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Abstract. Byzantine broadcast is a central component of several cryp-
tographic protocols, from secure multiparty computation to consensus
mechanisms for blockchains. Many practical applications require increas-
ingly weaker trust assumptions, as well as scalability for an ever-growing
number of users, which rules out existing solutions with linear number of
rounds or trusted setup requirements. This poses the question of achiev-
ing broadcast with efficient communication and round complexity against
powerful adversarial models and without trusted setup assumptions.
In this paper, we answer this question positively. We present a Broadcast
protocol that runs in rounds sublinear in n, the number of users, with
asymptotic communication Õ(n3). Our protocol does not assume the ex-
istence of a trusted dealer who issues keys or common random strings.
Instead, it is built upon a trustless verifiable delay function and the ex-
istence of random oracles in order to achieve a graded form of shared
randomness between parties. This graded shared randomness acts as an
untrusted online setup that can be used to securely run a committee-
based protocol, similar to Chan et al. (PKC 2020). We also show that
the graded shared randomness protocol we design can be used to seed
multiple instances of Broadcast, which further amortizes the communi-
cation cost per instance to Õ(n2) over n instances or even to Õ(n) per
n instances of parallel Broadcast.

1 Introduction

In the problem of Byzantine broadcast, a sender distributes its input v to n
parties. A protocol for broadcast is deemed secure if it satisfies two properties
in the presence of any t < n Byzantine corruptions: (1) consistency : all honest
parties output the same value, and (2) validity : all honest parties output v if
the sender honestly follows the protocol. Broadcast is a fundamental problem in
distributed computing that has been studied extensively for four decades. It is
also of central importance to cryptographic protocols for multiparty computation
and verifiable secret sharing to ensure a consistent view between the parties.



To keep the overhead of such applications as low as possible, a long line of
works has focused on optimizing the efficiency of broadcast protocols. Most com-
monly, efficiency in broadcast is measured by two metrics: (1) round-efficiency :
how many synchronous rounds does the protocol run for? and (2) communication-
efficiency : how many bits does the protocol exchange? By the famous lower
bounds of Dolev and Strong [15] and Dolev and Reischuk [14], deterministic
protocols require t + 1 rounds and O(n · t) communication in order to toler-
ate t (statically) corrupted parties. This severely limits the practicality of such
protocols as n grows large.

Fortunately, randomized protocols are known to bypass both of these lower
bounds. Thus, an active area of research has studied robust and efficient broad-
cast protocols for the most challenging setting with a dishonest majority of
n/2 < t < n corrupted parties. While major progress has been made toward this
goal, existing round-efficient protocols either achieve security only for a very
small margin (less than 51% dishonest parties) or rely on trusted setup assump-
tions. On the other hand, deterministic protocols can easily be instantiated from
plain public key setup and provide a suitably efficient layer of consensus if n does
not grow too large.

In this work we revisit the question of building randomized round-efficient
broadcast protocols for the dishonest majority setting without trusted setup. This
suggests the need of a trustless form of efficient online setup secure against
a dishonest majority that obtains randomness which can be used to replace
the trusted setup. Concretely, we show a broadcast protocol that achieves the
following: (i) runs in o(n) rounds, (ii) requires Õ(n3) communication complexity,
but can be amortized to n2 communication complexity if it is run n many times,
not necessarily in parallel, (iii) is secure against adaptive corruptions, and (iv)
works in the plain public key model : parties generate their own keys and register
them to a public bulletin board thereafter.

Our solution significantly improves over the state of the art. The celebrated
Dolev-Strong protocol for broadcast [15] requires O(t) rounds for t < n malicious
parties. Garay et al. [19], and Fitzi and Nielsen [17] achieved o(n) rounds, but in
a narrow case where t/n−1/2 ≤ o(n). Recently, the elegant line of work [9,37,38]
achieved o(n) rounds for a widened gap of t/n− 1/2 ≥ ω(1). While our solution
relies on the random oracle heuristic and delay functions, we believe this to be
a minor restriction. Indeed, many works have considered setup-free protocols in
the random oracle model and proof of work or proof of time assumptions. An
incomplete list includes the works of Andrychowicz and Dziembowski [1], and
Garay et al. [20,21].

1.1 Contributions

We design protocols that are secure against an adaptive dishonest majority of
t ≤ (1 − ϵ)n, for constant ϵ ∈ (0, 1), unless with negligible probability in the
security parameter κ. Our protocols assume random oracles, a bulletin-board
public key infrastructure, and the existence of delay functions, but no trusted
setup in the sense of trusted dealer.
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- Verifiable Graded Consensus on Random Strings. We provide a pro-
tocol for an online setup for graded shared randomness that has O(κ) round
complexity and Õ(n4) total communication complexity. We then show how
to reduce the communication to Õ(n3) by using gossiping techniques, while
keeping the round complexity to be polylogarithmic in n.

- Broadcast. We provide a stand-alone binary broadcast protocol using the
verifiable graded consensus protocol, with Õ(κ) round complexity and Õ(n3)
total communication complexity. This compares favorably to the Dolev-
Strong protocol [15], as it reduces the round complexity from O(n) without
introducing trusted dealers but requiring random oracles, and at the cost of
only logarithmic increase in the communication cost compared to O(n3).

- Amortized Broadcast. We show how to amortize the setup cost over mul-
tiple broadcast instances and obtain an amortized broadcast communication
complexity of Õ(n2) at Õ(κ) round complexity, using n instances, or O(κ),
using n2 instances. This compares favorably to the Chan et al. protocol [9],
which achieves the same complexity but using a trusted setup in the stan-
dard model. Furthermore, we can use the techniques in Tsimos et al. [36]
to amortize to Õ(n2) the total communication cost of parallel broadcast (n
instances of broadcast run in parallel), if we run parallel broadcast n times.

Technical overview. First, we design a broadcast protocol which requires a
sublinear number of rounds, but has no restriction on the communication com-
plexity. Our construction builds on the Chan et al. broadcast protocol, which
achieves a sublinear number of communication rounds by cleverly electing com-
mittees for each bit in an adaptively secure way, despite a dishonest majority.
The membership in these committees is revealed as the rounds progress and
batches (with round-dependent length) of valid votes are accumulated. The par-
ties self-elect via Verifiable Random Functions (VRFs), which allow the others
to check the validity of the membership claims, but are implemented by [9] with
non-interactive commitment schemes and non-interactive zero knowledge proofs,
which require a trusted dealer to generate common random strings and valid key
pairs for each party.

To remove the strong assumption of trusted dealers, we need to ensure the
secure use of VRFs with maliciously generated keys. To this end, parties are
required to evaluate and prove their VRF on a random seed, revealed only after
the parties post their public keys on the bulletin-PKI, such that malicious parties
cannot adaptively choose a secret key that passes a validation predicate on their
posted public key and also manage to bias the VRF output.

Therefore, parties will have to share and “agree” on unpredictable and unbi-
ased random strings, which should act as random beacons. Importantly, parties
cannot just share and use a local random seed as their output random strings; if
they did, dishonest parties could observe and decide their inputs accordingly, bi-
asing the final result. Instead, we assume the existence of delay functions, which
ensure that even with access to parallel computation, an adversary cannot eval-
uate a function faster than a fixed time difficulty parameter; and so it does not
have enough time to conveniently update its inputs. Therefore, parties obtain
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fresh randomness via verifiable delayed functions (VDFs). We use Wesolowski’s
VDF [39] which does not require a trusted setup.

The four main challenges preventing us from using efficient and/or permis-
sionless random beacon generators such as [35,33,12], even ones based on VDFs
or time-lock puzzles, are the following: (i) lack of trusted setup, which limits the
cryptographic tools that can be used, (ii) lack of broadcast channels, which does
not guarantee agreement on the messages communicated between parties, (iii)
dishonest majority, and (iv) requirement of sublinear number of rounds, which
rules out each party having to forcibly evaluate the other parties’ VDFs.

Parties cannot reach agreement in the sense of Byzantine agreement (which
would be a circular problem), but rather in the sense of graded agreement, where
parties obtain a grade associated to the output message. The grades indicate the
confidence honest parties have that they all hold the same message. Notably,
honest parties can disagree on their messages if they have the lowest two grades.

We bootstrap a gradecast protocol—which ensures graded agreement on a
sender’s message—to a parallel moderated gradecast protocol, where each party
act as moderator for all the seeds it received via gradecast. We show how to
aggregate both the seeds and the grades for each moderator, such that the graded
agreement properties still hold, with the extra property that the aggregated seeds
are unpredictable to the adversary at the time it would have to start evaluating
the VDF in order to bias the output. At the end, each party will have a VDF
evaluation (guaranteed to be unpredictable despite a dishonest majority) and
proof, as well as aggregated seeds and grades for the other parties. We call this
protocol a verifiable graded consensus on random strings.

These shared unpredictable random strings are used to augment the bulletin-
PKI in a way that allows for securely implementing a committee election proce-
dure. With this augmented setup in place, parties participate in the committee-
based Chan et al. protocol, where they collect votes for validly signed bits by the
sender across a sublinear number of rounds. In our case, a vote consists of a proof
that the VRF output is lower than a prespecified bound, as well as a proof that
the input on which the VRF was evaluated is truly the VDF evaluation of the
relevant output of the verifiable graded consensus protocol. The design is such
that parties can check votes without evaluating the VDF locally. In each round,
parties accept batches of votes based on the number of valid votes contained, but
also based on the confidence they have in the voter, given by their grade. There-
fore, although not necessarily intuitive, the total number of rounds dictates the
maximum grade we can have in the verifiable graded consensus protocol and the
confidence threshold accepted depends on the current round. This is necessary
because of the potential difference of one in the grades of honest parties, that
can cascade to the lowest grade, where parties can disagree on their strings.

Put together, this builds up to a broadcast protocol with an online setup
that emulates random beacons, that has a sublinear round complexity. However,
the verifiable graded consensus protocol requires running a quadratic number
of gradecasts in parallel, which brings the total communication complexity to
quartic in the number of parties.
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We reduce the communication complexity for the verifiable graded consensus
(and thus, for an instance of broadcast as well) to cubic via gossiping instead
of all-to-all transmissions. However, despite previous work on utilizing gossiping
for e.g., parallel broadcast [36], adapting the results for our parallel moderated
gradecast on non-binary messages is far from trivial. Parties have to drop con-
flicting messages in order to reduce communication, while ensuring the conflicts
reach all honest parties in due time to guarantee a difference of at most one in
their grades. The number of rounds will increase slightly but remain polyloga-
rithmic in the number of parties.

Finally, the online setup can be utilized to obtain random seeds for multiple
broadcast instances via a random oracle. Therefore, we can amortize the cost of
the verifiable graded consensus over multiple instances of broadcast to obtain the
communication cost for a broadcast instance to be quadratic (when amortized
over n instances) or linear (when amortized over n runs of parallel broadcast, so
n2 instances in total). Verifiable secret sharing or secure multiparty computation
involve at least n uses of broadcast, and applications requiring a linear number
of rounds are a good use case for the latter result.

Open questions. While we weaken the setup assumptions compared to a
trusted dealer, our solutions require random oracles. We leave open to design
a sublinear round broadcast in the standard model without trusted setup. In
particular, this requires to reach graded agreement on the random strings to be
fed in the VRFs without relying on random oracles, which rules out our current
approach. The main bottleneck is that in order to prevent biasing from an ad-
versary controlling t = O(n) parties, honest parties might need to evaluate O(n)
VDFs, which is undesirable. Using polylogarithmic samplers has the potential
to reduce the number of VDF evaluations to sublinear in n, but comes at an
enormous increase in the required values of n. Finally, we would also need VDF
and VRF constructions in the standard model that do not rely on a trusted
setup or their trusted setup can be emulated online.

1.2 Related work

We start with the related literature for broadcast protocols in the setup-free
case apart from a bulletin-PKI. Dolev and Strong [15] give a protocol against an
adaptive dishonest majority t < n with O(n3) total communication complexity.
A line of work initiated by King et al. [26,25] and Boyle et al. [7] proposed
protocols with reduced communication complexity of Õ(n3/2) but only for honest
super majority t < n/3. Momose and Ren [29] also proposed a protocol with
reduced communication complexity Õ(n2) but for honest majority t < n/2. All
these works require a linear number of rounds.

We now survey the literature on synchronous broadcast protocols for a dis-
honest majority that achieve sublinear round complexity. The first works ob-
tained a sublinear number of rounds only in a narrow case t/n − 1/2 ≤ o(n):
Garay et al. [19] achieved O((2t−n)2) rounds, and Fitzi and Nielsen [17] achieved
O(2t− n) rounds, against a strongly adaptive adversary.
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Chan et al. [9] was the first result achieving broadcast with sublinear rounds
O( n

n−t ) and Õ(n2) communication in a dishonest majority t/n− 1/2 ≥ ω(1). It
requires a trusted setup for the common random strings and keys. The adversary
is weakly adaptive, meaning it cannot perform after-the-fact removals. Wan et
al. [38] further improved this result by presenting a protocol for synchronous
broadcast that achieves expected constant rounds O(( n

n−t )
2) and Õ(n4) commu-

nication complexity, but still with trusted setup. The solution requires building
a trust graph which allows honest parties to identify the corrupted parties.

Wan et al. [37] tolerates stronger adversaries that can also erase messages.
In their solution, parties distribute during each round their real or dummy votes
through time-lock puzzles as a means of encryption against the adaptive adver-
sary. In order to not have each honest party solve a linear number of puzzles,
parties probabilistically sample which puzzle to solve based on the puzzles’ age
and then multicast the solution and the validity proof. This guarantees that
after a logarithmic number of rounds, all honest puzzles will have been solved
and their solutions received by all honest nodes. However, this solution does
not guarantee that corrupt puzzles are also solved or that honest parties have a
consistent view of puzzles originating from the adversary. This is the main rea-
son why this solution cannot be used in our case of emulating random beacons,
where an adversary can bias the result by observing the intermediate opened
puzzles and deciding to not allow some corrupt puzzles to be opened.

Hou et al. [24] describe a blockchain that tolerates dishonest majority, loosely
based on the Chan et al. broadcast protocol [9], proof of stake, proof of work in
the random oracle model (ROM).

Time-lock puzzles (TLP) [32], timed commitments [6] and verifiable delay
functions [4] are cryptographic tools relying on time assumptions, which involve
“slow functions” that can be opened or evaluated only after an a priori cho-
sen amount of time passes. Several constructions of VDFs have been proposed
in [4,30,39,13]. VDFs are currently used or intended to be used in blockchain
applications such as Ethereum and Chia [8,11].

In the context of timing assumptions and broadcast, Das et al. [12] describe
a Byzantine Agreement protocol with VDF in ROM, which achieves an expected
constant round complexity in a setting without trusted or authenticated setup,
tolerating fewer than n/2 adaptive corruptions. Although also based on graded
agreement and VDFs, their construction differs conceptually from ours. Das et
al. [12] generate a graded PKI with only two grades, then use VDFs both in this
construction and in order to elect a leader on which honest parties agree with
high probability, in order to augment a graded byzantine agreement into a full
byzantine agreement. Moreover, their constructions heavily rely on t < n/2.

The use of VDFs for multi-party unbiased randomness generation was first
exemplified in [27]. Constructing randomness from VDF/TLP with transparent
setup in ROM, but assuming broadcast, is also addressed by Bhat et al. [3], who
tolerate t < n only if the adversary is covert, and by Thyagarajan et al. [35]
who tolerate t < n. Freitag et al. [18] propose a fair coin flipping protocol that
assumes a public bulletin board and a partially trusted setup called all-but-one
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model (non-interactive but where parties need to solve all TLPs) or with trusted
setup and ROM (interactive but publicly verifiable).

2 Preliminaries

2.1 Model

Network. We consider n parties P1, . . . , Pn that have access to a bulletin public
key infrastructure (PKI). Every party generates a pair of keys (for e.g., signing,
verifiable random function, verifiable delay function) and posts the public key
to the public bulletin board before the protocol starts. The posted keys are not
guaranteed to have been generated correctly.

We consider a synchronous network, i.e., messages between parties are de-
livered with a finite, known delay ∆r, and the local clocks of the parties are
synchronized. Our protocols execute in rounds: parties start executing round r
at time (r − 1) · ∆r. We assume that parties perform atomic send operations,
i.e., they can send a message to multiple parties simultaneously in such a way
that the adversary cannot corrupt them in between individual sends.

Security parameters. We denote the computational security parameter κ and
the statistical security parameter by λ. We assume all cryptographic hash func-
tions are modeled as random oracles. This means that for any input x in the do-
main, a hash function H returns H(x) if it was queried before on x and otherwise
returns a random value from the codomain. We assume that the hash function
output length is O(κ), for the security parameter κ. Moreover, all signatures, ver-
ifiable delay function outputs and verifiable random function outputs are also of
size O(κ). We also use a failure probability δ ∈ (0, 1) that is negligible in the
statistical security parameter λ but independent of n, i.e., log(1/δ) = polylog(λ).

For simplicity, since the computational security parameter is generally larger
than the statistical security parameter, we use κ for both. We assume a regime
where the κ ≤ polylog(n), such that κ · n ≤ Õ(n).

Threat model. We consider a Byzantine fault model, in which some fraction
of the parties may be corrupted by an adversary f ≤ (1 − ϵ)n, for ϵ ∈ (0, 1).
The adversary controls the local computations, messages, and current state of
any corrupted party, and can coordinate the actions of all corrupted parties. The
adversary is adaptive and rushing, i.e., it can adaptively corrupt parties over the
course of a protocol execution and wait until all honest parties have sent their
messages before making a decision. Uncorrupted parties are called honest. In
the rest of the paper, whenever we make a statement about a honest party’s
actions or views, we refer to the specific moment when the party is honest if it is
not clear from the context. For example, the validity of broadcast (Definition 1)
refers to the sender remaining honest until the end of the protocol.

The adversary cannot perform after the fact removals: the adversary cannot
indefinitely prevent a message from being delivered once it is sent by an honest
party, even if the adversary corrupts it at some point after the send action.
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We assume the adversary has access to a probabilistic polynomial-time ma-
chine. Looking ahead, the adversary is ∆-limited, i.e., evaluating a VDF with
difficulty parameter ∆ on the adversary’s machine takes parallel time ∆ with
poly(∆,κ) processors (see Def. 9). Honest users might have weaker machines.

2.2 Definitions and primitives

Broadcast. Introduced in the seminal work by Lamport et al. [34], broadcast
ensures agreement of honest parties on a sender’s message.

Definition 1. A protocol executed by parties P1, P2, . . . , Pn, where a sender
P ∗ ∈ {P1, . . . , Pn} begins holding input v∗, is a broadcast protocol tolerating
t malicious parties if the following notions hold:

(Validity): If P ∗ is honest, then every honest party outputs v∗.
(Consistency): Every honest party outputs the same value v.

Gradecast and Moderated Gradecast. Gradecast, introduced by Feldman
and Micali in [16] and generalized for an arbitrary grade in [19], is a relaxation
of broadcast, where honest parties are allowed to disagree by a “small amount”.

Definition 2. A protocol executed by parties P1, P2, . . . , Pn, where a sender
P ∗ ∈ {P1, . . . , Pn} begins holding input v∗, is a g∗-gradecast protocol tolerat-
ing t malicious parties if the following notions hold:

(Termination): Each honest party outputs (v, g) where g ∈ {0, . . . , g∗} and
terminates.
(Validity): If P ∗ is honest, then every honest party outputs (v∗, g∗).
(Soundness): Let Pi, Pj be two honest parties outputting (mi, gi) and (mj , gj),
respectively. If gi ≥ 2, then mi = mj and |gi− gj | ≤ 1. If gi = 1, then either
mi = mj or gj = 0.

We also define a Moderated Gradecast protocol, where a moderator PM re-
gradecasts the value it received from P ∗, the sender in gradecast. The goal is
for the honest parties to use the two pieces of information, coming from the two
gradecasts with different senders, to obtain outputs on which they disagree by
a “small amount” and to grade the moderator.

Definition 3. A protocol executed by parties P1, P2, . . . , Pn, where a sender
P ∗ ∈ {P1, . . . , Pn} begins holding input v∗, and a moderator PM ∈ {P1, . . . , Pn}
moderates this value, is a g∗-moderated gradecast protocol tolerating t malicious
parties if the following notions hold:

(Termination): Each honest party outputs (v, g) where g ∈ {0, . . . , g∗} and
terminates.
(Validity): If P ∗ is honest and moderator PM is also honest, then every
honest party outputs (v∗, g∗).
(M-Validity): If moderator PM is honest, then every honest party outputs
(v, g) as their value from moderator PM , where g ∈ {g∗ − 1, g∗}.
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(Soundness): Let Pi, Pj be two honest parties outputting (mi, gi) and (mj , gj),
respectively. If gi ≥ 2, then mi = mj and |gi− gj | ≤ 1. If gi = 1, then either
mi = mj or gj = 0.

We are interested in the parallel version of moderated gradecast, where a
party acts as a moderator for multiple initial senders, so its moderator grade is
determined by all gradecasts, and in the doubly-parallel version of moderated
gradecast, where each party acts as an initial sender and as a moderator for all
other senders.

Verifiable Random Functions. Verifiable Random Functions (VRFs), intro-
duced by Micali et al. [28] are functions whose output is unique and pseudoran-
dom and, moreover, the validity of the function evaluation relative to a binding
commitment can be efficiently proved and verified.

Usually, the literature using VRFs considers that the key generation is run
at a trusted setup. We are interested in a variation where the key pair is gen-
erated by a potentially malicious party, yet we still want to satisfy uniqueness,
provability and pseudorandomness in a modified setting. First, we require an ef-
ficient algorithm that checks a predicate VRF.Validate on the public key in order
to verify that the public key corresponds to an admissible secret key. Second,
we require another property, which we call extended pseudorandomness, which
is different from pseudorandomness, where the adversary only chooses the input
but not the key pair and thus can’t evaluate the VRF.

Chen and Micali [10] and Gilad et al. [22] also require that the VRF security
holds for adaptive adversaries and adversarially generated key pairs, as long as
the public keys have been chosen in advance of the seeds, but do not provide
a formal definition. Their VRF construction uses random oracles and unique
signatures. Goldberg et al. [23] discuss this issue and propose VRF construc-
tions based on RSA or elliptic curves (in the random oracle model) that have a
validation predicate for the public key as in our definition.

Definition 4. A function family F(·)(·) : {0, 1}l(κ) → {0, 1}m(κ) is a family
of verifiable random functions (VRFs) if there exists a probabilistic polynomial
time algorithm VRF.Gen and deterministic algorithms VRF.Prove, VRF.Verify,
VRF.Validate such that:

- VRF.Gen(1κ) outputs a pair of keys (PK,SK);
- VRF.ProveSK(x) outputs a pair (FSK(x), πSK(x)), where FSK(x) is the evalu-

ation on input x using secret key SK and πSK(x) is the proof of correctness
of this evaluation;

- VRF.VerifyPK(x, y, π) outputs 1 if y = FSK(x) using π and 0 otherwise;
- VRF.ValidatePK(1

κ) outputs 1 if PK corresponds to an admissible SK with
respect to VRF.Gen and 0 otherwise.

A VRF should satisfy the following properties: Uniqueness, Provability, Pseu-
dorandomness and Extended Pseudorandomness.
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The definitions of Uniqueness, Provability, Pseudorandomness and Extended
Pseudorandomness are standard (with the exception of the latter) and are given
in Appendix A.

In our constructions, we can either instantiate the VRF via RO and unique
signatures, e.g., BLS [5] with the validity predicate VRF.ValidatePK(1

κ) = 1 if
PK ̸= 1 and 0 otherwise, or we can use the elliptic curve-based VRF in the ROM
from [23] with the validity predicate described there.

Verifiable Delay Functions. Verifiable Delay Functions (VDFs), defined by [4],
are functions with a unique unpredictable output that can only be evaluated af-
ter a sequential number of steps, and moreover, the validity of the function
evaluation can be efficiently proved and verified.

Definition 5. A Verifiable Delay Function (VDF) V = (VDF.Setup,VDF.Eval,
VDF.Verify) is a triplet of algorithms:

- VDF.Setup(1κ, ∆)→ pp = (EK,VK) takes the security parameter κ and tar-
get puzzle difficulty ∆ that outputs public parameters pp that consist of an
evaluation key EK and verification key VK;

- VDF.EvalEK(x)→ (y, π) outputs y ∈ Y, the evaluation on input x ∈ {0, 1}l(κ)
with evaluation key EK and π, the proof of correctness of this evaluation;

- VDF.VerifyVK(x, y, π,∆) outputs 1 if y is the correct output of input x asso-
ciated to verification key VK and difficulty ∆, possibly using proof π, and 0
otherwise.

A VDF should satisfy Correctness (Definition 6), Soundness (Definition 7) and
Sequentiality (Definition 9).

For all pp generated by VDF.Setup(1κ, ∆) and all x ∈ {0, 1}l(κ), algorithm
VDF.EvalEK(x) must run in parallel time ∆ with poly(log∆,κ) processors. Algo-
rithm VDF.Verify must run in total time polynomial in log∆ and κ.

Definition 6. [Correctness] A VDF V is correct if for all κ, ∆, pp ←
VDF.Setup(1κ, ∆) and all x ∈ {0, 1}l(κ), if (y, π) ← VDF.EvalEK(x) then
VDF.VerifyVK(x, y, π,∆) = 1.

Definition 7. [Soundness] A VDF V is sound if for all algorithms A that run
in time O(poly(∆,κ)), it holds that:

Pr

[
VDF.VerifyVK(x, y, π,∆) = 1

y ̸= VDF.EvalEK(x)
:

pp = (EK,VK)← VDF.Setup(1κ, ∆)
(x, y, π)← A(κ, pp, t)

]
≤ negl(κ).

We adapt the sequentiality definition from Boneh et al. [4] and Wesolowski [39]
for an honestly selected input concatenated with an input chosen by the adver-
sary. The definition states that no adversary is able to compute an output for
VDF.Eval on the honest random challenge concatenated with an adversarial in-
put in parallel time σ(∆) < ∆, even with up to a polynomially large number of
parallel processors and after a potentially large amount of precomputation.
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Definition 8. [Sequentiality Game] An adversary A := (A0,A1) and a chal-
lenger C play a sequentiality game with security parameter κ and time ∆:

1. C runs setup and obtains pp← VDF.Setup(κ,∆).
2. A processes the public parameters and obtains L← A0(κ, pp, ∆).
3. C samples a uniform random string x1

$← {0, 1}l(κ)−n(κ).
4. A chooses a string x2 ∈ {0, 1}n(κ), processes x1 and computes an output

yA ← A1(L, pp, x1||x2).

The adversary A wins the game if yA = y for (y, π)← VDF.EvalEK(pp, x1||x2).

Definition 9. [(p, σ)-Sequentiality] For functions σ(∆) and p(∆), a VDF V is
(p, σ)-sequential if no pair of randomized algorithms A0, which runs in total
time O(poly(∆,κ)), and A1, which runs in parallel time σ(∆) on at most p(∆)
processors, can win the sequentiality game with probability greater than negl(κ).

Definition 9 implies the unpredictability of the VDF output, but not indis-
tinguishability from random [4]. But in the ROM, any unpredictable string can
be used to extract an unpredictable κ-bit uniform random string.

Wesolowsky [39] gives a construction for public coin VDF, which we adopt
in our protocols. The underlying group of the VDF is a class group G of an
imaginary quadratic field. For a specific parametrization, there is no efficient
algorithm to compute the order of the group, so this VDF construction does
not have trapdoors. The construction uses a hash function HG : {0, 1}∗ → G
modeled as a random oracle. The setup is transparent, and honest parties can
check whether VK,EK are not valid.

Furthermore, the VDF in [39] is (·, σ)-sequential for any number p of proces-
sors and σ = (1−ξ) ·∆, for very small ξ > 0. Therefore, we drop the p parameter
and say that the Wesolowski VDF with difficulty parameter ∆ is ((1− ξ) ·∆)-
sequential against a ∆-limited adversary that runs in parallel time σ(∆). The
proof is given in Appendix D.

Lemma 1. The VDF proposed in [39] achieves σ-Sequentiality in the ROM for
any p and for any σ(∆) = (1− ξ) ·∆.

Verifiable Graded Randomness. Our goal is to generate strings that act as
random beacons [31]: they satisfy unpredictability (and randomness in ROM),
bias resistance, termination and verifiability by the other parties in the system.
We introduce and define the following protocol.

Definition 10. A protocol executed by parties P1, . . . , Pn, where each honest
party begins holding a random string xi and PKI information, is a verifiable
graded consensus on random strings composed of algorithms Gen, Process, Verify
and protocol Toss:

- Gen(1κ, ∆) outputs public parameters pp;
- Toss(pp) and outputs to each party Pi n pairs (x

(j)
i , g

(j)
i );

- Process(pp, x) outputs (y, π);
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- Verify(pp, x, y, π) outputs 1 if (y, π) = Process(pp, x) and 0 otherwise.

A verifiable graded consensus on random strings protocol should satisfy the fol-
lowing notions whenever there are at most t corrupted parties.

(σ-Indistinguishability) For σ(∆) ≤ σ′(∆), where Process is σ′-sequential,
no pair of randomized algorithms A0, running in time O(poly(∆,κ)), and
A1, running in parallel time σ(∆) can win the ∆-Indistinguishability game
with probability more than negl(κ).
(Soundness, M-Validity) As in Definition 3, where every party acts as a
moderator.
(Termination) An honest party Pi outputs (x

(j)
i , g

(j)
i ) for every j ̸= i after

Toss and (yi, πi) after Process.
(Verifiability) A honest party that output (x(j)

i , ·) after Toss for a party j and
receives (yj , πj) as output of Process will not accept yj as Pj’s beacon unless
Verify(pp, x(j)

i , yj , πi) = 1.

The ∆-indistinguishability game captures both the unpredictability and un-
biasedness notions, inspired by [2,35], and is based on the σ-sequentiality defi-
nition. The ∆-indistinguishability game is provided in Appendix A.

In the ROM, the outputs H(yi) are random, not just unpredictable.

Signatures. We use the notation sigi(m) to denote a signature of party Pi

using ski on message m and veri(s,m) to denote the verification of signature s
on message m using public key pki. We assume idealized signatures that achieve
perfect correctness: for any message m, it holds that veri(sigi(m),m) = 1, and
unforgeability under chosen-message attack : for a pair of honestly generated keys
(ski, pki), a party that does not have access to ski, cannot generate a signature
s such that veri(s,m) = 1.

3 Emulating a common random string

Consider that each party has an associated slot, which contains a random seed.
Based on these values, each honest party needs to create and “agree” on ag-
gregate fresh random strings, via a protocol we call Moderated Gradecast. Each
random string is input to a VDF, such that the VDF evaluations produce an
unpredictable and unbiased random string that serves as a “common random
string for parties”. However, parties might not all hold the same common value,
because the adversary can send different seeds to the honest parties. Neverthe-
less, the grades that honest parties hold for the final strings quantify how much
confidence they have that their strings for a party coincide. In particular, grades
greater than 2 certify that honest parties have the same VDF input and hence,
VDF evaluation.

In our protocols, we use the Gradecast protocol from [19], provided in Ap-
pendix B. Let g∗ be the maximum grade used in Gradecast. The Gradecast pro-
tocol takes 2g∗+1 rounds and has O(g∗ · (κ+ ℓ) ·n2) communication complexity.
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We start by describing the parallel Moderated Gradecast protocol, introduced
in Definition 3, which ensures the pairwise graded agreement of honest parties
on random strings. Then, we describe how to utilize the VDFs to obtain graded
agreement on verifiable unpredictable values, introduced in Definition 10.

3.1 Moderated Gradecast

A single run of parallel gradecast is sufficient for parties to have graded agreement
on the seed from each party. Concretely, each party Pj has for each sender Pi

a message and a grade (mi,j , gi,j). However, it is not sufficient to have both
unpredictability (after evaluating the VDF), soundness and high grade for honest
parties. For instance, Pj cannot set the final string for Pi to be mi,j because it
would not be random if Pi is malicious. On the other hand, if Pj sets as its
random string ∥i∈[n],gi,j≥1mi,j , the associated grade of the aggregation could
always be determined by malicious parties, potentially yielding low grades for
honest parties or high grades for dishonest parties.

Therefore, we propose a second step where parties moderate the values they
received in the first step. The message of a moderator Ps is thus made up of
messages itself gradecasts, but since it gradecasts values from other parties as
well, the aggregation is random (if it has high grade). Moreover, moderators
have their grade penalized by the difference in the outputs of their moderated
gradecast and the initial gradecast. This ensures that a moderator who honestly
gradecasts a value sent by a malicious initial sender in Step 1 will not be penalized
by more than 1 in its final grade. Therefore, malicious parties cannot arbitrarily
modify the final grades of honest parties.

We construct the moderated gradecast Mod-Gradecast protocol based on sev-
eral instances of Gradecast. In Figure 1, we introduce directly the parallel Mod-
Gradecast protocol for further use.

It is trivial to see that termination holds for Protocol 1; each honest party
will generate a value and an accompanying grade for every moderator, by con-
struction. Validity also easily follows from the composition of gradecast protocols
that achieve validity themselves. To prove the remaining properties, we make the
following observation, proved in Appendix D.

Observation 1 Let a1, b1, a2, b2, g s.t. |a1 − a2| ≤ 1, |b1 − b2| ≤ 1 and g ≥
max{a1, a2, b1, b2}. Let Gi = min{ai, g − bi}, for i = 1, 2. Then, |G1 −G2| ≤ 1.

The following results hold for one instance of Mod-Gradecast (one sender
and one moderator) from the parallel version presented in Figure 1, against an
adaptive adversary controlling t ≤ (1− ϵ)n parties.

Lemma 2. Mod-Gradecast satisfies M-validity.

Proof. Let Ps be the honest moderator and let Pj be an honest party. Ps will
gradecast every value it moderates correctly, thus g(s)i,j = g∗ for all i. If Pi is also
honest, then mi,j = m

(s)
i,j , so G

(s)
i,j = g∗. However, if Pi is dishonest, then it could

13



Parallel Mod-Gradecast(g∗)

Step 1: Each party gradecasts their input for their slot.

1. Each party Pi calls Gradecast(mi, g
∗).

2. Denote the output at Pj of the gradecast with sender Pi as (mi,j , gi,j),
where mi,j is the message from party Pi and gi,j is the associated grade.

Step 2: Each party acts as moderator.

1. For each party Ps, let m
(s)
i := [mi,s, sigi(mi,s)].

2. Each party Ps calls Gradecast(m(s)
i , g∗), for all slots i ̸= s.

3. Denote the n pairs per moderator Ps held at party Pj as
(ms,j , gs,j), {(m(s)

i,j , g
(s)
i,j ) : i ∈ [n] \ {s}}.

Step 3: Each party decides its output value and grade for each moderator.

1. For each party Pj , for each moderator Ps and each slot i, Pj sets Ps’s value
m

(s)
i,j , with grade:

G
(s)
i,j =

{
g
(s)
i,j , if m(s)

i,j = mi,j ,
min{g(s)i,j , g

∗ − gi,j} , otherwise.

2. Pj sets its general grade for the moderator Ps as G
(s)
j = mini∈[n]{G(s)

i,j }
and the message M

(s)
j = ∥

i∈[n],G
(s)
i,j≥1

m
(s)
i,j .

Fig. 1. Parallel Moderated Gradecast protocol.

be mi,j ̸= m
(s)
i,j . If that is the case then Pi gradecasts different values to Ps and

Pj in Step 1, so from the consistency of Gradecast we have gi,j ≤ 1. Therefore,
G

(s)
i,j = min{g(s)i,j , g

∗ − gi,j} ≥ g∗ − 1 and so G
(s)
j ≥ g∗ − 1. ⊓⊔

Lemma 3. Mod-Gradecast satisfies soundness.

Proof. For any moderator Ps and any slot i, let Pj , Pk be two honest parties
obtaining (m

(s)
i,j , G

(s)
i,j ) and (m

(s)
i,k , G

(s)
i,k) respectively. We have the following cases:

Case 1. m
(s)
i,j = mi,j & m

(s)
i,k = mi,k. Then, G(s)

i,j = g
(s)
i,j and G

(s)
i,k = g

(s)
i,k ,

which originate both from the same gradecast and thus |G(s)
i,j −G

(s)
i,k | ≤ 1.

Case 2. m
(s)
i,j = mi,j & m

(s)
i,k ̸= mi,k. Then, G

(s)
i,j = g

(s)
i,j and G

(s)
i,k =

min{g(s)i,k , g
∗ − gi,k}. Also, either g

(s)
i,k ≤ 1 or gi,k ≤ 1, since one of the two

gradecasts has two honest parties outputting different messages. Thus,

- if g(s)i,k ≤ 1, then G
(s)
i,k ≤ 1 and also g

(s)
i,j = G

(s)
i,j ≤ 1. So |G(s)

i,j −G
(s)
i,k | ≤ 1.

- if gi,k ≤ 1, then either g
(s)
i,k = g∗, in which case G

(s)
i,k ∈ {g∗ − 1, g∗} and

G
(s)
i,j ∈ {g∗ − 1, g∗}, or g

(s)
i,k ≤ g∗ − 1, in which case G

(s)
i,k = g

(s)
i,k .
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Case 3. m(s)
i,j ̸= mi,j & m

(s)
i,k ̸= mi,k. Then G

(s)
i,j = min{g(s)i,j , g

∗ − gi,j} and

G
(s)
i,k = min{g(s)i,k , g

∗ − gi,k}, and we can use Observation 1 to get the result. ⊓⊔

The Parallel Mod-Gradecast in Figure 1 satisfies the following property, with
respect to the final grade each honest party associates with each moderator.

Lemma 4. Let Pj , Pk be two honest parties. For any moderator Ps, after the
execution of the protocol, it holds that |G(s)

j − G
(s)
k | ≤ 1. Moreover, if G(s)

j > 1

then M
(s)
j = M

(s)
k , otherwise if G(s)

j = 1, then either M
(s)
j = M

(s)
k or G

(s)
k = 0.

Proof. The result follows from Lemma 3. ⊓⊔

Communication and Round Complexity. Mod-Gradecast takes 4g∗ + 2
rounds, determined by running n-parallel instances of Gradecast followed by
n2-parallel instances of Gradecast. The total communication complexity for n
parties with inputs of length ℓ and signature size κ is n2 ·CCGradecast(ℓ, κ, g

∗), so
the total communication complexity is O(g∗ · (ℓ+ κ) · n4).

3.2 Verifiable Graded Consensus for Random Strings

Recall the main challenges: (i) lack of trusted setup, which limits the crypto-
graphic tools that can be used, (ii) lack of broadcast channels, which does not
guarantee agreement on the messages communicated between parties, (iii) dis-
honest majority, and (iv) requirement of sublinear number of rounds, which rules
out each party having to forcibly evaluate the other parties VDFs.

To address point (i), we employ Wesolowski’s VDF construction [39] based on
class group of imaginary quadratic fields, which has transparent setup and does
not have trapdoors. Point (iii) is addressed by the Mod-Gradecast construction
in the previous subsection which is secure against a dishonest majority. Points
(ii) and (iv) above limit the use of the homomorphic properties of the VDF eval-
uation. First, we cannot have parties gradecasting (mi,VDF.Eval(mi)), because
the rushing adversary can wait to see all such messages, then bias the result by
checking the parity of the aggregation of the results: e.g., if it is even, do not
submit anything, otherwise submit a valid tuple (m,VDF.Eval(m)) with even
output, which will cause the final output to be even. Using timed commitments
solves this issue. However, the lack of broadcast causes in the worst case each
honest party to have to open the timed commitment of every malicious party,
which is not sublinear time.

We aim for each party to only have to evaluate one VDF, namely, its own. To
this end, we need the graded agreement to happen on the aggregation of the VDF
inputs, which in our case, will be the concatenation of the parties’ seeds, as in the
random beacon construction described in [27]. Strings that have grade greater
than 1 have the guarantee that they contain seeds of honest parties, therefore the
concatenation will be random. Moreover, the hash of these concatenated seeds
will be fed into the VDF evaluation, so a rushing adversary that has parallel
time smaller than the VDF difficulty parameter cannot bias the input to the
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VDF. Finally, looking ahead, the VDF evaluation output (yi, πi) will be used in
a setting where it is multicast by the computing party Pi. A honest party Pj

will have the graded input (M (i)
j , G

(i)
j ) and will confidently be able to check the

validity of the VDF output VDF.Verify(M
(i)
j , yi, πj , ·) if G(i)

j ≥ 1.
To summarize, we employ Wesolowski’s VDF construction in the parallel

Mod-Gradecast protocol in Figure 1 to construct a verifiable graded consensus
(VGC) on random strings. To achieve security against the adaptive rushing ad-
versary, the delay required to evaluate the VDF should be twice the time required
to run Gradecast (in terms of the length of synchronous rounds).

Parameters and technical results. Each party Pi generates a random value
mi ∈ {0, 1}q(κ), for a polynomial q, such that an adversary can guess mi only
with negligible probability negl(κ). Then, each party shares mi via the Mod-
Gradecast protocol. After the end of Step 1 of Protocol 1, all honest parties
Pj are guaranteed to have obtained their own M

(j)
j = m

(j)
j := ∥i∈[n],gi,j≥1mi,j .

Note that the adversary can decide on its final local strings M (j)
j for all malicious

parties Pj from the first round of the gradecast in Step 1, since honest parties
will rely their messages from the beginning.

Let ∆G := (2g∗ + 1) · ∆r denote the duration of the gradecast protocol,
where ∆r is the duration of a round. The Parallel Mod-Gradecast Protocol 1 takes
double this amount, 2·∆G. We want to choose the time difficulty parameter such
that the adversary cannot finish evaluating the VDF before the end of the Mod-
Gradecast protocol. The adversary can do damage even in the last round of Mod-
Gradecast, i.e., change the values of the honest parties’ strings for a malicious
moderator. While a delay of exactly 2 · ∆G is sufficient to ensure Protocol 1
ends before the adversary can complete a VDF evaluation on values obtained in
round 1 of Protocol 1, because of slight speed-ups that the adversary’s machine
could have, we prefer to set the delay to take this speed-up in consideration.

Therefore, we set the puzzle difficulty parameter ∆VDF of the VDF to be
∆VDF = 2 · ∆G/(1 − ξ). Then, the VDF will be σ-sequential, for σ(∆VDF) =
(1− ξ) ·∆VDF = 2 ·∆G.

At the end of Step 1, each party computes VDF.EvalEK(H(m
(j)
j ), ∆VDF). Im-

portantly, security holds only when we do not use trapdoor-VDFs, otherwise
malicious parties would have an advantage in biasing the output.

We now instantiate the algorithms and protocols of VGC in Section 2.2. Gen
will be the transparent setup required for VDF, Toss will be the Mod-Gradecast
protocol with the computation of the local strings, Process will be the inherited
VDF.Eval on the hash of the output and Verify will be the inherited VDF.Verify.

We give the following results for an adaptive ∆VDF-limited adversary who
runs in at most (1− ξ) ·∆VDF = 2 ·∆G parallel time, and can adaptively corrupt
up to (1− ϵ)n parties. The proofs are provided in Appendix D.

Lemma 5. ΠVGC is σ-indistinguishable, for σ(∆VDF) = (1− ξ) ·∆VDF.

Lemma 6. ΠVGC achieves soundness and M-validity.
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ΠVGC(∆VDF, g
∗)

1. Gen(1κ,∆VDF): Each party Pi calls (EKi,VKi) ← VDF.Setup(1κ,∆VDF),
posts the keys on the bulletin-PKI and sets pp = (∆VDF,EKi,VKi, PKI).

2. Toss(pp): Each party Pi samples a random input seed mi, then calls the
Parallel Mod-Gradecast and sets as output (M (j)

i , G
(j)
i ) for each other

party Pj and M
(i)
i for itself.

3. Process(pp,M (i)
i ): Each party Pi evaluates its own random string as

(yi, πi) = VDF.EvalEKi(H(M
(i)
i ),∆VDF) (they can start computing this

value before the Parallel Mod-Gradecast terminated).
4. Verify(pp, x, y, π): On receiving (yj , πj) from Pj , party Pi outputs

VDF.VerifyVKj
(M

(j)
i , yj , πj ,∆VDF).

Fig. 2. Random strings generating protocol

Lemma 7. ΠVGC achieves termination and verifiability.

Communication and Round Complexity. Protocol ΠVGC takes 4g∗ + 2
rounds to complete Toss, but after 2g∗ + 1 rounds, (after parties obtain their
local values M (i)

i ), they start Process (evaluating the VDF) which takes ∆VDF =
(4g∗+2)/(1−ξ), for very small ξ > 0. This means that the total round complex-
ity for ΠVGC is slightly over 6g∗+3, i.e., 6g∗+3+O(1). The total communication
complexity is the same as for Protocol 1, O(g∗ · (ℓ+ κ) · n4).

4 Broadcast with ideal graded mining functionality

The goal of the verifiable graded consensus was to emulate a common random
string given by a trusted setup, which should aid an adaptively-secure com-
mittee election against a dishonest majority. The key difference from existing
approaches is that, since we do not really obtain the equivalent of a trusted
setup, the only guarantees that parties have are related to the grades of these
distributed random strings.

4.1 Overview

Let us review the Chan et al. broadcast protocol [9]. A party can check if it is in
the committee for the bit b via a mining functionality, which also allows all other
parties to verify the correctness of this statement. This mining functionality is
instantiated via a verifiable random function, allowing parties to secretly but
verifiably self-elect in a committee for a specific bit and only reveal their mem-
bership after they have performed their committee task, thus achieving security
against adaptive adversaries. The protocol is composed of stages, each stage r
having two rounds: distribution and voting. For a fixed number of rounds, each
party observing a batch of r valid signatures from the committee members of b
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echoes this batch to all parties (distribution round). A party that is in the com-
mittee adds its vote if it observes a batch of r votes on the bit b for the first time,
and multicasts the updated batch of r + 1 signatures (voting round). Chan et
al. show that is it possible to achieve consistency with overwhelming probability
even if the number of rounds is constant and the committee size is also constant,
if the corrupted fraction is constant.

In our case, the main difference with respect to the ideal mining function-
ality is that the verification performed by other parties on the membership of
one party will return a binary answer and a grade in {0, . . . , g∗}. The mining
functionality does not necessarily return the same grade to all parties, but the
returned grades to two honest parties can differ by at most one. Dishonest parties
might try to convince honest parties to accept their membership despite having
lower grades. To address this, we will modify the definition of valid batches of
signatures for given rounds and relate the grade with the round number.

Specifically, we set the maximum grade g∗ that can be returned by the min-
ing functionality to be equal to the number of rounds the Chan et al. protocol
requires. We also say that a batch of r signatures will be valid only if there are
r signatures from parties on which the verification call on the mining functional-
ity returns 1 and a sufficiently large grade, i.e., greater than g∗− 2r+1; we will
define this more formally below. (A symmetric way to view this is that at each
round ρ, the grades have to be at least g∗− ρ, but the number of signatures has
to be at least half of the round number.) This ensures that parties that have a
grade of 1 can only submit their signatures in the last possible round and parties
that have grade of 0 cannot submit their signatures at all.

Recall that the mining functionality does not necessarily return the same
grade to all parties, but they might differ by one. This means that an honest
party Pi might accept a batch with r signatures, i.e., all grades for the signers
that Pi received from the verify call to the mining functionality are at least
g∗ − 2r + 1, but another honest party Pj received from the verify call a lower
grade g∗−2r for one of the same signers. Therefore, in stage r, in the distribution
round 2r − 1, where parties just echo what they received, honest parties accept
r-batches with grade at least g∗−2r+1. At the end of voting round 2r however,
where committee parties multicast their votes after seeing a valid batch for that
round (with grades at least g∗ − 2r), committee parties are allowed to have a
lower grade of at least g∗ − 2r − 1, in order to be picked up in the distribution
round of stage r + 1.

Graded mining functionality. Define Fg∗

mine to be the idealized graded mining
functionality, parameterized by a probability pmine and a maximum grade g∗.
Parties can call Fg∗

mine to vote on b, Fg∗

mine.Mine(b), or to verify another vote on
b, Fg∗

mine.Verify(b, ·). Mine and Verify take as input the bit b in order to help elect
different committees for 0 and for 1. This ensures that an adaptive adversary
cannot corrupt a party after seeing its vote and force it to give a valid vote for
the other value.

Once Fg∗

mine was called by a party, it will always return the same output to
that party. The Fg∗

mine functionality is given in Figure 3.
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Functionality: Fg∗

mine

Fmine is parameterized by parties P1, . . . , Pn, “mining” probability pmine and
maximum grade g∗. Let s ∈ [n] and b ∈ {0, 1}. Let callb be vectors of n entries
initialized with −1.

On input (Mine, b) from party i:
– If callbi = −1 flip a coin with probability pmine and set callbi = 1 if the

output is 1, otherwise set callbi =⊥;
– Else output callbi .

On input (Verify, b, j) from party i output 1 and a grade G
(j)
i ∈ {0, . . . , g

∗}
if callbj = 1 and 0 otherwise.

Fig. 3. Mining functionality Fg∗

mine parameterized by a maximum grade g∗.

We select pmine depending on g∗ to be a constant-sized quantity such that
the following two rules hold. These rules correspond to (Lemmata 10 and 11)
for a specific selection of pmine in Section 5.
Rule 1. Honest Lower Bound: At least one honest party self-elects in a bit
committee with overwhelming probability in the security parameter.
Rule 2. Dishonest Upper Bound: Fewer than g∗/2 dishonest parties can self-
elect in a committee with probability overwhelming in the security parameter.

Each party Pi maintains a set Extractedi, initialized to the empty set. A
signature of party Pi on a bit b is denoted as sigi(b). A party Pi will add a bit b
to their Extractedi set if it receives a valid batch on b, as described below.

Valid batches. The protocol consists of stages, where each stage is composed of
two rounds. We denote the stage number by r for r ∈ {1, . . . , g∗/2}, round 1 of
stage r by 2r− 1, and round 2 of stage r by 2r. We prefer this notation because
we want to have sets of r signatures in every stage r. To address the difference
in grades in the two rounds, we will define (r, 1)-batches and (r, 2)-batches.

We say that a batch rb in stage r for a bit b is a valid (r, 1)-batch for party Pi

if: (i) there are at least r distinct signatures, (ii) one of the signatures is from Ps

and (iii) the rest of the signatures are valid signatures from parties Pj for which
Fg∗

mine.Verify(b, j) returns (1, G
(j)
i ) at stage r, where grade G

(j)
i ≥ g∗ − 2r + 1.

Similarly, a (r, 2)-batch is a valid batch with at least r distinct signatures coming
from parties in the b-committee, each with grade G

(j)
i ≥ g∗ − 2r.

If at any point, a valid batch has accumulated more than g∗/2 signatures,
parties only need to send g∗ of them. We assume implicitly that parties send at
most g∗ signatures in a batch rb, and always include the sender’s signature.

We describe the Broadcast protocol when given the idealized graded Fg∗

mine

functionality in Figure 4. It is clear that Protocol 4 has round complexity g∗,
where g∗ is the maximum grade returned by Fg∗

mine.
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Broadcast in the Fg∗

mine-hybrid world

Stage 0:

1. (Round 0) Each party Pi initializes Extractedi = ∅. The designated sender
Ps sends [bs, sigs(bs)] to all parties.

Stage r = 1 to g∗/2− 1:

1. (Round 2r − 1): Each party Pi accepts a message b /∈ Extractedi only if it
is accompanied by a valid (r, 1)-batch rb: Extractedi ← Extractedi ∪ {b}.
Pi then propagates (b, rb) to all parties.

2. (Round 2r): Each party Pi ̸= Ps checks all bits b that it received on whether
they are accompanied by a valid (r, 2)-batch. For each such b, Pi checks
whether it has called Fg∗

mine(b, i) before and calls it if not.
If Fg∗

mine(b, i) = 1, then Pi sets Extractedi ← Extractedi ∪ {b}, constructs a
(r + 1, 1)-batch rb′ := rb∥sigi(b) and sends (b, rb′) to all parties.

Stage r = g∗/2:

1. (Round g∗ − 1) Each party Pi accepts each message b /∈ Extractedi that is
accompanied by a valid (g∗/2, 1)-batch: Extractedi ← Extractedi ∪ {b}.
Pi then outputs either the message b′ ∈ Extractedi, if |Extractedi| = 1, or
a canonical message otherwise.

Fig. 4. Broadcast protocol in the Fg∗

mine-hybrid world for designated sender Ps and
parties P1, . . . , Pn, run for a fixed number g∗ of rounds.

We will prove that the protocol achieves validity and consistency in the Fg∗

mine-
hybrid world and under the rules on pmine.

Lemma 8. Protocol 4 achieves validity.

Proof. Ps at round 0 sends [bs, sigs(bs)] to all parties. Thus, by round 1, all
honest parties have a valid (1, 1)-batch for bs and add it to their extracted sets.
Since Ps is honest, the rest is derived from the security of the signature scheme:
no malicious party can inject another validly signed message, so honest parties
only see valid batches for the original message. ⊓⊔

Lemma 9. Protocol 4 achieves consistency.

Proof. Suppose that an honest party Pi adds message b to Extractedi at some
stage r. We shall prove that by the end of the protocol all honest parties add
b to their Extracted sets with overwhelming probability. Assume first that until
the last round, there are no more than g∗/2 signatures in a valid batch.

Case 1. Pi adds message b to Extractedi during the first round of stage
r < g∗/2: Then, b is accompanied by a valid (r, 1)-batch, say rb. So, for all
signatures sigk(b) ∈ rb it holds that G(k)

i ≥ g∗− 2r+1. Thus, during the second
round of stage r, all honest parties receive [b, rb]. Also, at least one honest party
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is in the b-committee with overwhelming probability by Rule 1. Such a party,
say Pj , adds b to its Extractedj set and adds its own signature to the batch,
creating a (r+1, 1)-batch rb′ (from M -Validity since Pj is honest, G(j)

k ≥ g∗−1,
for all other honest parties Pk). So, Pj sends (b, rb′) to all parties. Thus, during
the first round of stage r + 1, all honest parties observe a valid (r + 1, 1)-batch
for message b and add b to their Extracted sets.

Case 2. Pi adds message b to Extractedi during the second step of stage
r < g∗/2: Then, Pi is in the committee for b, meaning that Pi holds a valid
(r, 2)-batch and also adds their own signature to the batch, creating a valid
(r + 1, 1)-batch rb′ (from M -Validity for Pi). So, Pi sends (b, rb′) to all parties.
Thus, during the first round of stage r + 1, all honest parties observe a valid
(r + 1, 1)-batch for message b and add b to their Extracted sets.

Case 3. Pi adds message b to Extractedi during stage r = g∗/2: Then, Pi

holds a valid (g∗/2, 1)-batch, i.e. a batch rb of more than g∗/2 signatures from
parties Pj , where one of the signatures is from Ps and the rest of them have grade
G

(j)
i ≥ 1. However, by Rule 2, at least one of the signatures comes from another

honest party Pk, so every honest party received this valid (g∗/2, 1)-batch rb and
adds b to their Extracted set by this stage.

Now assume that at any point in the protocol, if the batch rb received already
contained g∗/2 valid signatures with grades G

(j)
k ≥ g∗ − 1. Since it is a valid

(r, 1)-batch, then it will also be a valid (r + 1, 1)-batch, and more specifically,
a valid (g∗/2, 1)-batch. With overwhelming probability, there cannot be g∗/2
malicious parties in the committee and there is at least an honest party in the
b-committee, so limiting the size of the transmitted batches to g∗/2 does not
impact consistency. ⊓⊔

5 Sublinear round Broadcast

We now describe the broadcast protocol where we replace the Fg∗

mine functionality
by cryptographic tools in the random oracle model. Specifically, we use:

1. A Verifiable Graded Consensus (VGC) for random strings satisfying the
properties in Definition 10;

2. An adaptively secure Verifiable Random Function (VRF) that achieves the
properties in Definition 4 even with maliciously generated keys;

3. A bound for the output of the VRFs such that the committees have at least
one honest party and fewer malicious parties than the number of rounds,
with overwhelming probability.

The VCG can be seen as an online setup phase that generates graded random
strings and proofs of the validity of these strings. The VRF and the bound
are used to verifiably and correctly elect bit-specific committees. This happens
thanks to the VCG outputs which help validate the committee membership.

Parameters. Concretely, we set the mining probability pmine to take the value
pmine = min{1, 1

ϵn log
(
2
δ

)
}, where ϵ is a constant in (0, 1) denoting the fraction
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of honest parties and δ is the failure probability δ which should be constant and
negligible in the security parameter κ, δ = exp(−ω(lnκ)). We set the maximum
grade and the number of rounds g∗ to be g∗ = 2 · ⌈2ϵ ln

(
2
δ

)
⌉ = O(κ/ϵ). Finally,

the bound for the VRF output check boundϵ,δ = pmine · 2
m(κ)

n , where the VRF
output length is m(κ).

Recall that we only assume a bulletin-PKI. Every party Pi has generated a
signing key pair (ski, pki), a VDF pair of keys (EKi,VKi) and a VRF pair of
keys (SKi,PKi). Before the beginning the protocol, every party Pi has posted on
the bulletin-board the public keys pki,EKi,VKi,PKi, such that all parties have
access to the bulletin-PKI. Moreover, each party has access to the values for the
rest of the network output by VGC, with their accompanying grades, and the
accompanying proofs for their own values.

The local string y obtained by a party for itself in VGC should be hashed
first to achieve randomness from unpredictability and unbiasedness. As long as
the output of VDF has length polynomial in the security parameter κ, then the
output of a hash function H modeled as a random oracle H(b||y) is random.

Mine. We instantiate the Mine call from Functionality 3 as follows. Let i, j ∈
[n] and b ∈ {0, 1}, SK a VRF secret key, s a VDF output and boundϵ,δ the
appropriate bound for the VRF. Let callb be two vectors of n entries initialized
with −1. Given (SK, b||s) from party i, a party checks if callbi = −1 and computes
(y, π) = VRF.ProveSK(H(b||s)). If y < boundϵ,δ, set callbi = 1, else callbi =⊥. The
output is given as callbi .

For our choice of parameters, the instantiation of Fmine.Mine and the gener-
ated bit-specific committees satisfy the following results. The proofs of Lemma 10
and of Lemma 11 are given in Appendix D.

Lemma 10 (Honest Lower Bound). For pmine = min
{
1, 1

ϵn log
(
2
δ

)}
, at

least one honest party self-elects in a committee for a bit b with overwhelming
probability δ/2 in the security parameter.

Lemma 11 (Dishonest Upper Bound). For pmine = min
{
1, 1

ϵn log
(
2
δ

)}
, at

most g∗/2 = ⌈ 2ϵ ·log
(
2
δ

)
⌉ dishonest parties can self-elect in a committee for a bit b

with overwhelming probability δ/2 in the security parameter, for any ϵ ∈ (0, 1).

We defined valid batches of signatures in Section 4. Here, parties (with the
exception of the sender) will also send proofs of their self-election in the com-
mittee for bit b. These proofs will be submitted and echoed by the parties in
certificates called cert.

Verify and valid certificates. The instantiation of the Verify call from Func-
tionality 3 is required when checking the certificates’ validity. A certificate cert
consists of tuples (yVDF

j , πVDF, Yj , πj) for every j-signature in batch. A certificate
cert is a valid certificate for an (r, ·)-batch batch if for all signatures sigj in batch
not coming from the sender, and the messages M (j) held at the verifying party,
it holds that:

- VRF.VerifyPKj
(H(b||yVDF

j ), Yj , πj) = 1 and
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- VDF.VerifyVKj
(M (j), yVDF

j , πVDF
j , ∆VDF) = 1.

The updated protocol that uses VDFs and VRFs to securely elect committees
is described in Figure 5. We first run ΠVGC. Parties need the random strings from
ΠVGC starting from round 1, since they are only used in proofs, not in the sender’s
initial transmission. Recall that ΠVGC takes 6g∗ + 3 +O(1) rounds.

We follow with the steps outlined in Protocol 4, but with the calls to Fg∗

mine

replaced with the real instantiations. As before, we implicitly assume that honest
parties only send at most g∗/2 values in batch, including the sender’s signature,
and the corresponding g∗/2− 1 values in cert.

Theorem 1. Consider a ∆VDF-limited adversary who can adaptively corrupt
(1−ϵ)n parties, for a constant ϵ ∈ (0, 1). Fix a small constant failure probability
δ ∈ (0, 1). Then, Protocol 5 is a Broadcast protocol with probability 1−δ−negl(κ).

Proof. We sketch the main ideas for showing that we have a secure instantiation
of Fg∗

mine with cryptographic primitives.
The VGC protocol achieves indistinguishability for a difficulty parameter of

∆VDF, M-Validity, soundness termination and verifiability: Lemmata 5, 6 and 7.
Therefore, we are guaranteed that by the start of Stage 1, each party Pi has
a random string yi that they will feed to the VRF and a corresponding proof
πi. Moreover, by the start of Stage 1, each party Pi also holds graded strings
(M

(j)
i , G

(j)
i ) for each other party Pj . Honest parties are certain that the grades for

the local strings they hold for the other parties differ by at most 1, and moreover,
the local strings with grades greater than 2 are the same among honest parties.
Then, given the string yVDF

j and the proof πVDF
j inside a vote in the certificate

certb, a honest party Pi can verify that this random string was correctly generated
by running VDF.VerifyVKj

(M
(j)
i , yVDF

j , πVDF
j , ∆VDF).

Furthermore, the VRF satisfies uniqueness, provability, pseudorandomness
and extended pseudorandomness. Therefore, if malicious parties do not com-
pute their VRF on the bit value concatenated with the random string, they
cannot produce a valid proof for membership in the bit-committee that will
be accepted by the honest parties. Specifically, given malicious strings Yj , y

VDF
j

and malicious proofs πj , π
VDF
j inside a vote in the certificate certb, a honest

party Pi will not consider certb as valid if VRF.VerifyPKj
(H(b||yVDF

j ), Yj) = 0 or

VDF.VerifyVKj
(M

(j)
i , yVDF

j , πVDF
j , ∆VDF) = 0.

The ∆VDF-indistinguishability of the VGC guarantees that malicious parties
cannot bias the output of the VDF while having grade greater than 0 in the
views of honest parties (see the proof of Lemma 5). As a result, to have its
vote taken into consideration, the adversary has to verifiably compute the VRF
by applying a hash function to the unbiased VDF output (with grade greater
than 1). Therefore, the adversary can validly self-elect with negligible probability.

Finally, since the described instantiation with the above properties enforces
the rules in Section 4, validity with probability 1−negl(κ) follows from Lemma 8
and consistency with probability 1− δ− negl(κ) follows from Lemma 9 that use
the committees’ properties from Lemmata 10 and 11. ⊓⊔

23



Broadcast

Rounds −6g∗ − 3−O(1) to 0:

1. Parties run ΠVGC. Each party Pi obtains the following quantities
M

(j)
i , G

(j)
i , for all j ∈ [n], as well as (yVDF

i , πVDF
i )← VDF.EvalEKi(M

(i)
i ).

Stage 0:

1. (Round 0) Each party Pi initializes Extractedi = ∅ and call0 = call1 =
[−1, . . . ,−1] vectors of length n.
The designated sender Ps sends [bs, sigs(bs),⊥] to all parties.

Stage r = 1 to g∗/2− 1:

1. (Round 2r − 1) Each party Pi accepts a message b /∈ Extractedi, i.e., sets
Extractedi ← Extractedi ∪ {b}, only if it is accompanied by some ballot
(batchb, certb), where batch batchb is a valid (r, 1)-batch and certificate
certb is a valid certificate for batchb.
Pi then propagates (b, batchb, certb) to all parties.

2. (Round 2r) Each party Pi ̸= Ps checks all bits b that it received on whether
they are accompanied by some ballot (batchb, certb), where batch batchb is
a valid (r, 2)-batch and certificate certb is a valid certificate for batchb.
For each such b, Pi checks whether callbi = −1 and if yes, it computes
(Yi, πi)← VRF.ProveSKi(H(b||yVDF

i )). If Yi ≤ boundϵ,δ, Pi does:
- sets callbi = 1;
- sets Extractedi ← Extractedi ∪ {b};
- constructs a (r + 1, 1)-batch batch′

b := batchb∥sigi(b), cert′b :=
certb∥(yVDF

i , πVDF
i , Yi, πi).

Else, Pi sets callbi =⊥.
Pi sends (b, batch′

b, cert′b) to all n parties.

Stage r = g∗/2:

1. (Round g∗ − 1) Each party Pi accepts each message b /∈ Extractedi, i.e.,
sets Extractedi ← Extractedi∪{b}, that is accompanied by a valid (g∗/2, 1)-
batch and a valid certificate for that batch.
Pi then outputs either the message b′ ∈ Extractedi, if |Extractedi| = 1, or
a canonical message otherwise.

Fig. 5. Updated Broadcast protocol for designated sender Ps and parties P1, . . . , Pn.

Communication and Round Complexity. The broadcast protocol has round
complexity O(g∗+RVGC) = O

(
1
ϵ log

(
1
δ

))
and communication complexity O(g∗ ·

κ · n2 + CCVGC) = O( 1ϵ log
(
1
δ

)
· κ · n4). For δ = exp(−ω(log κ)) negligible in

the security parameter, we obtain a round complexity of O(κ/ϵ) and a total
communication complexity of O(κ2 · n4/ϵ).
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6 Communication reduction for parallel gradecast

The communication of sharing and agreeing on random strings is the dominating
term in the Broadcast communication. To improve upon that, we leverage par-
allelization and randomization. We take inspiration from the recent work in [36]
and use gossiping to lower the communication cost by a factor of O(n/polylog(n)),
improving the communication of ΠVGC (and thus of Broadcast) to Õ(n3).

Tsimos et al. [36] formulates the notion of honest parties disseminating mes-
sages via gossiping in a communication-efficient way that is adaptively secure.
There, the messages are single bits and are defined per pairs of sender and signer,
meaning that the total number of valid messages is less than 2n2. This formu-
lation does not apply well to our moderated gradecast step, which works on
messages of size q(κ). In our case, in the moderated gradecast, the adversary
can provide as many valid different messages as it wants for pairs of dishon-
est sender and dishonest moderator, so dishonest moderators can send a large
number of messages from the same dishonest sender to the honest parties at
the beginning of the protocol. Calling the main dissemination protocol from Tsi-
mos et al. on that many messages could lead to Õ(n3 ·2q(κ)) communication. For
our protocol, in order to keep the communication low, we require honest parties
to propagate a constant number of messages per pair of sender and moderator,
while maintaining the required properties of gradecast.

To this end, we modify a different formulation from [36] to meet our needs,
which uses a function that takes a set and outputs only one message per each k-
bit prefix. In our case, we define the set to be dispersed to be the set of all possible
messages mj,s for each pair of sender Pj and moderator Ps. In this set, any two
pairs of two messages for the same j, s are considered the same. We want honest
parties to propagate at most two valid messages per each prefix that defines a
pair of sender and moderator, as well as for each prefix that defines a separate
sender during the initial gradecast, while maintaining the required properties of
gradecast. We call this type of protocol M-Converge∗ and formalize it below.

6.1 The M-Converge∗ Protocol

Definition 11 (couplesk function). For any set M , couplesk(M) is a subset
of M that contains for each distinct k-bit prefix at most two messages with
that prefix, i.e., if there are fewer than two message with k-bit prefix PR, then
couplesk(M) contains exactly those messages, and if there are more than two
messages with prefix PR, then couplesk(M) contains only two of them.

For example, for M = {00101, 01000, 01100, 11001, 11010, 11111} we have that
couples2(M) = {00101, 01000, 01100, 11001, 11111}, but since couplesk is an one-
to-many function, thus couples2(M) might also output {00101, 01000, 01100,
11010, 11111}. Now we present the M-Converge∗ problem and protocol.

Definition 12 (M-Converge∗ protocol). Let M ⊆ {0, 1}∗ be an efficiently
recognizable set (i.e. a set with efficient membership decidability). A protocol
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Π executed by n parties, where every honest party Pi initially holds input set
Mi ⊆M and a set Ci ⊆M, is a secure M-Converge∗ protocol if all remaining
honest parties upon termination, with probability 1− negl(κ), output a set Si ⊇
couplesk

(⋃
j∈H Mj −

⋃
j∈H Cj

)
, when at most t parties are corrupted and where

H is the set of honest parties in the beginning of the protocol.

Let pprop = (10/ϵ+κ)/n. We consider the ideal functionality Fprop from [36],
which allows for each party Pi to send a set of messages to an average number
of n · pprop randomly chosen parties out of a set of n parties, while achieving the
property that the adversary does not gain information on which honest parties
received the message. This functionality is the building block behind gossiping
against an adaptive adversary; it is called by ourM-Converge∗ protocol in every
of its rounds by all honest parties with input (SendRandom,Mi). The adversary
can also call it with input (SendDirect,x, J), to send messages in x to parties Pj ,
for j ∈ J . A formal description and a secure instantiation of Fprop is provided
for completeness in Appendix E.

M-Converge∗
i(Mi, Ci, k)

For round 1 to ⌈log(ϵ · n)⌉:

- ReceiveFprop ← Fprop(SendRandom, couplesk(Mi − Ci));
- Locali ← Locali ∪ReceiveFprop ;
- Ci = Ci ∪Mi;
- Mi = Locali ∩M;

return Mi;

Fig. 6. The M-Converge∗i protocol. It uses a logarithmic number of rounds, each of
which utilizes gossiping (via the call to Fprop) to securely and efficiently disseminate a
list of messages between parties.

We present protocol M-Converge∗ in Figure 6 and we prove its properties
in Lemma 12. The proof is given in Appendix D.

Lemma 12. Let κ > 0. Protocol M-Converge∗ from Figure 6 is an adaptively
secureM-Converge∗ protocol for all t ≤ (1− ϵ) ·n and fixed ϵ ∈ (0, 1). The total
number of bits sent by all parties is O(n log(ϵn) ·max{n, |couplesk(M)|} ·m · s).

6.2 Gradecast using M-Converge∗

We propose a new protocol for parallel gradecast with one instance per pair of
(j ∈ senders, k ∈ casts). Each party Pj , for j ∈ senders is expected to grade-
cast |casts| many messages. The trivial (and less efficient) way to do so would
be for each such party Pj to call Gradecast(mj

k), for each k ∈ casts. Instead,
by calling M-Converge∗, all Pj ’s can gradecast simultaneously all their |casts|
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many messages, while using less communication, with a small additional cost of
multiplicative O(log ϵn) rounds.

Parallel Vector Gradecast is a secure gradecast protocol, for each separate
value each sender sends. We prove the next Lemma in Appendix D.

Lemma 13. Protocol Parallel Vector Gradecast(·,·)i (·, g∗) is a g∗-gradecast proto-
col with round complexity 2g∗ ·⌈log(ϵn)⌉+1. The total communication complexity
for all parties is O(n log ϵn · g∗ ·max{n, |senders| · |casts|} ·m · s).

Parallel Vector Gradecast(senders,casts)
i (Mi, g

∗)

Round 1:

1. Each party Pi initializes Si
(j,k) := ∅, mi

(j,k) =⊥, ḡi(j,k) = 0, for all j ∈
senders, k ∈ casts.

2. If i ∈ senders, then Pi computes a signature σk = sigi(mk ∈Mi), for each
k ∈ casts and multicasts (mk, σk) to all parties.

Round 2 to 2g∗ + 1 from the perspective of party Pi:

1. Let M contain m′
(j,k) from each pair (m′

(j,k), σ
′
(j,k)) received by the end of

the previous round, where vers(σ
′
(j,k),m

′
(j,k)) = 1 and m′

(j,k) /∈ Si
(j,k). Then

for m′
(j,k) ∈M set Si

(j,k) := Si∪{m′
(j,k)}. If |Si

(j,k)| = 1, set mi
(j,k) = m′

(j,k).
2. Call and receive messages from M-Converge∗(M, ∅, ksc), where ksc is the

bit-length needed to express the prefix for every pair of (j ∈ senders, k ∈
casts).

3. If mi
(j,k) ̸=⊥ and |Si

(j,k)| = 1, then set ḡi(j,k) := ḡi(j,k) + 1.

Output determination: Each party Pi sets gi(j,k) := ⌊ḡi(j,k)/2⌋ and outputs
(mi

(j,k), g
i
(j,k)).

Fig. 7. Gradecast protocol with maximum grade g∗ using gossiping.

6.3 Moderated Gradecast with cubic communication

Consider our previous Protocol 1 for Parallel Mod-Gradecast. Let each party Pi

call Parallel Vector Gradecast([n],n−1)
i ({m(s)

i }s∈[n]−{i}, g
∗) from Figure 7 during

Step 2.2, instead of Gradecast to propagate its n− 1 received values. This allows
parties to moderate the n random strings they each received during Step 1
with Õ(g∗ · (ℓ + κ)κ · n3) total communication, while adding a multiplicative
factor of ⌈log ϵn⌉ to the round complexity of the moderated step. Similarly, the
updated Π ′

VGC protocol that now calls the updated Mod-Gradecast has the same
communication and round complexity as the updated Mod-Gradecast.
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The updated moderated gradecast has duration ∆′
G := (2g∗ · ⌈log(ϵn)⌉+1) ·

∆r. We need to update the difficulty parameter to account for the increased
number of rounds: ∆′

VDF = (∆G +∆′
G)/(1− ξ).

Communication and Round Complexity. The broadcast protocol that calls
Π ′

VGC has round complexity O(g∗ + RVGC′) = O
(
1
ϵ log

(
1
δ

)
⌈log(ϵn)⌉

)
and com-

munication complexity O(g∗ · κ · n2 + CCVGC′) = O( 1ϵ log
(
1
δ

)
· κ2 · n3). For

δ = exp(−ω(log κ)), we obtain a round complexity of Õ(κ/ϵ) and a total com-
munication complexity of Õ(κ2 · n3/ϵ).

7 Amortization

Notice that in Protocol 5, we use the online setup, ΠVGC, for a single run of
Broadcast. However, we can bootstrap the randomness created by ΠVGC to ob-
tain VRF seeds that are still unpredictable and verifiable for multiple Broadcast
instances. This allows us to amortize the communication cost of Broadcast over
multiple instances.

Concretely, instead of feeding (b||yVDF
i ) in broadcast instance brid to the VRF,

Pi we can instead feed (b||H(yVDF
i ||brid)), which is also guaranteed to be random,

as long as yVDF
i has length polynomial in the security parameter κ. Therefore,

the adversary can not predict the committee membership for Broadcast instance
brid

′ even after seeing the committee membership for all Broadcast instances
brid < brid

′. Since the Broadcast executions are independent with the exception
of yVDF

i , their composition is secure.
The Fg∗

mine functionality instantiation changes accordingly to compute (y, π) =
VRF.ProveSK(H(b||y||brid)) in Mine and VRF.VerifyPKj

(H(b||yVDF
j ||brid), Yj , πj) in

Verify. Define ΠBC to be the subprotocol run between stages 0 and g∗/2 in the
Broadcast protocol from Figure 5, with the new instantiation of the Mine and
Verify calls. Then, multiple secure Broadcast instances are obtained by running
the ΠVGC protocol (with any given instantiation) and then run ΠBC(brid), for
brid = 1, . . . , brmax.

Theorem 2. We obtain Broadcast protocols secure against an adaptive dishon-
est majority of t ≤ (1− ϵ)n with overwhelming probability in the security param-
eter κ with the amortized cost of:

1. Õ(κ) rounds and Õ(n2) communication complexity over n instances;
2. O(κ) rounds and Õ(n2) communication complexity over n2 instances;
3. Õ(κ) rounds and Õ(n) communication complexity over n2 instances.

Proof. For 1, we use one instance of ΠVGC to “generate” random strings for
brid ∈ {1, . . . , n}. Using the protocol ΠVGC where we instantiate the parallel
Gradecast via Protocol 7, and brid ∈ {1, . . . , n}, yields an amortized communica-
tion complexity of Broadcast of Õ(n2), and still Õ(κ) round complexity.

For 2, using the online setup ΠVGC without gossiping (using the Gradecast
from Appendix B) and brid ∈ {1, . . . , n2} yields an amortized communication
complexity of Broadcast of Õ(n2), and O(κ) round complexity.
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For 3, we amortize the communication cost of parallel broadcast using the
techniques of Tsimos et al. [36], who show how to achieve parallel broadcast
with trusted setup based on the broadcast protocol of Chan et al. [9] that has
a total communication of Õ(n2) and Õ(κ) rounds. Specifically, if we use the
ΠVGC protocol with communication cost Õ(n3) to bootstrap randomness for n2

broadcast instances, and we run sequentially n parallel broadcast instances where
we apply the gossiping techniques in Tsimos et al. on Protocol 5, we obtain an
amortized cost of Õ(n) per broadcast instance, with Õ(κ) round complexity and
without trusted setup. Note that there is no “gossiping composition” since it is
applied separately for the VGC and the Broadcast.
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A More preliminaries

Verifiable Random Functions. The extended pseudorandomness game works
as follows. The adversary generates the key pair and an input, but a challenger
samples a random string that should be concatenated with the input and a
random input. The adversary will generate VRF outputs and proofs for the con-
catenated input and random string and for the random input. A distinguisher
is given the secret key, the input chosen by the adversary (but not the ran-
dom strings of the challenger) and the two outputs, and should not be able to
distinguish between the last two.

Definition 13. The VRF properties are:

(Uniqueness) No values (PK, x, y1, y2, π1, π2) can satisfy both predicates
VRF.VerifyPK(x, y1, π1) = 1 and VRF.VerifyPK(x, y2, π2) = 1 if y1 ̸= y2 with
more than negligible probability .
(Provability) If (y, π) = VRF.ProveSK(x) and VRF.ValidatePK(1

κ) = 1, then
VRF.VerifyPK(x, y, π) = 1.
(Pseudorandomness) For any probabilistic polynomial time algorithms A =
(A1,A2) who has not yet called the oracle on x, it holds that:

Pr

AVRF.Prove(·)
2 (yb, st) = b :

(PK,SK)← VRF.Gen(1κ)

(x, st)← AVRF.Prove(·)
1 (PK, l(κ))

y0 ← FSK(x), y1 ← {0, 1}m(κ)

b← {0, 1}

 ≤ negl(κ) +
1

2
.

(Extended pseudorandomness) For any probabilistic polynomial time algo-
rithms A = (A0,A1,A2) and B who has not yet called the oracle on x||u, it
holds that:

Pr


BSK,x(yb, st0, st1) = b :

(PK,SK, st0)← A0(1
κ)

(x, st1)← AVRF.Prove(·)
1 (PK, l(κ)− n(κ))

If
VRF.ValidatePK(1

κ) = 1
x′ ∈ {0, 1}l(κ)−n(κ) ,

u
$← {0, 1}n(κ)

z
$← {0, 1}l(κ)

(y0, π0, y1, π1)← ASK
2 (x||u, z)

If VRF.VerifyPK(x
′||u, y0, π0) = 1

VRF.VerifyPK(z, y1, π1) = 1
, b← {0, 1}


≤ negl(κ) +

1

2
.

Verifiable Graded Randomness. Recall from the σ-sequentiality definition
that the adversary cannot run in more time than σ(∆).

Definition 14. [∆-Indistinguishability Game] An adversary A := (A0,A1) and
a challeger C play the following game with security parameter κ and time ∆:

1. C sends to the adversary ∆.
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2. A selects the parties it wants to corrupt and sends their identities to C.
3. C computes pp ← Gen(1κ, ∆) and sets the key pairs for the honest parties

and sends them to A.
4. A chooses the public keys for the corrupted parties and sends them to C.
5. C discards the parties whose public keys are not consistent with ∆.
6. C and A execute the protocol AToss(pp)

0 ; A can corrupt additional parties.
7. The protocol ends when all remaining honest parties Pi ∈ Honest have gen-

erated output (M (j)
i , G

(j)
i ). Denote by st the state of A obtained so far.

8. For each j, A computes y
(j)
A ← AProcess(pp,·)

1 (pp, st).

The adversary A wins the game if for at least one index j, y
(j)
A = y(j) for

(y(j), π)← Process(pp,M (j)
i ) for G

(j)
i ≥ 1 for any honest party Pi ∈ Honest.

B Gradecast

Gradecast(m, g∗)

Round 1:

1. Each party Pi initializes Si := ∅, mi =⊥, ḡi = 0.
2. The sender Ps computes a signature σ = sigs(m) and multicasts (m,σ) to

all parties.

Round 2 to 2g∗ + 1 from the perspective of party Pi:

1. For each pair (m′, σ′) received by the end of the previous round, if
vers(σ

′,m′) = 1 and m′ /∈ Si, then:
- Set Si := Si ∪ {m′}. If |Si| = 1, set mi = m′.
- Multicast (m′, σ′).
- If multicasted two pairs, stop multicasting this round.

2. If mi ̸=⊥ and |Si| = 1, then set ḡi := ḡi + 1.

Output determination: Each party Pi sets gi := ⌊ḡi/2⌋ and outputs (mi, gi).

Fig. 8. Gradecast protocol with maximum grade g∗.

Lemma 14. Protocol 8 is a g∗-gradecast protocol with round complexity 2g∗+1
and communication complexity O(g∗ · (κ+ ℓ) · n2) for messages of length ℓ.

Proof. The round complexity is by construction. The termination, validity and
soundness are proved in [19]. Note that the third condition in round r ≥ 1 Step
1, which limits honest parties to only multicast two valid tuples per round does
not change the proof, since any conflicting set of tuples stops the grade increase,
and honest parties can receive conflicting values at most a round apart. However,
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this extra condition ensures that the total communication per round can be at
most O((ℓ + κ) · n2) per round. Hence, the total communication complexity of
gradecast is O(g∗ · (κ+ ℓ) · n2).

C Inequalities

Lemma 15 (Chernoff’s inequality). Let X1, X2, . . . , Xn be independent ran-
dom binary variables such that, for 1 ≤ i ≤ n, P[Xi = 1] =: pi. Then, for
X :=

∑n
i=1 Xi and µ := E[X] =

∑n
i=1 pi:

P[X ≥ (1 + ζ)µ] ≤ e−
ζ2µ
ζ+2 , 0 ≤ ζ. (1)

Lemma 16 (Bernoulli’s inequality). For every x ∈ R and any positive ex-
ponent r > 0, it holds that:

(1 + x)r ≤ exp(xr). (2)

D Postponed proofs

Proof of Lemma 1. The proof follows from the properties of the evaluation
function of Wesolowski’s VDF and their proof of Proposition 1.

Since HG is a random oracle, HG(x1||x2) is random, and for large enough
polynomial n(κ), unpredictable by the adversary, despite its choice of x1. The
challenger C instructions in the construction from Proposition 1 only differ in
the check it performs to abort. In particular, instead of aborting if x $← {0, 1}l(κ)

is already queried by the oracle HG, C now aborts if x1∥x2 : x1
$← {0, 1}l(κ) is

already queried by the oracle. This still occurs with probability at most q/2−κ,
where q = O(poly(∆,κ)), so the rest follows. ⊓⊔

Proof of Observation 1. We have the following cases:
Case 1. a1 ≤ g − b1 and a2 ≤ g − b2. Then |G1 −G2| = |a1 − a2| ≤ 1.
Case 2. g− b1 ≤ a1 and g− b2 ≤ a2. Then |G1 −G2| = |g− b1 − (g− b2)| =

|b2 − b1| ≤ 1.
Case 3. g−b1 ≤ a1 and a2 ≤ g−b2. Then |G1−G2| = |g−b1−a2|. Notice that

a2+b2 ≤ g ≤ a1+b1, so b2−b1 ≤ g−b1−a2 ≤ a1−a2. Both the lower and upper
bound can take values in [−1, 1], which constrains |G1−G2| = |g− b1− a2| ≤ 1.

Case 4. a1 ≤ g − b1 and g − b2 ≤ a2. This mirrors case 3. ⊓⊔

Proof of Lemma 5. Recall the ∆-indistinguishability game in Definition 14.
The adversary A receives ∆VDF and the public keys of the honest users from
the challenger C, and sets the public keys of the currently corrupted partiesM.
Every time the adversary corrupts a new party, it will add its identity to M,
but cannot change the public keys. For each j ∈ M, EKj and VKj are checked
by the challenger to be valid (possible because the VDF used has a transparent
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setup). The adversary can start evaluating VDFEKj
on any string it wishes for

any j.
The challenger and adversary start executing Toss. The challenger selects

the input seeds mi ∈ {0, 1}q(κ) for every Pi ∈ [n] \ M and sends them to the
adversary in the first round of Gradecast. The event that the adversary guesses
the input seed mi of an honest party before seeing it in round 1 has probability
negl(κ). A union bound over all such events still yields a negligible probability
p0 = negl(κ). Therefore, any VDF evaluation the adversary has computed so far
is independent of the strings mi.

The adversary can start evaluating VDF.Eval on any combination of strings
mi of the honest parties and any other strings. By the fact that the VDF is
σ-sequential, the adversary will obtain the evaluations only after Toss has com-
pleted, since the duration of Toss is less than ∆VDF.

The adversary participates in the Gradecast instances in Step 1 and Step 2
of Protocol 1 with whatever behavior A0 it chooses. In Step 3 of Protocol 1,
the remaining honest parties Pi (at least ϵn), set for every j ∈ [n] the output
(M

(j)
i , G

(j)
i ). The adversary also chooses output values (M (j)

j ) for Pj ∈M, based
on all values it has seen so far and all computations done so far and starts Process
using behavior A1 to obtain y

(j)
A .

By the fact that A is σ(∆VDF)-parallel time limited and the VDF is σ-
sequential, it holds from Lemma 1 that for any value M

(j)
j obtained after the

start of Toss as a function of the remaining honest parties, the advantage of the
adversary of guessing y(j) = VDF.Eval(pp,M (j)

j ) is p1 = negl(κ).

We now show that each value M
(j)
j for which A could have guessed y(j) has

to have grade G
(j)
i = 0 by all other honest parties. To see that, recall that the

final grade for a party Pj is set by party Pi as G(j)
i = mink∈[n]{G

(j)
k,i}. To obtain

a biased output yVDF
j , by the ∆VDF-sequentiality of the VDF, the adversary must

have computed it on values not depending on the honest parties’ random seeds.
This guarantees that at least for one index k corresponding to an honest party
Pk, Pi has not observed m

(j)
k,i = mk,i and since gk,i = g∗, by validity of Gradecast,

the rule from Step 3 in Protocol 1 specifies that G
(j)
k,i = 0 = G

(j)
i .

Therefore, the advantage of the adversary A in winning the ∆VDF-indistin-
guishability game is at most p0 + p1 = negl(κ), so VGC is σ∆-indistinguishable
cf. Definition 5. ⊓⊔

Proof of Lemma 6. The soundness and M-validity follow immediately from
the soundness and M-validity of Mod-Gradecast (Lemmata 3 and 2), and from
Lemma 4. ⊓⊔

Proof of Lemma 7. The termination of Toss is inherited by the termination
of Mod-Gradecast, and termination of Process is guaranteed by the property of
VDF.Eval that an output is generated after time ∆VDF. Verifiability is inherited
from the soundness of the VDF. ⊓⊔
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Proof of Lemma 10. There are at least ϵn parties that are forever honest
by assumption. Let X denote the number of honest parties managing to elect
themselves in a committee for a given by b. The expected value of X is:

E[X] = ϵn · pmine = ϵn ·min

{
1,

1

ϵn
log

(
2

δ

)}
=

{
ϵn if log

(
2
δ

)
≥ ϵn

log
(
2
δ

)
if log

(
2
δ

)
< ϵn

.

The first case corresponds to all honest parties always getting elected with
pmine = 1. In the second case, the probability that no honest party can ever
self-elect is given by:

P[X = 0] ≤ (1− pmine)
ϵn ≤ exp(−ϵnpmine) = exp(log(2/δ)) = δ/2.

The second inequality holds by Bernoulli’s inequality (see (2) in Appendix C).
Then, the statement in the Lemma, P[X ≥ 1] ≥ 1 − δ/2 holds because δ is

negligible in the security parameter. ⊓⊔

Proof of Lemma 11. There are at most (1−ϵ)n parties that can be corrupted at
any time by assumption. Let X denote the number of dishonest parties managing
to elect themselves in a committee for a given by b. Even if nodes are corrupted
adaptively, the election probability does not change. The expected value of X
is:

E[X] = (1− ϵ)n · pmine = ϵn ·min

{
1,

1

ϵn
log

(
2

δ

)}
=

{
ϵn if log

(
2
δ

)
> ϵn

1−ϵ
ϵ log

(
2
δ

)
if log

(
2
δ

)
≤ ϵn

.

The first case corresponds to all parties always getting elected with pmine = 1,
but which also means g∗/2 > 2n, which is a case we are not interested in, since
we want g∗ to be sublinear.

Therefore we focus on the second case. For simplicity, set R := g∗/2. We
want to use Chernoff’s inequality (see (1) in Appendix C). Therefore, setting
R = (1 + ζ) · E[X] yields ζ = R/E[X]− 1.

The probability that more than R dishonest parties can ever self-elect is given
by:

P[(1 + ζ) · E[X]] ≤ exp

(
−ζ2 · E[X]

2 + ζ

)
= exp

(
− ζ2

2 + ζ
· 1− ϵ

ϵ
· log

(
2

δ

))
∗
≤ exp ≤ (− log

(
2

δ

)
≤) = δ/2,

where ∗ holds if
ζ2

2 + ζ
· 1− ϵ

ϵ
≥ 1. (3)
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We want to find ζ that satisfies (3) for any value of ϵ ∈ (0, 1) and from it find
the minimum R for which P[X ≥ R] ≤ δ/2.

The roots of (3) are ϵ−
√
8ϵ−7ϵ2

2(1−ϵ) and ϵ+
√
8ϵ−7ϵ2

2(1−ϵ) and inequality holds outside
of the roots. To account for any value of ϵ ∈ (0, 1), we choose to set

R ≥

(
1 +

ϵ+
√
8ϵ− 7ϵ2

2(1− ϵ)

)
· E[X] =

2− ϵ+
√
8ϵ− 7ϵ2

2(1− ϵ)
· 1− ϵ

ϵ
· log

(
2

δ

)
=

2− ϵ+
√
8ϵ− 7ϵ2

2ϵ
· log

(
2

δ

)
≤ 3.1

2ϵ
· log

(
2

δ

)
.

For a slightly simpler expression, we set R := ⌈ 2ϵ · log
(
2
δ

)
⌉, obtaining the g∗/2

value in the statement.
The value we obtain for g∗/2 is slightly tighter than the one in Chan et al.

because we use the tighter version of the Chernoff inequality. ⊓⊔

Proof of Lemma 12. The proof can be adapted from the proof of Theo-
rem 2 in [36]. Each honest party always calls couplesk before sending. The use
of couplesk for the input sets means that each party at any point can input at
most the set couplesk(M). Thus, the number of bits sent by one party is, with
probability 1− negl(κ):

⌈log ϵn⌉∑
i=1

O
(
m · (n+ |couplesk(M)|) · s

)
=

O(m · n log(ϵ · n) ·max{n, |couplesk(M)|} · s). ⊓⊔

Proof of Lemma 13. We prove validity and consistency separately.
Validity: Let an honest sender Ps with some value m∗

(s,k) for k ∈ casts and let Pi

be any honest party (still honest by the end of the protocol). In the first round,
all parties receive (m∗

(s,k), σ
∗
(s,k)). The adversary is unable to forge signatures of

honest parties, thus honest party Pi holds |Si
(s,k)| = 1 and mi

(s,k) = m∗
(s,k) at

all times throughout the protocol. Therefore, at the end of the protocol it is
gi(s,k) = 2g∗ and Pi outputs (m∗

(s,k), g
∗).

Consistency: Assume an honest party Pi for some (s ∈ senders, k ∈ casts)
with output grade gi(s,k) ≥ 1. This means that ḡi(s,k) ≥ 2gi(s,k) at the end of the
protocol. Assume that some round r is the round during which Pi adds message
mi

(s,k) in Si
(s,k). Then, it holds that if some honest party Pj gets (mj

(s,k), σ
j
(s,k)),

mj
(s,k) ̸= mi

(s,k) in round r′ with valid signature σj
(s,k), then r′ > r + 2gi(s,k) − 3.

Assume that it doesn’t hold, then r′s ≤ r + 2gi(s,k) − 3. Pj is honest, thus
it calls M-Converge∗(Mj , ∅, ·) during round r′ + 1, with mj

(s,k) ∈ Mj . From
Lemma 12, by the end of round r′+1 all honest parties have received two distinct
messages for (s, k), either exactly mi

(s,k),m
j
(s,k), if no other valid messages are

propagated from adversarial sender s for its k-th cast, or any two valid messages
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else. Thus, by the end of Step 1. of round r′+2, it holds that |Si
(s,k)| ≥ 2 and thus

ḡi(s,k) ≤ r′ +2− r ≤ 2gi(s,k)− 1, which is a contradiction. So, r′ > r+2gi(s,k)− 3.
Pi, therefore calls M-Converge∗(Mi, ∅, ·) during round r, with mi

(s,k) ∈ Mi.
Thus, by the end of round r all honest parties receive at least one message. If
some honest party does not receive mi

(s,k) by the end of round r, then from how
M-Converge∗ works, each honest party received at least two distinct messages
for (s, k). Then, by the previous claim, 2gi(s,k) < 3, i.e. gi(s,k) ≤ 1 and thus from
the assumption: gi(s,k) = 1. At the same time, from the previous claim, no honest
party Pj receives mj

(s,k) ̸= mi
(s,k) before round r − 1. Since by the end of round

r it is |Sj
(s,k)| ≥ 2, then ḡj(s,k) ≤ 2, i.e. gj(s,k) ≤ 1.

Else, if all honest parties receive mi
(s,k) by the end of round r, then let us

consider the value of ḡj(s,k) at the end of the protocol:

- If gi(s,k) ≥ 2, then ḡj(s,k) > (r + 2gi(s,k) − 3)− r ≥ (r + 2gi(s,k) − 3)− r + 1 =

2gi(s,k) − 2. Thus, Pj outputs mi with grade gj(s,k) > gi(s,k) − 1.
- If gi(s,k) = 1, then from the previous claim, no honest party Pj receives
mj

(s,k) ̸= mi
(s,k) before round r − 1. Since by the end of round r Pj receives

mi
(s,k) (it is mi

(s,k) ∈ |S
j
(s,k)| by round r + 1), then either gj(s,k) = 0 or

mj
(s,k) = mi

(s,k).

The total number of rounds for our protocol is 1 (for Round 1) +2g∗(Rounds
2 to 2g∗ + 1), where for each of the latter 2g∗ rounds, a call to M-Converge∗

is made, adding ⌈log ϵn⌉ additional rounds in each, leading to the stated total
number of rounds.

The total communication complexity is

O(g∗ · n log ϵn ·max{n, |couplesksc
(M)|} ·m · s) ,

where M is the set containing all valid messages from pairs of (senders, casts).
Since, ksc is the prefix size defined exactly to differentiate between messages of
different (j ∈ senders, k ∈ casts), it holds that |couplesksc

(M)| = 2|senders| ·
|casts| and the proof follows. ⊓⊔

E Secure instantiation of M-Converge∗

The protocol M-Converge∗ was introduced in Section 6 in the Fprop-hybrid
world, for Fprop defined in Functionality 9. We instantiate M-Converge∗ via
the protocol Propagate, presented in Figure 10 as it appears in [36].

The instantiation requires a one-time use of a CPA-secure public key encryp-
tion scheme, defined next.

Definition 15 (PKE). A public key encryption (PKE) scheme is a 3-tuple of
ppt algorithms (KeyGen,Enc,Dec) such that:
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- KeyGen takes as input the security parameter κ and outputs a pair of keys
(pk, sk), where pk is referred to as the public key and sk as the private key.

- Enc takes as input a public key pk and a message m and outputs a ciphertext
c, denoted as c← Enc(pk,m).

- Dec takes as input a private key sk and a ciphertext c and outputs a mes-
sage m or a special symbol ⊥ denoting failure to decrypt. We denote m :=
Dec(sk, c). The decryption algorithm is deterministic.

Propagate is a secure instantiation of Fprop, assuming a CPA-secure public
key encryption scheme and erasures, cf. Lemma 8 in [36].

Functionality: Fprop

Let pprop = (10/ϵ+ κ)/n. For every party i ∈ [n], Fprop keeps a set Oi which is
initialized to ∅. Let Mi be party i’s input messages’ set.

On input (SendRandom,Mi) by honest party i:
– For all x ∈ Mi and for all j ∈ [n] add (i, x) to Oj with probability

pprop;
– return Mi to adversary A;
– return Oi to party i.

On input (SendDirect,x, J) by adversary A (for a corrupted party i):
– Add (i, x[j]) to Oj for all j ∈ J ;
– return Oi to adversary A.

Fig. 9. Functionality Fprop for parties P1, . . . , Pn.
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Propagate(SendRandom,Mi)

Let Λi = 2m
⌈

|Mi|
n

⌉
, Oi = ∅ and for all j ∈ [n] let Lj = ∅.

1. Pi samples a new pair of keys: (pkprop
i , skprop

i )← KeyGen(1κ).
2. Pi posts pkprop

i on the bulletin-PKI and reads the public keys of the other
n parties.

3. For all x ∈Mi and for all j ∈ [n] add x to list Lj with probability m/n.
4. For all j ∈ [n]:

- Pad list Lj to maximum size Λi;
- ctj ← Enc(pkprop

j ,Lj);
- Erase Lj from memory;

5. For all j ∈ [n] send (ctj , j) to Pj .
6. Receive messages, say set C.
7. For all ct ∈ C decrypt ct using skprop

i and output a list L and add L to Oi.
8. Erase skprop

i from memory.
9. return Oi.

Fig. 10. An instantiation of Fprop
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