
AIM: Symmetric Primitive for Shorter Signatures with Stronger Security ∗

Seongkwang Kim1†, Jincheol Ha2†, Mincheol Son2, Byeonghak Lee2, Dukjae Moon1, Joohee Lee3

Sangyup Lee1, Jihoon Kwon1, Jihoon Cho1, Hyojin Yoon1, Jooyoung Lee2

1Samsung SDS 2KAIST 3Sungshin Women’s University
1{sk39.kim, dukjae.moon, sangyub0.lee, jihoon.kwon, jihoon1.cho, hj1230.yoon}@samsung.com

2{smilecjf, encrypted.def, lbh0307, hicalf}@kaist.ac.kr
3jooheelee@sungshin.ac.kr

Abstract

Post-quantum signature schemes based on the MPC-in-the-
Head (MPCitH) paradigm are recently attracting significant at-
tention as their security solely depends on the one-wayness of
the underlying primitive, providing diversity for the hardness
assumption in post-quantum cryptography. Recent MPCitH-
friendly ciphers have been designed using simple algebraic
S-boxes operating on a large field in order to improve the
performance of the resulting signature schemes. Due to their
simple algebraic structures, their algebraic immunity should
be comprehensively studied.

In this paper, we refine algebraic cryptanalysis of power
mapping based S-boxes over binary extension fields, and cryp-
tographic primitives based on such S-boxes. In particular, for
the Gröbner basis attack over F2, we experimentally show that
the exact number of Boolean quadratic equations obtained
from the underlying S-boxes is critical to correctly estimate
the theoretic complexity based on the degree of regularity.
Similarly, it turns out that the XL attack might be faster when
all possible quadratic equations are found and used from the
S-boxes. This refined cryptanalysis leads to more precise esti-
mation on the algebraic immunity of cryptographic primitives
based on algebraic S-boxes.

Considering the refined algebraic cryptanalysis, we propose
a new one-way function, dubbed AIM, as an MPCitH-friendly
symmetric primitive with high resistance to algebraic attacks.
The security of AIM is comprehensively analyzed with re-
spect to algebraic, statistical, quantum, and generic attacks.
AIM is combined with the BN++ proof system, yielding a
new signature scheme, dubbed AIMer. Our implementation
shows that AIMer significantly outperforms existing signature
schemes based on symmetric primitives in terms of signature
size and signing time.

∗This work is to be submitted to Korean Post-Quantum Cryptography
Contest (https://kpqc.or.kr).

†The first two authors have contributed equally to this work.

1 Introduction

With a substantial amount of research on quantum com-
puters in recent years, the security threats posed by quan-
tum computers are rapidly becoming a reality. Cryptogra-
phy is considered particularly risky in the quantum com-
puting environment since the security of most widely used
public key schemes relies on the hardness of factoring
or discrete logarithm, which is solved in polynomial time
with a quantum computer [66]. This encourages the cryp-
tographic community to investigate post-quantum crypto-
graphic schemes which are resilient to quantum attacks. NIST
initiated a competition for post-quantum cryptography (PQC)
standardization, and recently announced its selected algo-
rithms: CRYSTALS-Kyber [64] as a public key encryption
scheme, and CRYSTALS-Dilithium [59], Falcon [61], and
SPHINCS+ [44] as digital signature schemes.

MPC-IN-THE-HEAD BASED SIGNATURE. MPC-in-the-
Head (MPCitH), proposed by Ishai et al. [45], is a paradigm to
construct a zero-knowledge proof (ZKP) system from a multi-
party computation (MPC) protocol. Its practicality is demon-
strated by the ZKBoo scheme, the first efficient MPCitH-
based proof scheme proposed by Giacomelli et al. [37]. One
of the main applications of the MPCitH paradigm is to con-
struct a post-quantum signature as follows. Given a one-way
function f and an input-output pair (x,y) such that f (x) = y,
one can construct a digital signature scheme with secret key
x, public key y, and non-interactive zero-knowledge proof of
the knowledge (NIZKPoK) of the secret x as a signature.

The main advantage of MPCitH-based signature schemes
is that their security solely depends on the security of the one-
way function used in key generation, which makes them more
reliable compared to the schemes whose security is based on
the hardness assumption of certain mathematical problems
with a potential gap in the security reduction. For example,
a multivariate signature scheme Rainbow [27] has been re-
cently broken by exploiting the gap between its hardness
assumption and the actual security [13]. Also, an isogeny-
based key exchange algorithm SIKE [46] reveals its weakness

1

https://kpqc.or.kr

as its security assumption does not hold for a certain class of
curves [16]. In this context, MPCitH-based signature schemes
are attracting significant attention as they provide diversity
for the underlying hardness assumption. The recent call of
NIST for additional digital signature schemes1 also expressed
primary interest in signature schemes that are not based on
structured lattices. The internal function of an MPCitH-based
scheme can be easily updated when any weakness is found
in it, which can be seen as an advantage in terms of crypto-
graphic agility.

Picnic [17] is the first and the most famous signature
scheme based on the MPCitH paradigm; it combines an MPC-
friendly block cipher LowMC [2] and an MPCitH proof sys-
tem called ZKB++, which is an optimized variant of ZKBoo.
Katz et al. [49] proposed a new proof system KKW by further
improving the efficiency of ZKB++ with pre-processing, and
updated Picnic accordingly. The updated version of Picnic
was the only ZKP-based scheme that advanced to the third
round of the NIST PQC competition.

LowMC is relatively a new design which can be computed
efficiently in the MPC environment, where the AND oper-
ation is significantly expensive compared to XOR. There
have been various attacks on LowMC, partially motivated
by the LowMC challenge2, some of which have worked ef-
fectively [6, 7, 29, 31, 55–57, 62], and the LowMC param-
eters have been modified accordingly. Due to the security
concern on LowMC, there have been attempts to construct
MPCitH-based signature schemes from the one-wayness of
the standard AES block cipher. In this way, the hardness of
key recovery from a single evaluation of AES is reduced to
the security of the basing signature scheme. BBQ [24] and
Banquet [11] are AES-based signature schemes, where BBQ
employs the KKW proof system and Banquet improves BBQ
by using an MPCitH proof system optimized for an arithmetic
circuit over a large field F232 .

To fully exploit efficient multiplication over a large field in
the Banquet proof system, Dobraunig et al. proposed MPCitH-
friendly ciphers LS-AES and Rain. They are substitution-
permutation ciphers based on the inverse S-box over a large
field [32]. This design strategy increases the efficiency of the
resulting MPCitH-based signature scheme, while the number
of rounds should be carefully determined by comprehensive
analysis on any possible aglebraic attack due to their simple
algebraic structures. Kales and Zaverucha [47] proposed a
number of optimization techniques to further improve the
efficiency of the Baum and Nof’s proof system [10], and
their variant is called BN++. When Rain is combined with
BN++, the resulting signature scheme enjoys the shortest
signature size for the same level of signing/verification time
(compared to existing MPCitH-based signatures) to the best
of our knowledge.

1https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/call-for-proposals-dig-sig-sept-2022.pdf

2https://lowmcchallenge.github.io/

1.1 Our Contribution

The main contribution of this paper is two-fold. First, we re-
fine algebraic cryptanalysis of power mapping based S-boxes
over binary extension fields, and cryptographic primitives
based on such S-boxes. In particular, we focus on the Gröbner
basis and the XL (eXtended Linearization) attacks since they
allow one to solve a system of equations from only a single
evaluation of a one-way function, which is the case when it is
used in an MPCitH-based signature scheme. Most of previous
works on symmetric primitives over large fields analyzed their
security against the Gröbner basis attack only over the large
fields [1,3,32,38]. Dobraunig et al. consider the analysis over
F2 [32], but only deal with the equations of high degrees. We
apply the Gröbner basis attack to the system of quadratic equa-
tions over F2 using intermediate variables. When it comes to
the Gröbner basis attack over F2, we experimentally show that
the exact number of Boolean quadratic equations obtained
from the underlying S-boxes is critical to correctly estimate
the theoretic complexity based on the degree of regularity.
Similarly, it turns out that the XL attack might be faster when
all possible quadratic equations are found and used from the
S-boxes. These results lead to more precise estimation on
the algebraic immunity of cryptographic primitives based on
algebraic S-boxes.

Second, with a design rationale based on the refined al-
gebraic cryptanalysis, we propose a new one-way function,
dubbed AIM3, as an MPCitH-friendly symmetric primitive
with high resistance to algebraic attacks. AIM uses Mersenne
S-boxes based on power mappings with exponents of the form
2e − 1. Compared to the typical inverse S-box, Mersenne
S-boxes turn out to provide higher resistance to algebraic
attacks. The security of AIM is comprehensively analyzed
with respect to algebraic, statistical, quantum and generic at-
tacks. AIM is combined with the BN++ proof system, one of
the state-of-the-art MPCitH proof systems working on large
fields, yielding a new signature scheme, dubbed AIMer. The
AIM function has been designed to fully exploit various op-
timization techniques of the BN++ proof system to reduce
the overall signature size without significantly sacrificing the
signing and the verification time.

We implement the AIMer signature scheme and compare its
benchmark to existing post-quantum signatures on the same
machine. Our implementation result is summarized in Sec-
tion 6. Compared to the signature schemes based on the BN++
proof system combined with the 3-round (resp. 4-round) Rain,
AIMer enjoys not only 8.21% (resp. 21.15%) shorter signature
size but also 1.22% (resp. 13.41%) improved signing perfor-
mance at 128-bit security level with the number of parties N
being set to 16.

3This name is an abbreviation of Affine-Interleaved Mersenne S-boxes.

2

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://lowmcchallenge.github.io/

2 Preliminaries

2.1 Notation

For two vectors a and b over a finite field, their concatenation
is denoted by a∥b. For a positive integer n, hw(n) denotes the
Hamming weight of n in its binary representation, and we
write [n] = {1, · · · ,n}.

In the multiparty computation setting, x(i) denotes the i-th
party’s additive share of x, which implies that ∑i x(i) = x.

For a set S, we will write a← S to denote that a is chosen
uniformly at random from S. For a probability distribution D ,
a←D denotes that a is sampled according to the distribution
D . The binomial distribution with the number of trials n and
the success probability p is denoted by Bin(n, p).

Unless stated otherwise, all logarithms are to the base 2.
The complexity of matrix multiplication of two n×n matrices
is O(nω) for some ω such that 2 ≤ ω ≤ 3. The constant ω

is called the matrix multiplication exponent, and it will be
conservatively set to 2 in this paper.

2.2 Algebraic Attacks

An algebraic attack on a symmetric primitive is to model
it as a system of multivariate polynomial equations and to
solve it using algebraic techniques. A straightforward way of
establishing a system of equations is to represent the output
of the primitive as a polynomial of the input including the
secret key. In order to reduce the degree of the system of
equations, intermediate variables might be introduced. For
example, all the inputs and outputs of the underlying S-boxes
can be regarded as independent variables.

One of the well-known methods of solving a system of
equations is to define a system of linear equations by replac-
ing every monomial of degree greater than one by a new
variable and solve it, which is called trivial linearization. In
the linearizaton, a large number of new variables might be
introduced, and that many equations are also needed to deter-
mine a solution to the system of (linear) equations. However,
in most ZKP-based digital signature schemes, one is given
only a single evaluation of the underlying primitive, which
limits the total number of equations thereof. For this reason,
our focus will be put on algebraic attacks possibly using a
small number of equations such as the Gröbner basis attack
and the XL attack.

GRÖBNER BASIS ATTACK. The Gröbner basis attack is to
solve a system of equations by computing its Gröbner basis.
The attack consists of the following steps.

1. Compute a Gröbner basis in the grevlex (graded reverse
lexicographic) order.

2. Change the order of terms to obtain a Gröbner basis in
the lex (lexicographic) order.

3. Find a univariate polynomial in this basis and solve it.

4. Substitute this solution into the Gröbner basis and repeat
Step 3.

When a system of equations has only finitely many solutions
in its algebraic closure, its Gröbner basis in the lex order
always contains a univariate polynomial. When a single vari-
able of the polynomial is replaced by a concrete solution, the
Gröbner basis still remains a Gröbner basis of the “reduced”
system, allowing one to obtain a univariate polynomial again
for the next variable. We refer to [63] for more details on
Gröbner basis computation.

The complexity of Gröbner basis computation can be es-
timated using the degree of regularity of the system of equa-
tions [8]. Consider a system of m equations in n variables
{ fi}m

i=1. Let di denote the degree of fi for i = 1,2, . . . ,m. If
the system of equations is over-defined, i.e., m > n, then the
degree of regularity can be estimated by the smallest of the
degrees of the terms with non-positive coefficients for the fol-
lowing Hilbert series under the semi-regular assumption [36].

HS(z) =
1

(1− z)n

m

∏
i=1

(1− zdi).

Given the degree of regularity dreg, the complexity of comput-
ing a Gröbner basis of the system is known to be

O
((

n+dreg

dreg

)ω)
.

In the Gröbner basis attack, one always obtains an over-
defined system of equations since each variable x should be
contained in a finite field Fpe for some characteristic p, and
hence x satisfies xpe−x = 0 called a field equation. By includ-
ing field equations in the system of equations, one can remove
any possible solution outside Fpe (in the algebraic closure).
For some symmetric primitives, the field equations have not
been taken into account in their analysis of the Gröbner basis
attack [2, 3, 32, 38]. It does not mean that they are broken
under the modified analysis, while considering the field equa-
tions would lead to more precise analysis of the Gröbner basis
attack.

XL ATTACK. The XL algorithm, proposed by Courtois et
al. [20], can be viewed as a generalization of the relineariza-
tion attack [51]. For a system of m quadratic equations in n
variables over F2, the trivial linearization does not work if
m is smaller than the number of monomials appearing in the
system.

The XL algorithm extends the system of equations by mul-
tiplying all the monomials of degree at most D−2 for some
D > 2 to obtain a larger number of linearly independent equa-
tions. Since the number of monomials of degree at most D−2
is ∑

D−2
i=1

(n
i

)
, the resulting system consists of

(
∑

D−2
i=1

(n
i

))
m

equations of degree at most D with at most ∑
D
i=1
(n

i

)
mono-

mials of degree at most D. When the number of equations

3

equals the number of monomials as D grows, one can solve
the extended system of equations by linearization.

In contrast to the Gröbner basis attack, it is not easy to
precisely estimate the complexity of the XL attack since there
is no theoretic estimation for the number of linearly indepen-
dent equations obtained from the XL algorithm. Instead, we
can loosely upper bound the number of linearly independent
equations by (∑D−2

i=1

(n
i

)
)m. Under the assumption that all the

equations obtained from the XL algorithm are linearly inde-
pendent, which is in favor of the attacker, we can search for
the (smallest) degree D such that(

D−2

∑
i=1

(
n
i

))
m≥ T (1)

where T denotes the exact number of monomials appearing in
the extended system of equations, which is upper bounded by
∑

D
i=1
(n

i

)
. Once D is fixed, the extended system of equations

can be solved by trivial linearization whose time complexity
is given as

O(T ω) .

2.3 BN++ Zero-knowledge Protocol
In this section, we briefly review the BN++ proof system [47],
one of the state-of-the-art MPCitH zero-knowledge protocols.
The BN++ protocol will be combined with our symmetric
primitive AIM to construct the AIMer signature scheme which
is fully described in Appendix D. At a high level, BN++ is
a variant of the BN protocol [10] with several optimization
techniques applied to reduce the signature size.

PROTOCOL OVERVIEW. The BN++ protocol follows the
MPCitH paradigm [45]. In order to check C multiplica-
tion triples (x j,y j,z j = x j · y j)

C
j=1 over a finite field F in the

multiparty computation setting with N parties, helping val-
ues ((a j,b j)

C
j=1,c) are required, where a j← F,b j = y j, and

c = ∑
C
j=1 a j ·b j. Each party holds secret shares of the multipli-

cation triples (x j,y j,z j)
C
j=1 and helping values ((a j,b j)

C
j=1,c).

Then the protocol proceeds as follows.

• A prover is given random challenges

ε1, · · · ,εC ∈ F.

• For i ∈ [N], the i-th party locally sets

α
(i)
1 , · · · ,α(i)

C

where α
(i)
j = ε j · x

(i)
j +a(i)j .

• The parties open α1, · · · ,αC by broadcasting their shares.

• For i ∈ [N], the i-th party locally sets

v(i) =
C

∑
j=1

ε j · z
(i)
j −

C

∑
j=1

α j ·b
(i)
j + c(i).

• The parties open v by broadcasting their shares and out-
put Accept if v = 0.

The probability that there exist incorrect triples and the parties
output Accept in a single run of the above steps is upper
bounded by 1/|F|.

SIGNATURE SIZE. By applying the Fiat-Shamir trans-
form [33], one can obtain a signature scheme from the BN++
proof system. In this signature scheme, the signature size is
given as

6λ+ τ · (3λ+λ · ⌈log2(N)⌉+M (C)),

where λ is the security parameter, C is the number of mul-
tiplication gates in the underlying symmetric primitive, and
M (C) = (2C+ 1) · log2(|F|). In particular, M (C) has been
defined so from the observation that sharing the secret share
offsets for (z j)

C
j=1 and c, and opening shares for (α j)

C
j=1 oc-

curs for each repetition, using C, 1, and C elements of F,
respectively. For more details, we refer to [47].

OPTIMIZATION TECHNIQUES. If multiplication triples use an
identical multiplier in common, for example, given (x1,y,z1)
and (x2,y,z2), then the corresponding α values can be batched
to reduce the signature size. Instead of computing α1 =
ε1 · x1 + a1 and α2 = ε2 · x2 + a2, α = ε1 · x1 + ε2 · x2 + a is
computed, and v is defined as

v = ε1 · z1 + ε2 · z2−α · y+ c,

where c = a · y. This technique is called repeated multiplier
technique. Our symmetric primitive design allows us to take
full advantage of this technique to reduce the number of α

values in each repetition of the protocol.
If the output of the multiplication zi can be locally gen-

erated from each share, then the secret share offset is not
necessarily included in the signature.

3 Refining Algebraic Cryptanalysis of Power
Functions over Binary Fields

REPRESENTATION IN F2 AND ITS EXTENSION FIELD. When
a symmetric primitive is defined with arithmetic in a large
field, it is straightforward to establish a system of equations
from a single evaluation of the primitive using the same field
arithmetic. If the underlying field is a binary extension field
F2n for some n, then it is also possible to establish a system
of equations over F2. Suppose that {1,β, . . . ,βn−1} is a basis
of F2n over F2. Then each variable x ∈ F2n can be represented
as n variables x0,x1, . . . ,xn−1 ∈ F2 by setting x = ∑

n−1
i=0 xiβ

i.
Using the representation of βn with respect to this basis, ev-
ery polynomial equation over F2n can be transformed into n
equations over F2.

4

On the other hand, a linear equation over F2 is represented
by a linearized polynomial over F2n :

n−1

∑
i=0

aix2i
= a0x+a1x21

+a2x22
+ · · ·+an−1x2n−1

(2)

where a0,a1, . . . ,an−1 ∈ F2n .

Suppose that variables x and y in F2n are represented by
{xi}n−1

i=0 and {yi}n−1
i=0 , respectively, in F2. If y = xa for some

a, then each yi is represented as a polynomial of xi’s of de-
gree hw(a). For instance, the inverse S-box y = x2n−2 can be
represented as a system of n equations of degree n−1.

Most of previous works on symmetric primitives over a
large field, their security against the Gröbner basis attack have
been analyzed only over the large field [1,3,32,38]. However,
when the primitives are defined over the binary extension
fields, it is also possible to represent them by systems of
equations over F2. For example, Dobraunig et. al. consider
the representation of Rain over F2 using the above description
of the inverse S-box [32], obtaining equations of the highest
degree that make the algebraic analysis infeasible. We apply
the Gröbner basis attack to the system of quadratic equations
over F2 using intermediate variables as described below.

NUMBER OF QUADRATIC EQUATIONS. The efficiency of
algebraic cryptanalysis heavily depends on the number of
variables, the number of equations, and their degrees for the
system of equations. As discussed above, a powering function
y = xa over F2n can be represented as a system of n equations
of degree hw(a) over F2. The resulting equations are explicit
ones in a sense that each output variable is represented by an
equation only in the input variables. However, their implicit
representation might consist of equations of degree smaller
than the explicit ones. For example, y = x2n−2 obtained from
the inverse S-box is equivalent to the quadratic equation xy =
1 over F2n , assuming the input x is nonzero, or a certain set
of n quadratic equations in n variables over F2.

Implicit representation over F2 might also increase the
number of (linearly independent) equations. There has been a
significant amount of research on the number of linearly inde-
pendent quadratic equations obtained from power functions
over F2n [19, 21, 41, 60]. For example, it is known that one
has 5n quadratic equations over F2 from xy = 1 over F2n [19].
However, the relation xy = 1 holds for the inverse S-box only
when x and y are nonzero. Courtois et al. [21] shows that
5n−1 linearly independent quadratic equations are obtained
from the exact representation of the inverse S-box. In the
following, we will study how the number of quadratic equa-
tions obtained from a power mapping based S-box affects the
complexity of the Gröbner basis attack and the XL attack on
a symmetric primitive based on the S-box.

3.1 Gröbner Basis Attack over F2

In order to see how the number of quadratic equations from
a power mapping based S-box affects the time complexity
of the Gröbner basis computation, we compare the theoretic
estimation of the degree of regularity and the solving degree
[28], which is the highest degree reached during the actual
Gröbner basis computation, for toy parameters. The solving
degrees are obtained with grevlex order.

Consider an r-round Even-Mansour cipher [34] based
on S-boxes, each of which defines νn linearly independent
quadratic equations for some ν≥ 1. By introducing intermedi-
ate variables between rounds, we can establish a system of νrn
quadratic equations in rn variables. Adding rn field equations
to this system, we obtain the Hilbert series as follows.

HS(z) =
1

(1− z)rn (1−z2)(1+ν)rn = (1+z)rn(1−z2)νrn. (3)

We consider four types of S-boxes with different values
for the constants ν: the inverse S-box y = x2n−2, a Mersenne
S-box y = x2e−1 for some e, an S-box y = x2s+1+2s−1−1 for
n = 2s, and a Niho S-box y = xa, where a, called a Niho
exponent, is defined as follows [30].

a =

{
2s +2

s
2 −1 if n = 2s+1 for some even s,

2s +2
3s+1

2 −1 if n = 2s+1 for some odd s.

In this paper, an S-box of the form y = x2s+1+2s−1−1 with
n = 2s will be called an NGG S-box (after the authors of [60]
that studied its properties). Each S-box is a powering function
of the form y = xk where hw(k+ 1) ∈ {1,2}. Since xk+1 is
linear or quadratic over F2, each S-box defines n quadratic
equations over F2 from an implicit equation xy = xk+1.

Using the algorithm proposed in [60], we can find e such
that the Mersenne S-box y = x2e−1 defines 3n quadratic equa-
tions over F2. It is known that the NGG and the Niho S-boxes
define 2n and n quadratic equations over F2 if n≥ 8, respec-
tively [60]. When it comes to the inverse S-box, we will
assume that it defines 5n quadratic equations over F2 from
the quadratic relation xy = 1 over F2n [19].4

For each S-box, we consider two different types of systems
of equations: the basic system containing only n quadratic
equations directly obtained from the implicit quadratic rela-
tion such as xy = 1 and xy = x2e

, and the full system contain-
ing the exact number of quadratic equations induced from the
S-box definition. For the Niho S-box, we do not distinguish
the basic and the full systems since both systems contain
the same number of quadratic equations. The exact quadratic
equations describing the full system can be computed by the
algorithm proposed in [41].

4More precisely, the inverse S-box defines 5n−1 quadratic equations [21],
while one can assume that the input to the S-box is nonzero for a large field,
in which case 5n quadratic equations are obtained.

5

10 15 20 25 30 35

2

3

4

5

6

7

Blocksize

D
eg

re
e

Inverse S-box

sd (basic)
dreg (basic)

sd (full)
dreg (full)

10 15 20 25 30 35

3

4

5

6

7

Blocksize

D
eg

re
e

Mersenne S-box

sd (basic)
dreg (basic)

sd (full)
dreg (full)

10 15 20 25 30

3

4

5

6

Blocksize

D
eg

re
e

NGG S-box

sd (basic)
dreg (basic)

sd (full)
dreg (full)

10 15 20 25

4

5

6

Blocksize

D
eg

re
e

Niho S-box

sd
dreg

Figure 1: Degree of regularity dreg estimated by (3) and the solving degree sd for the basic and the full systems of equations
constructed from a single evaluation of a single-round Even-Mansour cipher built on top of each of the inverse, Mersenne, NGG
and Niho S-boxes.

We computed a Gröbner basis for a system of equations de-
fined by a single evaluation of a single-round Even-Mansour
cipher based on each of the four S-boxes, using MAGMA [15].
Figure 1 compares the degree of regularity estimated by (3)
and the solving degree sd. We observe that for both the basic
and the full systems, their solving degrees are close to the
theoretically estimated values for the full system.

The four S-boxes differ in the actual running time of Gröb-
ner basis computation as shown in Figure 2. We observe
that Gröbner basis computation becomes faster given a larger
number of quadratic equations.

Table 1 compares the degree of regularity estimated by (3)
for an evaluation of a single-round Even-Mansour cipher,
and the corresponding time complexity for Gröbner basis
computation for various values of ν and n ∈ {128,192,256}.
We observe that the time complexity significantly decreases
as ν grows. We conclude that the exact number of quadratic
equations from an S-box, represented by the constant ν, is
critical to algebraic cryptanalysis of a primitive built on the

S-box.

3.2 XL Attack over F2

To see the impact of the number of quadratic equations of the
S-box on the XL attack, we experiment with the XL algorithm
for a single-round Even-Mansour cipher for toy parameters.
Figure 3 shows the ratio of a rank to the number of monomials
in the extended system according to the target degree D of
the XL algorithm for the basic and the full systems of equa-
tions constructed from a single evaluation of a single-round
Even-Mansour cipher of blocksize n = 20 using the inverse,
Mersenne, and NGG S-boxes. The dashed lines show the re-
sults for the basic systems, and the solid lines show those for
the full systems. We observe that, as expected, applying the
XL algorithm for the full system results in a smaller target
degree D achieving a rank equal to the number of monomi-
als than the basic system. We also find that all the systems
induced by those S-boxes are dense; all the monomials of

6

n
Degree of Regularity Complexity (bits)

ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

128 17 11 9 8 7 144.6 104.9 90.1 82.2 74.0
192 23 15 12 10 9 204.0 148.8 125.5 108.9 100.3
256 29 19 14 12 10 263.1 192.6 152.5 135.2 117.0

Table 1: Degree of regularity estimated by (3) for a single-round Even-Mansour cipher and the corresponding time complexity
for computing a Gröbner basis according to the value of ν and the block size n ∈ {128,192,256}.

10 15 20 25 30

0

5

10

15

Blocksize

lo
g 2
(T

im
e)

[m
s]

Gröbner Basis Computation

Inv (basic)
Inv (full)

Mer (basic)
Mer (full)

NGG (basic)
NGG (full)

Niho

Figure 2: Computation time of a Gröbner basis for a single-
round Even-Mansour cipher. Inv, NGG and Niho represent
the inverse, NGG and Niho S-boxes having 5n, 3n, 2n, and n
quadratic equations, respectively. This experiment is done in
AMD Ryzen 7 2700X @ 3.70GHz with 128 GB memory.

degrees up to D appear in the experiment.

4 AIM: Our New Symmetric Primitive

4.1 Specification
AIM is designed to be a “tweakable” one-way function so that
it offers multi-target one-wayness. Given input/output size
n and an (ℓ+ 1)-tuple of exponents (e1, . . . ,eℓ,e∗) ∈ Zℓ+1,
AIM : F2n ×F2n → F2n is defined by

AIM(iv,pt) =Mer[e∗]◦Lin[iv]◦Mer[e1, . . . ,eℓ](pt)⊕pt

where each function will be described below. See Figure 4 for
the pictorial description of AIM with ℓ= 3.

S-BOXES. In AIM, S-boxes are exponentiation by Mersenne
numbers over a large field. More precisely, for x ∈ F2n ,

Mer[e](x) = x2e−1

for some e. Note that this map is a permutation if gcd(e,n)= 1.
As an extension, Mer[e1, . . . ,eℓ] : F2n → Fℓ

2n is defined by

Mer[e1, . . . ,eℓ](x) =Mer[e1](x)∥ . . .∥Mer[eℓ](x).

2 3 4 5 6

0.2

0.4

0.6

0.8

1

XL Target Degree D

(R
an

k)
/(

#
of

m
on

om
ia

l)

XL Algorithm

Inv (basic)
Inv (full)

Mer (basic)
Mer (full)

NGG (basic)
NGG (full)

Figure 3: The ratio of a rank to the number of appearing mono-
mials in the extended system according to the target degree D
of the XL algorithm for a single-round Even-Mansour cipher
of the blocksize n = 20. Inv, Mer, and NGG represent the
inverse, Mersenne, and NGG S-boxes having 5n, 3n, and 2n
quadratic equations, respectively. The dashed lines show the
results for the basic systems and the solid lines show those
for the full systems.

LINEAR COMPONENTS. AIM includes two types of linear
components: an affine layer and feed-forward. The affine
layer is multiplication by an n× ℓn random binary matrix Aiv

and addition by a random constant biv ∈ Fn
2. The matrix

Aiv =
[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2)ℓ

is composed of ℓ random invertible matrices Aiv,i. The matrix
Aiv and the vector biv are generated by an extendable output
function (XOF) with the initial vector iv. Each matrix Aiv,i
can be equivalently represented by a linearized polynomial
Liv,i on F2n . For x = (x1, . . . ,xℓ) ∈ (F2n)ℓ,

Lin[iv](x) = ∑
1≤i≤ℓ

Liv,i(xi)⊕biv.

By abuse of notation, we will denote Ax as the same meaning
as ∑1≤i≤ℓ Liv,i(xi). Feed-forward operation, which is addition
by the input itself, makes the entire function non-invertible.

RECOMMENDED PARAMETERS. Recommended sets of pa-
rameters are given in Table 2. The number of S-boxes is

7

Mer[e1]

Mer[e2]

Mer[e3]

Linpt Mer[e∗] ct

XOF[iv]

Figure 4: The AIM-V one-way function with ℓ= 3. The input
pt (in red) is the secret key of the signature scheme, and
(iv,ct) (in blue) is the corresponding public key.

determined by taking into account the complexity of the XL
attack, which is described in Section 5.1. Exponents e1 and
e∗ are chosen as small numbers to provide smaller differential
probability, and exponent e2 is chosen so that e2 ·e∗≥ λ, while
all the exponents are distinct in the same set of parameters.
The irreducible polynomials for extension fields F2128 , F2192 ,
and F2256 are the same as those used in Rain [32].

Scheme λ n ℓ e1 e2 e3 e∗

AIM-I 128 128 2 3 27 - 5
AIM-III 192 192 2 5 29 - 7
AIM-V 256 256 3 3 53 7 5

Table 2: Recommended sets of parameters of AIM.

4.2 Design Rationale

CHOICE OF FIELD. When a symmetric primitive is built upon
field operations, the field is typically binary since bitwise op-
erations are cheap in most of modern architectures. However,
when the multiplicative complexity of the primitive becomes
a more important metric for efficiency, it is hard to generally
specify which type of field has merits with respect to security
and efficiency.

Focusing on a primitive for MPCitH-style zero-knowledge
protocols, a primitive over a large field generally requires a
small number of multiplications, leading to shorter signatures.
However, any primitive operating on a large field of large
prime characteristic might permit algebraic attacks since the
number of variables and the algebraic degree will be signifi-
cantly limited for efficiency reasons. On the other hand, binary
extension fields enjoy both advantages from small and large
fields. In particular, matrix multiplication is represented by a
polynomial of high algebraic degree without increasing the

proof size.

ALGEBRAICALLY SOUND S-BOXES. In an MPCitH-style
zero-knowledge protocol, the proof size of a circuit is usually
proportional to the number of nonlinear operations in the
circuit. In order to minimize the number of multiplications,
one might introduce intermediate variables for some wires
of the circuit. For example, the inverse S-box (S(x) = x−1)
has high (bitwise) algebraic degree n− 1, while it can be
simply represented by a quadratic equation xy = 1 by letting
the output from the S-box be a new variable y. When an S-
box is represented by a quadratic equation of its input and
output, we will say it is implicitly quadratic. In particular, we
consider implicitly quadratic S-boxes which are represented
by a single multiplication over F2n . This feature makes the
proof size short and mitigates algebraic attacks at the same
time.

The inverse S-box is one of the well-studied implic-
itly quadratic S-boxes. The inverse S-box has been widely
adopted to symmetric ciphers [4,23,65] due to its nice crypto-
graphic properties. It is invertible, is of high-degree, has good
enough differential uniformity and nonlinearity. Recently, it is
used in symmetric primitives for advanced cryptographic pro-
tocols such as multi-party computation and zero-knowledge
proof [32, 38, 39].

Meanwhile, the inverse S-box has one minor weakness;
a single evaluation of the n-bit inverse S-box as a form of
xy = 1 produces 5n−1 linearly independent quadratic equa-
tions over F2 [21]. The complexity of an algebraic attack is
typically bounded (with heuristics) by the degree and the num-
ber of equations, and the number of variables. In particular,
an algebraic attack is more efficient with a larger number of
equations, while this aspect has not been fully considered in
the design of recent symmetric ciphers based on algebraic S-
boxes. When the number of rounds is small, this issue might
be critical to the overall security of the cipher. For more de-
tails, see Section 5.1.

With the above observation, we tried to find an invertible
S-box of high-degree which is moderately resistant to differ-
ential/linear cryptanalysis as well as implicitly quadratic, and
producing only a small number of quadratic equations. Since
our attack model does not allow multiple queries to a single
instance of AIM, we allow a relaxed condition on the DC/LC
resistance, not being necessarily maximal. As a family of S-
boxes that beautifully fit all the conditions, we choose a family
of Mersenne S-boxes; they are exponentiation by Mersenne
numbers. A Mersenne S-box whose exponent is of the form
2e−1 such that gcd(n,e) = 1, is invertible, is of high-degree,
needs only one multiplication for its proof, produces only 3n
Boolean quadratic equations with its input and output, and
provides moderate DC/LC resistance. Furthermore, when the
implicit equation xy = x2e

of a Mersenne S-box is computed
in the BN++ proof system, it is not required to broadcast the
output share since the output of multiplication x2e

can be

8

locally computed from the share of x.

REPETITIVE STRUCTURE. The efficiency of the BN++ proof
system partially comes from the optimization technique using
repeated multipliers. When a multiplier is repeated in multiple
equations to prove, the proof can be done in a batched way,
reducing the overall signature size. In order to maximize the
advantage of repeated multipliers, we put S-boxes in parallel
at the first round in order to make the S-box inputs the same.
Then, we put only one S-box at the second round with feed-
forward. In this way, all the implicit equations have the same
multiplier.

AFFINE LAYER GENERATION. The main advantage of using
binary affine layers in large S-box-based constructions is to
increase the algebraic degree of equations over the large field.
Multiplication by a random n×n binary matrix can be repre-
sented as (2). Similarly, our design uses a random affine map
from Fℓn

2 to Fn
2. In order to mitigate multi-target attacks (in

the multi-user setting), the affine map is uniquely generated
for each user; each user’s iv is fed to an XOF, generating the
corresponding linear layer.

5 Security Analysis

In order for the basing signature scheme to be secure, AIM
with fixed iv should be preimage-resistant. An adversary is
given a randomly chosen iv and an output ct that is defined by
iv and a randomly chosen input pt∗. Given such a pair (iv,ct),
the adversarial goal is to find any pt (not necessarily the same
as pt∗) such that AIM(iv,pt) = ct. In the multi-user setting,
the adversary is given multiple IV-output pairs {(ivi,cti)}i,
and tries to find any pt such that AIM(ivi,pt) = cti for some
i.

5.1 Algebraic Attacks
Since our attack model does not allow multiple evaluations
for a single instance of AIM, we do not consider interpolation,
higher-order differential, and cube attacks. As mentioned in
Section 3, we mainly consider the Gröbner basis attack and
the XL attack using a single evaluation of AIM.

THE GRÖBNER BASIS ATTACK. A single equation of an
input pt to AIM over F2n is of high degree, so it is infeasible
to solve this type of system using the Gröbner basis attack.
Alternatively, one can construct a system of equations over
F2n using certain intermediate variables. Let ui denote the
output of the S-box Mer[ei] and let vi denote the output of the
linear component Liv,i for i = 1,2, . . . , ℓ. Then, we obtain the
following system of equations

ui = pt2ei−1 for i = 1,2, . . . , ℓ,
vi = Liv,i(ui) for i = 1,2, . . . , ℓ,
pt⊕ ct= (v1⊕ . . .⊕ vℓ⊕biv)2e∗−1

where Liv,i(·) denotes the linearized polynomial of degree
2n−1 (with high probability), induced from the random ma-
trix Aiv,i. Together with 2ℓ+1 field equations, we obtain the
following Hilbert series.

ℓ

∏
i=1

(
1− z2ei−1

1− z

)(
1− z2e∗−1

1− z

)(
1− z2n−1

1− z

)ℓ

(1− z2n
)2ℓ+1.

So the degree of regularity is estimated to be greater than 2n,
obtaining the complexity(

(2ℓ+1)+2n

2n

)ω

> 2n

for ℓ≥ 2.
We can also construct a system of equations over F2 as

discussed in Section 3.1. The corresponding Hilbert series is
the same as obtained from an (ℓ+1)-round Even-Mansour
cipher. We perform Gröbner basis computation on AIM with
ℓ= 2,3 for toy parameters, summarizing the result in Figure 5.
Being the same as the single-round Even-Mansour cipher, the
solving degrees for the both basic and full systems of AIM
are also close to the estimated values for the full system.
The estimated degrees of regularity and corresponding time
complexities to compute a Gröbner basis for the full system
of AIM are summarized in Table 3.

THE XL ATTACK. As mentioned in Section 3.2, we observe
that the systems of equations defined by the inverse and the
Mersenne S-boxes are dense for toy parameters. Letting T =

∑
D
i=1
(n

i

)
, we can find the smallest degree D satisfying (1). We

emphasize again that the time complexity computed from the
smallest degree D is rather loose since the estimation is based
on the assumption that all the equations obtained by the XL
algorithm are linearly independent, which might not be the
case in general. The degree D and the corresponding time
complexity of the XL attack on the full system of AIM are
summarized in Table 3. We observe that AIM is secure for all
the parameter sets even with this (loose) lower bound on the
complexity of the XL attack.

AIM VS. RAIN. We perform experiments for the 3-round Rain
(denoted Rain3) with toy parameters. It can be viewed as a
3-round Even-Mansour-type cipher based on the inverse S-
box, so the degree of regularity is estimated by (3) with r = 3
and ν = 5. Figure 6 shows the estimated degree of regularity
and the solving degree for Rain3. The result suggests that the
exact number of quadratic equations should be considered to
estimate the degree of regularity.

We note that the number of variables, the number of equa-
tions and their degrees are the same for the basic systems
of Rain3 and AIM with ℓ = 2, and for the basic systems of
Rain4 and AIM with ℓ = 3. This implies that the difference
of algebraic cryptanalysis between the full systems of AIM
and Rain only comes from the values of ν, determined by the
number of linearly independent quadratic equations of their

9

11 12 13 14 15 16 17

4

5

6

7

8

9

Blocksize

D
eg

re
e

AIM with ℓ= 2

sd (basic)
dreg (basic)

sd (full)
dreg (full)

11 12 13 14 15

4

5

6

7

8

9

10

Blocksize

D
eg

re
e

AIM with ℓ= 3

sd (basic)
dreg (basic)

sd (full)
dreg (full)

Figure 5: Degree of regularity dreg estimated by (3) and the solving degree sd for AIM with ℓ= 2,3 using Mersenne S-boxes.

8 10 12 14 16 18 20

3

4

5

6

7

8

9

10

Blocksize

D
eg

re
e

Rain3

sd (basic)
dreg (basic)

sd (full)
dreg (full)

Figure 6: Degree of regularity dreg estimated by (3) and the
solving degree sd for the Rain3 cipher.

S-boxes. Table 3 compares the complexities of the Gröbner
basis and the XL attacks for the full systems of AIM and Rain.
Compared to Rain, AIM provides stronger security against
the Gröbner basis and the XL attacks.

5.2 Quantum Attacks

Quantum attacks are classified into two types according to
the attack model. In the Q1 model, an adversary is allowed
to use quantum computation without making any quantum
query, while in the Q2 model, both quantum computation and
quantum queries are allowed [69].

As a generic algorithm for exhaustive key search, Grover’s
algorithm has been known to give quadratic speedup com-
pared to the classical brute-force attack [40]. In this section,
we investigate if any specialized quantum algorithm targeted
at AIM might possibly achieve better efficiency than Grover’s
algorithm in the Q1 model.

QUANTUM ALGEBRAIC ATTACK. When an algebraic root-
finding algorithm works over a small field, the guess-and-

determine strategy might be effectively combined with
Grover’s algorithm, reducing the overall time complexity.

The GroverXL algorithm [12] is a quantum version of the
FXL algorithm [20], which solves a system of multivariate
quadratic equations over a finite field. A single evaluation
of AIM can be represented by Boolean quadratic equations
using intermediate variables. Precisely, we have a system of
4(ℓ+ 1)n equations (including field equations) in (ℓ+ 1)n
variables. For this system of equations, the complexity of
GroverXL is given as O(2(0.3687+o(1))(ℓ+1)n), which is worse
than Grover’s algorithm.

The QuantumBooleanSolve algorithm [35] is a quantum
version of the BooleanSolve algorithm [9], which solves
a system of Boolean quadratic equations. In [35], its time
complexity has been analyzed only for a system of equa-
tions with the same number of variables and equations. A
single evaluation of AIM can be represented by (ℓ+1)n equa-
tions in (ℓ+ 1)n variables. In this case, the complexity of
QuantumBooleanSolve is given as O(20.462(ℓ+1)n), which is
worse than Grover’s algorithm.

In contrast to the algorithms discussed above, Chen and
Gao [18] proposed a quantum algorithm to solve a system
of multivariate equations using the Harrow-Hassidim-Lloyd
(HHL) algorithm [42] that solves a sparse system of lin-
ear equations with exponential speedup. In brief, Chen and
Gao’s algorithm solves a system of linear equations from the
Macaulay matrix by the HHL algorithm. It has been claimed
that this algorithm enjoys exponential speedup for a certain
set of parameters. When applied to AIM, the hamming weight
of the secret key should be smaller than O(logn) to achieve
exponential speedup [26]. Otherwise, this algorithm is slower
than Grover’s algorithm [26].

QUANTUM GENERIC ATTACK. A generic attack does not
use any particular property of the underlying components
(e.g., S-boxes for AIM). The underlying smaller primitives are
typically modeled as public random permutations or functions.
The Even-Mansour cipher [34], the FX-construction [50] and

10

Scheme n ν
Gröbner Basis XL

dreg Time (bits) D Time (bits)

AIM-I 128 20 222.8 12 148.0
AIM-III 192 3 27 310.8 15 194.1
AIM-V 256 45 530.3 19 266.1

Rain3

128 14 168.5 10 127.9†

192 5 19 235.9 12 162.1†

256 24 303.1 13 183.9†

Rain4

128 17 219.2 11 147.3
192 5 24 303.1 13 183.9†

256 30 385.9 15 219.2†

Table 3: Analyses of the Gröbner basis attack and the XL attack for AIM and Rain. dreg is the estimated value for the degree
of regularity and D is the target degree of the XL attack to obtain equations more than the number of monomials (under the
independence assumption) for the full systems of AIM and Rain. †We note that the time complexity for the XL attack is a lower
bound that is smaller than the actual complexity due to the independence assumption and the use of ω = 2, so that this values
does not imply that the Rain parameters are broken.

a Feistel cipher [58] have been analyzed in the classic and
generic attack model. As their quantum analogues, the Even-
Mansour cipher [14, 53], the FX-construction [43, 54] and
a Feistel cipher [52] have been analyzed in the Q1 or Q2
model. Most of these attacks can be seen as a combination of
Simon’s period finding algorithm [67] (in the Q2 model), and
Grover’s/offline Simon’s algorithms [14] (in the Q1 model).
Since Simon’s period finding algorithm requires multiple
queries to a keyed construction (which is not the case for
AIM), we believe that the above attacks do not apply to AIM
in a straightforward manner.

5.3 Statistical Attacks
The adversary is allowed to evaluate AIM with an arbitrary
input pair (pt, iv) in an offline manner. However, such an
evaluation is independent of the actual secret key pt∗, so the
adversary is not able to collect a sufficient amount of statistical
data which are related to pt∗. Furthermore, the linear layer
of AIM is generated independently at random for every user.
For this reason, we believe that our construction is secure
against any type of statistical attacks including (impossible)
differential, boomerang, and integral attacks.

That said, to prevent any unexpected variant of differential
and linear cryptanalysis, we summarize differential and linear
probabilities in this section. For more details, see Appendix A
and B.

DIFFERENTIAL CRYPTANALYSIS. For the differential prob-
ability, we bound the maximum differential probability with-
out expectation as AIM is a key-less primitive. We bound the
probability

MDPAIM = max
∆x ̸=0,∆y

Pr
x
[AIM(x⊕∆x)⊕AIM(x) = ∆y] .

As MDPAIM cannot be less than 2−λ for security parameter λ,
The values of logγ such that

Pr
A,b

[
MDPAIM > γ

]
< 2−λ

is summarized in Table 4 according to the security level,
where A (resp. b) are the random matrix (resp. vector) in
the affine layer. We remark that γ > 2−λ does not imply the
feasibility of differential cryptanalysis for each λ.

λ 128 192 256

logγ -118.4 -178.0 -245.9

Table 4: logγ such that PrA,b
[
MDPAIM > γ

]
< 2−λ for each

security level λ.

LINEAR CRYPTANALYSIS. In contrast to differential crypt-
analysis, security against linear cryptanalysis has been rarely
evaluated for key-less primitives. For this reason, we find the
condition when the bias of a correlation trail are less than
2−λ assuming the masked sums of inputs and outputs are
independent. When

min
1≤i≤ℓ

(2ei −2)2(2e∗ −2)2 < 2n,

the bias of a correlation trail in AIM is smaller 2−n, and the
amount of data required for linear cryptanalysis becomes at
least 2n.

5.4 Security Proof
In this section, we prove the one-wayness of AIM when the
underlying S-boxes are modeled as public random permu-
tations and iv is (implicitly) fixed. For simplicity, we will

11

assume that ℓ= 2. The security AIM with ℓ > 2 is similarly
proved.

In the public permutation model and in the single-user
setting, AIM is defined as

AIM(pt) = S3(A1 ·S1(pt)⊕A2 ·S2(pt)⊕b)⊕pt

for pt ∈ {0,1}n, where S1, S2, S3 are independent public ran-
dom permutations, and A1 and A2 are fixed n×n invertible
matrices, and b is a fixed n×1 vector over F2.

An adversary A is allowed to choose any value ct∈ {0,1}n

on its own, and then make a certain number of forward and
backward queries to S1, S2 and S3. Specifically, suppose that
A makes q permutation queries in total. If A succeeds in
finding all the S-box evaluations that make up an evaluation
AIM(pt) = ct for some pt ∈ {0,1}n, then we say that A wins
the preimage-finding game, breaking the one-wayness of AIM.
The goal of our security proof is to show that A’s winning
probability, denoted Advpre

AIM(q), is small.
We will assume that A is information-theoretic, and hence

deterministic. Furthermore, we assume that A does not make
any redundant query. We will also slightly modify A so that
whenever A makes a (forward or backward) query to S1 (resp.
S2) obtaining S1(x) = y (resp. S2(x) = y), A makes an ad-
ditional forward query to S2 (resp. S1) with x for free. This
additional query will not degrade A’s preimage-finding ad-
vantage since A is free to ignore it.

An evaluation AIM(pt)= ct consists of three S-box queries.
Among the three S-box queries, the lastly asked one is called
the preimage-finding query. We distinguish two cases.

Case 1. The preimage-finding query is made to either S1
or S2. Since A consecutively obtains a pair of queries
of the form S1(x) = y1 and S2(x) = y2, any preimage-
finding query to either S1 or S2 should be forward. If it
is S1(x) (without loss of generality), then there should
be queries S2(x) = y for some y and S3(z) = x⊕ ct for
some z that have already been made by A . In order for
S1(x) to be the preimage-finding query, it should be the
case that

S3(A1 ·S1(x)⊕A2 ·S2(x)⊕B) = x⊕ ct

or equivalently,

S1(x) = A−1
1 · (z⊕b⊕A2 · y)

which happens with probability at most 1
2n−q . Therefore,

the probability of this case is upper bounded by q
2n−q .

Case 2. The preimage-finding query is made to S3. In order
to address this case, we use the notion of a wish list,
which was first introduced in [5]. Namely, whenever A
makes a pair of queries S1(x) = y1 and S2(x) = y2, the
evaluation

S3 : A1 · y1⊕A2 · y2⊕b 7→ x⊕ ct

is included in the wish list W . In order for an S3-query
to complete an evaluation AIM(pt) = ct for any pt, at
least one "wish" in W should be made come true. Each
evaluation in W is obtained with probability at most

1
2n−q , and |W | ≤ q. Therefore, the probability of this
case is upper bounded by q

2n−q .

Overall, we conclude that

Advpre
AIM(q)≤

2q
2n−q

.

The lesson of this security proof is that one cannot break the
one-wayness of AIM in O(2n) time without exploiting any
particular properties of the underlying S-boxes.

In the multi-user setting with u users, A is given u different
target images. The proof of the multi-user security follows
the same line of argument as the single-user security proof.
The difference is that the probability that each query to either
S1 or S2 becomes the preimage-finding one is upper bounded
by uq

2n−q and the size of the wish list (in the second case)
is upper bounded by uq. Overall, the adversarial preimage
finding advantage in the multi-user setting is upper bounded
by

2uq
2n−q

.

It does not mean that AIM provides only the birthday-
bound security in the multi-user setting. The straightforward
birthday-bound attack is mitigated since AIM is based on a
distinct linear layer for every user.

6 Performance Evaluation

ENVIRONMENT. The source codes are developed in C++17,
using the GNU C++ 8.4.0 (GNU C 7.5.0 for running the algo-
rithms in the third round submission packages for NIST PQC
standardization) compiler with the AVX2 instructions on the
Ubuntu 18.04 operating system. All the implementations used
in the experiments are compiled at the -O3 optimization level.
For the instantiation of the XOF, we use SHAKE in XKCP

library5. We use SHAKE128 for AIMer-I, and SHAKE256
for AIMer-III and AIMer-V. Our experiments are measured
in Intel Xeon E5-1650 v3 @ 3.50GHz with 128 GB memory.
For a fair comparison, we measure the execution time for
each signature scheme on the same CPU using the taskset
command with Hyper-Threading and Turbo Boost features
disabled.

PERFORMANCE OF AIMer. As mentioned in Section 2.3,
AIM has been designed to take full advantage of optimization
by repeated multipliers to reduce the number of α values. Due
to this technique, the overall performance of the signature
scheme is improved in terms of both the signature size and

5https://github.com/XKCP/XKCP

12

https://github.com/XKCP/XKCP

Scheme N τ
Sign Verify Size
(ms) (ms) (B)

AIMer-I 16 33 0.82 0.78 5904
AIMer-I 57 23 1.82 1.77 4880
AIMer-I 256 17 5.96 5.90 4176
AIMer-I 1615 13 29.62 29.17 3840
AIMer-III 16 49 1.57 1.48 13080
AIMer-III 64 33 3.86 3.62 10440
AIMer-III 256 25 10.57 10.42 9144
AIMer-III 1621 19 58.70 58.10 8352
AIMer-V 16 65 2.87 2.78 25152
AIMer-V 62 44 6.60 6.54 19904
AIMer-V 256 33 19.21 19.19 17088
AIMer-V 1623 25 98.49 98.64 15392

Table 5: Performance of AIMer for various parameter sets.

the signing time. The performance of AIMer is summarized
in Table 5. Parameter sets (i.e., the number of parties N and
the number of parallel repetitions τ) for various security levels
are chosen in the same way of [47]. We observe that AIMer
enjoys the best trade-off between the signature size and the
signing/verification time.

In Table 6, AIMer is compared to the state-of-the-art
Rainier signature scheme combined with the BN++ proof
system (denoted BN++Rainr, where r ∈ {3,4}) with all the
optimizations from [47] applied at the 128-bit security level.
AIMer-I enjoys 5.14 to 8.21% shorter signature size than
BN++Rain3 with similar signing and verification time. Com-
pared to BN++Rain4, AIMer achieves more significant im-
provement with 13.98 to 21.15% shorter signature size and
5.59 to 14.84% improved signing and verification perfor-
mance for all the parameter sets.

Scheme N τ
Sign Verify Size
(ms) (ms) (B)

BN++Rain3 [47] 16 33 0.83 0.77 6432
BN++Rain3 [47] 57 23 1.83 1.77 5248
BN++Rain3 [47] 256 17 5.92 5.94 4448
BN++Rain3 [47] 1615 13 28.95 28.33 4048
BN++Rain4 [47] 16 33 0.93 0.86 7488
BN++Rain4 [47] 57 23 2.09 2.01 5984
BN++Rain4 [47] 256 17 6.45 6.23 4992
BN++Rain4 [47] 1615 13 32.85 31.86 4464
AIMer-I 16 33 0.82 0.78 5904
AIMer-I 57 23 1.82 1.77 4880
AIMer-I 256 17 5.96 5.90 4176
AIMer-I 1615 13 29.62 29.17 3840

Table 6: Performance of AIMer, BN++Rain3, and BN++Rain4
at 128-bit security level.

COMPARISON. We compare the performance of AIMer to ex-

isting post-quantum signature schemes at the 128-bit security
level in Table 7. In the first group, we provide the performance
of three algorithms selected as the finalists of the NIST compe-
tition for PQC standardization - CRYSTALS-Dilithium [59],
Falcon [61], and SPHINCS+ [44].

CRYSTALS-Dilithium and Falcon are lattice-based signa-
ture schemes with high efficiency in both bandwidth (signa-
ture size plus public key size) and signing/verification time.
We implemented SPHINCS+ using the SHAKE256 hash func-
tion for a fair comparison between symmetric primitives based
signature schemes. Compared to any of the small and the fast
variants of SPHINCS+, AIMer obviously provides smaller
bandwidth and faster signing time at the cost of slightly slower
verification.

In the second group, we compare existing ZKP-based sig-
nature schemes based on symmetric primitives: Picnic [68],
Limbo [25], Banquet6, Rainier7, and BN++Rain8. In particu-
lar, Picnic is one of the alternate candidates of the third round
of the NIST competition. For Limbo-AES128, we cited the
numbers from the paper as its public implementation is not
available (to the best of our knowledge). When the number
of parties N is set to 16, these schemes require bandwidth
of 12,495 to 30,957 bytes, while AIMer requires 5,936 bytes
with comparable performance in signing and verification time.

Scheme |pk| |sig| Sign Verify
(B) (B) (ms) (ms)

Dilithium2 [59] 1312 2420 0.10 0.03
Falcon-512 [61] 897 690 0.27 0.04
SPHINCS+-128s∗ [44] 32 7856 315.74 0.35
SPHINCS+-128f∗ [44] 32 17088 16.32 0.97
Picnic1-L1-full [68] 32 30925 1.16 0.91
Picnic3-L1 [68] 32 12463 5.83 4.24
Banquet [11] 32 19776 7.09 5.24
Limbo-AES128† [25] 32 21520 2.70 2.00
Rainier3 [32] 32 8544 0.97 0.89
BN++Rain3 [47] 32 6432 0.83 0.77
AIMer-I 32 5904 0.82 0.78
*: -SHAKE-simple
†: measurements are from this paper.

Table 7: Comparison of AIMer to existing (post-quantum)
signature schemes at 128-bit security level. The number of
parties N is set to 16 for ZKP-based signature schemes.

References

[1] Martin Albrecht, Lorenzo Grassi, Christian Rechberger,
Arnab Roy, and Tyge Tiessen. MiMC: Efficient En-
cryption and Cryptographic Hashing with Minimal Mul-

6https://github.com/dkales/banquet
7https://github.com/IAIK/rainier-signatures
8https://github.com/IAIK/bnpp_helium_signatures

13

https://github.com/dkales/banquet
https://github.com/IAIK/rainier-signatures
https://github.com/IAIK/bnpp_helium_signatures

tiplicative Complexity. In ASIACRYPT 2016, pages
191–219. Springer, 2016.

[2] Martin R Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In EUROCRYPT 2015, pages 430–
454. Springer, 2015.

[3] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson,
Siemen Dhooghe, and Alan Szepieniec. Design of
Symmetric-Key Primitives for Advanced Cryptographic
Protocols. IACR Transactions on Symmetric Cryptology,
2020(3), Sep. 2020.

[4] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda,
Mitsuru Matsui, Shiho Moriai, Junko Nakajima, and
Toshio Tokita. Camellia: A 128-Bit Block Cipher Suit-
able for Multiple Platforms — Design and Analysis. In
SAC 2001, pages 39–56. Springer, 2001.

[5] Frederik Armknecht, Ewan Fleischmann, Matthias
Krause, Jooyoung Lee, Martijn Stam, and John Stein-
berger. The preimage security of double-block-length
compression functions. In ASIACRYPT 2011, pages
233–251. Springer, 2011.

[6] Subhadeep Banik, Khashayar Barooti, F. Betül Durak,
and Serge Vaudenay. Cryptanalysis of lowmc instances
using single plaintext/ciphertext pair. IACR Transac-
tions on Symmetric Cryptology, 2020(4):130–146, Dec.
2020.

[7] Subhadeep Banik, Khashayar Barooti, Serge Vaudenay,
and Hailun Yan. New Attacks on LowMC Instances
with a Single Plaintext/Ciphertext Pair. In ASIACRYPT
2021, pages 303–331. Springer, 2021.

[8] Magali Bardet, Jean-Charles Faugere, and Bruno Salvy.
On the complexity of Gröbner basis computation of
semi-regular overdetermined algebraic equations. In
Proceedings of the International Conference on Polyno-
mial System Solving, pages 71–74, 2004.

[9] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and
Pierre-Jean Spaenlehauer. On the complexity of solv-
ing quadratic Boolean systems. Journal of Complexity,
29(1):53–75, 2013.

[10] Carsten Baum and Ariel Nof. Concretely-Efficient
Zero-Knowledge Arguments for Arithmetic Circuits and
Their Application to Lattice-Based Cryptography. In
PKC 2020, pages 495–526. Springer, 2020.

[11] Carsten Baum, Cyprien Delpech de Saint Guilhem,
Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg
Zaverucha. Banquet: Short and fast signatures from
AES. In PKC 2021, pages 266–297. Springer, 2021.

[12] Daniel J. Bernstein and Bo-Yin Yang. Asymptoti-
cally Faster Quantum Algorithms to Solve Multivariate
Quadratic Equations. In PQCrypto 2018, pages 487–
506. Springer, 2018.

[13] Ward Beullens. Breaking rainbow takes a weekend on
a laptop. Cryptology ePrint Archive, Paper 2022/214,
2022. https://eprint.iacr.org/2022/214.

[14] Xavier Bonnetain, Akinori Hosoyamada, María Naya-
Plasencia, Yu Sasaki, and André Schrottenloher. Quan-
tum Attacks Without Superposition Queries: The Offline
Simon’s Algorithm. In ASIACRYPT 2019, pages 552–
583. Springer, 2019.

[15] Wieb Bosma, John Cannon, and Catherine Playoust. The
Magma algebra system. I. The user language. J. Sym-
bolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[16] Wouter Castryck and Thomas Decru. An efficient key
recovery attack on sidh (preliminary version). Cryp-
tology ePrint Archive, Paper 2022/975, 2022. https:
//eprint.iacr.org/2022/975.

[17] Melissa Chase, David Derler, Steven Goldfeder, Clau-
dio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, and Greg Zaverucha. Post-quantum
zero-knowledge and signatures from symmetric-key
primitives. In ACM CCS 2017, pages 1825–1842, 2017.

[18] Yu-Ao Chen and Xiao-Shan Gao. Quantum Algorithm
for Boolean Equation Solving and Quantum Algebraic
Attack on Cryptosystems. Journal of Systems Science
and Complexity, 35(1):373–412, Feb 2022.

[19] Jung Hee Cheon and Dong Hoon Lee. Resistance of
S-Boxes against Algebraic Attacks. In FSE 2004, pages
83–93. Springer, 2004.

[20] Nicolas Courtois, Alexander Klimov, Jacques Patarin,
and Adi Shamir. Efficient algorithms for solving overde-
fined systems of multivariate polynomial equations. In
EUROCRYPT 2000, pages 392–407. Springer, 2000.

[21] Nicolas T. Courtois, Blandine Debraize, and Eric Gar-
rido. On Exact Algebraic [Non-]Immunity of S-Boxes
Based on Power Functions. In ACISP 2006, pages 76–
86. Springer, 2006.

[22] Joan Daemen. Cipher and hash function design strate-
gies based on linear and differential cryptanalysis. Doc-
toral Dissertation, KU Leuven, 1995.

[23] Joan Daemen and Vincent Rijmen. The Design of Rijn-
dael, volume 2. Springer, 2002.

14

https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975

[24] Cyprien Delpech de Saint Guilhem, Lauren De Meyer,
Emmanuela Orsini, and Nigel P Smart. BBQ: Using
AES in picnic signatures. In SAC 2019, pages 669–692.
Springer, 2019.

[25] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini,
and Titouan Tanguy. Limbo: Efficient Zero-Knowledge
MPCitH-Based Arguments. In ACM CCS 2021, page
3022–3036. Association for Computing Machinery,
2021.

[26] Jintai Ding, Vlad Gheorghiu, András Gilyén, Sean Hall-
gren, and Jianqiang Li. Limitations of the Macaulay
matrix approach for using the HHL algorithm to solve
multivariate polynomial systems. arXiv 2111.00405,
2021. https://arxiv.org/abs/2111.00405.

[27] Jintai Ding and Dieter Schmidt. Rainbow, a new multi-
variable polynomial signature scheme. In ACNS 2005,
pages 164–175. Springer, 2005.

[28] Jintai Ding and Dieter Schmidt. Solving Degree and
Degree of Regularity for Polynomial Systems over a
Finite Fields, pages 34–49. Springer, 2013.

[29] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang.
Optimized Interpolation Attacks on LowMC. In ASI-
ACRYPT 2015, volume 9453, pages 535–560. Springer,
2015.

[30] Hans Dobbertin. Almost Perfect Nonlinear Power Func-
tions on GF(2n): The Niho Case. Information and Com-
putation, 151(1):57–72, 1999.

[31] Christoph Dobraunig, Maria Eichlseder, and Florian
Mendel. Higher-Order Cryptanalysis of LowMC. In
ICISC 2015, volume 9558, pages 87–101. Springer,
2016.

[32] Christoph Dobraunig, Daniel Kales, Christian Rech-
berger, Markus Schofnegger, and Greg Zaverucha.
Shorter Signatures Based on Tailor-Made Minimalist
Symmetric-Key Crypto. In ACM CCS 2022, November
2022.

[33] Jelle Don, Serge Fehr, and Christian Majenz. The
measure-and-reprogram technique 2.0: Multi-round fiat-
shamir and more. In CRYPTO 2020, page 602–631.
Springer, 2020.

[34] Shimon Even and Yishay Mansour. A construction
of a cipher from a single pseudorandom permutation.
Journal of Cryptology, 10(3):151–161, Jun 1997.

[35] Jean-Charles Faugère, Kelsey Horan, Delaram
Kahrobaei, Marc Kaplan, Elham Kashefi, and
Ludovic Perret. Fast Quantum Algorithm for

Solving Multivariate Quadratic Equations. Cryp-
tology ePrint Archive, Paper 2017/1236, 2017.
https://eprint.iacr.org/2017/1236.

[36] Ralf Fröberg. An Inequality for Hilbert Series of Graded
Algebras. MATHEMATICA SCANDINAVICA, 56, Dec.
1985.

[37] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
ZKBoo: Faster Zero-Knowledge for Boolean Circuits.
In USENIX Security 2016, pages 1069–1083. USENIX
Association, 2016.

[38] Lorenzo Grassi, Dmitry Khovratovich, Christian Rech-
berger, Arnab Roy, and Markus Schofnegger. Posei-
don: A New Hash Function for Zero-Knowledge Proof
Systems. In USENIX Security 2021, pages 519–535.
USENIX Association, 2021.

[39] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rech-
berger, Dragos Rotaru, and Markus Schofnegger. On a
Generalization of Substitution-Permutation Networks:
The HADES Design Strategy. In EUROCRYPT 2020,
pages 674–704. Springer, 2020.

[40] Lov K. Grover. A Fast Quantum Mechanical Algorithm
for Database Search. In ACM STOC ’96, page 212–219.
Association for Computing Machinery, 1996.

[41] Kishan Chand Gupta and Indranil Ghosh Ray. Finding
Biaffine and Quadratic Equations for S-Boxes Based on
Power Mappings. IEEE Transactions on Information
Theory, 61(4):2200–2209, 2015.

[42] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd.
Quantum Algorithm for Linear Systems of Equations.
Phys. Rev. Lett., 103:150502, Oct 2009.

[43] Akinori Hosoyamada and Yu Sasaki. Cryptanalysis
Against Symmetric-Key Schemes with Online Classical
Queries and Offline Quantum Computations. In CT-RSA
2018, pages 198–218. Springer, 2018.

[44] Andreas Hulsing, Daniel J. Bernstein, Christoph
Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-
Lukas Gazdag, Panos Kampanakis, Stefan Kolbl,
Tanja Lange, Martin M. Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost
Rijneveld, Peter Schwabe, Jean-Philippe Aumasson,
Bas Westerbaan, and Ward Beullens. SPHINCS+.
Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[45] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Zero-knowledge from secure multiparty
computation. In ACM STOC 2007, pages 21–30, 2007.

15

https://arxiv.org/abs/2111.00405
https://eprint.iacr.org/2017/1236
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[46] David Jao, Reza Azarderakhsh, Matt Campagna, Craig
Costello, Luca De Feo, Basil Hess, Amir Jalili, Brian
Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Joost Renes, Vladimir Soukharev, and David
Urbanik. SIKE: Supersingular Isogeny Key Encapsula-
tion. HAL, 2017(0), 2017.

[47] Daniel Kales and Greg Zaverucha. Efficient Lifting
for Shorter Zero-Knowledge Proofs and Post-Quantum
Signatures. Cryptology ePrint Archive, Paper 2022/588,
2022. https://eprint.iacr.org/2022/588.

[48] Daniel J Katz, KU Schmidt, and A Winterhof. Weil
sums of binomials: Properties applications and open
problems. In Combinatorics and Finite Fields: Differ-
ence Sets, Polynomials, Pseudorandomness and Appli-
cations, volume 23, pages 109–134. De Gruyter, 2019.

[49] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.
Improved Non-Interactive Zero Knowledge with Appli-
cations to Post-Quantum Signatures. In ACM CCS 2018,
pages 525–537. ACM, 2018.

[50] Joe Kilian and Phillip Rogaway. How to Protect DES
Against Exhaustive Key Search (an Analysis of DESX).
Journal of Cryptology, 14(1):17–35, Jan 2001.

[51] Aviad Kipnis and Adi Shamir. Cryptanalysis of the
HFE Public Key Cryptosystem by Relinearization. In
CRYPTO ’99, pages 19–30. Springer, 1999.

[52] Hidenori Kuwakado and Masakatu Morii. Quantum
distinguisher between the 3-round Feistel cipher and
the random permutation. In 2010 IEEE International
Symposium on Information Theory, pages 2682–2685,
2010.

[53] Hidenori Kuwakado and Masakatu Morii. Security on
the quantum-type Even-Mansour cipher. In 2012 In-
ternational Symposium on Information Theory and its
Applications, pages 312–316, 2012.

[54] Gregor Leander and Alexander May. Grover Meets
Simon – Quantumly Attacking the FX-construction. In
ASIACRYPT 2017, pages 161–178. Springer, 2017.

[55] Fukang Liu, Takanori Isobe, and Willi Meier. Crypt-
analysis of full LowMC and LowMC-M with algebraic
techniques. In Annual International Cryptology Confer-
ence, pages 368–401. Springer, 2021.

[56] Fukang Liu, Willi Meier, Santanu Sarkar, and Takanori
Isobe. New Low-Memory Algebraic Attacks on
LowMC in the Picnic Setting. IACR Transactions on
Symmetric Cryptology, 2022(3):102–122, Sep. 2022.

[57] Fukang Liu, Santanu Sarkar, Gaoli Wang, Willi Meier,
and Takanori Isobe. Algebraic Meet-in-the-Middle At-
tack on LowMC. Cryptology ePrint Archive, Paper
2022/019, 2022. https://eprint.iacr.org/2022/
019, to appear in Asiacrypt 2022.

[58] Michael Luby and Charles Rackoff. How to Construct
Pseudo-random Permutations from Pseudo-random
Functions. In CRYPTO ’85, pages 447–447. Springer,
1986.

[59] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Peter Schwabe, Gregor Seiler, Damien
Stehlé, and Shi Bai. CRYSTALS-DILITHIUM.
Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[60] Yassir Nawaz, Kishan Chand Gupta, and Guang Gong.
Algebraic Immunity of S-Boxes Based on Power Map-
pings: Analysis and Construction. IEEE Transactions
on Information Theory, 55(9):4263–4273, 2009.

[61] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoff-
stein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Tech-
nology, 2022. available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[62] Christian Rechberger, Hadi Soleimany, and Tyge
Tiessen. Cryptanalysis of Low-Data Instances of Full
LowMCv2. IACR Transactions on Symmetric Cryptol-
ogy, 2018(3):163–181, 2018.

[63] Jan Ferdinand Sauer and Alan Szepieneic. SoK: Gröb-
ner Basis Algorithms for Arithmetization Oriented Ci-
phers. Cryptology ePrint Archive, Paper 2021/870, 2021.
https://eprint.iacr.org/2021/870.

[64] Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas,
Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky,
John M. Schanck, Gregor Seiler, Damien Stehle,
and Jintai Ding. CRYSTALS-KYBER. Technical
report, National Institute of Standards and Tech-
nology, 2022. available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[65] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Mo-
riai, and Tetsu Iwata. The 128-Bit Blockcipher CLE-
FIA (Extended Abstract). In FSE 2007, pages 181–195.
Springer, 2007.

16

https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2022/019
https://eprint.iacr.org/2022/019
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2021/870
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[66] Peter W Shor. Algorithms for quantum computation:
discrete logarithms and factoring. In Proceedings 35th
annual symposium on foundations of computer science,
pages 124–134. IEEE, 1994.

[67] Daniel R. Simon. On the Power of Quantum Computa-
tion. SIAM Journal on Computing, 26(5):1474–1483,
1997.

[68] Greg Zaverucha, Melissa Chase, David Derler, Steven
Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, Jonathan Katz, Xiao
Wang, Vladmir Kolesnikov, and Daniel Kales. Picnic.
Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[69] Mark Zhandry. How to Construct Quantum Random
Functions. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 679–687, 2012.

A Differential Cryptanalysis

Resistance of a substitution-permutation cipher against differ-
ential cryptanalysis is typically estimated by the maximum
expected probability of differential trails [22]. As AIM is a
key-less primitive, we bound the maximum differential prob-
ability without expectation.

Given a pair (∆x,∆y), the differential probability of f :
{0,1}m→{0,1}n is defined by

DP f (∆x,∆y)
def
= Pr

x
[f (x⊕∆x)⊕ f (x) = ∆y] .

The maximal differential probability is defined as follows.

MDP f def
= max

∆x ̸=0,∆y
DP f (∆x,∆y).

So DPMer[e](∆x,∆y) is determined by the number of solutions
to Mer[e](X ⊕∆x)⊕Mer[e](X) = ∆y, which is an equation
of degree 2e−2. Therefore, there are at most 2e−2 solutions
to this equation, which implies

MDPMer[e] ≤ 2e−2
2n .

Now, we can bound the differential probability of the entire
function. See Figure 7 for the notations used in the following
argument. We will write ∆y = (∆y1, . . . ,∆yℓ), and simply

DP(∆x,∆z) = DPLin◦Mer[e1,...,eℓ](∆x,∆z)

where the function in superscript is omitted if it is obvious
(e.g., Lin ◦Mer[e1, . . . ,eℓ] for ∆x→ ∆z). Then we want to
upper bound

MDPAIM = max
∆x∗ ̸=0,∆v∗

DP(∆x∗,∆v∗).

Mer[e1]

Mer[e2]

Mer[e3]

Lin

∆y1

β1

∆y2

β2

∆y3

β3

∆x
α

Mer[e∗]
∆z
γ

∆w

δ

∆v
ε

XOF[iv]

Figure 7: Differential and linear cryptanalysis against the
AIM-V one-way function. See values in red (resp. blue) for
differential cryptanalysis (resp. linear cryptanalysis).

Let Img(∆x∗) = {∆y : ∆x = ∆x∗}x∈F2n . Note that
|Img(∆x∗)| ≤ 2n for any ∆x∗. For a fixed n× ℓn-matrix A, we
have

DP(∆x∗,∆z∗) = ∑
∆y∈Img(∆x∗)∩A−1(∆z∗)

DP(∆x∗,∆y)

≤ ∑
∆y∈Img(∆x∗)∩A−1(∆z∗)

min
1≤i≤ℓ

MDPMer[ei].

Let ε = min1≤i≤ℓ MDPMer[ei]. Let δ > 0 and let A be a block-
wise invertible matrix as in AIM. Assuming an event ∆y ∈
A−1(∆z∗) is independent for each ∆y ∈ Img(∆x∗), we have

Pr
A
[DP(∆x∗,∆z∗)> (1+δ)ε]≤ Pr

X∼B
[X > 1+δ]

where B = Bin
(
|Img(∆x∗)|,PrA[∆y ∈ A−1(∆z∗)]

)
is a bino-

mial distribution. The probabilities PrA[∆y ∈ A−1(∆z∗)] for
ℓ ∈ {2,3} are summarized in Table 8, and the proof is given
in Appendix C.

∆z∗ = 0 ∆z∗ ̸= 0

ℓ= 2
1

2n−1
2n−2

(2n−1)2

ℓ= 3
2n−2

(2n−1)2
(2n−2)2

(2n−1)3 +
1

(2n−1)2

Table 8: PrA[∆y ∈ A−1(∆z∗)] for ℓ ∈ {2,3}.

For a binomial distribution B ′ = Bin(2n,1/2n + 2/22n), we

17

https://csrc.nist.gov/ projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/ projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/ projects/post-quantum-cryptography/round-3-submissions

have

Pr
A
[DP(∆x∗,∆z∗)> (1+δ)(1+2/2n)ε]

≤ Pr
X∼B

[X > (1+δ)(1+2/2n)]

≤ Pr
X ′∼B ′

[X ′ > (1+δ)(1+2/2n)]

<

(
eδ

(1+δ)1+δ

)1+2/2n

by the Chernoff bound. Now, DP(∆x∗,∆v∗) can be expressed
in terms of DP(∆x∗,∆z∗) as follows.

• If ∆v∗ = ∆x∗, then

DP(∆x∗,∆v∗) = DP∆x→∆z(∆x∗,0).

• Otherwise, for a fixed B ∈ Fn
2,

DP(∆x∗,∆v∗)

= ∑
∆z

(
DP(∆x∗,∆z)

×Pr
x

[
Hb(X⊕∆x∗)⊕Hb(X)

= ∆x∗⊕∆v∗

∣∣∣∣ F(X⊕∆x∗)⊕F(X)
= ∆z

])
where F(x) = A ·Mer[e1, . . . ,eℓ](x), G = Mer[e∗], and
Hb(x) = G(F(x)⊕ b). The vector b ∈ Fn

2 is from the
constant addition in affine layers.

We remark that

Eb[DP(∆x∗,∆v∗)] = ∑
∆z

DP(∆x∗,∆z)DP(∆z,∆v∗)

but we do not use this equation since b is public. For δ′ > 0,
assuming the independence, we have

Pr
b
[DP(∆x∗,∆v∗)> (1+δ

′)(2e∗ −2)max
∆z

DP(∆x∗,∆z)]

≤ Pr
X ′′∼B ′′

[X ′′ > (1+δ
′)(2e∗ −2)]

≤

(
eδ′

(1+δ′)1+δ′

)2e∗−2

where B ′′ = Bin
(
2n,max∆z ̸=0 DP(∆z,∆v∗)

)
is a binomial dis-

tribution.
For any ∆x∗ ̸= 0,∆v∗, we have

Pr
A,B

[DP(∆x∗,∆v∗)> (1+δ)(1+2/2n)(1+δ
′)(2e∗ −2)ε]

≤ Pr
A
[max

∆z
DP(∆x∗,∆z)> (1+δ)(1+2/2n)ε]

×

(
eδ′

(1+δ′)1+δ′

)2e∗−2

<

(
eδ

(1+δ)1+δ

)1+2/2n(
eδ′

(1+δ′)1+δ′

)2e∗−2

.

We set the bound at(
eδ

(1+δ)1+δ

)1+2/2n(
eδ′

(1+δ′)1+δ′

)2e∗−2

= 2−λ

for security parameter λ and summarize the values of logγ

such that

Pr
A,B

[
MDPAIM > γ

]
< 2−λ

according to its security level in Table 4. We remark that
γ> 2−λ for each λ does not imply the feasibility of differential
cryptanalysis.

B Linear Cryptanalysis

In contrast to differential cryptanalysis, security against linear
cryptanalysis has been rarely evaluated for key-less primitives.
The reason is that differential cryptanalysis helps finding a
collision or a second preimage while linear cryptanalysis does
not. That said, in order to prevent any possible variant of linear
cryptanalysis, we briefly compute the bias of a correlation
trail assuming the masked sums of inputs and outputs are
independent.

Given a pair (α,β) ∈ F2n ×F×2n , the linear probability of
Mer[e] is defined by

LPMer[e](α,β)
def
=

2
2n ·

∣∣∣{x ∈ F2n : α
⊤x = β

⊤Mer[e](x)}
∣∣∣−1.

The maximal linear probability is defined as follows.

MLPMer[e] def
= max

α,β̸=0
LPMer[e](α,β).

For a non-power-of-2 exponent d such that xd is invertible, the
maximum linear probability of f (x) = xd on Fn

2 has a generic
bound MLP f ≤ (d−1)/2n/2 [48]. Specifically, the maximum
linear probability of a Mersenne S-box is bounded by

MLPMer[e] ≤ 2e−2
2n/2 .

Now, we can bound the linear probability of the entire
function. See Figure 7 for the notations used in the following
argument. We will simply write

LP(α,γ) = LPLin◦Mer[e1,...,eℓ](α,γ)

where the function in superscript is omitted if it is obvious
(e.g., Lin◦Mer[e1, . . . ,eℓ] for α→ γ). Then the bias of a trail

α
∗→ β

∗→ γ
∗→ δ

∗→ ε
∗

18

is computed as

(LP(α∗,β∗)LP(β∗,γ∗)LP(γ∗,δ∗)LP(δ∗,ε∗))2

≤ (LP(α∗,β∗)LP(γ∗,δ∗))2

≤
(

min
1≤i≤ℓ

MLPMer[ei]MLPMer[e∗]
)2

≤ min
1≤i≤ℓ

(2ei −2)2(2e∗ −2)2

22n

assuming independence of each edge. When

min
1≤i≤ℓ

(2ei −2)2(2e∗ −2)2 < 2n,

the bias of AIM is smaller 2−n, and the amount of data re-
quired for linear cryptanalysis becomes at least 2n.

C Computing PrA[∆y ∈ A−1(∆z∗)]

Let Ln denote a set of n×n invertible matrices over F2. Then
we have

Pr
L←Ln

[Lx = y] =
1

2n−1

for nonzero vectors x,y ∈ Fn
2. Note that the zero vector is a

fixed point of any linear transformation.

CASE ℓ= 2. The n×2n matrix A is written as

A = [A1|A2]

where A1,A2 ∈ Ln. Then

Pr
A
[A∆y = ∆z∗] = Pr

A1,A2
[A1∆y1⊕A2∆y2 = ∆z∗]

= Pr
A1,A2

 A2∆y2 ̸= ∆z∗

∧
A1∆y1 = A2∆y2⊕∆z∗

since ∆y1 ̸= 0 for ∆x ̸= 0. If ∆z∗ = 0 then A2∆y2 ̸= ∆z∗ for
every ∆y2 ̸= 0, and hence

Pr
A
[A∆y = 0] = Pr

A
[A1∆y1 = A2∆y2] =

1
2n−1

.

On the other hand, if ∆z∗ ̸= 0 then

Pr
A
[A∆y = ∆z∗] = Pr

A2
[A2∆y2 ̸= ∆z∗]

×Pr
A
[A1∆y1 = A2∆y2⊕∆z∗|A2∆y2⊕∆z∗ ̸= 0]

=
2n−2

(2n−1)2 .

CASE ℓ= 3. The n×3n matrix A is written as

A = [A1|A2|A3]

where A1,A2,A3 ∈ Ln. Then

Pr
A
[A∆y = ∆z∗] = Pr

A1,A2,A3
[A1∆y1⊕A2∆y2⊕A3∆y3 = ∆z∗]

= Pr
A1,A2,A3

 A2∆y2⊕A3∆y3 ̸= ∆z∗

∧
A1∆y1 = A2∆y2⊕A3∆y3⊕∆z∗

since ∆y1 ̸= 0 for ∆x ̸= 0.

If ∆z∗ = 0, then we have

Pr
A2,A3

[A2∆y2 ̸= A3∆y3] =
2n−2
2n−1

. (4)

For any nonzero a, we have

Pr
A
[A1∆y1 = a|A2∆y2⊕A3∆y3 = a] =

1
2n−1

. (5)

Combining (4) and (5), we obtain

Pr
A
[A∆y = 0] = Pr

A2,A3
[A2∆y2 ̸= A3∆y3]

×Pr
A
[A1∆y1 = A2∆y2⊕A3∆y3|A2∆y2 ̸= A3∆y3]

=
2n−2

(2n−1)2 .

Suppose that ∆z∗ ̸= 0. Since ∆y2 is nonzero, we have

Pr
A2,A3

[A2∆y2⊕A3∆y3 ̸= ∆z∗]

= Pr
A2,A3

 A3∆y3 ̸= ∆z∗

∧
A2∆y2 ̸= A3∆y3⊕∆z∗

+Pr

A3
[A3∆y3 = ∆z]

=

(
2n−2
2n−1

)2

+
1

2n−1
.

Therefore, we obtain

Pr
A
[A∆y = ∆z∗] =

(2n−2)2

(2n−1)3 +
1

(2n−1)2 .

D Full Description of AIMer

The AIMer signature scheme consists of three algorithms: key
generation, signing, and verification algorithms. The key gen-
eration takes as input a security parameter and outputs a pub-
lic key (iv,ct) and a secret key pt such that ct= AIM(iv,pt).
The signing algorithm takes as input the pair of secret and
public keys (pt,(iv,ct)) and a message m and outputs the
corresponding signature σ. The verification algorithm takes
as input the public key (iv,ct), a message m and a signature σ

and outputs either Accept or Reject. We describe the AIMer
signing and verification algorithms in Algorithm 1 and 2,
respectively.

19

The BN++ proof system is combined with AIM, yielding
the AIMer signature scheme. The AIM function has been
designed to fully exploit the optimization techniques of the
BN++ proof system using repeated multipliers for checking
multiplication triples and locally computed output shares to
reduce the overall signature.

REPEATED MULTIPLIER. If multiplication triples share the
same multiplier, then the α values in the multiplication check-
ing protocol can be batched as mentioned in Section 2.3. The
ℓ+1 S-box evaluations in AIM produce the ℓ+1 multiplica-
tion triples that needs to be verified, reformulated as follows.

pt · ti = pt2ei

for i = 1, . . . , ℓ, and

pt ·Lin[iv](t) = (Lin[iv](t))2e∗
+ ct ·Lin[iv](t)

where ti, i = 1,2, . . . , ℓ, is the output of the i-th S-box and
t def
= [t1| . . . |tℓ]. Since every multiplication triple shares the

same multiplier pt, a single value of α can be included in the
signature instead of ℓ+1 different values.

LOCALLY COMPUTED OUTPUT SHARES. For the above mul-
tiplication triples, every multiplication output share on the
right-hand side can be locally computed without communica-
tion between parties. Hence, it is possible to remove the share
∆z in the signature. This technique is similar with multiplica-
tions with public output, suggested in BN++.

For the first ℓ multiplications, each party computes the
output as (pt(i))2ei based on their input share pt(i) using linear
operations. For the last multiplication output, the output is
determined as follows.{

(Aiv · t(i)+biv)2e∗
+ ct · (Aiv · t(i)+biv) for i = 1,

(Aiv · t(i))2e∗
+ ct · (Aiv · t(i)) for i≥ 2,

where t(i) ∈ Fℓn
2 is the output shares of the first ℓ S-boxes for

the i-th party: t(i) = [t(i)1 | . . . |t
(i)
ℓ].

With the above optimization techniques applied, the signa-
ture size is given as

6λ+ τ · (λ · ⌈log2(N)⌉+(ℓ+5) ·λ).

OTHER SYMMETRIC PRIMITIVES IN USE. The SHAKE128
(resp. SHAKE256) XOF is used to instantiate hash func-
tions Commit, H1, H2 and pseudorandom generators Expand
and ExpandTape in the signature scheme for λ = 128 (resp.
λ ∈ {192,256}). Sample(tape) samples an element from a
random tape tape, which is an output of ExpandTape, track-
ing the current position of the tape.

20

Algorithm 1: Sign(pt,(iv,ct),m) - AIMer signature scheme, signing algorithm.

// Phase 1: Committing to the seeds and the execution views of the parties.

1 Sample a random salt salt $←− {0,1}2λ.
2 Compute the first ℓ S-boxes’ outputs t1, . . . , tℓ.
3 Derive the binary matrix Aiv ∈ (Fn×n

2)ℓ and the vector biv ∈ Fn
2 from the initial vector iv.

4 for each parallel execution k ∈ [τ] do
5 Sample a root seed : seedk

$←− {0,1}λ.

6 Compute parties’ seeds seed(1)k , . . . ,seed
(N)
k as leaves of binary tree from seedk.

7 for each party i ∈ [N] do
8 Commit to seed: com(i)

k ← Commit(salt,k, i,seed(i)k).

9 Expand random tape: tape(i)k ← ExpandTape(salt,k, i,seed(i)k).

10 Sample witness share: pt(i)k ← Sample(tape
(i)
k).

11 Compute witness offset and adjust first witness: ∆ptk← pt−∑i pt
(i)
k , pt(1)k ← pt

(1)
k +∆ptk.

12 for each S-box with index j do
13 if j ≤ ℓ then
14 For each party i, sample a S-box output: t(i)k, j← Sample(tape

(i)
k).

15 Compute output offset and adjust first share: ∆tk, j = t j−∑i t
(i)
k, j, t(1)k, j ← t(1)k, j +∆tk, j.

16 For each party i, set x(i)k, j = t(i)k, j and z(i)k, j = (pt
(i)
k)2e j .

17 if j = ℓ+1 then
18 For i = 1, set x(i)k, j = Aiv · t

(i)
k,∗+biv where t(i)k,∗ = [t(i)k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ S-boxes.

19 For each party i ∈ [N]\{1}, set x(i)k, j = Aiv · t
(i)
k,∗

20 For each party i, set z(i)k, j = (x(i)k, j)
2e∗

+ ct · x(i)k, j.

21 For each party i, set a(i)k ← Sample(tape
(i)
k).

22 Compute ak = ∑
N
i=1 a(i)k .

23 Set ck = ak ·pt.
24 For each party i, set c(i)k ← Sample(tape

(i)
k).

25 Compute offset and adjust first share : ∆ck = ck−∑i c(i)k , c(1)k ← c(1)k +∆ck.

26 Set σ1←
(
salt,((com

(i)
k)i∈[N],∆ptk,∆ck,(∆tk, j) j∈[ℓ])k∈[τ]

)
.

// Phase 2: Challenging the checking protocol.
27 Compute challenge hash: h1← H1(m, iv,ct,σ1).
28 Expand hash: ((εk, j) j∈[ℓ+1])k∈[τ]← Expand(h1) where εk, j ∈ F2n .

// Phase 3. Commit to the simulation of the checking protocol.
29 for each repetition k do
30 Simulate the triple checking protocol as in Section 2.3 for all parties with challenge εk, j. The inputs are

((x(i)k, j,pt
(i)
k ,z(i)k, j) j∈[ℓ+1],a

(i)
k ,b(i)k ,c(i)k), where b(i)k = pt

(i)
k , and let α

(i)
k and v(i)k be the broadcast values.

31 Set σ2←
(
salt,((α

(i)
k ,v(i)k)i∈[N])k∈[τ]

)
.

// Phase 4. Challenging the views of the MPC protocol.
32 Compute challenge hash: h2← H2(h1,σ2).
33 Expand hash: (īk)k∈[τ]← Expand(h2) where īk ∈ [N].

// Phase 5. Opening the views of the MPC and checking protocols.
34 for each repetition k do
35 seedsk←{⌈log2(N)⌉ nodes to compute seed

(i)
k for i ∈ [N]\{īk}}.

36 Output σ← (salt,h1,h2,(seedsk,com
(īk)
k ,∆ptk,∆ck,(∆tk, j) j∈[ℓ],α

(īk)
k)k∈[τ]).

21

Algorithm 2: Verify((iv,ct),m,σ) - AIMer signature scheme, verification algorithm.

1 Parse σ as
(
salt,h1,h2,

(
seedsk,com

(īk)
k ,∆ptk,∆ck,(∆tk, j) j∈[ℓ],α

(īk)
k

)
k∈[τ]

)
.

2 Derive the binary matrix Aiv ∈ (Fn×n
2)ℓ and the vector biv ∈ Fn

2 from the initial vector iv.
3 Expand hashes: ((εk, j) j∈[ℓ+1])k∈[τ]← Expand(h1) and (īk)k∈[τ]← Expand(h2).
4 for each parallel repetition k ∈ [τ] do
5 Uses seedsk to recompute seed

(i)
k for i ∈ [N]\{īk}.

6 for each party i ∈ [N]\{īk} do
7 Recompute com

(i)
k ← Commit(salt,k, i,seed(i)k),

8 tape
(i)
k ← ExpandTape(salt,k, i,seed(i)k) and

9 pt
(i)
k ← Sample(tape

(i)
k).

10 if i = 1 then
11 Adjust first share: pt(i)k ← pt

(i)
k +∆ptk

12 for each S-box with index j do
13 if j ≤ ℓ then
14 Sample a S-box output: t(i)k, j← Sample(tape

(i)
k).

15 if i = 1 then
16 Adjust first share: t(1)k, j ← t(1)k, j +∆tk, j.

17 Set x(i)k, j = t(i)k, j and z(i)k, j = (pt
(i)
k)2e j .

18 if j = ℓ+1 then
19 if i = 1 then
20 Set x(i)k, j = Aiv · t

(i)
k,∗+biv where t(i)k,∗ = [t(i)k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ S-boxes.

21 else
22 Set x(i)k, j = Aiv · t

(i)
k,∗.

23 Set z(i)k, j = (x(i)k, j)
2e∗

+ ct · x(i)k, j.

24 Set a(i)k ← Sample(tape
(i)
k) and c(i)k ← Sample(tape

(i)
k).

25 if i = 1 then
26 Adjust first share c(i)k ← c(i)k +∆ck.

27 Set σ1←
(
salt,

(
(com

(i)
k)i∈[N],∆ptk,∆ck,(∆tk, j) j∈[ℓ]

)
k∈[τ]

)
.

28 Set h′1← H1(m, iv,ct,σ1).
29 for each parallel execution k ∈ [τ] do
30 for each party i ∈ [N]\{īk} do
31 Simulate the triple checking protocol as defined in Section 2.3 for all parties with challenge εk, j. The inputs are

((x(i)k, j,pt
(i)
k ,z(i)k, j) j∈[ℓ+1],a

(i)
k ,b(i)k ,c(i)k), where b(i)k = pt

(i)
k , and let α

(i)
k and v(i)k be the broadcast values.

32 Compute v(īk)k = 0−∑i̸=īk v(i)k .

33 Set σ2←
(
salt,((α

(i)
k ,v(i)k)i∈[N])k∈[τ]

)
34 Set h′2 = H2(h1,σ2).
35 Output Accept if h1 = h′1 and h2 = h′2.
36 Otherwise, output Reject.

22

	Introduction
	Our Contribution

	Preliminaries
	Notation
	Algebraic Attacks
	BN++ Zero-knowledge Protocol

	Refining Algebraic Cryptanalysis of Power Functions over Binary Fields
	Gröbner Basis Attack over F2
	XL Attack over F2

	AIM: Our New Symmetric Primitive
	Specification
	Design Rationale

	Security Analysis
	Algebraic Attacks
	Quantum Attacks
	Statistical Attacks
	Security Proof

	Performance Evaluation
	Differential Cryptanalysis
	Linear Cryptanalysis
	Computing A[y A-1(z*)]
	Full Description of AIMer

