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Abstract. We present a rather generic backdoor mechanism that can be
applied to many LWE-like public-key cryptosystems. Our construction
manipulates the key generation algorithm of such schemes in a way that
allows a malicious adversary in possession of secret backdoor informa-
tion to recover generated secret keys from corresponding public keys. To
any user of the cryptosystem however, the output of our backdoored key
generation is indistinguishable from output of the legitimate key gener-
ation algorithm. Our construction relies on elliptic-curve cryptography
and draws on existing work on encoding of elliptic curve points as bit
strings.
Our backdoor mechanism can be applied to public-key cryptosystems
where the secret key is generated from a secret seed and the public key
includes a public seed of the same length. This holds - though not exclu-
sively - for many cryptosystems based on LWE. In particular, we point
out that our construction can be applied to backdoor HQC, FrodoKEM,
Kyber and Dilithium.
We also suggest a countermeasure that makes our backdoor detectable
by users of the cryptosystem. To this end, we modify the key genera-
tion such that the public and secret key are pseudorandomly generated
from a single seed which is included in the generated secret key. This
allows any user of the key generation algorithm to regenerate keys us-
ing an independent implementation, making our backdooring attempt
detectable.

1 Introduction

A central objective of cryptography is to provide confidential communication in
the presence of adversarial behaviour. To this end, cryptographic algorithms and
protocols are designed to withstand a variety of different attacks, ranging from
passive eavesdropping to active attacks. Actual cryptographic systems must also
be resistant to side-channel attacks which exploit imperfections in implementa-
tions.

In the 90s, Young and Yung [8] initiated the area of kleptography which
studies in how far cryptographic schemes are amenable to the insertion of back-
doors by a malicious adversary. In the usual scenario for these kinds of attacks,



the adversary is able to manipulate the cryptographic scheme and the legiti-
mate user only has black box access to it. The adversary could for example be a
malicious vendor providing cryptographic modules. A kleptographic mechanism
manipulates a scheme in such a way that its output is indistinguishable from
the output of the non-backdoored scheme, but at the same time the adversary
is exclusively able to recover secret information (such as the user’s secret keys
or some plaintext) from public output using some secret backdoor information.

Currently, there are many activities concerning the migration to post-quantum
algorithms. After three rounds of evaluation, NIST has selected a number of
schemes for standardisation and continues to evaluate others in a fourth round.
It is interesting to understand in how far these schemes could be backdoored by
a malicious implementor. In this paper, we present a rather generic backdoor
that can be applied to the NIST PQC candidates HQC, FrodoKEM, Kyber and
Dilithium, and suggest a modification of these schemes that provides a counter-
measure.

Idea of the backdoor mechanism. For our backdoor mechanism, we target key
generation algorithms of public-key schemes where the public and secret key are
pseudorandomly generated by independently chosen seeds δpub, δpriv ∈ {0, 1}ℓ.
This typically holds for many schemes based on LWE for example. The idea of
our backdoor is to choose δpriv in a way that it looks random, but it can actually
be recovered from δpub by the adversary.

We briefly sketch the rough idea how to achieve this using elliptic-curve
cryptography. Let E be an elliptic curve over a prime-order field Fq such that
the group E(Fq) has order p and is generated by some point Q. Suppose for

the moment that we have an injective map f : {0, 1}ℓ → E(Fq) which is ’almost
bijective’, meaning that only a negligible number of elements of E(Fq) is not
contained in the image of f . Suppose further f can be efficiently inverted on its
image. Now suppose an adversary chooses her secret and public key as skA :=

x
$← {0, 1, . . . , p− 1} and pkA := xQ. The backdoored key generation may then

choose δpub := f−1(yQ) for y
$← {0, 1, . . . , p− 1}, and δpriv := f−1(y ·pkA) since

yQ and y · pkA are in the image of f with overwhelming probability. Note that
then pkA, yQ, y · pkA form a Diffie-Hellman triple. This allows the adversary to
recover δpriv (and thus the secret key) from δpub using skA.

Now if the DDH assumption holds in E(Fq), then the seeds thus chosen
cannot be distinguished from independently and randomly chosen seeds, so there
is no way for the user of the cryptosystem to detect the backdoor given only black
box access. Unfortunately, it is currently unknown how to construct an almost
bijective embedding f for curves in which the DDH assumption is conjectured to
hold [5]. Such maps are well-known for certain super-singular elliptic curves, but
these are not suitable for ECC. However, [3] shows how to construct embeddings
into Edwards curves containing roughly half the points in their image. Note that
the DDH assumption does not hold in Edwards curves either since they have a
subgroup of small order. Nevertheless, we show in this paper how to use these
embeddings to obtain a strong kleptographic mechanism.
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Related work. [7] uses a similar approach to backdooring LWE-like cryptosys-
tems. Using the above notation, their backdoored key generation basically takes
δpub and δpriv to be the x-coordinate of yQ respectively y · pkA for a randomly

chosen y
$← {0, 1, . . . , p− 1}. However, contrary to the assertion in [7], the gen-

erated backdoored keys are clearly not indistinguishable from non-backdoored
ones: δpub is always the x-coordinate of a point on the curve (so this yields
only about half of all ℓ-bit strings), whereas δpub is chosen uniformly at random
among all ℓ-bit strings for the non-backdoored scheme.

Young and Yung [9] describe a kleptographic mechanism for RSA key gen-
eration also via ECC using a curve-or-twist approach. We point out here that
their idea can directly be applied to yield a kleptographic mechanism for the
kind of LWE-like schemes that we consider in this paper. However, their scheme
requires the adversary to pick ℓ ECC public/secret key pairs on an elliptic curve
and ℓ pairs on its non-trivial quadratic twist, and requires ℓ computations of
DH triples in the backdoored key generation algorithm, which may slow it down
considerably. It is less efficient and may therefore be more easily detectable in
practice than the scheme we describe in this paper.

Our construction can be regarded as an application of the work of [5] and
[3] on encoding elliptic curve points as bit strings. In fact, [3] mentions the
usefulness of their work for kleptography.

Our contribution. We describe an efficient kleptographic mechanism for LWE-
like public-key schemes. Our backdoor manipulates the key generation such that
an adversary is exclusively able to recover generated secret keys from correspond-
ing public keys. At the same time, the generated keys are indistinguishable from
non-backdoored keys to everyone except the adversary. In the terminology of
Young and Yung, we provide a strong SETUP mechanism for LWE-like public-
key schemes. We describe how to modify key generation in a way that prevents
application of our strong SETUP. We explain how our backdoor can be applied
to HQC, FrodoKEM, Kyber and Dilithium.

Countermeasure. We propose a modification of the LWE key generation al-
gorithm that makes our backdoor detectable by the user of the cryptosystem.
Instead of generating the secret and public seed independently, the idea is first
to pseudorandomly generate them from a single seed and second to include it
in the generated secret key. This allows the user of the cryptosystem to regen-
erate the keys from this seed using an independent implementation, making our
backdooring attempt detectable.

Structure of the paper. In section 2, we explain some background. In section 3, we
define an LWE key generation algorithm that we use to explain our construction.
We describe our backdoored key generation and prove that it provides a strong
SETUP. Finally, section 4 describes our proposed countermeasure and section 5
points out how our backdoor applies to HQC, FrodoKEM, Kyber and Dilithium.
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2 Background

We give an introduction to the SETUP formalism introduced by Young and
Yung [8]. Then we review a result on encoding elliptic curve points as bit strings
which is central to our backdoor construction. Finally, we prove a lemma on the
distribution of what we call ’altered’ DH-triples that we need for the indistin-
guishability proof of our backdoor construction.

2.1 Kleptographic schemes

Kleptography studies how amenable cryptosystems are to manipulation by a
malicious adversary such that given only black box access, the manipulated
cryptosystem is indistinguishable from a legitimate one, but at the same time it
allows the adversary to exclusively recover secret information from its output.

More formally, suppose the adversary has chosen a public/secret key pair
(pkA, skA). For example, this could be an RSA or DH public/secret key pair. It
will be used to embed secret information in the output of a cryptosystem that
will only be recoverable by the adversary. Let C be some cryptosystem. Following
[8], a Secretly Embedded Trapdoor with Universal Protection (SETUP) of C is
a modified cryptosystem C ′ that satisfies the following properties:

1. The input of C ′ agrees with the public specifications of the input of C.

2. C ′ is still efficient and uses the adversary’s public key pkA.

3. The adversary’s secret key skA is only known to the adversary; in particular,
it is not contained within C ′.

4. The output of C ′ agrees with the public specifications of the output of C. At
the same time, it contains published bits that allow the adversary to derive
some secret information (such as the user’s secret key) using skA.

5. Even if the specification of C ′ and the presence of the SETUP algorithm
is fully known, this still does not allow anyone (except the adversary) to
recover the secret information derivable from the output of C ′.

In addition, SETUPs must satisfy an indistinguishability property. We say that
C ′ is a weak SETUP if the output of C and C ′ are polynomially indistinguishable
to everyone except the adversary and the user of the cryptosystem. We say that
C ′ is a strong SETUP if the output of C and C ′ are polynomially indistinguish-
able to everyone except the adversary. Thus in a strong SETUP, even the output
that the user of the cryptosystem has access to (including generated secret keys
for example) must be indistinguishable from the output of the non-backdoored
system.
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2.2 Encoding elliptic curve points as bit strings

The following theorem is proved in [3], based on ideas of [5].

Theorem 1. Suppose:

– q is prime with q ≡ 3 (mod 4).
– d = −(2+s2)2/(2−s2)2 ∈ Fq for some s ∈ F∗

q such that (s2−2)(s2+2) ̸= 0.

Note that the above implies that d is not a square in Fq. We consider the complete
Edwards curve E : x2 + y2 = 1 + dx2y2 over Fq. Then there exists an efficiently
computable injective map

ι : {0, 1, 2, . . . , (q − 1)/2} → E(Fq)

such that for any P ∈ E(Fq), we can efficiently determine whether P ∈ im(ι),
and if so, can efficiently compute its preimage.

Proof. This follows from Theorem 4 and section 3.5 of [3]. ⊓⊔

We omit the details of how ι and its inverse are computed since we will only
need the properties stated in Theorem 1. We give an example of a curve that
satisfies the conditions of Theorem 1 and that is also suitable for our backdoor
construction.

Example 1. Let q = 2257− 26− 24− 23− 22− 1 and d = 1088 ∈ Fq and consider
the curve

E : x2 + y2 = 1 + 1088x2y2

over Fq. Then q and d satisfy the conditions of Theorem 1. Furthermore, #E(Fq) =
4p for a prime p. See Appendix A for a Sage script and output to verify these
properties.

2.3 Distribution of altered DH triples

One issue with the Edwards curves in the previous section is that the DDH
assumption trivially does not hold in them since they have a nontrivial sub-
group of order 4. However, the DDH assumption will be crucial for our backdoor
construction to obtain a strong SETUP. This will be resolved by using the fol-
lowing simple lemma and the fact that - to the best of our knowledge - the DDH
assumption does typically hold for sufficiently large prime-order subgroups of
elliptic curves.

Lemma 1. Suppose G is a cyclic group of order np where p is prime such that
p ∤ n. Let g be a generator of G. Let K be the (unique) subgroup of order n and
H be the (unique) subgroup of order p. We consider two distributions on G3:

– Distribution R1: (ga, gb, gc) where a, b, c are randomly and independently
chosen from Znp.
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– Distribution R2: (g
a, gb, k · gab) where a, b are randomly and independently

chosen from Znp, and k is randomly and independently chosen from K.

If the DDH assumption holds in H, then these two distributions are indistin-
guishable by ppt algorithms.

Proof. As gcd(n, p) = 1, there is an efficiently computable isomorphism G ∼=
K×H. Thus we may identify G with K×H and we write g = (gK , gH) ∈ K×H.

By the Chinese Remainder Theorem, choosing an element a
$← Znp is equivalent

to independently choosing a1
$← Zn and a2

$← Zp. Thus we may describe R1 as:

(ga1

K , ga2

H ), (gb1K , gb2H ), (gc1K , gc2H ) where a1, b1, c1
$← Zn and a2, b2, c2

$← Zp are
chosen randomly and independently.

R2 may be described as:

(ga1

K , ga2

H ), (gb1K , gb2H ), (k · ga1b1
K , ga2b2

H ) where a1, b1
$← Zn and a2, b2

$← Zp and

k
$← K are chosen randomly and independently.

Notice that as k is chosen randomly and independently, k · ga1b1
K is a uniformly

random element of K independently chosen from all other components. Thus
R2 is exactly equal to the distribution

(ga1

K , ga2

H ), (gb1K , gb2H ), (gc1K , ga2b2
H ) where a1, b1, c1

$← Zn and a2, b2
$← Zp are

chosen randomly and independently.

It is now clear that this distribution is indistinguishable from R1 if the DDH
assumption holds in H. ⊓⊔

We refer to triples drawn from R2 as altered DH triples. We also need a
slightly more general version of this lemma where we consider m triples while
keeping one component static:

Lemma 2. Suppose G is a cyclic group of order np where p is prime such that
p ∤ n. Let g be a generator of G. Let K be the (unique) subgroup of order n and
H be the (unique) subgroup of order p. We consider two distributions on G2m+1:

– Distribution R′
1: (g

a, gb1 , . . . , gbm , gc1 , . . . , gcm) where a, bi, ci are randomly
and independently chosen from Znp.

– Distribution R′
2: (ga, gb1 , . . . , gbm , k1g

ab1 , . . . , kmgabm) where a, bi are ran-
domly and independently chosen from Znp, and the ki are randomly and
independently chosen from K.

If the DDH assumption holds in H, then these two distributions are indistin-
guishable by ppt algorithms.

Proof. The proof works analogously to the proof of Lemma 1 except that in the
last step of the proof, the indistinguishability follows from the DDH assumption
on H and [4], Exercise 10.11. ⊓⊔
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3 A strong SETUP for LWE key generation

3.1 Textbook LWE key generation

Algorithm 1 describes the key generation algorithm of a textbook public-key
cryptosystem based on LWE. For concreteness, it serves as a model key genera-
tion algorithm that we use to explain our backdoor construction. However, it will
become clear that our backdoor is not limited to schemes based on LWE.We omit
the description of an associated encryption/decryption or signature/verification
algorithm since only the key generation is relevant to our backdoor construction.
KGen uses the following notation and parameters:

– n,m are positive integers.
– ℓ is the seed length in number of bits (e.g. 256).
– G is a pseudorandom function (e.g. SHAKE256).
– χ is a distribution on Z (e.g. a discretized approximate Gaussian distribu-

tion).

Algorithm 1 Textbook LWE key generation algorithm KGen

1: δpub
$← {0, 1}ℓ

2: δpriv
$← {0, 1}ℓ

3: Pseudorandomly generate A
$← Zn×n

m from G(δpub).

4: Pseudorandomly generate s
$← Zn

m and e← χn from G(δpriv).
5: b← As+ e (mod m)
6: return pk← (δpub, b), sk← δpriv

In many schemes based on LWE, the secret key comprises the vector s instead
of δpriv. Note that s can be computed from δpriv, so the scheme as described in
Algorithm 1 is at least as hard to backdoor since we give a legitimate user pos-
sibly more information to recognize backdoored keys. The backdoor we describe
below applies equally well to the scheme where only s is returned as secret key.

3.2 Definition of backdoored key generation

We assume that ℓ ≥ 256. Choose a prime q < 2ℓ+1 with q ≡ 3 (mod 4) such that
2ℓ+1 − q is small compared to 2ℓ; more precisely, we demand that 1− q/2ℓ+1 be
negligible. Choose an Edwards curve E over Fq such that:

– E satisfies the conditions of Theorem 1.
– #E(Fq) = 4p for some prime p.
– The DDH assumption holds in the subgroup of order p (to the best of our

knowledge).
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Note that the DDH assumption does not hold in the whole group E(Fq) since it
has a non-trivial subgroup of small order. For ℓ = 256, we gave an example of a
suitable prime q and curve E in Example 1.

Under the conditions above, E(Fq) is a cyclic group. We fix a generator
Q ∈ E(Fq) of it and a generator R ∈ E(Fq) of the unique subgroup of order 4.
By Theorem 1, there is now an efficiently computable and efficiently invertible
injective map

ιE : {0, 1, 2, . . . , (q − 1)/2} → E(Fq)

Let IntToBitstr :
{
0, 1, 2, . . . , 2ℓ − 1

}
→ {0, 1}ℓ be a bijection encoding inte-

gers as bit strings. Then IntToBinstr◦ ι−1
E defines an encoding of roughly half

the points in E(Fq) as ℓ-bit strings.

The adversary now randomly picks skA
$← Z4p and sets pkA := skA · Q ∈

E(Fq). Our backdoored key generation K̃Gen is described in Algorithm 2. It gen-
erates an altered DH triple pkA, bQ, rR+ b · pkA in the sense of Lemma 1, using
rejection sampling to make sure that the latter two elements are contained in
im(ιE). Then the seeds δpub and δpriv are computed as the bit strings corre-
sponding to these elements under ιE . From there, the generation of the public
and secret keys proceeds as in KGen.

Algorithm 2 Backdoored key generation algorithm K̃Gen(pkA)

1: repeat

2: b
$← Z4p

3: r
$← {0, 1, 2, 3}

4: until bQ ∈ im(ιE) and rR+ b · pkA ∈ im(ιE)
5: δpub ← IntToBitstr(ι−1

E (bQ))
6: δpriv ← IntToBitstr(ι−1

E (rR+ b · pkA))

7: Pseudorandomly generate A
$← Zn×n

m from G(δpub).

8: Pseudorandomly generate s
$← Zn

m and e← χn from G(δpriv).
9: b← As+ e (mod m)

10: return p̃k← (δpub, b), s̃k← δpriv

To show that Algorithm 2 terminates and is efficient, we show that the loop
in lines 1-4 terminates after a few repetitions with high probability:

Lemma 3. The loop in lines 1-4 in Algorithm 2 terminates after an expected
number of about four repetitions.

Proof. Note that if we randomly and independently sampled c
$← Z4p and

checked whether cQ ∈ im(ιE) instead of the second condition rR + b · pkA ∈
im(ιE), we would expect to require about four repetitions because about half
the elements in E(Fq) are contained in im(ιE). The same must then hold for the
actual loop in lines 1-4 since if it deviated in a significant manner, this would
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yield an efficient distinguisher for the distributions R′
1 and R′

2 from Lemma 2,
contradicting the DDH assumption in the subgroup of E(Fq) of order p. ⊓⊔

3.3 Recovery of secret keys

The adversary’s algorithm that, using skA, recovers secret keys from correspond-

ing public keys generated by K̃Gen is described in Algorithm 3. It is straightfor-
ward to check that key recovery actually works.

Algorithm 3 Secret key recovery algorithm

Input: skA; LWE public key p̃k = (δpub, b) generated by K̃Gen(pkA)

Output: s̃k corresponding to p̃k

1: Pseudorandomly generate A
$← Zn×n

m from G(δpub).
2: B := ιE(IntToBitstr−1(δpub))
3: C := skA ·B ∈ E(Fq)
4: for r = 0, 1, 2, 3 do
5: if rR+ C ∈ im(ιE) then
6: δpriv := IntToBitstr(ι−1

E (rR+ C))

7: Pseudorandomly generate s
$← Zn

m and e← χn from G(δpriv).
8: if b = As+ e (mod m) then

9: return s̃k := δpriv
10: end if
11: end if
12: end for

3.4 Proof of strong SETUP

Since we only change the key generation algorithm, it is sufficient for us to check

that K̃Gen satisfies the properties of a SETUP listed in subsection 2.1.

1. The input of K̃Gen agrees with the public specifications of the input of KGen.
The interface of the key generation algorithm remains unchanged.

2. K̃Gen is still efficient and uses the adversary’s public key pkA.
This follows from Lemma 3.

3. The adversary’s secret key skA is only known to the adversary; in particular,

it is not contained within K̃Gen.
This is clear from the description of K̃Gen.

4. The output of K̃Gen agrees with the public specifications of the output of
KGen. At the same time, it contains published bits that allow the adversary
to derive some secret information (such as the user’s secret key) using skA.

The output interface of KGen and K̃Gen are the same. The adversary is able
to recover generated secret keys from corresponding public keys as described
in Algorithm 3.
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5. Even if the specification of K̃Gen and the presence of the SETUP algorithm
is fully known, this still does not allow anyone (except the adversary) to re-

cover the secret information from the output of K̃Gen.
This is a consequence of the indistinguishability result we prove in Theo-
rem 2.

We now prove our main result, namely that keys output by KGen and K̃Gen
are indistinguishable. This is the only missing property to show that our back-
door provides a strong SETUP for LWE key generation.

Theorem 2. Suppose the DDH assumption holds for the subgroup of order p

in E(Fq) and pkA = aQ where a
$← Z4p. Suppose D is a ppt distinguisher with

binary output and taking pkA and an LWE key pair (pk, sk) as input. Then its

advantage AdvKeyDistinguish

KGen,K̃Gen
(D) defined by

|Pr[D(pkA, pk, sk) = 0 | (pk, sk)← KGen]

−Pr[D(pkA, p̃k, s̃k) = 0 | (p̃k, s̃k)← K̃Gen(pkA)]|

is negligible. Thus K̃Gen is a strong SETUP for KGen.

Remark 1. For simplicity, we state the result for the case where the distinguisher
is given access to only one generated key pair. However, using Lemma 2, the proof
below is easily adapted to the case where the distinguisher is given access to an
arbitrary number of generated key pairs.

Proof. Suppose we are given a distinguisher D as described above. In Algo-
rithm 4, we now use D to construct a distinguisher D′ that distinguishes be-
tween the two distributions R1 and R2 described in Lemma 1 where we set
G = E(Fq), K is the subgroup of order 4 and H is the subgroup of order p. D′

basically simulates K̃Gen, using x as the adversary’s public key and y and z as
the points on E(Fq) from which the public and secret seeds are derived.

Let Ω be the event that y ∈ im(ιE) and z ∈ im(ιE). We have that

Pr[Ω | (x, y, z)← R2] ≈ Pr[Ω | (x, y, z)← R1] =

(
#im(ιE)

#E(Fq)

)2

≈ 1

4

where in the last step, we use that #im(ιE) = (q + 1)/2 and #E(Fq) ≈ q by
Hasse’s theorem.

Assuming that Ω occurs, we have:

– If (x, y, z) ← R1, then the generation of pk and sk in D′ almost perfectly
simulates KGen, with only one difference: δpub and δpriv are chosen uniformly

at random from
{
b ∈ {0, 1}ℓ | IntToBitstr−1(b) ≤ (q − 1)/2

}
instead of

{0, 1}ℓ. Since 1− q/2ℓ+1 is negligible by the choice of q, we may neglect this
difference. Hence

Pr[D′(x, y, z) = 0 | (x, y, z)← R1, Ω]

≈ Pr[D(pkA, pk, sk) = 0 | a← Z4p, pkA := aQ, (pk, sk)← KGen]
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Algorithm 4 Distinguisher D′

Input: Triple (x, y, z) ∈ E(Fq)
3

Output: A bit w ∈ {0, 1} indicating a guess whether (x, y, z)←R1 or (x, y, z)←
R2

1: if y ̸∈ im(ιE) or z ̸∈ im(ιE) then

2: w
$← {0, 1}

3: return w
4: end if
5: δpub ← IntToBitstr(ι−1

E (y))
6: δpriv ← IntToBitstr(ι−1

E (z))

7: Pseudorandomly generate A
$← Zn×n

m from G(δpub).

8: Pseudorandomly generate s
$← Zn

m and e← χn from G(δpriv).
9: b← As+ e (mod m)
10: pk := (δpub, b), sk := δpriv
11: w ← D(x, pk, sk)
12: return w

– If (x, y, z)← R2, then the generation of pk and sk in D′ perfectly simulates

K̃Gen(x). Hence

Pr[D′(x, y, z) = 0 | (x, y, z)← R2, Ω]

= Pr[D(pkA, p̃k, s̃k) = 0 | a← Z4p, pkA := aQ, (p̃k, s̃k)← K̃Gen(pkA)]

Assuming that Ω does not occur (i.e. its complement Ω occurs), D′ outputs a
uniformly random guess. Hence

Pr[D′(x, y, z) = 0 | (x, y, z)← R1, Ω]

= Pr[D′(x, y, z) = 0 | (x, y, z)← R2, Ω] =
1

2

Thus we obtain

Pr[D′(x, y, z) = 0 | (x, y, z)← R1]

≈ 1

4
· Pr[D′(x, y, z) = 0 | (x, y, z)← R1, Ω]

+
3

4
· Pr[D′(x, y, z) = 0 | (x, y, z)← R1, Ω]

≈ 3

8
+

1

4
· Pr[D(pkA, pk, sk) = 0 | a← Z4p, pkA := aQ, (pk, sk)← KGen]
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Similarly, we obtain

Pr[D′(x, y, z) = 0 | (x, y, z)← R2]

≈ 1

4
· Pr[D′(x, y, z) = 0 | (x, y, z)← R2, Ω]

+
3

4
· Pr[D′(x, y, z) = 0 | (x, y, z)← R2, Ω]

=
3

8
+

1

4
· Pr[D(pkA, p̃k, s̃k) = 0 | a← Z4p, pkA := aQ, (p̃k, s̃k)← K̃Gen(pkA)]

Hence we deduce

AdvDistinguish
R1,R2

(D′) ≈ 1

4
·AdvKeyDistinguish

KGen,K̃Gen
(D)

By the DDH assumption on H and Lemma 1, AdvDistinguish
R1,R2

(D′) is negligible

and so AdvKeyDistinguish

KGen,K̃Gen
(D) is also negligible. This proves the claim. ⊓⊔

4 Proposed countermeasure

Algorithm 5 describes a modified LWE key generation algorithm that is resis-
tant to our strong SETUP mechanism described above. It uses a hash function
H : {0, 1}∗ → {0, 1}ℓ×{0, 1}ℓ (which we assume to behave like a random oracle)
to derive the public and secret seed from a single seed δ. Importantly, δ is then
included in sk, enabling the user to re-run the key generation using a trusted
implementation to check it was executed correctly. This prevents application of
our strong SETUP mechanism. However, our backdoor construction can still be
applied to yield a weak SETUP.

Algorithm 5 Key generation algorithm resistant to strong SETUP

1: δ
$← {0, 1}ℓ

2: (δpub, δpriv) := H(δ) ∈ {0, 1}ℓ × {0, 1}ℓ

3: Pseudorandomly generate A
$← Zn×n

m from G(δpub).

4: Pseudorandomly generate s
$← Zn

m and e← χn from G(δpriv).
5: b← As+ e (mod m)
6: return pk← (δpub, b), sk← δ

5 Application to NIST PQC candidates

Note that our backdoor construction does not use any specifics about LWE. It
uses the following features of KGen:
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– The secret key is generated from a single seed δpriv.
– The public key includes a public seed δpub that has the same length as δpriv

but is otherwise chosen independently of δpriv.

Thus it is easily seen that it can be applied to more generic key generation
algorithms such as KGen′ described in Algorithm 6. Here, SKGen and PKGen
are (deterministic) functions that generate the secret and public keys from the
private and public seeds. Note that the LWE key generation algorithm KGen is
a special case of KGen′.

Algorithm 6 Generic key generation algorithm KGen′

1: δpub
$← {0, 1}ℓ

2: δpriv
$← {0, 1}ℓ

3: sk := SKGen(δpriv)
4: pk′ := PKGen(δpub, δpriv)
5: pk := (pk′, δpub)
6: return pk, sk

So in the following, we briefly indicate how our backdoor mechanism applies
to some of the candidate schemes in the NIST post-quantum standardisation
process. Our proposed countermeasure in section 4 can be adapted to each of
these schemes to prevent our strong SETUP mechanism.

5.1 HQC

HQC is a code-based key encapsulation mechanism that is currently a candidate
in the fourth round of the NIST PQC standardisation process. According to the
third-round specification [6], on a high level the key generation algorithm can
be described by KGen′ with ℓ = 320. The public and private seed are obtained
from the output of a SHAKE256-based PRNG, but the seed that serves as the
PRNG input is not included in the generated secret key. Thus our backdoor
construction yields a strong SETUP for HQC key generation.

5.2 FrodoKEM

FrodoKEM is a lattice-based key encapsulation mechanism that was an alter-
nate candidate in the third round of the NIST PQC standardisation process.
According to the third-round specification [1], the key generation of FrodoKEM
conforms to KGen′, with two differences:

– In addition to information deterministically derived from δpriv, the generated
secret key also contains a seed s chosen uniformly at random. s is used for
implicit rejection. Thus it is only used in case decapsulation fails, and so it
does not hinder application of our backdoor and still allows the adversary
to recover those parts of the secret key required for decryption.
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– In FrodoKEM, δpriv is 256 bits long for all proposed parameter sets. δpub
however is 128 bits long for proposed Level 1 parameters, 192 bits long
for proposed Level 3 parameters and 256 bits long for proposed Level 5
parameters. Thus for Level 1 and 3 parameters, the public seed is too short
for direct application of our backdoor construction.

Hence our backdoor construction can be directly applied to FrodoKEM Level 5
parameters and yields a strong SETUP.

For Level 1 and Level 3 parameters, since the FrodoKEM key generation does
not include the secret seed in the secret key output, one could internally derive
the secret key from a seed of length 128 or 192 bits instead of 256 bits. However,
this may make our backdoor construction detectable (at least in theory): Firstly,
because the elliptic curves used for the backdoor may not offer a sufficient secu-
rity level any more, and secondly because collisions among generated secret keys
are more likely for shorter secret seed length.

5.3 Kyber and Dilithium

Kyber is a lattice-based key encapsulation mechanism and Dilithium is a lattice-
based signature scheme. Both have been selected for standardisation by NIST.
The subsequent comments refer to Kyber, but they also apply to Dilithium.
According to its third-round specification [2], Kyber’s key generation conforms
to KGen′ with two main differences:

– Every generated secret key additionally contains the corresponding public
key and an additional seed used for rejection sampling (similar to FrodoKEM).

– Kyber’s key generation partially implements our countermeasure described
in section 4 by deriving the public and private seed from a single seed d of
length 256 bits.

The first point does not hinder application of our backdoor mechanism. Regard-
ing the second point, similar to HQC, note that the specification does not require
to include d in the generated secret key. Thus our backdoor construction can in
fact be applied to Kyber by internally choosing δpub and δpriv independently as

described in K̃Gen. As explained in section 4, our backdoor could be detected if
d were included in the generated secret key.
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A Sage code for verification of properties of the curve in
Example 1

sage: q=2^257-2^6-2^4-2^3-2^2-1

sage: d=1088

sage: s=146973528516760745529631214696625590505311252126814220187

44685276304061464803

sage: is_prime(q)

True

sage: mod(q,4)

3

sage: mod(-(2+s^2)^2/(2-s^2)^2,q)

1088

sage: kronecker(1-d,q)

-1

sage: E_twisted=EllipticCurve(GF(q),[0,4/(1-d)-2,0,1,0])

sage: E=E_twisted.quadratic_twist()

sage: is_prime(int(E.count_points()/4))

True
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