
ZKBdf: A ZKBoo-based Quantum-Secure
Verifiable Delay Function with Prover-secret

Teik Guan Tan1, Vishal Sharma2, Zeng Peng Li3, Pawel Szalachowski1, and
Jianying Zhou1

1 Singapore University of Technology and Design
tanteikg@gmail.com, pjszal@gmail.com, jianying zhou@sutd.edu.sg

2 Queen’s University Belfast
v.sharma@qub.ac.uk

3 Shandong University
zengpengliz@gmail.com

Abstract. Since the formalization of Verifiable Delay Functions (VDF)
by Boneh et al. in 2018, VDFs have been adopted for use in blockchain
consensus protocols and random beacon implementations. However, the
impending threat to VDF-based applications comes in the form of Shor’s
algorithm running on quantum computers in the future which can break
the discrete logarithm and integer factorization problems that existing
VDFs are based on. Clearly, there is a need for quantum-secure VDFs.
In this paper, we propose ZKBdf, which makes use of ZKBoo, a zero-
knowledge proof system for verifiable computation, as the basis for re-
alizing a quantum-secure VDF. We describe the algorithm, provide the
security proofs, implement the scheme and measure the execution and
size requirements. In addition, as ZKBdf extends the standard VDF with
an extra “Prover-secret” feature, new VDF use-cases are also explored.

Keywords: Verifiable Delay Function · Zero-Knowledge Proof · Post-
Quantum Cryptography

1 Introduction

The notion of delay may initially come across as a paradox. In the world of
computing where systems are constantly tuned for higher processing throughput
and more efficient communications while users demand shorter response time and
immediate gratification, the need for delays seems counter-intuitive.

Yet, there are valid use-cases where delays are relevant. In 1996, Rivest et.
al. [47] introduced the concept of time-lock puzzles where a published secret
is locked, and can only be opened after a specified period of time. Time-lock
puzzles require the use of a computer to execute a sequence of commands, thus
consuming a certain amount of time, before the secret is revealed. They can
be applied in the case of auction bids where a bidder submits a sealed auc-
tion bid which requires a duration longer than the auction window for it to be
opened. The time-lock puzzle here prevents even the auctioneer from knowing
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the bid until after the close of the auction. Delays can also be used to regulate
the number of requests received. Later constructions of delay functions include
proof-of-sequential work (PoSW) by Mahmoody et. al. [37] using sequential hash
functions and Cohen et. al. [15] which uses a hash-graph structure to optimize
the verification efficiency of a hash-chain. On a different use-case, Dwork and
Noar [20] proposed imposing a computational overhead for every email received
in order to reduce the amount of SPAM mail in 1993. This concept was formal-
ized as proof-of-work (PoW) by Jacobsson and Juels [30] and made famous when
Nakamoto’s Bitcoin [42] used PoW as the blockchain consensus mechanism for
miners to propose blocks approximately every 10 minutes. Delays are also used
to ensure fairness for leader elections. Snow White’s sleepy consensus by Pass
and Shi [44] relies on delay functions to account for all possible network latency
when receiving inputs from active nodes to compute an unbiased leader, while
not waiting in vain for nodes that are inactive.

Boneh et. al. [7] provided the formal definition of VDFs in 2018. VDFs differ
from time-lock puzzles in their unique properties of not requiring a trapdoor op-
eration while computing a deterministic and unpredictable output. Informally,
we view the time-lock puzzle as a fast-encrypt-slow-decrypt confidentiality anal-
ogy and VDF as a slow-generate-fast-verify integrity analogy for delay functions.
This begs the question why isn’t VDFs used more widely beyond consensus pro-
tocols and time-stamp / random beacons. In our research, we discover that the
inclusion of a prover-secret as part of the VDF protocol can open up more use-
cases. These are discussed in Section 5.

In this paper, we provide the realization of a quantum-secure VDF using
ZKBoo [25] to implement a HMAC-SHA256 circuit. While using verifiable com-
puting primitives to construct a VDF is proposed before [7, 10, 51], we include a
security reduction of our implementation to ZKBoo with the Fiat-Shamir heuris-
tic [23, 54] to make our implementation secure under a quantum random ora-
cle model (QROM) [9], and without trusted setup. Other contributions include
proposing a modified existential unforgeability under chosen-message attacks
(EUF-CMA) [27] experiment for VDFs and extending the ZKBoo SHA256 imple-
mentation to HMAC-SHA256 [32]. The ZKBoo HMAC-SHA256 zero-knowledge
proof of knowledge of the MACing key gives an additional “Prover-secret” fea-
ture to ZKBdf. New VDF use-cases which make use of ZKBdf’s Prover-secret
feature are also identified.

The organization of the paper is as follows. Section 2 introduces the back-
ground and related work. Section 3 provides the design of a quantum-secure
VDF and security proofs. Section 4 describes the implementation of the pro-
posed VDF with execution results. Section 5 discusses new VDF use-cases and
section 6 concludes the paper.
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2 Background

2.1 Hash-chain

The hash-chain consists of a sequence of One-Way Functions (OWF) H where
the output of the previous OWF operation is treated as the input to the next
OWF operation. For a delay parameter T , the hash-chain Eval function is:

HT (x) =

{
H(HT−1(x)) T > 1

H(x) T = 1
(1)

Execution of the hash-chain requires the Prover to invoke H sequentially for T
times. Assuming that the OWF function H is collision-resistant, a polynomial-
bounded adversary will not be able to perform any meaningful pre-computation
or shorten the process since the probability of guessing Hi+1(x) when only
Hi(x) ∀i < T is computed is negligible.

The verification ofHT (x) is a matter of a time-space tradeoff. If only [x,HT (x)]
is provided as the proof, then the Verifier will have to perform the same sequence
of hashes as the Prover to verify HT (x). If the intermediate hash values Hi(x)
are also provided as part of the proof, then the Verifier can parallelize the ver-
ification process across multiple processing units, and shorten the verification
time. Since execution complexity of the verification remains at O(T ) and can
only be sped up through process parallelism, delay functions such as Sloth [36]
which use hash-chains are not VDFs but termed as a pseudo−VDF [7].

2.2 Verifiable Delay Function

Definition 1. We define V DF = (Setup,Eval, V erify) as triple of algorithms
with the following syntax

Setup(λ)→ (ek, vk) takes in a security parameter λ, and outputs the evalu-
ation key ek, and verification key vk.

Eval(ek, Cha, T )→ (Res, π) takes in the evaluation key ek, a one-time chal-
lenge Cha along with the time delay T and outputs the response to the
challenge Res and the corresponding proof π. Eval must require at least
T units of time to execute even on a parallel computer.

V erify(vk, Res, π, Cha, T ) → (result ∈ {accept, reject}) takes in the verifi-
cation key vk, the response Res, proof pi, challenge Cha, and time delay
T and outputs accept if and only if Res is the correct response to Cha
and π is evaluated correctly. V erify must be able to run at significantly
less than T units of time.

The Correctness property of a VDF is defined such that the V erify function
will accept the output generated by the Eval function while the Soundness prop-

erty of a VDF states that the probability of accept
R←− V erify(vk, Cha,Res′, π′, T )

where Res′ ̸= Res and (Res, π)
R←− Eval(ek, Cha, T ) is negligible. In addition,

Boneh et. al. [7] have listed three properties that embodies what a VDF has to
exhibit:
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– Sequentiality. Sequentiality is defined strictly with respect to the computa-
tion time of Res given (ek, Cha) which cannot be less than T . The time re-
quired to generate proof π is excluded from the definition. However, we argue
that the time needed to compute the proof π can also be taken into account.
Hence, we re-define sequentiality as V erify(vk, Cha,Res, π, T ) → reject if
time taken to compute (Res, π) from (ek, Cha, T ) is less than T when pro-
vided with polynomial-bounded computational power.

– Efficient verifiability. The V erify function is expected to execute more ef-
ficiently as compared to Eval. It is required to complete in the order of
O(polylog(T )) execution time.

– Uniqueness. For every input challenge Cha provided to Eval, there is a
deterministic and unpredictable response Res. And it is computationally
hard to find Cha when given only Res. This property makes VDFs applicable
for use in random beacons and leader elections for distributed systems.

These three properties rule out time-lock puzzles, PoW, and PoSW as VDFs
since time-lock puzzles do not follow the VDF protocol, and the proofs generated
by PoW and PoSW are not unique [30, 37, 15].

Constructing a VDF typically involves iterating a non-“parallelizable” (or
serialized) process as many times as necessary to account for the T delay, while
having an efficient mechanism to verify the process. In the VDF survey [8],
the two VDFs by Pietrzak [45] and Wesolowski [55] respectively use a common
serialized process:

f(x) = H(x)2
T

over an abelian group G, (2)

where H(x) is repeatedly squared T times. This has been recognized as insecure
[8] against a quantum-capable adversary who can compute the order of G using
Shor’s algorithm [49] in polynomial time.

To construct a quantum-secure VDF, a logical hypothesis would therefore
be: Can a quantum computer running a randomness service function as a VDF?
Mahmoody et. al [38] has shown this hypothesis to be flawed by proving the in-
feasibility of a black-box random oracle functioning as a VDF. De Foe et. al. [16]
constructs a VDF using elliptic curve isogenies which is “quantum-annoying”
but not quantum-secure. Chavez-Saab et. al. [13] proposes the use of isogenies
embedded as an arithmetic structure within a succinct non-interactive argument
(SNARG) [24] to be quantum-secure, but recent discoveries on the weakness of
supersingular isogenies[11] casts doubts on the claims. The VDF implementa-
tion that comes closest to being quantum-secure is Buterin’s VDF [10], but (to
our best knowledge) lacks formal quantum-security proofs. It makes use of an
iterated block cipher with Minimal Multiplicative Complexity (MiMC) [1] that
is run sequentially, and then builds a SNARG to prove that the computation
was performed correctly.

2.3 ZKBoo

ZKBoo [25] is a zero-knowledge proof system for verifiable computation. When
ZKBoo is used by a Prover to prove the hash result of computing an OWF,
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the Verifier has the assurance that the Prover knows the pre-image of the hash,
without gaining any additional knowledge of the pre-image.

To generate the proof, ZKBoo uses Ishai et. al.’s [29] secure multiparty com-
putation MPC-in-the-head to create an AND-NOT-XOR-ADD boolean circuit
sequence of three branches. Unlike subsequent MPC-in-the-head proof construc-
tions such as KKW [31], preprocessing and other process optimizations for ZK-
Boo is limited which lends itself well as a VDF. At the beginning of the proof
generation during the preprocessing stage, the secret is randomly split into three
shares and a deterministic random sequence Ri[] is generated. During the cir-
cuit computation stage which makes up the bulk of the computation, the three
shares then step through the circuit along the three branches respectively. At
each of the AND and ADD gates, the three branches are pair-wise intertwined
(1 ↔ 2, 2 ↔ 3, 3 ↔ 1) in a sequential manner and XOR with the deterministic
sequence Ri[] to ensure no steps are skipped. The final result of the computation
is committed in the proof but only two of the three views will be revealed to
the Verifier for verification. The choice of which two views is determined at the
proof extraction stage using the Fiat-Shamir heuristic [23] to make the proof
non-interactive. To increase the cryptographic strength (or assurance) of the
zero-knowledge proof, the same boolean circuit is re-run using different shares
which are randomly generated. Since each stage prepares the necessary informa-
tion for the next stage, each stage must wait for the previous stage to complete
before commencing. During verification, the Verifier takes in the generated proof,
and walks through the two of three views and has ≥ 50% assurance, but no ad-
ditional knowledge, that the Prover knows the secret value used to create the
three shares. Both proof and verify processes execute in O(N) complexity and
all runs are parallelizable.

The strengths of ZKBoo are that it does not require any trusted setup, has
efficient circuits for small computations and each round in the proof generation
and verification are parallelizable. ZKBoo, however, has a large proof size. Chase
et. al. [12] improves on ZKBoo by proposing ZKB++ which, in addition to reduc-
ing the proof size by almost half, introduces the use of the Unruh transformation
[52] to arrive at security proofs in QROM.

2.4 Computationally Sound Probabilistic Checkable Proof (PCP)

PCP by Arora and Safra [2] is a system of proof that can efficiently reduce
the verification time complexity of proofs by an order of O(logN). It achieves
this by first encoding the original proof into a local-testable format [4], then
applying an oracle to select proof samples to be verified. The outcome is that
the PCP verification process will yield errors for incorrect proofs with a high
probability on low-degree testing, although proof generation time complexity
and proof size remain asymmetrically larger. Separately, Kilian [34] introduces
a zero-knowledge protocol where it is possible to use a subset of commitments
to achieve concise arguments for a corresponding proof.

Micali’s [41] computationally sound proof realizes a construction of Kilian’s
protocol and PCP using Merkle trees [40]. Computationally sound proofs build
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on PCPs by reducing the size of proof needed to be sent to the Verifier, thus
optimizing both space and time complexity in the verification process. Briefly,
Micali’s construction works as follows during proof generation to extract k proof
elements out of the complete set of proofs for verification:

1. Computes the full set of PCP proofs π.

2. Build a Merkle-tree with each of the proof elements in π placed as a leaf
node using an oracle.

3. With the root node of the Merkle tree as the seed, use a sampling oracle to
select k leaf nodes.

4. Package these k proof elements along with the branches of the Merkle tree
that traverse up to the root node as the PCP proof to be transmitted to the
Verifier.

During verification, the following happens:

1. Verify that the branches of the Merkle tree lead up to the root node.

2. With the root node as the seed, use the same sampling oracle to select the
expected k leaf nodes.

3. Verify the proof of each of the leaf nodes. An honest Prover is expected to
have minimally transmitted these k proof elements.

3 A Quantum-Secure VDF

Definition 2. We define ZKBdf = (Setup,Eval,Verify) is a triple of algorithms
as follows:

ZKBdf.Setup() → (ek, H(ek)) is run by the Prover. It generates a Prover-
secret ek ∈ Z+ and public commitment H(ek) which is published.

ZKBdf.Eval(ek, Cha, T ) → (Res, π)T is run by the Prover. It takes in
the previously generated Prover-secret ek, the random challenge Cha
from the Verifier, and the required delay parameter T . It returns Res =
HMAC(Cha, ek) and zero-knowledge computational proof π = {vk =
H(ek)}.

ZKBdf.V erify(H(ek), Res, π, Cha, T ) → (result ∈ {1, 0}) is run by the
Verifier. It takes in the previously-generated challenge Cha, the response
Res and proof π from the Prover, the required delay parameter T and
the previously-published commitment H(ek). It returns 1 if and only if
Res = HMAC(Cha, ek) and π is computationally verified correct.

The design intuition behind our proposed VDF, named ZKBdf (ZKBoo delay
function) is to substitute the “hash” in the hash-chain with a serialized ZKBoo
zero-knowledge proof of the pre-image of the hash, include an additional seri-
alized ZKBoo circuit for HMAC to generate the unique return value, and then
use PCP with Micali’s Merkle Tree construction to reduce the size and time
complexity of the verification. Such a design preserves the non-algebraic nature
of the construction and adds a feature of “prover-secret” into the VDF.
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3.1 Serializing ZKBoo

Since both proof generation and verification of ZKBoo are parallelizable, we need
to modify ZKBoo such that proof generation is serialized while proof verification
remains parallelizable. The trick we use is to change the way the deterministic
sequence of random Ri[] are generated. Instead of using the same seed to generate
all the sequences, we use the Fiat-Shamir heuristic [23] to require the generation
of Ri+1[] be dependent on views wi−1 from the previous ZKBoo iteration:

Ri[] =

{
PRF (seed) i = 1

PRF (H(wi−1)) otherwise
(3)

We therefore modify ZKBoo Prove to a serialized form in Algorithm 1 with
changes marked in red. The main changes happen in lines 9 to 11 where instead
of using a fixed seed to generate the sequences R[] in all T iterations, we use the
Fiat-Shamir heuristic [23] to require the generation of Ri+1[] be dependent on
the view wi−1 from the previous ZKBoo iteration.

To accommodate this change, the generation of Ri[] is moved out of the
preprocessing stage to between lines 9 and 10 of the circuit computation stage
with the logic updated to reflect Equation (3). Also, line 19 is changed from
Compute h ← Hash(c) to Compute h ← Hash(ci) so that both the circuit
computation and proof extraction stages become serialized. Verification remains
parallelizable since the values needed to compute Ri[] are already known.

3.2 ZKBdf Construction

ZKBdf is described in Figure 1.
There are two parties in the protocol, namely the Prover, who needs to prove

that the time delay T has taken place, and the Verifier, who wants the Prover to
delay for T duration. The protocol flows can be separated into three stages: i)
Setup: which needs to be done once; ii) Challenge-Response: where the Verifier
will issue an unpredictable challenge and the Prover has to respond with the
proof that T time has passed; and iii) Verify: where the Verifier will verify the
Prover’s proof.

Structurally, the Prover computes what looks like a two-dimensional ZKBoo-
chain with a Merkle tree on top, before extracting the PCP [2, 41] proofs to be
sent to the Verifier. Functionally, ZKBdf is superior to hash-chains and its deriva-
tives due to the added “Prover-secret” feature from the HMAC proof. A Prover
using ZKBdf can proof knowledge of the Prover-secret ek to the public Verifier
without revealing ek. On the other hand, ZKBdf’s proof size and bit-strength
increase with the delay parameter T since ZKBoo’s iterative proof generation
is the primary driver of the delay. This is in contrast with Buterin’s VDF [10]
whose MiMC delay circuit is separate from the argument proof.

The VDF properties achieved by ZKBdf include all the properties mentioned
in Section 2.2 plus being quantum-secure. We briefly describe how each property
is designed into ZKBdf before carrying out the formal proofs:
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Algorithm 1: Modified ZKBoo.Prove algorithm to be serialized.

1 begin
2 r ← seed; ek ← secret;

// Preprocessing Stage
3 for i from 1 to T do
4 {s1i , s2i } ← random;

5 s3i = ek ⊕ s1i ⊕ s2i ;
6 end

// can’t be run in parallel
7 for i from 1 to T do

// Circuit Computation Stage
8 if i == 1 then
9 Ri[]← PRF (r)

10 else
11 Ri[]← PRF (H(wi−1))
12 end
13 while circuit is not complete do
14 if AND or ADD gate then
15 {w1

i , w
2
i , w

3
i } ← gate operation using {s1i , s2i , s3i }, Ri[]

16 else
// NOT or XOR gate

17 {w1
i , w

2
i , w

3
i } ← gate operation using {s1i , s2i , s3i }

18 end
19 end

20 ci ←result from {w1
i , w

2
i , w

3
i }; // ci is the commitment for round i

// Proof Extraction Stage
21 Compute h = Hash(ci);
22 b← next 2 bits from h;
23 switch b do

// wi is the 2-of-3 view for round i
24 case 00 do
25 wi ← w1

i , w
2
i

26 end
27 case 01 do
28 wi ← w2

i , w
3
i

29 end
30 case 10 do
31 wi ← w3

i , w
1
i

32 end
33 end
34 otherwise do
35 retry b with next 2 bits from h
36 end
37 end
38 w ← {w1, ..., wT };
39 c← {c1, ..., cT };
40 return z = {c, w}
41 end
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– Setup.
1. Both Prover and Verifier agree on a OWF H() and delay T .
2. Prover calls ZKBdf.Setup to generate Prover-secret ek ∈ Z+ and commit =

H(ek) as the commitment.
– Challenge-Response

1. Verifier generates random Cha ∈ Z+ and sends to Prover.
2. Prover calls ZKBdf.Eval to perform the following:

(a) Compute Res = HMAC(Cha, ek) = H(ek ⊕ opad||H(ek ⊕ ipad||Cha))
[32, 6] and perform T iterations of the serialized ZKBoo proof (Algorithm
1) to obtain z = {z1, z2, ..., zT } where zi = {ci = {vk = H(ek), Res =
HMAC(Cha, ek)}, wi}

(b) Build a Merkle tree [40] using all the elements of z as the leaf nodes.
(c) Use Micali’s construction [41] to select the index of leaf nodes
{j1, j2, ..., jpolylog(T )} to form the set of PCPs [2] π = {π1, π2, ...πpolylog(T )}

(d) Each πi consists of a branch of the Merkle tree from the root node leading
to and including the leaf nodes zji−1 and zji .

3. Prover sends Res and π to the Verifier.
– Verify

1. Verifier calls ZKBdf.V erify which forks parallel processes for each πi ∈ π
and checks that:
(a) The Cha used by the Prover is correct.
(b) Root node is the same for all πi.
(c) πi is correctly selected based on Micali’s construction. [41].
(d) Merkle tree branch leading to zj−1 and zj is verified correctly.
(e) Verify vk == commit.
(f) Extract wj−1 from zj−1 and compute Rj [] = PRF (H(wj−1)).
(g) Verify ZKBoo proofs zj−1 and zj for {vk = H(ek)} and {Res =

HMAC(Cha, ek)}.
2. Verifier accepts Res is pseudo-random and computed from HMAC(Cha, ek)

without knowing the value of ek.

Fig. 1. ZKBdf - ZKBoo delay function
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– Execution asymmetry. We introduce execution asymmetry between the
the ZKBoo proof circuit and verify circuit in order to meet the VDF Sequen-
tiality and Efficient verifiability properties.

• Sequentiality. In Section 2.2, our re-definition of Sequentiality includes
the time taken to compute the proof. Since ZKBoo [25] is not based on
any algebraic primitives, we have construct a serialized version of the ZK-
Boo proof generation in Challenge-Response step 2a of Figure 1 by using
the Fiat-Shamir heuristic [23] to make the random sequence Ri[] for each
subsequent round’s proof circuit be dependent on the previous round (see
Equation (3)). This dependency adds an additional verification step to
the ZKBoo verify operation but does not affect the verification process
which remains parallelizable for each round.

• Efficient verifiability. We make use of computationally sound PCP [2, 41]
to reduce the computational complexity of ZKBdf.V erify to O(polylog(N)),
thus achieving the efficiently verifiable requirement. In addition, the Ver-
ifier can utilize a polynomial number of (up to logk T ) parallel-processing
resources to obtain execution speed-up of ZKBdf.V erify as compared
to ZKBdf.Eval which can only run sequentially.

– Uniqueness. To ensure the VDF response by the Prover is deterministic and
unpredictable, the ZKBdf.Eval function will incorporate a Pseudo-random
function (PRF) [26] to compute Res.

– Quantum-secure. We have to prove our modified version of ZKBoo+PCP
proofs is quantum-secure. Informally, ZKBoo is an MPC-based zero-knowledge
proof system that is proven secure in the random oracle model [29]. Next,
the OWF boolean circuit used in our proposed VDF is a collapsing hash
function and hence is quantum-resistant [53]. Finally, we retain the use of
the size-efficient Fiat-Shamir heuristic [23] and rely on [54, 18, 14] to arrive
at quantum-security proofs.

The proposed ZKBdf also incorporates some of the properties related to contin-
uous VDF [22]. Proof-generation is not an all-or-nothing process. A Prover can
hand over a partial proof to another Prover to complete in a sequential manner,
provided the Prover-secret ek is shared. Similarly, a Verifier can verify part of
the proof, or concurrently send parts of the proof verification to other Verifiers.

Assumption. There is an underlying assumption in our design intuition that
there exists a common OWF that i) can be mapped into a ZKBoo boolean
circuit; ii) can function as an OWF in the Fiat-Shamir heuristic; and iii) can be
used as part of the PRF for generating the VDF response. In our construction,
we have chosen this function to be SHA-family [21] of algorithms. In Section 4,
our proposed VDF will be using SHA-256 as it has well-studied implementations
with a realized ZKBoo boolean circuit [25], is already widely used as a OWF
[42], is a collapsing hash function [53], and is standardized for use as a PRF [32].

The rest of this section covers the formal proofs for ZKBdf’s completeness
and soundness, execution asymmetry, uniqueness, and quantum security.
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3.3 Completeness and Soundness

Claim 1 ZKBdf (Definition 2) satisfies the VDF conditions of completeness and
soundness.

Proof. Based on Definition 2, we arrive at:

Pr

[
ZKBdf.V erify(H(ek),

res, π, Cha, T ) == 1

∣∣∣∣∣ (ek, H(ek))
R←− ZKBdf.Setup()

(res, π)
R←− ZKBdf.Eval(ek, Cha, T )

]
= 1 (4)

Equation (4) satisfies the VDF correctness definition 2 in Boneh et. al. [7].
In ZKBdf, the time delay parameter T defines the number of rounds ZKBoo

is run. For every increment of T , ZKBdf linearly increases the time delay and
exponentially increases (doubling) the security bit-strength of the proof. The
existence of an algorithm O(poly(T)) A is

Pr

ZKBdf.V erify(H(ek), Res′, π′, Cha, T )
== 1

(res′, •) ̸= ZKBdf.Eval(ek, Cha, T )

∣∣∣∣∣∣ (ek, H(ek))
R←− ZKBdf.Setup()

(res′, π′)
R←− A(ek, Cha, T )


=

1

2T
≤ negli(T)

(5)

Equation (5) satisfies the VDF soundness definition 3 in Boneh et. al. [7]. ⊓⊔

3.4 Execution Asymmetry

Lemma 2 (Sequentiality) If there exists an algorithm A where an adversary
with polynomial-bounded computing resources can take < T time-units to com-

pute (Res, π)
R←− A(ek, Cha, T ), then

Pr [ZKBdf.V erify(H(ek), Res, π, Cha, T ) == 1] < negli(T ). (6)

Proof. We have established that the modified ZKBoo.Prove algorithm (see Al-
gorithm 1) has limited preprocessing steps and is non-parallelizable. Next, we
take the assumption that the fastest time needed to complete 1 cycle of the
ZKBoo HMAC-SHA-256 boolean circuit, zi, is 1 time-unit.
• If T == 1, then by Claim 1 (Soundness) of ZKBdf, the fastest time possible

to compute (Res, π)
R←− ZKBdf.Eval(ek, Cha, T ) ≥ time taken to compute zi

= 1 time-unit.
• If T > 1, then the computation of zT can only start after RT−1[] is avail-
able. Since it is computationally infeasible to find RT−1[] (Equation (3)) without
zT−1 and the probability of guessing RT−1[] is negligible, time taken to compute

(Res, π)
R←− ZKBdf.Eval(ek, Cha, T ) ≥ time taken for zT−1 to be generated +

time taken to compute zT = (T − 1) + 1 = T .

Since time taken for (Res, π)
R←− A(ek, Cha, T ) < T , then

(Res, •) ↚ ZKBdf.Eval(ek, Cha, T ) and by Equation (5), Lemma 2 is true. ⊓⊔
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Lemma 3 (Efficient verifiability) A Verifier requires O(polylog(T)) to com-
plete the execution of ZKBdf.V erify such that ZKBdf remains computationally
sound [41].

Proof. Arora and Safra [2] has shown that to create sound PCPs, the probability
that the verifier accepts each randomly-selected proof, given that the proof is
incorrect, must be < 1

2 . Following from Claim 1 (Soundness) of ZKBdf, Micali’s
construction [41] is used in a Merkle tree (see Figure 2) to reduce the size and
execution complexity of the original set of ZKBoo proofs z = {z1, z2, ..., zT } into
π = {π1, π2, ..., πpolylog(T )}.

h1 = H(h1
2||h2

2)

h1
2 = H(h1

3||h2
3)

...

h1
n = H(z1)

z1

h2
n = H(z2)

z2

...

h2
2 = H(h3

3||h4
3)

...
...

· · ·

· · ·

hT
n = H(zT )

zT→ → · · · → →

Fig. 2. Merkle tree of ZKBoo proofs to extract computational sound proofs

Each proof, πi = {h1, h2, ..., h
ji−1
n , hji

n , zji−1, zji} where ji is the index ran-
domly selected by the Fiat-Shamir heuristic, contains the branch of the Merkle
tree from the root node leading to 2 leaf nodes zji−1 and zji . Since both zji−1

and zji are to be verified,

Pr [πi is verified correct|πi is incorrect] ≤
2

3
∗ 2
3
=

4

9
<

1

2
(7)

Equation (7) shows that the probability of a false negative verification of πi

is ≤ 4
9 which is < 1

2 required for creating PCPs [2]. Since |π| = polylog(T ),
ZKBdf.V erify runs at O(polylog(T)). ⊓⊔

3.5 Uniqueness

Lemma 4 (Uniqueness) The Res returned from ZKBdf.Eval is deterministic
and in-distinguishable from random, unless the proof π is provided.
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Proof. In Challenge-Response step 2a of Figure 1, we use the HMAC primitive
[32] where Res = HMAC(Cha, ek). Since HMAC is a quantum-secure PRF [6,
5, 50] when using SHA-256 as the underlying hash function, Lemma 4 is proven.

⊓⊔

3.6 Quantum-secure

Definition 3. We design a modified security experiment on the basis of EUF-
CMA [27] for VDFs as a series of exchanges between a challenger and an ad-
versary.

Step i) The challenger performs Setup and sends the verification key vk to
the adversary.

Step ii) The adversary can choose any challenge Chai and time Ti ask the
challenger to compute the response.

Step iii) The challenger performs Eval(ek, Chai, Ti) and returns the response
(Resi, πi) to the adversary. Step ii) and iii) are repeated as many times
as necessary.

Step iv) At the end of the experiment, the adversary is provided with ek and T ′,
and has less than T ′ time to output a challenge Cha′ that is not within
the set of challenges Chai requested in Step ii)., and the response
(Res′, π′) that will return accept when V erify(vk, Res′, π′, Cha′, T ′)
is called.

Claim 5 (Quantum-Secure) ZKBdf is EUF-CMA quantum-secure if the prob-
ability, that any polynomial-time quantum-capable adversary can win the modi-
fied EUF-CMA experiment, is negligible.

In order for any adversary to win the experiment, the adversary will need at
least one of the following 5 cases to happen with non-negligible probability:

Case a) Obtain the evaluation key ek before Step iv); or
Case b) Obtain the challenge-response pair Cha′, Res′ before Step iv).; or
Case c) Start the generation of any ZKBoo-proofs zi prior to having ek; or
Case d) Generate the set of ZKBoo-proofs z = {z1, ...zT } non-sequentially; or
Case e) Creating the proof π = {π1, .., πpolylog(T )} without needing to com-

pletely generate the set of ZKBoo-proofs z.

In ZKBdf, vk = H(ek) where SHA-256 is used as the OWFH(). The collision-
resistance of SHA-256 has been extensively studied [33, 39, 28] in both classical
and quantum settings. Unruh [53] then showed that SHA-256 is a collapsing
function which is “analogous to collision-resistance in the post-quantum setting”.
Hence, it is unlikely that Case a) happens.

Without knowledge of ek, the adversary will have to guess the value of re-
sponse Res′ = HMAC(Cha′, ·) where Cha′ ̸∈ {Cha1, ..., Chai} previously done
in Step ii). Since the response is proven unique in Lemma 4, it is unlikely that
Case b) happens.
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Each ZKBoo-proof zi contains the zero-knowledge proof of vk = H(ek) and
Res′ = HMAC(Cha′, ek). Since the adversary does not have knowledge of ek
or Res′ prior to Step iv), it is unlikely that Case c) happens.

Lemma 2 has shown ZKBdf to satisfy the sequentiality property in the classi-
cal setting. To prove sequentiality in the quantum setting, we have to show that
the Fiat-Shamir heuristic [23] used to serialize (see Equation (3)) remains secure.
This has been proven by Don et. al. [18] on the basis that the hash is collapsing
(which SHA-256 is) and thus implies that Case d) is unlikely to happen.

Finally, Chiesa et. al. [14] has proven that Kilian’s protocol [34] (which Mi-
cali’s construction [41] is based on) is a collapsing protocol and can be used to
securely construct a post-quantum argument of knowledge. This implies that
Case e) is unlikely to happen and completes the proof of Claim 5.

4 Implementation

To realize the design, we implemented4 zkbdf.Eval and zkbdf.V erify to ob-
serve the proof performance and proof size. As a benchmark, we also included a
pseudo-VDF version of zkbdf.V erify, called zkbdf.V erifyPseudo5, which per-
forms the verification on the entire zkboo-proof, without the optimized PCP-
proofs. This would allow us to understand the extent of execution and size op-
timization that computationally sound PCP provides. Table 1 recaps the prop-
erties of the modules.

Table 1. Characteristics of ZKBdf modules implemented

Properties zkbdf.Eval zkbdf.V erifyPseudo zkbdf.V erify

Proof Execution O(T ) O(T ) O(polylog(T ))

CPU utilization sequential parallel parallel

Proof Size O(T ) or
O(polylog(T ))

O(T )
-

-
O(polylog(T ))

All executions were performed on an Intel I5-8250U 8th Gen machine with
8 CPU cores and 8GB RAM, running 64-bit Windows 10. No operating system
level CPU scheduling or adjustments were done.

4.1 Execution

We want to observe how the value of delay T is translated into actual execution.
Since the soundness property of ZKBdf is dependent on T , it is not meaningful

4 Source codes at https://github.com/tanteikg/zkbdf
5 We define ZKBdf.V erifyPseudo(H(ek), Res,z, Cha, T ) → (result ∈ {1, 0}) as a
function run by the Verifier. The difference with zkbdf.V erify is that the input
proof is the entire set of zkboo proofs z instead of the PCP proofs π. As a refer-
ence, zkbdf.V erifyPseudo achieves the same completeness, soundness, sequentiality,
uniqueness, and quantum-secure properties. It only does not achieve the efficient-
verifiability property to make it a VDF.
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if T is too small (i.e. < 50). We varied the time delay parameter T from 50 up
to 350 in steps of 50 and captured the average execution times and proof sizes
generated. Figure 3 plots the execution times of the 3 modules against the delay
parameter.

50 100 150 200 250 300 350

500

1,000

Delay parameter T

Time (ms)

zkbdf.Eval

zkbdf.VerifyPseudo

zkbdf.Verify

Fig. 3. Execution time against delay parameter T

The execution times of zkbdf.Eval can be observed to linearly increase with
T while the execution times of zkbdf.V erify increases less significantly since it
executes in O(polylog(T )). Due to the parallel-CPU utilization during execution,
zkbdf.V erifyPseudo executes faster than zkbdf.Eval, but also increases linearly.

When comparing the ratio of verification time versus evaluation time (see
Figure 4), zkbdf.V erify execution time drops below 10% of zkbdf.Eval ex-
ecution time for T > 100 and continues to decrease to almost 2.5% when
T = 350. zkbdf.V erifyPseudo execution time continues to hover at around
30% of zkbdf.Eval execution time even for increasing T .

4.2 Proof Size

To understand the optimization in proof size due to Micali’s construction [41],
we list sizes of proofs against delay parameter T in Table 2.

Table 2. Size of proof (in bytes) against delay parameter T

Size Complexity T=50 T=100 T=150 T=200 T=250 T=300 T=350

z Proof O(T ) 1485200 2970400 4455600 5940800 7426000 8911200 10396400

π Proof O(polylog(T )) 360384 422224 484192 485792 487392 549488 551088
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50 100 150 200 250 300 350

10

20

30

Delay parameter T

V erify
Eval

%

VerifyPseudo / Eval

Verify / Eval

Fig. 4. Percentage of V erify
Eval

against delay parameter T

In comparison6 with Pietrzak’s [45] and Wesolowski’s [55] VDFs, both their
proof sizes grow at O(logT) complexity and remain below 200KB [56] even for
large T values. While proof sizes of ZKBdf can be halved through ZKB++
optimizations [12], they are unlikely to approach the sizes below 200KB for
large T values.

5 ZKBdf Application Areas

At present, we see the use of VDFs in consensus protocols for blockchains such
as Ethereum (ethereum.org), Tezos (tezos.foundation) and Chia (chia.net) as
well as in constructing time-stamping services and random beacons [22, 51, 35].
However, we believe that there is a wider use-case for VDFs if the functionality
of a Prover-secret is included. In this section, we take an exploratory approach
to identify other possible use-cases where applications can use ZKBdf to improve
outcomes. These are described below.

5.1 Limiting Authentication Retries

We find a use-case where a delay function is needed during the authentica-
tion process to limit a brute-force attack against a backend authentication ser-
vice. Broken Authentication is amongst the top 10 security risks highlighted by
OWASP (Open Web Application Security Project) [43] where one of the ways to
address such risks is to introduce an increasing delay for repeated failed authen-
tication attempts. Such a setup, however, requires the backend authentication

6 The quantum-secure VDF by Chavez-Saab et. al. [13] lacks published implementa-
tion details for comparison.



ZKBdf: A ZKBoo-based VDF with Prover-secret 17

service to maintain failed authentication states for every user which inadver-
tently adds resource overheads and complexity especially in distributed systems.
There are also many protocols such as Bitcoin [42], Transport Layer Security [46]
and Wi-FI Protected Access (IEEE 802.11-2020) which do not require tracking
of failed authentication attempts. A stateless delay mechanism using client-side
puzzles is presented by Aura et. al [3] where every authentication is preceded
with a PoW challenge which the authentication client needs to solve, before
the server verifies the solution. Similar mechanisms are also used to prevent
brute-force denial-of-service network attacks [17] and limiting peer-to-peer sybil
attacks [19].

The advantage of using ZKBdf instead of a client-side PoW puzzle is that the
number of authentication retries that a hacker can make is deterministic and no
longer dependent on the amount of resources available to the hacker. Increasing
the amount of CPU/memory resources at the hacker’s end does not increase the
number of authentication retries, and this will serve to deter hackers while not
increasing the carbon footprint caused by ever-more complex puzzles.

5.2 Improving Auction Liveliness

In a classical English auction, an item is put on offer for participants to bid in an
open outcry manner. The auctioneer asks for participants to place bids higher
than the previous bid, and when an elapsed period has occurred without any
participants placing any higher bids, the auction is closed with the winner being
the participant who submitted the latest (and highest) bid. Online auctions that
happen on the Internet, on the other hand, mostly do not have a concept of an
elapsed time since the last bid. Instead, there is auction end-time whereby the
highest bid received before the end-time is the winning bid. This has given rise to
situations where participants are passive throughout most of the auction period
and are only active at the closing moments of the auction where bid sniping [48]
occurs.

The ZKBdf protocol could be used to allow honest participants to determine
the end of the auction prior to the end-time. When a participant submits a valid
highest bid, the participant is issued with a VDF challenge which effectively
starts the elapsed time computation. If no higher bid is received prior to the
participant completing the VDF challenge and submitting the response, then the
participant would have won the auction, thus ending the auction. The advantage
of using the VDF here is that we expect participants will no longer wait till the
closing moments before bidding. Another possible positive outcome would be
the detection of shill bidding (an agent working for a corrupt seller to bid up the
price without any intention to buy) since the seller’s agent is unlikely to submit
the VDF response to close the auction.

6 Conclusion

In this paper, we introduced ZKBdf, a provably quantum-secure VDF built on
a ZKBoo [25] zero-knowledge proof of knowledge of a HMAC-SHA256 [32] se-
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cret key. In order to achieve the VDF property of sequentiality, the generation
of each subsequent iterative ZKBoo proof is modified to include a Fiat-Shamir
transform [23] of the previous view. The verification process of the set of ZKBoo
proofs is then optimized using Micali’s construction [41] to perform computation-
ally sound PCP proof-verification [2] thereby achieving O(polylog(T)) in both
execution and proof size. We have provided proofs for completeness, soundness,
sequentiality, efficient verifiability, and uniqueness. We have also used a modified
EUF-CMA experiment to prove ZKBdf to be quantum-secure. The implemen-
tation of ZKBdf is tested and both performances, as well as proof sizes, are
measured. ZKBdf includes an added feature of “Prover-secret” on top of stan-
dard VDFs and new use-cases are identified. Future work includes optimizing
the ZKBdf proof sizes and exploring the use of ZKBdf in post-quantum authen-
tication.
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