
From the Hardness of Detecting Superpositions to Cryptography:
Quantum Public Key Encryption and Commitments

Minki Hhan1, Tomoyuki Morimae2, and Takashi Yamakawa2,3

1KIAS, Seoul, Republic of Korea
minkihhan@kias.re.kr

2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
tomoyuki.morimae@yukawa.kyoto-u.ac.jp

3NTT Social Informatics Laboratories, Tokyo, Japan
takashi.yamakawa.ga@hco.ntt.co.jp

Abstract

Recently, Aaronson et al. (arXiv:2009.07450) showed that detecting interference between two
orthogonal states is as hard as swapping these states. While their original motivation was from quantum
gravity, we show its applications in quantum cryptography.
1. We construct the first public key encryption scheme from cryptographic non-abelian group actions.
Interestingly, the ciphertexts of our scheme are quantum even if messages are classical. This resolves
an open question posed by Ji et al. (TCC ’19). We construct the scheme through a new abstraction
called swap-trapdoor function pairs, which may be of independent interest.

2. We give a simple and efficient compiler that converts the flavor of quantum bit commitments.
More precisely, for any prefix X,Y ∈ {computationally,statistically,perfectly}, if the base scheme
is X-hiding and Y-binding, then the resulting scheme is Y-hiding and X-binding. Our compiler calls
the base scheme only once. Previously, all known compilers call the base schemes polynomially
many times (Crépeau et al., Eurocrypt ’01 and Yan, Asiacrypt ’22). For the security proof of the
conversion, we generalize the result of Aaronson et al. by considering quantum auxiliary inputs.



Contents

1 Introduction 1
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Concurrent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Technical Overview 6
2.1 Part I: PKE from Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Part II: Flavor Conversion for Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Preliminaries 12
3.1 Basic Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Canonical Quantum Bit Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Equivalence between Swapping and Distinguishing . . . . . . . . . . . . . . . . . . . . . . 14

4 Quantum-Ciphertext Public Key Encryption 15
4.1 Swap-Trapdoor Function Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Quantum-Ciphertext Public Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Instantiation from Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Equivalence between Swapping and Distinguishing with Auxiliary States 26

6 Our Conversion for Commitments 29

7 Applications of Our Conversion 32
7.1 Construction from PRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Construction from Pseudorandom State Generators . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Construction from Injective One-Way Functions . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Construction from Collapsing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Proof of Lemma 4.7 43

B More Applications of Our Conversion 46
B.1 Construction from One-Way Permutations via Dumais-Mayers-Salvail Commitment . . . . . 46
B.2 Constructions from Injective One-Way Functions via Goldreich-Levin Theorem . . . . . . . 46
B.3 Construction from Collapsing Hash Functions via Halevi-Micali Commitments . . . . . . . 47



1 Introduction

When can we distinguish a superposition of two orthogonal states from their probabilistic mix? A folklore
answer to this question was that we can distinguish them whenever we can map one of the states to the other.
Recently, Aaronson, Atia and, Susskind [AAS20] gave a complete answer to the question. They confirmed
that the folklore was almost correct but what actually characterizes the distinguishability is the ability to swap
the two states rather than the ability to map one of the states to the other.1
We explain their result in more detail by using the example of Schrödinger’s cat following [AAS20]. Let

|Alive⟩ and |Dead⟩ be orthogonal states, which can be understood as the states of alive and dead cats in
Schrödinger’s cat experiment. Then, the authors showed that one can efficiently swap |Alive⟩ and |Dead⟩
(i.e., there is an efficiently computable unitary U such that U |Dead⟩ = |Alive⟩ and U |Alive⟩ = |Dead⟩) if
and only if there is an efficient distinguisher that distinguishes |Alive⟩+|Dead⟩√

2 and |Alive⟩−|Dead⟩√
2 with certainty.

Note that distinguishing |Alive⟩+|Dead⟩√
2 and |Alive⟩−|Dead⟩√

2 is equivalent to distinguishing |Alive⟩+|Dead⟩√
2 and the

uniform probabilistic mix of |Alive⟩ and |Dead⟩.2 Moreover, they showed that the equivalence is robust in the
sense that a partial ability to swap |Alive⟩ and |Dead⟩, i.e., | ⟨Dead|U |Alive⟩+ ⟨Alive|U |Dead⟩ | = Γ for
some Γ > 0 is equivalent to distinguishability of |Alive⟩+|Dead⟩√

2 and |Alive⟩−|Dead⟩√
2 with advantage∆ = Γ/2.

They gave an interpretation of their result that observing interference between alive and dead cats is
“necromancy-hard”, i.e., at least as hard as bringing a dead cat back to life.
While their original motivation was from quantum gravity, we find their result interesting from crypto-

graphic perspective. Roughly speaking, the task of swapping |Alive⟩ and |Dead⟩ can be thought of as a kind
of search problem where one is given |Alive⟩ (resp. |Dead⟩) and asked to “search” for |Dead⟩ (resp. |Alive⟩).
On the other hand, the task of distinguishing |Alive⟩+|Dead⟩√

2 and |Alive⟩−|Dead⟩√
2 is apparently a decision problem.

From this perspective, we can view their result as a “search-to-decision” reduction. Search-to-decision reduc-
tions have been playing the central role in cryptography, e.g., the celebrated Goldreich-Levin theorem [GL89].
Based on this observation, we tackle the following two problems in quantum cryptography.3
Public key encryption from non-abelian group actions. Brassard and Yung [BY91] initiated the study
of cryptographic group actions. We say that a group G acts on a set S by an action ⋆ : G× S → S if the
following are satisfied:

1. For the identity element e ∈ G and any s ∈ S, we have e ⋆ s = s.

2. For any g, h ∈ G and any s ∈ S, we have (gh) ⋆ s = g ⋆ (h ⋆ s).

For a cryptographic purpose, we assume (at least) that the group action is one-way, i.e., it is hard to find g′
such that g′ ⋆ s = g ⋆ s given s and g ⋆ s. The work of [BY91] proposed instantiations of such cryptographic
group actions based on the hardness of discrete logarithm, factoring, or graph isomorphism problems.
Cryptographic group actions are recently gaining a renewed attention from the perspective of post-

quantum cryptography. Ji et al. [JQSY19] proposed new instantiations based on general linear group

1We remark that the meaning of “swap” here is different from that of the SWAP gate as explained below.
2The distinguishing advantage is (necessarily) halved. This can be seen by the following equality:

1
2

(|Alive⟩ ⟨Alive| + |Dead⟩ ⟨Dead|)

=
1
2

((
|Alive⟩ + |Dead⟩

√
2

)(
⟨Alive| + ⟨Dead|

√
2

)
+
(

|Alive⟩ − |Dead⟩
√

2

)(
⟨Alive| − ⟨Dead|

√
2

))
.

3It may be a priori unclear why these problems are related to [AAS20]. This will become clearer in the technical overview in
Section 2.
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actions on tensors. Alamati et al. [ADMP20] proposed isogeny-based instantiations based on earlier
works [Cou06, RS06, CLM+18]. Both of them are believed to be secure against quantum adversaries.
An important difference between the instantiations in [JQSY19] and [ADMP20] is that the former

considers non-abelian groups whereas the latter considers abelian groups. Abelian group actions are
particularly useful because they give rise to a non-interactive key exchange protocol similar to Diffie-Hellman
key exchange [DH76]. Namely, suppose that s ∈ S is published as a public parameter, Alice publishes gA ⋆ s
as a public key while keeping gA as her secret key, and Bob publishes gB ⋆ s as a public key while keeping
gB as his secret key. Then, they can establish a shared key gA ⋆ (gB ⋆ s) = gB ⋆ (gA ⋆ s). On the other
hand, an eavesdropper Eve cannot know the shared key since she cannot know gA or gB by the one-wayness
of the group action.4 This also naturally gives a public key encryption (PKE) scheme similar to ElGamal
encryption [ElG84]. On the other hand, the above construction does not work if G is a non-abelian group.
Indeed, cryptographic applications given in [JQSY19] are limited to Minicrypt primitives [Imp95], i.e., those
that do not imply PKE in a black-box manner. Thus, [JQSY19] raised the following open question:5

Question 1: Can we construct PKE from non-abelian group actions?

Flavor conversion for quantum bit commitments. Commitments are one of the most important primitives
in cryptography. It enables one to “commit” to a (classical) bit6 in such a way that the committed bit is hidden
from other parties before the committer reveals it, which is called the hiding property, and the committer
cannot change the committed bit after sending the commitment, which is called the binding property. One can
easily see that it is impossible for classical commitments to achieve both hiding and binding properties against
unbounded-time adversaries. It is known to be impossible even with quantum communication [LC97, May97].
Thus, it is a common practice in cryptography to relax either of them to hold only against computationally
bounded adversaries. We say that a commitment scheme is computationally (resp. statistically) binding/hiding,
if it holds against (classical or quantum depending on the context) polynomial-time (resp. unbounded-time)
adversaries. Then, there are the following two flavors of commitments: One is computationally hiding and
statistically binding, and the other is computationally binding and statistically hiding.7 In the following,
whenever we require statistical hiding or binding, the other one should be understood as computational since
it is impossible to statistically achieve both of them as already explained.
In classical cryptography, though commitments of both flavors are known to be equivalent to the existence

of one-way functions [Nao91, HILL99, HR07], there is no known direct conversion between them that
preserves efficiency or the number of interactions. Thus, their constructions have been studied separately.
Recently, Yan [Yan22], based on an earlier work by Crépeau, Légaré, and Salvail [CLS01], showed that

the situation is completely different for quantum bit commitments, which rely on quantum communication
between the sender and receiver. First, he showed a round-collapsing theorem, which means that any
interactive quantum bit commitments can be converted into non-interactive ones. Then he gave a conversion
that converts the flavor of any non-interactive quantum bit commitments using the round-collapsing theorem.

4For the actual security proof, we need a stronger assumption than the one-wayness. This is similar to the necessity of decisional
Diffie-Hellman assumption, which is stronger than the mere hardness of the discrete logarithm problem, for proving security of
Diffie-Hellman key exchange.

5The statement of the open problem in [JQSY19] is quoted as follows: “Finally, it is an important open problem to build
quantum-secure public-key encryption schemes based on hard problems about GLAT or its close variations.” Here, GLAT stands for
General Linear Action on Tensors, which is their instantiation of non-abelian group action. Thus, Question 1 is slightly more general
than what they actually ask.

6We can also consider commitments for multi-bit strings. But we focus on bit commitments in this paper.
7Of course, we can also consider computationally hiding and computationally binding one, which is weaker than both flavors.
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Though Yan’s conversion gives a beautiful equivalence theorem, a disadvantage of the conversion is that
it does not preserve the efficiency. Specifically, it calls the base scheme polynomially many times (i.e., Ω(λ2)
times for the security parameter λ). Then, it is natural to ask the following question:

Question 2: Is there an efficiency-preserving flavor conversion for quantum bit commitments?

1.1 Our Results

We answer both questions affirmatively using (a generalization of) the result of [AAS20].
For Question 1, we construct a PKE scheme with quantum ciphertexts based on non-abelian group

actions. This resolves the open problem posed by [JQSY19].8 Our main construction only supports classical
one-bit messages, but we can convert it into one that supports quantum multi-qubit messages by hybrid
encryption with quantum one-time pad as showin in [BJ15]. Interestingly, ciphertexts of our scheme are
quantum even if messages are classical. We show that our scheme is IND-CPA secure if the group action
satisfies pseudorandomness, which is a stronger assumption than the one-wayness introduced in [JQSY19].
In addition, we show a “win-win” result similar in spirit to [Zha19]. We show that if the group action is
one-way, then our PKE scheme is IND-CPA secure or we can use the group action to construct one-shot
signatures [AGKZ20].9 Note that constructing one-shot signatures has been thought to be a very difficult
task. The only known construction is relative to a classical oracle and there is no known construction in
the standard model. Even for its significantly weaker variant called tokenized signatures [BDS17], the only
known construction in the standard model is based on indistinguishability obfuscation [CLLZ21]. Given the
difficulty of constructing tokenized signatures, let alone one-shot signatures, it is reasonable to conjecture that
our PKE scheme is IND-CPA secure if we built it on “natural” one-way group actions. Our PKE scheme is
constructed through an abstraction called swap-trapdoor function pairs (STFs), which may be of independent
interest.
For Question 2, We give a new conversion between the two flavors of quantum commitments. That is,

for X,Y ∈ {computationally,statistically,perfectly}, if the base scheme is X-hiding and Y-binding, then the
resulting scheme is Y-hiding and X-binding. Our conversion calls the base scheme only once in superposition.
Specifically, if Qb is the unitary applied by the sender when committing to b ∈ {0, 1} in the base scheme, the
committing procedure of the resulting scheme consists of a single call toQ0 orQ1 controlled by an additional
qubit (i.e., application of a unitary such that |b⟩ |ψ⟩ 7→ |b⟩ (Qb |ψ⟩)) and additional constant number of gates.
For the security proof of our conversion, we develop a generalization of the result of [AAS20] where we
consider auxiliary quantum inputs.
We show several applications of our conversion. We remark that our conversion does not give any

new feasibility result since similar conversions with worse efficiency were already known [CLS01, Yan22].
However, our conversion gives schemes with better efficiency in terms of the number of calls to the building
blocks.

1. In Section 7.1, we apply our conversion to the statistically binding scheme from PRGs by Yan, Weng,
Lin, and Quan [YWLQ15]. Then, we obtain the first statistically hiding quantum commitment scheme
from PRGs that makes only a single call to the PRGs.

8The statement of their open problem (quoted in Footnote 5) does not specify if we are allowed to use quantum ciphertexts. Thus,
we claim to resolve the problem even though we rely on quantum ciphertexts. If they mean post-quantum PKE (which has classical
ciphertexts), this is still open.

9This is a simplified claim and some subtle issues about uniformness of the adversary and “infinitely-often security” are omitted
here. See Lemma 4.7 for the formal statement.
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2. In Section 7.2, based on a recent work, by Morimae and Yamakawa [MY22], we show that we can use
(single-copy-secure) pseudorandom state generators (PRSGs) [JLS18] instead of PRGs in the above
construction. As a result, we obtain the the first statistically hiding quantum commitment scheme from
PRSGs that makes only a single call to the PRSGs.

3. In Section 7.3, we give a novel simple construction of a perfectly hiding quantum commitment scheme
from injective one-way functions that makes a single call to the base function. By applying our
conversion to it, we obtain a perfectly binding quantum commitment scheme from injective one-way
functions that makes a single call to the base function. Though there is a classical construction of such
a scheme based on the Goldreich-Levin theorem [GL89], our construction has a shorter commitment
length since a commitment does not need to include a seed for the hardcore predicate.

4. In Section 7.4, we show that replacing injective one-way functions with (sufficiently length-decreasing)
collapsing functions [Unr16b] in the above constructions yields commitment schemes with the other
flavor. As a result, we obtain the first statistically binding quantum commitment scheme from collapsing
hash functions that makes a single call to the collapsing hash function.

We provide more detailed comparisons with existing constructions after the presentation of each
construction in Section 7. In addition, we present more applications of our conversion (including applications
to the schemes of [HM96, DMS00]) in Appendix B.

1.2 Related Work

Cryptographic group actions. Brassard and Yung [BY91] initiated the study of cryptographic group actions
and proposed instantiations based on the hardness of graph isomorphism, discrete logarithm, or factoring.
However, they are not suitable for our purpose since it turns out that the graph isomorphism problem can be
solved in (classical) quasi polynomial-time [Bab16]10 and discrete logarithm and factoring problems can be
solved in quantum polynomial time [Sho99].
Alamati et al. [ADMP20] gave an abstraction of isogeny-based cryptography as group actions. However,

the isogeny-based construction only supports limited functionality formalized as Restricted Effective Group
Action (REGA). Though it might be possible to modify our definition of group actions (Definition 4.13) to
capture isogeny-based construction by considering similar restrictions, we do not do so because isogeny-based
PKE is already known even without relying on quantum ciphetexts [Cou06, RS06, JD11, CLM+18].
We consider the general linear group action on tensors proposed by [JQSY19] as a main instantiation

for our construction of PKE. Though their security is a newly introduced assumption by [JQSY19], they
justify it by pointing out reductions to many important problems in different areas including coding theory,
computational group theory, andmultivariate cryptography [FGS19]. They also discuss potential cryptanalyses
and demonstrate that none of them seems to work. See [JQSY19] for the details.
Quantum key distribution. Bennett and Brassard [BB84] constructed an unconditionally secure key
exchange protocol with quantum communication, which is known as quantum key distribution. We remark
that quantum key distribution protocols are inherently interactive unlike our quantum PKE with quantum

10Another issue is that the graph isomorphism problem is easy for a uniformly random instance, and thus it cannot satisfy our
definition of one-wayness (Definition 4.15) that requires average case hardness. If we modify the definition of the one-wayness to
choose the hardest instance, the graph isomorphism-based construction may satisfy it, and such a version suffices for our applications.
However, since such a construction can be broken in quasi-polynomial time by Babai’s algorithm [Bab16], we do not consider this
instantiation and simply consider average case version in the definition of one-wayness. A similar remark can be found in [JQSY19,
Remark 1].
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ciphertexts. Indeed, it is easy to see that unconditionally secure PKE with classical keys and quantum
ciphertexts is impossible since a brute-force search for the correct decryption key would totally break security.
Quantum public key encryption. There are several works that proposed “quantum PKE” schemes. We
compare them with our PKE with quantum ciphertexts.
The “quantum PKE” in [OTU00] is entirely classical except that the key generation algorithm can be

quantum. The security of their scheme relies on the hardness of the subset-sum problem. Thus, their quantum
PKE is incomparable to our PKE with quantum ciphertexts where key generation is classical, and their
underlying assumption is also incomparable to ours.
The “quantum PKE” in [KKNY05] is PKE with quantum ciphertexts and quantum public keys. On the

other hand, our quantum-ciphertext PKE uses quantum ciphertexts and classical public keys. Thus, their
quantum PKE is a weaker primitive than our PKE with quantum ciphertexts. We remark classical public
keys are much more desirable since we can certify classical public keys by using digital signatures while
generating signatures on quantum messages is known to be impossible [AGM21]. The technical aspect of
our PKE scheme is somewhat similar to [KKNY05] in the sense that both embed messages into phases of
quantum states.
Quantum bit commitments. Bennett, Brassard, and Crépeau [BB84, BC91] initiated the study of quantum
bit commitments. Unfortunately, it turned out to be impossible to construct an unconditionally secure
quantum bit commitments [LC97, May97]. Thus, later works constructed quantum bit commitments
relying on complexity assumptions [DMS00, CLS01, KO09, KO11, YWLQ15, MY22, AQY22]. A
seminal work by Yan [Yan22] showed that any (possibly interactive) quantum bit commitments can be
converted into one in a non-interactive canonical form. His definition of quantum bit commitments
in the canonical form requires a seemingly weak binding property called honest-binding. However, he
showed that it is actually equivalent to sum-binding, which has been traditionally used as a definition of a
binding property of quantum bit commitments [DMS00, CLS01, KO09, KO11, MY22]. In addition, some
works [YWLQ15, FUYZ20, Yan21, MY22] showed that quantum bit commitments in the canonical form can
be used as a building block of other cryptographic primitives including zero-knowledge proofs or arguments
(of knowledge), oblivious transfers, and multi-party computations. Thus, we use quantum bit commitments in
the canonical form (with the honest-binding property) as defined in [Yan22] as a default definition of quantum
bit commitments in this paper.
Other notions of binding. As explained above, we use honest-binding as a default definition of binding. On
the other hand, there are several other definitions of binding for quantum commitments. We review them and
give comparisons with honest-binding. (Similar discussions can also be found in [Yan22].)
Bitansky and Brakerski [BB21] introduced the notion of classical-binding for quantum commitments. It

roughly requires that the committed message is uniquely determined by the commitment. Though this is
impossible to achieve for canonical quantum bit commitments, they avoid the impossibility by having the
receiver measure the commitment in a certain way. The advantage of the classical binding property is that it
is conceptually similar to the binding of classical commitments, and thus it is easy to give security proofs
when plugging it into some protocol as a substitute for classical commitments. On the other hand, existing
works [YWLQ15, FUYZ20, MY22] show that the statistical honest-binding quantum commitments are
already useful for many applications. Indeed, there seems no known application for which classical-binding
suffices but honest-binding does not.
Ananth, Qian, and Yuen [AQY22] introduced a new definition of a statistical binding property for quantum

commitments, which we call AQY-binding. The motivation of this definition is for the application to quantum
oblivious transfers and multi-party computation [BCKM21]. However, [MY22, Appendix B] observed that
the statistical honest-binding property implies the AQY-binding property based on the technique of [FUYZ20].
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A full proof is given in [Yan22, Appendix B].
Yan [Yan21] proved that the computational honest-binding property implies what is called the computa-

tional predicate-binding property, which is sufficient for implementing Blum’s Hamiltonicity protocol.
There are several other definitions of computational binding for quantum (string) commitments [CDMS04,

DFS04] that are shown to be more useful in applications than computational honest binding ones. However,
there is no known construction that satisfies the definition of [CDMS04], and the only known construction that
satisfies [DFS04] is in the CRS model and based on a special assumption that is tailored to their construction.
(See [Unr16b, Yan21] for more details of these definitions.)

1.3 Concurrent Work

A concurrent work by Gunn, Ju, Ma, and Zhandry [GJMZ22] defines commitments to quantum states and
shows duality between binding and hiding for them. In particular, as the special case of commitments to
classical strings, they give a similar flavor conversion to ours [GJMZ22, Section 4.4.1]. However, we remark
that their definitions of binding and hiding are stronger than those in [Yan22], which we use by default.
Specifically, they require what they call “Z-binding”, which is similar to collapse-binding introduced by
Unruh [Unr16b], and “X-hiding”, which is a strengthening of the normal hiding that allows the adversary to
submit a superposition of classical messages as a challenge message.1112 They show that we can trade statistical
(resp. computational) Z-binding and statistical (resp. computational) X-hiding. This is incomparable to our
result since they require stronger security for the base scheme and show stronger security for the resulting
scheme. Thus, our conversion is applicable to a wider variety of schemes. For example, we have many
applications as shown in Section 7 and Appendix B, but it is unclear if their conversion is applicable to those
schemes since we do not know if they satisfy Z-binding or X-hiding.

2 Technical Overview

We give a technical overview of our results. In the overview, we assume that the reader has read the informal
explanation of the result of [AAS20] at the beginning of Section 1.

2.1 Part I: PKE from Group Actions

Suppose that a (not necessarily abelian) group G acts on a finite set S by a group action ⋆ : G × S → S.
Suppose that it is one-way, i.e., it is hard to find g′ such that g′ ⋆ s = g ⋆ s given s and g ⋆ s.13
Our starting point is the observation made in [BY91] that one-way group actions give claw-free function

pairs as follows. Let s0 and s1 := g ⋆ s0 be public parameters where s0 ∈ S and g ∈ G are uniformly chosen.
Then if we define a function fb : G → S by fb(h) := h ⋆ sb for b ∈ {0, 1}, the pair (f0, f1) is claw-free,
i.e., it is hard to find h0 and h1 such that f0(h0) = f1(h1). This is because if one can find such h0 and h1,
then one can break the one-wayness of the group action by outputting h−1

1 h0, since f0(h0) = f1(h1) implies
(h−1

1 h0) ⋆ s0 = s1.

11Z and X for Z-binding and X-binding stand for Pauli operators. Do not confuse them with our notation X,Y ∈
{computationally,statistically,perfectly}.

12It might be possible to show that statistical Z-binding and statisticalX-hiding are equivalent to statistical binding and statistical
hiding in [Yan22], respectively. On the other hand, it is unlikely that they extend to the computational case.

13We will eventually need pseudorandomness, which is stronger than one-wayness, for the security proof of our PKE scheme. We
defer the introduction of pseudorandomness for readability.
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Unfortunately, claw-free function pairs are not known to imply PKE. The reason of the difficulty of
constructing PKE is that claw-free function pairs do not have trapdoors. Indeed, it is unclear if there is
a trapdoor that enables us to invert f0 and f1 for the above group-action-based construction. Our first
observation is that the above construction actually has a weak form of a trapdoor: If we know g as a trapdoor,
then we can find h1 such that f0(h0) = f1(h1) from h0 by simply setting h1 := h0g

−1 and vice versa.
Though this trapdoor g does not give a power to invert f0 or f1, this enables us to break claw-freeness in a
strong sense. We formalize such function pairs as swap-trapdoor function pairs (STFs).14 For the details of
STFs, see Sec. 4.1.
Next, we explain our construction of a PKE scheme with quantum ciphertexts. Though it is a generic

construction based on STFs with certain properties, we here focus on the group-action-based instantiation for
simplicity. (For the generic construction based on STFs, see Sec. 4.2.) A public key of our PKE scheme
consists of s0 and s1 = g ⋆ s0 and a secret key is g. For encrypting a bit b, the ciphertext is set to be

ct b := 1√
2

(
|0⟩ |f−1

0 (y)⟩+ (−1)b |1⟩ |f−1
1 (y)⟩

)
(1)

for a random y ∈ S.15 Here, |f−1
b′ (y)⟩ is the uniform superposition over f−1

b′ (y) := {h ∈ G : fb′(h) = y}
for b′ ∈ {0, 1}. The above state can be generated by a standard technique similar to [BCM+18, Mah18].
Specifically, we first prepare

1√
2

(|0⟩+ (−1)b |1⟩)⊗ 1√
|G|

∑
h∈G
|h⟩ ,

compute a group action by h in the second register on s0 or s1 controlled by the first register to get
1√
2|G|

( ∑
h∈G
|0⟩ |h⟩ |h ⋆ s0⟩+ (−1)b

∑
h∈G
|1⟩ |h⟩ |h ⋆ s1⟩

)
,

and measure the third register to get y ∈ S. At this point, the first and second registers collapse to the state in
Equation (1).16 Decryption can be done as follows. Given a ciphertext ct b, we apply a unitary |h⟩ → |hg⟩
on the second register controlled on the first register. Observe that the unitary maps |f−1

1 (y)⟩ to |f−1
0 (y)⟩.

Then, the resulting state is 1√
2

(
|0⟩ |f−1

0 (y)⟩+ (−1)b |1⟩ |f−1
0 (y)⟩

)
. Thus, measuring the first register in the

Hadamard basis results in the message b.
Next, we discuss how to prove security. Our goal is to prove that the scheme is IND-CPA secure, i.e., ct0

and ct1 are computationally indistinguishable. Here, we rely on the result of [AAS20]. According to their
result, one can distinguish ct0 and ct1 if and only if one can swap |0⟩ |f−1

0 (y)⟩ and |1⟩ |f−1
1 (y)⟩. Thus, it

suffices to prove the hardness of swapping |0⟩ |f−1
0 (y)⟩ and |1⟩ |f−1

1 (y)⟩ with a non-negligible advantage.17
Unfortunately, we do not know how to prove this solely assuming the claw-freeness of (f0, f1). Thus,
we introduce a new assumption called conversion hardness, which requires that one cannot find h1 such
that f1(h1) = y given |f−1

0 (y)⟩ with a non-negligible probability. Assuming it, the required hardness of
swapping follows straightforwardly since if one can swap |0⟩ |f−1

0 (y)⟩ and |1⟩ |f−1
1 (y)⟩, then one can break

the conversion hardness by first mapping |0⟩ |f−1
0 (y)⟩ to |1⟩ |f−1

1 (y)⟩ and then measuring the second register.
The remaining issue is how to prove conversion hardness based on a reasonable assumption on the group

action. We show that pseudorandomness introduced in [JQSY19] suffices for this purpose. Pseudorandomness
requires the following two properties:

14The inituition of the name is that one can “swap” h0 and h1 given a trapdoor.
15Precisely, y is distributed as h ⋆ s0 for uniformly random h ∈ G.
16Note that |f−1

0 (y)| = |f−1
1 (y)| for all y ∈ S.

17See Theorem 3.10 for the precise meaning of the advantage for swapping.
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1. The probability that there exists g ∈ G such that g ⋆ s0 = s1 is negligible where s0, s1 ∈ S are
uniformly random.

2. The distribution of (s0, s1 := g ⋆ s0) where s0 ∈ S and g ∈ G are uniformly random is computationally
indistinguishable from the uniform distribution over S2.

Note that we require Item 1 because otherwise Item 2 may unconditionally hold, in which case there is no
useful cryptographic application. We argue that pseudorandomness implies conversion hardness as follows.
By Item 2, the attack against the conversion hardness should still succeed with almost the same probability
even if we replace s1 with a uniformly random element of S. However, then there should exist no solution by
Item 1. Thus, the original success probability should be negligible.
While [JQSY19] gave justification on pseudorandomness of their instantiation of group actions, it is a

stronger assumption than one-wayness. Thus, it is more desirable to get PKE scheme solely from one-wayness.
Toward this direction, we show the following “win-win” result inspired by [Zha19]. If (f0, f1) is claw-free but
not conversion hard, then we can construct a one-shot signatures. Roughly one-shot signatures are a quantum
primitive which enables us to generate a classical verification key vk along with a quantum signing key sk in
such a way that one can use sk to generate a signature for whichever message of one’s choice, but cannot
generate signatures for different messages simultaneously. (See Definition A.2 for the formal definition.)
For simplicity, suppose that (f0, f1) is claw-free but its conversion hardness is totally broken. That is, we
assume that we can efficiently find h1 such that f1(h1) = y given |f−1

0 (y)⟩. Our idea is to set |f−1
0 (y)⟩ to be

the secret key and y to be the corresponding verification key. For signing to 0, the signer simply measures
|f−1

0 (y)⟩ to get h0 ∈ f−1
0 (y) and set h0 to be the signature for the message 0. For signing to 1, the signer

runs the adversary against conversion hardness to get h1 such that f1(h1) = y and set h1 to be the signature
for the message 1. If one can generate signatures to 0 and 1 simultaneously, we can break claw-freeness since
f0(h0) = f1(h1) = y. Thus, the above one-shot signature is secure if (f0, f1) is claw-free. In the general
case where the conversion hardness is not necessarily completely broken, our idea is to amplify the probability
of finding h1 from |f−1

0 (y)⟩ by a parallel repetition. See Appendix A for the full proof. Based on this result,
we can see that if the group action is one-way, then our PKE scheme is IND-CPA secure or we can construct
one-shot signatures.

2.2 Part II: Flavor Conversion for Commitments

Definition of quantum bit commitments. First, we recall the definition of quantum bit commitments as
formalized by Yan [Yan22]. He (based on earlier works [CKR11, YWLQ15, FUYZ20]) showed that any
(possibly interactive) quantum bit commitment scheme can be written in the following (non-interactive)
canonical form. A canonical quantum bit commitment scheme is characterized by a pair of unitaries (Q0, Q1)
over two registers C (called the commitment register) andR (called the reveal register) and works as follows.

Commit phase: For committing to a bit b ∈ {0, 1}, the sender generates the state Qb |0⟩C,R and sends C to
the receiver while keepingR on its side.18

Reveal phase: For revealing the committed bit, the sender sends R along with the committed bit b to the
receiver. Then, the receiver applies Q†b to C andR and measures both registers. If the measurement
outcome is 0 . . . 0, the receiver accepts and otherwise rejects.

We require a canonical quantum bit commitment scheme to satisfy the following hiding and binding
properties. The hiding property is defined analogously to that of classical commitments. That is, the

18We write |0⟩ to mean |0 . . . 0⟩ for simplicity.
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computational (resp. statistical) hiding property requires that quantum polynomial-time (resp. unbounded-
time) receiver (possibly with quantum advice) cannot distinguish commitments to 0 and 1 if only given
C.
On the other hand, the binding property is formalized in a somewhat different way from the classical

case. The reason is that a canonical quantum commitment scheme cannot satisfy the binding property in
the classical sense. The classical binding property roughly requires that a malicious sender can open a
commitment to either of 0 or 1 except for a negligible probability. On the other hand, in canonical quantum
bit commitment schemes, if the sender generates a uniform superposition of commitments to 0 and 1, it
can open the commitment to 0 and 1 with probability 1/2 for each.19 Thus, we require a weaker binding
property called the honest-binding property, which intuitively requires that it is difficult to map an honestly
generated commitment of 0 to that of 1 without touching C. More formally, the computational (resp.
statistical) honest-binding property requires that for any polynomial-time computable (resp. unbounded-time
computable) unitary U overR and an additional register Z and an auxiliary state |τ⟩Z, we have∥∥∥(Q1 |0⟩ ⟨0|Q†1)C,R(IC ⊗ UR,Z)((Q0 |0⟩)C,R |τ⟩Z)

∥∥∥ = negl(λ).

One may think that honest-binding is too weak because it only considers honestly generated commitments.
However, somewhat surprisingly, [Yan22] proved that it is equivalent to another binding notion called the
sum-binding [DMS00].20 The sum-binding property requires that the sum of probabilities that any (quantum
polynomial-time, in the case of computational binding) malicious sender can open a commitment to 0 and
1 is at most 1 + negl(λ). In addition, it has been shown that the honest-binding property is sufficient for
cryptographic applications including zero-knowledge proofs/arguments (of knowledge), oblivious transfers,
and multi-party computation [YWLQ15, FUYZ20, Yan21, MY22]. In this paper, we refer to honest-binding
if we simply write binding.
Our conversion. We propose an efficiency-preserving flavor conversion for quantum bit commitments
inspired by the result of [AAS20]. Our key observation is that the swapping ability and distinguishability look
somewhat similar to breaking binding and hiding of quantum commitments, respectively. The correspondence
between distinguishability and breaking hiding is easier to see: The hiding property directly requires that
distinguishing commitments to 0 and 1 is hard. The correspondence between the swapping ability and
breaking binding is less clear, but one can find similarities by recalling the definition of (honest-)binding for
quantum commitments: Roughly, the binding property requires that it is difficult to map the commitment to
0 to that to 1. Technically, a binding adversary does not necessarily give an ability to swap commitments
to 0 and 1 since it may map the commitment to 1 to arbitrary state instead of to the commitment to 0. But
ignoring this issue (which we revisit later), breaking binding property somewhat corresponds to swapping.
However, an important difference between security notions of quantum commitments and the setting

of the theorem of [AAS20] is that the former put some restrictions on registers the adversary can touch:
For hiding, the adversary cannot touch the reveal register R, and for binding, the adversary cannot touch
the commitment register C. To deal with this issue, we make another key observation that the equivalence
between swapping and distinguishing shown in [AAS20] preserves locality. That is, if the swapping unitary
does not touch some qubits of |Alive⟩ or |Dead⟩, then the corresponding distinguisher does not touch those
qubits either, and vice versa.

19A recent work by Bitansky and Brakerski [BB21] showed that a quantum commitment scheme may satisfy the classical binding
property if the receiver performs a measurement in the commit phase. However, such a measurement is not allowed for canonical
quantum bit commitments.

20The term “sum-binding” is taken from [Unr16b].
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The above observations suggest the following conversion. Let {Q0, Q1} be a canonical quantum bit
commitment scheme. Then, we construct another scheme {Q′0, Q′1} as follows:

• The roles of commitment and reveal registers are swapped from {Q0, Q1} and the commitment register
is augmented by an additional one-qubit register. That is, if C and R are the commitment and
reveal registers of {Q0, Q1}, then the commitment and reveal registers of {Q′0, Q′1} are defined as
C′ := (R,D) andR′ := C whereD is a one-qubit register.

• For b ∈ {0, 1}, the unitary Q′b is defined as follows:

Q′b |0⟩C,R |0⟩D := 1√
2

(
(Q0 |0⟩)C,R |0⟩D + (−1)b(Q1 |0⟩)C,R |1⟩D

)
, (2)

where (C′,R′) is rearranged as (C,R,D).21

One can see that {Q′0, Q′1} is almost as efficient as {Q0, Q1}: For generating, Q′b |0⟩C,R |0⟩D one can
first prepare |0⟩C,R (|0⟩+ (−1)b |1⟩)D and then apply Q0 or Q1 to (C,R) controlled byD. We prove that
the hiding and binding properties of {Q0, Q1} imply binding and hiding properties of {Q′0, Q′1}, respectively.
Moreover, the reduction preserves all three types of computational/statistical/perfect security. Thus, this gives
a conversion between different flavors of quantum bit commitments.
Security proof. At an intuitive level, the theorem of [AAS20] with the above “locality-preserving” observation
seems to easily give a reduction from security of {Q′0, Q′1} to that of {Q0, Q1}: If we can break the hiding
property of {Q′0, Q′1}, then we can distinguishQ′b |0⟩C,R |0⟩D without touchingR′ = C. Then, their theorem
with the above observation gives a swapping algorithm that swaps (Q0 |0⟩C,R) |0⟩D and (Q1 |0⟩C,R) |1⟩D
without touchingR′ = C, which clearly breaks the binding property of {Q0, Q1}. One may expect that the
reduction from binding to hiding works analogously. However, it is not as easy as one would expect due to the
following reasons.

1. An adversary that breaks the binding property is weaker than a “partial” swapping unitary that swaps
Q′0 |0⟩C′,R′ and Q′1 |0⟩C′,R′ needed for [AAS20]. For example, suppose that we have a unitary U
such that UQ′0 |0⟩C′,R′ = Q′1 |0⟩C′,R′ and UQ′1 |0⟩C′,R′ = −Q′0 |0⟩C′,R′ . Clearly, this completely
breaks the binding property of {Q′0, Q′1}. However, this is not sufficient for applying [AAS20] since
| ⟨0|Q′1

†UQ′0 |0⟩+ ⟨0|Q′0
†UQ′1 |0⟩ | = 0.

2. For security of quantum bit commitments, we have to consider adversaries with quantum advice, or at
least those with ancilla qubits even for security against uniform adversaries. However, the theorem of
[AAS20] does not consider any ancilla qubits.

Both issues are already mentioned in [AAS20]. In particular, Item 1 is an essential issue. They prove
the existence of a pair of orthogonal states |Alive⟩ and |Dead⟩ such that we can map |Alive⟩ to |Dead⟩ by
an efficient unitary, but | ⟨Dead|U |Alive⟩ + ⟨Alive|U |Dead⟩ | ≈ 0 for all efficient unitaries U [AAS20,
Theorem 3]. For Item 2, they (with acknowledgment to Daniel Gottesman) observe that the conversion from a
distinguisher to a swapping unitary works even with any quantum advice, but the other direction does not
work if there are ancilla qubits [AAS20, Footnote 2].
One can see that the above issues are actually not relevant to the reduction from the hiding of {Q′0, Q′1} to

the binding of {Q0, Q1}. However, for the reduction from the binding of {Q′0, Q′1} to the hiding of {Q0, Q1},
both issues are non-trivial. Below, we show how to resolve those issues.

21We only present how Q′
b works on |0⟩C,R |0⟩D for simplicity. Its definition on general states can be found in Theorem 6.1.
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Solution to Item 1. By the result of [AAS20, Theorem 3] as already explained, this issue cannot be resolved
if we think of Q′0 |0⟩C′,R′ and Q′1 |0⟩C′,R′ as general orthogonal states. Thus, we look into the actual form
of them presented in Equation (2). Then, we observe that an adversary against the binding property does
not touchD since that is part of the commitment registerC′ of {Q′0, Q′1}. Therefore, he cannot cause any
interference between (Q0 |0⟩)C,R |0⟩D and (Q1 |0⟩)C,R |1⟩D. Therefore, if it maps

1√
2

((Q0 |0⟩)C,R |0⟩D + (Q1 |0⟩)C,R |1⟩D) 7→ 1√
2

((Q0 |0⟩)C,R |0⟩D − (Q1 |0⟩)C,R |1⟩D) ,

then it should also map

1√
2

((Q0 |0⟩)C,R |0⟩D − (Q1 |0⟩)C,R |1⟩D) 7→ 1√
2

((Q0 |0⟩)C,R |0⟩D + (Q1 |0⟩)C,R |1⟩D) .

Thus, the ability to map Q′0 |0⟩C′,R′ to Q′1 |0⟩C′,R′ is equivalent to swapping them for this particular
construction when one is not allowed to touchD. A similar observation extends to the imperfect case as well.
Therefore, Item 1 is not an issue for the security proof of this construction.
Solution to Item 2. To better understand the issue, we review how the conversion from a swapping unitary to
a distinguisher works. For simplicity, we focus on the perfect case here, i.e., we assume that there is a unitary
U such that U |Dead⟩ = |Alive⟩ and U |Alive⟩ = |Dead⟩ for orthogonal states |Alive⟩ and |Dead⟩. Then,
we can construct a distinguisher A that distinguishes |Alive⟩+|Dead⟩√

2 and |Alive⟩−|Dead⟩√
2 as follows: Given a

state |η⟩, which is either of the above two states |Alive⟩+|Dead⟩√
2 or |Alive⟩−|Dead⟩√

2 , it prepares |0⟩+|1⟩√
2 in an ancilla

qubit, applies U controlled by the ancilla, and measures the ancilla in Hadamard basis. An easy calculation
shows that the measurement outcome is 1 with probability 1 if |η⟩ = |Alive⟩+|Dead⟩√

2 and 0 with probability 1 if
|η⟩ = |Alive⟩−|Dead⟩√

2 .
Then, let us consider what happens if the swapping unitary uses ancilla qubits. That is, suppose that we

have U |Dead⟩ |τ⟩ = |Alive⟩ |τ ′⟩ and U |Alive⟩ |τ⟩ = |Dead⟩ |τ ′⟩ for some ancilla states |τ⟩ and |τ ′⟩. When
|τ⟩ and |τ ′⟩ are orthogonal, the above distinguisher does not work because there does not occur interference
between states with 0 and 1 in the control qubit. To resolve this issue, our idea is to “uncompute” the
ancilla state. A naive idea to do so is to apply U †, but then this is meaningless since it just goes back to the
original state. Instead, we prepare a “dummy” register that is initialized to be |Alive⟩+|Dead⟩√

2 . Then, we add
an application of U † to the ancilla qubits and the dummy register controlled by the control qubit. Then, the
ancilla qubit goes back to |τ⟩ while the state in the dummy register does not change because it is invariant
under the swapping of |Alive⟩ and |Dead⟩. Then, we can see that this modified distinguisher distinguishes
|Alive⟩+|Dead⟩√

2 and |Alive⟩−|Dead⟩√
2 with advantage 1.

Unfortunately, when the swapping ability is imperfect, the above distinguisher does not work. However,
we show that the following slight variant of the above works: Instead of preparing |Alive⟩+|Dead⟩√

2 , it prepares
|Alive⟩|0⟩+|Dead⟩|1⟩√

2 . After the controlled application of U †, it flips the rightmost register (i.e., apply Pauli X
to it). In the perfect case, this variant also works with advantage 1 since the state in the dummy register
becomes |Dead⟩|0⟩+|Alive⟩|1⟩√

2 after the application of the controlled U †, which goes back to the original state
|Alive⟩|0⟩+|Dead⟩|1⟩√

2 by the flip. Our calculation shows that this version is robust, i.e., it works even for the
imperfect case.
There are several caveats for the above. First, it requires the distinguisher to take an additional quantum
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advice |Alive⟩|0⟩+|Dead⟩|1⟩√
2 , which is not necessarily efficiently generatable in general.22 Second, there occurs a

quadratic reduction loss unlike the original theorem in [AAS20] without ancilla qubits. Nonetheless, they are
not a problem for our purpose.

3 Preliminaries

Basic notations. We use λ to mean the security parameter throughout the paper. The dependence on λ
is often implicit. For example, we simply write a function f : {0, 1}n → {0, 1}m to mean a collection
{fλ : {0, 1}n(λ) → {0, 1}m(λ)}λ∈N for some functions n(λ) and m(λ) etc. For a finite set X , we write
x← X to mean that we uniformly take x fromX . For a (possibly randomized) classical or quantum algorithm
A, we write y ← A(x) to mean that A takes x as input and outputs y. For a function f : X → Y and y ∈ Y ,
we write f−1(y) to mean the set of all preimages of y, i.e., f−1(y) := {x ∈ X : f(x) = y}. We say that a
probability distribution is statistically close to another probability distribution if their statistical distance is
negligible.
Notations for quantum computations. For simplicity, |0...0⟩ is sometimes written as |0⟩. Quantum registers
are denoted by bold fonts, e.g.,A,B etc. TrA(ρA,B) is the partial trace over the registerA of the bipartite
state ρA,B. For simplicity, the tensor product ⊗ is sometimes omitted: for example, |ψ⟩ ⊗ |ϕ⟩ is sometimes
written as |ψ⟩|ϕ⟩. I is the identity operator on a single qubit. For simplicity, we often write I⊗m just as I
when the dimension is clear from the context. For any two states ρ1 and ρ2, F (ρ1, ρ2) is the fidelity between
them. For a set S of classical strings, we define |S⟩ := 1√

|S|

∑
x∈S |x⟩.

Computational models. We say that a classical algorithm is probabilistic polynomial time (PPT) if it
can be computed by a polynomial-time (classical) probabilistic Turing machine. We say that a quantum
algorithm is quantum polynomial time (QPT) if it can be computed by a polynomial-time quantum Turing
machine (or equivalently a quantum circuit generated by a polynomial-time Turing machine). We say that
a quantum algorithm is non-uniform QPT if it can be computed by a polynomial-size quantum circuits (or
polynomial-time quantum Turing machine) with quantum advice. We use non-uniform QPT algorithms as a
default model of adversaries unless otherwise noted.
We say that a sequence {Uλ}λ∈N of unitary operators is polynomial-time computable if there is a

polynomial-time Turing machine that on input 1λ outputs a description of a quantum circuit that computes Uλ.
We often omit the dependence on λ and simply write U is polynomial-time computable to mean the above.
Distinguishing advantage. For a quantum algorithm A and quantum states |ψ⟩ and |ϕ⟩, we say that A
distinguishes |ψ⟩ and |ϕ⟩ with advantage ∆ if

|Pr[A(|ϕ⟩) = 1]− Pr[A(|ψ⟩) = 1]| = ∆.

3.1 Basic Cryptographic Primitives

Definition 3.1 (One-way functions). We say that a classical polynomial-time computable function f :
{0, 1}n → {0, 1}m is a one-way function (OWF) if for any non-uniform QPT adversary A, we have

Pr[f(x′) = f(x) : x← {0, 1}n, x′ ← A(1λ, f(x))] = negl(λ).

We say that a one-way function f is an injective one-way function if f is injective, and that a one-way function
f is a one-way permutation if f is a permutation.

22We remark that they are efficiently generatable in our application where |Alive⟩ and |Dead⟩ correspond to commitments to 0
and 1.
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Definition 3.2 (Keyed one-way functions). We say that a family {fk : {0, 1}n → {0, 1}m}k∈K of classical
polynomial-time computable functions is a keyed one-way function if for any non-uniform QPT adversary A,
we have

Pr[fk(x′) = fk(x) : k ← K, x← {0, 1}n, x′ ← A(1λ, k, fk(x))] = negl(λ).

We say that a keyed one-way fucntion {fk : {0, 1}n → {0, 1}m}k∈K is a keyed injective one-way function if
fk is injective for all k ∈ K.

Definition 3.3 (Pseudorandom generators). We say that a classical polynomial-time computable function
G : {0, 1}n → {0, 1}m is a pseudorandom generator (PRG) ifm > n and for any non-uniform QPT adversary
A, we have

|Pr[A(y) = 1 : y ← {0, 1}m]− Pr[A(G(x)) = 1 : x← {0, 1}n]| = negl(λ).

It is well-known that PRGs exist if and only if OWFs exist [HILL99].

Definition 3.4 (Collapsing functions [Unr16b]). For a polynomial-time computable function familyH =
{Hk : {0, 1}L → {0, 1}ℓ}k∈KH and an adversary A, we define an experiment Expcollapse

A (1λ) as follows:

1. The challenger generates k ← KH.

2. A is given k as input and generates a hash value y ∈ {0, 1}ℓ and a quantum state σ over registers
(X,A) where X stores an element of {0, 1}L and A is A’s internal register. Then it sends y and
register X to the challenger, and keeps A on its side.

3. The challenger picks b ← {0, 1}. If b = 0, the challenger does nothing and if b = 1, the challenger
measures register X in the computational basis. The challenger returns register X to A.

4. A outputs a bit b′. The experiment outputs 1 if b′ = b and 0 otherwise.

We say that A is a valid adversary if the following is satisfied: if we measure the state in X right after Step 2,
then the outcome x satisfies Hk(x) = y with probability 1.

We say thatH is collapsing if for any non-uniform QPT valid adversary A, we have

|Pr[1← Expcollapse
A (1λ)]− 1/2| = negl(λ).

As shown in [Unr16b], the collapsing property implies the collision-resistance. That is, if H = {Hk :
{0, 1}L → {0, 1}ℓ}k∈KH is collapsing, then it is also collision-resistant, i.e., no non-uniform QPT adversary
can find x ̸= x′ such that Hk(x) = Hk(x′) with non-negligible probability given k ← KH. It is clear that
injective functions are collapsing.
Unruh [Unr16a] showed that there is a collapsing function family with arbitrarily long (or even unbounded)

input-length under the LWE assumption (or more generally, under the existence of lossy functions in a certain
parameter regime).

Definition 3.5 (Single-copy-secure PRSGs [MY22]). A single-copy-secure pseudorandom quantum states
generator (PRSG) is a QPT algorithm StateGen that, on input k ∈ {0, 1}n, outputs an m-qubit quantum
state |ϕk⟩. As the security, we require the following: for any non-uniform QPT adversary A,

| Pr
k←{0,1}n

[A(|ϕk⟩)→ 1]− Pr
|ψ⟩←µm

[A(|ψ⟩)→ 1]| = negl(λ),

where µm is the Haar measure on m-qubit states.23

23Intuitively, |ψ⟩ ← µm means that anm-qubit pure state is sampled uniformly at random from the set of allm-qubit pure states.
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Single-copy-secure PRSGs are a restricted version of (poly-copy-secure) PRSGs introduced in [JLS18],
where any polynomially many copies of |ϕk⟩ are computationally indistnguishable from the same number of
copies of Haar random states. If one-way functions exist, (poly-copy-secure) PRSGs exist [JLS18]. On the
other hand, there is an evidence that (poly-copy-secure) PRSGs do not imply one-way functions [Kre21].

3.2 Canonical Quantum Bit Commitments

We define canonical quantum bit commitments as defined in [Yan22].

Definition 3.6 (Canonical quantum bit commitments). A canonical quantum bit commitment scheme is
represented by a family {Q0(λ), Q1(λ)}λ∈N of polynomial-time computable unitaries over two registers C
(called the commitment register) and R (called the reveal register). In the rest of the paper, we often omit λ
and simply write Q0 and Q1 to mean Q0(λ) and Q1(λ).

Remark 3.7. Canonical quantum bit commitments are supposed to be used as follows. In the commit phase, to
commit to a bit b ∈ {0, 1}, the sender generates a state Qb |0⟩C,R and sends C to the receiver while keeping
R. In the reveal phase, the sender sends b andR to the receiver. The receiver projects the state on (C,R)
onto Qb |0⟩C,R, and accepts if it succeeds and otherwise rejects.

Definition 3.8 (Hiding). We say that a canonical quantum bit commitment scheme {Q0, Q1} is computationally
(rep. statistically) hiding if TrR(Q0(|0⟩ ⟨0|)C,RQ

†
0) is computationally (resp. statistically) indistinguishable

from TrR(Q1(|0⟩ ⟨0|)C,RQ
†
1). We say that it is perfectly hiding if they are identical states.

Definition 3.9 (Binding). We say that a canonical quantum bit commitment scheme {Q0, Q1} is computa-
tionally (rep. statistically) binding if for any polynomial-time computable (resp. unbounded-time) unitary U
over R and an additional register Z and any polynomial-size state |τ⟩Z, it holds that∥∥∥(Q1 |0⟩ ⟨0|Q†1)C,R(IC ⊗ UR,Z)((Q0 |0⟩)C,R |τ⟩Z)

∥∥∥ = negl(λ).

We say that it is perfectly hiding if the LHS is 0 for all unbounded-time unitary U .

3.3 Equivalence between Swapping and Distinguishing

The following theorem was proven in [AAS20].

Theorem 3.10 ([AAS20, Theorem 2]).

1. Let |x⟩ , |y⟩ be orthogonal n-qubit states. Let U be a polynomial-time computable unitary over n-qubit
states and define Γ as

Γ := |⟨y|U |x⟩+ ⟨x|U |y⟩| .

Then, there exists a QPT distinguisher A that makes a single black-box access to controlled-U and
distinguishes |ψ⟩ := |x⟩+|y⟩√

2 and |ϕ⟩ := |x⟩−|y⟩√
2 with advantage Γ

2 . Moreover, if U does not act on some
qubits, then A also does not act on those qubits.

2. Let |ψ⟩ , |ϕ⟩ be orthogonal n-qubit states, and suppose that a QPT distinguisher A distinguishes |ψ⟩
and |ϕ⟩ with advantage ∆ without using any ancilla qubits. Then, there exists a polynomial-time
computable unitary U over n-qubit states such that

| ⟨y|U |x⟩+ ⟨x|U |y⟩ |
2 = ∆

14



|0⟩ H • H

|ψ⟩ or |ϕ⟩ Ũ

Figure 1: Quantum circuit for A in Item 1 of Theorem 3.10.

VA

Z

V †A...
...


|x⟩ or |y⟩

Figure 2: Quantum circuit for U in Item 2 of Theorem 3.10.

where |x⟩ := |ψ⟩+|ϕ⟩√
2 and |y⟩ := |ψ⟩−|ϕ⟩√

2 . Moreover, if A does not act on some qubits, then U also does
not act on those qubits.

Remark 3.11 (Descriptions of quantum circuits.). For the reader’s convenience, we give the concrete
descriptions of quantum circuits for the above theorem, which are presented in [AAS20].
For Item 1, let Ũ := eiθU for θ such that

Re(⟨y| Ũ |x⟩+ ⟨x| Ũ |y⟩) = |⟨y|U |x⟩+ ⟨x|U |y⟩| .

Then, A is described in Figure 1.
For Item 2, let VA be a unitary such that

VA |ψ⟩ = √p |1⟩ |ψ1⟩+
√

1− p |0⟩ |ψ0⟩
VA |ϕ⟩ =

√
1− p+ ∆ |0⟩ |ϕ0⟩+

√
p−∆ |1⟩ |ϕ1⟩

for some |ψ0⟩, |ψ1⟩, |ϕ0⟩, and |ϕ1⟩. That is, VA is the unitary part of A. Then, U is described in Figure 2.

Remark 3.12. Though the final requirement in both items (“Moreover,...”) is not explicitly stated in [AAS20,
Theorem 2], it is easy to see from Figures 1 and 2. This observation is important for our application to
commitments and PKE.

4 Quantum-Ciphertext Public Key Encryption

In Section 4.1, we introduce a notion of swap-trapdoor function pairs, which can be seen as a variant of
trapdoor claw-free function pairs [GMR84]. In Section 4.2, we define quantum-ciphertext PKE and construct
it based on STFs. In Section 4.3, we construct STFs based on group actions.

4.1 Swap-Trapdoor Function Pairs

We introduce a notion of swap-trapdoor function pairs (STFs). Similarly to trapdoor claw-free function pairs,
a STF consists of two functions f0, f1 : X → Y . We require that there is a trapdoor which enables us to
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“swap” preimages under f0 and f1, i.e., given xb, we can find xb⊕1 such that fb⊕1(xb⊕1) = fb(xb). The
formal definition of STFs is given below.

Definition 4.1 (Swap-trapdoor function pair). A swap-trapdoor function pair (STF) consists of algorithms
(Setup,Eval, Swap).

Setup(1λ)→ (pp, td): This is a PPT algorithm that takes the security parameter 1λ as input, and outputs a
public parameter pp and a trapdoor td. The public parameter pp specifies functions f (pp)

b : X → Y
for each b ∈ {0, 1}. We often omit the dependence on pp and simply write fb when it is clear from the
context.

Eval(pp, b, x)→ y: This is a deterministic classical polynomial-time algorithm that takes a public parameter
pp, a bit b ∈ {0, 1}, and an element x ∈ X as input, and outputs y ∈ Y .

Swap(td, b, x)→ x′: This is a deterministic classical polynomial-time algorithm that takes a trapdoor td, a
bit b ∈ {0, 1}, and an element x ∈ X as input, and outputs x′ ∈ X .

We require a STF to satisfy the following:
Evaluation correctness. For any (pp, td)← Setup(1λ) , b ∈ {0, 1}, and x ∈ X , we have Eval(pp, b, x) =
fb(x).
Swapping correctness. For any (pp, td)← Setup(1λ), b ∈ {0, 1}, and x ∈ X , if we let x′ ← Swap(td, b, x),
then we have fb⊕1(x′) = fb(x) and Swap(td, b ⊕ 1, x′) = x. In particular, Swap(td, b, ·) induces an
efficiently computable and invertible one-to-one mapping between f−1

0 (y) and f−1
1 (y) for any y ∈ Y .

Efficient random sampling over X . There is a PPT algorithm that samples an almost uniform element of X
(i.e., the distribution of the sample is statistically close to the uniform distribution).
Efficient superposition over X . There is a QPT algorithm that generates a state whose trace distance from
|X ⟩ = 1√

|X |

∑
x∈X |x⟩ is negl(λ).

Remark 4.2 (A convention on “Efficient random sampling over X ” and “Efficient superposition over X ”
properties). In the rest of this paper, we assume that we can sample elements from exactly the uniform
distribution of X . Similarly, we assume that we can exactly generate |X ⟩ in QPT. They are just for simplifying
the presentations of our results, and all the results hold with the above imperfect version with additive
negligible loss for security or correctness.

We define two security notions for STFs which we call claw-freeness and conversion hardness. Looking
ahead, what we need in our construction of quantum-ciphertext PKE in Section 4.2 is only conversion hardness.
However, since there are interesting relations between them as we show later, we define both of them here.

Definition 4.3 (Claw-freeness). We say that a STF (Setup,Eval, Swap) satisfies claw-freeness if for any
non-uniform QPT algorithm A, we have

Pr[f0(x0) = f1(x1) : (pp, td)← Setup(1λ), (x0, x1)← A(pp)] = negl(λ).

Definition 4.4 (Conversion hardness). We say that a STF (Setup,Eval, Swap) satisfies conversion hardness
if for any non-uniform QPT algorithm A, we have

Pr[f1(x1) = y : (pp, td)← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |f−1
0 (y)⟩)] = negl(λ)

where we remind that |f−1
0 (y)⟩ := 1√

|f−1
0 (y)|

∑
x∈f−1

0 (y) |x⟩.
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Remark 4.5 (On asymmetry of f0 and f1.). Conversion hardness requires that it is hard to find x1 such that
f1(x1) = y given |f−1

0 (y)⟩. We could define it in the other way, i.e., it is hard to find x0 such that f0(x0) = y
given |f−1

1 (y)⟩. These two definitions do not seem to be equivalent. However, it is easy to see that if there is
a STF that satisfies one of them, then it can be modified to satisfy the other one by just swapping the roles of
f0 and f1. In this sense, the choice of the definition from these two versions is arbitrary.

We show several lemmas on the relationship between claw-freeness and conversion hardness.
First, we show that claw-freeness implies conversion hardness if f0 is collapsing (Definition 3.4).24

Lemma 4.6 (Claw-free and collapsing→ Conversion hard). If f0 is collapsing, then claw-freeness implies
conversion hardness.

Proof. Suppose that (Setup,Eval,Swap) does not satisfy conversion hardness. Then, there is a non-uniform
QPT adversary A such that

Pr[f1(x1) = y : (pp, td)← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |f−1
0 (y)⟩)]

is non-negligible. By the assumption that f0 is collapsing, we can show that∣∣∣Pr[f1(x1) = y : (pp, td)← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |f−1
0 (y)⟩)]

−Pr[f1(x1) = y : (pp, td)← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |x0⟩)]
∣∣∣

= negl(λ).

Combining the above,

Pr[f1(x1) = y : (pp, td)← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |x0⟩)]

is non-negligible.
Then, we use A to construct a non-uniform QPT adversary B that breaks claw-freeness as follows.

B(pp): Pick x0 ← X , run x1 ← A(pp, x0), and output (x0, x1).

Then, B breaks claw-freeness.

As a special case of Lemma 4.6, claw-freeness implies conversion hardness when f0 is injective (in which
case f1 is also injective). This is because any injective function is trivially collapsing.
We remark that a conversion hard STF is not necessarily claw-free, because a claw can be augmented in

STF without hurting the conversion hardness.
Next, we show a “win-win” result inspired from [Zha19]. We roughly show that a claw-free but non-

conversion-hard STF can be used to construct one-shot signatures [AGKZ20]. Roughly one-shot signatures
are a genuinely quantum primitive which enables us to generate a classical verification key vk along with a
quantum signing key sk in such a way that one can use sk to generate a signature for whichever message of
one’s choice, but cannot generate signatures for different messages simultaneously. (See Definition A.2 for
the formal definition.) The only known construction of one-shot signatures is relative to a classical oracle
and there is no known construction in the standard model. Even for its weaker variant called tokenized

24Collapsingness of f0 can be naturally defined according to Definition 3.4 where we ignore f1 and simply consider pp as a
function index for f0.

17



signatures [BDS17], the only known construction in the standard model is based on indistinguishability
obfuscation [CLLZ21]. Given the difficulty of constructing tokenized signatures, let alone one-shot signatures,
it is reasonable to conjecture that natural candidate constructions of STFs satisfy conversion hardness if it
satisfies claw-freeness. This is useful because claw-freeness often follows from weaker assumptions than
conversion hardness, which is indeed the case for the group action-based construction in Section 4.3.
Before stating the lemma, we remark some subtlety about the lemma. Actually, we need to assume a STF

that is claw-free but not infinitely-often uniform conversion hard. Here, “infinitely-often” means that it only
requires the security to hold for infinitely many security parameters rather than all security parameters. (See
[Zha19, Sec. 4.1] for more explanations about infinitely-often security.) The “uniform” means that security is
required to hold only against uniform adversaries as opposed to non-uniform ones. Alternatively, we can
weaken the assumption to a STF that is claw-free but not uniform conversion hard if we weaken the goal to be
infinitely-often one-shot signatures. We remark that similar limitations also exist for the “win-win” result in
[Zha19].
Then, the lemma is given below.

Lemma 4.7 (Claw-free and non-conversion hard STF→ One-shot signatures). Let (Setup,Eval,Swap)
be a STF that satisfies claw-freeness. Then, the following statements hold:

1. If (Setup,Eval,Swap) is not infinitely-often uniform conversion hard, then we can use it to construct
one-shot signatures.

2. If (Setup,Eval,Swap) is not uniform conversion hard, then we can use it to construct infinitely-often
one-shot signatures.

Proof. (sketch.) We give a proof sketch here. The full proof can be found in Appendix A.
For simplicity, suppose that (Setup,Eval, Swap) is claw-free but its conversion hardness is totally broken.

That is, we assume that we can efficiently find x1 such that f1(x1) = y given (pp, |f−1
0 (y)⟩). Our idea is

to set pp to be the public parameter of one-shot signatures, |f−1
0 (y)⟩ to be the secret key, and y to be the

corresponding verification key. For signing to 0, the signer simply measures |f−1
0 (y)⟩ to get x0 ∈ f−1

0 (y) and
set x0 to be the signature. For signing to 1, the signer runs the adversary against conversion hardness to get x1
such that f1(x1) = y. If one can generate signatures to 0 and 1 simultaneously, we can break claw-freeness
since f0(x0) = f1(x1) = y. Thus, the above one-shot signature is secure if (Setup,Eval, Swap) is claw-free.
In the actual proof, we only assume an adversary that finds x1 with a non-negligible (or noticeable)

probability rather than 1. Then, our idea is to simply repeat the above construction parallelly many times so
that at least one of the execution of the adversary succeeds with overwhelming probability.
We need to assume that the adversary is uniform since that is used as part of the signing algorithm.

The “infinitely-often” restriction comes from the fact that an inverse of non-negligible function may not be
polynomial.

Instantiations. Our main instantiation of STFs is based on group actions, which is given in Section 4.3.
A lattice-based instantiation is also possible if we relax the requirements to allow some “noises” similarly

to [BCM+18]. The noisy version is sufficient for our construction of quantum-ciphertext PKE given in
Section 4.2. However, since lattice-based (classical) PKE schemes are already known [Reg09, GPV08], we
do not try to capture lattice-based instantiations in the definition of STFs.
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4.2 Quantum-Ciphertext Public Key Encryption

In this section, we define quantum-ciphertext PKE and construct it based on STFs.
Definition. We define quantum-ciphertext PKE for one-bit messages for simplicity. The multi-bit message
version can be defined analogously, and a simple parallel repetition works to expand the message length.
Moreover, we can further extend the message space to quantum states by a hybrid encryption with quantum
one-time pad as in [BJ15], i.e., we encrypt a quantum message by a quantum one-time pad, and then encrypt
the key of the quantum one-time pad by quantum PKE for classical messages.

Definition 4.8 (Quantum-ciphertext public key encryption). A quantum-ciphertext public key encryption
(quantum-ciphertext PKE) scheme (with single-bit messages) consists of algorithms (KeyGen,Enc,Dec).

KeyGen(1λ)→ (pk, sk): This is a PPT algorithm that takes the security parameter 1λ as input, and outputs
a classical public key pk and a classical secret key sk.

Enc(pk, b)→ ct : This is a QPT algorithm that takes a public key pk and a message b ∈ {0, 1} as input, and
outputs a quantum ciphertext ct .

Dec(sk, ct)→ b′/⊥: This is a QPT algorithm that takes a secret key sk and a ciphertext ct as input, and
outputs a message b′ ∈ {0, 1} or ⊥.

It must satisfy correctness as defined below:
Correctness. For any m ∈ {0, 1}, we have

Pr[m′ = m : (pk, sk)← KeyGen(1λ), ct ← Enc(pk,m),m′ ← Dec(sk, ct)] = 1− negl(λ).

We define IND-CPA security for quantum-ciphertext PKE similarly to that for classical PKE as follows.

Definition 4.9 (IND-CPA security). We say that a quantum-ciphertext PKE scheme (KeyGen,Enc,Dec) is
IND-CPA secure if for any non-uniform QPT adversary A, we have

|Pr [A(pk, ct0) = 1]− Pr [A(pk, ct1) = 1]| = negl(λ),

where (pk, sk)← KeyGen(1λ), ct0 ← Enc(pk, 0), and ct1 ← Enc(pk, 1).

Construction. Let (Setup,Eval,Swap) be a STF. We construct a quantum-ciphertext PKE scheme
(KeyGen,Enc,Dec) as follows.

KeyGen(1λ): Generate (pp, td)← Setup(1λ) and output pk := pp and sk := td.

Enc(pk, b ∈ {0, 1}): Parse pk = pp. Prepare two registersD andX. Generate the state

1√
2

(|0⟩+ (−1)b |1⟩)D |X ⟩X = 1√
2|X |

(|0⟩+ (−1)b |1⟩)D
∑
x∈X
|x⟩X .

Prepare another registerY, coherently compute f0 or f1 intoY controlled byD to get

∑
x∈X

1√
2|X |

(|0⟩D |x⟩X |f0(x)⟩Y + (−1)b |1⟩D |x⟩X |f1(x)⟩Y),
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and measureY to get y ∈ Y . At this point,D andX collapse to the following state:25

1√
2

(|0⟩D |f
−1
0 (y)⟩X + (−1)b |1⟩D |f

−1
1 (y)⟩X).

The above state is set to be ct .26

Dec(sk, ct): Parse sk = td. Let Utd be a unitary overD andX such that27

Utd |0⟩D |x⟩X = |0⟩D |x⟩X ,

Utd |1⟩D |x⟩X = |1⟩D |Swap(td, 1, x)⟩X .

Apply Utd on the register (D,X) and measureD in the Hadamard basis and output the measurement
outcome b′ ∈ {0, 1}.

Correctness.

Theorem 4.10. (KeyGen,Enc,Dec) satisfies correctness.

Proof. An honestly generated ciphertext ct is of the form

1√
2

(|0⟩D |f
−1
0 (y)⟩X + (−1)b |1⟩D |f

−1
1 (y)⟩X).

By the definition of Utd and the swapping correctness, it is easy to see that we have

Utd |0⟩D |f
−1
0 (y)⟩X = |0⟩D |f

−1
0 (y)⟩X ,

Utd |1⟩D |f
−1
1 (y)⟩X = |1⟩D |f

−1
0 (y)⟩X .

Thus, applying Utd on ct results in the following state:

1√
2

(|0⟩D |f
−1
0 (y)⟩X + (−1)b |1⟩D |f

−1
0 (y)⟩X) = 1√

2
(|0⟩D + (−1)b |1⟩D)⊗ |f−1

0 (y)⟩X .

The measurement ofD in the Hadamard basis therefore results in b.

Security.

Theorem 4.11. If (Setup,Eval,Swap) satisfies conversion hardness, (KeyGen,Enc,Dec) is IND-CPA secure.

Proof. First, we remark that the IND-CPA security is identical to computational indistinguishability of the
following two states |ψ0⟩ and |ψ1⟩ against any non-uniform QPT distinguisherA that does not act on (Y,P′):

|ψb⟩ :=
∑
pp

√
D(pp) |pp⟩P |pp⟩P′

∑
x∈X

1√
2|X |

(|0⟩D |x⟩X |f0(x)⟩Y + (−1)b |1⟩D |x⟩X |f1(x)⟩Y)

where D(pp) := Pr[pp′ = pp : (pp′, td′)← Setup(1λ)].

25Note that the swapping correctness implies that |f−1
0 (y)| = |f−1

1 (y)| for any y ∈ Y .
26Remark that one does not need to include y in the ciphertext.
27Note that the second operation is possible because Swap(td, 0,Swap(td, 1, x)) = x.
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Suppose that there is a non-uniform QPT distinguisherA with an advice |τ⟩Z that does not act on (Y,P′)
and distinguishes |ψ0⟩ and |ψ1⟩ with a non-negligible advantage ∆.
Since |ψ0⟩ and |ψ1⟩ are orthogonal, by Item 2 of Theorem 3.10, there exists a polynomial-time computable

unitary U over (P,D,X,Z) such that28

1
2

∣∣∣∣∣ ⟨ψ′1|P,P′,D,X,Y ⟨τ |Z (UP,D,X,Z ⊗ IP′,Y) |ψ′0⟩P,P′,D,X,Y |τ⟩Z
+ ⟨ψ′0|P,P′,D,X,Y ⟨τ |Z (UP,D,X,Z ⊗ IP′,Y) |ψ′1⟩P,P′,D,X,Y |τ⟩Z

∣∣∣∣∣ = ∆

where

|ψ′b⟩ = |ψ0⟩+ (−1)b |ψ1⟩√
2

=
∑
pp

√
D(pp)
|X |

|pp⟩P |pp⟩P′

∑
x∈X
|b⟩D |x⟩X |fb(x)⟩Y . (3)

In the following, we simply write U to mean UP,D,X,Z for notational simplicity. Thus, we must have

| ⟨ψ′1|P,P′,D,X,Y ⟨τ |Z (U ⊗ IP′,Y) |ψ′0⟩P,P′,D,X,Y |τ⟩Z | ≥ ∆ (4)

or

| ⟨ψ′0|P,P′,D,X,Y ⟨τ |Z (U ⊗ IP′,Y) |ψ′1⟩P,P′,D,X,Y |τ⟩Z | ≥ ∆. (5)

Without loss of the generality, we assume that the former inequality holds. Then we show that this contradicts
conversion hardness of (Setup,Eval,Swap). We construct a non-uniform QPT adversary B that takes |τ⟩ as
an advice and breaks the conversion hardness (Definition 4.4) of (Setup,Eval, Swap) as follows.

B
(
(pp, |f−1

0 (y)⟩X); |τ⟩Z
)
: On input (pp, |f−1

0 (y)⟩X) and a quantum advice |τ⟩Z, prepare a single qubit
registerD that is initialized to be |0⟩D, apply U on |pp⟩P |0⟩D |f

−1
0 (y)⟩X |τ⟩Z, measureX to obtain

an outcome x′, and output x′.

28For applying Item 2 of Theorem 3.10, we assume thatA does not use an additional ancilla qubits besides |τ⟩Z w.l.o.g. (Sufficiently
many qubits that are initialized to be |0⟩ could be included in |τ⟩Z.)
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For any pp, we have

Pr
[
f1(x′) = y : x← X , y := f0(x), x′ ← B

(
(pp, |f−1

0 (y)⟩X); |τ⟩Z
)]

=
∑
y∈Y

x′∈f−1
1 (y)

|f−1
0 (y)|
|X |

∥∥∥⟨x′|X U |pp⟩P |0⟩D |f
−1
0 (y)⟩X |τ⟩Z

∥∥∥2
(6)

≥ 1
|X |

 ∑
y∈Y

x′∈f−1
1 (y)

√
|f−1

0 (y)|
|X |

∥∥∥⟨x′|X U |pp⟩P |0⟩D |f
−1
0 (y)⟩X |τ⟩Z

∥∥∥


2

(7)

≥ 1
|X |2

∥∥∥∥∥∥∥∥∥
∑
y∈Y

x′∈f−1
1 (y)

√
|f−1

0 (y)| ⟨x′|X U |pp⟩P |0⟩D |f
−1
0 (y)⟩X |τ⟩Z

∥∥∥∥∥∥∥∥∥
2

(8)

≥ 1
|X |2

∣∣∣∣∣∣∣∣∣∣∣∣∣
∑
y∈Y

x∈f−1
0 (y)

x′∈f−1
1 (y)

⟨pp|P ⟨1|D ⟨x
′|X ⟨τ |Z U |pp⟩P |0⟩D |x⟩X |τ⟩Z

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(9)

= 1
|X |2

∣∣∣∣∣ (
∑
x′∈X ⟨pp|P ⟨pp|P′ ⟨1|D ⟨x′|X ⟨f1(x′)|Y ⟨τ |Z)(

U ⊗ IP′,Y
)

(
∑
x∈X |pp⟩P |pp⟩P′ |0⟩D |x⟩X |f0(x)⟩Y |τ⟩Z)

∣∣∣∣∣
2

, (10)

where Equation (6) follows from the definition of B, Equation (7) follows from Cauchy–Schwarz inequality
and

∑
y∈Y |f−1

1 (y)| = |X |, Equation (8) follows from the triangle inequality, and Equation (9) follows
from the definition |f−1

0 (y)⟩ = 1
|f−1

0 (y)|1/2

∑
x∈f−1

0 (y) |x⟩ and the fact that inserting ⟨pp|P ⟨1|D ⟨τ |Z can only
decrease the norm.
Therefore, we have

Pr[f1(x′) = y : (pp, td)← Setup(1λ), x← X , y := f0(x), x′ ← B((pp, |f−1
0 (y)⟩X); |τ⟩Z)]

=
∑
pp
D(pp)

[
Pr[f1(x′) = y : x← X , y := f0(x), x′ ← B((pp, |f−1

0 (y)⟩X); |τ⟩Z)]
]

≥
∑
pp

D(pp)
|X |2

∣∣∣∣∣ (
∑
x′∈X ⟨pp|P ⟨pp|P′ ⟨1|D ⟨x′|X ⟨f1(x′)|Y ⟨τ |Z)(

U ⊗ IP′,Y
)

(
∑
x∈X |pp⟩P |pp⟩P′ |0⟩D |x⟩X |f0(x)⟩Y |τ⟩Z)

∣∣∣∣∣
2

≥
∣∣∣∣∣∑pp

D(pp)
|X |

(
(
∑
x′∈X ⟨pp|P ⟨pp|P′ ⟨1|D ⟨x′|X ⟨f1(x′)|Y ⟨τ |Z)(

U ⊗ IP′,Y
)

(
∑
x∈X |pp⟩P |pp⟩P′ |0⟩D |x⟩X |f0(x)⟩Y |τ⟩Z)

)∣∣∣∣∣
2

=
∣∣∣⟨ψ′1|P,P′,D,X,Y ⟨τ |Z (U ⊗ IP′,Y) |ψ′0⟩P,P′,D,X,Y |τ⟩Z

∣∣∣2 ,
where the first inequality follows from Equation (10), the second inequality follows from Jensen’s inequality,
and the final equality follows from Equation (3).
This is non-negligible by our assumption. Therefore,B breaks the conversion hardness of (Setup,Eval, Swap),

which is a contradiction. Thus, (KeyGen,Enc,Dec) is IND-CPA secure.
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.

4.3 Instantiation from Group Actions

We review basic definitions about cryptographic group actions and their one-wayness and pseudorandomness
following [JQSY19]. Then, we construct a STF based on it.
Basic definitions.

Definition 4.12 (Group actions). Let G be a (not necessarily abelian) group, S be a set, and ⋆ : G× S → S
be a function where we write g ⋆ s to mean ⋆(g, s). We say that (G,S, ⋆) is a group action if it satisfies the
following:

1. For the identity element e ∈ G and any s ∈ S, we have e ⋆ s = s.

2. For any g, h ∈ G and any s ∈ S, we have (gh) ⋆ s = g ⋆ (h ⋆ s).

To be useful for cryptography, we have to at least assume that basic operations about (G,S, ⋆) have
efficient algorithms. We require the following efficient algorithms similarly to [JQSY19].

Definition 4.13 (Group actions with efficient algorithms). We say that a group action (G,S, ⋆) has efficient
algorithms if it satisfies the following:29

Unique representations: Each element of G and S can be represented as a bit string of length poly(λ) in a
unique manner. Thus, we identify these elements and their representations.

Group operations: There are classical deterministic polynomial-time algorithms that compute gh from
g ∈ G and h ∈ G and g−1 from g ∈ G.

Group action: There is a classical deterministic polynomial-time algorithm that computes g ⋆ s from g ∈ G
and s ∈ S.

Efficient recognizability: There are classical deterministic polynomial-time algorithms that decide if a
given bit string represents an element of G or S, respectively.

Random sampling: There are PPT algorithms that sample almost uniform elements of G or S (i.e., the
distribution of the sample is statistically close to the uniform distribution), respectively.

Superposition over G: There is a QPT algorithm that generates a state whose trace distance from |G⟩ is
negl(λ).

Remark 4.14 (A convention on “Random sampling” and “Superposition over G” properties). In the rest of
this paper, we assume that we can sample elements from exactly uniform distributions of G and S. Similarly,
we assume that we can exactly generate |G⟩ in QPT. They are just for simplifying the presentations of our
results, and all the results hold with the above imperfect version with additive negligible loss for security or
correctness.

The above requirements are identical to those in [JQSY19] except for the “superposition over G” property.
We remark that all candidate constructions proposed in [JQSY19] satisfy this property as explained later.
Assumptions. We define one-wayness and pseudorandomness following [JQSY19].

29Strictly speaking, we have to consider a family {(Gλ, Sλ, ⋆λ)}λ∈N of group actions parameterized by the security parameter to
meaningfully define the efficiency requirements. We omit the dependence on λ for notational simplicity throughout the paper.
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Definition 4.15 (One-wayness). We say that a group action (G,S, ⋆) with efficient algorithms is one-way if
for any non-uniform QPT adversary A, we have

Pr
[
g′ ⋆ s = g ⋆ s : s← S, g ← G, g′ ← A(s, g ⋆ s)

]
= negl(λ).

Definition 4.16 (Pseudorandomness). We say that a group action (G,S, ⋆) with efficient algorithms is
pseudorandom if it satisfies the following:

1. We have

Pr[∃g ∈ G s.t. g ⋆ s = t : s, t← S] = negl(λ).

2. For any non-uniform QPT adversary A, we have

|Pr [1← A(s, t) : s← S, g ← G, t := g ⋆ s]− Pr [1← A(s, t) : s, t← S]| = negl(λ).

Remark 4.17 (On Item 1). We require Item 1 to make Item 2 non-trivial. For example, if (G,S, ⋆) is transitive,
i.e., for any s, t ∈ S, there is g ∈ G such that g ⋆ s = t, Item 2 trivially holds because the distributions of
t = g ⋆ s is uniformly distributed over S for any fixed s and random g ← G.

Remark 4.18 (Pseudorandom→ One-way). We remark that the pseudorandomness immediately implies the
one-wayness as noted in [JQSY19].

Instantiations. Ji et al. [JQSY19] gave several candidate constructions of one-way and pseudorandom group
actions with efficient algorithms based on general linear group actions on tensors. We briefly describe one of
their candidates below. Let F be a finite field, and k, d1, d2..., dk be positive integers (which are typically set
as k = 3 and d1 = d2 = d3). We set G :=

∏k
j=1GLdj

(F), S :=
⊗k

j=1 Fdj , and define the group action by
the matrix-vector multiplication as

(Mj)j∈[k] ⋆ T :=

 k⊗
j=1

Mj

T
for (Mj)j∈[k] ∈

∏k
j=1GLdj

(F) and T ∈
⊗k

j=1 Fdj . See [JQSY19] for attempts of cryptanalysis and
justification of the one-wayness and pseudorandomness. We remark that we introduced an additional
requirement of the “superposition over G” property in Definition 4.13, but their candidates satisfy this
property. In their candidates, the group G is a direct product of general linear groups over finite fields (or
symmetric groups for one of the candidates), and a uniformly random matrix over finite fields is invertible
with overwhelming probability for appropriate parameters.
Construction of STF.We construct a STF based on group actions. Let (G,S, ⋆) be a group action with
efficient algorithms (as defined in Definition 4.13). Then, we construct a STF as follows.

Setup(1λ): Generate s0 ← S and g ← G, set s1 := g ⋆ s0, and output pp := (s0, s1) and td := g. For
b ∈ {0, 1}, we define fb : G→ S by fb(h) := h ⋆ sb.

Eval(pp = (s0, s1), b, h): Output fb(h) = h ⋆ sb.

Swap(td = g, b, h): If b = 0, output hg−1. If b = 1, output hg.
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The evaluation correctness is trivial. The swapping correctness can be seen as follows: For any
h ∈ G, f1(Swap(td, 0, h)) = f1(hg−1) = (hg−1) ⋆ s1 = h ⋆ s0 = f0(h). Similarly, for any h ∈ G,
f0(Swap(td, 1, h)) = f0(hg) = (hg) ⋆ s0 = h ⋆ s1 = f1(h). For any h ∈ G, Swap(td, 1,Swap(td, 0, h)) =
Swap(td, 1, hg−1) = (hg−1)g = h.
The efficient sampling and efficient superposition properties directly follow from the corresponding

properties of the group action.
We prove the following theorem.

Theorem 4.19. The following hold:

1. If (G,S, ⋆) is one-way, then (Setup,Eval, Swap) is claw-free.

2. If (G,S, ⋆) is pseudorandom, then (Setup,Eval,Swap) is conversion hard.

Proof.
Proof of Item 1. Suppose that (Setup,Eval, Swap) is not claw-free. Then there is a non-uniform QPT
adversary A such that

Pr[f0(h0) = f1(h1) : (pp, td)← Setup(1λ), (h0, h1)← A(pp)]

is non-negligible. We useA to construct a non-uniform QPT adversary B that breaks one-wayness of (G,S, ⋆)
as follows:

B(s0, s1): Set pp := (s0, s1), run (h0, h1)← A(pp), and outputs h−1
1 h0.

By the assumption, we have f0(h0) = f1(h1) with a non-negligible probability. By the definition of f0
and f1, f0(h0) = f1(h1) is equivalent to h0 ⋆ s0 = h1 ⋆ s1, which means h−1

1 h0 ⋆ s0 = s1. Since this occurs
with a non-negligible probability B breaks one-wayness of (G,S, ⋆). Thus, (Setup,Eval,Swap) is claw-free.
Proof of Item 2. Suppose that (Setup,Eval, Swap) is not conversion hard. Then there is a non-uniform QPT
algorithm A such that

Pr[f1(x1) = y : (pp, td)← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |f−1
0 (y)⟩)]

is non-negligible. This is equivalent to that

Pr

h0 ⋆ s0 = h1 ⋆ s1 :
s0 ← S, g, h0 ← G,
s1 := g ⋆ s0, y := h0 ⋆ s0,

h1 ← A(s0, s1, |f−1
0 (y)⟩)


is non-negligible. On the other hand, by Item 1 of Definition 4.16, we have

Pr

h0 ⋆ s0 = h1 ⋆ s1 :
s0, s1 ← S, h0 ← G,
y := h0 ⋆ s0,

h1 ← A(s0, s1, |f−1
0 (y)⟩)

 = negl(λ).

Therefore, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

h0 ⋆ s0 = h1 ⋆ s1 :
s0 ← S, g, h0 ← G,
s1 := g ⋆ s0, y := h0 ⋆ s0,

h1 ← A(s0, s1, |f−1
0 (y)⟩)


−Pr

h0 ⋆ s0 = h1 ⋆ s1 :
s0, s1 ← S, h0 ← G,
y := h0 ⋆ s0,

h1 ← A(s0, s1, |f−1
0 (y)⟩)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(11)
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is non-negligible.
Then, we construct the following non-uniform QPT adversary B that breaks pseudorandomness of

(G,S, ⋆):

B(s0, s1): Generate a state 1√
|G|

∑
h0∈G |h0⟩ |h0 ⋆ s0⟩ and measure the second register to get y ∈ S. Then,

the first register collapses to |f−1
0 (y)⟩. Run h1 ← A(s0, s1, |f−1

0 (y)⟩). Output 1 if h1 ⋆ s1 = y and
otherwise 0.

We can see that B’s advantage to distinguish the two cases (s0 ← S, g ← G, s1 := g ⋆ s0 or s0, s1 ← S)
is exactly Equation (11), which is non-negligible. This contradicts pseudorandomness of (G,S, ⋆) (Item 2 of
Definition 4.16). Thus, (Setup,Eval,Swap) is conversion hard.

Quantum-ciphertext PKE from group actions. Recall that conversion hard STFs suffice for constructing
IND-CPA secure quantum ciphertext PKE (Theorem 4.11). Then, by Lemmata 4.6 and 4.7 and Theorem 4.19,
we obtain the following corollaries.

Corollary 4.20. If there exists a pseudorandom group action with efficient algorithms, there exists an IND-CPA
secure quantum-ciphertext PKE.

Remark 4.21 (Lossy encryption). Actually, we can show that the quantum-ciphertext PKE constructed from a
pseudorandom group action is lossy encryption [BHY09], which is stronger than IND-CPA secure one. We
omit the detail since our focus is on constructing IND-CPA secure schemes.

Corollary 4.22. If there exists a one-way group action with efficient algorithms such that f0 is collapsing,30
there exists a uniform IND-CPA secure quantum-ciphertext PKE scheme.

Corollary 4.23. If there exists a one-way group action with efficient algorithms, there exists a uniform
IND-CPA secure quantum-ciphertext PKE scheme or infinitely-often one-shot signatures.31

5 Equivalence between Swapping and Distinguishing with Auxiliary States

For our application to conversion for commitments, we need a generalization of Theorem 3.10 that considers
auxiliary quantum states. While it is straightforward to generalize Item 2 to such a setting,32 a generalization
of Item 1 is non-trivial. The problems is that the unitary U may not preserve the auxiliary state when it
“swaps” |x⟩ and |y⟩.33 Intuitively, we overcome this issue by “uncomputing” the auxiliary state in a certain
sense.

Theorem 5.1 (Generalization of Theorem 3.10 with auxiliary states).

1. Let |x⟩ , |y⟩ be orthogonal n-qubit states and |τ⟩ be an m-qubit state. Let U be a polynomial-time
computable unitary over (n+m)-qubit states and define Γ as

Γ :=
∥∥(⟨y| ⊗ I⊗m)U |x⟩ |τ⟩+ (⟨x| ⊗ I⊗m)U |y⟩ |τ⟩

∥∥ .
30We currently have no candidate of such a one-way group action.
31The uniform IND-CPA security is defined similarly to the IND-CPA security in Definition 4.9 except that the adversary is

restricted to be uniform QPT.
32Indeed, such a generalization of Item 2 is already implicitly used in the proof of Theorem 4.11.
33This is also observed in [AAS20, Footnote 2].

26



Then, there exists a non-uniform QPT distinguisher A with advice |τ ′⟩ = |τ⟩ ⊗ |x⟩|0⟩+|y⟩|1⟩√
2 that

distinguishes |ψ⟩ = |x⟩+|y⟩√
2 and |ϕ⟩ = |x⟩−|y⟩√

2 with advantage Γ2

4 . Moreover, if U does not act on some
qubits, then A also does not act on those qubits.

2. Let |ψ⟩ , |ϕ⟩ be orthogonal n-qubit states, and suppose that a non-uniform QPT distinguisher A with
an m-qubit advice |τ⟩ distinguishes |ψ⟩ and |ϕ⟩ with advantage ∆ without using additional ancilla
qubits besides |τ⟩. Then, there exists a polynomial-time computable unitary U over (n + m)-qubit
states such that

| ⟨y| ⟨τ |U |x⟩ |τ⟩+ ⟨x| ⟨τ |U |y⟩ |τ⟩ |
2 = ∆

where |x⟩ := |ψ⟩+|ϕ⟩√
2 and |y⟩ := |ψ⟩−|ϕ⟩√

2 . Moreover, if A does not act on some qubits, then U also does
not act on those qubits.

Remark 5.2. We remark that Item 1 does not preserve the auxiliary state unlike Item 2. Though this does not
capture the intuition that “one can distinguish |ψ⟩ and |ϕ⟩ whenever he can swap |x⟩ and |y⟩”, this is good
enough for our purpose. We also remark that there is a quadratic reduction loss in Item 1. We do not know if
it is tight while both items of Theorem 3.10 is shown to be tight in [AAS20].

Proof of Theorem 5.1. Item 2 directly follows from Item 2 of Theorem 3.10 by considering |x⟩ |τ⟩ and |y⟩ |τ⟩
as |x⟩ and |y⟩ in Theorem 3.10. We prove Item 1 below.
Proof of Item 1. LetA andA′ be n-qubit registers, Z be anm-qubit register, and B be a 1-qubit register.
We define a unitary Ũ over (A,Z,A′,B) as follows:

Ũ := XBU
†
A′,ZUA,Z (12)

where XB is the Pauli X operator on B and U †A′,Z means the inverse of UA′,Z, which works similarly to
UA,Z except that it acts onA′ instead of onA.
Then, we prove the following claim.

Claim 5.3. Let |x⟩ , |y⟩ , |τ⟩, and Γ be as in Item 1 of Theorem 5.1, Ũ be as defined in Equation (12), and
|σ⟩A′,B be the state over (A′,B) defined as follows:

|σ⟩A′,B := |x⟩A′ |0⟩B + |y⟩A′ |1⟩B√
2

. (13)

Then, it holds that∣∣∣⟨y|A ⟨τ |Z ⟨σ|A′,B Ũ |x⟩A |τ⟩Z |σ⟩A′,B + ⟨x|A ⟨τ |Z ⟨σ|A′,B Ũ |y⟩A |τ⟩Z |σ⟩A′,B

∣∣∣ = Γ2

2 .

We first finish the proof of Item 1 assuming that Claim 5.3 is correct. By Item 1 of Theorem 3.10,
Claim 5.3 implies that there is a QPT distinguisher Ã that distinguishes

|ψ̃⟩ =
(|x⟩+ |y⟩)A |τ⟩Z |σ⟩A′,B√

2
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and

|ϕ̃⟩ =
(|x⟩ − |y⟩)A |τ⟩Z |σ⟩A′,B√

2

with advantage Γ2

4 . Moreover, Ã does not act on qubits on which Ũ does not act. In particular, Ã does not act
on qubits ofA and Z on which UA,Z does not act since Ũ acts onA and Z only through UA,Z and U †A′,Z.
Thus, by considering Ã as a distinguisher A with advice |τ ′⟩ = |τ⟩Z |σ⟩A′,B that distinguishes |ψ⟩ = |x⟩+|y⟩√

2
and |ϕ⟩ = |x⟩−|y⟩√

2 , Item 1 is proven. Below, we prove Claim 5.3.

Proof of Claim 5.3. For (a, b) ∈ {(x, x), (x, y), (y, x), (y, y)}, we define

|τ ′ab⟩Z := (⟨b|A ⊗ IZ)UA,Z |a⟩A |τ⟩Z .

Then, we have

Γ =
∥∥∥|τ ′xy⟩Z + |τ ′yx⟩Z

∥∥∥ (14)

and

UA,Z |x⟩A |τ⟩Z = |x⟩A |τ
′
xx⟩Z + |y⟩A |τ

′
xy⟩Z + |garbagex⟩A,Z (15)

UA,Z |y⟩A |τ⟩Z = |x⟩A |τ
′
yx⟩Z + |y⟩A |τ

′
yy⟩Z + |garbagey⟩A,Z (16)

where |garbagex⟩A,Z and |garbagey⟩A,Z are (not necessarily normalized) states such that

(⟨x|A ⊗ IZ) |garbagex⟩A,Z = (⟨y|A ⊗ IZ) |garbagex⟩A,Z = 0, (17)

(⟨x|A ⊗ IZ) |garbagey⟩A,Z = (⟨y|A ⊗ IZ) |garbagey⟩A,Z = 0. (18)

Then,

⟨y|A ⟨τ |Z ⟨σ|A′,B Ũ |x⟩A |τ⟩Z |σ⟩A′,B

= ⟨y|A ⟨τ |Z ⟨σ|A′,BXBU
†
A′,Z(|x⟩A |τ

′
xx⟩Z + |y⟩A |τ

′
xy⟩Z + |garbagex⟩A,Z) |σ⟩A′,B

= ⟨τ |Z ⟨σ|A′,BXBU
†
A′,Z |τ

′
xy⟩Z |σ⟩A′,B

(19)

where the first equality follows from Equation (15) and the second equality follows from Equation (17) and
the assumption that |x⟩ and |y⟩ are orthogonal. By Equations (13), (15) and (16), it holds that

UA′,ZXB |τ⟩Z |σ⟩A′,B

=UA′,Z
|τ⟩Z ((|x⟩A′ |1⟩B + |y⟩A′ |0⟩B)√

2

= 1√
2

 (
|x⟩A′ |τ ′xx⟩Z + |y⟩A′ |τ ′xy⟩Z + |garbagex⟩A′,Z

)
|1⟩B

+
(
|x⟩A′ |τ ′yx⟩Z + |y⟩A′ |τ ′yy⟩Z + |garbagey⟩A′,Z

)
|0⟩B

 .
(20)
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Then, it holds that

⟨τ |Z ⟨σ|A′,BXBU
†
A′,Z |τ

′
xy⟩Z |σ⟩A′,B

=1
2

 (
⟨x|A′ ⟨τ ′xx|Z + ⟨y|A′ ⟨τ ′xy|Z + ⟨garbagex|A′,Z

)
⟨1|B

+
(
⟨x|A′ ⟨τ ′yx|Z + ⟨y|A′ ⟨τ ′yy|Z + ⟨garbagey|A′,Z

)
⟨0|B

 (|x⟩A′ |0⟩B + |y⟩A′ |1⟩B) |τ ′xy⟩Z

=1
2(⟨τ ′xy|+ ⟨τ ′yx|)Z |τ ′xy⟩Z ,

(21)

where the first equality follows fromEquations (13) and (20) and the second equality follows fromEquations (17)
and (18) and the assumption that |x⟩ and |y⟩ are orthogonal.
By Equations (19) and (21), we have

⟨y|A ⟨τ |Z ⟨σ|A′,B Ũ |x⟩A |τ⟩Z |σ⟩A′,B = 1
2(⟨τ ′xy|+ ⟨τ ′yx|)Z |τ ′xy⟩Z . (22)

By a similar calculation, we have

⟨x|A ⟨τ |Z ⟨σ|A′,B Ũ |y⟩A |τ⟩Z |σ⟩A′,B = 1
2(⟨τ ′xy|+ ⟨τ ′yx|)Z |τ ′yx⟩Z . (23)

By Equations (22) and (23), we have

⟨y|A ⟨τ |Z ⟨σ|A′,B Ũ |x⟩A |τ⟩Z |σ⟩A′,B + ⟨x|A ⟨τ |Z ⟨σ|A′,B Ũ |y⟩A |τ⟩Z |σ⟩A′,B

=1
2

∥∥∥|τ ′xy⟩Z + |τ ′yx⟩Z
∥∥∥2
.

By combining the above with Equation (14), we complete the proof of Claim 5.3.

This completes the proof of Theorem 5.1.

6 Our Conversion for Commitments

In this section, we give a conversion for canonical quantum bit commitments that converts the flavors of
security using Theorem 5.1.

Theorem 6.1 (Converting Flavors). Let {Q0, Q1} be a canonical quantum bit commitment scheme. Let
{Q′0, Q′1} be a canonical quantum bit commitment scheme described as follows:

• The roles of commitment and reveal registers are swapped from {Q0, Q1} and the commitment register
is augmented by an additional one-qubit register. That is, if C and R are the commitment and
reveal registers of {Q0, Q1}, then the commitment and reveal registers of {Q′0, Q′1} are defined as
C′ := (R,D) and R′ := C where D is a one-qubit register.

• For b ∈ {0, 1}, the unitary Q′b is defined as follows:

Q′b := (Q0 ⊗ |0⟩ ⟨0|D +Q1 ⊗ |1⟩ ⟨1|D)
(
IR,C ⊗ ZbDHD

)
where ZD and HD denote the Pauli Z and the Hadamard operators on D.

Then, the following hold for X, Y ∈ {computationally,statistically,perfectly}:
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1. If {Q0, Q1} is X hiding, then {Q′0, Q′1} is X binding.

2. If {Q0, Q1} is Y binding, then {Q′0, Q′1} is Y hiding.

Note that we have

Q′b |0⟩C′,R′ = 1√
2

(
(Q0 |0⟩)C,R |0⟩D + (−1)b(Q1 |0⟩)C,R |1⟩D

)
for b ∈ {0, 1} where (C′,R′) is rearranged as (C,R,D).

Proof of Theorem 6.1. Since the proofs are almost identical for all the three cases ofX, Y ∈ {computationally,statistically,
perfectly}, we focus on the case of X = Y = “computationally”.
Proof of Item 1. Suppose that {Q′0, Q′1} is not computationally binding. Then, there exists a polynomial-time
computable unitary U overR′ = C and an ancillary register Z and a state |τ⟩Z such that∥∥∥((⟨0|Q′1†)C′,R′ ⊗ IZ)(IC′ ⊗ UR′,Z)((Q′0 |0⟩)C′,R′ |τ⟩Z)

∥∥∥
is non-negligible. We observe that U does not act on D (since that is not part of the reveal register R′ of
{Q′0, Q′1}), and thus it cannot cause any interference between states that take 0 and 1 inD. Based on this
observation and the denifition of {Q′0, Q′1}, we have

((⟨0|Q′1
†)C′,R′ ⊗ IZ)(IC′ ⊗ UR′,Z)((Q′0 |0⟩)C′,R′ |τ⟩Z)

=1
2

(
((⟨0|Q†0)C,R ⟨0|D ⊗ IZ)(IR,D ⊗ UC,Z)((Q0 |0⟩)C,R |0⟩D |τ⟩Z)
−((⟨0|Q†1)C,R ⟨1|D ⊗ IZ)(IR,D ⊗ UC,Z)((Q1 |0⟩)C,R |1⟩D |τ⟩Z)

)
.

Similarly, we have

((⟨0|Q′0
†)C′,R′ ⊗ IZ)(IC′ ⊗ UR′,Z)((Q′1 |0⟩)C′,R′ |τ⟩Z)

=1
2

(
((⟨0|Q†0)C,R ⟨0|D ⊗ IZ)(IR,D ⊗ UC,Z)((Q0 |0⟩)C,R |0⟩D |τ⟩Z)
−((⟨0|Q†1)C,R ⟨1|D ⊗ IZ)(IR,D ⊗ UC,Z)((Q1 |0⟩)C,R |1⟩D |τ⟩Z)

)
.

In particular,

((⟨0|Q′1
†)C′,R′ ⊗ IZ)(IC′ ⊗ UR′,Z)((Q′0 |0⟩)C′,R′ |τ⟩Z)

=((⟨0|Q′0
†)C′,R′ ⊗ IZ)(IC′ ⊗ UR′,Z)((Q′1 |0⟩)C′,R′ |τ⟩Z).

Therefore, ∥∥∥∥∥ ((⟨0|Q′1
†)C′,R′ ⊗ IZ)(IC′ ⊗ UR′,Z)((Q′0 |0⟩)C′,R′ |τ⟩Z)

+((⟨0|Q′0
†)C′,R′ ⊗ IZ)(IC′ ⊗ UR′,Z)((Q′1 |0⟩)C′,R′ |τ⟩Z)

∥∥∥∥∥
is non-negligible. If we set |x⟩ = Q′0 |0⟩C′,R′ and |y⟩ = Q′1 |0⟩C′,R′ , then |x⟩ and |y⟩ are orthogonal. Then,
by Item 1 of Theorem 5.1, there exists a non-uniform QPT distinguisher A with a polynomial-size advice |τ ′⟩
that does not act on C′ = (R,D) and distinguishes

|ψ⟩ = |x⟩+ |y⟩√
2

= (Q0 |0⟩)C,R |0⟩D
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and

|ϕ⟩ = |x⟩ − |y⟩√
2

= (Q1 |0⟩)C,R |1⟩D

with a non-negligible advantage. This means that the computational hiding property of {Q0, Q1} is broken,
which contradicts the assumption. Thus, {Q′0, Q′1} is computationally binding. This completes the proof of
Item 1.
Proof of Item 2. Suppose that {Q′0, Q′1} is not computationally hiding. Then, there exists a non-uniform
QPT distinguisher A with advice |τ⟩Z that does not act onR′ = C and distinguishes

|ψ⟩ := 1√
2

((Q0 |0⟩)C,R |0⟩D + (Q1 |0⟩)C,R |1⟩D)

and

|ϕ⟩ := 1√
2

((Q0 |0⟩)C,R |0⟩D − (Q1 |0⟩)C,R |1⟩D)

with a non-negligible advantage ∆.
Since |ψ⟩ and |ϕ⟩ are orthogonal, by Item 2 of Theorem 5.1, there exists a polynomial-time computable

unitary U over (R,D,Z) such that

| ⟨y|C,R,D ⟨τ |Z (UR,D,Z ⊗ IC) |x⟩C,R,D |τ⟩Z + ⟨x|C,R,D ⟨τ |Z (UR,D,Z ⊗ IC) |y⟩C,R,D |τ⟩Z |
2 = ∆

where

|x⟩ = |ψ⟩+ |ϕ⟩√
2

= (Q0 |0⟩)C,R |0⟩D

and

|y⟩ = |ψ⟩ − |ϕ⟩√
2

= (Q1 |0⟩)C,R |1⟩D .

Thus, we must have | ⟨y|C,R,D ⟨τ |Z (UR,D,Z ⊗ IC) |x⟩C,R,D |τ⟩Z | ≥ ∆ or | ⟨x|C,R,D ⟨τ |Z (UR,D,Z ⊗
IC) |y⟩C,R,D |τ⟩Z | ≥ ∆. We assume the former w.l.o.g., i.e., we have∣∣∣((⟨0|Q†1)C,R ⟨1|D ⟨τ |Z

)
(UR,D,Z ⊗ IC) ((Q0 |0⟩)C,R |0⟩D |τ⟩Z)

∣∣∣ ≥ ∆.

In particular, we have∥∥∥(Q1 |0⟩ ⟨0|Q†1)C,R(UR,D,Z ⊗ IC)((Q0 |0⟩)C,R |0⟩D |τ⟩Z)
∥∥∥ ≥ ∆.

This means that U with the auxiliary state |0⟩D |τ⟩Z breaks the computational binding property of
{Q0, Q1}, which contradicts the assumption. Thus, {Q′0, Q′1} is computationally hiding. This completes the
proof of Item 2.
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7 Applications of Our Conversion

In this section, we show applications of our conversion (Theorem 6.1). More applications can be found in
Appendix B.
When we describe a canonical quantum bit commitment scheme {Q0, Q1}, we only describe howQ0 and

Q1 act on |0⟩ for simplicity. Quantum circuits that implement Q0 and Q1 can be defined in a natural way.

7.1 Construction from PRG

Naor [Nao91] constructed a two-message classical commitment scheme that is computationally hiding and
statistically binding based on PRGs. Yan et al. [YWLQ15] constructed a quantum non-interactive version
of Naor’s commitment.34 Let G : {0, 1}n → {0, 1}3n be a PRG. Then Yan et al.’s commitment scheme
{QYWLQ,0, QYWLQ,1} is described as follows:

QYWLQ,0 |0⟩C,R := 1√
2n

∑
x∈{0,1}n

|G(x)⟩C |x, 0
2n⟩R

QYWLQ,1 |0⟩C,R := 1√
23n

∑
y∈{0,1}3n

|y⟩C |y⟩R .

Yan et al. [YWLQ15] proved the following theorem.

Theorem 7.1 ([YWLQ15]). If G is a PRG, {QYWLQ,0, QYWLQ,1} is computationally hiding and statistically
binding.

Byapplying our conversion to {QYWLQ,0, QYWLQ,1}, we obtain the following scheme {Q′YWLQ,0, Q
′
YWLQ,1}.

Q′YWLQ,b |0⟩C′,R′ := 1√
2n+1

∑
x∈{0,1}n

|0, x, 02n⟩C′ |G(x)⟩R′ + (−1)b 1√
23n+1

∑
y∈{0,1}3n

|1, y⟩C′ |y⟩R′ .

By Theorems 6.1 and 7.1, we obtain the following theorem.

Theorem 7.2. If G is a PRG, {Q′YWLQ,0, Q
′
YWLQ,1} is statistically hiding and computationally binding.

This is the first statistically hiding and computationally binding quantum bit commitment scheme
from PRG that makes only a single call to the PRG. If we apply existing conversions [CLS01, Yan22] to
{QYWLQ,0, QYWLQ,1} (or other PRG-based schemes), they result in schemes that make Ω(λ2) calls to the
PRG.
Note that it is known that PRG exists assuming the existence of one-way functions [HILL99].35

In the current state of the art, a construction of PRG makes at least Ω(λ3) calls to the base one-way
function [HRV10, VZ12]. Thus, if we construct a PRG from a one-way function and count the number of
calls to the one-way function, {Q′YWLQ,0, Q

′
YWLQ,1} makes Ω(λ3) calls to the one-way function. We observe

that this is asymptotically the same number as that of Koshiba and Odaira [KO11]. However, it does not seem
possible to instantiate the scheme of [KO11] with a single call to a PRG instead of Ω(λ3) calls to a one-way
function. Also, our security analysis is much simpler than theirs once we establish Theorem 6.1.

34Yan [Yan22, Appendix C] shows an alternative more direct translation of Naor’s commitment to the quantum setting. We could
also apply our conversion to that scheme, but we focus on the scheme of [YWLQ15] since that is simpler.

35Though the original security proof in [HILL99] only considers classical adversaries, it also works against quantum adversaries as
well assuming quantum-secure one-way functions.
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7.2 Construction from Pseudorandom State Generators

Ananth, Qian, Yuen [AQY22], and Morimae and Yamakawa [MY22] concurrently showed that a primitive
called pseudorandom state generators (PRSGs) [JLS18] can be used to construct computationally hiding and
statistically binding quantum bit commitments. Especially, Morimae and Yamakawa [MY22, footnote 12]
mentioned that simply replacing PRGs with single-copy secure PRSGs in {QYWLQ,0, QYWLQ,1} yields a
computationally hiding and statistically binding scheme.
Let StateGen be a single-copy-secure PRSG that, on input k ∈ {0, 1}n, outputs an m-qubit state |ϕk⟩

where m = 3n. Then, Morimae and Yamakawa’s commitment scheme {QMY,0, QMY,1} is described as
follows:

QMY,0 |0⟩C,R := 1√
2n

∑
k∈{0,1}n

|ϕk⟩C |k, 0
2n⟩R

QMY,1 |0⟩C,R := 1√
23n

∑
r∈{0,1}3n

|r⟩C |r⟩R .

Theorem 7.3. If StateGen is single-copy-secure, then {QMY,0, QMY,1} is computationally hiding and
statistically binding.

Since the above is not the main construction of [MY22], they did not give a security proof. Thus, we give
a security proof for completeness.

Proof of Theorem 7.3. We let |ψb⟩C,R := QMY,b |0⟩C,R.

Computational hiding. Note that TrR
(
|ψ1⟩ ⟨ψ1|C,R

)
is a maximally mixed state, which is a Haar random

state when given a single copy. On the other hand, we have TrR
(
|ψ0⟩ ⟨ψ0|C,R

)
= 1

2n

∑
k∈{0,1}n |ϕk⟩ ⟨ϕk|.

Thus, the computational hiding property immediately follows from the single-copy security of StateGen.
Statistical binding. The proof is similar to the proof of binding in [MY22]. Let F (ρ, σ) be the fidelity
between ρ and σ. Then, we have

F
(
TrR(|ψ0⟩⟨ψ0|C,R),TrR(|ψ1⟩⟨ψ1|C,R)

)
= F

( 1
2n
∑
k

|ϕk⟩⟨ϕk|,
I⊗m

2m
)

=
∥∥∥ ξ∑
i=1

√
λi

1√
2m
|λi⟩⟨λi|

∥∥∥2

1

=

 ξ∑
i=1

√
λi

1√
2m

2

≤

 ξ∑
i=1

λi

 ξ∑
i=1

1
2m


≤ 2−2n,
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where in the second equality,
∑ξ
i=1 λi|λi⟩⟨λi| is the diagonalization of 1

2n

∑
k |ϕk⟩⟨ϕk|, in the first inequality,

we have used Cauchy–Schwarz inequality, and in the final inequality, we have used ξ ≤ 2n andm = 3n. This
means that {QMY,0, QMY,1} is statistically binding [Yan22].

By applying our conversion to {QMY,0, QMY,1}, we obtain the following scheme {Q′MY,0, Q
′
MY,1}.36

Q′MY,b |0⟩C′,R′ := 1√
2n+1

∑
k∈{0,1}n

|0, k, 02n⟩C′ |ϕk⟩R′ + (−1)b 1√
23n+1

∑
r∈{0,1}3n

|1, r⟩C′ |r⟩R′ .

By Theorems 6.1 and 7.3, we obtain the following theorem.

Theorem 7.4. If StateGen is single-copy-secure, then {Q′MY,0, Q
′
MY,1} is statistically hiding and computa-

tionally binding.

This is the first statistically hiding and computationally binding quantum bit commitment scheme from
PRSGs that makes only a single call to the PRSG. If we apply existing conversions [CLS01, Yan22] to
{QMY,0, QMY,1} (or other PRSG-based schemes [AQY22]), they result in a schemes that make Ω(λ2) calls
to the PRSG.

7.3 Construction from Injective One-Way Functions

In this section, we show simple constructions of commitments based on any injective one-way functions.
Perfectly hiding and computationally binding commitment. We first construct a perfectly hiding and
computationally binding quantum bit commitment scheme from injective one-way function. We note that
such a commitment is already known from any one-way permutations in [DMS00]. (See Appendix B.1 for
details.) Our construction is more general since every permutation is also injective but the converse is not true.
Let f : {0, 1}n → {0, 1}m be an injective one-way function. Then, we define a canonical quantum bit

commitment scheme {Qinj,0, Qinj,1} as follows:

Qinj,0 |0⟩C,R := 1√
2n

∑
x∈{0,1}n

|x⟩C |f(x)⟩R

Qinj,1 |0⟩C,R := 1√
2n

∑
x∈{0,1}n

|x⟩C |x, 0
m−n⟩R .

Theorem 7.5. If f is an injective one-way function, {Qinj,0, Qinj,1} is perfectly hiding and computationally
binding.

Proof.
Perfect hiding. By the injectivity of f , if we trace outR, then the reduced state inC is

∑
x∈{0,1}n |x⟩ ⟨x| for

both b = 0, 1. This implies perfect hiding.
Computational binding. Suppose that the {Qinj,0, Qinj,1} is not computationally binding. Then there exists
a polynomial-time computable unitary U over (R,Z) and an auxiliary state |τ⟩Z such that∥∥∥(Qinj,1 |0⟩ ⟨0|Q†inj,1)C,R(IC ⊗ UR,Z)((Qinj,0 |0⟩)C,R |τ⟩Z)

∥∥∥
36We could also apply our conversion to the main construction of [MY22] to obtain a similar scheme.
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is non-negligible. In particular, its square is also non-negligible. It holds that∥∥∥(Qinj,1 |0⟩ ⟨0|Q†inj,1)C,R(IC ⊗ UR,Z)((Qinj,0 |0⟩)C,R |τ⟩Z)
∥∥∥2

= 1
22n

∥∥∥∥∥∥
∑

x∈{0,1}n

⟨x, 0m−n|R UR,Z |f(x)⟩R |τ⟩Z

∥∥∥∥∥∥
2

≤ 1
22n

 ∑
x∈{0,1}n

∥∥⟨x, 0m−n|R UR,Z |f(x)⟩R |τ⟩Z
∥∥2

≤ 1
2n

∑
x∈{0,1}n

∥∥⟨x, 0m−n|R UR,Z |f(x)⟩R |τ⟩Z
∥∥2
, (24)

where the first equality follows from the definition of {Qinj,0, Qinj,1}, the first inequality follows from the
triangle inequality, and the second inequality follows from the Cauchy–Schwarz inequality. Thus, the value of
Equation (24) is non-negligible.
Then, we can construct an adversary A that breaks the one-wayness of f with advice |τ⟩ as follows:

A(y; |τ⟩): Given an instance y and advice |τ⟩, it generates a state U |y⟩R |τ⟩Z and measures R. If the
measurement outcome is (x, 0m−n) such that f(x) = y, it outputs x and otherwise ⊥.

We can see that the probability that A outputs the correct preimage x is the value of Equation (24), which is
non-negligible. This contradicts the one-wayness of f . Thus, {Qinj,0, Qinj,1} is computationally binding.

This is the first perfectly hiding quantum bit commitment scheme from injective one-way functions that
makes only a single quantum call to the base function. Before our work, such a commitment scheme was only
known to exist from one-way permutations [DMS00] (which is described in Appendix B.1). We remark that
Koshiba and Odaira [KO09, KO11] generalized [DMS00] to make the assumption weaker than the existence
of injective one-way functions, but those constructions only achieve statistical hiding.
Alternatively, we can also construct such a commitment scheme by applying our conversion to the (purified

version of) construction of computationally hiding and perfectly binding commitment scheme based on
Goldreich-Levin theorem [GL89]. See Appendix B.2 for details.
Computationally hiding and perfectly binding commitment. Next, we apply our conversion to
{Qinj,0, Qinj,1} to obtain the following scheme {Q′inj,0, Q

′
inj,1}:

Q′inj,b |0⟩C′,R′ := 1√
2n+1

∑
x∈{0,1}n

(
|0⟩ |f(x)⟩+ (−1)b |1⟩ |x, 0m−n⟩

)
C′
⊗ |x⟩R′ .

By Theorems 6.1 and 7.5, we obtain the following theorem.

Theorem 7.6. If f is an injective one-way function, {Q′inj,0, Q
′
inj,1} is computationally hiding and perfectly

binding.

Comparison with classical construction. It is well-known that we can classically construct a computationally
hiding and perfectly binding non-interactive commitment scheme from injective one-way functions by using
Goldreich-Levin theorem [GL89]. (See Appendix B.2 for more details.) The construction also only makes a
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single call to the base function. Then, one may wonder if it is meaningful to give a quantum construction for
that. We argue this by remarking the following two points.
The first is a minor parameter improvement. Our construction has a shorter commitment size than

the classical construction (albeit with the apparent disadvantage of the usage of quantum communication).
Specifically, commitment length of our construction is m + 1 whereas it is n + m + 1 in the classical
construction. The additional n-bit is needed to send the seed for the hardcore bit function in the classical
construction. We remark that the decommitment length is the same, n for both constructions. Though the
improvement is somewhat minor, we believe that it is still worthwhile to show that the quantum communication
can reduce the communication complexity of such an important construction of commitments from injective
one-way functions.
The second is rather conceptual. We remark that our construction does not make use of any sort of

classical hardcore predicates. On the other hand, to our knowledge, the only known way to classically
construct a commitment scheme from injective one-way functions (or even one-way permutations) is to rely
on some hardcore predicates [GL89, GRS00, HMS04]. Thus, the source of the pseudorandomness of our
construction seems conceptually very different from that for classical constructions. In a nutshell, we interpret
the theorem shown by [AAS20] in a completely irrelevant context as a kind of search-to-decision reduction.
We believe that this new search-to-decision reduction technique is interesting and will be useful in the future
work.
Construction from keyed injective one-way functions. Unfortunately, there is no known candidate of
post-quantum injective one-way functions based on standard assumptions.37 On the other hand, there are many
candidates of keyed injective one-way functions. We remark that our construction can be easily extended
to one based on keyed injective one-way functions. Let {fk : {0, 1}n → {0, 1}m}k∈K be a keyed injective
one-way function. Then, we construct a modified scheme {Qkeyed-inj,0, Qkeyed-inj,1} as follows:

Qkeyed-inj,0 |0⟩C,R := 1√
2n|K|

∑
x∈{0,1}n,k∈K

|x, k⟩C |fk(x), k⟩R

Qkeyed-inj,1 |0⟩C,R := 1√
2n|K|

∑
x∈{0,1}n

|x, k⟩C |x, 0
m−n, k⟩R

Then, we can show that {Qkeyed-inj,0, Qkeyed-inj,1} is perfectly hiding and computationally binding similarly
to the proof of Theorem 7.5.
By applying our conversion, we obtain the following scheme {Q′keyed-inj,0, Q

′
keyed-inj,1}.

Q′keyed-inj,b |0⟩C′,R′ := 1√
2n+1|K|

∑
x∈{0,1}n,k∈K

(
|0⟩ |fk(x), k⟩+ (−1)b |1⟩ |x, 0m−n, k⟩

)
C′
⊗ |x, k⟩R′ .

By Theorem 6.1, {Q′keyed-inj,0, Q
′
keyed-inj,1} is computationally binding and statistically hiding.

We remark that we can also view it as a quantum-ciphertext PKE (Definition 4.8) if we assume that fk is
a trapdoor function. That is, we can use TrR′

(
Q′keyed-inj,b |0⟩C′,R′ ⟨0|C′,R′ Q′

†
keyed-inj,b

)
as an encryption of

b. We can decrypt it with a trapdoor for fk by applying a unitary |x, 0m−n, k⟩ 7→ |fk(x), k⟩ on the second
register of C′ controlled on the first register of C′ (which is efficiently computable with the trapdoor) and

37Candidate constructions of post-quantum injective one-way functions based on hash functions or block ciphers can be found in
[Unr12, Section 5].
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then measuring the first register of C′ in the Hamadard basis. The IND-CPA security directly follows from
the computational hiding property of {Q′keyed-inj,0, Q

′
keyed-inj,1}. This gives a conceptually different way to

construct (quantum-ciphertext) PKE from trapdoor functions than that based on hardcore predicates.

7.4 Construction from Collapsing Functions

In this section, we show simple constructions of commitments based on collapsing functions. Interestingly,
the constructions are almost identical to those based on injective one-way functions given in Section 7.3, but
they achieve the other flavors of security than those based on injective one-way functions.
Computationally hiding and statistically binding commitment. We first construct a computationally
hiding and statistically binding quantum bit commitment scheme from collapsing functions (Definition 3.4).
Let {Hk : {0, 1}n → {0, 1}m}k∈K be a family of collapsing functions such that n ≥ m+ λ. Then, we

define a canonical quantum bit commitment scheme {Qcol,0, Qcol,1} as follows:

Qcol,0 |0⟩C,R := 1√
2n|K|

∑
x∈{0,1}n,k∈K

|x, k⟩C |Hk(x), 0n−m, k⟩R

Qcol,1 |0⟩C,R := 1√
2n|K|

∑
x∈{0,1}n,k∈K

|x, k⟩C |x, k⟩R .

Theorem 7.7. If {Hk : {0, 1}n → {0, 1}m}k∈K is a family of collapsing functions such that n ≥ m + λ,
{Qinj,0, Qinj,1} is computationally hiding and statistically binding.

Proof.
Computational hiding. We have

TrR(Qcol,0 |0⟩C,R) = 1
|K|

∑
y∈{0,1}m,k∈K

|Sk,y|
2n

 1√
|Sk,y|

∑
x∈Sk,y

|x, k⟩

 1√
|Sk,y|

∑
x′∈Sk,y

⟨x′, k|


where

Sk,y := {x ∈ {0, 1}n : Hk(x) = y}.

Then, by the collapsing property of {Hk}k∈K, we can show that TrR(Qcol,0 |0⟩C,R) is computationally
indistinguishable from

1
2n|K|

∑
x∈{0,1}n,k∈K

|x, k⟩ ⟨x, k| .

The above state is exactly the same as TrR(Qcol,1 |0⟩C,R). Thus, the computational hiding property is
proven.
Statistical binding. Suppose that the {Qcol,0, Qcol,1} is not statistically binding. Then by a similar
argument to that for the proof of computational binding of {Qinj,0, Qinj,1} in Section 7.3, we can construct an
unbounded-time adversary A such that

Pr[A(k,Hk(x)) = x : k ← K, x← {0, 1}n]

is non-negligible. However, this is information-theoretically impossible since n ≥ m + λ. Thus,
{Qcol,0, Qcol,1} is statistically binding.
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This is the first statistically binding quantum bit commitment scheme from collapsing functions that
makes only a single quantum call to the base function. To our knowledge, the only known way to construct
statistically binding (classical or quantum) commitments from collapsing functions (or collision-resistant
functions in the classical case) is to first construct PRGs regarding collapsing (or collision-resistant) functions
as one-way functions and then convert it to commitments by [Nao91]. This requires super-constant number of
calls to the base function since known constructions of PRGs from one-way functions require super-constant
number of calls [HILL99, HRV10, VZ12].
Note that post-quantum statistically hiding commitments from collapsing functions are known [HM96,

Unr16b]. Thus, by applying our conversion to the purified version of the scheme, we can obtain an alternative
construction of statistically binding commitments from collapsing functions. See Appendix B.3 for details.
Statistically hiding and computationally binding commitment. Next, we apply our conversion to
{Qcol,0, Qcol,1} to obtain the following scheme {Q′col,0, Q

′
col,1}:

Q′col,b |0⟩C′,R′ := 1√
2n+1|K|

∑
x∈{0,1}n,k∈K

(
|0⟩ |Hk(x), 0n−m, k⟩+ (−1)b |1⟩ |x, k⟩

)
C′
⊗ |x, k⟩R′ .

By Theorems 6.1 and 7.7, we obtain the following theorem.

Theorem 7.8. If {Hk}k∈K is a family of collapsing functions, {Q′col,0, Q
′
col,1} is statistically hiding and

computationally binding.

As already mentioned, statistically hiding and computationally binding commitments from collapsing
functions are known even without using quantum communications [HM96, Unr16b]. The above theorem
gives an alternative construction for such commitments albeit with quantum communications.
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A Proof of Lemma 4.7

We give a proof of Lemma 4.7. Before giving the proof, we clarify definitions of terms that appear in the
statement of the lemma. First, we define (infinitely-often) uniform conversion hardness for group actions.

Definition A.1 ((Infinitely-often) uniform conversion hardness). We say that an STF (Setup,Eval,Swap)
is uniform conversion hard if for any uniform QPT adversary A, we have

Pr[f1(x1) = y : (pp, td)← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |f−1
0 (y)⟩)] = negl(λ).

We say that it is infinitely-often uniform conversion hard if the above holds for infinitely many security
parameters λ ∈ N.
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Next, we define (infinitely-often) one-shot signatures. We focus on the case of single-bit messages for
simplicity. The message space can be extended to multiple bits by a simple parallel repetition as shown in
[AGKZ20].

Definition A.2 (One-shot signatures). A one-shot signature scheme consists of algorithms (Setup,KeyGen,Sign,Vrfy).

Setup(1λ)→ crs: This is a PPT algorithm that takes the security parameter 1λ as input, and outputs a
classical public parameter pp.

KeyGen(pp)→ (vk, sk ): This is a QPT algorithm that takes a public parameter pp as input, and outputs a
classical verification key vk and a quantum signing key sk .

Sign(pp, sk , b)→ σ: This is a QPT algorithm that takes a public parameter pp, a signing key sk and a
message b ∈ {0, 1} as input, and outputs a classical signature σ.

Vrfy(pp, vk, b, σ)→ ⊤/⊥: This is a PPT algorithm that takes a public parameter pp, a verification key vk,
a message b, and a signature σ as input, and outputs the decision ⊤ or ⊥.

We require a one-shot signature scheme to satisfy the following properties.
Correctness. For any b ∈ {0, 1}, we have

Pr
[
Vrfy(pp, vk, b, σ)→ ⊤ : pp← Setup(1λ), (pk, sk )← KeyGen(pp), σ ← Sign(pp, sk , b)

]
= 1− negl(λ).

(Infinitely-often) Security. We say that a one-shot signature scheme is secure if for any non-uniform QPT
adversary A, we have

Pr
[
∀b ∈ {0, 1} Vrfy(pp, vk, b, σb) = ⊤ : pp← Setup(1λ), (vk, σ0, σ1)← A(pp)

]
= negl(λ).

We say that it is infinitely-often secure if the above holds for infinitely many security parameters λ ∈ N.

Then, we give a proof of Lemma 4.7.

Proof of Lemma 4.7. Since the proof is almost identical for both Items 1 and 2, we first prove Item 1 and then
explain how to modify it to prove Item 2.
Proof of Item 1. Let (Setup,Eval, Swap) be an STF that is claw-free but not infinitely-often uniform
conversion hard. Then, there is a uniform QPT algorithm A and a polynomial poly such that

Pr[f1(x1) = y : (pp, td)← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |f−1
0 (y)⟩)] > 1/poly(λ)

(25)

for all λ. Then, we construct a one-shot signature scheme as follows. Let N := poly(λ) · λ.

Setup(1λ): For i ∈ [N ], generate (ppi, tdi)← Setup(1λ), and output pp := {ppi}i∈[N ]. We write fi,0 and
fi,1 to mean f

(ppi)
0 and f (ppi)

1 , respectively.

KeyGen(pp): Given pp = {ppi}i∈[N ], for i ∈ [N ], generate

|X ⟩ = 1
|X |1/2

∑
x∈X
|x⟩ ,
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coherently compute fi,0 in another register to get

|X ⟩ = 1
|X |1/2

∑
x∈X
|x⟩ |fi,0(x)⟩ ,

measure the second register to get yi. At this point, the first register collapses to |f−1
i,0 (yi)⟩. Output

vk := {yi}i∈[N ] and sk := {yi, |f−1
i,0 (yi)⟩}i∈[N ].

Sign(pp, sk , b)→ σ: Given pp = {ppi}i∈[N ], sk = {yi, |f−1
i,0 (yi)⟩}i∈[N ], and b ∈ {0, 1}, do the following.

• If b = 0, for i ∈ [N ], measure |f−1
i,0 (yi)⟩ to get xi ∈ f−1

i,0 (yi) and output σ := {xi}i∈[N ].

• If b = 1, for i ∈ [N ], run A(ppi, |f−1
i,0 (yi)⟩) to get x′i. If fi,1(x′i) ̸= yi for all i ∈ [N ], it aborts.

Otherwise, it outputs σ := (i∗, x′i∗) where i∗ is the smallest index such that fi∗,1(x′i∗) = yi∗ .

Vrfy(pp, vk, b, σ)→ ⊤/⊥: Given pp = {ppi}i∈[N ], vk = {yi}i∈[N ], b ∈ {0, 1}, and a signature σ, do the
following.

• If b = 0, parse σ = {xi}i∈[N ], and output ⊤ if fi,0(xi) = yi for all i ∈ [N ] and ⊥ otherwise.
• If b = 1, parse σ = (i, x′i), and output ⊤ if fi,1(x′i) = yi and ⊥ otherwise.

Correctness. It is easy to see that the signing algorithm outputs a valid signature whenever it does not abort.
By Equation (25), the probability that the signing algorithm abort (when b = 1) is

(1− 1/poly)N = negl(λ)

by N = poly(λ) · λ.
Security. Suppose that there is a non-uniform QPT adversary that breaks the above one-shot signature scheme.
The adversary is given pp = {ppi}i∈[N ] and finds vk = {yi}i∈[N ], σ0 = {xi}i∈[N ], and σ1 = (i∗, x′i∗)
such that fi,0(xi) = yi for all i ∈ [N ] and fi∗,1(x′i∗) = yi∗ with a non-negligible probability. In particular,
when the above happens, (xi∗ , x′i∗) forms a claw, i.e., we have fi∗,0(xi∗) = fi∗,1(x′i∗). Thus, by randomly
guessing i∗ and embedding a problem instance of the claw-freeness into the i∗-th coordinate, we can break the
claw-freeness of the STF (Setup,Eval,Swap), which is a contradiction. Thus, the above one-shot signature
scheme is secure.
This completes the proof of Item 1.

Proof of Item 2. The proof is similar to that of Item 1. The difference is that since we only assume the STF is
not uniform conversion hard, we can only assume that Equation (25) holds for infinitely many λ rather than
all λ. In this case, the correctness of the above one-shot signature scheme only holds for infinitely many λ.
To deal with this, we modify the verification algorithm so that it approximates A’s success probability up
to additive error 1/(4poly(λ)) (except for a negligible probability) and simply accepts if the approximated
success probability is smaller than 1/(2poly(λ)). Then, the correctness holds on all λ ∈ N because

• if the real success probability is smaller than 1/(4poly(λ)), the estimated success probability is smaller
than 1/(2poly(λ)) with overwhelming probability, and thus the verification algorithm accepts with
overwhelming probability on these security parameters, and

• if the real success probability is larger than 1/(4poly(λ)), the signing algorithm should succeed in
generating a valid proof with overwhelming probability and thus the verification algorithm accepts
with overwhelming probability on these security parameters.
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For the security, we observe that the estimated success probability is smaller than 1/(2poly(λ)) with a
negligible probability when the real success probability is larger than 1/poly(λ). Thus, for those security
parameters, the adversary should find valid signatures in the original scheme. Since there are infinitely many
such λ, this is not possible by the claw-freeness of the STF.

B More Applications of Our Conversion

B.1 Construction from One-Way Permutations via Dumais-Mayers-Salvail Commitment

Dumais, Mayers and Salvail [DMS00] constructed a perfectly hiding and computationally binding commitment
from one-way permutations as follows.38 Let f : {0, 1}n → {0, 1}n be a one-way permutation. Then, we
define a canonical quantum bit commitment scheme {QDMS,0, QDMS,1} as follows:

QDMS,b |0⟩C,R := 1√
2n

∑
x∈{0,1}n

((Hb)⊗n |f(x)⟩)C |x⟩R .

Theorem B.1 ([DMS00]). If f is a one-way permutation, {QDMS,0, QDMS,1} is perfectly hiding and
computationally binding.

By applying our conversion to {QDMS,0, QDMS,1}, we obtain the following scheme {Q′DMS,0, Q
′
DMS,1}:

Q′DMS,b |0⟩C′,R′ := 1√
2n+1

 ∑
x∈{0,1}n

(
|0, x⟩C′ |f(x)⟩R′ + (−1)b |1, x⟩C′ (H⊗n |f(x)⟩)R′

) .
By Theorem B.1 and Theorem 6.1, we obtain the following theorem.

Theorem B.2. If f is a one-way permutation, {Q′DMS,0, Q
′
DMS,1} is computationally hiding and perfectly

binding.

B.2 Constructions from Injective One-Way Functions via Goldreich-Levin Theorem

Goldreich and Levin [GL89] showed that for any one-way function f : {0, 1}n → {0, 1}m, r · x is
computationally indistinguishable from a uniform bit given (f(x), r) for x, r $← {0, 1}n. Here, r · x :=∑
i∈{0,1}n rixi mod 2 where ri and xi are the i-th bits of r and x, respectively. It is well-known that the

above theorem gives us a simple classical non-interactive commitment scheme that is computationally hiding
and perfectly binding from any injective one-way function: Let f : {0, 1}n → {0, 1}m be an injective
one-way function. Then, a commitment to bit b ∈ {0, 1} is set to be (f(x), r, r · x⊕ b). By purifying this
construction, we obtain the following canonical quantum bit commitment scheme {QGL,0, QGL,1}:

QGL,b |0⟩C,R := 1
2n

∑
x∈{0,1}n,r∈{0,1}n

|f(x), r, r · x⊕ b⟩C |x, r⟩R .

By Goldreich-Levin theorem (or its quantum version with a better reduction loss shown by Adcock and
Cleve [AC02]), it is straightforward to prove the following theorem.

38We describe it in the canonical form as in [Yan22, Section 5].
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Theorem B.3. If f is an injective one-way function, {QGL,0, QGL,1} is computationally hiding and perfectly
binding.

By applying our conversion to {QGL,0, QGL,1}, we obtain the following scheme {Q′GL,0, Q
′
GL,1}.

Q′GL,b |0⟩C′,R′ := 1
2n

∑
x∈{0,1}n,r∈{0,1}n

(
|0, x, r⟩C′ |f(x), r, r · x⟩R′ + (−1)b |1, x, r⟩C′ |f(x), r, r · x⊕ 1⟩R′

)
.

By Theorems 6.1 and B.3, we obtain the following theorem.

Theorem B.4. If f is an injective one-way function, {Q′GL,0, Q
′
GL,1} is perfectly hiding and computationally

binding.

Construction from injective one-way functions with trusted setup.
Similarly to the schemes in Section 7.3, the above schemes work based on injective one-way functions

with trusted setup. Let R be the randomness space for the setup and fR be the (description of) injec-
tive one-way function generated from the randomness R ∈ R. Then, we construct a modified scheme
{QGL-setup,0, QGL-setup,1}:

QGL-setup,b |0⟩C,R := 1
2n
√
|R|

∑
x∈{0,1}n,r∈{0,1}n,R∈R

|fR(x), r, r · x⊕ b, R⟩C |x, r,R⟩R .

It is easy to show that {QGL-setup,0, QGL-setup,1} is computationally hiding and perfectly binding. By apply-
ing our conversion to {QGL-setup,0, QGL-setup,1}, we obtain the following scheme {Q′GL-setup,0, Q

′
GL-setup,1}:

Q′GL-setup,b |0⟩C′,R′ := 1
2n
√
|R|

∑
x∈{0,1}n,r∈{0,1}n,R∈R

(
|0, x, r, R⟩C′ |fR(x), r, r · x,R⟩R′

+(−1)b |1, x, r, R⟩C′ |fR(x), r, r · x⊕ 1, R⟩R′

)
.

By Theorem 6.1, {Q′GL-setup,0, Q
′
GL-setup,1} is perfectly hiding and computationally binding.

B.3 Construction from Collapsing Hash Functions via Halevi-Micali Commitments

Halevi and Micali [HM96] constructed a two-message statistically hiding and computationally binding
commitment scheme from any collision-resistant hash functions in the classical setting. Unruh [Unr16b]
pointed out that the scheme may not be secure against quantum adversaries, and showed that it is secure if we
assume a stronger security than the collision-resistance called collapsing property Definition 3.4.
In this section, we consider the canonical form of the scheme of [HM96] and show that it is statistically

hiding and computationally binding assuming the collapsing hash functions. Then, we convert it into
computationally hiding and statistically binding one by our conversion.
Preparation. Before describing the canonical form of the scheme of [HM96], we define universal functions
and the leftover hash lemma.

Definition B.5 (Universal functions.). A polynomial-time computable function family F = {fk : {0, 1}L →
{0, 1}ℓ}k∈KF is universal if for any x, x′ ∈ {0, 1}L such that x ̸= x′, we have

Pr
k←KF

[fk(x) = fk(x′)] = 2−ℓ.
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For any polynomials L, ℓ in the security parameter, there unconditionally exists a universal function family
from {0, 1}L to {0, 1}ℓ [CW79, HILL99].

Lemma B.6 (Leftover hash lemma [HILL99]). Let F = {fk : {0, 1}L → {0, 1}ℓ}k∈KF be a universal
function family. Let X be a random variable over {0, 1}L such that H∞(X) ≥ ℓ + 2 log ϵ−1 where
H∞(X) := − log maxx∈{0,1}L Pr[X = x]. Then, we have

∆((k, fk(X)), (k, Uℓ)) ≤ ϵ

where ∆ denotes the statistical distance, k ← K, and Uℓ ← {0, 1}ℓ.

Construction. Let H = {Hk : {0, 1}L → {0, 1}ℓ}k∈KH be a collapsing function family and F = {fk′ :
{0, 1}L → {0, 1}}k′∈KF be a universal function family where L = ℓ+ 2λ+ 1. The canonical form of the
scheme of [HM96] {QHM,0, QHM,1} is described as follows:

QHM,b |0⟩C,R := 1√
2L|KH||KF |

∑
k∈KH,k′∈KF ,x∈{0,1}L

|k, k′, Hk(x), fk′(x)⊕ b⟩C |k, k
′, x⟩R

Theorem B.7. {QHM,0, QHM,1} is statistically hiding and computationally binding.

Proof.
Hiding. For b ∈ {0, 1}, we have

TrR(QHM,b |0⟩C,R)

= 1
2L|KH||KF |

∑
k∈KH,k′∈KF ,x∈{0,1}L

|k, k′, Hk(x), fk′(x)⊕ b⟩C ⟨k, k
′, Hk(x), fk′(x)⊕ b|C

Thus, breaking the hiding property is equivalent to distinguishing the classical distributions {(k, k′, Hk(x), fk′(x)⊕
b) : k ← KH, k′ ← KF , x ← {0, 1}L} for b = 0, 1. For any fixed k ∈ KH and y ∈ {0, 1}ℓ, let Xk,y be
the conditional distribution of x ← {0, 1}L conditioned on Hk(x) = y. Since ℓ-bit side information can
decrease the min-entropy by at most ℓ, we have H∞(Xk,y) ≥ L− ℓ = 2λ+ 1. Thus, by the leftover hash
lemma (Lemma B.6), for any fixed k, we have

∆((k, k′, Hk(x), fk′(x)), (k, k′, Hk(x), U1)) ≤ 2−λ

where k′ ← KF , x← {0, 1}L, and U1 ← {0, 1}. Combined with the above observation, this implies that
{QHM,0, QHM,1} is statistically hiding.
Binding. Suppose that the {QHM,0, QHM,1} is not computationally binding. Then there exists a polynomial-
time computable unitary U over (R,Z) and a auxiliary state |τ⟩Z such that∥∥∥(QHM,1 |0⟩ ⟨0|Q†HM,1)C,R(IC ⊗ UR,Z)((QHM,0 |0⟩)C,R |τ⟩Z)

∥∥∥
is non-negligible. In particular, its square is also non-negligible.
Let RK and RX be sub-registers of R that store (k, k′) and x, respectively. For k ∈ KH, k′ ∈ KF ,

y ∈ {0, 1}ℓ, and z ∈ {0, 1}, we define a subset Sk,k′,y,z ⊆ {0, 1}L as

Sk,k′,y,z := {x ∈ {0, 1}L : Hk(x) = y ∧ fk′(x) = z}
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and define the state |Sk,k′,y,z⟩RX
as

|Sk,k′,y,z⟩RX
:= 1√

|Sk,k′,y,z|

∑
x∈Sk,k′,y,z

|x⟩RX
.

For notational convenience, we also define a (non-normalized) state |S̃k,k′,y,z⟩RX
as

|S̃k,k′,y,z⟩RX
:=
√
|Sk,k′,y,z| |Sk,k′,y,z⟩RX

=
∑

x∈Sk,k′,y,z

|x⟩RX
.

Clearly, for any k ∈ KH and k′ ∈ KF , we have∑
y∈{0,1}ℓ,z∈{0,1}

|Sk,k′,y,z| = 2L. (26)

Then, it holds that∥∥∥(QHM,1 |0⟩ ⟨0|Q†HM,1)C,R(IC ⊗ UR,Z)((QHM,0 |0⟩)C,R |τ⟩Z)
∥∥∥2

= 1
(2L|KH||KF |)2

∥∥∥∥∥∥∥∥∥
∑

k∈KH,k
′∈KF ,

y∈{0,1}ℓ,z∈{0,1}

⟨k, k′|RK
⟨S̃k,k′,y,z⊕1|RX

UR,Z |k, k′⟩RK
|S̃k,k′,y,z⟩RX

|τ⟩Z

∥∥∥∥∥∥∥∥∥
2

≤ 1
(2L|KH||KF |)2

∥∥∥∥∥∥∥∥∥
∑

k∈KH,k
′∈KF ,

y∈{0,1}ℓ,z∈{0,1}

⟨S̃k,k′,y,z⊕1|RX
UR,Z |k, k′⟩RK

|S̃k,k′,y,z⟩RX
|τ⟩Z

∥∥∥∥∥∥∥∥∥
2

= 1
(2L|KH||KF |)2

∥∥∥∥∥∥∥∥∥
∑

k∈KH,k
′∈KF ,

y∈{0,1}ℓ,z∈{0,1}

∑
x∈Sk,k′,y,z⊕1

⟨x|RX
UR,Z |k, k′⟩RK

|S̃k,k′,y,z⟩RX
|τ⟩Z

∥∥∥∥∥∥∥∥∥
2

≤ 1
(2L|KH||KF |)2

 ∑
k∈KH,k

′∈KF ,
y∈{0,1}ℓ,z∈{0,1}

∑
x∈Sk,k′,y,z⊕1

∥∥∥⟨x|RX
UR,Z |k, k′⟩RK

|S̃k,k′,y,z⟩RX
|τ⟩Z

∥∥∥


2

≤ 1
2L|KH||KF |

∑
k∈KH,k

′∈KF ,
y∈{0,1}ℓ,z∈{0,1}

∑
x∈Sk,k′,y,z⊕1

∥∥∥⟨x|RX
UR,Z |k, k′⟩RK

|S̃k,k′,y,z⟩RX
|τ⟩Z

∥∥∥2

≤ 1
|KH||KF |

∑
k∈KH,k

′∈KF ,
y∈{0,1}ℓ,z∈{0,1}

|Sk,k′,y,z|
2L

∑
x∈Sk,k′,y,z⊕1

∥∥∥⟨x|RX
UR,Z |k, k′⟩RK

|Sk,k′,y,z⟩RX
|τ⟩Z

∥∥∥2
(27)

where the first equality follows from the definition of {QHM,0, QHM,1}, the second equality follows from the
definition of |S̃k,k′,y,z⊕1⟩RX

, the second inequality follows from the triangle inequality, the third inequality
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follows from the Cauchy–Schwarz inequality and Equation (26), and the fourth inequality follows from
L ≥ ℓ+ 1. Therefore, the value of Equation (27) is non-negligible.
Below, we give an algorithmic interpretation for the value of Equation (27). Let A be an algorithm that

works as follows with advice |τ⟩.

A(k, k′; |τ⟩): Given k ∈ KH and k′ ∈ KF as input and advice |τ⟩, it generates a state∑
x∈{0,1}L

|x⟩RX
|Hk(x), fk′(x)⟩A

whereA is an additional register and measuresA. Let (y, z) be the outcome. At this point, the state in
RX collapses to |Sk,k′,y,z⟩RX

. Then, it computes UR,Z |k, k′⟩RK
|Sk,k′,y,z⟩RX

|τ⟩Z and measuresRX.
Let x be the outcome. If x ∈ Sk,k′,y,z⊕1, then it outputs 1. Otherwise, it outputs 0.

The probability that themeasurement outcomeofA byA is (y, z) is |Sk,k′,y,z |
2L . Therefore,Pr

k
$←KH,k′ $←KF

[A(k, k′; |τ⟩) =
1] is exactly the value of Equation (27), which is non-negligible.
Next, we consider a modified algorithm A′ that works similarly to A except that it measuresRX before

applyingUR,Z. Equivalently, instead of generating the state
∑
x∈{0,1}L |x⟩RX

|Hk(x), fk′(x)⟩A,A′ classically
samples x $← {0, 1}L, computes y := Hk(x) and z := fk′(y) and uses |x⟩RX

instead of |Sk,k′,y,z⟩RX
. By a

straightforward reduction to the collapsing property ofH,∣∣∣∣∣∣ Pr
k

$←KH,k′ $←KF

[A′(k, k′; |τ⟩) = 1]− Pr
k

$←KH,k′ $←KF

[A(k, k′; |τ⟩) = 1]

∣∣∣∣∣∣ = negl(λ).

Therefore, Pr
k

$←KH,k′ $←KF
[A′(k, k′; |τ⟩) = 1] is non-negligible.

By using the above, we construct a non-uniform QPT algorithm B that breaks the collision-resistance of
H as follows.

B(k; |τ⟩): Given an input k ∈ KH and advice |τ⟩, it picks k′
$← KF and x

$← {0, 1}N . It computes
UR,Z |k, k′⟩RK

|x⟩RX
|τ⟩Z and measuresRX. Let x′ be the outcome. It outputs (x, x′).

It is easy to see that

Pr
k

$←KH

[x′ ∈ Sk,k′,Hk(x),fk′ (x)⊕1 : (x, x′) $← B(k; |τ⟩)] = Pr
k

$←KH,k′ $←KF

[A′(k, k′; |τ⟩) = 1]

where k′ in the LHS is the one picked by B. Since the RHS is non-negligible, the LHS is non-negligible.
Moreover, when x′ ∈ Sk,k′,Hk(x),fk′ (x)⊕1, we have Hk(x) = Hk(x′) and x ̸= x′ by the definition of
Sk,k′,Hk(x),fk′ (x)⊕1. Therefore,

Pr
k

$←KH

[Hk(x) = Hk(x′) ∧ x ̸= x′ : (x, x′) $← B(k; |τ⟩)]

is non-negligible. This means that B with advice |τ⟩ breaks the collision-resistance ofH. This contradicts
the assumption that H is collapsing since the collapsing property implies the collision-resistance. Thus,
{QHM,0, QHM,1} is computationally binding. This completes the proof of Theorem B.7.
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By applying our conversion, we obtain the following scheme {Q′HM,0, Q
′
HM,1}

Q′HM,b |0⟩C′,R′ := 1√
2L+1|KH||KF |

∑
k∈KH,k′∈KF ,x∈{0,1}L

(
|0, k, k′, x⟩C′ |k, k′, Hk(x), fk′(x)⟩R′

+(−1)b |1, k, k′, x⟩C′ |k, k′, Hk(x), fk′(x)⊕ 1⟩R′

)
By Theorems 6.1 and B.7, we obtain the following theorem.

Theorem B.8. {Q′HM,0, Q
′
HM,1} is computationally hiding and statistically binding.
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