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Abstract. Post-quantum signature schemes based on the MPC-in-the-Head (MPCitH) paradigm are
recently attracting significant attention as their security solely depends on the one-wayness of the
underlying primitive, providing diversity for the hardness assumption in post-quantum cryptography.
Recent MPCitH-friendly ciphers have been designed using simple algebraic S-boxes operating on a
large field in order to improve the performance of the resulting signature schemes. Due to their simple
algebraic structures, their security against algebraic attacks should be comprehensively studied.
In this paper, we refine algebraic cryptanalysis of power mapping based S-boxes over binary extension
fields, and cryptographic primitives based on such S-boxes. In particular, for the Gröbner basis attack
over F2, we experimentally show that the exact number of Boolean quadratic equations obtained from
the underlying S-boxes is critical to correctly estimate the theoretic complexity based on the degree
of regularity. Similarly, it turns out that the XL attack might be faster when all possible quadratic
equations are found and used from the S-boxes. This refined cryptanalysis leads to more precise algebraic
analysis of cryptographic primitives based on algebraic S-boxes.
Considering the refined algebraic cryptanalysis, we propose a new one-way function, dubbed AIM, as
an MPCitH-friendly symmetric primitive with high resistance to algebraic attacks. The security of
AIM is comprehensively analyzed with respect to algebraic, statistical, quantum, and generic attacks.
AIM is combined with the BN++ proof system, yielding a new signature scheme, dubbed AIMer.
Our implementation shows that AIMer outperforms existing signature schemes based on symmetric
primitives in terms of signature size and signing time.

Keywords: post-quantum, digital signature, MPC-in-the-head, algebraic analysis, Gröbner basis, power
mapping

1 Introduction

With a substantial amount of research on quantum computers in recent years, the security threats posed
by quantum computers are rapidly becoming a reality. Cryptography is considered particularly risky in the
quantum computing environment since the security of most widely used public key schemes relies on the
hardness of factoring or discrete logarithm, which is solved in polynomial time with a quantum computer [84].
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This encourages the cryptographic community to investigate post-quantum cryptographic schemes which are
resilient to quantum attacks. NIST initiated a competition for post-quantum cryptography (PQC) standard-
ization, and recently announced its selected algorithms: CRYSTALS-Kyber [82] as a public key encryption
scheme, and CRYSTALS-Dilithium [72], Falcon [76], and SPHINCS+ [53] as digital signature schemes.

MPC-in-the-Head based Signature. MPC-in-the-Head (MPCitH), proposed by Ishai et al. [54], is a
paradigm to construct a zero-knowledge proof (ZKP) system from a multiparty computation (MPC) proto-
col. Its practicality is demonstrated by the ZKBoo scheme, the first efficient MPCitH-based proof scheme
proposed by Giacomelli et al. [46]. One of the main applications of the MPCitH paradigm is to construct
a post-quantum signature as follows. Given a one-way function f and an input-output pair (x, y) such that
f(x) = y, one can construct a digital signature scheme with secret key x, public key y, and non-interactive
zero-knowledge proof of the knowledge (NIZKPoK) of the secret x as a signature.

The main advantage of MPCitH-based signature schemes is that their security solely depends on the
security of the one-way function used in key generation, which makes them more reliable compared to
the schemes whose security is based on the hardness assumption of certain mathematical problems with
a potential gap in the security reduction. For example, a multivariate signature scheme Rainbow [32] has
been recently broken by exploiting the gap between its hardness assumption and the actual security [19].
Also, an isogeny-based key exchange algorithm SIKE [57] reveals its weakness as its security assumption
does not hold [23]. In this context, MPCitH-based signature schemes are attracting significant attention as
they provide diversity for the underlying hardness assumption. The recent call of NIST for additional digital
signature schemes [75] also expressed primary interest in signature schemes that are not based on structured
lattices.

Picnic [24] is the first and the most famous signature scheme based on the MPCitH paradigm; it combines
an MPC-friendly block cipher LowMC [3] and an MPCitH proof system called ZKB++, which is an optimized
variant of ZKBoo. Katz et al. [60] proposed a new proof system KKW by further improving the efficiency of
ZKB++ with pre-processing, and updated Picnic accordingly. The updated version of Picnic was the only
ZKP-based scheme that advanced to the third round of the NIST PQC competition.

LowMC is relatively a new design which can be computed efficiently in the MPC environment, where the
AND operation is significantly expensive compared to XOR. There have been various attacks on LowMC,
partially motivated by the LowMC challenge,4 some of which have worked effectively [36, 37, 77, 10, 66,
11, 68, 69], and the LowMC parameters have been modified accordingly. Due to the security concern on
LowMC, there have been attempts to construct MPCitH-based signature schemes from the one-wayness of
the standard AES block cipher.5 In this way, the hardness of key recovery from a single evaluation of AES is
reduced to the security of the basing signature scheme. BBQ [79] and Banquet [15] are AES-based signature
schemes, where BBQ employs the KKW proof system and Banquet improves BBQ by injecting shares for
intermediate states.

To fully exploit efficient multiplication over a large field in the Banquet proof system, Dobraunig et al.
proposed MPCitH-friendly ciphers LS-AES and Rain. They are substitution-permutation ciphers based on
the inverse S-box over a large field [38]. This design strategy increases the efficiency of the resulting MPCitH-
based signature scheme, while the number of rounds should be carefully determined by comprehensive anal-
ysis on any possible algebraic attack due to their simple algebraic structures. Kales and Zaverucha [58]
proposed a number of optimization techniques to further improve the efficiency of the Baum and Nof’s proof
system [14], and their variant is called BN++. When Rain is combined with BN++, the resulting signature
scheme enjoys the shortest signature size for the same level of signing/verification time (compared to existing
MPCitH-based signatures) to the best of our knowledge.

Recently, a number of computational problems have been considered in the MPCitH paradigm such as
the syndrome decoding problem [43], the subset sum problem [44], multivariate quadratic problems and a
lattice problem [20, 18]. A PRF from alternating moduli has also been studied [35]. Most of these schemes
are based on well-known security assumptions, while their performance is not competitive in general, so we
regard them as rather orthogonal to our symmetric primitive-based scheme.

4 https://lowmcchallenge.github.io/
5 For a given plaintext-ciphertext pair, it is hard to find the secret key.
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1.1 Our Contribution

The main contribution of this paper is two-fold. First, we refine algebraic cryptanalysis of power mapping
based S-boxes over binary extension fields, and cryptographic primitives based on such S-boxes. In particular,
we focus on the Gröbner basis and the XL (eXtended Linearization) attacks since they allow one to solve a
system of equations from only a single evaluation of a one-way function, which is the case when it is used
in an MPCitH-based signature scheme. Most of previous works on symmetric primitives over large fields
analyzed their security against the Gröbner basis attack only over the large fields [1, 47, 4, 38]. Dobraunig et
al. consider the analysis over F2 [38], but only deal with the equations of high degrees. We apply the Gröbner
basis attack to the system of equations of low degrees over F2 using intermediate variables. When it comes
to the Gröbner basis attack over F2, we experimentally show that the exact number of Boolean quadratic
equations obtained from the underlying S-boxes is critical to correctly estimate the theoretic complexity
based on the degree of regularity. Similarly, it turns out that the XL attack might be faster when all possible
quadratic equations are found and used from the S-boxes. These results lead to more precise algebraic analysis
of cryptographic primitives based on algebraic S-boxes.

Second, with a design rationale based on the refined algebraic cryptanalysis, we propose a new one-
way function, dubbed AIM,6 as an MPCitH-friendly symmetric primitive with high resistance to algebraic
attacks. AIM uses Mersenne S-boxes based on power mappings with exponents of the form 2e−1. Compared
to the typical inverse S-box, Mersenne S-boxes turn out to provide higher resistance to algebraic attacks.
The security of AIM is comprehensively analyzed with respect to algebraic, statistical, quantum and generic
attacks. AIM is combined with the BN++ proof system, one of the state-of-the-art MPCitH proof systems
working on large fields, yielding a new signature scheme, dubbed AIMer. The AIM function has been designed
to fully exploit various optimization techniques of the BN++ proof system to reduce the overall signature
size without significantly sacrificing the signing and the verification time.

We implement the AIMer signature scheme and compare its benchmark to existing post-quantum sig-
natures on the same machine. Our implementation result is summarized in Section 6. Compared to the
signature schemes based on the BN++ proof system combined with the 3-round (resp. 4-round) Rain, AIMer
enjoys not only 8.21% (resp. 21.15%) shorter signature size but also 1.22% (resp. 13.41%) improved signing
performance at 128-bit security level with the number of parties N being set to 16.

2 Preliminaries

2.1 Notation

For two vectors a and b over a finite field, their concatenation is denoted by a∥b. For a positive integer n,
hw(n) denotes the Hamming weight of n in its binary representation, and we write [n] = {1, · · · , n}.

Unless stated otherwise, all logarithms are to the base 2. The complexity of matrix multiplication of two
n× n matrices is O(nω) for some ω such that 2 ≤ ω ≤ 3. The constant ω is called the matrix multiplication
exponent, and it will be conservatively set to 2 in this paper.

For a set S, we will write a← S to denote that a is chosen uniformly at random from S. For a probability
distribution D, a← D denotes that a is sampled according to the distribution D.

In the multiparty computation setting, x(i) denotes the i-th party’s additive share of x, which implies
that

∑
i x

(i) = x.

2.2 Algebraic Attacks

An algebraic attack on a symmetric primitive is to model it as a system of multivariate polynomial equations
and to solve it using algebraic techniques. A straightforward way of establishing a system of equations is
to represent the output of the primitive as a polynomial of the input including the secret key. In order to

6 This name is an abbreviation of Affine-Interleaved Mersenne S-boxes.
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reduce the degree of the system of equations, intermediate variables might be introduced. For example, all
the inputs and outputs of the underlying S-boxes can be regarded as independent variables.

One of the well-known methods of solving a system of equations is to define a system of linear equations
by replacing every monomial of degree greater than one by a new variable and solve it, which is called
trivial linearization. In the linearizaton, a large number of new variables might be introduced, and that
many equations are also needed to determine a solution to the system of (linear) equations. However, in
most ZKP-based digital signature schemes, one is given only a single evaluation of the underlying primitive,
which limits the total number of equations thereof. For this reason, our focus will be put on algebraic attacks
possibly using a small number of equations such as the Gröbner basis attack and the XL attack.

Gröbner Basis Attack. The Gröbner basis attack is to solve a system of equations by computing its
Gröbner basis. The attack consists of the following steps.

1. Compute a Gröbner basis in the grevlex (graded reverse lexicographic) order.
2. Change the order of terms to obtain a Gröbner basis in the lex (lexicographic) order.
3. Find a univariate polynomial in this basis and solve it.
4. Substitute this solution into the Gröbner basis and repeat Step 3.

When a system of equations has only finitely many solutions in its algebraic closure, its Gröbner basis in the
lex order always contains a univariate polynomial. When a single variable of the polynomial is replaced by
a concrete solution, the Gröbner basis still remains a Gröbner basis of the “reduced” system, allowing one
to obtain a univariate polynomial again for the next variable. We refer to [81] for more details on Gröbner
basis computation.

The complexity of Gröbner basis computation can be estimated using the degree of regularity of the
system of equations [12]. Consider a system of m equations in n variables {fi}mi=1. Let di denote the degree
of fi for i = 1, 2, . . . ,m. If the system of equations is over-defined, i.e., m > n, then the degree of regularity
can be estimated by the smallest of the degrees of the terms with non-positive coefficients for the following
Hilbert series under the semi-regular assumption [45].

HS(z) =
1

(1− z)n

m∏
i=1

(1− zdi).

Given the degree of regularity dreg, the complexity of computing a Gröbner basis of the system is known to
be

O

((
n+ dreg
dreg

)ω)
.

In the Gröbner basis attack, one always obtains an over-defined system of equations since each variable
x should be contained in a finite field Fpe for some characteristic p, and hence x satisfies xpe −x = 0 called a
field equation. By including field equations in the system of equations, one can remove any possible solution
outside Fpe (in the algebraic closure). For some symmetric primitives, the field equations have not been
taken into account in their analysis of the Gröbner basis attack [3, 4, 47, 38]. It does not mean that they are
broken under the modified analysis, while considering the field equations would lead to more precise analysis
of the Gröbner basis attack.

XL Attack. The XL algorithm, proposed by Courtois et al. [27], can be viewed as a generalization of
the relinearization attack [62]. For a system of m quadratic equations in n variables over F2, the trivial
linearization does not work if m is smaller than the number of monomials appearing in the system.

The XL algorithm extends the system of equations by multiplying all the monomials of degree at most
D − 2 for some D > 2 to obtain a larger number of linearly independent equations. Since the number of
monomials of degree at most D − 2 is

∑D−2
i=1

(
n
i

)
, the resulting system consists of (

∑D−2
i=0

(
n
i

)
)m equations

of degree at most D with at most
∑D

i=1

(
n
i

)
monomials of degree at most D. When the number of equations

equals the number of monomials as D grows, one can solve the extended system of equations by linearization.
The complexity of the XL attack depends on the number of linearly independent equations obtained

from the XL algorithm, while we can loosely upper bound the number of linearly independent equations by
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(
∑D−2

i=0

(
n
i

)
)m. Under the assumption that all the equations obtained from the XL algorithm are linearly

independent, which is in favor of the attacker, we can search for the (smallest) degree D such that(
D−2∑
i=0

(
n

i

))
m ≥ TD (1)

where TD denotes the exact number of monomials appearing in the extended system of equations, which
is upper bounded by

∑D
i=1

(
n
i

)
. Once D is fixed, the extended system of equations can be solved by trivial

linearization whose time complexity is given as O (Tω
D) .

In the XL attack over F2, we do not contain the field equations since we already have taken advantage
of them in counting the number of variables and extending the system. If we consider the field equations
separately, monomials such as x2 and x3 should be regarded different ones from x for x ∈ F2, and they
should be reduced to x by a linear combination with the field equation of x and its extended equations such
as x2 + x = 0 and x3 + x2 = 0. It would be better to regard them as the same as x without adding the field
equations to the system.

2.3 BN++ Zero-knowledge Protocol

In this section, we briefly review the BN++ proof system [58], one of the state-of-the-art MPCitH zero-
knowledge protocols. The BN++ protocol will be combined with our symmetric primitive AIM to construct
the AIMer signature scheme which is fully described in Appendix E. At a high level, BN++ is a variant of
the BN protocol [14] with several optimization techniques applied to reduce the signature size.

Protocol Overview. The BN++ protocol follows the MPCitH paradigm [54]. In order to check C mul-
tiplication triples (xj , yj , zj = xj · yj)Cj=1 over a finite field F in the multiparty computation setting with N

parties, helping values ((aj , bj)
C
j=1, c) are required, where aj ← F, bj = yj , and c =

∑C
j=1 aj · bj . Each party

holds secret shares of the multiplication triples (xj , yj , zj)
C
j=1 and helping values ((aj , bj)

C
j=1, c). Then the

protocol proceeds as follows.

– A prover is given random challenges ϵ1, · · · , ϵC ∈ F.
– For i ∈ [N ], the i-th party locally sets α

(i)
1 , · · · , α(i)

C where α
(i)
j = ϵj · x(i)

j + a
(i)
j .

– The parties open α1, · · · , αC by broadcasting their shares.
– For i ∈ [N ], the i-th party locally sets

v(i) =

C∑
j=1

ϵj · z(i)j −
C∑

j=1

αj · b(i)j + c(i).

– The parties open v by broadcasting their shares and output Accept if v = 0.

The probability that there exist incorrect triples and the parties output Accept in a single run of the above
steps is upper bounded by 1/|F|.
Signature Size. By applying the Fiat-Shamir transform [39], one can obtain a signature scheme from the
BN++ proof system. In this signature scheme, the signature size is given as

6λ+ τ · (3λ+ λ · ⌈log2(N)⌉+M(C)),

where λ is the security parameter, C is the number of multiplication gates in the underlying symmetric
primitive, andM(C) = (2C + 1) · log2(|F|). In particular,M(C) has been defined so from the observation
that sharing the secret share offsets for (zj)

C
j=1 and c, and opening shares for (αj)

C
j=1 occurs for each

repetition, using C, 1, and C elements of F, respectively. For more details, we refer to [58].

Optimization Techniques. If multiplication triples use an identical multiplier in common, for example,
given (x1, y, z1) and (x2, y, z2), then the corresponding α values can be batched to reduce the signature size.
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Instead of computing α1 = ϵ1 · x1 + a1 and α2 = ϵ2 · x2 + a2, α = ϵ1 · x1 + ϵ2 · x2 + a is computed, and v is
defined as

v = ϵ1 · z1 + ϵ2 · z2 − α · y + c,

where c = a ·y. This technique is called repeated multiplier technique. Our symmetric primitive design allows
us to take full advantage of this technique to reduce the number of α values in each repetition of the protocol.

If the output of the multiplication zi can be locally generated from each share, then the secret share
offset is not necessarily included in the signature.

3 Refining Algebraic Cryptanalysis of Power Functions over Binary Fields

Representation in F2 and its Extension Field. When a symmetric primitive is defined with arithmetic
in a large field, it is straightforward to establish a system of equations from a single evaluation of the primitive
using the same field arithmetic. If the underlying field is a binary extension field F2n for some n, then it is
also possible to establish a system of equations over F2. Suppose that {1, β, . . . , βn−1} is a basis of F2n over
F2. Then each variable x ∈ F2n can be represented as n Boolean variables x0, x1, . . . , xn−1 ∈ F2 by setting
x =

∑n−1
i=0 xiβ

i. Using the representation of βn with respect to this basis, every polynomial equation over
F2n can be transformed into n equations over F2.

On the other hand, a linear equation over F2 is represented by a linearized polynomial over F2n :

n−1∑
i=0

aix
2i = a0x+ a1x

21 + a2x
22 + · · ·+ an−1x

2n−1

(2)

where a0, a1, . . . , an−1 ∈ F2n .
Suppose that variables x and y in F2n are represented by {xi}n−1

i=0 and {yi}n−1
i=0 , respectively, in F2. If

y = xa for some a, then each yi is represented as a multivariate polynomial of xi’s of degree hw(a). For
instance, the inverse S-box y = x2n−2 can be represented as a system of n Boolean equations of degree n−1.

For most of the previous works on symmetric primitives over large fields, their security against algebraic
attacks has been analyzed mainly over the large fields [1, 47, 4, 38]. On the other hand, it is also possible to
represent the primitive by a system of equations over the prime subfield. For example, Rain [38] has been
analyzed by representing its inverse S-box by a system of Boolean equations of degree n−1 induced from the
equation y = x2n−2 over F2n . However, we note that it is also possible to build a quadratic system of equations
over F2 using the equation xy = 1 over F2n . In this work, we will consider all possible representations of the
underlying algebraic S-boxes, and analyze the security of AIM against the Gröbner basis attack and the XL
attack.

Number of Quadratic Equations. The efficiency of algebraic cryptanalysis heavily depends on the
number of variables, the number of equations, and their degrees for the system of equations. As discussed
above, a powering function y = xa over F2n can be represented as a system of n equations of degree hw(a)
over F2. The resulting equations are explicit ones in a sense that each output variable is represented by an
equation only in the input variables. However, their implicit representation might consist of equations of
degrees smaller than the explicit ones. For example, y = x2n−2 obtained from the inverse S-box is equivalent
to the quadratic equation xy = 1 over F2n , assuming the input x is nonzero, or a certain set of n quadratic
equations in n variables over F2.

Implicit representation over F2 might also increase the number of (linearly independent) equations. There
has been a significant amount of research on the number of linearly independent quadratic equations obtained
from power functions over F2n [26, 28, 74, 50]. For example, Cheon and Lee [26] showed that one has 5n
quadratic equations over F2 from xy = 1 over F2n . Later, Courtois et al. [28] pointed out that the relation
xy = 1 holds only when x and y are nonzero, and further showed that 5n− 1 linearly independent quadratic
equations are obtained from the exact representation of the inverse S-box. In the following, we will study
how the number of quadratic equations obtained from a power mapping based S-box affects the complexity
of the Gröbner basis attack and the XL attack on a symmetric primitive based on the S-box. As a concrete
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primitive, we consider a single key variant of the Even-Mansour cipher [41], where the inner permutation is
instantiated as R ◦ S ◦ L for random affine maps L and R, and the target S-box S.
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Fig. 1: The estimated degree of regularity dreg and the solving degree sd for the basic and the full systems
of equations constructed from a single evaluation of an Even-Mansour cipher built on top of each of NGG,
Mersenne, and the inverse S-boxes, where each S-box generates νn linearly independent quadratic equations.

3.1 Gröbner Basis Attack over F2

n
Degree of Regularity Complexity (bits)

ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

128 17 11 9 8 7 144.6 104.9 90.1 82.2 74.0
192 23 15 12 10 9 204.0 148.8 125.5 108.9 100.3
256 29 19 14 12 10 263.1 192.6 152.5 135.2 117.0

Table 1: The estimated degree of regularity for an Even-Mansour cipher and the corresponding time com-
plexity for computing a Gröbner basis according to the value of ν and the block size n ∈ {128, 192, 256},
where each S-box generates νn linearly independent quadratic equations.

In order to see how the number of quadratic equations from a power mapping based S-box affects the
time complexity of the Gröbner basis computation, we compare the theoretic estimation of the degree of
regularity and the solving degree [33], which is the highest degree reached during the actual Gröbner basis
computation, for toy parameters. The solving degrees are obtained with grevlex order.

We will consider three types of S-boxes: the inverse S-box y = x2n−2, a Mersenne S-box y = x2e−1 for
some e, and an S-box represented by y = x2s+1+2s−1−1 for n = 2s, which is called an NGG S-box (after
the authors of [74] that studied its properties). Each S-box is a powering function of the form y = xa where
hw(a+ 1) ∈ {0, 1, 2}. Since xa+1 is of degree at most two over F2, each S-box defines n quadratic equations
over F2 from an implicit equation xy = xa+1.

It is known that an NGG S-box defines 2n quadratic equations over F2 if n ≥ 8 [74]. For a Mersenne
S-box, we find e such that y = x2e−1 defines 3n quadratic equations over F2 using the algorithm proposed in
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[74]. When it comes to the inverse S-box, we will assume that it defines 5n quadratic equations over F2 from
the quadratic relation xy = 1 over F2n [26].7 Denoting the number of quadratic equations of the S-boxes by
νn, we have ν = 2 for the NGG S-box, ν = 3 for the Mersenne S-box, and ν = 5 for the inverse S-box.

For each S-box, we consider two different types of systems of equations: the basic system containing only
n quadratic equations directly obtained from the implicit quadratic relation such as xy = 1 and xy = x2e ,
and the full system containing the exact number of quadratic equations induced from the S-box definition.
The exact quadratic equations describing the full system is computed by the algorithm proposed in [50].

With toy parameters, we compute a Gröbner basis for a system of equations defined by a single evaluation
of an Even-Mansour ciphers based on each of the three S-boxes, using MAGMA [22]. Figure 1 compares the
estimated degree of regularity and the solving degree sd. We observe that for both the basic and the full
systems, their solving degrees are close to the theoretically estimated degree of regularity for the full system.

The three S-boxes differ in the actual running time of Gröbner basis computation as shown in Appendix A.
We observe that Gröbner basis computation becomes faster given a larger number of quadratic equations.

In Table 1, we summarize the estimated degree of regularity for an evaluation of an Even-Mansour
cipher, and the corresponding time complexity for Gröbner basis computation for various values of ν and
n ∈ {128, 192, 256}. We observe that the time complexity significantly decreases as ν grows. We can conclude
that the exact number of quadratic equations from an S-box, represented by the constant ν, is critical to
algebraic cryptanalysis of a primitive built on the S-box.
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Fig. 2: Theoretical and experimental estimations for the target degree D of the XL attack for the basic and
the full systems of equations constructed from a single evaluation of an Even-Mansour ciphers based on
NGG, Mersenne, and the inverse S-boxes, where each S-box generates νn linearly independent quadratic
equations.

3.2 XL Attack over F2

To see the impact of the number of quadratic equations from the underlying S-box on the XL attack, we
implemented the XL algorithm for an Even-Mansour cipher with toy parameters. We observed that all the
systems induced by NGG, Mersenne, and the inverse S-boxes are dense; all the monomials of degrees up to
D appear during the execution of the algorithm.

Figure 2 compares the smallest degree D satisfying (1) (denoted “theory”) and the actual degree D
for which the number of extended equations is almost the same as the number of monomials (denoted

7 As aforementioned, the inverse S-box defines 5n − 1 quadratic equations [28]. However, when used in ZKP-based
signature schemes, it is assumed that xy = 1 for nonzero x and y [15, 38].
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“experiment”). There is no significant difference between the theoretical and experimental estimations, while
we observe that a smaller target degree D is obtained with the full system. We also observe that the gap of
the target degrees between the basic and the full systems becomes larger for a larger parameter ν.

4 AIM: Our New Symmetric Primitive

4.1 Specification

AIM is designed to be a “tweakable” one-way function so that it offers multi-target one-wayness. Given
input/output size n and an (ℓ + 1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1, AIM : {0, 1}n × F2n → F2n is
defined by

AIM(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦Mer[e1, . . . , eℓ](pt)⊕ pt

where each function will be described below. See Figure 3 for the pictorial description of AIM with ℓ = 3.

Mer[e1]

Mer[e2]

Mer[e3]

Linpt Mer[e∗] ct

XOF[iv]

Fig. 3: The AIM-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature
scheme, and (iv, ct) (in blue) is the corresponding public key.

S-boxes. In AIM, S-boxes are exponentiation by Mersenne numbers over a large field. More precisely, for
x ∈ F2n ,

Mer[e](x) = x2e−1

for some e. Note that this map is a permutation if gcd(e, n) = 1. As an extension, Mer[e1, . . . , eℓ] : F2n → Fℓ
2n

is defined by

Mer[e1, . . . , eℓ](x) = Mer[e1](x)∥ . . . ∥Mer[eℓ](x).

Linear Components. AIM includes two types of linear components: an affine layer and feed-forward. The
affine layer is multiplication by an n × ℓn random binary matrix Aiv and addition by a random constant
biv ∈ Fn

2 . The matrix

Aiv =
[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2 )ℓ

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an
extendable output function (XOF) with the initial vector iv.8 Each matrix Aiv,i can be equivalently represented

8 The invertible matrices can be generated by various ways. (e.g., rejection sampling, generating LU decomposition,
etc.)
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by a linearized polynomial Liv,i on F2n . For x = (x1, . . . , xℓ) ∈ (F2n)
ℓ
,

Lin[iv](x) =
∑

1≤i≤ℓ

Liv,i(xi)⊕ biv.

By abuse of notation, we will denote Ax as the same meaning as
∑

1≤i≤ℓ Liv,i(xi). Feed-forward operation,
which is addition by the input itself, makes the entire function non-invertible.

Recommended Parameters. Recommended sets of parameters for λ ∈ {128, 192, 256}-bit security are
given in Table 2. The number of S-boxes is determined by taking into account the complexity of the XL
attack, which is described in Section 5.2. Exponents e1 and e∗ are chosen as small numbers to provide smaller
differential probability, and exponent e2 is chosen so that e2 · e∗ ≥ λ, while all the exponents are distinct in
the same set of parameters. The irreducible polynomials for extension fields F2128 , F2192 , and F2256 are the
same as those used in Rain [38].

Scheme λ n ℓ e1 e2 e3 e∗

AIM-I 128 128 2 3 27 - 5
AIM-III 192 192 2 5 29 - 7
AIM-V 256 256 3 3 53 7 5

Table 2: Recommended sets of parameters of AIM.

4.2 Design Rationale

Choice of Field. When a symmetric primitive is built upon field operations, the field is typically binary
since bitwise operations are cheap in most of modern architectures. However, when the multiplicative com-
plexity of the primitive becomes a more important metric for efficiency, it is hard to generally specify which
type of field has merits with respect to security and efficiency.

Focusing on a primitive for MPCitH-style zero-knowledge protocols, a primitive over a large field generally
requires a small number of multiplications, leading to shorter signatures. However, any primitive operating
on a large field of large prime characteristic might permit algebraic attacks since the number of variables and
the algebraic degree will be significantly limited for efficiency reasons. On the other hand, binary extension
fields enjoy both advantages from small and large fields. In particular, matrix multiplication is represented
by a polynomial of high algebraic degree without increasing the proof size.

Algebraically Sound S-boxes. In an MPCitH-style zero-knowledge protocol, the proof size of a circuit
is usually proportional to the number of nonlinear operations in the circuit. In order to minimize the number
of multiplications, one might introduce intermediate variables for some wires of the circuit. For example, the
inverse S-box (S(x) = x−1) has high (bitwise) algebraic degree n − 1, while it can be simply represented
by a quadratic equation xy = 1 by letting the output from the S-box be a new variable y. When an S-box
is represented by a quadratic equation of its input and output, we will say it is implicitly quadratic. In
particular, we consider implicitly quadratic S-boxes which are represented by a single multiplication over
F2n . This feature makes the proof size short and mitigates algebraic attacks at the same time.

The inverse S-box is one of the well-studied implicitly quadratic S-boxes. The inverse S-box has been
widely adopted to symmetric ciphers [29, 6, 83] due to its nice cryptographic properties. It is invertible,
is of high-degree, has good enough differential uniformity and nonlinearity. Recently, it is used in symmet-
ric primitives for advanced cryptographic protocols such as multiparty computation and zero-knowledge
proof [47, 48, 38].
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Meanwhile, the inverse S-box has one minor weakness; a single evaluation of the n-bit inverse S-box as a
form of xy = 1 produces 5n− 1 linearly independent quadratic equations over F2 [28]. The complexity of an
algebraic attack is typically bounded (with heuristics) by the degree and the number of equations, and the
number of variables. In particular, an algebraic attack is more efficient with a larger number of equations,
while this aspect has not been fully considered in the design of recent symmetric ciphers based on algebraic
S-boxes. When the number of rounds is small, this issue might be critical to the overall security of the cipher.
For more details, see Section 5.2.

With the above observation, we tried to find an invertible S-box of high-degree which is moderately
resistant to differential/linear cryptanalysis as well as implicitly quadratic, and producing only a small number
of quadratic equations. Since our attack model does not allow multiple queries to a single instance of AIM, we
allow a relaxed condition on the DC/LC resistance, not being necessarily maximal. As a family of S-boxes
that beautifully fit all the conditions, we choose a family of Mersenne S-boxes; they are exponentiation
by Mersenne numbers 2e − 1 such that gcd(n, e) = 1, are invertible, are of high-degree, need only one
multiplication for its proof, produce only 3n Boolean quadratic equations with its input and output, and
provide moderate DC/LC resistance. Furthermore, when the implicit equation xy = x2e of a Mersenne S-box
is computed in the BN++ proof system, it is not required to broadcast the output share since the output of
multiplication x2e can be locally computed from the share of x.

Repetitive Structure. The efficiency of the BN++ proof system partially comes from the optimization
technique using repeated multipliers. When a multiplier is repeated in multiple equations to prove, the proof
can be done in a batched way, reducing the overall signature size. In order to maximize the advantage of
repeated multipliers, we put S-boxes in parallel at the first round in order to make the S-box inputs the same.
Then, we put only one S-box at the second round with feed-forward. In this way, all the implicit equations
have the same multiplier.

Affine Layer Generation. The main advantage of using binary affine layers in large S-box-based con-
structions is to increase the algebraic degree of equations over the large field. Multiplication by a random
n× n binary matrix can be represented as (2). Similarly, our design uses a random affine map from Fℓn

2 to
Fn
2 . In order to mitigate multi-target attacks (in the multi-user setting), the affine map is uniquely generated

for each user; each user’s iv is fed to an XOF, generating the corresponding linear layer.

5 Security Analysis

In order for the signature scheme to be secure, AIM with fixed iv should be preimage-resistant. An adversary
is given a randomly chosen iv and an output ct that is defined by iv and a randomly chosen input pt∗.
Given such a pair (iv, ct), the adversarial goal is to find any pt (not necessarily the same as pt∗) such that
AIM(iv, pt) = ct. In the multi-user setting, the adversary is given multiple IV-output pairs {(ivi, cti)}i, and
tries to find any pt such that AIM(ivi, pt) = cti for some i.

5.1 Brute-force Attack

Although a brute-force attack on a symmetric primitive is rather trivial (compared to public key cryptosys-
tems), we estimate its gate-count complexity to compare the concrete security of AIM and AES.

Each S-box Mer[e] requires 2(e− 1) multiplications over F2n . Assuming that a single F2n -multiplication
requires n2 AND gates and n2 XOR gates, the gate-count complexity of a brute-force attack is given as 2149,
2214.4, and 2280 for AIM-I, AIM-III, and AIM-V, respectively. It implies that a brute-force attack on AIM is
more costly than AES for each category of security strength.

5.2 Algebraic Attacks

Since our attack model does not allow multiple evaluations for a single instance of AIM, we do not consider
interpolation, higher-order differential, and cube attacks. As mentioned in Section 3, we mainly consider the
Gröbner basis attack and the XL attack using a single evaluation of AIM.
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How to Build Systems of Equations from AIM. AIM can be represented as a system of polynomial
equations over either F2n or F2. For the former case, since the random affine layer is of degree 2n−1 over F2n

with high probability, it is infeasible to solve such systems no matter how the system of equations is built.
For the latter case, we need to consider multiple ways of building a system of polynomial equations.

Let x and yi denote the input of AIM (namely, pt) and the output of Mer[ei], i = 1, . . . , ℓ, respectively.
Then, for AIM-V with ℓ = 3, one might want to solve the following system of quadratic equations in x, y1,
y2, and y3:

x · y1 = x2e1 ,

x · y2 = x2e2 , (3)

x · y3 = x2e3 ,

Lin(y1, y2, y3) · (x⊕ ct) = Lin(y1, y2, y3)
2e∗ .

This system consists of 4n quadratic equations in 4n variables. As mentioned in Section 3, the relation
between the input and the output of each n-bit Mersenne S-box produces 3n Boolean quadratic equations,
so this system can be extended to 12n quadratic equations. This is the only way of obtaining quadratic
equations from a single evaluation of AIM-V. For AIM-I and AIM-III with ℓ = 2, one obtains 9n quadratic
equations in 3n variables with a smaller number of S-boxes. Since all the equations in this system is quadratic,
the complexity to solve this system is quite competitive.

For AIM-V, one might also establish a system of equations in x and y2 as follows.

x · y2 = x2e2 ,

Lin(Mer[e1](x), y2,Mer[e3](x)) · (x⊕ ct) (4)

= Lin(Mer[e1](x), y2,Mer[e3](x))
2e∗ .

Considering the constant ν, this system consists of 3n equations of degree 2, and 3n equations of degree
max(e1, e3) + 1, all in 2n variables. For AIM-I and AIM-III, one also obtains a similar type of system of
equations by ignoring y3 in the above system of equations. All the possible systems of equations can be
found in Appendix B.

Gröbner Basis Attack. For AIM, the system of equations of type (4) turns out to permit the most efficient
computation of a Gröbner basis; the corresponding Hilbert series is given as

(1− z2)5n(1− zd)3n

(1− z)2n

including the field equations, where d = max(e1, e3) + 1. The estimated degrees of regularity and the corre-
sponding time complexities of computing Gröbner bases are given in Table 3 for AIM-I, III, V.

XL Attack. For AIM-I and III, the system of quadratic equations of type (3) permits the most efficient

XL-attack. Assuming TD =
∑D

i=1

(
3n
i

)
,9 one can find the smallest degree D satisfying (1).

The XL attack on AIM-V is the most efficient with the following system of equations: for variables x, y2,
and y3,

x · y2 = x2e2 ,

x · y3 = x2e3 , (5)

Lin(Mer[e1](x), y2, y3) · (x⊕ ct) = Lin(Mer[e1](x), y2, y3)
2e∗ .

9 As mentioned in Section 3.2, we observe that the system of quadratic equations defined by a single evaluation of an
Even-Mansour cipher combined with the Mersenne S-box is dense for toy parameters. The same result is obtained
from the quadratic system of AIM.

12



Considering the constant ν, this system consists of 6n quadratic equations, and 3n equations of degree 4,
all in 3n variables. Since this system contains equations of different degrees, the target degree D should be
determined in a slightly different way. Suppose that we raise the degree of the above system up to D, where
D ≥ 4. In order for the number of equations in the extended system to be at least the number of monomials,
D should satisfy

6n ·
D−2∑
j=0

(
3n

j

)
+ 3n ·

D−4∑
j=0

(
3n

j

)
≥ TD.

Assuming that all possible monomials of degree at most D appear in the extended system of equations,
namely, TD =

∑D
i=1

(
3n
i

)
, one can find the smallest D satisfying the above inequality.

With the optimal systems of AIM-I, III, V, the target degrees D and the corresponding time complexities
of the XL attack are given in Table 3. We note that the time complexity of the XL attack has been estimated
under the strong assumption that all the equations obtained by the XL algorithm are linearly independent,
which might not be the case in general. Even with this strong assumption, we see that AIM is secure against
the XL attack for all the parameter sets.

Scheme n ν
Gröbner Basis Attack XL Attack

System dreg Time (bits) System D Time (bits)

AIM-I 128 (4) 22 214.9 (3) 12 148.0
AIM-III 192 3 (4) 31 310.6 (3) 15 194.1
AIM-V 256 (4) 40 406.2 (5) 20 260.6

Rain3

128 Quadratic 14 168.5 Quadratic 10 127.9†

192 5 Quadratic 19 235.9 Quadratic 12 162.1†

256 Quadratic 24 303.1 Quadratic 13 183.9†

Rain4

128 Quadratic 17 219.2 Quadratic 11 147.3

192 5 Quadratic 24 303.1 Quadratic 13 183.9†

256 Quadratic 30 385.9 Quadratic 15 219.2†

Table 3: Security against the Gröbner basis attack and the XL attack for AIM and Rain. dreg is the estimated
degree of regularity and D is the target degree of the XL attack on the system. †The complexity of the XL
attack has been estimated based on the strong independence assumption with ω = 2, so these values do not
imply that Rain has been broken.

AIM vs. Rain. Table 3 compares the theoretical complexities of the Gröbner basis attack and the XL
attack on AIM and Rain. The time complexities have been estimated using the most efficient systems from
the adversarial point of view. For AIM, the system of quadratic equations is not the most efficient to mount
algebraic attacks. When it comes to Rain, the quadratic representation of the inverse S-box, namely xy = 1,
leads to the most efficient system of quadratic equations to mount algebraic attacks. Compared to Rain,
AIM provides stronger security against the Gröbner basis and the XL attacks.

For the systems of quadratic equations from Rain3 (resp. Rain4) and AIM with ℓ = 2 (resp. ℓ = 3), the
number of variables and the number of basic equations are the same. The only difference lies in the constant
ν, indicating how many linearly independent quadratic equations are derived from the basic equations. In
Appendix C, we perform Gröbner basis computation on the quadratic systems of AIM and Rain with toy
parameters to justify the theoretical impact of ν.

Compared to Rain, the algebraic representation of the Mersenne S-boxes in AIM allows one to establish
many different systems of “moderate-degree” polynomial equations. That said, AIM enjoys better security
than Rain thanks to the smaller value of ν of the underlying S-boxes.
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Algebraic Attacks on Symmetric Primitives with Large S-box. Besides Rain, several symmetric
primitives based on large fields have been proposed with applications to zero-knowledge proof systems such
as MiMC [1], Starkad/Poseidon [47], and Jarvis [8]. Some of them have been analyzed with algebraic attacks
exploiting the property that their linear layers are represented as polynomials of low degrees over large
fields [2, 40]. However, AIM uses a randomized linear layer which is expected to have degree 2n−1 over F2n .
For this reason, the above attacks would not apply to AIM.

Applicability of Algebraic Attacks on LowMC. LowMC [3] is the first FHE/MPC-friendly block
cipher, and one of its applications is to the Picnic signature scheme. LowMC has been analyzed in the context
of the signature scheme, where an adversary is given only a single plaintext-ciphertext pair. In this setting,
a number of algebraic attacks have been proposed [10, 11, 67, 34, 68, 9], mainly based on two algebraic
techniques: linearization by guessing, and the polynomial method [16].

The main idea of linearization-based algebraic attacks on LowMC, first proposed in [10], is to linearize
the underlying S-boxes by guessing a single output bit for each S-box evaluation. In this way, one obtains
a system of low-degree polynomial equations at the cost of guessing a small number of bits, and it can
be solved efficiently. This linearization technique has been further extended [11, 67]. However, this type of
attacks work only when the underlying S-boxes are of small size. When it comes to AIM, its large S-boxes
yield dense implicit equations over F2, which makes the guess-and-linearization infeasible.

The polynomial method [16] has been studied in complexity theory, and later found its application to
the design of algorithms for certain problems [86], one of which is to solve a system of polynomial equations
over a finite field. The resulting algorithm is known as the first algorithm that achieves exponential speedup
over the exhaustive search even in the worst case [70]. Recently, Dinur [34] proposed a generic equation-
solving algorithm based on the polynomial method with time complexity O(n2 · 2(1−1/(2.7d))n) where n is
the number of variables and d is the degree of the system. One arguable issue of this algorithm is its high
memory complexity of O(n2·2(1−1/(1.35d))n), making it infeasible in practice. For AIM, the memory complexity
required by Dinur’s algorithm exceeds the security level, i.e., more than 2λ bits of memory is required for
each level of security λ (see Table 9 in Appendix B for the details). Subsequent works [68, 9] proposed to
reduce the memory complexity of the algorithm at the cost of slightly increased time complexity, while these
variants do not apply to AIM since they all follow the guess-and-linearization strategy.

5.3 Quantum Attacks

Quantum attacks are classified into two types according to the attack model. In the Q1 model, an adversary
is allowed to use quantum computation without making any quantum query, while in the Q2 model, both
quantum computation and quantum queries are allowed [88].

As a generic algorithm for exhaustive key search, Grover’s algorithm has been known to give quadratic
speedup compared to the classical brute-force attack [49]. In this section, we investigate if any specialized
quantum algorithm targeted at AIM might possibly achieve better efficiency than Grover’s algorithm in the
Q1 model.

Cost of Grover’s Algorithm. We consider the cost metric of NIST [75], which is defined as the product
of the quantum circuit size and the quantum circuit depth with respect to Clifford and T gates.

Given a one-way function f taking n bits as input, the circuit size and the depth of the preimage-finding
attack on f using Grover’s algorithm is estimated as follows [55].

(Grover’s circuit size/depth) = (size/depth of f)× 2×
⌊π
4

√
2n
⌋
.

The quantum circuit size and the depth of AIM can be computed in a modular manner. AIM is based on
three types of operations: finite field multiplication, finite field squaring, and random matrix multiplication.
The cost of finite field multiplication is estimated based on the state-of-the-art result of Toffoli-depth one
implementation of finite field multiplication [56], while we ignore the cost of finite field squaring since it
is far more efficient than finite field multiplication [73]. For random matrix multiplication and Toffoli gate
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decomposition, we refer to the recent implementation of LowMC [55] and the implementation of [5] (using 8
Clifford gates and 7 T gates with depth 8), respectively.

Table 4 summarizes the total number of operations and the number of operations executed in se-
rial (depth) for each type of operation. Based on these numbers and the above references, the total cost
of Grover’s algorithm on AIM is also given (in log) for each level of security. We see that AIM-I, AIM-III and
AIM-V satisfy the security level I, III and V, respectively.10

Scheme
#Operations, Depth Total

Cost
Level of
SecurityFF Mul FF Square Mat Mul

AIM-I 32, 30 32, 30 1, 1 161.2 I (≥157)
AIM-III 38, 34 38, 34 1, 1 227.7 III (≥221)
AIM-V 64, 56 64, 56 1, 1 292.9 V (≥285)

Table 4: The number of operations and the depth for each type of operation used in AIM, and the total cost
of Grover’s algorithm on AIM for each level of security.

Quantum Algebraic Attack. When an algebraic root-finding algorithm works over a small field, the
guess-and-determine strategy might be effectively combined with Grover’s algorithm, reducing the overall
time complexity.

The GroverXL algorithm [17] is a quantum version of the FXL algorithm [27], which solves a system
of multivariate quadratic equations over a finite field. A single evaluation of AIM can be represented by
Boolean quadratic equations using intermediate variables. Precisely, we have a system of 4(ℓ+1)n quadratic
equations (including field equations) in (ℓ+1)n variables. For this system of equations, the time complexity
of GroverXL is given as 2(0.3496+o(1))(ℓ+1)n when using ω = 2, which is worse than Grover’s algorithm.

The QuantumBooleanSolve algorithm [42] is a quantum version of the BooleanSolve algorithm [13],
which solves a system of Boolean quadratic equations. In [42], its time complexity has been analyzed only
for a system of equations with the same number of variables and equations. A single evaluation of AIM
can be represented by 4(ℓ + 1)n quadratic equations in (ℓ + 1)n variables. In this case, the complexity of
QuantumBooleanSolve is given as O(20.462(ℓ+1)n), which is worse than Grover’s algorithm.

In contrast to the algorithms discussed above, Chen and Gao [25] proposed a quantum algorithm to
solve a system of multivariate equations using the Harrow-Hassidim-Lloyd (HHL) algorithm [51] that solves
a sparse system of linear equations with exponential speedup. In brief, Chen and Gao’s algorithm solves a
system of linear equations from the Macaulay matrix by the HHL algorithm. It has been claimed that this
algorithm enjoys exponential speedup for a certain set of parameters. When applied to AIM, the hamming
weight of the secret key should be smaller than O(log n) to achieve exponential speedup [31]. Otherwise, this
algorithm is slower than Grover’s algorithm [31].

Quantum Generic Attack. A generic attack does not use any particular property of the underlying
components (e.g., S-boxes for AIM). The underlying smaller primitives are typically modeled as public random
permutations or functions. The Even-Mansour cipher [41], the FX-construction [61] and a Feistel cipher [71]
have been analyzed in the classic and generic attack model. As their quantum analogues, the Even-Mansour
cipher [64, 21], the FX-construction [65, 52] and a Feistel cipher [63] have been analyzed in the Q1 or Q2
model. Most of these attacks can be seen as a combination of Simon’s period finding algorithm [85] (in the
Q2 model), and Grover’s/offline Simon’s algorithms [21] (in the Q1 model). Since Simon’s period finding
algorithm requires multiple queries to a keyed construction (which is not the case for AIM), we believe that
the above attacks do not apply to AIM in a straightforward manner.

10 In the call for proposals by NIST [75], the security level I, III, V are defined as the strength of AES-128, AES-192,
AES-256, respectively, against Grover’s algorithm.
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5.4 Statistical Attacks

An adversary is allowed to evaluate AIM with an arbitrary input pair (pt, iv) in an offline manner. However,
such an evaluation is independent of the actual secret key pt∗, so the adversary is not able to collect a
sufficient amount of statistical data which are related to pt∗. Furthermore, the linear layer of AIM is generated
independently at random for every user. For this reason, we believe that our construction is secure against
any type of statistical attacks including (impossible) differential, boomerang, and integral attacks.

In the multi-target scenario, an adversary has no information on which users have the same secret. Even
for multiple users with the same iv, statistical attacks would not be feasible since all the inputs and their
differences are unknown to the adversary. That said, to prevent any unexpected variant of differential and
linear cryptanalysis, we summarize a lower bound of the weight of differential and correlation trails in this
section.

Differential Cryptanalysis. Since AIM is a key-less primitive, we will estimate the security of AIM
against differential cryptanalysis by lower bounding the weight of a differential trail (for example, as in [30]).

Given a function f : {0, 1}n → {0, 1}m, the weight of a differential (∆x,∆y) ∈ {0, 1}n×{0, 1}m is defined
by

wd(∆x
f−→ ∆y)

def
= n− log2 |{x ∈ {0, 1}n : f(x⊕∆x)⊕ f(x) = ∆y}| .

The weight is not defined if there is no x such that f(x⊕∆x)⊕ f(x) = ∆y. Otherwise, we say that ∆x and
∆y are compatible.

A differential trail is the composition of compatible differentials. For AIM, a differential trail from an
input to the output (ignoring the feed-forward) can be represented as follows.

Q = ∆0
Mer[e1,...,eℓ]−−−−−−−−→ ∆1

Lin−−→ ∆2
Mer[e∗]−−−−→ ∆3.

Then the weight of the differential trail Q is defined as

wd(Q)
def
=

2∑
i=0

wd(∆i → ∆i+1).

The weight of a Mersenne S-box is determined by the number of solutions toMer[e](x⊕∆x)⊕Mer[e](x) = ∆y,
which is a polynomial equation of degree 2e−2. Therefore, there are at most 2e−2 solutions to this equation,
which implies for ∆x ̸= 0,

wd(∆x
Mer[e]−−−−→ ∆y) ≥ n− log2(2

e − 2) ≥ n− e.

Then we have

wd(Q) =
∑
i

wd(∆i → ∆i+1)

≥ max
1≤i≤ℓ

(n− ei) = n− e1.

So, for any differential trail Q, wd(Q) is close to λ with λ = n. We note that a trail Q such that wd(Q) < λ
never incur a collision, and the existence of such trail does not imply the feasibility of differential cryptanalysis
since an adversary is not given a large enough number of plaintext-ciphertext pairs to mount the analysis.

Difference Enumeration Attack. Recently, difference enumeration attacks to LowMC have been pro-
posed [77, 66, 69], which require only a couple of chosen plaintext-ciphertext pairs. In such attacks, an
adversary enumerates all possible input and output differences and tries to find a collision and recover the
unknown key. This type of attacks work for LowMC since it is based on small S-boxes. So one can easily find
all possible differentials in LowMC. On the other hand, AIM is based on n-bit S-boxes, making it infeasible
to enumerate all possible differences of each S-box.

Linear Cryptanalysis. In contrast to differential cryptanalysis, security against linear cryptanalysis has
been rarely evaluated for key-less primitives since its goal is to retrieve the secret key, not finding a collision or
a second-preimage. That said, we lower bound the weight of a correlation trail in Appendix D for completeness
in a similar way to differential cryptanalysis.
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5.5 Provable Security

In this section, we consider the one-wayness of AIM. More precisely, we will prove the everywhere preimage
resistance [78] of AIM when the underlying S-boxes are modeled as public random permutations and iv is
(implicitly) fixed.11

For simplicity, we will assume that ℓ = 2. The security of AIM with ℓ > 2 is similarly proved. In the
public permutation model and in the single-user setting, AIM is defined as

AIM(pt) = S3(A1 · S1(pt)⊕A2 · S2(pt)⊕ b)⊕ pt

for pt ∈ {0, 1}n, where S1, S2, S3 are independent public random permutations, and A1 and A2 are fixed
n× n invertible matrices, and b is a fixed n× 1 vector over F2.

In the preimage resistance experiment, a computationally unbounded adversaryA with oracle access to Si,
i = 1, 2, 3, selects and announces a point ct ∈ {0, 1}n before making queries to the underlying permutations.
After making q forward and backward queries in total, A obtains a query history

Q = {(ij , xj , yj)}qj=1

such that Sij (xj) = yj and A’s j-th query is either Sij (xj) = yj or S−1
ij

(yj) = xj for j = 1, . . . q. We say that

A succeeds in finding a preimage of ct if its query history Q contains three queries S1(x1) = y1, S2(x2) = y2
and S3(x3) = y3 such that x1 = x2, x3 = A1 ·y1⊕A2 ·y2⊕b and ct = y3⊕pt. In this case, we say that A wins
the preimage-finding game, breaking the one-wayness of AIM. Assuming that A is information-theoretic, we
can prove that A’s winning probability, denoted Advepre

AIM(q), is upper bounded as follows.

Advepre
AIM(q) ≤

2q

2n − q
. (6)

Proof of (6). Since A is information-theoretic, we can assume that A is deterministic. Furthermore, we
assume that A does not make any redundant query. We will also slightly modify A so that whenever A makes
a (forward or backward) query to S1 (resp. S2) obtaining S1(x) = y (resp. S2(x) = y), A makes an additional
forward query to S2 (resp. S1) with x for free. This additional query will not degrade A’s preimage-finding
advantage since A is free to ignore it.

An evaluation AIM(pt) = ct consists of three S-box queries. Among the three S-box queries, the lastly
asked one is called the preimage-finding query. We distinguish two cases.

Case 1. The preimage-finding query is made to either S1 or S2. Since A consecutively obtains a pair of
queries of the form S1(x) = y1 and S2(x) = y2, any preimage-finding query to either S1 or S2 should be
forward. If it is S1(x) (without loss of generality), then there should be queries S2(x) = y for some y and
S3(z) = x⊕ct for some z that have already been made by A. In order for S1(x) to be the preimage-finding
query, it should be the case that

S3(A1 · S1(x)⊕A2 · S2(x)⊕B) = x⊕ ct

or equivalently,

S1(x) = A−1
1 · (z ⊕ b⊕A2 · y)

which happens with probability at most 1
2n−q . Therefore, the probability of this case is upper bounded

by q
2n−q .

11 We do not claim that the algebraic S-boxes of AIM behave like random permutations. The point of the provable
security of AIM is that one cannot break the one-wayness of AIM without exploiting any particular properties of
the underlying S-boxes.
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Case 2. The preimage-finding query is made to S3. In order to address this case, we use the notion of a
wish list, which was first introduced in [7]. Namely, whenever A makes a pair of queries S1(x) = y1 and
S2(x) = y2, the evaluation

S3 : A1 · y1 ⊕A2 · y2 ⊕ b 7→ x⊕ ct

is included in the wish listW. In order for an S3-query to complete an evaluation AIM(pt) = ct for any pt,
at least one ”wish” in W should be made come true. Each evaluation in W is obtained with probability
at most 1

2n−q , and |W| ≤ q. Therefore, the probability of this case is upper bounded by q
2n−q .

Overall, we can conclude that

Advepre
AIM(q) ≤

2q

2n − q
.

One-wayness in the multi-user setting. In the multi-user setting with u users, A is given u different
target images, where the adversarial goal is to invert any of the target images. In this setting, the adversarial
preimage finding advantage is upper bounded by

2uq

2n − q
. (7)

The proof of (7) follows the same line of argument as the single-user security proof. The difference is that
the probability that each query to either S1 or S2 becomes the preimage-finding one is upper bounded by
uq

2n−q and the size of the wish list (in the second case) is upper bounded by uq.
We note that the above bound does not mean that AIM provides only the birthday-bound security in the

multi-user setting. The straightforward birthday-bound attack is mitigated since AIM is based on a distinct
linear layer for every user.

6 Performance Evaluation

Environment. The source codes are developed in C++17, using the GNU C++ 8.4.0 (GNU C 7.5.0 for
running the algorithms in the third round submission packages for NIST PQC standardization) compiler with
the AVX2 instructions on the Ubuntu 18.04 operating system. A large part of our implementation is taken
from the BN++ repository,12 and we modified its symmetric primitive part to accommodate AIM. All the
implementations used in the experiments are compiled at the -O3 optimization level. For the instantiation
of the XOF, we use SHAKE in XKCP library.13 We use SHAKE128 for AIMer-I, and SHAKE256 for AIMer-III
and AIMer-V. Our experiments are measured in Intel Xeon E5-1650 v3 @ 3.50GHz with 128 GB memory.
For a fair comparison, we measure the execution time for each signature scheme on the same CPU using the
taskset command with Hyper-Threading and Turbo Boost features disabled.

Performance of AIMer. As mentioned in Section 2.3, AIM has been designed to take full advantage of
optimization by repeated multipliers to reduce the number of α values. Due to this technique, the overall
performance of the signature scheme is improved in terms of both the signature size and the signing time.
The performance of AIMer is summarized in Table 5. Parameter sets (i.e., the number of parties N and the
number of parallel repetitions τ) for various security levels are chosen in the same way of [58]. We observe
that AIMer enjoys the best trade-off between the signature size and the signing/verification time.

In Table 6, AIMer is compared to the state-of-the-art Rainier signature scheme combined with the BN++
proof system (denoted BN++Rainr, where r ∈ {3, 4}) with all the optimizations from [58] applied at the
128-bit security level. AIMer-I enjoys 5.14 to 8.21% shorter signature size than BN++Rain3 with similar
signing and verification time. Compared to BN++Rain4, AIMer achieves more significant improvement with
13.98 to 21.15% shorter signature size and 5.59 to 14.84% improved signing and verification performance for
all the parameter sets.

12 https://github.com/IAIK/bnpp_helium_signatures/tree/main/bnpp_rain
13 https://github.com/XKCP/XKCP
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Scheme N τ
Sign Verify Size
(ms) (ms) (B)

AIMer-I 16 33 0.82 0.78 5 904
AIMer-I 57 23 1.82 1.77 4 880
AIMer-I 256 17 5.96 5.90 4 176
AIMer-I 1615 13 29.62 29.17 3 840

AIMer-III 16 49 1.57 1.48 13 080
AIMer-III 64 33 3.86 3.62 10 440
AIMer-III 256 25 10.57 10.42 9 144
AIMer-III 1621 19 58.70 58.10 8 352

AIMer-V 16 65 2.87 2.78 25 152
AIMer-V 62 44 6.60 6.54 19 904
AIMer-V 256 33 19.21 19.19 17 088
AIMer-V 1623 25 98.49 98.64 15 392

Table 5: Performance of AIMer for various parameter sets.

Scheme N τ
Sign Verify Size
(ms) (ms) (B)

BN++Rain3 [58] 16 33 0.83 0.77 6 432
BN++Rain3 [58] 57 23 1.83 1.77 5 248
BN++Rain3 [58] 256 17 5.92 5.94 4 448
BN++Rain3 [58] 1615 13 28.95 28.33 4 048

BN++Rain4 [58] 16 33 0.93 0.86 7 488
BN++Rain4 [58] 57 23 2.09 2.01 5 984
BN++Rain4 [58] 256 17 6.45 6.23 4 992
BN++Rain4 [58] 1615 13 32.85 31.86 4 464

AIMer-I 16 33 0.82 0.78 5 904
AIMer-I 57 23 1.82 1.77 4 880
AIMer-I 256 17 5.96 5.90 4 176
AIMer-I 1615 13 29.62 29.17 3 840

Table 6: Performance of AIMer, BN++Rain3, and BN++Rain4 at 128-bit security level.

Comparison. We compare the performance of AIMer to existing post-quantum signature schemes at the
128-bit security level in Table 7. In the first group, we provide the performance of three algorithms selected
as the finalists of the NIST competition for PQC standardization - CRYSTALS-Dilithium [72], Falcon [76],
and SPHINCS+ [53].

CRYSTALS-Dilithium and Falcon are lattice-based signature schemes with high efficiency in both band-
width (signature size plus public key size) and signing/verification time. We implemented SPHINCS+ using
the SHAKE256 hash function for a fair comparison between symmetric primitives based signature schemes.
Compared to any of the small and the fast variants of SPHINCS+, AIMer obviously provides smaller band-
width and faster signing time at the cost of slightly slower verification.

In the second group, we compare existing ZKP-based signature schemes based on symmetric primitives:
Picnic [87], Limbo [80], Banquet,14 Rainier,15 and BN++Rain.16 In particular, Picnic is one of the alternate
candidates of the third round of the NIST competition. For Limbo-AES128, we cited the numbers from the
paper as its public implementation is not available (to the best of our knowledge). When the number of

14 https://github.com/dkales/banquet
15 https://github.com/IAIK/rainier-signatures
16 https://github.com/IAIK/bnpp_helium_signatures
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parties N is set to 16, these schemes require bandwidth of 12,495 to 30,957 bytes, while AIMer requires 5,936
bytes with comparable performance in signing and verification time.

Scheme
|pk| |sig| Sign Verify
(B) (B) (ms) (ms)

Dilithium2 [72] 1312 2 420 0.10 0.03
Falcon-512 [76] 897 690 0.27 0.04
SPHINCS+-128s∗ [53] 32 7 856 315.74 0.35
SPHINCS+-128f∗ [53] 32 17 088 16.32 0.97

Picnic1-L1-full [87] 32 30 925 1.16 0.91
Picnic3-L1 [87] 32 12 463 5.83 4.24
Banquet [15] 32 19 776 7.09 5.24

Limbo-AES128† [80] 32 21 520 2.70 2.00
Rainier3 [38] 32 8 544 0.97 0.89
BN++Rain3 [58] 32 6 432 0.83 0.77

AIMer-I 32 5 904 0.82 0.78

*: -SHAKE-simple
†: measurements are from this paper.

Table 7: Comparison of AIMer to existing (post-quantum) signature schemes at 128-bit security level. The
number of parties N is set to 16 for ZKP-based signature schemes.
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termined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving.
pp. 71–74 (2004)

20

https://tosc.iacr.org/index.php/ToSC/article/view/8751
https://tosc.iacr.org/index.php/ToSC/article/view/8751


[13] Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of solving quadratic Boolean sys-
tems. Journal of Complexity 29(1), 53–75 (2013), https://www.sciencedirect.com/science/article/pii/
S0885064X12000611

[14] Baum, C., Nof, A.: Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Applica-
tion to Lattice-Based Cryptography. In: PKC 2020. pp. 495–526. Springer (2020)

[15] Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: Short and Fast
Signatures from AES. In: PKC 2021. pp. 266–297. Springer (2021)

[16] Beigel, R.: The polynomial method in circuit complexity. In: [1993] Proceedings of the Eigth Annual Structure
in Complexity Theory Conference. pp. 82–95 (1993)

[17] Bernstein, D.J., Yang, B.Y.: Asymptotically Faster Quantum Algorithms to Solve Multivariate Quadratic Equa-
tions. In: PQCrypto 2018. pp. 487–506. Springer (2018)

[18] Beullens, W.: Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes. In: Canteaut, A., Ishai,
Y. (eds.) Advances in Cryptology – EUROCRYPT 2020. pp. 183–211. Springer International Publishing, Cham
(2020)

[19] Beullens, W.: Breaking Rainbow Takes a Weekend on a Laptop. In: Dodis, Y., Shrimpton, T. (eds.) Advances
in Cryptology – CRYPTO 2022. pp. 464–479. Springer Nature Switzerland, Cham (2022)

[20] Beullens, W., Delpech de Saint Guilhem, C.: LegRoast: Efficient Post-quantum Signatures from the Legendre
PRF. In: International Conference on Post-Quantum Cryptography. pp. 130–150. Springer (2020)

[21] Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher, A.: Quantum Attacks Without
Superposition Queries: The Offline Simon’s Algorithm. In: ASIACRYPT 2019. pp. 552–583. Springer (2019)

[22] Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System I: The User Language. J. Symbolic Comput.
24(3-4), 235–265 (1997), http://dx.doi.org/10.1006/jsco.1996.0125, Computational algebra and number
theory (London, 1993)

[23] Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In EUROCRYPT 2023, to appear (2023)
[24] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D., Zaverucha, G.:

Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In: ACM CCS 2017. pp. 1825–
1842 (2017)

[25] Chen, Y.A., Gao, X.S.: Quantum Algorithm for Boolean Equation Solving and Quantum Algebraic Attack on
Cryptosystems. Journal of Systems Science and Complexity 35(1), 373–412 (Feb 2022), https://doi.org/10.
1007/s11424-020-0028-6

[26] Cheon, J.H., Lee, D.H.: Resistance of S-Boxes against Algebraic Attacks. In: FSE 2004. pp. 83–93. Springer
(2004)

[27] Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of
Multivariate Polynomial Equations. In: EUROCRYPT 2000. pp. 392–407. Springer (2000)

[28] Courtois, N.T., Debraize, B., Garrido, E.: On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power
Functions. In: ACISP 2006. pp. 76–86. Springer (2006)

[29] Daemen, J., Rijmen, V.: The Design of Rijndael, vol. 2. Springer (2002)
[30] Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. In: Canteaut, A. (ed.) Fast Software

Encryption. pp. 422–441. Springer (2012)
[31] Ding, J., Gheorghiu, V., Gilyén, A., Hallgren, S., Li, J.: Limitations of the Macaulay matrix approach for using

the HHL algorithm to solve multivariate polynomial systems. arXiv 2111.00405 (2021), https://arxiv.org/
abs/2111.00405

[32] Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: ACNS 2005. pp. 164–175.
Springer (2005)

[33] Ding, J., Schmidt, D.: Solving Degree and Degree of Regularity for Polynomial Systems over a Finite Fields, pp.
34–49. Springer (2013)

[34] Dinur, I.: Cryptanalytic Applications of the Polynomial Method for Solving Multivariate Equation Systems over
GF(2). In: Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021. pp. 374–403.
Springer, Cham (2021)

[35] Dinur, I., Goldfeder, S., Halevi, T., Ishai, Y., Kelkar, M., Sharma, V., Zaverucha, G.: MPC-Friendly Symmetric
Cryptography from Alternating Moduli: Candidates, Protocols, and Applications. In: CRYPTO 2021. pp. 517–
547. Springer (2021)

[36] Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on LowMC. In: ASIACRYPT 2015.
vol. 9453, pp. 535–560. Springer (2015)

[37] Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-Order Cryptanalysis of LowMC. In: ICISC 2015. vol. 9558,
pp. 87–101. Springer (2016)

21

https://www.sciencedirect.com/science/article/pii/S0885064X12000611
https://www.sciencedirect.com/science/article/pii/S0885064X12000611
http://dx.doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1007/s11424-020-0028-6
https://doi.org/10.1007/s11424-020-0028-6
https://arxiv.org/abs/2111.00405
https://arxiv.org/abs/2111.00405


[38] Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter Signatures Based on Tailor-
Made Minimalist Symmetric-Key Crypto. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. p. 843–857. CCS ’22, Association for Computing Machinery, New York, NY, USA
(2022), https://doi.org/10.1145/3548606.3559353

[39] Don, J., Fehr, S., Majenz, C.: The Measure-and-Reprogram Technique 2.0: Multi-Round Fiat-Shamir and More.
In: CRYPTO 2020. p. 602–631. Springer (2020)
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[48] Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a Generalization of Substitution-
Permutation Networks: The HADES Design Strategy. In: EUROCRYPT 2020. pp. 674–704. Springer (2020)

[49] Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In: ACM STOC ’96. p. 212–219.
Association for Computing Machinery (1996)

[50] Gupta, K.C., Ray, I.G.: Finding Biaffine and Quadratic Equations for S-Boxes Based on Power Mappings. IEEE
Transactions on Information Theory 61(4), 2200–2209 (2015)

[51] Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett.
103, 150502 (Oct 2009)

[52] Hosoyamada, A., Sasaki, Y.: Cryptanalysis Against Symmetric-Key Schemes with Online Classical Queries and
Offline Quantum Computations. In: CT-RSA 2018. pp. 198–218. Springer (2018)

[53] Hulsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag, S.L., Kampanakis, P., Kolbl,
S., Lange, T., Lauridsen, M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Au-
masson, J.P., Westerbaan, B., Beullens, W.: SPHINCS+. Technical report, National Institute of Standards
and Technology, 2022 (2022), available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022

[54] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from Secure Multiparty Computation. In:
ACM STOC 2007. pp. 21–30 (2007)

[55] Jang, K., Baksi, A., Kim, H., Seo, H., Chattopadhyay, A.: Improved Quantum Analysis of SPECK and LowMC.
In: Isobe, T., Sarkar, S. (eds.) Progress in Cryptology – INDOCRYPT 2022. pp. 517–540. Springer International
Publishing, Cham (2022)

[56] Jang, K., Kim, W., Lim, S., Kang, Y., Yang, Y., Seo, H.: Optimized Implementation of Quantum Binary Field
Multiplication with Toffoli Depth One. In: WISA 2022: Information Security Applications. Springer (2022)

[57] Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalili, A., Koziel, B., LaMacchia, B.,
Longa, P., Naehrig, M., Renes, J., Soukharev, V., Urbanik, D.: SIKE: Supersingular Isogeny Key Encapsulation.
HAL 2017(0) (2017), http://dml.mathdoc.fr/item/hal-02171951

[58] Kales, D., Zaverucha, G.: Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures.
Cryptology ePrint Archive, Paper 2022/588 (2022), https://eprint.iacr.org/2022/588

[59] Katz, D.J., Schmidt, K., Winterhof, A.: Weil sums of binomials: Properties applications and open problems. In:
Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, vol. 23, pp.
109–134. De Gruyter (2019)

22

https://doi.org/10.1145/3548606.3559353
https://doi.org/10.1007/s001459900025
https://eprint.iacr.org/2017/1236
https://eprint.iacr.org/2017/1236
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
http://dml.mathdoc.fr/item/hal-02171951
https://eprint.iacr.org/2022/588


[60] Katz, J., Kolesnikov, V., Wang, X.: Improved Non-Interactive Zero Knowledge with Applications to Post-
Quantum Signatures. In: ACM CCS 2018. pp. 525–537. ACM (2018)

[61] Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an Analysis of DESX). Journal
of Cryptology 14(1), 17–35 (Jan 2001), https://doi.org/10.1007/s001450010015

[62] Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In: CRYPTO
’99. pp. 19–30. Springer (1999)

[63] Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permuta-
tion. In: 2010 IEEE International Symposium on Information Theory. pp. 2682–2685 (2010)

[64] Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: 2012 International Symposium
on Information Theory and its Applications. pp. 312–316 (2012)

[65] Leander, G., May, A.: Grover Meets Simon – Quantumly Attacking the FX-construction. In: ASIACRYPT 2017.
pp. 161–178. Springer (2017)

[66] Liu, F., Isobe, T., Meier, W.: Cryptanalysis of full LowMC and LowMC-M with Algebraic Techniques. In:
CRYPTO 2021. pp. 368–401. Springer (2021)

[67] Liu, F., Isobe, T., Meier, W.: Low-Memory Algebraic Attacks on Round-Reduced LowMC. Cryptology ePrint
Archive (2021)

[68] Liu, F., Meier, W., Sarkar, S., Isobe, T.: New Low-Memory Algebraic Attacks on LowMC in the Picnic Setting.
IACR Transactions on Symmetric Cryptology 2022(3), 102–122 (Sep 2022), https://tosc.iacr.org/index.
php/ToSC/article/view/9851

[69] Liu, F., Sarkar, S., Wang, G., Meier, W., Isobe, T.: Algebraic Meet-in-the-Middle Attack on LowMC. In: Agrawal,
S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022. pp. 225–255. Springer Nature Switzerland, Cham
(2022)

[70] Lokshtanov, D., Paturi, R., Tamaki, S., Williams, R., Yu, H.: Beating Brute Force for Systems of Polynomial
Equations over Finite Fields. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms. pp. 2190–2202. SIAM (2017)

[71] Luby, M., Rackoff, C.: How to Construct Pseudo-random Permutations from Pseudo-random Functions. In:
CRYPTO ’85. pp. 447–447. Springer (1986)

[72] Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé, D., Bai, S.: CRYSTALS-
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[73] Muñoz-Coreas, E., Thapliyal, H.: Design of Quantum Circuits for Galois Field Squaring and Exponentiation.
In: 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). pp. 68–73 (2017)

[74] Nawaz, Y., Gupta, K.C., Gong, G.: Algebraic Immunity of S-Boxes Based on Power Mappings: Analysis and
Construction. IEEE Transactions on Information Theory 55(9), 4263–4273 (2009)

[75] NIST: Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Standardization
Process. Technical report, National Institute of Standards and Technology, 2022 (2022), available at https:

//csrc.nist.gov/projects/pqc-dig-sig

[76] Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Ricosset, T., Seiler, G.,
Whyte, W., Zhang, Z.: FALCON. Technical report, National Institute of Standards and Technology, 2022 (2022),
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[77] Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of Low-Data Instances of Full LowMCv2. IACR
Transactions on Symmetric Cryptology 2018(3), 163–181 (2018)

[78] Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations
for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: FSE 2004. pp. 371–388.
Springer (2004)

[79] de Saint Guilhem, C.D., Meyer, L.D., Orsini, E., Smart, N.P.: BBQ: Using AES in Picnic Signatures. In: SAC
2019. pp. 669–692. Springer (2019)

[80] de Saint Guilhem, C.D., Orsini, E., Tanguy, T.: Limbo: Efficient Zero-Knowledge MPCitH-Based Arguments.
In: ACM CCS 2021. p. 3022–3036. Association for Computing Machinery (2021)
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A Actual Running time of Gröbner Basis Computation

Figure 4 shows the actual running time of Gröbner basis computation for single-round Even-Mansour ciphers
built on top of three S-boxes: NGG, Mersenne, and the inverse. We observe that Gröbner basis computation
becomes faster given a larger number of quadratic equations. For a fixed S-box, the computation is faster
with the full system than the basic system.
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Fig. 4: Gröbner basis computation time for single-round Even-Mansour ciphers based on NGG, Mersenne
and the inverse S-boxes. This experiment is done in AMD Ryzen 7 2700X @ 3.70GHz with 128 GB memory.

B Systems of Equations from AIM

There are multiple ways of building a system of equations from an evaluation of AIM. We can categorize
them according to the number of (Boolean) variables and find the optimal choice of variables to obtain a
system of the lowest degree. Since ℓ ∈ {2, 3} is recommended, we consider 4 types of systems of equations as
follows.
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1. Systems in n variables.
2. Systems in 2n variables.
3. Systems in 3n variables.
4. Systems in 4n variables (only for AIM-V).

Using the quadratic relation between an input and the output of each Mersenne S-box, we can establish a
system of quadratic equations in (ℓ+ 1)n variables. With fewer variables, the resulting systems would have
higher degrees. The goal of this section is to find a system of equations of the lowest degree for each type,
where such systems of equations are denoted S1, S2, . . . , Squad, respectively. The optimal systems of equations
will be defined using the following variables.

- x: the input of AIM, i.e., pt
- yi: the output of Mer[ei] for i = 1, . . . , ℓ
- z: the output of Lin

The underlying ℓ+1 Mersenne S-boxes determine explicit and implicit relations between these variables.
For example, Mer[ei] implicitly determines 3n quadratic equations in x and yi, while yi (resp. x) can be
explicitly represented by a polynomial in x (resp. yi). We can also explicitly represent yi using yj for j ̸= i
or z as follows.

yi = Mer[ei] ◦Mer[ej ]
−1(yj),

= Mer[ei] (Mer[e∗](z)⊕ ct) .

The degree of yi with respect to z might be greater than the degree of Mer[ei] ◦Mer[e∗] due to the constant
addition, while we will ignore the effect by ct for simplicity. Table 8 shows the degrees of all the possible
explicit relations from AIM, and this table can be used to find the optimal systems of equations.

Relation AIM-I AIM-III AIM-V

Mer[e1] 3 5 3
Mer[e1]

−1 43 77 171
Mer[e2] 27 29 53
Mer[e2]

−1 19 53 29
Mer[e2] ◦Mer[e1]

−1 9 121 103
Mer[e1] ◦Mer[e2]

−1 57 73 87
Mer[e∗] 5 7 5
Mer[e∗]

−1 77 55 205
Mer[e1] ◦Mer[e∗] 5 7 5
Mer[e2] ◦Mer[e∗] 27 29 53
Mer[e∗]

−1 ◦Mer[e1]
−1 67 78 171

Mer[e∗]
−1 ◦Mer[e2]

−1 64 100 110

Mer[e3] - - 7
Mer[e3]

−1 - - 183
Mer[e3] ◦Mer[e1]

−1 - - 173
Mer[e3] ◦Mer[e2]

−1 - - 203
Mer[e1] ◦Mer[e3]

−1 - - 37
Mer[e2] ◦Mer[e3]

−1 - - 227
Mer[e3] ◦Mer[e∗] - - 7
Mer[e∗]

−1 ◦Mer[e3]
−1 - - 125

Table 8: Degrees of the compositions and the inverses of the Mersenne S-boxes of AIM.
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Scheme Name #Var Variables (#Eq, Deg) Gröbner Basis XL Dinur [34]

dreg Time D Time Time Memory

AIM-I S1 n z (3n, 10) 51 300.8 52 244.8 137.3 138.3
S2 2n x, y2 (3n, 2) + (3n, 4) 22 214.9 14 150.4 248.3 253.7

Squad 3n x, y1, y2 (9n, 2) 20 222.8 12 148.0 330.1 346.3

AIM-III S1 n z (3n, 14) 82 474.0 84 375.3 202.1 203.3
S2 2n x, y2 (3n, 2) + (3n, 6) 31 310.6 18 203.0 377.5 382.9

Squad 3n x, y1, y2 (9n, 2) 27 310.8 15 194.1 487.7 512.1

AIM-V S1 n z (3n, 12) 100 601.1 101 489.7 264.1 265.9
S2 2n x, y2 (3n, 2) + (3n, 8) 40 406.2 26 289.5 506.3 511.7
S3 3n x, y2, y3 (6n, 2) + (3n, 4) 47 510.4 20 260.6 716.1 732.3

Squad 4n x, y1, y2, y3 (12n, 2) 45 530.3 19 266.1 854.4 897.7

Table 9: Optimal systems of equations and their security against algebraic attacks. (#Eq,Deg) = (a, b)
means that the system contains a equations of degree b. The degree of regularity (resp. the target degree) of
the system is denoted dreg (resp. D). The time and the memory complexities are estimated in bits.

After exhaustive search, we found the optimal systems S1, S2, S3 and Squad. First, in order to obtain the
S1 systems, choose z as an n-bit variable. Then x and yi can be represented as polynomials in z; x is of degree
e∗, y1 is of degree deg(Mer[e1] ◦Mer[e∗]), and y3 (only for AIM-V) is of degree deg(Mer[e3] ◦Mer[e∗]) with
respect to z. Let Lin′ denote a linear function such that y2 = Lin′(y1, y3, z) (which is uniquely determined by
Lin). Then we have the following equation.

(Mer[e∗](z)⊕ ct)2
e2

= (Mer[e∗](z)⊕ ct)

× Lin′(Mer[e1](Mer[e∗](z)⊕ ct),Mer[e3](Mer[e∗](z)⊕ ct), z).

Since every Mersenne S-box used in AIM is represented by 3n quadratic equations, the above system of
equations can be seen as a system of 3n (Boolean) equations of degree

e∗ +max (deg(Mer[e1] ◦Mer[e∗]),deg(Mer[e3] ◦Mer[e∗])) .

Second, in order to obtain the S2 systems, we begin with x and y2, and using y1 = Mer[e1](x) and
y3 = Mer[e3](x) (only for AIM-V), we establish the following system of equations.

x · y2 = x2e2 ,

Lin(Mer[e1](x), y2,Mer[e3](x)) · (x⊕ ct)

= Lin(Mer[e1](x), y2,Mer[e3](x))
2e∗

We note that 3n quadratic equations are obtained from the first equation, and 3n equations of degree
max(e1, e3) + 1 from the second one.

Third, in order to obtain the S3 system for AIM-V, we begin with x, y2 and y3, and using y1 = Mer[e1](x),
we establish the following system of equations.

x · y2 = x2e2

x · y3 = x2e3

Lin(Mer[e1](x), y2, y3) · (x⊕ ct) = Lin(Mer[e1](x), y2, y3)
2e∗ .

We note that 6n quadratic equations are obtained from the first and the second equations, and 3n equations
of degree e1 + 1 are from the third one.
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Finally, the Squad systems are quadratic with x and all the yi’s being variables. Using the implicit relations
for all ℓ+ 1 S-boxes, we establish the following system of equations.

x · y1 = x2e1

x · y2 = x2e2

...

x · yℓ = x2eℓ

Lin(y1, y2, . . . , yℓ) · (x⊕ ct) = Lin(y1, y2, . . . , yℓ)
2e∗ ,

which can be extended to a system of 3(ℓ+ 1)n quadratic equations in (ℓ+ 1)n variables.
Table 9 summarizes the number of variables, the number of equations, and their degrees for the optimal

systems of equations, and their security against the Gröbner basis attack, the XL attack, and Dinur’s
algorithm based on the polynomial method [34]. The XL attack has been discussed in Section 2.2, while
more careful analysis is needed when the system of equations consists of equations of different degrees with
a particular structure. For example, the S2 system of AIM-V consists of two types of equations of different
degrees: 3n equations of degree 2, and 3n equations of degree d, all in x and y2, where d = max(e1, e3) + 1.
We observe that each type of equations have 2n solutions since y2 is uniquely determined for each x, and
this property makes one to compute the target degree in a different way from the one given in Section 2.2.

With target degree D, the extended system of equations for S2 is represented as

Mv =

M2

M∗

v = c

where v is a vector of monomials of degree at most D in x and y2, M2 (resp. M∗) is the matrix whose rows
are the coefficients of the extended system from Mer[e2] (resp. Mer[e∗]), and c is the corresponding constant
vector. The number of rows of M2 is greater than that of M∗ since the original system from Mer[e2] has
a lower degree than Mer[e∗]. In order for the XL attack to work with the target degree D, the matrix M
should have full rank and the number of rows should not be smaller than the number of columns, so that v
is uniquely determined.

On the other hand, the submatrix M2 itself cannot have full rank since M2v = c should have 2n solutions
(one for each x) as its original system from Mer[e2] does. More precisely, the nullity of M2 should not be

smaller than
∑D

j=1

(
n
j

)
. Otherwise, it implies that there is a linear relation on the monomials consisting of

only x variables, for example, ∑
a

cax
a = 0

where xa =
∏n

i=1 x
ai
i for x = (x1, . . . , xn) and a = (a1, . . . , an) such that

∑n
i=1 ai ≤ D, and ca is a Boolean

constant. This relation cannot hold for all x, which is a contradiction. Then, for M to have full rank, the
rank of M∗ should be at least the nullity of M2, yielding a necessary condition that the number of rows
of M∗ should be at least

∑D
j=1

(
n
j

)
provided that M has no nonzero column.17 As the number of rows of

M∗ is the number of equations in the extended system from Mer[e∗], the target degree D should satisfy the
following.

3n ·
D−d∑
j=0

(
2n

j

)
≥

D∑
j=1

(
n

j

)
. (8)

For the S2 system of AIM-III and AIM-V, the target degree is determined by the minimum D satisfying
(8), whereas it is not for AIM-I. The difference comes from the small value of d = 4 of AIM-I compared to

17 This condition is satisfied by the assumption that all monomials of degrees up to D appear in the extended system,
which can be assumed in the case of AIM.
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d = 6 and d = 8 of AIM-III and AIM-V, respectively. A similar argument also holds for the S3 system of
AIM-V, but it does not determine the target degree either due to the small value of d = 4 in S3.

C Gröbner Basis Computation for AIM and Rain with Toy Parameters

To justify our claim of the theoretical impact of ν, we computed Gröbner bases for the quadratic systems
of AIM with ℓ = 2, 3, and Rain3 with toy parameters.18 We summarize the result in Figure 5. Similarly
to the case of an Even-Mansour cipher, the solving degrees for both basic and full systems are close to the
estimated values for the full system. This result suggests that the exact number of quadratic equations should
be estimated by the degree of regularity for the full system.
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Fig. 5: The estimated degree of regularity dreg and the solving degree sd for the quadratic systems of AIM
with ℓ ∈ {2, 3} and Rain3.

D Linear Cryptanalysis on AIM

Given a function f : {0, 1}n → {0, 1}m, the weight of a correlation (α, β) ∈ {0, 1}n × {0, 1}m is defined by

wl(α
f−→ β)

def
= n− log2

∣∣2 ∣∣{x ∈ {0, 1}n : α⊤x = β⊤f(x)
}∣∣− 2n

∣∣ .
The weight is not defined if there are exactly 2n−1 values for x such that α⊤x = β⊤f(x). Otherwise, we say
that α and β are compatible.

A correlation trail is the composition of compatible correlations. For AIM, a correlation trail from an
input to the output (ignoring the feed-forward) can be represented as follows.

Q = α0
Mer[e1,...,eℓ]−−−−−−−−→ α1

Lin−−→ α2
Mer[e∗]−−−−→ α3.

Then the weight of the correlation trail Q is defined as

wl(Q)
def
=

2∑
i=0

wl(αi → αi+1).

18 We also tried to perform the XL attack on AIM with toy parameters, but could not obtain meaningful data due
to the memory limit.
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When d is not a power-of-2 and f(x) = xd is invertible over F2n , one has the following generic bound [59].∣∣2 ∣∣{x : α⊤x = β⊤f(x)
}∣∣− 2n

∣∣ ≤ (d− 1)2n/2

for any compatible correlation (α, β). Therefore the weight of a correlation trail of a Mersenne S-box is lower
bounded by wl(Q) ≥ n

2 − e. Then we have

wl(Q) =
∑
i

wl(αi → αi+1)

≥ max
1≤i≤ℓ

(n/2− ei) + wl(α2 → α3)

≥ max
1≤i≤ℓ

(n/2− ei) + (n/2− e∗)

= n− e1 − e∗.

As Lin is a (full-rank) compression function, α2 cannot be the zero mask. Since linear cryptanalysis requires
22wl(Q) plaintext-ciphertext pairs, AIM would be secure against linear cryptanalysis if

2(n− e1 − e∗) ≥ λ

which is the case for AIM. We emphasize again that linear cryptanalysis is not practically relevant in our
setting since AIM does not use any secret key, while all the inputs are kept secret and every user is assigned
a distinct linear layer.

E Full Description of AIMer

The AIMer signature scheme consists of three algorithms: key generation, signing, and verification algorithms.
The key generation takes as input a security parameter and outputs a public key (iv, ct) and a secret key pt
such that ct = AIM(iv, pt). The signing algorithm takes as input the pair of secret and public keys (pt, (iv, ct))
and a message m and outputs the corresponding signature σ. The verification algorithm takes as input the
public key (iv, ct), a message m and a signature σ and outputs either Accept or Reject. We describe the AIMer
signing and verification algorithms in Algorithm 1 and 2, respectively.

The BN++ proof system is combined with AIM, yielding the AIMer signature scheme. The AIM function
has been designed to fully exploit the optimization techniques of the BN++ proof system using repeated
multipliers for checking multiplication triples and locally computed output shares to reduce the overall sig-
nature.

Repeated Multiplier. If multiplication triples share the same multiplier, then the α values in the multi-
plication checking protocol can be batched as mentioned in Section 2.3. The ℓ+ 1 S-box evaluations in AIM
produce the ℓ+ 1 multiplication triples that needs to be verified, reformulated as follows.

pt · ti = pt2
ei

for i = 1, . . . , ℓ, and
pt · Lin[iv](t) = (Lin[iv](t))2

e∗
+ ct · Lin[iv](t)

where ti, i = 1, 2, . . . , ℓ, is the output of the i-th S-box and t
def
= [t1| . . . |tℓ]. Since every multiplication triple

shares the same multiplier pt, a single value of α can be included in the signature instead of ℓ+ 1 different
values.

Locally Computed Output Shares. For the above multiplication triples, every multiplication output
share on the right-hand side can be locally computed without communication between parties. Hence, it is
possible to remove the share ∆z in the signature. This technique is similar with multiplications with public
output, suggested in BN++.
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For the first ℓ multiplications, each party computes the output as (pt(i))2
ei

based on their input share
pt(i) using linear operations. For the last multiplication output, the output is determined as follows.{

(Aiv · t(i) + biv)
2e∗ + ct · (Aiv · t(i) + biv) for i = 1,

(Aiv · t(i))2
e∗

+ ct · (Aiv · t(i)) for i ≥ 2,

where t(i) ∈ Fℓn
2 is the output shares of the first ℓ S-boxes for the i-th party: t(i) = [t

(i)
1 | . . . |t

(i)
ℓ ].

With the above optimization techniques applied, the signature size is given as

6λ+ τ · (λ · ⌈log2(N)⌉+ (ℓ+ 5) · λ).

Other Symmetric Primitives In Use. The SHAKE128 (resp. SHAKE256) XOF is used to instantiate
hash functions Commit, H1, H2 and pseudorandom generators Expand and ExpandTape in the signature
scheme for λ = 128 (resp. λ ∈ {192, 256}). Sample(tape) samples an element from a random tape tape, which
is an output of ExpandTape, tracking the current position of the tape.

30



Algorithm 1: Sign(pt, (iv, ct),m) - AIMer signature scheme, signing algorithm.

// Phase 1: Committing to the seeds and the execution views of the parties.

1 Sample a random salt salt
$←− {0, 1}2λ.

2 Compute the first ℓ S-boxes’ outputs t1, . . . , tℓ.

3 Derive the binary matrix Aiv ∈ (Fn×n
2 )ℓ and the vector biv ∈ Fn

2 from the initial vector iv.
4 for each parallel execution k ∈ [τ ] do

5 Sample a root seed : seedk
$←− {0, 1}λ.

6 Compute parties’ seeds seed
(1)
k , . . . , seed

(N)
k as leaves of binary tree from seedk.

7 for each party i ∈ [N ] do

8 Commit to seed: com
(i)
k ← Commit(salt, k, i, seed

(i)
k ).

9 Expand random tape: tape
(i)
k ← ExpandTape(salt, k, i, seed

(i)
k ).

10 Sample witness share: pt
(i)
k ← Sample(tape

(i)
k ).

11 Compute witness offset and adjust first witness: ∆ptk ← pt−
∑

i pt
(i)
k , pt

(1)
k ← pt

(1)
k +∆ptk.

12 for each S-box with index j do
13 if j ≤ ℓ then

14 For each party i, sample a S-box output: t
(i)
k,j ← Sample(tape

(i)
k ).

15 Compute output offset and adjust first share: ∆tk,j = tj −
∑

i t
(i)
k,j , t

(1)
k,j ← t

(1)
k,j +∆tk,j .

16 For each party i, set x
(i)
k,j = t

(i)
k,j and z

(i)
k,j = (pt

(i)
k )2

ej
.

17 if j = ℓ+ 1 then

18 For i = 1, set x
(i)
k,j = Aiv · t(i)k,∗ + biv where t

(i)
k,∗ = [t

(i)
k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ

S-boxes.
19 For each party i ∈ [N ]\{1}, set x(i)

k,j = Aiv · t(i)k,∗

20 For each party i, set z
(i)
k,j = (x

(i)
k,j)

2e∗ + ct · x(i)
k,j .

21 For each party i, set a
(i)
k ← Sample(tape

(i)
k ).

22 Compute ak =
∑N

i=1 a
(i)
k .

23 Set ck = ak · pt.
24 For each party i, set c

(i)
k ← Sample(tape

(i)
k ).

25 Compute offset and adjust first share : ∆ck = ck −
∑

i c
(i)
k , c

(1)
k ← c

(1)
k +∆ck.

26 Set σ1 ←
(
salt, ((com

(i)
k )i∈[N ],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ ]

)
.

// Phase 2: Challenging the checking protocol.

27 Compute challenge hash: h1 ← H1(m, iv, ct, σ1).
28 Expand hash: ((ϵk,j)j∈[ℓ+1])k∈[τ ] ← Expand(h1) where ϵk,j ∈ F2n .

// Phase 3. Commit to the simulation of the checking protocol.

29 for each repetition k do
30 Simulate the triple checking protocol as in Section 2.3 for all parties with challenge ϵk,j . The inputs are

((x
(i)
k,j , pt

(i)
k , z

(i)
k,j)j∈[ℓ+1], a

(i)
k , b

(i)
k , c

(i)
k ), where b

(i)
k = pt

(i)
k , and let α

(i)
k and v

(i)
k be the broadcast values.

31 Set σ2 ←
(
salt, ((α

(i)
k , v

(i)
k )i∈[N ])k∈[τ ]

)
.

// Phase 4. Challenging the views of the MPC protocol.

32 Compute challenge hash: h2 ← H2(h1, σ2).
33 Expand hash: (̄ik)k∈[τ ] ← Expand(h2) where īk ∈ [N ].

// Phase 5. Opening the views of the MPC and checking protocols.

34 for each repetition k do

35 seedsk ← {⌈log2(N)⌉ nodes to compute seed
(i)
k for i ∈ [N ]\{̄ik}}.

36 Output σ ← (salt, h1, h2, (seedsk, com
(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k )k∈[τ ]).
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Algorithm 2: Verify((iv, ct),m, σ) - AIMer signature scheme, verification algorithm.

1 Parse σ as

(
salt, h1, h2,

(
seedsk, com

(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k

)
k∈[τ ]

)
.

2 Derive the binary matrix Aiv ∈ (Fn×n
2 )ℓ and the vector biv ∈ Fn

2 from the initial vector iv.
3 Expand hashes: ((ϵk,j)j∈[ℓ+1])k∈[τ ] ← Expand(h1) and (̄ik)k∈[τ ] ← Expand(h2).
4 for each parallel repetition k ∈ [τ ] do

5 Uses seedsk to recompute seed
(i)
k for i ∈ [N ] \ {̄ik}.

6 for each party i ∈ [N ] \ {̄ik} do
7 Recompute com

(i)
k ← Commit(salt, k, i, seed

(i)
k ),

8 tape
(i)
k ← ExpandTape(salt, k, i, seed

(i)
k ) and

9 pt
(i)
k ← Sample(tape

(i)
k ).

10 if i = 1 then

11 Adjust first share: pt
(i)
k ← pt

(i)
k +∆ptk

12 for each S-box with index j do
13 if j ≤ ℓ then

14 Sample a S-box output: t
(i)
k,j ← Sample(tape

(i)
k ).

15 if i = 1 then

16 Adjust first share: t
(1)
k,j ← t

(1)
k,j +∆tk,j .

17 Set x
(i)
k,j = t

(i)
k,j and z

(i)
k,j = (pt

(i)
k )2

ej
.

18 if j = ℓ+ 1 then
19 if i = 1 then

20 Set x
(i)
k,j = Aiv · t(i)k,∗ + biv where t

(i)
k,∗ = [t

(i)
k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ

S-boxes.

21 else

22 Set x
(i)
k,j = Aiv · t(i)k,∗.

23 Set z
(i)
k,j = (x

(i)
k,j)

2e∗ + ct · x(i)
k,j .

24 Set a
(i)
k ← Sample(tape

(i)
k ) and c

(i)
k ← Sample(tape

(i)
k ).

25 if i = 1 then

26 Adjust first share c
(i)
k ← c

(i)
k +∆ck.

27 Set σ1 ←
(
salt,

(
(com

(i)
k )i∈[N ],∆ptk,∆ck, (∆tk,j)j∈[ℓ]

)
k∈[τ ]

)
.

28 Set h′
1 ← H1(m, iv, ct, σ1).

29 for each parallel execution k ∈ [τ ] do
30 for each party i ∈ [N ] \ {̄ik} do
31 Simulate the triple checking protocol as defined in Section 2.3 for all parties with challenge ϵk,j . The

inputs are ((x
(i)
k,j , pt

(i)
k , z

(i)
k,j)j∈[ℓ+1], a

(i)
k , b

(i)
k , c

(i)
k ), where b

(i)
k = pt

(i)
k , and let α

(i)
k and v

(i)
k be the

broadcast values.

32 Compute v
(̄ik)
k = 0−

∑
i ̸=īk

v
(i)
k .

33 Set σ2 ←
(
salt, ((α

(i)
k , v

(i)
k )i∈[N ])k∈[τ ]

)
34 Set h′

2 = H2(h1, σ2).
35 Output Accept if h1 = h′

1 and h2 = h′
2.

36 Otherwise, output Reject.
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