby Y | Y w is statistically close to uniform, we
conclude that Y | (Y w \ Y w

r ) also is. This completes the argument that the condition on Y is preserved
throughout D’s queries.

We now fix an arbitrary majority vector ei, for i ∈ {0, . . . , l − 1}, and fix a query vi,xi

?
= H (i ∥ ti + r),

where r ∈ {ei ∗∆ |∆ ∈ ker(Fx)}. Finally using the hypothesis of the lemma, we note that |ei \ d| ≥ 2·log2 κ.
Applying Claim 3.6 once again, now with f := ei, we see that the equality d ∗ r ?

= ei ∗ d ∗∆ holds with at

most negligible probability, and hence that r
?
= ei ∗∆ also does. This completes the proof of the lemma.

In what follows, we thus assume that A’s initial data (xi)
l−1
i=0 is flagrant. We argue that, in any such

execution, it is negligibly probable that A will pass the correlation check. To this end, we analyze the
correlation check more closely. It suffices to show that, for any flagrant initial matrix (xi)

l−1
i=0, it is unlikely—

over the choice of the (χi)
l′−1
i=0 —that A will be able to find any x ∈ F2κ for which rank(Fx) is low.
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In fact, we show that for any flagrant (xi)
l−1
i=0, it holds with overwhelming probability (over the choice of

(χi)
l′−1
i=0 ) that the minimal rank

min
x∈F2κ

rank(Fx) (2)

is at least log2 κ.
We begin our study of the family of maps {Fx}x∈F2κ

. It is clear that, at the cost of adding
∑

xi=1 χi to
each x in the expression (2) (which has no effect), we may freely replace each xi with ei in the definition of
Fx. We thus further rewrite Fx as follows:

Fx : ∆ 7→
l′−1∑
i=0

χi · (ei ∗∆) + x ·∆.

We moreover argue that the random variable (2) (viewed as a function of the random coefficients (χi)
l′−1
i=0 )

remains identical if we replace the matrix (ei)
l′−1
i=0 with its reduced row-echelon form over F2. Indeed, any Fx

may be decomposed into the F2-linear map ∆ 7→ (ei ∗∆)
l′−1
i=0 from Fκ

2 → Fl′

2κ , on the one hand, followed by

the application of the random F2κ-hyperplane given by (χi)
l′−1
i=0 , on the other (and finally by the addition of

x ·∆). Row-reducing (ei)
l′−1
i=0 amounts to interposing between these first two maps a further l′× l′ invertible

matrix over F2κ . Up to a uniform resampling of the coefficients (χi)
l′−1
i=0 , this multiplication has no effect.

We record the following claim:

Lemma 3.7. If (xi)
l′−1
i=0 is flagrant, then the F2-row-reduction of (ei)

l′−1
i=0 contains at least κ

4·log2 κ
pivots.

Proof. As a matrix’s number of pivots depends only on its rank, it suffices to prove the lemma after arbitrarily

permuting (ei)
l′−1
i=0 ’s rows and columns. We thus first sort the rows (ei)

l′−1
i=0 in the order in which they are

marked black by Definition 3.3 (deferring white rows). Moreover, we apply the following modification to the
Gaussian elimination algorithm. By definition, each successive black row necessarily introduces a 1 to some
column which thus far has lacked one. Upon each such row’s treatment by the algorithm, after possibly
transposing two columns, we may ensure that this 1 resides at the column being considered for a pivot, and
thus becomes a pivot. This transposition preserves the invariant whereby each further black row introduces
a 1 at some new column. Likewise, using the new pivot row to clear the pivot column also preserves this
invariant. We thus conclude that there are at least as many pivots as there are black rows.

Finally, we note that there must be strictly more than
κ/2−2·log2 κ

2·log2 κ
black rows in any flagrant matrix.

Indeed, each row marked black may, by definition, increase the Hamming weight w(d) only by less than
2 · log κ; as each majority row satisfies w(ei) ≥ κ

2 , the conclusion follows.

Henceforth, we write κ̂ for the number of pivots in (ei)
l′−1
i=0 .

We observe that each map in the family {Fx}x∈F2κ
can be written using the following matrix expression:

Fx : ∆ 7→

 . . .χ0

 + · · ·+ . . .χl′−1

 + . . .x

 
 · ∆

 , (3)

where the field elements x and (χi)
l′−1
i=0 are viewed as F2-linear operators on Fκ

2 , and hence represented as
κ× κ F2-matrices, and the shaded boxes indicate that certain columns have been “struck out”. Indeed, we

keep or strike columns of the matrices (χi)
l′−1
i=0 according to the (row-reduced) data (ei)

l′−1
i=0 ; specifically, if

ei,j = 1, we keep the jth column of χi’s matrix intact, and otherwise replace it with a column of 0s.

We resume our consideration of the expression (2), viewed as a random variable on the coefficients (χi)
l′−1
i=0 .

In light of our assumption that (ei)
l′−1
i=0 is row-reduced, we see that each pivot in the matrix (ei)

l′−1
i=0 adds an

independent random column to the matrix expression (3) (i.e., to the left-hand sum, excluding x). We argue
that we may consider the pivot columns alone in our study of (2). Indeed, replacing each non-pivot column
with a column of 0s—in all matrices within the expression (3), including that of x—can only decrease the
rank of the resulting map Fx; we shall lower-bound this rank regardless.

8



We’re thus left to consider the following modified expression for Fx:

Fx : ∆ 7→

 . . .X

 + . . .x

 
 · ∆

 , (4)

where the first matrix, say X, contains κ̂ independently random columns, with its further columns identically
0, and where the second matrix is merely the field-multiplication matrix of x, with the same set of κ̂ columns
kept and the rest struck out.

We now show that, with overwhelming probability over the choice of the random sub-matrix X, we
have minx∈F2κ

rank(Fx) ≥ log2 κ. We achieve this using a counting argument in Fκ×κ
2 ; more precisely,

the argument takes place in Fκ×κ̂
2 . Slightly abusing notation, we identify field elements x ∈ F2κ with

(appropriately stricken) matrices in Fκ×κ̂
2 . We note that there are exactly 2κ distinct field elements x ∈ F2κ ,

and hence at most 2κ distinct corresponding matrices. On the other hand, for each matrix X ∈ Fκ×κ̂
2 for

which, for some x ∈ F2κ , rank(X + x) < log2 κ holds, we necessarily have that X + x = Y , where Y ∈ Fκ×κ̂
2

is of rank less than log2 κ. We undertake to count such matrices Y .

Lemma 3.8. The number of matrices Y ∈ Fκ×κ̂
2 satisfying rank(Y ) < log2 κ is in 2Õ(κ).

Proof. We again refer to Brent, Gao and Lauder [BGL03] for preliminaries on subspaces over finite fields.
The proof of [BGL03, Lem. 4] gives an expression for the number of matrices of rank r in Fκ×κ̂

2 , which we
in turn crudely upper-bound as follows:

Φκ̂(κ, r) =

r−1∏
i=0

(
2κ̂ − 2i

)
· 2

κ−i − 1

2i+1 − 1
≤ 2(κ̂+κ)·r ≤ 22·κ·r

Upper-bounding the number of rank-r κ× κ̂ matrices by the number of rank-log2 κ such matrices, for each
r < log2 κ, we see that the total number of κ× κ̂ matrices of rank less than log2 κ is at most log2 κ ·22·κ·log2 κ.

This quantity is clearly in 2Õ(κ), as desired. This completes the proof of the lemma.

The set of matrices X ∈ Fκ×κ̂
2 for which minx∈F2κ

rank(X + x) < log2 κ is exactly the union, over

all field elements x ∈ F2κ , of the sets
{
x+ Y

∣∣ rank(Y ) < log2 κ
}
⊂ Fκ×κ̂

2 . In light of Lemma 3.8, we

conclude that the cardinality of this union is at most 2κ · 2Õ(κ), which is itself in 2Õ(κ). Finally, the total

number of κ × κ̂ matrices X is obviously 2κ·κ̂. The probability, over the random coefficients (χi)
l′−1
i=0 , that

minx∈F2κ
rank(Fx) < log2 κ is thus at most 2Õ(κ)−κ·κ̂. From Lemma 3.7, we recall that κ̂ ≥ κ

4·log2 κ
; we

conclude that 2Õ(κ)−κ·κ̂ ≤ 2−Ω(κ), which is negligible. This completes the proof of the theorem.

We discuss a few illustrative examples.

Example 3.9. If R is honest, then the matrix of error vectors (ei)
l′−1
i=0 is identically zero, the matrix X

above is likewise empty, and R may—by setting x := 0 (or really, x :=
∑

xi=1 χi)—cause Fx to be the zero
linear map, and pass the correlation check with probability 1.

Example 3.10. The flagrant matrix par excellence consists of a κ × κ identity submatrix (xi)
κ−1
i=0 = Iκ,

with (xi)
l′−1
i=κ identically zero. If a corrupt receiver R were to manage to pass the correlation check with this

matrix, then the distinguisher could trivially distinguish the real and ideal distributions with probability 1
using only O(κ) queries to the random oracle. Indeed, in this setting, for each i ∈ {0, . . . , κ−1}, the equality
vi,0

?
= H (i ∥ ti) would if hold and only if ∆i

?
= 0 did. After making κ such queries, D would thus learn

the entire choice vector ∆, and could therefore easily check the equalities vi,1
?
= H (i ∥ ti + xi ∗∆), for each

i ∈ {0, . . . , l − 1}. In the real world, these equalities necessarily hold; in the ideal world, they do not.

Yet having submitted such an initial matrix (xi)
l′−1
i=0 , A would face—as its matrix X above—a uniformly

random κ×κ matrix with independent columns. The arguments given above show that, given such a matrix
randomly sampled, it is unlikely that there exists an element x ∈ F2κ for which rank(X + x) is low.
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The above examples suggest an informal way to understand the proof. The only way for the adversary

to help the distinguisher is to act in such a way that the matrix (ei)
l′−1
i=0 of error vectors contains unequal,

low-weight rows. But the more the adversary does this, the more X above becomes a “patchwork” consisting
of columns selected from different random field elements χi ← F2κ . As X changes in this way, it becomes
less likely to reside near some intact field element x.

Remark 3.11. Our analysis above is essentially asymptotic in nature, and seems to leave open the protocol’s
concrete security (e.g., at the value κ = 256). Indeed, the implicit function −Ω(κ) in the exponent, in the
final step of the proof of Theorem 3.1, takes a long time to become negative. Specifically, this function—

something like 2 · log log κ+2 ·κ · log2 κ− κ2

4·log2 κ
—becomes negative, for the first time and thenceforth, only

at the value κ = 1, 386, 267; in this light, our proof is arguably ineffective for values κ smaller than this one.
On the other hand, our analysis contains various sources of looseness, including, most notably, our

consideration of the pivot columns alone in the expression (4) above. Discarding the non-pivot columns in
the expression (3) makes, in practice, the rank of Fx much lower. It seems conceivable that the rank of
(3)—instead of that of (4)—could be directly studied, and that a tighter analysis could result. This avenue
would require the consideration of matrices X whose columns are not independent.

There is a further means by which our analysis could be sharpened. The final step of Theorem 3.1 is

information-theoretic in nature; it shows that—with (asymptotically!) overwhelming probability in (χi)
l′−1
i=0 —

a field element x suitably minimizing the rank of X+x doesn’t exist. It seems possible—even at “low” values
κ, for which our information-theoretic argument remains vacuous—that field elements x of the desired form
could be computationally difficult to produce (over and above the question of their existence).

We leave these prospects as future research directions.

I would like to thank Marcel Keller and Peter Scholl for a discussion which led to Remark 3.11.
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