
Improved Differential and Linear Trail Bounds for1

ASCON2

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen3

Radboud University, Nijmegen, The Netherlands4

solane.elhirch@ru.nl,silvia.mella@ru.nl,alireza.mehrdad@ru.nl,joan@cs.ru.nl5

Abstract. Ascon is a family of cryptographic primitives for authenticated encryption6

and hashing introduced in 2015. It is selected as one of the ten finalists in the7

NIST Lightweight Cryptography competition. Since its introduction, Ascon has8

been extensively cryptanalyzed, and the results of these analyses can indicate the9

good resistance of this family of cryptographic primitives against known attacks, like10

differential and linear cryptanalysis.11

Proving upper bounds for the differential probability of differential trails and for the12

squared correlation of linear trails is a standard requirement to evaluate the security13

of cryptographic primitives. It can be done analytically for some primitives like AES.14

For other primitives, computer assistance is required to prove strong upper bounds for15

differential and linear trails. Computer-aided tools can be classified into two categories:16

tools based on general-purpose solvers and dedicated tools. General-purpose solvers17

such as SAT and MILP are widely used to prove these bounds, however they seem to18

have lower capabilities and thus yield less powerful bounds compared to dedicated19

tools.20

In this work, we present a dedicated tool for trail search in Ascon. We arrange21

2-round trails in a tree and traverse this tree in an efficient way using a number of22

new techniques we introduce. Then we extend these trails to more rounds, where we23

also use the tree traversal technique to do it efficiently. This allows us to scan much24

larger spaces of trails faster than the previous methods using general-purpose solvers.25

As a result, we prove tight bounds for 3-rounds linear trails, and for both differential26

and linear trails, we improve the existing upper bounds for other number of rounds.27

In particular, for the first time, we prove bounds beyond 2−128 for 6 rounds and28

beyond 2−256 for 12 rounds of both differential and linear trails.29

Keywords: Differential Trail Search · Linear Trail Search · Trail Weight Bounds ·30

ASCON31

1 Introduction32

Ascon is a family of cryptographic algorithms for authenticated encryption (AE) and33

hashing [DEMS21a]. It is currently one of the ten finalists in the NIST lightweight34

cryptography (LWC) competition for lightweight AE [TMC+21] and was selected in the35

final portfolio of the CAESAR competition [com14] as primary choice for lightweight36

AE [DEMS16]. The AE schemes are based on the duplex construction [BDPV11a], while37

the hashing functions are based on the sponge construction [BDPV07,BDPV08]. All family38

members are based on the Ascon permutation, which is also used in Isap [DEM+20],39

another finalist in the NIST LWC competition.40

The Ascon permutation has been extensively cryptanalyzed since its introduction,41

giving confidence on the security of the schemes based on it. However a thorough effort42

to prove bounds on the differential probability (DP) and squared correlation (C2) of its43

mailto:solane.elhirch@ru.nl, silvia.mella@ru.nl, alireza.mehrdad@ru.nl,joan@cs.ru.nl

2 Improved Differential and Linear Trail Bounds for ASCON

trails was conducted only recently [GPT21, EME22,MR22]. Before that, only bounds44

for 3-round trails were proved in [DEMS15] and for more rounds, the authors performed45

heuristic searches showing small DP and small C2.46

Proving bounds for trails is an important task in the evaluation of the security of a47

permutation. The cost of a differential attack based on a given trail is inversely proportional48

to its DP. Similarly, the cost of a linear attack is inversely proportional to the C2. Therefore,49

the smaller the DP or C2 is, the higher the cost of the attack is. Bounds on the DP or50

C2 of trails are usually proven by bounding the number of active S-boxes of the trails51

or its weight. Roughly speaking, the weight w of a differential trail relates to its DP as52

DP ≈ 2−w. Similarly, the weight of a linear trail relates to its C2 as C2 ≈ 2−w. Therefore,53

the higher the number of active S-boxes or the higher the weight is, the more costly the54

attack is.55

For some primitives, bounds can be proved analytically. An example is the AES with56

its simple proof that a 4-round differential trail has weight at least 150 [DR20]. For other57

primitives they are obtained by computer-aided proofs. In this case, a program scans the58

space of all r-round trails satisfying a given requirement. The requirement is usually that59

the number of active S-boxes in the trail is below a given threshold, or that the weight of60

the trail is below a given threshold. Large state size and weak alignment contribute in61

making the search space very large and thus the cost of scanning it very costly. It follows62

that the bounds that one can prove are limited by the capability of the tool for scanning63

such spaces.64

Automated tools that are often used to prove bounds on the number of active S-boxes65

are based on general-purpose solvers like Boolean satisfiability (SAT) [MP13,EME22],66

(mixed) integer linear programming ((M)ILP) [SHW+14, BPP+17, BJK+16,WH19] or67

Satisfiability Modulo Theories (SMT) [DEMS15]. Dedicated tools were used to prove68

lower bounds on the weight of trails in Noekeon [DPAR00], Keccak-p [DV12,MDV17],69

Xoodoo [DHVV18b], and Subterranean [MMGD22]. Such dedicated programs allow70

to better exploit the structural properties of the primitive and usually allow to scan71

larger spaces, leading to better results than tools based on general-purpose solvers. Before72

2022, the best result obtained with tools based on general-purpose solvers that we are73

aware of is the work of Mouha and Preneel, who used a SAT-based method to scan74

the space of all 3-round characteristics up to weight 26 in the ARX primitive Salsa20,75

which implies a weight per round below 9 [MP13]. The dedicated search for Noekeon76

in [DPAR00] and Keccak-f [1600] in [DV12] both reached a weight per round of 12, while77

the improvements of [MDV17] allowed to reach a weight per round of 15. The dedicated78

search on Subterranean reached a weight per round beyond 14 [MMGD22]. In the last79

months, better results have been achieved with both solvers-based tools and dedicated80

tools. In [EME22] Erlacher et al. reached a weight per round of 17 with their SAT-based81

method to scan the space of trails in Ascon. While the most recent improvements to the82

dedicated tool for Xoodoo allowed to reach a weight of 21 per round [DMA22].83

Inspired by the previous works on dedicated tools and their results compared to84

automated tools based on general-purpose solvers, in this work we introduce a dedicated85

tool for Ascon. We present a number of techniques that deeply exploit the properties of86

the linear and non-linear layer of Ascon to generate trails very efficiently. Such techniques87

allow us to scan larger spaces of trails at a smaller computational cost compared to previous88

work, that results in improved bounds. In particular, we reach a weight per round of 21.89

Related work. Exact values for the DP and C2 of trails over 1 and 2 rounds of Ascon90

can be derived by the fact that the S-box has maximum DP of 2−2 and maximum C2 of91

2−2, and that the linear layer has branch number B = 4. For more rounds, lower bounds92

were proven in [DEMS15] and [EME22]. Both works are based on SAT solvers and prove93

bounds on the number of active S-boxes. Directly bounding the probability would require94

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 3

a more expensive model for the SAT solver compared to bounding the number of active95

S-boxes, which already requires a major computational effort.96

In [DEMS15], Dobraunig et al. presented an SMT model and used it to prove that a97

3-round differential trail has a minimum of 15 active S-boxes and a 3-round linear trail98

has a minimum of 13 active S-boxes. These bounds automatically give bounds of 2−30
99

and 2−26 for the DP and the C2 of 3-round trails, respectively. Bounds for more rounds100

were proven later in [EME22], where Erlacher et al. presented a SAT model and used it to101

prove bounds on the number of active S-boxes for 4 and 6 rounds, from which they derived102

bounds for 8 and 12 rounds. In addition, by using these results and the bound on 1 round,103

we can derive bounds for 5, 7, 9, 10, and 11 rounds. We summarize such bounds in the104

second column of Table 1.105

To overcome the computational limitation of SAT solvers, the authors of [EME22] aim106

at reducing the search space as much as possible and split it in sub-spaces that can be107

scanned in parallel. To this end, they introduced a number of techniques similar to those108

usually used in dedicated tools, like starting from shorter trails with minimum number of109

active S-boxes, building long trails from short trails in an incremental way, and taking110

advantage of the translation symmetry of the primitive [DV12].111

A significant effort has been also performed to find trails with the highest DP or C2.112

Such searches are based on heuristic tools and provide upper bounds. In [DEMS15], the113

authors used a dedicated guess-and-determine tool (nldtool) to find differential trails up114

to 5 rounds, while a heuristic tool (lineartrails) to find linear trails for 4 and 5 rounds115

was introduced in [DEM15]. In [GPT21], the authors used constrained programming (CP)116

to find best differential trails for 5 and 6 rounds. The authors in [MR22] presented an117

MILP-based approach that allowed them to find a new 5-round linear trail with best118

known C2 and proved tight bound for differential trails over 3 rounds. We report the best119

known trails found by these tools in the first column of Table 1.120

In dedicated tools, bounds on the weight of trails are derived, instead of evaluating121

the number of active S-boxes. The first dedicated tool for trail search was introduced122

as early as 2000 for Noekeon [DPAR00]. It was later improved and refined in [DV12]123

and [MDV17] for Keccak-p and then adapted to Xoodoo in [DHVV18b] and Sub-124

terranean in [MMGD22]. In each of these works, the authors presented a number of125

techniques specific for the permutation under analysis that deeply exploit the structure126

of its linear and non-linear layers. However, the approach underlying these works is the127

same and is generic, so it can in principle be applied to other ciphers. In a few words,128

the goal of such approach is to reduce as much as possible the search space and define129

methods to scan it efficiently. To this end, trails are split into classes where the weight130

of trails in the same class can be easily bounded by generating only one representative131

trail per class, called trail core. By exploiting the symmetry properties of the permutation,132

trail cores can be further split into classes where each trail core in a class is the translated133

version of another trail in the class and trail cores in the same class have the same weight.134

Therefore, only one representative is generated, that is called canonical (or necklace to use135

the terminology of [EME22]). Trail cores over multiple rounds are built by first generating136

the shortest possible trail cores, that are those over 2 rounds, and by extending them one137

round at the time each time checking if the weight is below the expected limit. In [MDV17]138

a generic method is introduced to generate such 2-round trail cores efficiently as a tree139

search.140

Our contribution. In this work we present a dedicated tool for trail search in Ascon,141

based on the tree-based approach introduced in [MDV17]. To obtain an efficient instantia-142

tion of the tree-based approach, we introduce a number of techniques that deeply exploit143

the structure of the linear and non-linear layers in Ascon. We also introduce methods144

to efficiently extend trails over multiple rounds. We implemented such techniques in a145

4 Improved Differential and Linear Trail Bounds for ASCON

Table 1: Previous and new bounds for the differential probability (DP) of differential trails
and squared correlation (C2) of linear trails in Ascon. R denotes the number of rounds;
min #S denotes the minimum number of active S-boxes.

(a) Differential trails

R best known probability previous lower bound new bound
DP method reference DP method reference DP

1 2−2 DDT 2−2 DDT
2 2−8 DDT+B 2−8 DDT+B
3 2−40 nldtool [DEMS15] 2−40 MILP [MR22]
4 2−107 nldtool [DEMS15] ≤ 2−72 SAT+min #S [EME22] ≤ 2−86

5 2−190 CP [DEMS15,GPT21] ≤ 2−74 combine 1R+4R ≤ 2−100

6 2−305 CP [GPT21] ≤ 2−108 SAT+min #S [EME22] ≤ 2−129

7 ≤ 2−110 combine 1R+6R ≤ 2−131

8 ≤ 2−144 SAT+min #S [EME22] ≤ 2−172

9 ≤ 2−146 combine 1R+8R ≤ 2−186

10 ≤ 2−180 combine 4R+6R ≤ 2−215

11 ≤ 2−182 combine 1R+10R ≤ 2−229

12 ≤ 2−216 SAT+min #S [EME22] ≤ 2−258

(b) Linear trails

R best known squared correlation previous lower bound new bound
C2 method reference C2 method reference C2

1 2−2 LAT 2−2 DDT
2 2−8 LAT+B 2−8 DDT+B
3 2−28 lineartrails [DEM15] ≤ 2−26 SMT+min #S [DEMS15] 2−28

4 2−98 lineartrails [DEM15] ≤ 2−72 SAT+min #S [EME22] ≤ 2−88

5 2−184 MILP [MR22] ≤ 2−74 combine 1R+4R ≤ 2−96

6 ≤ 2−108 SAT+min #S [EME22] ≤ 2−132

7 ≤ 2−110 combine 1R+6R ≤ 2−134

8 ≤ 2−144 SAT+min #S [EME22] ≤ 2−176

9 ≤ 2−146 combine 1R+8R ≤ 2−184

10 ≤ 2−180 combine 4R+6R ≤ 2−220

11 ≤ 2−182 combine 1R+10R ≤ 2−228

12 ≤ 2−216 SAT+min #S [EME22] ≤ 2−264

dedicated tool, called AsconTrailTool, that we used to prove bounds for differential and146

linear trails for different number of rounds. Though a comparison of the computational147

costs of our method and the method of [EME22] is not straightforward, due to the different148

machines employed in the two works, our techniques allowed us to scan a larger space at a149

lower cost. The most direct consequence is that we can improve over known bounds. We150

report our improved bounds in the third column of Table 1. Notably, for linear trails, we151

prove tight bound for 3 rounds, closing the gap between the lower bound and the best152

known trail. For 4 rounds, we can prove the bound of 2−86 for differential trails in 13153

CPU days, and of 2−88 for linear trails in 110 CPU days. Our method is more efficient in154

comparison to the previous methods where the cost estimation for proving the bound of155

2−80 is 6688 CPU days in [EME22] and 3898 CPU days in [MR22].156

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 5

Given the aforementioned 4-round trails, proving bounds for 6 rounds required us 6157

additional CPU days to prove the bound of 2−129 for differential trails and 21 additional158

CPU days to prove the bound of 2−132 for linear trails. Our method performs better than159

the one in [EME22] where the authors indicated that it required 2 additional CPU months160

to prove the bound of 2−108. For 12 rounds, we can prove for the first time bounds beyond161

2−256. We also prove better bounds for other numbers of rounds, which can be useful162

information for designers when they have to choose the number of rounds to use in the163

different phases of a given construction.164

Organization of the paper. In Section 2 we first recall some concepts about trails and165

trail cores, then we recall the strategy used in previous dedicated tools to prove trail166

bounds and the generic tree-based method. Then, in Section 3 we present the specification167

of Ascon round function and propagation properties through it. In Section 4, we introduce168

the tree-based method applied to Ascon to generate 2-round trail cores and provide new169

techniques to traverse the tree in a more efficient way. After that, we explain how we170

efficiently perform trail core extension using the techniques introduced in Section 5. Finally,171

we present our practical results and improved bounds in Section 6 and in Section 7 we172

provide some final remarks.173

2 Trails and trail search strategy174

In this section we first recall some concepts related to differential and linear cryptanalysis.175

Then we explain the general strategy for performing trail search using the tree-based176

approach.177

2.1 Trails and trail cores178

We start by defining differential trails and trail cores over iterative cryptographic primitives.179

Then, we do the same for linear trails and we introduce a unified notation for both cases.180

2.1.1 Differentials and differential trails181

Let x1 and x2 be two inputs to a transformation α over Fn
2 , and y1 = α(x1) and y2 = α(x2)182

be their corresponding outputs. We say b = x1 ⊕ x2 is an input difference of α and183

a = y1 ⊕ y2 is an output difference and we call the pair (b, a) a differential over α. The184

difference probability (DP) of a differential (b, a) is defined as185

DP(b, a) = |{x ∈ Fn
2 | α(x− b)− α(x) = a}|

2n
.186

When DP(b, a) > 0, we say that a is compatible with b through α. The restriction weight187

of a differential, denoted by wr, is defined as188

wr(b, a) = − log2 DP(b, a) .189

Let α be an iterative mapping, that consists of the repetition of a number of rounds pi:190

α = pr ◦ · · · ◦ p2 ◦ p1. A differential over pi is called a round differential. An r-round191

differential trail over α is a sequence of r round differentials.192

Let the round function be defined as the composition of a linear layer pL and a non-193

linear layer pS . We use a redundant representation of trails where we specify the difference194

after each layer:195

Q = a0 pL−−→ b0 pS−→ a1 pL−−→ b1 pS−→ a2 pL−−→ · · · pS−→ ar .196

6 Improved Differential and Linear Trail Bounds for ASCON

The restriction weight of a trail is the sum of the weight of its round differentials: wr(Q) =197 ∑r
i=1 wr(ai−1 pi−→ ai). Since pL is linear, the weight of a trail only depends on the weight198

over the non-linear layers: wr(Q) =
∑r

i=1 wr(bi−1 pS−→ ai). If the non-linear layer pS has199

algebraic degree 2 (as in Ascon), the weight of a differential over pS only depends on its200

input difference b [Dae95]. Hence, the weight of the trail is given by wr(Q) =
∑r

i=1 wr(bi−1).201

Since the weight of an r-round trail Q is independent of the first and last differences202

of the trail, the sequence of differences (b0, a1, . . . , ar−1, br−1) – which is Q with the first203

and last differences removed – defines a set of r-round trails with the same weight wr(Q).204

On the other hand, for a given a1 there exist several differences b0 that are compatible205

with a1 through p−1
S . The minimum weight over all these compatible states b0 is called206

the minimum reverse weight of a1 and it is denoted by wrev(a1) [DV12]. It follows that207

the sequence Q̃ = (a1, . . . , ar−1, br−1) defines a set of r-round trails with weight at least208

wrev(a1) +
∑r

i=2 wr(bi−1). Q̃ is called r-round differential trail core [DV12].209

2.1.2 Correlation and linear trails210

Let α be a transformation over Fn
2 . A linear approximation over α consists of a pair (a, b) of211

selection vectors over Fn
2 , called input mask and output mask, respectively. The correlation212

C of a linear approximation (a, b) is the correlation between the Boolean functions aT · x213

and bT · α(x):214

C(a, b) = |{x ∈ Fn
2 | aTx+ bTα(x) = 0|

2n−1 − 1 .215

The correlation weight is denoted by wc(a, b) and is defined as216

wc(a, b) = − log2 C2(a, b) .217

Similar to a differential trail, an r-round linear trail is defined as a sequence of linear218

masks. As in [BDPV11b,DHVV18b] we study linear propagation from the output to the219

input. To this end, we rephase the round function so that the trail first encounters pL and220

then pS of each round (as in the differential case). Notice that such rephasing does not221

affect the trail analysis.222

A linear trail is represented as223

Q = a0 pL
T

−−→ b0 p−1
S−−→ a1 pL

T

−−→ b1 p−1
S−−→ a2 pL

T

−−→ · · ·
p−1

S−−→ ar .224

where a0 is the output mask (after the last round) and ar is the input mask (before the225

first round). A mask ai at the output of pL maps to a mask bi = pL
T(ai) before pL. If226

the linear mapping pL is seen as the multiplication by a matrix M , then pL
T denotes the227

linear mapping obtained by the multiplication by MT. To denote the propagation from228

the output of pS to its input, we use p−1
S .229

The correlation weight of a linear trail is the sum of the correlation weights of the230

round linear approximations composing the trail. Given that pL
T is linear and that, when231

pS has algebraic degree 2, the correlation weight depends only on the value of the output232

mask [Dae95], the weight of a linear trail is given by wc(Q) =
∑r

i=1 wc(bi−1)233

Similar to the differential case, an r-round linear trail core [DHVV18b] is a sequence234

Q̃ = (a1, . . . , ar−1, br−1) that defines a set of r-round linear trails with weight at least235

wrev(a1) +
∑r

i=2 wr(bi−1).236

2.1.3 Unified representation of trail cores237

As done in [BDPV11b] with Keccak-p and in [DHVV18b] with Xoodoo, we use a unified238

representation of trails and trail cores. In fact, also in the case of Ascon, there are strong239

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 7

similarities in the study of propagation of differential and linear trails. For differential240

trails we consider the propagation of differences from input to output and for linear trails241

we consider the propagation of masks from output to input. A trail core is specified by:242

Q̃ = a1 p∗
L−−→ b1 p∗

S−→ a2 p∗
L−−→ b2 p∗

S−→ a3 p∗
L−−→ · · · p∗

S−→ br−1 .243

where244

• p∗L = pL, and p∗S = pS for differential trails, and245

• p∗L = pL
T, and p∗S = p−1

S for linear trails.246

We refer to differences and masks as state patterns, or only states or patterns, when we247

generally talk about trails. A pattern ai represents a difference at the output of pS in a248

differential trail and a mask at the input of pS in a linear trail. A pattern bi represents249

a difference at the input of pS in a differential trail and a mask at the output of pS in a250

linear trail. We use the term weight, denoted by w, when we generically refer to wr and251

wc.252

2.2 Strategy of the trail search253

In our trail search, we aim to scan the space of all r-round trails with weight below a certain254

threshold Tr, where r is usually a small number like 3,4, or 6. A naive way to generate them255

would be to generate all 1-round trails (i.e. round differentials and linear approximations)256

with weight below bTr/rc and then extend them to r rounds. The value of Tr that can be257

achieved is limited by the quantity of such 1-round trails, which grows exponentially with258

the weight, and the cost of extending them. The number of 1-round trails can be reduced259

when symmetry properties are taken into account. For instance, in Xoodoo it can be260

reduced roughly by a factor 128 thanks to the fact that both the linear and non-linear261

layers are invariant with respect to translations parallel to the planes [DHVV18b]. While262

in Keccak-f [1600] it can be reduced by a factor 64 thanks to the translation invariance263

along the lanes [MDV17]. Even with such reductions, it is shown that this number still264

grows exponentially with the weight [MDV17,DHVV18b].265

However, as demonstrated in [MDV17,DHVV18b], the number of trails with a given266

weight per round decreases with the number of rounds. That is, the number of 2-round267

trails with weight below b2Tr/rc is smaller than the number of 1-round trails with weight268

below bTr/rc. Therefore, a more convenient approach for Keccak-p like primitives consists269

in starting from 2-round trails and extend them. This allows to achieve much higher values270

of Tr for the same number of rounds r.271

Actually, to prove bounds, it is not necessary to generate all r-round trails. We can272

limit ourselves to r-round trail cores, since the weight of a trail core lower bounds the273

weight of all trails in it. Therefore, we can start from 2-round trail cores and extend them.274

This strategy was used for Keccak [DV12, MDV17], Xoodoo [DHVV18b], and275

Subterranean [MMGD22] and we will use it also in this work. In fact, also in the case276

of Ascon, starting from 2-round trail cores instead of 1-round trails significantly reduces277

the number of patterns to extend. The symmetry properties of Ascon allows us to reduce278

the number of 1-round trails and the number of 2-round trail cores with weight per round279

(w/#r). In particular, the linear and non-linear layers of Ascon are invariant with respect280

to translation along the horizontal axis and it allows to reduce them by a factor 64. In281

Fig. 1, we depict these reduced numbers with weight per round (w/#r).282

2.2.1 Generating 2-round trail cores as a tree search283

A method to generate all 2-round trail cores with weight below a given threshold T2284

was introduced in [DPAR00], applied to Keccak-p in [DV12], and improved and refined285

8 Improved Differential and Linear Trail Bounds for ASCON

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1

102
104
106
108

1010
1012
1014
1016
1018
1020

w/#r

#
1-
ro
un

d
tr
ai
ls

an
d

#
2-
ro
un

d
tr
ai
lc

or
es

round differentials
2-round diff. trail cores
linear approximations
2-round lin. trail cores

Figure 1: Number of 1-round trails and 2-round trail cores with weight per round (w/#r),
divided by 64.

in [MDV17]. Later, similar method was applied to Xoodoo in [DHVV18b] and also286

Subterranean in [MMGD22].287

We now recall the main idea at the basis of the refined method of [MDV17], which288

consists in seeing all 2-round trail cores as nodes of a tree that is properly traversed to get289

only those nodes with weight below T2. In Section 4, we will explain how to instantiate it290

for Ascon to perform an efficient search.291

A 2-round trail core is a pair (a, b) with weight wrev(a) + w(b). To build them we292

have two choices: either we build a and then compute b = p∗L(a) or we build b and we293

compute a = p∗
−1

L . Each node of the tree is encoded as an ordered list of units, called294

unit-list. A unit is a set of active bits at a (if we are building a) or at b (if we are building295

b), where a bit is called active if it equals one, otherwise it is called passive. For instance,296

in Keccak-p and Xoodoo a type of unit is the orbital, which is a pair of active bits in297

the same column at a [MDV17,DHVV18b], while in Subterranean a unit is a single298

active bit at a [MMGD22].299

The choice of building first a or b, the definition of units and their order relation300

influence the efficiency of the 2-round trail core generation. Therefore, it requires a301

good understanding of the linear and non-linear layers of the round function and their302

propagation properties.303

Traversing the tree. The tree traversal is performed in a depth-first fashion, where a304

program iteratively calls the function next() (Algorithm 1) to generate the next valid305

node, as in [MMGD22]. The traversal starts by calling next() on an empty unit-list, and306

ends when it results again in the empty unit list.307

The function next() traverses the tree with three possible moves: toFirstChild(),308

toSibling() and toParent(). If the node is an empty unit-list, then it adds the smallest309

possible unit. The function toFirstChild() returns false if adding a new unit is not310

possible. Otherwise it returns true. Then additional conditions are checked to see if we can311

prune the tree. If the toFirstChild() function returns false or the additional conditions312

are not satisfied, the routine will look for the next valid node in the tree by generating a313

sibling for the current node using the function toSibling(). The function toSibling()314

iterates the value of the last unit of the unit-list. If a sibling is found then the additional315

conditions are checked. If there are no valid siblings, the algorithm calls the function316

toParent() to remove the last unit from the unit-list and look for a valid sibling of the317

parent node in a recursive way.318

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 9

Algorithm 1 next() function [MMGD22]
if (toFirstChild() == true) then

if (additional conditions are satisfied) then
return true;

do
while (toSibling() == true) do

if (additional conditions are satisfied) then
return true;

while (toParent() == true)
return false;

Pruning the tree. To efficiently traverse the tree, at each move we check whether the319

node satisfies some additional conditions or not. To this end, we make use of two tools:320

canonicity and score, whose definition fully depends on the specification of the linear and321

non-linear layers.322

• Canonicity: Without considering round constant and key addition, the round323

function of many cryptographic primitives exhibits translation symmetry. This324

symmetry allows to divide the state space into equivalence classes where all patterns325

in a class have the same properties and weight. Therefore, we aim to generate only326

one pattern per equivalence class, that is called canonical.327

• Score: The score of a node is defined as a lower bound on the weight of a node and328

all its descendants. This tool allows us to prune entire sub-trees as soon as we reach329

a node whose score is higher than T2. It should be tight enough to allow efficient330

pruning, but also efficiently computable.331

2.2.2 Trail core extension332

After generating all 2-round trail cores with weight below T2, we need to extend them to333

generate trail cores over more rounds. Extension is done incrementally one round at the334

time. Namely, we first extend the 2-round trail cores by one round to generate 3-round335

trail cores with weight below a given T3. Then we extend the obtained 3-round trail cores336

by one round to generate 4-round trail cores with weight below a given T4 and so on.337

Given an r-round trail core Q̃ = (a1, b1, . . . , br−1), one can extend it to (r + 1) rounds338

in both forward and backward directions. In the term forward extension, forward means339

through p∗S , so through pS for differential trails and through p−1
S for linear trails. Backward340

means through p∗−1

S , so through p−1
S for differential trails and through pS for linear trails.341

In forward extension, we generate all patterns ar that are compatible with br−1 through342

p∗S , compute br = p∗L(ar) and finally append (ar, br) to the end of Q̃. The weight of the343

obtained cores is w(Q̃) + w(br).344

In backward extension, we generate all patterns b0 compatible with a1 through p∗−1

S ,345

then compute the corresponding a0 = p∗
−1

L (b0), and prepend them to Q̃. The weight of these346

3-round trail cores is obtained by subtracting wrev(a1) and then adding wrev(a0) + w(b0).347

By repeating the aforementioned process, one can extend a trail core over multiple348

rounds in any direction.349

3 The Ascon permutation350

Ascon family includes the authenticated encryption schemes Ascon-128 and Ascon-351

128a [DEMS21b], the hash functions Ascon-Hash and Ascon-Hasha and the extendable352

10 Improved Differential and Linear Trail Bounds for ASCON

x0
x1
x2
x3
x4

⊕⊕⊕⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕⊕⊕⊕

(a) Adding round constant pC .
x0
x1
x2
x3
x4

(b) Non-linear layer pS .
x0
x1
x2
x3
x4

(c) Linear layer pL.

Figure 2: Ascon’s round function p.

output functions (XOF) Ascon-Xof and Ascon-Xofa. The AE schemes are based on353

the duplex construction [BDPV11a], while the hashing and XOF functions are based on354

the sponge construction [BDPV07,BDPV08]. All family members are based on the Ascon355

permutation, which is also used in Isap [DEM+20], another finalist of the NIST LWC356

competition.357

3.1 Ascon round specification358

The Ascon permutation operates on a state of 320 bits arranged in five 64-bit rows359

x0, . . . , x4. The number of rounds is a tunable parameter. It is 12 in the initialization and360

finalization phase of all Ascon schemes, while it changes for the data processing phase.361

It is 6 for Ascon-128, 8 for Ascon-128a, Ascon-Hasha, and Ascon-Xofa, and 12 for362

Ascon-Hash and Ascon-Xof.363

The round function of Ascon is denoted by p and consists of three steps: p = pL◦pS◦pC .364

The function pC , that can be seen in Fig. 2a, adds a round constant to row x2 of the state.365

The non-linear layer pS applies 64 parallel 5-bit S-boxes, denoted S, to the columns of the366

state, as in Fig. 2b. The non-linear part of the S-box S is based on the χ shift-invariant367

mapping [Dae95]. We denote χ applied to an n-bit circle of bits as χn, so the S-box in368

Keccak-p is χ5 [BDPV11b]. We hence can describe S as χ5 preceded and followed by369

two linear mappings, each consisting of 3 bitwise additions. We depict it in Fig. 3.370

Finally, pL applies a linear function to each row independently as in Fig. 2c and is371

defined as follows:372

x0 ← x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)
x1 ← x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)
x2 ← x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)
x3 ← x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)
x4 ← x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(1)373

Clearly, in pL there is no inter-row mixing and this is compensated by the linear374

mappings in pS .375

3.2 Propagation properties through the round376

Since the S-box S is based on the χ5 mapping also used in Keccak-p, it inherits some377

interesting properties from it that were discussed in [Dae95] and that we summarize here.378

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 11

x0

x1

x2

x3

x4

1

1

1

1

1

1

x0

x1

x2

x3

x4

Figure 3: Ascon’s S-box S.

Difference propagation properties. Since pS has algebraic degree 2, given a difference379

b at the input of pS , the space of compatible differences a at the output of pS form a380

linear affine space A(b) with 2wr(b) elements [Dae95]. We can compute offset and basis381

for such space starting from offset and basis over χ5, that are reported in [BDPV11b]. In382

particular, for a given difference b at the input of S, we map it at the input of χ5 through383

the first linear layer of bitwise additions, we take the offset and basis that determine the384

affine space at the output of χ5, and finally we map them through the second linear layer.385

We provide offset and basis vectors for all possible 31 non-zero differences at the input of386

S in Table 7. Among the 31 non-zero differences, 5 have weight 2, 15 have weight 3, and387

11 have weight 4. Therefore, the weight of b is at least twice the number of active columns388

in b.389

Difference propagating through the inverse of pS is different. For a given difference a390

at the output of pS , the set of compatible differences b at the input of pS is not an affine391

space, but we can exhaustively list them. The list of the differences b compatible with a is392

needed to compute wrev(a) which is required for our trail search. Among the 31 non-zero393

differences, 10 have 9 compatible differences, 10 have 10 compatible differences, 6 have 11394

compatible differences, and 5 have 12 compatible differences. Moreover, 20 have minimum395

reverse weight 2, and 11 have minimum reverse weight 3.396

Mask propagation properties. For a given output mask b, the space of input mask a397

with a non-zero correlation with b is a linear affine space with 2wc(b) elements [Dae95].398

Again, to build a representation of such space, we rely on the specification of offset and399

basis over χ5 [BDPV11b]. We provide offset and basis vectors for all possible 31 non-zero400

masks at the output of S in Table 8. Among the 31 non-zero masks, 10 have weight 2,401

and 21 have weight 4.402

Given a mask a at the input of pS , we can list the compatible masks b at the output403

of pS , which do not form an affine space. Among the 31 non-zero masks, 10 have 10404

compatible masks, and 20 have 13 compatible masks, and 1 has 16 compatible masks.405

Moreover, 30 have minimum reverse weight 2, and 1 has minimum reverse weight 4.406

Notice that a linear trail has always even weight.407

As explained in Section 2.1.2, the propagation of masks through the linear layer pL408

is deterministic: an output mask b fully determines the corresponding input mask a by409

b = pL
T(b). The transpose pL

T has the same shape as pL itself, the only difference is that410

the right shifts become left shifts.411

4 Generating 2-round trail cores in Ascon as tree-search412

In this section, we explain how we generate all 2-round trail cores in Ascon, with weight413

below a given target T2, using the tree-based approach of Section 2.2.1. To this end, we414

first define units and their order relation. Then we give a description of the techniques415

12 Improved Differential and Linear Trail Bounds for ASCON

a

pL

b

(a) Propagation from a to b

a

p−1
L

b

(b) Propagation from b to a

Figure 4: Propagation through pL

used to traverse the tree and, to do it in an efficient way, we define the score function and416

discuss canonicity. After identifying the techniques used in the tree-search in Section 4.1,417

we give a more detailed description on the two-level tree search in Section 4.2, and in418

Section 4.3 we give a description of an alternative representation of p∗L.419

4.1 Concepts and techniques420

Active bits as units. For the tree-based approach we have to define units and their421

ordering and the most important criteria for this choice are the ability to define an efficient422

score function and deal with canonicity efficiently. The linear mapping p∗L does not have423

a particular structure like the column parity mixers in Xoodoo or Keccak-p, and the424

obvious choice for units would be (coordinates of) active bits. We can choose to have the425

units be active bits in a or in b. In other words, we either build the state at a and we426

compute b = p∗L(a), or we build the state at b and we compute a = p∗
−1

L (b).427

Active bits in a as units. If the units are defined as active bits in a, adding a unit affects428

3 bits in b. If some of these bits are active in the parent, this addition cancels them. We429

call the effect of active bits in a parent that are not present in the child cancellation. The430

inverse of the row mapping p∗L is dense: it maps a row with a single active bit to a row431

with many active bits. If the units are defined as active bits in b, adding a unit affects432

many active bits in a, risking the cancellation of many more active bits. We illustrate this433

asymmetry for the mapping pL on row 0 in Fig. 4. It works similarly for pL
T. So with434

units defined at a an efficient score is more likely to be easy as there is less opportunity435

for cancellation. So we define our units as active bits in a. Note that cancellation only436

takes place in b and an active bit in a will be present in all its children.437

Score function based on number of active columns. The non-linear layer pS operates438

in parallel on 5-bit columns. This is similar to Xoodoo where the non-linear layer is the439

parallel operation of χ3 on 3-bit columns and Keccak-p, where it is the parallel operation440

of χ5 on 5-bit rows. χ3 and χ5 are instantiations of χ that has the property that adding441

an active bit to an input difference does not decrease the weight, and that adding an active442

bit at the output does not decrease the minimum reverse weight. This also holds for linear443

masks. In pS this is not the case due to the presence of additional linear mappings in444

the S-box. So, adding an active bit to a column in a may decrease its minimum reverse445

weight and adding an active bit to a column in b may decrease its weight. Still, each active446

column in a contributes at least 2 to its minimum reverse weight and each active column447

in b contributes at least 2 to its weight. Moreover, adding active bits to a column in a448

or b cannot make it passive. So we can base the score function on the number of active449

columns.450

Row-index-first lexicographic ordering. In a all the active columns can be accounted451

for in the score, in b only those that cannot become passive due to cancellation when452

adding units. This is where the ordering comes in. Units are defined by their coordinates453

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 13

(i, j) and there are two natural orderings, both lexicographic: i-first or j-first. In i-first454

the active bits in row i = 0 come before those in row 1 etc., in j-first those in column455

j = 0 come before those in column 1, etc. The i-first ordering works well with p∗L. This is456

because this mapping is the parallel application of 5 linear mappings that operate on the457

rows separately. In the i-first ordering units are added row by row, where units are always458

added in the row of the last unit or after it. Let us call the i-coordinate of the last unit i′.459

Then rows in a with i < i′ will be the same for all descendants of a state. As p∗L operates460

on rows separately, this will also be the case for the rows in b with i < i′. That means461

that we can take as score function two times the number of active columns in a plus the462

number of columns in b that are active in the rows with i < i′.463

Two-level tree: active rows and active bits. When we look at the children of a node464

we see two kinds. Children where a unit is added to a row that already contains active465

bits on the one hand and children where a unit is added to a row that does not on the466

other. In the former case the last active row of b cannot be taken into account for the467

score and in the latter case it can. We address this distinction by defining the units in a468

two-level structure. At the top level the units are active rows, where an active row groups469

all active bits in the same row. We will call the top level the row tree and its unit-lists470

row-lists. This means that the children of a node in the row tree have the first active rows471

in common with their parent, but have one more active row. The consequence is that when472

navigating in the row tree, for the score function we can count all active rows at a and at473

b. We call this score function the Score-state() function. An active row is a unit list474

too, where the units are active bits (within a specific row) listed in a so called bit-list. The475

consequence is that the children of a node in the row tree are also arranged according to a476

tree, that we will call a bit tree. More exactly, the children of a node in the row tree with477

last active row at i′ are 4− i′ bit trees. For example if i′ = 2, the children are grouped in478

two bit trees: one that groups the states with last row at row index i = 3 and one that479

groups the ones with last row index i = 4. The two-level tree search is detailed more in480

Section 4.2.481

Score in the bit tree: the case of index 2. Each bit tree contains 264 − 1 nodes so it482

would be good to also prune these trees using a score function. Clearly, all active columns483

of a and the active columns at b due to all active rows but the last can be counted in484

this score. However, this does not help in states with a single active row and also not485

when these rows have sparse bit-lists. We will now explain that we can also include active486

bits from the last active row in b. Let us take a look at row i = 2. Adding a unit at487

position j affects three bits in b, in positions j, j − 1 and j − 6, so it affects bits in b488

only in the interval [j − 6 mod 64, j]. Here we adopt the following convention for intervals489

where we take into account the circular structure of the rows of the state: [x, y] with490

y ≥ x is the set of indexes {x, x+ 1, x+ 2, . . . y} and [x, y] with y < x is the set of indexes491

{x, x+ 1, . . . , 63, 0, 1 . . . y}. Assume we have an active row (bit-list) where the j-coordinate492

of the last active bit is j′. The range of j for the last active bit in its children is [j′+ 1, 63],493

so if j′ > 5 the range of corresponding affected bits in b is [j′ − 5 mod 64, 63]. In other494

words, any bit in b in the interval [0, j′ − 5] will be there for all children in the bit tree and495

therefore the corresponding active columns can be counted in the score. This becomes496

interesting as soon as j′ > 5.497

Score in the bit tree: general case. The efficiency of this technique depends on the498

(circular) distance between the affected bits in b: the smaller the better. In j = 2 this499

distance is only 6 but for the other rows, these distances are much larger. For example500

for j = 0, the bit positions are 0, 19, 28 and the shortest interval that encloses all three501

is [0, 28]. We will call the length of this interval the span. For j = 1, the bit positions502

14 Improved Differential and Linear Trail Bounds for ASCON

c
1
1
0
0
0

wr = 4

1
1
1
0
0

wr = 3

1
1
0
1
0

wr = 4

1
1
0
0
1

wr = 3

1
1
1
1
0

wr = 4

1
1
0
1
1

wr = 4

1
1
1
1
1

wr = 3

Figure 5: The score of a column difference with the first two stable bits set to (1, 1) is 3.

0, 39, 61 can be enclosed in an interval of length 25: [39, 0]. We can address this problem by503

adopting an alternative representation of the row that is used to compute the score in the504

so called Score-row() function. A more detailed explanation on the new representation is505

given in Section 4.3.506

Refining the score of b. Computing the score based on twice the number of active507

columns in b is sub-optimal. In fact, while we are working on row i, all active bits at rows508

i′ with i′ < i are stable and thus we can consider their contribution to the weight. In509

particular, for a given active column, only bits in rows i′ with i′ ≥ i can be added and this510

may potentially decrease the weight (though not below 2), but it may not. We define a511

lower bound on the weight of each active column, that we call score of the column, as the512

minimum among the weight of the column and the weight of all possible columns that can513

be obtained by adding bits in i′ ≥ i. Then, the score of a state is the sum over the score514

of all columns.515

We illustrate an example in Fig. 5, with column differences and restriction weight. Let516

the first two bits of column c in Fig. 5 be set to (1, 1). These bits are stable and we denote517

them in black, while we denote in red the three bits that can become 1 later in the search.518

On the right of c we list the six possible column values that we can obtain by adding bits519

to c in row 2, 3 or 4. The restriction weight of each column is reported below the column520

and we can see that the minimum weight among them is 3. So, we can define the score of521

c to be 3. If there are several active columns whose score is higher than 2, then the score522

of b will grow more quickly and pruning comes earlier.523

Pruning the tree using canonicity. Clearly, both pL and pS are shift-invariant with524

respect to horizontal shifts (along the j-axis). A state that is the smallest in its class of525

states that are equivalent modulo horizontal shift is called canonical. The natural order526

to determine which state is smallest is a lexicographical ordering on the row-list: state527

X is smaller than state Y if the first row in its row-list is smaller than the first row in528

the row-list of Y . If they have equal first rows, we compare the 2nd row and so on. The529

order of rows is similarly defined using lexicographic ordering of their bit-lists, where we530

compare j-coordinates of active bits starting from the first one.531

It was proven in [MDV17] that with such an order relation, the children of a non-532

canonical node are not canonical. This implies that whenever a non-canonical node is533

encountered, the full subtree can be pruned. For an active row we can define its period:534

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 15

x0 is canonical with period 64

≫ 1

non-canonical state

x0 is canonical with period 32

≫ 32

canonical state

Figure 6: The row x0 in the left states is canonical with different period. In the top figure,
since the period of x0 equals the row length, translation results in a non-canonical state.
In the bottom figure since the period of x0 is smaller than the row length, translation can
result in a canonical state.

it is the smallest offset such that a shift of the row over that offset leaves it invariant.535

The period must be a divisor of 64 (the row length) and the vast majority of row values536

has period 64. If the first active row of a canonical state has period 64, all its children537

are canonical. This means that in that case we do not have to check for canonicity in538

subsequent active rows. Otherwise, we have to check canonicity by shifting any newly539

added active row over all multiples of the period and comparing. Examples are given in540

Fig. 6.541

In general, only if the partial state consisting of the stable rows has period smaller542

than the row length, these checks must be done when adding an active bit.543

4.2 Two-level tree544

We represent a 2-round trail core (a, b) by the positions of its active bits in a. An active545

bit is determined by its coordinates (i, j) in the state with i the row coordinate and j the546

column coordinate and 0 ≤ i < 5 and 0 ≤ j < 64.547

The bit-list of an active row is of the following form548

ai = [(i, j1), (i, j2), . . . , (i, j`)], (2)549

with jk < jk+1∀k ∈ {1, . . . , `− 1}. We have that ai,jk
= 1 if and only if k ∈ {1, . . . , `}.550

At state-level, the row-list of a state a is a list of the form551

a = [ai1 , ai2 , . . . , air−1 , air
] (3)552

with is < is+1 ∀s ∈ {1, . . . , r− 1}. We have that ai,j = 1 if and only if (i, j) ∈
⋃

s ais
. The553

smallest value that an active row ai can assume is [(i, 0)].554

We use two sets of functions to walk through the tree. One is the set of functions that555

operate on the bit-list of the last active row. The other is the set of functions that operate556

on the row-list.557

We start by describing the former, where we assume the bit-list of the last active row558

is as in Eq. (2).559

toFirstChildRow() If 1 + j` < 64, it adds (i, 1 + j`) to the bit-list and returns true. It560

returns false otherwise.561

toSiblingRow() If 1 + j` < 64, it iterates the last bit in the list, i.e. (i, j`) becomes562

(i, 1 + j`) and returns true. It returns false otherwise.563

toParentRow() It removes the last bit of the list, resulting in ai = [(i, j1), (i, j2), . . . , (i, j`−1)].564

If it leaves the bit-list empty, it returns false and true otherwise.565

The following functions operate on the row-list, where the row-list of the current node566

is as in Eq. (3).567

16 Improved Differential and Linear Trail Bounds for ASCON

toFirstChildState() If 1+ ir < 5, it adds a1+ir
= [(1+ ir, 0)] to the row-list and returns568

true. It returns false otherwise.569

ToSiblingState() It calls nextRow() on the last active row and if that returns true, it570

returns true. Otherwise, it checks whether the last active row is the bottom row,571

i.e., ir = 4. If so, it returns false. If not, it moves the last active row one row index572

down, i.e. ir = 1 + ir, and there takes the smallest active row value air
= [(ir, 0)]573

and returns true.574

toParentState() It first removes the last active row from the list, resulting in a =575

[ai1 , ai2 , . . . , air−1]. If this leaves the row-list empty it returns false and the search is576

over. Otherwise, it returns true.577

The complete search works as follows. The tree traversal starts by calling nextState()578

on a state with a single active row set with a single active bit at position 0 and ends when579

nextState() returns false, that is when the row-list is empty. Its behavior is similar to580

that of the function next(). To prune the row tree the procedure calls Score-state() on581

the current canonical state.582

The function nextRow() in Algorithm 3 is called by ToSiblingState() to iterate583

the last active row through a bit tree. It starts by checking Score-row() and if it is584

below the budget then it calls toFirstChildRow(). Here, a canonicity check is done on585

the whole state to only return canonical states. If there is no valid child either because586

Score-row() is above the budget or a canonical child has not been found, the procedure587

will look for a sibling by calling the function toSiblingRow(). Here again, a canonicity588

check is performed and if a canonical sibling has been found then the procedure returns589

true, otherwise the function toParentRow() is called.590

4.3 The alternative row representation591

The active bits in a row are indexed by j, and we index them by an alternative coordinate592

k that has a relation with j as k = j × q mod 64, with q odd. Then, the row component593

function of pL can be reformulated in terms of the new representation and this gives a594

mapping that only differs in the shift offsets. For a good choice of q we obtain a mapping595

with minimum span that we call alternative representation. Minimizing the span requires596

a specific factor q per row so, we have alternative representation for each row of Ascon.597

For aj = a′jq and bj = b′jq, the alternative representation is defined as follows:598

pL : bj ← aj ⊕ aj+s ⊕ aj+t

b′jq ← a′jq ⊕ a′(j+s)q ⊕ a
′
(j+t)q

b′jq ← a′jq ⊕ a′jq+sq ⊕ a′jq+tq

p′L : b′k ← a′k ⊕ a′k+sq ⊕ a′k+tq

Since the alternative representation has the minimum span, more active bits in b are599

guaranteed to stay active after adding a unit. The active bits in b that remain active after600

adding new units to a are called stable bits. In the alternative representation, the bits in b601

become stable sooner than in the original representation and more active columns can be602

accounted in Score-row(). For instance, pL acts on the first row as bj ← aj⊕aj+19⊕aj+28.603

After multiplying the shift offsets by all odd numbers, we found that q = 7 results in the604

minimum span. So, the alternative representation of the linear diffusion layer for the first605

row is defined as b′k ← a′k ⊕ (a′k ≫ 5)⊕ (a′k ≫ 4). Fig. 7 provides a comparison between606

the original and alternative representation of pL over row 0 where the number of stable607

bits, that are depicted by blue cells, is higher in the case of alternative representation.608

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 17

Algorithm 2 Functions to navigate through a row tree
function nextState()

if (toFirstChildState() == true) then
if (Score-state() < T2) then

return true;
do

while (ToSiblingState() == true) do
if (Score-state() < T2) then

return true;
while (toParentState() == true)
return false;

end function

function toFirstChildState()
if (il = 4) then . Last active row index has reached the bottom row

return false;
a← a ∪ [(1 + il, 0)]; . Set the last active row to the smallest active row value
return true

end function

function ToSiblingState()
if (nextRow() == true) then

return true;
if (il = 4) then

return false;
il ← 1 + il; . The last active row is moved one row index down
ail

= [(il, 0)] . Set the last active row to the smallest active row value
return true

end function

Algorithm 3 Function to navigate through a bit tree
function nextRow()

if (Score-row() < T2) then
if ((toFirstChildRow()) && (is canonical)) then

return true;
do

while ((toSiblingRow()) && (is canonical)) do
return true;

while (toParentRow() == true)
return false;

end function

We denote by p′L the alternative linear mapping of pL for each row such that609

pL = πq−1 ◦ p′L ◦ πq610

where πq(j) = q × j mod 64. Fig. 8 illustrates how p′L in the new representation works for611

row 0. The list of parameters for the different rows of the alternative representation of612

pL with the minimum span are listed in Table 2. The alternative representation of pL
T

613

corresponds to the mapping obtained with −q.614

18 Improved Differential and Linear Trail Bounds for ASCON

a0
j

b0

j j − 28

a′0

k

b′0

k k − 5

Figure 7: The grey cells at b and b′ represent the span in the original and alternative
representation of row x0, respectively. The original representation (left figure) results in a
lower number of stable bits at b (blue cells) compared to its alternative representation on
the right.

63 . . . 28 . . . 19 . . . 5 4 3 2 1 0a0

π7

63 . . . 28 . . . 19 . . . 5 4 3 2 1 0a′0

⊕ p′L

63 . . . 28 . . . 19 . . . 5 4 3 2 1 0b′0

π55

63 . . . 28 . . . 19 . . . 5 4 3 2 1 0b0

Figure 8: The linear mapping pL for row 0 can be seen as its alternative representation p′L
surrounded by two multiplication layers, illustrated for bit b0.

5 Extension in Ascon615

In this section, we explain how we perform trail core extension in Ascon. We partially616

rely on previous works on Keccak-p [DV12,MDV17] and Xoodoo [DHVV18b,DHP+20],617

given that extension deals with the non-linear layer of Ascon pS which is based on χ5.618

Given a trail core Q̃ = (a1, . . . , br−1), we recall that forward extension by one round619

consists in building all patterns ar that are compatible with br−1 over p∗S and compute620

br = p∗L(ar). While backward extension consists in building all patterns b0 that are621

compatible with a1 over p∗S and compute a0 = p∗
−1

L (b0).622

The non-linear layer of Ascon can be seen as the parallel application of 64 5-bit S-boxes,623

acting on each column independently. Therefore, we can treat extension at column level.624

If b0 and a1 are compatible over p∗S , then the j-th column of b0 is compatible with the625

j-th column of a1 over S, for any column index 0 ≤ j < 64. To build all states b0 that626

Table 2: List of parameters for the original and alternative representation of the linear
diffusion layer of Ascon.

original representation alternative representation
row offset1 offset2 span q offset1 offset2 span

0 19 28 28 7 4 5 5
1 61 39 25 41 5 63 6
2 1 6 6 1 1 6 6
3 10 17 17 19 3 62 5
4 7 41 30 47 7 9 9

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 19

are compatible with a1, we first need to identify the active columns in a1, namely, the627

non-zero columns. Then, for each active column, we build all compatible column values at628

b0 through S. By combining them, we can finally build all compatible states b0.629

Similarly, we can build all compatible state patterns ar given br−1.630

5.1 Extension as a tree search631

Extension can be performed as a tree search [MDV17,DHVV18b], where we incrementally632

build b0 or ar. To this end we need to define units, their order relation, and a score function.633

In this case we don’t have to deal with canonicity since canonical 2-round trail cores yields634

canonical r-round trail cores. A trail core is a sequence of state patterns. Translating each635

pattern of the sequence by a fixed offset results in an equivalent trail core with the same636

weight. We can define a canonical trail core as the smallest among its translated versions.637

We can say that a core (a1, b1, . . . , br−1) is smaller than a core (ā1, b̄1, . . . , b̄r−1) if a1 is638

smaller than ā1, or if a1 = ā1 and b1 is smaller than b̄1, etc. However, we can choose any639

intermediate pattern in the sequence instead of a1 to start the comparison. It is then640

natural to start from the (r− 1)-round trail core from which the r-round core is generated.641

We say that an r-round trail core is canonical if the (r − 1)-round trail core from which it642

is generated is canonical. It follows that the generation of only canonical 2-round trail643

cores, yields to canonical r-round trail cores naturally.644

Differently from the tree search for the generation of 2-round trail cores where a unit645

was an active bit, here units are determined by the compatible column values. At each646

move in the tree, we fix the value of an active column of the state. To efficiently traverse647

the tree we need a score function that lower bounds the weight of the (r + 1)-round trail648

cores obtained.649

In forward extension this translates into lower bounding w(br) while we are building650

ar. The addition of a unit at ar can cancel some bits at br because of the action of p∗L. To651

define a good score function, we consider the stable bits at br, that are active bits that652

cannot be cancelled with the addition of any new unit. We represent stable bits by a653

stability maskM, that is a state where a bit is 1 to indicate that the bit in that position654

is stable and 0 otherwise. Then br ∧M gives the stable bits of br, and also the column of655

br that will be active in all its descendants. We can define the score as twice the number656

of active columns in br ∧M.657

In backward extension we have to lower bound wrev(a0) + w(b0) while we are building658

b0. While the addition of a unit at b0 cannot turn active bits into passive, adding a659

unit at b0 can potentially cancel many bits at a0, since the inverse of p∗L is dense. In660

Keccak-p [DV12,MDV17], this problem was overcome by not considering the contribution661

of a0 and by bounding wrev(a0) + w(b0) with a bound on w(b0) only. However, this is662

sub-optimal. In this work, we use stability masks to determine the stable bits of a0 and663

thus consider also its contribution.664

In general, the goal is to make the number of stable bits in the stability masks grow665

as quickly as possible while traversing the tree, so that more columns are counted in the666

score and pruning happens as early as possible. To this end, the order relation among the667

units must be carefully defined.668

5.2 Forward Extension669

For forward extension, we follow the approach used in [DHVV18b] for Xoodoo, that is670

the following. All patterns ar that are compatible with br−1 over p∗S form an affine space671

A(br−1) with 2w(br−1) elements. We represent such space through an offset and a basis.672

Each column at br−1 defines an offset and basis for the space of compatible columns over673

S, according to Table 7 and Table 8. The state offset, that we denote by o, is built by674

gathering together all the column offsets. It will be zero in all column positions that are675

20 Improved Differential and Linear Trail Bounds for ASCON

passive in br−1. For each column vector u specified by each active column j, we build a676

state vector v that is all zero except column j that has value u. The basis has w = w(br−1)677

elements that we denote by {v1, v2, . . . , vw}. Therefore, A(br−1) = o + 〈v1, v2, . . . , vw〉.678

Of course, brute-force scanning the whole affine space becomes unaffordable when679

w(br−1) is large. However, we only need to construct those states ar such that the weight680

of br is below a given threshold. For this reason, it is practical to directly consider the681

affine space mapped through p∗L, namely before the next p∗S . We denote such space by682

B(br−1) = p∗L(A(br−1)) = o∗ + 〈v∗1, v∗2, . . . , v∗w〉, with o∗ = p∗L(o) and v∗k = p∗L(vk).683

We scan the space B(br−1) through a tree-based search as follows. The root of the684

tree is the offset o∗. The units are the indexes of the basis vectors, ordered by the natural685

number ordering. A unit-list K = {k1, . . . , km} encodes the element of the affine space686

given by o + v∗k1
+ · · ·+ v∗km

.The children of K are all nodes of the form K ∪ km+1 with687

km+1 ∈ {km + 1, . . . , kw}.688

We need to define stability masks so that the number of stable bits increases quickly689

with k. A technique to do it consists in triangularizing the basis V∗ = {v∗1, v∗2, . . . , v∗w}. We690

perform triangularization in Ascon as follows. We start with an empty basis T . We loop691

on all possible bit positions considering the lexicographic order relation on coordinates692

(i, j). If a basis vector is found with an active bit in position (i, j), then such basis vector is693

added to T and removed from V∗. The same vector is also added to all remaining vectors694

in V∗ that have bit (i, j) active, to make it passive. After triangularization, we obtain695

a new representation of B(br−1) as o∗ + 〈t1, t2, . . . , tw〉. If the first active bit in tk is in696

position (ik, jk), then, by construction, all bits in position (i, j) ≤ (ik, jk) are passive in697

all vectors tk+1, . . . , tw. We call (ik, jk) the pivot position of vector tk. For each k, we698

define the stability maskMk as a state that is 1 in the pivot position and in all positions699

smaller than the pivot (i.e. in all (i, j) ≤ (ik, jk)) and 0 otherwise. In addition we consider700

the position of the stable bits in the offset as O =
∧w

i=1 ti. We add them to each stability701

mask: Mk =Mk ∨ O.702

If the last unit in the list of a node br is k, then all bits in br ∧Mk will be active703

in all descendants of br. Therefore, all active columns of br ∧Mk will be active in all704

descendants of br and each will contribute at least 2 to the weight. We define the score as705

twice the number of active columns of br ∧Mk.706

5.3 Backward Extension707

Given a1, the patterns b0 that are compatible with a1 over p∗S do not form an affine space,708

so we shall use a different approach than the one for forward extension.709

We present two methods to perform backward extension. In the first one, presented710

in Section 5.3.1, we follow the method used in [DV12] for Keccak-p, that builds on the711

compatible column values, and we introduce some optimizations. Notice that [MDV17]712

presents some optimizations for backward extension in Keccak-p, that exploit the structure713

of the linear step θ, which is a column parity mixer. Such techniques do not apply to714

Ascon since its linear layer has a different structure. In the second method, presented715

in Section 5.3.2, we build an envelope space that contains the set of compatible patterns,716

with the aim of growing the number of active columns in a0 more quickly. The former717

method is more effective when the number of active columns in a1 is small enough, say718

less than 12. The second method is more effective when there are many active columns in719

a1. In our code we use both of them, considering the number of active columns at hand.720

5.3.1 Extension using compatible patterns721

For each active column position j in a1, let Bj = {vj,1, . . . , vj,n(j)} denote the set of722

compatible column patterns at the input of p∗S . The number of compatible patterns b0
723

is given by
∏

j |Bj |. Since n(j) ranges between 9 and 12 for compatible differences and724

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 21

is 10, 13 or 16 for compatible masks, the number of patterns b0 grows very quickly with725

the number of active columns in a1 and it can be unaffordable to generate all of them.726

However, we need to generate only those such that wrev(a0) + w(b0) is smaller than a given727

threshold T . We can do it using a tree-based approach where the nodes of the tree are the728

patterns b0 and units and score function are defined as follows.729

The root of the tree is the fully passive state. The units are the indexes of the elements730

of the sets Bj ordered by the lexicographic order over (j, k). A unit-list can contain at731

most one element per set of column patterns for a given index j. At height h in the tree,732

all the first h active columns are set. Only the leaves of the tree give compatible patterns.733

The score function shall bound the quantity wrev(a0) + w(b0) for a node and all its734

descendants. It is defined as scorea + scoreb with scorea that bounds wrev(a0) and scoreb735

that bounds w(b0).736

We start with the explanation of scoreb that we compute as in [DV12,MDV17]. We737

order the elements of each Bj by increasing weight so that w(vj,k) ≤ w(vj,k+1) for all k.738

We denote by wj the minimum of such weights, that is wj = w(vj,1). For a node at height739

h, the first h active columns are set and their value cannot change by the addition of a740

new unit. Each of the remaining active column will contribute to the weight by at least741

wj . Therefore, for a node b0 we define scoreb(b0) = w(b0) +
∑

h<j wj .742

For Keccak-p [DV12,MDV17], scorea = 2 since a non-passive state has weight at least743

2. This is sub-optimal because it does not take into account the contribution of the active744

bits at a0. In this work, we define scorea based on the stable bits of a0 in the following way.745

We map each set Bj before p∗L obtaining Aj = {v∗j,1, . . . , v
∗
j,n(j)}, where v∗j,k = p∗

−1

L (v∗j,k).746

At height h, one element of each Aj with j ≤ h has been added to a0 and any element of747

Aj can potentially be added for all j > h. The OR of the elements that can still be added748

gives the set of bits that can be potentially cancelled at a0. Its negation gives the stable749

bits. Therefore, for each h, we define the stability mask750

Mh =
∨
h<j

(∨
k

v∗j,k

)
=
∧
h<j

(∧
k

v∗j,k

)
.751

For a node a0 at height h, all bits of a0 ∧Mh will be active in all descendants of a0.752

Therefore, all active columns of a0 ∧Mh will be active in all descendants of a0 and each753

will contribute at least 2 to the weight. We define scorea as twice the number of active754

columns of the state a0 ∧Mh.755

The ordering of the elements in each Bj by increasing weight implies that the right-756

siblings of a node have weight (resp. score) greater than or equal to the weight (resp.757

score) of that node. It follows that when a node is encountered whose score is greater than758

the given threshold all its descendants and also all its siblings can be pruned.759

As an additional optimization, we observe that during the backward extension of a760

trail core Q̃r = (a1, . . . , br−1), wrev(a1) is replaced by w(b0) which can be larger than761

wrev(a1). If w(Q̃r) < Tr for a given Tr, most of the times we want w(Q̃r)−wrev(a1)+w(b0)762

to be still smaller than Tr. So, during the search we perform the additional check763

scoreb < Tr − (w(Q̃r)− wrev(a1)).764

5.3.2 Extension using the envelope space765

This method aims at prioritizing the growth of the number of active columns in a0, so766

that wrev(a0) grows as quickly as possible.767

First, we build a space that contains the set of compatible states b0’s, that we call768

envelope space and denote by E . To do this, for each active column at a1 we define the769

envelope space of its compatible column patterns as 0 + 〈e0, e1, e2, e3, e4〉, where ei ∈ F5
2770

has a single active bit in position i. The envelope space E is the union of all these envelope771

spaces and its dimension is five times the number of active columns in a1.772

22 Improved Differential and Linear Trail Bounds for ASCON

We scan E in a tree-based fashion as done in Section 5.2, where the root of the tree is773

the offset (in this case the all zero state) and we iteratively add basis vectors. Since the774

envelope space is much larger than the actual space of compatible states, we must define a775

score function that is very efficient and allows to prune the tree as soon as possible. To776

this end, we try to make the number of stable bits in a0 to grow as quickly as possible. A777

way to do it is to consider the envelope space before p∗L and triangularize its basis.778

Let E = 〈v1, . . . , v5n〉, where n denotes the number of active columns in a1. Since p∗L779

is linear, we can transpose the envelope space E before p∗L and get E∗ = 〈v∗1, . . . , v∗5n〉 with780

v∗k = p∗
−1

L (vk). We triangularize the basis of E∗ based on the lexicographic order relation781

on coordinates (i, j) and we modify the representation of E accordingly. That is, when we782

add a vector v∗k to a vector v∗` in E∗, we add vk to v` in E . We obtain a new representation783

of E∗ as 〈t∗1, . . . , t∗5n〉. By construction, the triangularized basis contains first all basis784

vectors with active bits in row 0, then those with active bits in row 1, etc.785

For each k, we define the stability maskMk as a state that is 1 in all positions smaller786

or equal than the pivot position of t∗k, and 0 otherwise. We define scorea as twice the787

number of active columns of a0 ∧Mk. Finally, we define scoreb as twice the number of788

active columns in a1. In fact, the number of active columns in b0 is the same of a1 and789

each contributes at least 2 to the weight. On the other hand, since we are scanning the790

envelope space and not only the space of compatible states, we cannot use the weight of791

b0, because in this case the addition of a new unit can potentially decrease it.792

6 Practical results and improved bounds for Ascon793

In this section, we report on our practical results. The improved bounds are reported in794

Table 1. To scan the different spaces of trail cores, we follow the different strategies presented795

in [DV12,MDV17,DHP+20,DMA22]. We used parts of KeccakTools [DHVV13] and796

XooTools [DHVV18a] for some routines for trail extension. All our tests are run on a797

server equipped with an AMD EPYC 7552 48-Core Processor @2.20GHz. We exploited798

the multicore architecture to run some of our tests in parallel, but execution times are799

reported as single core costs in the following. We round up the execution time to the800

closest integer.801

In some cases, we compare our execution time to that reported in [EME22], which802

uses machines equipped with Intel Xeon E5-2669 and E5-4669 v4 @2.20GHz. Even if the803

machines are different, and thus execution times are not perfectly comparable, we can804

observe that our methods allow us to scan larger spaces than what was possible with the805

solvers-based method of [EME22].806

In the following, we denote by DT
r the space of all r-round differential trail cores with807

weight < T , i.e. at most T − 1. Similarly, we denote by LT
r the space of all r-round808

differential trail cores with weight < T .809

6.1 Results on 3 rounds: tight bound and all low-weight trails810

Since the best known 3-round differential and linear trails have weight 40 [DEMS15] and811

28 [DEM15] respectively, we scanned the spaces D41
3 and L30

3 to check whether they are812

the lightest trails1. Our experimental results confirmed the results for differential trails813

in [EME22,MR22] and proved that 28 is the tight bound for linear trails. In fact, we found814

2 differential trail cores of weight 40, 1 linear trail core of weight 28, and no trail cores815

with lower weight. The search took less than 3 minutes for differential trails and less than816

4 seconds for linear trails.817

1Notice that to prove that they are the lightest trails, it is sufficient to scan the spaces D40
3 and L28

3
and prove that they are empty. To check how many differential trail cores of weight 40 and linear trail
cores of weight 28 there exist, we chose to scan larger spaces.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 23

Table 3: Details on the generation of canonical 3-round differential and linear trail cores
below target weight 41 and 30, respectively.

search # cores time search details
space step # cores time

D41
3 2 3m

2wrev(a1) + w(b1) < 40 284,561 2m
forward extension 2 4s
w(b1) + 2w(b2) ≤ 40 15,252 28s
backward extension 0 2s

L30
3 1 4s

2wrev(a1) + w(b1) < 28 1,935 1s
forward extension 1 1s
w(b1) + 2w(b2) ≤ 28 972 1s
backward extension 0 1s

To scan the above spaces, we followed the approach used in [DHVV18b], which is the818

following. A 3-round trail core has weight wrev(a1) + w(b1) + w(b2). We split all trail cores819

in D41
3 (resp. L30

3) into two sets based on whether wrev(a1) < w(b2) or wrev(a1) ≥ w(b2).820

• The former case implies that 2wrev(a1) + w(b1) < 40 (resp. < 28). Such trail cores821

can be obtained by generating all 2-round trail cores (a1, b1) satisfying this inequality822

and extending them in the forward direction by one round up to 40 (resp. 28).823

• The latter case implies that w(b1) + 2w(b2) ≤ 40 (resp. ≤ 28). Such trails can be824

obtained by generating all 2-round trail cores (a2, b2) satisfying this inequality and825

then extending them in the backward direction by one round up to 40 (resp. 28).826

Detailed execution times are given in Table 3 together with the number of trail cores found827

in each step of the search.828

Beyond proving bounds for 3-round trails, we are also interested in the distribution of829

low-weight 3-round trails in Ascon. To this end, we also scanned the space D51
3 (resp.830

L52
3), and counted all 3-round trails contained in such cores with weight below 51 (resp.831

52). To count trails, we used the code for backward extension to build all patterns b0
832

compatible with a1 that satisfy w(b0) + w(b1) + w(b2) < 51 (resp. < 52) and we count833

each of them w(b2) times. Results are depicted in Fig. 9. We can notice that, per given834

(even) weight ≥ 40, the ratio between the number of linear trails and differential trails835

ranges between 9.7 (for weight 46) and 66.5 (for weight 44). This is due to the fact that836

the LAT of the Ascon S-box is more dense than its DDT.837

6.2 Results on 4 rounds: improved (non-tight) bounds838

The best known 4-round differential and linear trails in Ascon have weight 107 and839

98 respectively [DEMS15,DEM15], while the previously proved lower bound is 72 for840

both [EME22].841

With our techniques, we scanned the spaces D86
4 and L88

4 . We found that both spaces842

are empty, which implies that any 4-round differential trail has weight at least 86 and any843

4-round linear trail has weight at least 88. This improves over known results, even if the844

new bounds are still not tight.845

Our search took around 13 days for differential trails and around 110 days for linear846

trails. While in [EME22] the authors report a cost of 600 days each for differential and847

linear trails to prove a bound of 72. Moreover, the authors in [EME22] estimate a cost of848

24 Improved Differential and Linear Trail Bounds for ASCON

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

101

106

1011

1016

8.
59

·
10

9

3.
44

·
10

10

3.
44

·
10

10

1.
34

·
10

8

7.
82

·
10

10

7.
43

·
10

11

3.
16

·
10

12

6.
99

·
10

12

9.
66

·
10

12

1.
92

·
10

13

5.
82

·
10

13

1.
05

·
10

6

1.
26

·
10

7

3.
36

·
10

7

6.
71

·
10

8

4.
83

·
10

9

2.
58

·
10

10

1.
93

·
10

11

9.
71

·
10

11

5.
2

·
10

12

3.
08

·
10

13

1.
08

·
10

14

7.
3

·
10

14

weight

#
tr
ai
lc

or
es

differential
linear

Figure 9: Number of all canonical 3-round trails per weight.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

101

104

107

1010

2 3

8

3

11

17
2

10

52

44
9 1,

14
7

31
4 1,

05
8

3,
74

7

13
,0

57

4,
85

5

14
,1

41

53
,0

96

1.
09

·
10

5

76
,7

63

2
·

10
5

5.
28

·
10

5

1.
07

·
10

6

1.
02

·
10

6

2.
41

·
10

6

5.
81

·
10

6

1.
02

·
10

7

1.
3

·
10

7

2.
86

·
10

7

5.
99

·
10

7

1.
03

·
10

8

1.
56

·
10

8

3.
22

·
10

8

5

22 23

86
1

34
8

7,
27

1

10
,2

88 1.
24

·
10

5

1.
63

·
10

5

1.
37

·
10

6

2.
83

·
10

6

1.
8

·
10

7

4.
18

·
10

7

2.
17

·
10

8

6.
04

·
10

8

2.
71

·
10

9

8.
27

·
10

9

weight

#
tr
ai
lc

or
es

differential
linear

Figure 10: Number of all canonical 2-round trail cores per weight.

6688 days to prove a bound of 80 whereas in [MR22], they estimate 3898 days to prove849

this bound. Therefore, with our method we could reach higher bounds with significantly850

less computational cost.851

To scan the above spaces, we followed [DHVV18b]. Any 4-round differential (resp.852

linear) trail core with weight wrev(a1) + w(b1) + w(b2) + w(b3) < 86 (resp. < 88) has853

wrev(a1) + w(b1) < 43 (resp. < 44) or w(b2) + w(b3) < 43 (resp. < 44). Otherwise, their854

sum would be at least 86 (resp. 88). We could thus generate all trail cores in D86
4 (resp.855

L88
4) by generating all 2-round trail cores in D43

2 (resp. L44
2) and extending them to 4856

rounds below 86 (resp. 88). To perform extension to 4 rounds, we first extended to 3857

rounds below 84 (resp. 86), since we know that the remaining round has weight at least 2.858

Details on the number of trail cores found in each step of the search and the execution859

times are reported in Table 4. In Fig. 10, we report the number of all 2-round trail cores860

per given weight. Again, we can observe that (for even weights) the number of 2-round861

linear trail cores found is significantly higher than the number of 2-round differential trail862

cores. This difference of course reflects on the costs for extension.863

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 25

Table 4: Details on the generation of canonical 4-round differential and linear trail cores
with weight lower than 86 and 88, respectively. Timings are rounded to the closest integer.

search # cores time search details
space step # cores time

D86
4 0 310h

generation of D43
2 704,744,005 100h

forw.ext. to 3 rounds with w < 84 2,421,335 140h
forw.ext. to 4 rounds with w < 86 0 1m
back.ext. to 3 rounds with w < 84 2,424 66h
back.ext. to 4 rounds with w < 86 0 3h

L88
4 0 2641h

generation of L44
2 11,866,934,404 397h

forw.ext. to 3 rounds with w < 86 44,850,380 1411h
forw.ext. to 4 rounds with w < 88 0 25m
back.ext. to 3 rounds with w < 86 40,013 671h
back.ext. to 4 rounds with w < 88 0 161h

6.3 Results on 5 rounds: new (non-tight) bounds864

The best known differential trail over 5 rounds has weight 190 [DEMS15,GPT21], while865

the best known linear trail has weight 184 [MR22]. As far as we know, there are no proved866

lower bounds for 5-round trails, before this work. We can prove non-tight bounds of 100867

for differential trails and 96 for linear trails. To this end, we scanned the spaces D100
5 and868

L96
5 , which resulted to be both empty. Our search took around 158 days for differential869

trails and around 127 days for linear trails.870

To perform our search, we followed the approach of [DHP+20], to re-use the 2-round trail871

cores already built. We split the space D100
5 (resp. L96

5) into two sets. The first contains872

all 5-round trail cores with wrev(a1) + w(b1) < 43 (resp. < 44). To cover it, we extend all873

2-round trail cores in D43
2 (resp. L44

2), that we already have, by 3 rounds in the forward874

direction below weight 100 (resp. 96). The second set contains all 5-round trail cores with875

wrev(a1) + w(b1) ≥ 43 (resp. ≥ 44). This implies that w(b2) + w(b3) + w(b4) < 57 (resp.876

< 52). Therefore, we generated all 3-round trail cores in D57
3 (resp. L52

3) and extended877

them backwards below weight 100 (resp. 96).878

Details on the different steps of our search are reported in Table 5. As we didn’t need879

to regenerate the 2-round trail cores in D43
2 and L44

2 (because we already generated them880

for the search over 4 rounds), we report the corresponding time between parentheses and881

we don’t consider it in the total cost of this search.882

6.4 Results on 6 rounds: improved bounds beyond 2−128
883

The previously proved lower bound on the weight of 6-round trails is 108, for both linear884

and differential trails [EME22]. With our techniques we can prove that the spaces D129
6885

and D132
6 are both empty. It follows that any 6-round differential trail has weight at least886

129 and any 6-round linear trail has weight at least 132. Even if our new bounds are887

still not tight, we are able to prove for the first time that 6-round trails in Ascon have888

differential probability or squared correlation lower than 2−128.889

Our search took around 6 days for differential trails and around 21 days for linear trails.890

While in [EME22], the authors report a cost of 2 months each for differential and linear891

trails. Both in this work and in [EME22], results for 6 rounds are built on top of results on892

3 and 4 rounds, whose cost is not included in the figures for 6 rounds. Even if we include893

26 Improved Differential and Linear Trail Bounds for ASCON

Table 5: Results on the generation of canonical 5-round differential and linear trail cores
with weight lower than 100 and 96, respectively. Timings between parentheses mean that
we can reuse previous results and they are not counted in the total amount of time.

search # cores time search details
space step # cores time

D100
5 0 3795h

generation of D43
2 704,744,005 (100h)

forw.ext. by 3 rounds with w < 100 0 3683h
generation of D57

3 437 112h
back.ext. by 2 rounds with w < 100 0 3s

L96
5 0 3045h

generation of L44
2 11,866,934,404 (397h)

forw.ext. by 3 rounds with w < 96 3037h
generation of L52

3 309 8h
back.ext. by 2 rounds with w < 96 0 1s

such costs in the total computational cost for 6 rounds, our technique still requires less894

time compared to [EME22] to reach better bounds.895

To scan the space D129
6 (resp. L132

6), we followed the approach of [DMA22]. First, we896

split the space in two subspaces that we denote S1 and S2. The set S1 contains all 6-round897

trail cores with wrev(a1) + w(b1) + w(b2) < 57 (resp. < 52) or w(b3) + w(b4) + w(b5) < 57898

(resp. < 52). The space S2 is the complement of S1, that is the space of all 6-round trail899

cores with wrev(a1) + w(b1) + w(b2) ≥ 57 (resp. ≥ 52) and w(b3) + w(b4) + w(b5) ≥ 57900

(resp. ≥ 52).901

The details of our search are summarized here.902

Scanning S1 starting from D57
3 (resp. L52

3). The space S1 can be scanned by extending903

all 3-round trail cores in D57
3 (resp. L52

3) by 3 rounds below weight 129 (resp. 132). We904

first extended all 3-round trails in the space by 3 rounds in the forward direction and then905

by 3 rounds in the backward direction. To extend to 6 rounds, we first extended to 4906

rounds below 121 (resp. 122) because we know that the two remaining rounds will weight907

at least 8. Then we extended to 5 rounds below 127 (resp. 130) because we know that the908

remaining round will weigh at least 2. For both differential and linear case, extension to909

5 rounds resulted in an empty set. Therefore, we didn’t need to perform extension to 6910

rounds.911

Scanning S2 starting from D43
2 (resp. L44

2). The space S2 is further split into three912

subsets. In fact, any 6-round trail core with weight below 129 (resp. 132) can be generated913

by starting from a 2-round trail core of weight below 43 (resp. 44) placed at the beginning,914

or in the middle, or at the end of the trail. In the first case, the 2-round trail core is915

extended by four rounds in the forward direction. In the second case, it is extended by916

two rounds in the forward direction and two rounds in the backward direction. In the last917

case, it is extended by four rounds in the backward direction.918

• Starting from the beginning. To extend 2-round trail cores to 6 rounds, we919

performed extension by one round at the time each time limiting the weight up to920

which we perform extension, considering the minimum contribution of the remaining921

rounds.922

First, we extended 2-round trail cores to 3 rounds below 129 − 57 = 72 (resp.923

132− 52 = 80) because we are in the case where w(b3) + w(b4) + w(b5) ≥ 57 (resp.924

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 27

Table 6: Results on the generation of canonical 6-round differential and linear trail cores
with weight lower than 129 and 132, respectively. Timings between parentheses mean that
we can reuse previous results and they are not counted in the total amount of time. -
means that the step was not performed, because we know it leads to an empty space.

search # cores time search details
space step # cores time

D129
6 0 135h

generation of D57
3 437 112h

forw.ext. by 3 rounds with w < 129 0 9h
backw.ext. by 3 rounds with w < 129 0 11h
generation of D43

2 704,744,005 (100h)
D43

2 at the beginning
- f.e. to 3 rounds with 57 ≤ w < 72 43,465 (140h)
- f.e. to 4 rounds with w < 121 0 3h

D44
2 in the middle 0 -
D44

2 at the end 0 -

L132
6 0 493h

generation of L52
3 309 (8h)

forw.ext. by 3 rounds with w < 132 0 7h
backw.ext. by 3 rounds with w < 132 0 450h
generation of L44

2 11,866,934,404 (397h)
L44

2 at the beginning
- f.e. to 3 rounds with 52 ≤ w < 80 5,171,116 (1411h)
- f.e. to 4 rounds with w < 124 14,082 36h
- f.e. to 5 rounds with w < 130 0 1s

L44
2 in the middle 0 -
L44

2 at the end 0 -

≥ 52). Among the obtained 3-round trail cores, we kept only those satisfying925

wrev(a1) + w(b1) + w(b2) ≥ 57 (resp. ≥ 52) because otherwise they belong to S1.926

Notice that the set of such trail cores is a subset of the set obtained during the search927

over 4 rounds. In that case in fact, we extended all trail cores in D43
2 (resp. L44

2)928

to 3 rounds below weight 84 (resp. 86). Therefore, we did not need to perform this929

step but we just extracted the needed trail cores from such set.930

Then, we extended the obtained 3-round trail cores to 4 rounds below 129− 8 = 121931

(resp. 132− 8 = 124) because we know that w(b4) + w(b5) ≥ 8, since any 2-round932

trail has weight at least 8.933

The obtained 4-round trail cores were then extended to 5 rounds below 129− 2 = 127934

(resp. 132− 2 = 130) because we know that w(b5) ≥ 2.935

Finally, we extended the obtained 5-round trail cores to 6 rounds below 129 (resp.936

132).937

Notice that, for differential trails, extension to 4 rounds already resulted in an empty938

set. Therefore, extension to 5 and 6 rounds was not performed. For linear trails, it939

is extension to 5 rounds that gave an empty set. Therefore, we could skip extension940

to 6 rounds.941

• Starting from the middle. We can assume that wrev(a1) + w(b1) ≥ 43 (resp.942

28 Improved Differential and Linear Trail Bounds for ASCON

≥ 44) because the other case is covered in the previous step. First, we need to943

perform forward extension to 4 rounds below 129− 43 = 86 (resp. 132− 44 = 88)944

because wrev(a1) + w(b1) ≥ 43 (resp. ≥ 44). Notice that we already performed this945

search in Section 6.2. In fact, this was part of the search to build D86
4 (resp. L88

4),946

which is empty. Therefore, we did not need to perform this step of the search.947

• Starting from the end. We can assume that wrev(a1) + w(b1) ≥ 43 (resp. ≥ 44)948

and w(b2) + w(b3) ≥ 43 (resp. ≥ 44), because the opposite is already covered in the949

two previous steps. First, we need to perform backward extension to 4 rounds below950

129 − 43 = 86 (resp. 132 − 44 = 88) because wrev(a1) + w(b1) ≥ 43 (resp. ≥ 44).951

Again, we already performed this search in Section 6.2 to build D86
4 (resp. L88

4). As952

we already know that this leads to an empty set, we can jump this step of the search.953

Figures on the number of trail cores found in each step of the search and details on the954

execution time of each step are given in Table 6. When we can reuse trail cores generated955

in previous searches, we put the corresponding computational time between parentheses956

and we don’t include it in the total cost. When a step is not performed because we know957

that it leads to an empty space, we put a dash.958

6.5 Results on 8 rounds: improved (non-tight) bounds959

Since D86
4 and L88

4 are empty, we can claim that also D172
8 and L176

8 are empty. In fact, if960

we split any 8-round differential (resp. linear) trail with weight < 172 (resp. < 176) in961

two 4-round trails, at least one of the two must have weight < 86 (resp. < 88). Otherwise,962

their sum would be ≥ 172 (resp. ≥ 176). Therefore, all 8-round differential (resp. linear)963

trails with weight below 172 (resp. 176) can be obtained by the extension of all 4-round964

trails with weight below 86 (resp. 88). But, we know that such 4-round trails do not exist.965

Therefore, also such 8-round trails do not exist. It follows that 172 is a lower bound on966

the weight of any 8-round differential trail and 176 is a lower bound on the weight of any967

8-round linear trail. Such bounds improve over previous known bound, which was 144 for968

both differential and linear trails. However, they are still non-tight.969

6.6 Results on 12 rounds: improved bounds beyond 2−256
970

With a reasoning similar to the one used for 8 rounds, we can prove that the spaces D258
12971

and L264
12 are empty, given that the spaces D129

6 and L132
6 are empty. It follows that any972

12-round differential trail has weight at least 258 and any 12-round linear trail has weight973

at least 264. Such bounds improve over previous known bound, which was 216 for both974

differential and linear trails. Even if our new bounds are still non-tight, they allow us975

to prove for the first time that 12-round trails in Ascon have differential probability or976

squared correlation lower than 2−256.977

6.7 Results on 7, 9, 10, and 11 rounds: improved (non-tight) bounds978

Based on the results obtained for 4, 5, and 6 rounds, we can derive bounds on 7, 9, 10,979

and 11 rounds. We explain how to do it for 10 rounds by combining the results for 4 and980

6 rounds. Then we show how to obtain bounds for the other numbers of rounds similarly.981

We can cover the space D215
10 (resp. L220

10) in the following way. We split the set in two982

subsets. The first contains all 10-round trail cores with wrev(a1)+w(b1)+w(b2)+w(b3) < 86983

(resp. 88), while the second set is its complement. We can cover the first set by extending all984

4-round trail cores in D86
4 (resp. L88

4) by 6 rounds in the forward direction below 215 (resp.985

220). The second set contains all 10-round trails with wrev(a1)+w(b1)+w(b2)+w(b3) ≥ 86986

(resp. 88), which implies that the other 6 rounds have weight below 129 (resp. 132).987

Therefore, we can cover it by extending all 6-round trail cores in D129
6 (resp. L132

6) by 4988

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 29

rounds in the backward direction below 215 (resp. 220). Since both D86
4 and D129

6 (resp.989

L88
4 and L132

6) are empty, then also D215
10 (resp. L220

10) is empty. Therefore, 215 and 220990

are lower bounds on the weight of 10-round differential and linear trails, respectively.991

For the other numbers of rounds, we consider the combination that yields the best992

bounds. For 7 rounds, we can prove a bound of 131 for differential trails and 134 for linear993

trails, considering the results on 6 rounds and that 1 round weights at least 2. For 9 rounds,994

we combine the results for 4 and 5 rounds and obtain a bound of 186 for differential trails995

and 184 for linear trails. Finally, for 11 rounds we obtain a bound of 229 for differential996

trails and 228 for linear trails, by combining the results for 5 and 6 rounds.997

For the sake of comparison, we can apply the same reasoning to the results presented998

in [EME22]. We can derive bounds for r rounds from the bounds on r − 1 rounds,999

considering that one round has minimum weight 2. For differential and linear trails, this1000

gives a bound of 74 for 5 rounds, of 110 for 7 rounds, of 146 for 9 rounds, and 182 for 111001

rounds.1002

7 Conclusions1003

In this work, we presented a dedicated tool for trail search in Ascon, based on the 2-round1004

trail core generation methods given in [MDV17] and improved methods for extension based1005

on the works done in [DV12,DHVV18b]. Using these techniques, we proved tight bound1006

for 3-rounds linear trails and improved the existing bounds for other number of rounds.1007

In particular, we prove for the first time bounds beyond 2−128 for 6 rounds, and for 121008

rounds bounds beyond 2−256. Our approach improves and proves bounds in a reasonable1009

amount of time and it confirms that dedicated tools can still outperform methods based1010

on general-purpose solvers.1011

As a takeaway from this and previous works on Keccak-p [MDV17], Xoodoo1012

[DHVV18b], and Subterranean [MMGD22] we highlight that:1013

• For the 2-round trail search stage, the linear layers of Ascon and Subterranean1014

allow a simpler definition of units compared to Keccak-p and Xoodoo where a1015

more complex linear layer is used.1016

• A non-linear layer based on the parallel application of small S-boxes (as in Keccak-p,1017

Xoodoo and Ascon) implies a simpler analysis of the propagation properties1018

compared to the non-linear layer of Subterranean. In the latter case, the backward1019

extension is more complex, and the definition of the minimum reverse weight requires1020

a thorough proof which makes it more complicated.1021

Acknowledgements1022

Solane El Hirch and Silvia Mella are supported by the Cryptography Research Center of1023

the Technology Innovation Institute (TII), Abu Dhabi (UAE), under the TII-Radboud1024

project with title Evaluation and Implementation of Lightweight Cryptographic Primitives1025

and Protocols.1026

Alireza Mehrdad and Joan Daemen are supported by the European Research Council under1027

the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980 ESCADA.1028

References1029

[BDPV07] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge1030

functions. https://keccak.team/files/SpongeFunctions.pdf, 2007.1031

https://keccak.team/files/SpongeFunctions.pdf

30 Improved Differential and Linear Trail Bounds for ASCON

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On1032

the indifferentiability of the sponge construction. In Nigel P. Smart, editor,1033

Advances in Cryptology - EUROCRYPT 2008, 27th Annual International1034

Conference on the Theory and Applications of Cryptographic Techniques,1035

Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture1036

Notes in Computer Science, pages 181–197. Springer, 2008.1037

[BDPV11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-1038

ing the sponge: Single-pass authenticated encryption and other applications.1039

In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography -1040

18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12,1041

2011, Revised Selected Papers, volume 7118 of Lecture Notes in Computer1042

Science, pages 320–337. Springer, 2011.1043

[BDPV11b] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The1044

keccak reference, January 2011.1045

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,1046

Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The1047

SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.1048

In Advances in Cryptology - CRYPTO 2016, volume 9815 of LNCS, pages1049

123–153. Springer, 2016.1050

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,1051

Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards1052

Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware1053

and Embedded Systems - CHES 2017, volume 10529 of LNCS, pages 321–345.1054

Springer, 2017.1055

[com14] CAESAR committee. CAESAR: Competition for authenticated encryption:1056

Security, applicability, and robustness, 2014.1057

[Dae95] Joan Daemen. Cipher and hash function design, strategies based on linear1058

and differential cryptanalysis, PhD Thesis. PhD thesis, K.U.Leuven, 1995.1059

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Heuristic tool for1060

linear cryptanalysis with applications to CAESAR candidates. In Tetsu Iwata1061

and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 -1062

21st International Conference on the Theory and Application of Cryptology1063

and Information Security, Auckland, New Zealand, November 29 - December1064

3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer1065

Science, pages 490–509. Springer, 2015.1066

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,1067

Bart Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. IACR1068

Trans. Symmetric Cryptol., 2020(S1):390–416, 2020.1069

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.1070

Cryptanalysis of ascon. In Kaisa Nyberg, editor, Topics in Cryptology - CT-1071

RSA 2015, The Cryptographer’s Track at the RSA Conference 2015, San1072

Francisco, CA, USA, April 20-24, 2015. Proceedings, volume 9048 of Lecture1073

Notes in Computer Science, pages 371–387. Springer, 2015.1074

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.1075

Ascon v1.2. submission to caesar competition. Technical report, 2016.1076

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 31

[DEMS21a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.1077

Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,1078

34(3):33, 2021.1079

[DEMS21b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.1080

Ascon v1.2. submission to nist. Technical report, 2021.1081

[DHP+20] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny1082

Van Keer. Xoodyak, a lightweight cryptographic scheme. IACR Trans.1083

Symmetric Cryptol., 2020(S1):60–87, 2020.1084

[DHVV13] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer. KeccakTools software.1085

https://github.com/KeccakTeam/KeccakTools, 2013.1086

[DHVV18a] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer. XooTools software.1087

https://github.com/XoodooTeam/Xoodoo, 2018.1088

[DHVV18b] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The1089

design of xoodoo and xoofff. IACR Trans. Symmetric Cryptol., 2018(4):1–38,1090

2018.1091

[DMA22] Joan Daemen, Silvia Mella, and Gilles Van Assche. Tighter trail bounds1092

for xoodoo. Cryptology ePrint Archive, Paper 2022/1088, 2022. https:1093

//eprint.iacr.org/2022/1088.1094

[DPAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.1095

Nessie proposal: the block cipher Noekeon. Nessie submission, 2000. http:1096

//gro.noekeon.org/.1097

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced1098

Encryption Standard (AES), Second Edition. Information Security and Cryp-1099

tography. Springer, 2020.1100

[DV12] Joan Daemen and Gilles Van Assche. Differential propagation analysis of kec-1101

cak. In Anne Canteaut, editor, Fast Software Encryption - 19th International1102

Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised1103

Selected Papers, volume 7549 of Lecture Notes in Computer Science, pages1104

422–441. Springer, 2012.1105

[EME22] Johannes Erlacher, Florian Mendel, and Maria Eichlseder. Bounds for the1106

security of ascon against differential and linear cryptanalysis. IACR Trans.1107

Symmetric Cryptol., 2022(1):64–87, 2022.1108

[GPT21] David Gérault, Thomas Peyrin, and Quan Quan Tan. Exploring differential-1109

based distinguishers and forgeries for ASCON. IACR Trans. Symmetric1110

Cryptol., 2021(3):102–136, 2021.1111

[MDV17] Silvia Mella, Joan Daemen, and Gilles Van Assche. New techniques for1112

trail bounds and application to differential trails in Keccak. IACR Trans.1113

Symmetric Cryptol., 2017(1):329–357, 2017.1114

[MMGD22] Alireza Mehrdad, Silvia Mella, Lorenzo Grassi, and Joan Daemen. Differential1115

trail search in cryptographic primitives with big-circle chi: Application to1116

subterranean. IACR Trans. Symmetric Cryptol., 2022(2):253–288, 2022.1117

[MP13] Nicky Mouha and Bart Preneel. Towards Finding Optimal Differential Charac-1118

teristics for ARX: Application to Salsa20. Cryptology ePrint Archive, Report1119

2013/328, 2013. https://ia.cr/2013/328.1120

https://github.com/KeccakTeam/KeccakTools
https://github.com/XoodooTeam/Xoodoo
https://eprint.iacr.org/2022/1088
https://eprint.iacr.org/2022/1088
https://eprint.iacr.org/2022/1088
http://gro.noekeon.org/
http://gro.noekeon.org/
http://gro.noekeon.org/
https://ia.cr/2013/328

32 Improved Differential and Linear Trail Bounds for ASCON

[MR22] Rusydi H. Makarim and Raghvendra Rohit. Towards tight differential bounds1121

of ascon: A hybrid usage of smt and milp. IACR Transactions on Symmetric1122

Cryptology, 2022(3):303–340, 2022.1123

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.1124

Automatic Security Evaluation and (Related-key) Differential Characteristic1125

Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other1126

Bit-Oriented Block Ciphers. In Advances in Cryptology - ASIACRYPT 2014,1127

volume 8873 of LNCS, pages 158–178. Springer, 2014.1128

[TMC+21] Meltem Sonmez Turan, Kerry McKay, Donghoon Chang, Cagdas Calik,1129

Lawrence Bassham, Jinkeon Kang, and John Kelsey. Status report on the1130

second round of the nist lightweight cryptography standardization process,1131

2021.1132

[WH19] Hongjun Wu and Tao Huang. TinyJAMBU: A Family of LightweightAuthen-1133

ticated Encryption Algorithms, 2019.1134

A Representation of the affine spaces over S.1135

In Table 7, for each possible column difference, we provide a representation of the affine1136

space of compatible differences at the output of S, the restriction weight, and the minimum1137

reverse weight. In Table 8, for each possible column mask, we provide a representation of1138

the affine space of compatible masks at the input of S, the correlation weight, and the1139

minimum reverse weight.1140

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 33

Table 7: Space of compatible differences at the output of pS , restriction weight, and
minimum reverse weight for all possible column differences.

difference Affine space after S wr(·) wrev(·)

00000 00000 0 0
00001 01001 + 〈00010, 00100, 10001〉 3 2
00010 10001 + 〈00010, 00100, 01000〉 3 2
00011 00001 + 〈00100, 01000, 10001〉 3 3
00100 00110 + 〈01000, 10000〉 2 2
00101 10001 + 〈00010, 01001, 01100〉 3 3
00110 00001 + 〈00010, 00100, 01000, 10000〉 4 2
00111 00010 + 〈00001, 00100, 01000〉 3 3
01000 00110 + 〈00001, 01000, 10000〉 3 2
01001 00001 + 〈00010, 10001, 10100, 11000〉 4 2
01010 00001 + 〈00101, 00110, 01000, 10000〉 4 2
01011 00010 + 〈00001, 00100, 01000, 10000〉 4 2
01100 00001 + 〈10001, 11000〉 2 2
01101 00001 + 〈00010, 00100, 10001, 11000〉 4 3
01110 00001 + 〈00101, 00110, 10000〉 3 2
01111 01000 + 〈00001, 00100, 10000〉 3 3
10000 01001 + 〈00010, 10001〉 2 2
10001 10001 + 〈00010, 00100〉 2 2
10010 00001 + 〈00010, 00100, 01000, 10001〉 4 3
10011 00010 + 〈00110, 01000〉 2 2
10100 00100 + 〈00001, 00010, 01000〉 3 3
10101 00101 + 〈00010, 10100, 11000〉 3 2
10110 10000 + 〈00001, 00010, 00100, 01000〉 4 2
10111 00010 + 〈00110, 01000, 10000〉 3 2
11000 00100 + 〈00001, 00010, 01000, 10000〉 4 2
11001 01000 + 〈00101, 10110, 11000〉 3 2
11010 00001 + 〈00100, 01001, 01010, 10000〉 4 2
11011 00010 + 〈00001, 00110, 01000, 10000〉 4 3
11100 00001 + 〈00010, 10001, 11000〉 3 3
11101 01000 + 〈00110, 10101, 11000〉 3 3
11110 01000 + 〈00001, 00010, 00100, 10000〉 4 2
11111 00010 + 〈00001, 00110, 10000〉 3 3

34 Improved Differential and Linear Trail Bounds for ASCON

Table 8: Space of compatible masks at the input of pS , correlation weight, and minimum
reverse weight for all possible column masks.

mask Affine space before S wc(·) wrev(·)

00000 00000 0 0
00001 00011 + 〈01000, 10001〉 2 2
00010 01100 + 〈00011, 10000〉 2 2
00011 00100 + 〈00001, 00010, 01000, 10000〉 4 2
00100 01100 + 〈00001, 00010〉 2 2
00101 00100 + 〈00001, 00010, 01000, 10000〉 4 2
00110 00001 + 〈10001, 10010〉 2 2
00111 00010 + 〈10001, 11010〉 2 2
01000 10001 + 〈01010, 01100〉 2 2
01001 00001 + 〈00010, 00100, 01000, 10001〉 4 2
01010 00001 + 〈01001, 01010, 01100, 10000〉 4 2
01011 00010 + 〈00001, 00100, 10010, 11000〉 4 2
01100 10000 + 〈00001, 00010, 00100, 01000〉 4 2
01101 00001 + 〈00010, 00101, 01000, 10000〉 4 2
01110 00001 + 〈10001, 10010, 10100, 11000〉 4 2
01111 00010 + 〈00001, 01010, 01100, 10000〉 4 2
10000 00011 + 〈01000, 10101〉 2 2
10001 10001 + 〈00100, 01000〉 2 2
10010 00001 + 〈00101, 00110, 01000, 10000〉 4 2
10011 00001 + 〈00011, 00100, 01000, 10000〉 4 2
10100 00100 + 〈00001, 00010, 01000, 10100〉 4 4
10101 10000 + 〈00001, 00010, 00100, 01000〉 4 2
10110 00001 + 〈00100, 01000, 10001, 10010〉 4 2
10111 00001 + 〈00100, 01000, 10001, 10010〉 4 2
11000 00001 + 〈00010, 00100, 01000, 10001〉 4 2
11001 00100 + 〈00010, 01100〉 2 2
11010 00001 + 〈00010, 00100, 10001, 11000〉 4 2
11011 00100 + 〈00001, 00010, 01100, 10000〉 4 2
11100 00001 + 〈00010, 01000, 10001, 10100〉 4 2
11101 01000 + 〈00010, 01101〉 2 2
11110 00001 + 〈00010, 10001, 10100, 11000〉 4 2
11111 00100 + 〈00001, 00010, 01100, 10000〉 4 2

	Introduction
	Trails and trail search strategy
	Trails and trail cores
	Strategy of the trail search

	The Ascon permutation
	Ascon round specification
	Propagation properties through the round

	Generating 2-round trail cores in Ascon as tree-search
	Concepts and techniques
	Two-level tree
	The alternative row representation

	Extension in Ascon
	Extension as a tree search
	Forward Extension
	Backward Extension

	Practical results and improved bounds for Ascon
	Results on 3 rounds: tight bound and all low-weight trails
	Results on 4 rounds: improved (non-tight) bounds
	Results on 5 rounds: new (non-tight) bounds
	Results on 6 rounds: improved bounds beyond 2-128
	Results on 8 rounds: improved (non-tight) bounds
	Results on 12 rounds: improved bounds beyond 2-256
	Results on 7, 9, 10, and 11 rounds: improved (non-tight) bounds

	Conclusions
	Representation of the affine spaces over S.

