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ABSTRACT

We study the problem of privacy-preserving proofs on streamed
authenticated data. In this setting, a server receives a continuous
stream of data from a trusted data provider, and is requested to
prove computations over the data to third parties in a correct and
private way. In particular, the third party learns no information
on the data beyond the validity of claimed results. A challenging
requirement here, is that the third party verifies the validity with
respect to the specific data authenticated by the provider, while
communicating only with the server. This problem is motivated
by various application areas, ranging from stock-market monitor-
ing and prediction services; to the publication of government-ran
statistics on large healthcare databases. All of these applications
require a reliable and scalable solution, in order to see practical
adoption.

In this paper, we identify and formalize a key primitive allowing
one to achieve the above: homomorphic signatures which evaluate
non-deterministic computations (HSNP). We provide a generic con-
struction for an HSNP evaluating universal relations; instantiate
the construction; and implement a library for HSNP. This in turn
allows us to build SPHinx: a system for proving arbitrary compu-
tations over streamed authenticated data in a privacy-preserving
manner. SPHinx improves significantly over alternative solutions
for this model. For instance, compared to corresponding solutions
based on Marlin (Eurocrypt’20), the proof generation of SPHinx is
between 15× and 1 300× faster for various computations used in
sliding-window statistics.

1 INTRODUCTION

1.1 Overview

We consider the problem of verifiable computation on delegated
data streams, where a data provider D streams large amounts of
data to a third party service provider S. In turn, the latter answers
some client C’s queries on behalf of D.

Such a configuration would apply, for example, to a stockbroker
providing its clients with a real-time stock market monitoring ser-
vice. Indeed, besides the raw data, which is generated by a trusted
entity and which clients may access directly (real-time informa-
tion about stock prices, indexes etc), the server may apply learning
algorithms to large amounts of accumulated data and provide pre-
diction services (e.g. predict the price in x days time) to paying
customers. More generally, the third party server provider could
perform analytics and expensive computations on the raw data
which could provide more meaningful figures to non-expert clients.
∗This is the full version of the paper that appears in the proceedings of the 2022
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Of course such a model inherently raises trust issues, hence the
importance of ensuring that server responses are correct.

Other applications of this configuration include a variety of sce-
narios – such as monitoring health sensors, financial data, network
traffic, and smart metering – where clients are interested in sliding-
window statistics or machine learning models and predictions on
streams of data from sensors or government/healthcare/financial
institutions (in Appendix C , we detail some fairly general applica-
tions as well as concrete examples).

A little more formally, our goal is to address the problem of
verifiable computation on data streams (VCS) for which we target
three key properties:
(1) Workflow. The communication between the data provider and

the server is unidirectional and the stream is ordered: at each
time unit, D sends a message to S. Also, the client C does not
follow the stream (it is not required to stay online); it is only
assumed to know some fixed parameters provided by D and
some metadata of the stream (e.g., indices to define queries).

(2) Security and trust model. The client does not trust the server
to return the correct results but trusts the data provider about
the data it streams.

(3) Efficiency. The client C is “efficient”, in the sense that its work
to verify is less than the cost of running the computation, e.g.,
it may depend at most logarithmically in the total size of the
stream and linearly in the description of the query. Similarly, the
communication betweenC andS should be at most logarithmic
in the stream size.

Additionally, to increase the range of practical applications, we aim
for a solution where the proof is (4) privacy-preserving, i.e., it does
not reveal any information on the input beyond the truthfulness of
the predicate, and (5) supports non-deterministic computations.

Goals (4) and (5) apply, for example, in situations where a data
analyst buys datasets, which are arranged and selected in a creative
manner, rendering them ideal for performing analyses, deriving
insights and training machine learning algorithms. Such datasets
may be protected by e.g. U.S. copyright law or by European Union
Database rights, thereby disallowing data analysts from selling on
their results to their own customers. With a privacy-preserving
VCS – since no information is revealed on the original data, other
than the result of the required function – the dataset remains pro-
tected, while the data analysts’ clients have the guarantee that the
information they buy is honestly computed from a reliable source.

Privacy of the stream also makes sense in scenarios analogue to
the aforementioned stockbroker application, butwhere the streamed
data are financial transactions happening in a bank or credit insti-
tution: while it may be required that the raw data remains secret,
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one may be able to reveal aggregated statistics. A similar setting
could apply to medical data: individual data should be private but
aggregated statistics can be revealed.

The problem described above is similar to that of verifiable com-
putation (VC) [32], in which a client delegates a computation on
a given input and wishes to verify the result more efficiently than
running the computation locally. In spite of the similarities though,
verifiable computation falls short of satisfying the workflow of the
data streaming scenario, where the verifier does not know the inputs.
See section 1.3 for a discussion on related work.

1.2 Our results

We propose a new solution to the problem of verifiable computation
on data streams that achieves all 5 properties described earlier. Our
approach is based on homomorphic signatures (HS) [10]. Using
this cryptographic primitive, the data ownerD uses a secret key to
generate a signature 𝜎𝑖 on each element 𝑥𝑖 of the stream, and sends
𝜎𝑖 to the server S. When a client queries a function 𝑓 on a subset
𝑄 of the stream, S uses D’s public key and the signed inputs to
derive a short signature 𝜎𝑦 certifying that 𝑦 is indeed 𝑓 ({𝑥 𝑗 } 𝑗 ∈𝑄 ),
for inputs legitimately signed by D. Finally S sends 𝜎𝑦 to the
client who can publicly check it without knowing the inputs; that
is, the client can be convinced that 𝑦 is the correct result by using
(𝑓 ,𝑄,𝑦, 𝜎𝑦). This use of HS for VCS easily satisfies properties (1)
and (2). The challenge though is that with existing HS schemes
the verification cost is linear in the complexity of the function 𝑓

(see Section 1.3 for more details). Also, existing HS only work for
deterministic polynomial time computations and are concretely
expensive.

In this paper, we propose a new HS scheme that overcomes the
above shortcomings enabling the server to prove the correctness
of non-deterministic computations on signed inputs in a privacy-
preserving way. We call such a scheme an HS for NP.

As we discuss in Section 1.3, HS for NP can also be built by
combining digital signatures and zkSNARKs: the server proves
that 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑡 ,𝑤) and that there exists a valid signature 𝜎𝑖
for each input 𝑥𝑖 . Although zkSNARKs have reached competitive
performances today, this approach is very expensive due to the cost
of encoding the verification of digital signatures in the zkSNARK
constraint system (e.g., a circuit).

Our HS for NP construction instead follows a different approach
based on a novel combination of linearly-homomorphic signatures
for NP and commit-and-prove SNARKs [14]. We present an efficient
instantiation of our construction based on pairings (called SPHinx).

In more detail, our contributions are as follows.
• We introduce and formalize the notion of HS for NP (HSNP),
which extends HS to support statements of the form ∃𝑤 : 𝑦 =

𝑓 (𝑥,𝑤) in such a way that the signatures on the results do not
reveal any information about (𝑥,𝑤) beyond the output 𝑦, and
the fact 𝑥 was signed (Section 3).

• We propose a generic construction of HSNP for any NP compu-
tation (Section 4). In contrast to the expensive approach based
on combining digital signatures and zkSNARKs, we propose a
new methodology to build HSNP through the combination of
commit-and-prove SNARKs [14] and a “basic” HSNP which only

supports a specific NP computation, that is proving the correct
evaluation of commitments to linear functions of signed data,
i.e., that ∃𝑟 : c = Com(𝑓 (𝒙); 𝑟 ). We call this primitive ‘ComLHS’.
The technical novelty of our generic HSNP construction lies
in the way we combine ComLHS with the commit-and-prove
SNARKs, whose main advantage is to not require any expensive
circuit-encoding of cryptographic operations.

• Wepropose an efficient pairing-based instantiation of our generic
HSNP construction, supporting computations expressed as rank-
1 constraint systems (R1CS) [33] (Section 6). This scheme, that we
call SPHinx,1 is instantiated from a commit-and-prove variant
of Marlin zkSNARK [21] and a ComLHS scheme for Pedersen
commitments that we propose (Section 5). The latter scheme
allows one, given a linear function 𝒇 and signatures {𝜎𝑖 }𝑖 for
inputs {𝑥𝑖 }𝑖 , to derive a signature 𝜎c for “∃𝑟 : c = 𝑔<𝒇 ,𝒙>ℎ𝑟 ”. Our
ComLHS scheme is extremely efficient as the computation of 𝜎c
essentially requires one multi-exponentiation of length |𝒙 |. Com-
pared to existing linearly homomorphic signatures, the novelty
of ComLHS is to be the first one to support a non-deterministic
statement, that is the computation of the Pedersen commitment.

• We implement SPHinx and evaluate it experimentally, compar-
ing it to the generic solution, based on checking signatures, in-
stantiated with Marlin [21]. We compare the two solutions on
four benchmarks: three that model computations typical in data
streams such as sliding window statistics, and one for generic
circuits of fixed size and varying number of signed inputs.
In our experiments we find that the high cost of encoding signa-
ture verifications in a circuit makes the generic solution rapidly
impractical. We were not able to execute it on any benchmark
with more than ≈ 2 000 inputs due to excessive memory require-
ments. In contrast, we ran SPHinx on benchmarks involving
up to 1M inputs, and observed only a small cost overhead for
proving signatures validity: SPHinx’s proving time is only ≈ 10%
more expensive than that ofMarlin executed on the same com-
putation without checking signatures. On the downside, SPHinx
has slower verification time than the generic solution, yet it is
concretely feasible. Verification is below 100ms for experiments
with moderate input sizes where the generic solution could be
executed, and below 4s in experiments with ≈ 1M inputs where
the generic solution would require 5 billions constraints and be
virtually infeasible. We refer to Section 7 for details.

1.3 Related Work

Verifiable Computation. Verifiable computation (VC) [32] allows
a client to delegate a computation on a given input and to verify the
result more efficiently than running the computation locally. In VC,
the verifier must know the inputs of the computation. Hence using
VC in our streaming scenario would not satisfy property (1), as the
verifying client does not have access to the input, nor can it be sent
as part of the proof as it is too large and would contradict property
(3). A class of VC schemes, starting with Pantry [13], considers the
setting where the client verifies proofs knowing only a digest of the
input [14, 24, 25, 46]. The main reason for which these schemes do
not apply to VCS is that in the streaming setting the digest should be
updated and communicated to the verifier whenever a new element
1Sign and Prove through Homomorphic sIgNatures.

2



Efficient Zero-Knowledge Proofs on Signed Data with Applications to Verifiable Computation on Data Streams

Solution (1) Workflow Efficiency
(ver time)

Efficiency
(comm.) (4) Privacy (5) NP Concrete

efficiency
VC % ! ! % %

HS ! % ! ! %

HS + VC ! ! ! % %

HS + zkSNARK ! ! ! ! !

Signatures + zkSNARK ! ! ! ! !

ADSNARK ! !
!(sk)
%(pk) ! !

Ours ! ! ! ! !

Table 1: Comparison of candidate solutions for VCS. Here!means that the property is satisfied whereas%means it is not. For

concrete efficiency, an empty circle means that the possible instantiations have impractical computation/communication

costs while an half-empty circle means that the instantiation is significantly expensive (see Section 6 for details).

is streamed. A few works [22, 23, 36] consider VC on data streams,
but do not satisfy the workflow property (1), as they work in a
model where the verifying client must have continuously received
and lightly processed the stream, maintaining some short piece of
information in local storage. This model would not only require
the client to stay online all the time, but would also be unsuitable
if one aims for privacy-preserving proofs in which clients should
not learn information on the raw stream.

Homomorphic Signatures. This cryptographic primitive [10, 37,
39] allows one to certify the correctness of computations on signed
data, and is the closest to solving our problem of verifying compu-
tations on data streams (as informally suggested in [17]). While HS
can easily satisfy properties (1) and (2) of VCS, existing HS schemes
incur three main drawbacks.

First, they fail to satisfy property (3). Any HS incurs a verification
cost that is poly(_) · |𝑓 | for every output (as the verifier must read
the description of the computation 𝑓 ). The problem is that existing
HSwork for computations expressed as circuits, hence |𝑓 | is as large
as 𝑓 ’s running time. Some HS constructions [19, 37] can amortize
this cost over multiple verifications when the same 𝑓 is executed
on different “datasets”. In the streaming setting, this would mean
that the stream should be partitioned a priori in different portions
𝐷1, 𝐷2, . . . and a query could be performed only on one portion 𝐷𝑖 .
This preprocessing model does not apply to many useful queries
for streams such as sliding window queries (e.g., average/variance
on the last 𝑛 elements of the stream).

Second, the current notion of HS only supports deterministic
polynomial-time computations.

Third, existing HS for more than linear functions [10, 37] are
based on lattices and are concretely expensive. For example, we
estimate that instantiating the HS of Gorbunov et al. [37], for a
boolean circuit of depth 2 and 128 bits of security, would result in a
single signature being of size 17 GBytes.

A large body of works [2–4, 9, 11, 15, 16, 18, 20, 29, 34, 42]
presents concretely efficient HS schemes that supports only lin-
ear functions. However, linear functions alone would be of little
use to express client’s queries in VCS. A technical twist of our
paper is showing how to take advantage of the efficiency of lin-
early homomorphic signatures in order to build HS for arbitrary
NP computations. As mentioned in the previous section, we expand
linearly-HS techniques to build an efficient ComLHS scheme, that is

an HSNP that can certify the correct computation of commitments
to linear functions of signed data.

1.3.1 Alternative solutions for VCS. We discuss a few more solu-
tions for VCS that can be obtained by combining existing results,
and for each solution we discuss its shortcomings. To keep the
presentation simple, we only show these solutions informally; our
main goal here is to expose the challenges of solving this problem
and how our solution tackles them.

HS+VC A first idea to solve the verifier’s efficiency problem in the
HS-based solution is to combine HS with a (publicly verifiable) VC
protocol as follows. Assuming that 𝜋 is verified by an algorithm
VC.Ver(𝑝𝑘𝑓 , (𝑥1, . . . , 𝑥𝑛), 𝑦, 𝜋), then one can write this algorithm as
a function 𝑔(𝑥1, . . . , 𝑥𝑛) and the server can use the HS evaluation to
certify that 𝑔(𝑥1, . . . , 𝑥𝑛) = 1 holds for the signed 𝑥𝑖 . This solution
satisfies the first three basic properties of VCS;2 in particular by the
VC efficiency property, 𝑔 runs faster than 𝑓 and thus poly(_) · |𝑔| is
asymptotically faster than |𝑓 |. Besides the fact that it does not satisfy
the extra properties (4)–(5), the main downside of this solution is
its concrete efficiency. The VC verification algorithm is for sure
more complex than a linear function (e.g., it can involve pairings
and hash function computations) and thus this solution needs to be
instantiated with a sufficiently expressive HS which, as discussed
earlier, is prohibitively expensive.

HS+zkSNARK The previous solution can be adapted to work with
a zkSNARK instead of a VC scheme, i.e., use the HS to certify that
SNARK.Ver(𝑝𝑘𝑓 , (𝑥1, . . . , 𝑥𝑛), 𝑦, 𝜋) = 1. Compared to the previous
solution, this one satisfies privacy (if the HS is context hiding and
the SNARK is zero-knowledge) and supports NP computations
since so does the zkSNARK. However, the same issue related to the
prohibitive efficiency of its instantiation applies here.

Signatures+zkSNARK This generic construction uses a zkSNARK
to prove the existence ofmessages and signatures {𝑥1, 𝜎1, . . . , 𝑥𝑛, 𝜎𝑛}
such that 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛) and each 𝜎𝑖 is a valid signature for 𝑥𝑖 .
This solution achieves all 5 desired properties and is most probably
more efficient than that based on combining HS with a zkSNARK.
Its bottleneck is the high cost for the prover due to having to prove
the validity of the 𝑛 signatures. In Section 7, we give a detailed

2We assume a VC where |𝜋 | = 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 (𝑛) otherwise it would not be efficient
communication-wise since 𝜋 must be sent to the verifier.
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efficiency comparison between our solution and this one, and show
that in ours the prover can be up to 1300 times faster.

ADSNARK Backes et al. [5] considered the problem of proving
statements on authenticated data, efficiently, and in zero-knowledge.
Their scheme, called ADSNARK, is concretely efficient (its proving
time is faster than the above generic solution based on zkSNARKs
and standard signatures) and satisfies the 5 properties of our VCDS
problem. However, it considers a weaker setting in which the data
provider and the verifier share a common secret key (i. e., they are the
same entity). Backes et al. also provide a publicly verifiable variant
of ADSNARK, but its proof size is linear in the size of the authenti-
cated inputs, and thus fails to satisfy our third property relative to
communication efficiency. Finally, the ADSNARK scheme requires
a circuit-specific SRS and setup – ours works with a universal SRS.

2 PRELIMINARIES

2.1 Notations

We denote by [𝑛] the set of integers {1, . . . , 𝑛}. Vectors are denoted
in boldface. Given two vectors 𝒂, 𝒃 their inner product is denoted
as ⟨𝒂, 𝒃⟩. By {𝑢 𝑗 } 𝑗 ∈[ℓ ] we denote the tuple (𝑢1, . . . , 𝑢ℓ ).

We use _ ∈ N to denote the security parameter, and 1_ its unary
representation.We assume all algorithms of a cryptographic scheme
take input 1_ , and thus omit it from the list of inputs. For a distribu-
tion𝐷 , we denote by 𝑥 ←$𝐷 the fact that 𝑥 is being sampled accord-
ing to 𝐷 . An ensemble X = {𝑋_}_∈N is a family of probability dis-
tributions over a family of domains D = {𝐷_}_∈N. Two ensembles
D = {𝐷_}_∈N and D′ = {𝐷 ′

_
}_∈N are statistically indistinguish-

able (denoted by D ≈𝑠 D′) if 1
2
∑
𝑥 |𝐷_ (𝑥) − 𝐷 ′

_
(𝑥) | < negl(_).

If A = {A_} is a (possibly non-uniform) family of circuits and
D = {𝐷_}_∈N is an ensemble, then we denote by A (D) the en-
semble of the outputs of A_ (𝑥) when 𝑥 ←$𝐷_ . We say two en-
sembles D = {𝐷_}_∈N and D′ = {𝐷 ′

_
}_∈N are computationally

indistinguishable (denoted by D ≈𝑐 D′) if for every non-uniform
polynomial time distinguisherA it holds thatA (D) ≈𝑠 A (D′).

We use the abbreviation (P)PT to refer to (probabilistic) polyno-
mial time algorithms.

2.2 Bilinear groups

A bilinear group generator G takes input a security parameter _,
and returns (𝑞,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) ← G(1_) with the following
properties:

• G1,G2,G𝑇 are cyclic groups of prime order 𝑞.
• 𝑒 : G1 × G2 → G𝑇 is a bilinear map such that ∀𝑢 ∈ G1,
∀𝑣 ∈ 𝐺𝐺2, ∀𝑎, 𝑏, ∈ Z, it holds that 𝑒 (𝑢𝑎, 𝑣𝑏 ) = 𝑒 (𝑢, 𝑣)𝑎𝑏 .

• 𝑔1, 𝑔2, 𝑒 (𝑔1, 𝑔2) generate G1,G2,G𝑇 respectively.
• There are efficient algorithms for computing group oper-

ations, evaluating the bilinear map, comparing group ele-
ments and deciding membership of the groups.

We will work in what Galbraith et al. [31] call type III groups, where
there are no efficiently computable isomorphisms between G1 and
G2.

2.3 Universal Relations

A universal relation R is a set of triples (R, 𝑦,𝑤), where R is a
relation,𝑦 is called the instance and𝑤 thewitness. We write (𝑦,𝑤) ∈
R to denote that R holds on (𝑦,𝑤), otherwise (𝑦,𝑤) ∉ R. Given
R, the corresponding universal language L(R) is the set {(R, 𝑦) :
∃𝑤 : (R, 𝑦,𝑤) ∈ R}.

When discussing schemes that prove statements on committed
values, we assume the witness is a pair (𝑥,𝑤) ∈ D𝑥 × D𝑤 . We
sometimes use a finer grained specification of D𝑥 , assuming it
splits over ℓ domains (D1 × · · · ×Dℓ ) for some arity ℓ .

2.4 Commitment schemes

We here recall the notion of non-interactive commitment schemes.

Definition 2.1. A (non-interactive) commitment scheme is a tuple
of algorithmsCom = (Setup,Commit,VerCom) with the following
syntax, and satisfying the notions of correctness, binding and hiding
defined below.
Setup(1_) → ck takes the security parameter and outputs a com-
mitment key ck. This key specifies the input spaceD, commitment
space C and opening space O.

Commit(ck, 𝑥) → (c, 𝑜) takes the commitment key ck, a value 𝑥 ∈
D, and outputs a commitment c ∈ C and an opening 𝑜 ∈ O.

VerCom(ck, c, 𝑥, 𝑜) → 𝑏 on input a commitment c, a value 𝑥 and
an opening 𝑜 , and accepts (𝑏 = 1) or rejects (𝑏 = 0).

Correctness. ∀_ ∈ N, ∀𝑥 ∈ D it holds that if ck← Setup(1_) and
(c, 𝑜) ← Commit(ck, 𝑥), then VerCom(ck, c, 𝑥, 𝑜) = 1.
Computational Binding. For every PT adversary A,

Pr
 ck← Setup(1_)
(c, 𝑥, 𝑜, 𝑥 ′, 𝑜 ′) ←A (ck) :

𝑥 ≠ 𝑥 ′

∧VerCom(ck, c, 𝑥, 𝑜) = 1
∧VerCom(ck, c, 𝑥 ′, 𝑜 ′) = 1

 = negl(_) .

Statistical Hiding. For ck ← Setup(1_) and ∀𝑥, 𝑥 ′ ∈ D, the
following distributions are statistically close:
{c : (c, 𝑜) ← Commit(ck, 𝑥)} ≈𝑠 {c′ : (c′, 𝑜 ′) ← Commit(ck, 𝑥 ′)}.
The scheme is perfectly hiding if both distributions are identical.

2.5 Universal Zero-knowledge SNARKs

We recall the definition of (pre-processing) zero-knowledge succinct
non-interactive arguments of knowledge (zkSNARK) [6, 7] with
specializable universal structured reference string (SRS) [38]. In this
work, we use the term zkSNARK to refer to a universal zkSNARK.

Definition 2.2. A SNARK with specializable universal SRS for
a family of relations R is a tuple of algorithms Π = (Kg,Derive,
Prove,VerProof) that work as follows and satisfy the notions of
completeness, succinctness and knowledge soundness described
below. If Π also satisfies zero-knowledge it is a zkSNARK.
Kg(1_,R) → srs takes security parameter _ and a universal rela-
tion R, and outputs a universal structured reference string srs.

Derive(srs,R) → (ekR, vkR) is a deterministic algorithm that takes
a universal SRS srs and a relation R ∈ R, and outputs a specialized
SRS consisting of an evaluation key and a verification key.

Prove(ekR,R, 𝑦,𝑤) → 𝜋 takes an evaluation key for a relation R,
a relation R, an instance 𝑦, and a witness𝑤 such that (𝑦,𝑤) ∈ R,
and returns a proof 𝜋 .
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VerProof (vkR, 𝑦, 𝜋) → 𝑏 takes a specialized verification key, an
instance 𝑦, and a proof 𝜋 , and accepts (𝑏 = 1) or rejects (𝑏 = 0).

Completeness. For all _ ∈ N, R ∈ R and (𝑦,𝑤) ∈ R, if srs ←
Kg(1_,R), (ekR, vkR) ← Derive(srs, R) and𝜋 ← Prove(ekR, R, 𝑦,𝑤),
then VerProof (vkR, 𝑦, 𝜋) = 1.
Succinctness. VerProof runs in time poly(_ + |𝑦 | + log |𝑤 |) and
the proof size is poly(_ + log |𝑤 |).
Knowledge soundness. Let Rg(1_) be a relation generator that,
on input a security parameter, returns the description of a universal
relation that containsR. Π is knowledge sound for Rg and auxiliary
input distributionZ, denoted KSND(Rg,Z) for brevity, if for every
(non-uniform) efficient adversaryA there exists a (non-uniform)
efficient extractor E such that

Pr[GameKSNDRg,Z,A,E
= 1] = negl(_) .

The scheme Π is knowledge sound if there exist benign Rg and Z

such that Π is KSND(Rg,Z).
GameKSNDRg,Z,A,E

→ 𝑏

(R, auxR ) ← Rg(1_) ; srs← Kg(1_,R)
auxZ ← Z (R, auxR , srs)
(R, 𝑦, 𝜋 ) ←A (R, srs, auxR , auxZ )
𝑤 ← E (R, srs, auxR , auxZ )
(ekR, vkR) ← Derive(srs,R)
𝑏 ←

(
VerProof (vkR, 𝑦, 𝜋 ) ∧ (𝑦, 𝑤) ∉ R

)
Composable zero-knowledge. A SNARK satisfies composable
zero-knowledge for relation generator Rg if there exists a simulator
S = (Skg,Sprv) s.t. for allA the following hold:

Key indistinguishability

Pr[(R, aux) ← Rg(1_), srs← Kg(R) : A (srs, aux) = 1] ≈

Pr[(R, aux) ← Rg(1_), (srs, td) ← Skg (R) : A (srs, aux) = 1] .

Proof indistinguishability ∀(R, 𝑦,𝑤) ∈ R,

Pr[(R, aux) ← Rg(1_), (srs, td) ← Skg (R) :
𝜋 ← Prove(ekR,R, 𝑦,𝑤),A (srs, aux, 𝜋) = 1]

≈ Pr[(R, aux) ← Rg(1_), (srs, td) ← Skg (R) :
𝜋 ← Sprv (srs, td,R, 𝑦),A (srs, aux, 𝜋) = 1] .

O-SNARKs. In our work we use the notion of O-SNARK introduced
in [26], which assumes knowledge extraction in the presence of
oracles. We refer to [26] for the formal definition. In brief, given
an oracle O, Π is an O-SNARK for O if the knowledge soundness
definition holds for an experiment whereA can make queries toO
and the extractor E additionally takes as input the transcript (i.e.,
inputs and outputs) of A’s queries.

2.6 Commit-and-prove SNARKs

A commit-and-prove SNARK (CP-SNARK) is a SNARK that, for a
given commitment c𝑥 , can prove knowledge of (𝑦,𝑤 ′) such that
(𝑦,𝑤 ′) ∈ R for a witness 𝑤 ′ = (𝑥,𝑤), and 𝑥 opens c𝑥 . In our
work we use the framework of definitions from [14] which allow
explicitly handling relations where the input domainD𝑥 splits over

ℓ sub-domains, called commitment slots. We assume the description
of the splitting is part of R’s description.

Definition 2.3. LetR be a universal relation where each R ∈ R is
overD𝑦×D𝑥×D𝑤 , andD𝑥 splits over ℓ domains (D1×· · ·×Dℓ ) for
some arity parameter ℓ ⩾ 1. Let Com = (Setup,Commit,VerCom)
be a commitment scheme with input space D, where D𝑖 ⊂ D for
𝑖 ∈ [ℓ]; commitment space C; and opening space O. A universal
commit and prove zkSNARK forCom andR is a universal zkSNARK
for a universal relation RCom such that:
• every R ∈ RCom is represented by a pair (ck,R) where ck ∈

Setup(1_) and R ∈ R;
• relation R is over pairs (y,w) where the statement is y :=
(𝑦, {c𝑗 } 𝑗 ∈[ℓ ] ) ∈ D𝑦×Cℓ , thewitness isw := ({𝑥 𝑗 } 𝑗 ∈[ℓ ] , {𝑜 𝑗 } 𝑗 ∈[ℓ ] ,
𝑤) ∈ D1 × · · · ×Dℓ ×Oℓ ×D𝑤 , and (y,w) ∈ R if and only if:∧

𝑗 ∈[ℓ ]
VerCom(ck, c𝑗 , 𝑥 𝑗 , 𝑜 𝑗 ) = 1 ∧ R(𝑦, {𝑥 𝑗 } 𝑗 ∈[ℓ ] ,𝑤) = 1.

A universal CP-SNARK is a tuple of algorithms CP = (Kg,Derive,
Prove,VerProof) with the following syntax:
Kg(ck,R) → srs outputs the universal SRS.
Derive(srs,R) → (ekR, vkR) outputs the specialized SRS.
Prove(ekR,R, 𝑦, {c𝑗 } 𝑗 ∈[ℓ ] , {𝑥 𝑗 } 𝑗 ∈[ℓ ] , {𝑜 𝑗 } 𝑗 ∈[ℓ ] ,𝑤) → 𝜋 .

VerProof (vkR, 𝑦, {c𝑗 } 𝑗 ∈[ℓ ] , 𝜋) → 𝑏 ∈ {0, 1}.
Furthermore, CP is knowledge-sound for a relation generator Rg
and auxiliary input generator Z (denoted KSND(Rg,Z), for short)
if it is a knowledge-sound SNARK for relation generator RgCom (1_)
that runs ck← Setup(1_) and (R, auxR ) ← Rg(1_), and returns
((ck,R), auxR ).

3 HOMOMORPHIC SIGNATURES FOR NP

We introduce the notion of homomorphic signatures for NP re-
lations (HSNP), which extends classical homomorphic signatures
to support the evaluation of non-deterministic computations on
signed data. At a very high level, this means that anyonewho knows
a value 𝑥 and a signature 𝜎𝑥 , can compute 𝑦 = 𝑓 (𝑥,𝑤) where𝑤 is
a non-deterministic input, and then derive a signature 𝜎𝑦 which
vouches for the fact that there exists a𝑤 and validly authenticated
𝑥 such that 𝑦 = 𝑓 (𝑥,𝑤). For an HSNP we consider a privacy notion
which guarantees that 𝜎𝑦 leaks no information about (𝑥,𝑤) beyond
what can be inferred from 𝑦.

An interesting application of HSNP is to authenticate commit-
ments while ensuring data privacy (i.e. commitments that are cryp-
tographically hiding). Consider the case of a party who generates
a commitment (c𝒙 , 𝑜𝒙 ) = Commit(ck, 𝒙) on a signed 𝒙 and who
wishes to prove that c𝒙 commits to an 𝒙 for which there is a valid
signature. An HSNP allows one to do so by generating a homo-
morphic signature on the bit 1 as output of VerCom(ck, c𝒙 , 𝒙, 𝑜𝒙 ),
in which 𝑜𝒙 is the witness. Taking this idea further, one can au-
thenticate commitments to outputs of functions on signed data, i.e.,
authenticate c𝑦 which commits to 𝑦 = 𝑓 (𝒙) (see Section 5).

Labelled relations A technicality in defining HS is the need of
labelling signed inputs (see, e.g., [17, 35] for details on this problem).
Briefly, this means that an input 𝑥𝑖 is signed with respect to a public
label 𝜏𝑖 (e.g., its position 𝑖 in the stream), and the prover’s goal is
to convince a verifier that 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛,𝑤) for inputs that
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have been correctly authenticated with respect to labels (𝜏1, . . . , 𝜏𝑛)
known to the verifier. Labelling is a way to avoid ambiguity for
proofs about inputs that are unknown to the verifier. As a simple
example, assume one authenticates two measurements 𝑥1 and 𝑥2
at time instants 1 and 2 respectively, and consider a prover who
wishes to certify a weighted sum 𝑦 = 𝑓1𝑥1 + 𝑓2𝑥2. Clearly, the order
of the measurements makes a difference. Also, labelling provides
a mechanism to express queries that first filter a subset of the
authenticated data and then execute a computation on the data after
filtering. This property is useful to make the prover’s complexity
nearly independent on the total size of the stream (see Section 7).
Below we give a formal definition of labelled relations.

LetL be a set of labels (e.g., integers in [𝑁 ] or strings in {0, 1}∗)
and let R be a universal relation such that each R ∈ R is over
D𝑦 ×D𝑥 ×D𝑤 , whereD𝑥 = M𝑡 for an arity parameter 𝑡 ⩾ 1, and
M is the signature scheme’s message space. A labelled relation is a
tuple (R, 𝜏1, . . . , 𝜏𝑡 ) where R ∈ R, and 𝜏𝑖 ∈ L is a label for the 𝑖-th
slot of D𝑥 . We refer to R𝑖𝑑 := {(𝑥, 𝑥, ∅)} as the identity relation.
Homomorphic Signatures for NP relations From signatures
for labelled data {(𝜏𝑖 , 𝑥𝑖 )}𝑖∈[𝑡 ] , and from any 𝑦 ∈ D𝑦,𝑤 ∈ D𝑤

satisfying (𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∈ R, an HSNP scheme allows publicly
computing a signature for 𝑦.

Definition 3.1 (HSNP). A homomorphic signature scheme for NP
consists of the following PPT algorithms:
Kg(1_,L,R) on input _ ∈ N, a set of labels L (which fixes the
maximum number 𝑁 of inputs to be signed), and a universal
relation R, the key generation algorithm outputs a secret signing
key sk, and a public key vk which contains a description of the
message spaceM.

Sign(sk, 𝜏, 𝑥) on input signing key sk, a label 𝜏 ∈ L, and a message
𝑥 ∈M, the signing algorithm outputs a signature 𝜎 .

Eval(vk,R, 𝑦, 𝜎1, . . . , 𝜎𝑡 ,𝑤) on input a verification key vk, a relation
R ∈ R overD𝑦 ×M𝑡 ×D𝑤 for some 𝑡 ⩽ 𝑁 , a statement 𝑦 ∈ D𝑦 ,
signatures {𝜎1, . . . , 𝜎𝑡 }, and a witness 𝑤 ∈ D𝑤 , the evaluation
algorithm outputs a new signature 𝜎 .

VerSig(vk, (R,𝝉 ), 𝑦, 𝜎) on input a verification key vk, a labelled
relation (R, 𝜏1, . . . 𝜏𝑡 ) where R ∈ R is over D𝑦 ×M𝑡 × D𝑤 , a
statement 𝑦 ∈ D𝑦 , and a signature 𝜎 , the verification algorithm
outputs 0 (reject) or 1 (accept).

An HSNP scheme is required to satisfy authentication correctness,
evaluation correctness and succinctness described below. These are
similar to those required to standard homomorphic signatures.

Authentication correctness For any (vk, sk) ← Kg(1_,L,R),
any 𝜏 ∈ L, and 𝑥 ∈M, if 𝜎 ← Sign(sk, 𝜏, 𝑥) then with overwhelm-
ing probability VerSig(vk, (R𝑖𝑑 , 𝜏), 𝑥, 𝜎) = 1.

Evaluation correctness Consider any (vk, sk) ← Kg(1_,L, R),
any R ∈ R, and any set of label/message/signature triples {𝜏𝑖 , 𝑥𝑖 ,
𝜎𝑖 }𝑡𝑖=1 satisfying VerSig(vk, (R𝑖𝑑 , 𝜏𝑖 ), 𝑥𝑖 , 𝜎𝑖 ) = 1. If (𝑦, (𝑥1, . . . , 𝑥𝑡 ),
𝑤) ∈ R, and 𝜎 = Eval(vk,R, 𝑦, 𝜎1, . . . , 𝜎𝑡 ,𝑤) then with overwhelm-
ing probability VerSig(vk, (R, 𝜏1, . . . 𝜏𝑡 ), 𝑦, 𝜎) = 1.
Succinctness For a fixed _ ∈ N, the size of signatures depends at
most logarithmically on the size of the signed and non-deterministic
inputs. Formally, consider any (vk, sk) ← Kg(1_,L,R), any 𝜏𝑖 ∈
L, 𝑥𝑖 ∈ M ∀𝑖 ∈ [𝑡], any relation R ∈ R over D𝑦 ×M𝑡 × D𝑤

Key generation The challenger proceeds as follows:
• Initialise an empty list 𝑇 = {}.
• (R, auxR ) ← Rg(1_); (vk, sk) ← Kg(1_,L,R)
• auxZ ← Z (R, auxR , srs)
• ((R′,𝝉 ′), 𝜎 ′, 𝑦′) ←ASign(sk, ·, ·) (R, vk, auxR , auxZ)
• 𝑤 ← E(R, vk, auxR , auxZ ,𝑇 )

Signing queries A adaptively submits queries (𝜏, 𝑥), 𝜏 ∈ L,
and 𝑥 ∈M. The challenger proceeds as follows:
• If ∃𝜎 , (𝜏, 𝑥, 𝜎) ∈ 𝑇 (i.e.,A has previously queried (𝜏, 𝑥)),

then return 𝜎 toA.
• If (𝜏, 𝑥 ′, ·) ∈ 𝑇 , but 𝑥 ≠ 𝑥 ′ (i.e., A has previously queried
(𝜏, 𝑥 ′)), then ignore the query.

• Else compute 𝜎 ← Sign(sk, 𝜏, 𝑥), update𝑇 ← 𝑇 ∪ (𝜏, 𝑥, 𝜎)
and return 𝜎 toA.

Experiment output Return VerSig(vk, (R′,𝝉 ′), 𝑦′, 𝜎 ′) ∧(
(∃ 𝑗 ∈ [𝑡] : (𝜏 ′

𝑗
, · , ·) ∉ 𝑇 ) ∨ (𝑦′, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∉ R′

)
where

(𝑥1, . . . , 𝑥𝑡 ) are such that ∀𝑗 ∈ [𝑡] : (𝜏 ′
𝑗
, 𝑥 𝑗 , ·) ∈ 𝑇 .

Figure 1: Experiment UFRg,Z,A,E (_)

and any 𝑤 ∈ D𝑤 . If for all 𝑖 ∈ [𝑡] 𝜎𝑖 ← Sign(sk, 𝜏𝑖 , 𝑥𝑖 ) and 𝜎 ←
Eval(vk, R, 𝑦, 𝜎1, . . . , 𝜎𝑡 ,𝑤), then it holds |𝜎 | ⩽ poly(_) · log(𝑡 + |𝑤 |).

Amortized efficiency An HSNP scheme satisfies amortized effi-
ciency if there is a pair of algorithms (VerPrep, EffVer) such that
for any relation R ∈ R and any tuple of labels 𝝉 ∈ L𝑡 we have:
(i) for any 𝑦, 𝜎 such that VerSig(vk, (R,𝝉 ), 𝑦, 𝜎) = 1, it holds that
EffVer(VerPrep(vk, R),𝝉 , 𝑦, 𝜎) = 1; (ii) given vkR ← VerPrep(vk, R),
the running time of EffVer(vkR,𝝉 , 𝑦, 𝜎) = 1 does not depend on |R|.

3.1 Security definitions

We here define meaningful security properties for HSNP. The first
of which ensures unforgeability: an evaluator should only be able
to compute valid signatures for statements 𝑦 for which it received
signatures for data items 𝑥1, . . . , 𝑥𝑡 , and knows a value 𝑤 ∈ D𝑤

satisfying (𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∈ R. To formalise this, we consider an
adversaryA, which can adaptively query signatures for labelled
messages of its choice. Now assume thatA outputs a valid signature
𝜎 for a statement𝑦 as output of some labelled relation (R, 𝜏1, . . . , 𝜏𝑡 )
for some 𝑡 ∈ N. Then with overwhelming probability (i) A must
have queried signatures for each label𝜏𝑖 ; and, denoting these queries
{(𝜏𝑖 , 𝑥𝑖 )}𝑖∈[𝑡 ] (ii) the adversaryA must know awitness𝑤 such that
(𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∈ R. We formalize the knowledge of𝑤 similarly
to the knowledge soundness of SNARKs, namely via an efficient
extractor E which, given A’s view, can output such a witness 𝑤 .
Precisely, sinceA is an adversary that interacts with the signing
oracle of the HSNP scheme, taking inspiration from [26], we also
give to E the transcript (i.e., inputs and outputs) of the signing
queries made byA.

Definition 3.2 (Adaptive security). Let Rg(1_) be a relation gener-
ator andZ be an auxiliary input distribution. Consider the security
experiment UFRg,Z,A,E (_) depicted in Figure 1. An HSNP scheme
is adaptively secure for Rg and Z, denoted UF(Rg,Z), if for ev-
ery non-uniform efficient adversary A there exists a non-uniform
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efficient extractor E such that

Advuf
A,E
(_) := Pr[UFRg,Z,A,E (_) = 1] = negl(_)

We say that an HSNP scheme is adaptively secure if there exist
benign Rg and Z such that the scheme is UF(Rg,Z).

Similarly to the O-SNARK notion [26] mentioned in Section 2.5,
we say that Σ is adaptively secure with respect to an oracle O if
adaptive security holds for a game whereA has access to O, and
E additionally receives the transcript ofA’s queries to O.

The second property we define is zero-knowledge, ensuring that
evaluated signatures reveal nothing on the signed and non-deterministic
inputs beyond the fact that the signed statement satisfies the re-
lation. To formalise this, the adversaryA first adaptively queries
signatures for labelled messages of its choice. Then A chooses a
challenge statement 𝑦, a labelled relation (R, 𝜏1, . . . , 𝜏𝑡 ) (where each
𝜏𝑖 must have been queried with some message 𝑥𝑖 , resulting in signa-
ture 𝜎𝑖 ) and a witness𝑤 , satisfying (𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∈ R. Finally,
A is given a signature for 𝑦, which is either honestly evaluated,
or computed by a simulator, which has access to 𝑦, (R,𝝉 ), and the
secret signing key sk, but not to the signed and non-deterministic in-
puts. The scheme satisfies zero-knowledge if A cannot distinguish
how 𝜎 was computed.

Definition 3.3 (Zero-knowledge). Consider the real and simulated
experiments, ZKreal

A
and ZKsim

A,S
of Figures 2a and 2b. An HSNP

scheme satisfies computational zero-knowledge if for any large
enough _ ∈ N, any label space L, and any PPT adversaryA, there
exists a PT simulator S = (Skg,Seval), such that the following
probability is negligible:

Advzk
A,S
(_) :=

���Pr[ZKreal
A
(_) = 1] − Pr[ZKsim

A,S
(_) = 1]

��� .
If Advzk

A,S
(_) = 0 the scheme is perfect zero-knowledge.

3.2 HSNP for VCS

We briefly discuss how an HSNP yields a solution for verifiable
computation on data streams, which achieves all five properties
advocated earlier in the paper. In fact, our HSNP’s properties closely
match those of the VCS problem; hence we do not explicitly for-
malize VCS as a cryptographic primitive.

The use of HSNP for VCS is as follows. First, the data provider
D generates a keypair (sk, vk) ← Kg(1_,L,R) in which L =

{1, 2, . . . , 𝑁 } and 𝑁 is an upper bound on the size of the stream,
then D gives vk to both the server S and all the clients.

To stream a value 𝑥𝑖 at time 𝑖 , D computes 𝜎𝑖 ← Sign(sk, 𝑖, 𝑥𝑖 )
and gives (𝑥𝑖 , 𝜎𝑖 ) to S.

Upon receiving a query (𝑓 ,𝑄), where 𝑓 is the computation and
𝑄 = ( 𝑗1, . . . , 𝑗𝑛) a subset of indices,S computes𝑦 ← 𝑓 (𝑥 𝑗1 , . . . , 𝑥 𝑗𝑛 ,
𝑤) and 𝜎 ← Eval(vk,R𝑓 , 𝑦, 𝜎 𝑗1 , . . . , 𝜎 𝑗𝑛 ,𝑤), and gives (𝑦, 𝜎) to
the relevant client. Here R𝑓 is the NP relation containing tuples
(𝑦, 𝑥 𝑗1 , . . . , 𝑥 𝑗𝑛 ,𝑤) such that 𝑦 = 𝑓 (𝑥 𝑗1 , . . . , 𝑥 𝑗𝑛 ,𝑤), and𝑤 is a non-
deterministic input provided by S. For example,𝑤 can be a secret
parameter known only by S, or it can include values that are com-
puted by S and that simplify the verification of some steps of
𝑓 (e.g., to express the binary decomposition of an integer or to
turn divisions into multiplications). The client can in turn execute
VerSig(vk, (R𝑓 , 𝑄), 𝑦, 𝜎) to verify the correctness of 𝑦.

Key generation

• (sk, vk) ← Kg(1_,L,R); send vk toA

Signing queries as in Figure 1, repeated poly(_) times
Choose

• A outputs 𝑦 ∈ D𝑦 , (R, 𝜏1, . . . , 𝜏𝑡 ) and𝑤 ∈ D𝑤

• if ∃ 𝑗 ∈ [𝑡] s.t. (𝜏 𝑗 , · , ·) ∉ 𝑇 ∗ return ⊥
• for 𝑖 ∈ [𝑡], denote (𝑥𝑖 , 𝜎𝑖 ) the pairs s.t. (𝜏𝑖 , 𝑥𝑖 , 𝜎𝑖 ) ∈ 𝑇 ∗
• if (𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∉ R return ⊥

Challenge

• 𝜎 ← Eval(vk,R, 𝑦, 𝜎1, . . . , 𝜎𝑡 ,𝑤)
• send 𝜎 toA

Experiment output A outputs a bit 𝑏

(a) Experiment ZKreal
A
(_)

Key generation

• (sk, vk) ← Skg (1_,L,R); send vk toA

Signing queries as in Figure 2a.
Choose as in Figure 2a.
Challenge

• 𝜎 ← Seval (vk, sk, (R, 𝜏1, . . . , 𝜏𝑡 ), 𝑦).
• send 𝜎 toA.

Experiment output A outputs a bit 𝑏

(b) Experiment ZKsim
A,S
(_)

Figure 2: Real/simulated experiments for zero-knowledge.

By the above description, one can immediately see that this so-
lution satisfies property (1) as the communication is unidirectional,
and the client only needs to know D’s public vk. The security
property (2) follows from the unforgeability of the HSNP scheme.
Regarding efficiency (3), the communication from S to C is short
because of the HSNP succinctness, and so is C’s computational
cost to verify each result. Finally, the support for non-deterministic
computations (4) is immediate by HSNP correctness, and privacy
(5) is guaranteed thanks to the zero-knowledge of HSNP.

4 A GENERIC HSNP SCHEME

Consider data items 𝑥𝑖 in some finite field F and a positive integer
𝑁 ∈ N specifying the maximum number of data items computed
upon. In this section, we provide a generic HSNP scheme for the
universal relation R where each R ⊆ D𝑦 × F𝑡 × D𝑤 for some
positive integer 𝑡 ⩽ 𝑁 .

Our construction builds upon:
• A commitment scheme Com = (Setup, Commit,VerCom) for

committing to 𝑛-variate polynomials of total degree < 𝑁 with
coefficients in F, as well to scalars in F.

• A universal CP-SNARK CPR for the commitment Com and the
universal relationR to be supported by our HSNP scheme. Specif-
ically, considering that Com commits to polynomials, given a
statement 𝑦 and a commitment c𝒙 , CPR proves the existence of
witnesses 𝑥 ∈ F[𝑋1, . . . , 𝑋𝑛], 𝑜𝒙 , and𝑤 ∈ D𝑤 , such that:

(𝑦, (𝑥 (ℎ1), . . . , 𝑥 (ℎ𝑡 )),𝑤) ∈ R ∧ VerCom(ck, c𝒙 , 𝑥, 𝑜𝒙 ) = 1.

where T = {ℎ1, . . . , ℎ𝑡 } ⊂ F𝑛 is a public subset.
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For our construction, we assume that from T one can define 𝑡
polynomials 𝝌 (𝑋1, . . . , 𝑋𝑛) ∈ (F[𝑋1, . . . , 𝑋𝑛])𝑡 such that:3
(a) for every 𝑖, 𝑗 ∈ [𝑡] it holds 𝜒𝑖 (ℎ 𝑗 ) = 1 if 𝑗 = 𝑖 and 0 if 𝑖 ≠ 𝑗 ;
(b) given 𝒓 ∈ F𝑛 , 𝝌 (𝒓) ∈ F𝑡 can be computed in time 𝑂 (𝑡);
(c) every 𝜒𝑖 (𝑿 ) has degree at most 𝑑 such that 𝑑/|F| = negl(_).

• A universal CP-SNARK CPev for committed evaluations. Namely,
CPev works for the commitment Com and the universal relation
Rev such that each Rev ∈ Rev is parametrized by an integer 𝑡 ⩽
𝑁 , andRev ⊂ F𝑛×F[𝑋1, . . . , 𝑋𝑛]×F is such that (𝒓, 𝑥 (𝑋 ), 𝑧) ∈ Rev
iff 𝑧 = 𝑥 (𝒓).
As per the CP-SNARK definition in Section 2.6, given a public
statement 𝒓 ∈ F𝑛 , and commitments c𝒙 and c𝑧 , CPev proves the
existence of committed values 𝑥 ∈ F[𝑋1, . . . , 𝑋𝑛] and 𝑧 ∈ F (and
opening values 𝑜𝒙 , 𝑜𝑧 ) such that:

𝑧 = 𝑥 (𝒓) ∧VerCom(ck, c𝒙 , 𝑥 (𝑋 ), 𝑜𝒙 ) = 1 ∧ VerCom(ck, c𝑧 , 𝑧, 𝑜𝑧) = 1.

• A hash function4 H : {0, 1}∗ → F𝑛 , that is used to generate
randomness for the proofs in our evaluation algorithm.

• An HSNP scheme Σ′ := (Kg′, Sign′, Eval′, VerSig′) for:

Rcom-ip :=
{
R(𝑡,𝒔)com-ip := {(c, (𝑥1, . . . , 𝑥𝑡 ), 𝑜) :

VerCom(ck, c, ⟨𝒙, 𝒔⟩, 𝑜)} : 𝑡 ⩽ 𝑁, 𝒔 ∈ F𝑡
}
.

Namely, Σ′ can prove that c opens to the result of a (public) linear
function on signed values. We call an HSNP scheme with this
functionality a ComLHS.

4.1 Intuition behind generic HSNP

Before providing the formal description of the protocol, we here
give a high level view of how the different components interact,
and why they are all necessary for our construction.

To sign a labelled field element (𝑥, 𝜏), one computes𝜎 ← Sign′(𝑥,
𝜏) and outputs the pair (𝑥, 𝜎).

Now consider a positive integer 𝑡 ⩽ 𝑁 ; a relation R; a state-
ment 𝑦; a tuple of 𝑡 signatures {(𝑥𝑖 , 𝜎𝑖 )}𝑖∈[𝑡 ] ; and a witness𝑤 such
that, denoting 𝑥 (𝑋1, . . . , 𝑋𝑛) := ⟨𝒙, 𝝌 (𝑋1, . . . , 𝑋𝑛)⟩, it holds that
(𝑦, (𝑥 (ℎ1), . . . , 𝑥 (ℎ𝑡 )),𝑤) ∈ R. To evaluate a signature for 𝑦, one
first computes a commitment c𝒙 to 𝑥 . The CP-SNARK CPR allows
one to compute 𝜋𝑦 , a proof of the existence of 𝑥 (committed to in c𝒙 )
and of𝑤, such that: (𝑦, (𝑥 (ℎ1), . . . , 𝑥 (ℎ𝑡 )),𝑤) ∈ R. Observe that 𝜋𝑦
provides no guarantee 𝑥 was authenticated; hence we devise a tech-
nique allowing one to prove that c𝒙 commits to an authenticated
vector by using only a ComLHS, i.e., an HSNP for (commitments
to) linear functions. The main idea is to have the evaluator:
- evaluate 𝑥 in a random point 𝒓 , which results in 𝑧 := 𝑥 (𝒓), and
to commit to 𝑧 in c𝑧 ;

- use CPev to prove that, for the committed values 𝑧, 𝑥 , it indeed
holds that 𝑧 = 𝑥 (𝒓);

- use Σ′ to prove that c𝑧 commits to 𝑧 = ⟨𝒙, 𝒔⟩, where the linear
function is 𝒔 := 𝝌 (𝒓) (which can be computed by the verifier).

3In our proposed instantiation (Section 6) 𝜒𝑖 (𝑋1, . . . , 𝑋𝑛) is defined as _ℎ𝑖 (𝑋 ) , the
ℎ𝑖 -th Lagrange basis univariate polynomial for which properties (a)–(b) are satisfied
when the Lagrange domain H ⊂ T is FFT-friendly and property (c) is satisfied when
|F | ⩾ 2_ . One may also consider other polynomial encodings, e.g. the monomial basis
or Laurent polynomials.
4H is in fact a family of hash functions parametrised by _ ∈ N; for readability we
suppress this dependency in the notation.

Note that, so long as 𝒓 is random and independent of the signed
data {(𝑥𝑖 , 𝜏𝑖 )}𝑖∈[𝑡 ] and of the polynomial 𝑥 committed to in c𝒙 ,
then the proofs above imply that the authenticated 𝒙 and the vec-
tor (𝑥 (ℎ1), . . . , 𝑥 (ℎ𝑡 )) are the same except with probability 𝑑/|F|
(chosen to be negligible in _). In order to make the proof generation
non-interactive, we would like to generate 𝒓 using a random oracle;
so as to achieve the independence mentioned above we need to
somehow fix the inputs, by including them in the input to H. While
the polynomial 𝑥 can be fixed before the choice of 𝒓 by including
its commitment c𝒙 along with a succinct proof of knowledge (or
alternatively, as we do, by sending the proof 𝜋𝑦 ), the same cannot
be done for the authenticated {(𝑥𝑖 , 𝜏𝑖 )}𝑖∈[𝑡 ] as we do not have a
succinct representation (e.g., a commitment) for them. To solve this
issue, we show that we can achieve the same result by computing
a signature 𝜎 ′sum for the commitment csum to the sum of all data
items

∑
𝑖∈[𝑡 ] 𝑥𝑖 , and by including 𝜎 ′sum and csum in the input to H,

whose output results in 𝒓 .

4.2 Our generic HSNP scheme

Our homomorphic signature scheme HSNP for relations in

R :=
{
R ⊆ D𝑦 × F𝑡 ×D𝑤 : 1 ⩽ 𝑡 ⩽ 𝑁

}
,

works as follows.
Kg(1_,L,R):
- Let 𝑁 := |L |
- ck← Setup(1_)
- (vk′, sk′) ← Kg′(1_,L,Rcom-ip)
- srsev ← Kgev (ck,Rev)
- srsR ← KgR (ck,R)
- Output vk := (ck, srsev, srsR , vk′,H) and sk := sk′.

Sign(sk, 𝜏, 𝑥): on input 𝑥 ∈ F,
- 𝜎 ← Sign′(sk′, 𝜏, 𝑥)
- Output Σ := (𝑥, 𝜎).

Eval(vk,R, 𝑦, Σ1, . . . , Σ𝑡 ,𝑤):
- For 𝑖 ∈ [𝑡], parse (𝑥𝑖 , 𝜎𝑖 ) ← Σ𝑖 . Let 𝒙 := (𝑥1, . . . , 𝑥𝑡 )
- (ekR, vkR) ← DeriveR (srsR ,R)
- (ekev, vkev) ← Deriveev (srsev,Rev)
- 𝑥 (𝑿 ) ← ⟨𝒙, 𝝌 (𝑋1, . . . , 𝑋𝑛)⟩
- (c𝒙 , 𝑜𝒙 ) ← Commit(ck, 𝑥 (𝑿 ))
- 𝜋𝑦 ← ProveR (ekR,R, 𝑦, c𝒙 , 𝑥, 𝑜𝒙 ,𝑤)
- (csum, 𝑜sum) ← Commit(ck, 1⊤ · 𝒙)
- 𝜎 ′sum ← Eval′(vk′,R(𝑡,1)com-ip, csum, {𝜎𝑖 }𝑖∈[𝑡 ] , 𝑜sum)
- 𝒓 ← H(R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum)
- 𝑧 ← ⟨𝒙, 𝝌 (𝒓)⟩
- (c𝑧 , 𝑜𝑧) ← Commit(ck, 𝑧)
- 𝜋𝑧 ← Proveev (ekev, 𝒓, (c𝒙 , c𝑧), (𝑥, 𝑧), (𝑜𝒙 , 𝑜𝑧))
- 𝜎 ′ ← Eval′(vk′,R(𝑡,𝝌 (𝒓 ))com-ip , c𝑧 , {𝜎𝑖 }𝑖∈[𝑡 ] , 𝑜𝑧)
- Output Σ := (c𝒙 , 𝜋𝑦, csum, 𝜎 ′sum, c𝑧 , 𝜋𝑧 , 𝜎 ′)

VerPrep(vk,R):
- (ekR, vkR) ← DeriveR (srsR ,R)
- (ekev, vkev) ← Deriveev (srsev,Rev)
- Output vkR := (ck, vkev, vkR, vk′,H)

EffVer(vkR, (𝜏1, . . . , 𝜏𝑡 ), 𝑦, Σ):
- Parse (c𝒙 , 𝜋𝑦, csum, 𝜎 ′sum, c𝑧 , 𝜋𝑧 , 𝜎 ′) ← Σ
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- 𝒓 ← H(R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum);
- 𝒔 ← 𝝌 (𝒓)
- If any of the following hold, then reject (return 0):

• VerProofR (vkR, 𝑦, c𝒙 , 𝜋𝑦) = 0
• VerProofev (vkev, 𝒓 , (c𝒙 , c𝑧), 𝜋𝑧) = 0
• VerSig′(vk′, (R(𝑡,1)com-ip, 𝜏1, . . . , 𝜏𝑡 ), csum, 𝜎 ′sum) = 0

• VerSig′(vk′, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑡 ), c𝑧 , 𝜎 ′) = 0
- Else accept (return 1).
In Section 6 we detail a concrete instantiation of our generic

protocol from efficient CP-SNARKs. The only missing link is a
ComLHS scheme for relations in Rcom-ip, which we provide in
Section 5.

Correctness Authentication and evaluation correctness follow
from that of Com, Σ′, CPev and CPR .

Succinctness and amortized efficiency For an evaluated signa-
ture Σ := (c𝒙 , 𝜋𝑦, csum, 𝜎 ′sum, c𝑧 , 𝜋𝑧 , 𝜎 ′), the values c𝒙 , csum and c𝑧
are of constant size 𝑂 (_) (independent of 𝑡 ). The proofs 𝜋𝑦 and 𝜋𝑧
have size at most poly(_ + log𝑤) by the succinctness of the CP-
SNARKs. Hence, if the ComLHS scheme Σ′ is succinct, so is HSNP
(as the signatures 𝜎 ′sum and 𝜎 ′ are short). The amortized efficiency
follows from the succinctness of the CP-SNARKs and the property
(a) of the 𝝌 polynomials.

Theorem 4.1. If Com is binding; H is modelled as a random or-
acle; Σ′ is adaptively secure for oracle H(·); and CPev and CPR are
knowledge-sound for oracles (H, Σ′.Sign), then HSNP is adaptively
secure. Furthermore, if Com is hiding, and CPR , CPev and Σ′ are
zero knowledge, then HSNP is zero-knowledge.

4.2.1 Adaptive security. Consider an adversaryA against the adap-
tive security ofHSNP that takes as input (R, vk, auxR , auxZ), where
vk := (ck, srsev, srsR , vk′), and that outputs a signature Σ := (c𝒙 ,
𝜋𝑦, csum, 𝜎 ′sum, c𝑧 , 𝜋𝑧 , 𝜎

′) for a statement 𝑦 and labelled relation
(R, 𝜏1, . . . , 𝜏𝑡 ) for some 𝑡 ⩽ 𝑁 . Let𝑇 be the transcript ofA’s queries
to both the random oracle H and to the signing oracle. We denote
by 𝑇H (resp. 𝑇Σ) the subset of 𝑇 with queries to H (resp. Sign), and
by 𝑇< 𝑗 the subset of 𝑇 with all queries made before the 𝑗-th query
to H. Let 𝑄H be the number of queries to the random oracle H
and let 𝑗∗ ∈ [𝑄H] be the index of the query to H which contains
the tuple (R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum) returned in the forgery phase.
Without loss of generality we assume that this oracle query exists,
otherwise for any A that does not do such query we can build
another adversary that makes this query at the very end.

We begin by showing that for every A there is an extractor
E. More in detail we show that for every A there exist extractor
algorithms {ER, 𝑗 } 𝑗 ∈[𝑄H ] , Eev, E

′ that correspond to the schemes
CPR , CPev and LHSPed respectively. Next, we use these extractors
to build E.

First, givenA we can define a collection of adversaries {AR, 𝑗 } 𝑗 ∈[𝑄H ]
for the knowledge soundness ofCPR for oracles (H(·), Sign′(sk′, ·, ·)).
AR, 𝑗 is the adversary that takes as input the universal commit-
and-prove relation (ck,R),CPR ’s SRS srsR , the relation’s auxiliary
input auxRg and auxiliary input (srsev, vk′, auxZ), it has access to
oraclesH(·), Sign′(sk′, ·, ·) and runsA up to its 𝑗-th query toH, for-
warding A’s queries to its oracles. When receiving the 𝑗-th query

(R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum), AR, 𝑗 outputs (R, 𝑦, c𝒙 , 𝜋𝑦). By the ora-
cle knowledge-soundness of CPR , for every such AR, 𝑗 there is an
extractor ER, 𝑗 that, given the same input ofAR, 𝑗 and the transcript
𝑇< 𝑗 of its oracle queries, outputs a tuple 𝑥 (𝑿 ), 𝑜�̃� , �̃� such that, con-
ditioned on that 𝜋𝑦 correctly verifies, (𝑦, (𝑥 (ℎ1), . . . , 𝑥 (ℎ𝑡 )), �̃�) ∈ R
and VerCom(ck, c𝒙 , 𝑥, 𝑜�̃� ) = 1 hold with overwhelming probability.

Second, in a way similar to the previous case, givenA we can
define an adversaryAev for the knowledge soundness of CPev for
oracles (H(·), Sign′(sk′, ·, ·)). Aev is the adversary that takes as in-
put the universal commit-and-prove relation (ck,Rev), CPev’s SRS
srsev, and auxiliary input consisting of (srsR , vk′,R, auxR , auxZ),
it has access to oracles (H(·), Sign′(sk′, ·, ·) and runs A until it
outputs the forgery (R, 𝜏1, . . . , 𝜏𝑡 , 𝑦, Σ). ThenAev defines Rev based
on 𝑡 and outputs (Rev, 𝒓, (c𝒙 , c𝑧), 𝜋𝑧). By the oracle knowledge-
soundness of CPev, for every such Aev there is an extractor Eev
that, given the same input of Aev and the transcript 𝑇 of its ora-
cle queries, outputs values 𝑥 (𝑿 ), 𝑜𝑥 , 𝑧 and 𝑜𝑧 satisfying, with all
but negligible probability, 𝑧 = 𝑥 (𝒓); VerCom(ck, c𝒙 , 𝑥, 𝑜𝑥 ) = 1 and
VerCom(ck, c𝑧 , 𝑧, 𝑜𝑧) = 1.

Third, given A we can build an adversary A ′ against the adap-
tive security of Σ′ relative to a random oracle H. A ′ takes as input
the verification key vk′, the commitment key ck (which is part of the
Rcom-ip description) and auxiliary input (srsev, srsR ,R, auxR , auxZ)
and runs A until it outputs a forgery, using its oracles to an-
swer the queries of A. By the adaptive security of Σ′ (relative
to oracle H), for any such A ′ there exists an extractor E′ which,
given the same input of A ′ and the transcript 𝑇 of its queries, out-
puts an opening value 𝑜 ′𝑧 satisfying VerCom(ck, c𝑧 , ⟨𝒙, 𝝌 (𝒓)⟩, 𝑜 ′𝑧),
where 𝒙 is the vector of values queried to the oracle, i.e., such that
∀𝑖 ∈ [𝑡] : (𝑥𝑖 , 𝜏𝑖 , 𝜎𝑖 ) ∈ 𝑇Σ.

We have shown that for every A there exist extractor algo-
rithms {ER, 𝑗 } 𝑗 ∈[𝑄H ] , Eev, E

′. Based on this, we define the extractor
E(R, vk, auxR , auxZ ,𝑇 ) for A as follows.
• RunA, using𝑇 to simulate its queries, obtaining (𝑦,R, 𝜏1, . . . , 𝜏𝑡 , Σ).

Let 𝑗∗ ∈ [𝑄H] be the index of the H-oracle query containing the
values in the forgery (see above for the precise definition of 𝑗∗).

• Run the extractorsER, 𝑗∗ , Eev, E
′: (𝑥 (𝑿 ), 𝑜�̃� , �̃�) ← ER, 𝑗∗ ((ck,R),

srsR , auxR , (srsev, vk′, auxZ),𝑇< 𝑗∗ ), (𝑥 (𝑿 ), 𝑜�̂� , 𝑧, 𝑜𝑧) ← Eev ((ck,
Rev), srsev, (srsR , vk′,R, auxR , auxZ),𝑇 ), and 𝑜 ′𝑧 ← E′(ck, vk′,
(srsev, srsR ,R, auxR , auxZ),𝑇 ).

• If any of the extracted witnesses does not satisfy the correspond-
ing relation, or 𝑥 (𝑿 ) ≠ 𝑥 (𝑿 ), or 𝑧 ≠ ⟨𝒙, 𝝌 (𝒓)⟩, then output ⊥.
Otherwise output �̃� .
Next, we show that E is such that Pr[UFRg,Z,A,E (_) = 1] is neg-

ligible. We do this via an hybrid argument. We describe a sequence
of games, Game0 (_), . . . ,Game2 (_), where Game0 (_) is identical
to the experiment UFRg,Z,A,E (_). Let us recall that in this game
the output is the bit 𝑏 ← ValidForge∧ (ForgeType1 ∨ ForgeType2)
where ValidForge ← VerSig(vk, (R,𝝉 ), 𝑦, 𝜎), ForgeType1 ← ∃ 𝑗 ∈
[𝑡] : (𝜏 𝑗 , · , ·) ∉ 𝑇Σ, and ForgeType2 ← (𝑦, 𝒙, �̃�) ∉ R. For 𝑖 ≥ 1,
Game𝑖 uses flag values bad1, . . . , bad𝑖 that are initially false. If at
the end of the game any of these flags is true, Game𝑖 outputs 0.

Game1 Let us define Bad1 as the event that there exists a ran-
dom oracle query (R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum) such that VerSig′(vk′,
(R(𝑡,1)com-ip,𝝉 ), csum, 𝜎

′
sum) = 1 and ∃𝑖 ∈ [𝑡] such that 𝜏𝑖 was not yet

9



Dario Fiore and Ida Tucker

queried to the signing oracle, namely (𝜏𝑖 , ·) ∉ 𝑇< 𝑗,Σ, for the 𝑗-th
query to H. This experiment sets bad1 ← true if Bad1 occurs.

We claim that Pr[Game0 (_) = 1] − Pr[Game1 (_) = 1] ≤
Pr[Bad1] ≤ negl(_) based on the adaptive security of Σ′. The
reduction is rather simple and works as follows. Given an (A, E)
pair that causes Bad1 to happen we can build an adversary B that
has advantage Pr[Bad1] against the adaptive security of Σ′. B sim-
ulates the experiment up to the first oracle query for which Bad1
happens. Let this query be (R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum). Then B re-
turns ((R(𝑡,1)com-ip,𝝉 ), csum, 𝜎

′
sum), which clearly makes the adaptive

security game return 1.

Notice that if Game1 outputs 1, Bad1 did not occur and there
cannot be type 1 forgeries, i.e., ForgeType1 = false.

Game2 Let Bad2 be the event that E outputs ⊥. This experiment
proceeds as Game1 except that it sets bad2 ← true if Bad2 occurs.

By definition of Game2 we have

Pr[Game1 (_) = 1] − Pr[Game2 (_) = 1] ≤ Pr[Bad2 ∧ValidForge] .

We claim that the latter probability is negligible based on the
knowledge-soundness of CPR and CPev, the adaptive security of
Σ′ and the binding of the commitment scheme. The reduction is
standard and is omitted.

Notice, if Game2 outputs 1, then it must be that E did not output
⊥, and it also holds 𝑥 (𝑿 ) = 𝑥 (𝑿 ) and 𝑧 = ⟨𝒙, 𝝌 (𝒓)⟩ = 𝑥 (𝒓).

We conclude the proof by showing thatA and E have negligible
probability of causing Game2 return 1.

Let 𝑥 (𝑿 ) be the polynomial extracted (internally) by E, and let
us define Bad∗ as the event that 𝑥 (𝑿 ) ≠ ⟨𝒙, 𝝌 (𝑿 )⟩. Then we have:

Pr[Game2 (_) = 1] = Pr[Game2 (_) = 1∧Bad∗] ≤ 𝑑/|F| = negl(_)

To see this, we first observe that Pr[Game2 (_) = 1∧¬Bad∗] = 0.
In order to return 1, neither Bad1 nor Bad2 have occurred inGame2.
From ¬Bad1 we get that the extracted �̃� is such that (𝑦, 𝒙, �̃�) ∉ R.
From ¬Bad2 we have that (𝑦, (𝑥 (ℎ1), . . . , 𝑥 (ℎ𝑡 )), �̃�) ∈ R. Finally,
conditioning on ¬Bad∗ we have 𝑥 (𝑿 ) = ⟨𝒙, 𝝌 (𝑿 )⟩, and thus for all
𝑖 ∈ [𝑡] 𝑥 (ℎ𝑖 ) = 𝑥𝑖 . Hence, we have (𝑦, 𝒙, �̃�) ∈ R and thus Game2
cannot return 1 in this case.

Next, we argue that Pr[Game2 (_) = 1∧Bad∗] ≤ 𝑑/|F| = negl(_)
over the random choice of 𝒓 in the 𝑗∗-th query to the random oracle
H. Observe that by the validity of A’s forgery and by the fact
that Bad2 did not occur, we have ⟨𝒙, 𝝌 (𝒓)⟩ = 𝑥 (𝒓) and 𝑥 (𝑿 ) ≠
⟨𝒙, 𝝌 (𝑿 )⟩. If 𝒓 is random and independent of 𝑥 (𝑿 ), 𝒙, 𝝌 (𝑿) then
the probability that this happens is 𝑑/|F| = negl(_), by property
(c) of 𝝌 . In particular, 𝒓 is independent from the random oracle’s
input (𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum), which makes it also independent
from 𝒙 and 𝑥 . Independence from 𝑥 holds because we can extract 𝑥
using ER, 𝑗∗ before issuing this random oracle query and receiving
the answer 𝒓 . Independence from the queried inputs 𝒙 follows by
observing that 𝒓 is independent from the random oracle query’s
input 𝝉 , csum, 𝜎 ′sum. Since the signature 𝜎 ′sum is valid and since Bad1
did not occur, we obtain that all the data items 𝒙 must have been
already queried to the signing oracle, and thus we can fix them in
the view of the game, before 𝒓 is chosen.

4.2.2 Zero knowledge. LetA be a PT adversary for the zero-knowledge
property of HSNP. In the ZKreal

A
experiment, the challenger runs

(vk, sk) ← Kg(1_,L,R), and hands vk to A. Then during the
signing queries phase, A adaptively requests signatures for pairs
(𝜏, 𝑥) of its choosing. We denote 𝑇 := {(𝑖, 𝑥𝑖 , Σ𝑖 )}𝑖∈[𝑞 ] the list of
queries made by A and corresponding signatures, where 𝑞 ∈ N is
the number of answered queries.

In the choose phase A outputs 𝑦, (R, 𝜏1, . . . , 𝜏𝑡 ) and 𝑤 . Note
that if this output causes either the real or simulated experiment
to output the error symbol ⊥, then both experiments do, and are
identical from A’s view. Assuming this does not occur., it holds
that, for 𝑖 ∈ [𝑡], there exist Σ𝑖 := (𝑥𝑖 , 𝜎𝑖 ) such that (𝑖, 𝑥𝑖 , Σ𝑖 ) ∈ 𝑇 ,
and (𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∈ R.

To prove the zero-knowledge property of the scheme, we proceed
via a sequence of games. Game 0 is the experiment ZKreal

A
, whereas

the final game (Game 3) is ZKsim
A,S

, which calls upon the simulator
of Figure 4. We denote by 𝑆𝑖 the eventA outputs 𝑏 ′ = 1 in Game
i. Hence Pr[𝑆0] = Pr[ZKreal

A
= 1], and Pr[𝑆3] = Pr[ZKsim

A,S
= 1]. In

all games, the signing queries and choose phases are as described
above (i.e. as per experiment ZKreal

A
).

By proving that, fromA’s view, each game is indistinguishable
from the next, we demonstrate thatA cannot, with significant prob-
ability, output a different bit 𝑏 in experiments ZKreal

A
and ZKsim

A,S
.

A detailed description of each game is provided in Figure 3,
changes from one game to the next are highlighted for improved
visibility.

Game 0 to Game 1 Since Σ′ is zero-knowledge, there exists a
simulator S′ = (S′kg,S

′
eval) for the ZK property of the scheme.

Here we substitute the key generation and evaluation algorithms of
Σ′ by algorithms S′kg and S

′
eval respectively. Note that S

′
eval outputs

signatures 𝜎 ′ and 𝜎 ′sum which are independent of the individual
signatures Σ1, . . . , Σ𝑛 in 𝑇 . By the zero-knowledge property of Σ′,
both games are indistinguishable toA, so:

|Pr[𝑆0] − Pr[𝑆1] | = negl(_). (1)

Game 1 to Game 2 In Game 2, we call upon the zero-knowledge
simulators (Sev

kg,S
ev
prv) and (SR

kg,S
R
prv) of CPR and CPev respec-

tively. Note that these simulators only take input the commitments
to 𝒙 and 𝑤 , but not the opening values. By the zero-knowledge
property of CPR and CPev, both games are indistinguishable from
A’s view, so:

|Pr[𝑆1] − Pr[𝑆2] | = negl(_). (2)

Game 2 to Game 3 Here, instead of committing to the real inputs
provided by A, Game 3 samples random 𝒙∗ ∈ F𝑛 , and 𝑧∗ ∈ F,
computes commitments c𝒙 , csum, and c𝑧 to 𝒙∗, 1⊤ · 𝒙∗ and 𝑧∗ re-
spectively, and uses these commitments throughout the experiment.
Due to the fact Com is statistically hiding, and since Sev

prv and SR
prv

only see the commitments c𝒙 and c𝑧 (but not the openings), from
A’s view, both games are statistically close, and the probability
that A behaves differently in Game 2 than in Game 3 is negligible.

|Pr[𝑆2] − Pr[𝑆3] | = negl(_). (3)

Now in Game 3, the evaluation of the signature sent to A only
relies on the statement 𝑦, the labelled relation (R, 𝜏1, . . . , 𝜏𝑡 ) and on

10
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Key generation

- Let 𝑁 := |L |; ck← Setup(1_)
- (vk′, sk′) ← Kg′(1_,L,Rcom-ip)
- (ekev, vkev) ← Kgev (ck,Rev)
- (ekR, vkR) ← KgR (ck,R)
- vk := (ck, ekev, vkev, ekR, vkR, vk′,H); sk := sk′

- send vk toA.
Challenge

- For 𝑖 ∈ [𝑛], parse (𝑥𝑖 , 𝜎𝑖 ) ← Σ𝑖
- (c𝒙 , 𝑜𝒙 ) ← Commit(ck, 𝒙)
- 𝜋𝑦 ← ProveR (ekR,R, 𝑦, c𝒙 , 𝑥, 𝑜𝒙 ,𝑤)
- (csum, 𝑜sum) ← Commit(ck, 1⊤ · 𝒙);
- 𝜎 ′sum ← Eval′(vk′,R′𝑡,1, csum, {𝜎𝑖 }𝑖∈[𝑡 ] , 𝑜sum)
- 𝒓 ← H(R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum); 𝑧 ← ⟨𝒙, 𝝌 (𝒓)⟩
- (c𝑧 , 𝑜𝑧) ← Commit(ck, 𝑧)
- 𝜋𝑧 ← Proveev (ekev, 𝒓, (c𝒙 , c𝑧), (𝑥, 𝑧), (𝑜𝒙 , 𝑜𝑧))
- 𝜎 ′ ← Eval′(vk′,R′

𝑡,𝝌 (𝒓 ) , c𝑧 , {𝜎𝑖 }𝑖∈[𝑛] , 𝑜𝑧)
- send Σ := (c𝒙 , 𝜋𝑦, csum, 𝜎 ′sum, c𝑧 , 𝜋𝑧 , 𝜎 ′) toA

- A outputs 𝑏 ′

Game 0

Key generation

- Let 𝑁 := |L |; ck← Setup(1_)
- (vk′, sk′) ← S′kg (1

_,L,Rcom-ip)

- (ekev, vkev) ← Kgev (ck,Rev)
- (ekR, vkR) ← KgR (ck,R)
- vk := (ck, ekev, vkev, ekR, vkR, vk′,H); sk := sk′

- send vk toA.
Challenge

- 𝑥 (𝑿 ) ← ⟨𝒙, 𝝌 (𝑋1, . . . , 𝑋𝑛)⟩
- (c𝒙 , 𝑜𝒙 ) ← Commit(ck, 𝑥 (𝑿 ))
- 𝜋𝑦 ← ProveR (ekR,R, 𝑦, c𝒙 , 𝑥, 𝑜𝒙 ,𝑤)
- (csum, 𝑜sum) ← Commit(ck, 1⊤ · 𝒙);
- 𝜎 ′sum ← S′eval (vk

′, sk′, (R′𝑡,1, 𝜏1, . . . , 𝜏𝑛), csum)
- 𝒓 ← H(R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum); 𝑧 ← ⟨𝒙, 𝝌 (𝒓)⟩
- (c𝑧 , 𝑜𝑧) ← Commit(ck, 𝑧)
- 𝜋𝑧 ← Proveev (ekev, 𝒓, (c𝒙 , c𝑧), (𝑥, 𝑧), (𝑜𝒙 , 𝑜𝑧))
- 𝜎 ′ ← S′eval (vk

′, sk′, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑛), c𝑧)

- send Σ := (c𝒙 , 𝜋𝑦, csum, 𝜎 ′sum, c𝑧 , 𝜋𝑧 , 𝜎 ′) toA

- A outputs 𝑏 ′.

Game 1

Key generation

- Let 𝑁 := |L |; ck← Setup(1_)
- (vk′, sk′) ← S′kg (1

_,L,Rcom-ip)

- (ekev, vkev, tdev) ← Sev
kg (ck,Rev)

- (ekR, vkR, tdR ) ← SR
kg (ck,R)

- vk := (ck, ekev, vkev, ekR, vkR, vk′,H); sk := (sk′, tdev, tdR )
- send vk toA.
Challenge

- 𝑥 (𝑿 ) ← ⟨𝒙, 𝝌 (𝑋1, . . . , 𝑋𝑛)⟩
- (c𝒙 , 𝑜𝒙 ) ← Commit(ck, 𝑥 (𝑿 ))
- 𝜋𝑦 ← SR

prv (ekR, tdR ,R, 𝑦, c𝒙 )
- (csum, 𝑜sum) ← Commit(ck, 1⊤ · 𝒙);
- 𝜎 ′sum ← S′eval (vk

′, sk′, (R′𝑡,1, 𝜏1, . . . , 𝜏𝑛), csum)
- 𝒓 ← H(R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum); 𝑧 ← ⟨𝒙, 𝝌 (𝒓)⟩
- (c𝑧 , 𝑜𝑧) ← Commit(ck, 𝑧)
- 𝜋𝑧 ← Sev

prv (ekev, tdev, 𝒓, (c𝒙 , c𝑧))

- 𝜎 ′ ← S′eval (vk
′, sk′, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑛), c𝑧)

- send Σ := (c𝒙 , 𝜋𝑦, csum, 𝜎 ′sum, c𝑧 , 𝜋𝑧 , 𝜎 ′) toA

- A outputs 𝑏 ′.

Game 2

Key generation

- Let 𝑁 := |L |; ck← Setup(1_)
- (vk′, sk′) ← S′kg (1

_,L,Rcom-ip)
- (ekev, vkev, tdev) ← Sev

kg (ck,Rev)
- (ekR, vkR, tdR ) ← SR

kg (ck,R)
- vk := (ck, ekev, vkev, ekR, vkR, vk′,H); sk := (sk′, tdev, tdR )
- Send vk toA.
Challenge

- Sample 𝒙∗ ←$F𝑛 and 𝑧∗ ←$F

- (c𝒙 , 𝑜𝒙 ) ← Commit(ck, ⟨𝒙∗, 𝝌 (𝑋1, . . . , 𝑋𝑛)⟩)
- 𝜋𝑦 ← SR

prv (ekR, tdR ,R, 𝑦, c𝒙 )
- (csum, 𝑜sum) ← Commit(ck, 1⊤ · 𝒙∗);
- 𝜎 ′sum ← S′eval (vk

′, sk′, (R′𝑡,1, 𝜏1, . . . , 𝜏𝑛), csum)
- 𝒓 ← H(R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎 ′sum); 𝑧 ← ⟨𝒙, 𝝌 (𝒓)⟩
- (c𝑧 , 𝑜𝑧) ← Commit(ck, 𝑧∗)
- 𝜋𝑧 ← Sev

prv (ekev, tdev, 𝒓, c𝒙 , c𝑧)
- 𝜎 ′ ← S′eval (vk

′, sk′, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑛), c𝑧)
- Send Σ := (c𝒙 , 𝜋𝑦, csum, 𝜎 ′sum, c𝑧 , 𝜋𝑧 , 𝜎 ′) toA

- A outputs 𝑏 ′

Game 3

Figure 3: Game steps for proving zero-knowledge of HSNP.

the public and secret keys output by the various simulators, but
not on the signed data {(𝑖, 𝑥𝑖 , Σ𝑖 )} ∈ 𝑇 . We can thus see that Game
3 is ZKsim

A,S
, which calls upon the simulators of Figure 4. Hence

Pr[𝑆3] = Pr[ZKsim
A,S

= 1], and combining eqs. (1) to (3), we get the
desired:

���Pr[ZKreal
A

= 1] − Pr[ZKsim
A,S

= 1]
��� = negl(_)

5 CONCRETE HSNP SCHEME FOR

COMMITMENTS TO LINEAR FUNCTIONS

We here devise a ComLHS scheme for the evaluation of (perfectly
hiding) Pedersen commitments. The scheme, dubbed LHSPed, can
be used to instantiate our HSNP protocol for universal relations of
Section 4.

For a given security parameter _ ∈ N, consider a description of
bilinear groups ppG := (𝑞,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) and group element
ℎ sampled uniformly at random from G1. Let ck := (ppG, ℎ). The
message spaceM and non-deterministic input spaceD𝑤 of LHSPed
are Z𝑞 . For a positive integer 𝑁 = poly(_), the set of admissible

11
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Skg (1_,L,R)
1 : (vk′, sk′) ← S′kg (1

_,L,Rcom-ip)

2 : 𝑁 := |L |, ck← Setup(1_)
3 : (ekev, vkev) ← Kgev (ck,Rev)

4 : (ekR, vkR) ← KgR (ck,R)
5 : vk := (ck, ekev, vkev, ekR, vkR, vk′,H)
6 : sk := sk′

7 : return (sk, vk)

Seval (vk, sk, (R, 𝜏1, . . . , 𝜏𝑛), 𝑦)
1 : Parse: (ck, ekev, vkev, ekR, vkR, vk′,H) = vk;
2 : Sample random �̃�1, . . . , �̃�𝑛 ←$F𝑛 and �̃� ∈ D𝑤 .
3 : (c𝒙 , 𝑜𝒙 ) ← Commit(ck, �̃�)

4 : 𝜋𝑦 ← SR
prv (ekR, tdR ,R, 𝑦, c𝒙 )

5 : 𝒓 ← H(R, 𝑦, c𝒙 , 𝜋𝑦,𝝉 , csum, 𝜎′sum) ; 𝑧 ← ⟨𝒙, 𝝌 (𝒓 ) ⟩
6 : (c𝑧 , 𝑜𝑧 ) ← Commit(ck, 𝑧)
7 : 𝜋𝑧 ← Sev

prv (ekev, tdev, 𝒓, (c𝒙 , c𝑧 ))

8 : 𝜎′ ← S′eval (vk
′, sk′, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑡 ), c𝑧 )

9 : return Σ := (𝑦, c𝒙 , 𝜋𝑦, c𝑧 , 𝜋𝑧 , 𝜎′)

Figure 4: Zero knowledge simulators for HSNP.

relations is

Rcom-ip :=
{
R(𝑡,𝒔)com-ip := {(𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∈ G1 × Z𝑡+1𝑞

: 𝑦 = 𝑔
⟨𝒙,𝒔 ⟩
1 ℎ𝑤} : 𝑡 ∈ [𝑁 ], 𝒔 ∈ (Z∗𝑞)𝑡

}
.

LHSPed builds upon a hash function H : {0, 1}∗ → G1; a PRF
F : K × {0, 1}∗ → Z𝑞 whose key space is denotedK; and a proof
system NIZK := (K, 𝑃,𝑉 ) for relation Rc := {(𝑦; 𝑧,𝑤) : 𝑦 = 𝑔𝑧1ℎ

𝑤}.
We let K take as additional input ck, so that the resulting CRS may
depend on pp𝐺 and ℎ.

5.1 Intuition behind LHSPed
Before formally describing the protocol, we here give a high level
view of how the different components interact, and why they are
all necessary for our construction.

The signing key contains two elements 𝑎, 𝑏 ∈ Z𝑞 and a PRF
key. The public key contains, among other things, group elements
ℎ,ℎ𝑎 ∈ G1.

To sign a labelled field element (𝑥, 𝜏), one first computes a hash
𝑅𝜏 ∈ G1 of the label. Including this hash in the signature, as
Λ := (𝑅𝜏𝑔𝑥1 )

𝑎 , will ensure that the signature for 𝑥 is tied to label 𝜏 .
However, such a Λ is not simulatable (when proving unforgeabil-
ity). Indeed, the natural way to give simulated signatures to the
adversary here would be, knowing ℎ𝛾 and (ℎ𝑎)𝛾 for some randomly
chosen 𝛾 , to program 𝑅𝜏 := (ℎ𝛾 )𝑔−𝑥1 , so that one can simulate the
signature component Λ := (ℎ𝑎)𝛾 . Unfortunately, the adversary may
query the random oracle H on input 𝜏 before requesting the sig-
nature of the pair (𝑥, 𝜏). To overcome this, we introduce an extra
degree of liberty: the signer will also evaluate the PRF F on input
𝜏 to obtain 𝑟 ∈ Z𝑞 , and computes Λ := (𝑅𝜏𝑔𝑥+𝑏𝑟1 )𝑎 . Now since the

PRF key is known only to the signer, the reduction will be able to
simulate the PRF output 𝑟 in such a way that it cancels out 𝑥 , as
desired. The full signature contains 𝑥,Λ and 𝑟 .

To evaluate a relation R(𝑡,𝒔)com-ip, given signatures 𝜎1, . . . , 𝜎𝑡 for
pairs (𝑥1, 𝜏1), . . . , (𝑥𝑡 , 𝜏𝑡 ), along with 𝑦,𝑤 such that (𝑦; 𝒙,𝑤) ∈
R(𝑡,𝒔)com-ip, the process is quite intuitive. Having extracted 𝑥𝑖 ,Λ𝑖 , 𝑟𝑖

from each 𝜎𝑖 , the evaluator first computes the linear function of 𝒙
which is committed to in 𝑦, i.e. ⟨𝒙, 𝒔⟩; and applies the same linear
function to the pseudo-randomness (𝑟1, . . . , 𝑟𝑡 ), i.e., ⟨𝒓, 𝒔⟩. It also
evaluates an analogue computation over the Λ𝑖 ’s, while introduc-
ing the non-deterministic input𝑤 . Precisely, using the value ℎ𝑎 in-
cluded in the public key, it computes (ℎ𝑎)𝑤 ∏

𝑖∈[𝑡 ] Λ
𝑠𝑖
𝑖
. This is equal

to (ℎ𝑤𝑅𝑔 ⟨𝒙,𝒔 ⟩+𝑏 ⟨𝒓,𝒔 ⟩1 )𝑎 , where 𝑅 is simply a multi-exponentiation
of the 𝑅𝜏𝑖 to the exponent 𝑠𝑖 . Enabling this randomization by𝑤 in
an authenticated way is the main innovation of our scheme, i.e.,
where it departs from existing linearly-homomorphic signatures
techniques. The latter only support deterministic computations in
which any bias of the result should be considered a forgery. So the
challenge here is to actually allow one to “bias” the result but only
according to a specific distribution, namely a multiple of the group
element ℎ. We achieve this by making ℎ𝑎 public and showing that
this does not harm the security. Such a change however required
us to have the evaluator including an NIZKPoK 𝜋 of 𝑧,𝑤 such that
(𝑦, 𝑧,𝑤) ∈ Rc. This will be used to extract𝑤 in our proof of adap-
tive security. Finally, we note that the reason why we generate
𝑟 using a PRF, rather than fully at random, is due to proving the
zero-knowledge of LHSPed. Deriving the 𝑟𝑖 for the 𝑖-th input deter-
ministically from the label 𝜏𝑖 makes the 𝑟 of the evaluated signature
a deterministic function of the labels of the inputs, the relation
R(𝑡,𝒔)com-ip and the secret key. Since all this information is known to
the simulator, it can simulate 𝑟 .

5.2 Our HSNP scheme for Rcom-ip

Our homomorphic signature scheme LHSPed for relations inRcom-ip
works as follows.
Kg(1_,L,Rcom-ip): Let 𝑁 := |L |;
- ppG ← G(1_); ℎ←$G1
- ck := (ppG, ℎ)
- srs← K(1_, ck)
- ^ ←$K for the PRF F
- 𝑎, 𝑏 ←$Z𝑞

- Γ1 ← ℎ𝑎, Γ2 ← 𝑔
1/𝑎
2 and 𝐵 ← 𝑔𝑏1

- sk := (𝑎, 𝑏, ^) and vk := (ck, srs, Γ1, Γ2, 𝐵,H, F)
- Output (sk, vk)
Sign(sk, 𝜏, 𝑥):
- 𝑅𝜏 ← H(𝜏);
- 𝑟 ← F^ (𝜏);
- Λ← (𝑅𝜏𝑔𝑥+𝑏𝑟1 )𝑎
- Output 𝜎 := (𝑥,Λ, 𝑟 , ∅)

Eval(vk,R(𝑡,𝒔)com-ip, 𝑦, 𝜎1, . . . , 𝜎𝑡 ,𝑤):

- Parse 𝒔 ∈ Z𝑡𝑞 from R(𝑡,𝒔)com-ip
- For 𝑖 ∈ [𝑡], parse (𝑥𝑖 ,Λ𝑖 , 𝑟𝑖 , ∅) = 𝜎𝑖
- 𝑧 ← ⟨𝒙, 𝒔⟩ and 𝑟 ← ⟨𝒓, 𝒔⟩
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- 𝜋 ← NIZK.𝑃 (Rc, srs, 𝑦, (𝑧,𝑤))
- Λ← Γ𝑤1 ·

∏
𝑖∈[𝑡 ] (Λ𝑖 )𝑠𝑖

- Output 𝜎 := (𝑦,Λ, 𝑟 , 𝜋)

VerSig(vk, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑡 ), 𝑦, 𝜎):
- Parse (𝑦,Λ, 𝑟 , 𝜋) = 𝜎

- If 𝒔 ∉ (Z∗𝑞)𝑡 , output 0
- 𝑅𝜏 ←

∏
𝑖∈[𝑡 ] H(𝜏𝑖 )𝑠𝑖

- If (𝜋1 = ∅) then:
- if

(
𝑒 (𝑔𝑦1 𝐵

𝑟𝑅𝜏 , 𝑔2) = 𝑒 (Λ, Γ2)
)
output 1, else output 0

- If (NIZK.𝑉 (Rc, srs, 𝑐, 𝜋)) ∧ (𝑒 (𝑦𝐵𝑟𝑅𝜏 , 𝑔2) = 𝑒 (Λ, Γ2)) output 1,
else output 0

Correctness and succinctness As detailed next, LHSPed satisfies
perfect authentication correctness, and (if NIZK is perfectly com-
plete) perfect evaluation correctness. As evaluated signatures are
of constant size, LHSPed is succinct.

Consider (sk := (𝑎, 𝑏, ^), vk) ← Kg(1_, L), where 𝑁 := |L |,
and vk := (ck, srs, Γ1, Γ2, 𝐵,H,R𝑁

com-ip) specifies ℎ ∈ G1, Γ1 := ℎ𝑎 ,

Γ2 := 𝑔
1/𝑎
2 , and 𝐵 := 𝑔𝑏1 .

Perfect authentication correctness For any 𝜏 ∈ L, and 𝑥 ∈
Z𝑞 , let 𝜎 := (𝑥,Λ, 𝑟 , ∅) denote the output of Sign(sk, 𝜏, 𝑥). Then
it holds that 𝑟 = F^ (𝜏), and Λ = (H(𝜏)𝑔𝑥+𝑏𝑟1 )𝑎 = (H(𝜏)𝑔𝑥1𝐵

𝑟 )𝑎 .
Hence 𝑒 (𝑔𝑥1𝐵

𝑟H(𝜏), 𝑔2) = 𝑒 ((𝑔𝑥2𝑔
𝑏𝑟
1 H(𝜏))𝑎, 𝑔1/𝑎

2 ) = 𝑒 (Λ, Γ2), and
Ver(vk,I𝜏 , 𝑥, 𝜎) = 1.
Perfect evaluation correctness Consider any 𝑡 ∈ [𝑁 ] and 𝒔 ∈ Z𝑡𝑞 ,
and any set of label/message/signature triples {𝜏𝑖 , 𝑥𝑖 , 𝜎𝑖 }𝑡𝑖=1, where
𝜎𝑖 := (𝑥𝑖 ,Λ𝑖 , 𝑟𝑖 , ∅). For these to be valid signatures, it must hold
that for 𝑖 ∈ [𝑡]:

𝑒 (𝑔𝑥𝑖1 𝐵𝑟𝑖H(𝜏𝑖 ), 𝑔2) = 𝑒 (Λ𝑖 , 𝑔
1/𝑎
2 ).

Let 𝑧 :=
∑𝑡
𝑖=1 𝑥𝑖𝑠𝑖 , 𝑟 :=

∑𝑡
𝑖=1 𝑟𝑖𝑠𝑖 , and, for any 𝑤 ∈ Z𝑞 let

𝜎 := (𝑦,Λ, 𝑟 , 𝜋) ← Eval(vk,R(𝑡,𝒔)com-ip, 𝜎1, . . . , 𝜎𝑡 ,𝑤). In particular,
𝑦 := 𝑔𝑧1ℎ

𝑤 , Λ := (ℎ𝑎)𝑤 ∏𝑡
𝑖=1 (Λ𝑖 )𝑠𝑖 , and 𝜋 := 𝑃 (Rc, srs, 𝑦, (𝑧,𝑤)).

By correctness of the proof system it holds that𝑉 (Rc, srs, 𝑦, 𝜋) =
1, and, denoting 𝑅𝜏 :=

∏𝑡
𝑖=1 H(𝜏𝑖 )𝑠𝑖 ,

𝑒

(
𝑦𝐵𝑟

𝑡∏
𝑖=1

H(𝜏𝑖 )𝑠𝑖 , 𝑔2

)
= 𝑒

(
ℎ𝑤

𝑡∏
𝑖=1

(
𝑔
𝑥𝑖
1 𝐵𝑟𝑖H(𝜏𝑖 )

)𝑠𝑖
, 𝑔2

)
= 𝑒

©«(ℎ𝑎)𝑤
∏
𝑖∈[𝑡 ]

Λ𝑠𝑖
𝑖
, 𝑔

1/𝑎
2 )

ª®¬ = 𝑒 (Λ, Γ2) .

And so Ver(vk, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑡 ), 𝑦, 𝜎) = 1.

5.3 Security of LHSPed
The scheme’s adaptive security relies on the following assumption.

Assumption 1 (SCDH). The square computational Diffie-Hellman
assumption holds for the asymmetric group generator G if for any PT
adversaryA, and for all large enough _:

Pr
[
ppG := (𝑞,G1,G2,G𝑇 , 𝑒) ← G(1_), 𝑔1 ←$G1, 𝑔2 ←$G2,

𝑎←$Z𝑞, 𝑔
𝑎2
1 ←A (ppG, 𝑔1, 𝑔

𝑎
1 , 𝑔2, 𝑔

𝑎
2 )

]
= negl(_).

Theorem 5.1. IfNIZK is a proof of knowledge for Rc,H is modelled
as a random oracle, and F is a PRF, then the ComLHS scheme LHSPed
described above is adaptively secure under the SCDH assumption for
group generator G. Furthermore, if NIZK satisfies zero-knowledge,
then LHSPed is zero-knowledge.

Remark 1. The relation Rcom-ip is defined for 𝒔 ∈ (Z∗𝑞)𝑡 where
each coordinate is . 0 mod 𝑞. We add this restriction to achieve the
strongest notion of unforgeability. It states that a signature, verifying
for labels which were not queried during the signature queries phase,
is considered a forgery. We could avoid this restriction, by slightly
sacrificing performance, via a change in our scheme. However, we pre-
ferred to achieve the best efficiency, since working with the restriction
𝒔 ∈ (Z∗𝑞)𝑡 is sufficient for our application: when the HSNP scheme of
Section 4 calls upon LHSPed, the coordinates of 𝒔 are random in Z𝑞 ,
and thus non-zero with overwhelming probability.

5.3.1 Adaptive security.

Proof. Consider an adversary A for the adaptive security of
LHSPed, which can forge signatures with probability 𝜖 . We devise
an algorithm B which uses A to solve an SCDH challenge with
the same success probability asA.

Key generation: Algorithm B gets as input (𝑓1, 𝑓 𝑎1 , 𝑓2, 𝑓
𝑎
2 ) ∈ G

2
1 ×

G2
2 for some unknown integer 𝑎. It sets 𝑔1 := 𝑓 𝑎1 , 𝑔2 := 𝑓 𝑎2 , Γ2 := 𝑓2,

samples 𝛼,𝑏 ←$Z𝑞 uniformly at random and sets ℎ := 𝑓 𝛼1 , Γ1 :=
(𝑓 𝑎1 )

𝛼 and 𝐵 := (𝑓 𝑎1 )
𝑏 . As in the experiment UFRg,Z,A,E , B ini-

tialises an empty list 𝑇 to keep track ofA’s signing queries. Next,
denoting E = (E1, E2) the knowledge extractor for the proof of
knowledge NIZK, algorithm B runs (srs, b) ← E1 (1_). The result-
ing verification key sent to A is vk := (ck, srs, Γ1, Γ2, 𝐵). Due to
the perfect knowledge extraction property of NIZK, vk follows a
distribution which is identical to that of keys produced by the real
key generation algorithm.

Simulating the random oracle: Algorithm B initialises an empty
table𝑇H. WheneverA queriesH on input 𝜏 ,B checks if there exists
an entry in 𝑇H for 𝜏 . If not, it samples 𝛾𝜏 , 𝑥𝜏 ←$Z𝑞 uniformly at
random, sets 𝑇H [𝜏] := (𝛾𝜏 , 𝑥𝜏 , 𝑅𝜏 := 𝑔

−𝑥𝜏
1 𝑓

𝛾𝜏
1 ), and sends 𝑅𝜏 to A.

If an entry already exists, B sendsA the previously stored 𝑅𝜏 .
Signing queries. When A requests a signature for (𝜏, 𝑥𝜏 ), B first

checks in 𝑇 if this pair was previously queried, in which case it
returns the same signature as before; or if 𝜏 was previously queried
for a different message, in which case it ignores the query (as in
the real unforgeability experiment).

Now if it is the first time a signing query is made with label 𝜏 , B
checks if 𝑇H [𝜏] exists. If not, it creates an entry as detailed above;
denote it (𝛾𝜏 , 𝑥𝜏 , 𝑅𝜏 ). Then B computes 𝑟 := (𝑥𝜏 − 𝑥𝜏 )𝑏−1 mod 𝑞

(so that 𝑥𝜏 = 𝑥𝜏 + 𝑏𝑟 ); and Λ := 𝑔
𝛾𝜏
1 . It sends 𝜎 := (𝑥𝜏 ,Λ, 𝑟 , ∅)

to A and adds (𝜏, 𝑥𝜏 , 𝜎) to 𝑇 . Observe that Λ = (𝑅𝜏𝑔𝑥𝑖+𝑏 ·𝑟1 )𝑎 , as
expected byA. Furthermore, since 𝛾𝜏 , 𝑥𝜏 are sampled uniformly at
random in Z𝑞 , the distribution of 𝑟 fromA’s view is also uniformly
random in Z𝑞 . Hence, due to the pseudo-randomness of F, 𝜎 follows
a distribution which is indistinguishable from that of signatures
produced by the real signing algorithm.

Forgery. After a polynomial number of signing queries,A out-
puts ((R, 𝜏1 . . . , 𝜏𝑡 ), 𝜎,𝑦), where 𝜎 := (𝑦,Λ, 𝑟 , 𝜋), and R specifies
an integer 𝑡 ∈ [𝑁 ] and a vector 𝒔 ∈ (Z∗𝑞)𝑡 . Since, from A’s
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view, its interactions with B are indistinguishable from a real
execution of experiment UFRg,Z,A,E , with probability negligibly
close to 𝜖 , this output is a forgery for LHSPed. This implies that
VerSig(vk, (R, 𝜏1, . . . , 𝜏𝑡 ), 𝑦, 𝜎) = 1, and that either (1)A has not pre-
viously queried signatures for all labels (𝜏1, . . . , 𝜏𝑡 ), or (2) there exist
answered queries (𝜏𝑖 , 𝑥𝑖 , 𝜎𝑖 ) for each 𝑖 ∈ [𝑡], but one cannot effi-
ciently extract, fromA’s view, awitness𝑤 satisfying (𝑦, (𝑥1, . . . , 𝑥𝑡 ),
𝑤) ∈ R.

Let us first consider case (1). Note that if any 𝜏𝑖 for 𝑖 ∈ [𝑡] has not
been queried to H, then H(𝜏𝑖 ) can take any value in Z𝑞 with equal
probability 1/𝑞. Since all coordinates of 𝒔 are non zero modulo 𝑞,
due to the pairing checks in the verification algorithm, 1/𝑞 would
also upper bound the (negligible) probability that VerSig returns 1.
We hence assume that for all 𝑖 ∈ [𝑡], there exist 𝛾𝑖 , 𝑥𝑖 , 𝑅𝑖 such that
𝑇H [𝜏𝑖 ] = (𝛾𝑖 , 𝑥𝑖 , 𝑅𝑖 ). Let 𝜸 := (𝛾1, . . . , 𝛾𝑡 ) and 𝒙 := (𝑥1, . . . , 𝑥𝑡 ).

If, inA’s forgery, 𝜋 = ∅, then 𝑡 = 1 and it holds that

𝑒 (𝑔𝑦1 𝐵
𝑟 𝑓
−𝑎𝑥1+𝛾1

1 , 𝑔2) = 𝑒 (Λ, 𝑔1/𝑎
2 )

and so 𝑓
𝑎𝑦

1 𝑓 𝑎𝑏𝑟1 𝑓
−𝑎𝑥1+𝛾1

1 = Λ1/𝑎

⇔ 𝑓
𝑎2 (𝑦+𝑏𝑟−𝑥1)
1 𝑓

𝑎𝛾1
1 = Λ⇔ (𝑓 𝑎

2
1 )

𝑦+𝑏𝑟−𝑥1 = Λ · 𝑔−𝛾1
1 .

Since 𝑥1 is sampled uniformly at random modulo 𝑞, it is non-zero
with overwhelming probability, and hence under the hardness of
computing discrete logarithms, 𝑦 + 𝑏𝑟 − 𝑥1 ≠ 0 mod 𝑞 (otherwise
A could compute 𝑏). Hence B solves its SCDH challenge by out-
putting:

𝑓 𝑎
2

1 =

(
Λ · 𝑔−𝛾1

1

) (𝑦+𝑏𝑟−𝑥1)−1

.

If 𝜋 ≠ ∅, then it holds that NIZK.𝑉 (Rc, srs, 𝑦, 𝜋) = 1, so B

runs (𝑧E,𝑤E) ← E2 (srs, b, 𝑦, 𝜋), thus obtaining (𝑧E,𝑤E) ∈ Rc, i.e.,
satisfying 𝑦 = 𝑔

𝑧E
1 ℎ𝑤E = 𝑓

𝑎𝑧E+𝛼𝑤E

1 .
It also holds that:

𝑒
©«𝑦𝐵𝑟

∏
𝑖∈[𝑡 ]
(𝑓 −𝑎𝑥𝑖+𝛾𝑖1 )𝑠𝑖 , 𝑔2

ª®¬ = 𝑒

(
Λ1/𝑎, 𝑔2

)
⇔ 𝑓

𝑎𝑧E+𝛼𝑤E

1 𝑓 𝑎𝑏𝑟1 𝑓

∑
𝑖∈[𝑡 ] 𝑠𝑖 (−𝑎𝑥𝑖+𝛾𝑖 )

1 = Λ1/𝑎

⇔ 𝑓
𝑎2 (𝑧E+𝑏𝑟−⟨�̄�,𝒔 ⟩)+𝑎 (𝛼𝑤E+⟨𝜸 ,𝒔 ⟩)
1 = Λ

⇔ (𝑓 𝑎
2

1 )
(𝑧E+𝑏𝑟−⟨�̄�,𝒔 ⟩) = Λ · 𝑔−(𝛼𝑤E+⟨𝜸 ,𝒔 ⟩)

1 .

Finally, recall that for 𝑖 ∈ [𝑡], the 𝑥𝑖 and 𝛾𝑖 are sampled uniformly at
random from Z𝑞 . As we assumeA knows 𝑅𝑖 = 𝑓

𝛾𝑖−𝑎𝑥𝑖
1 , the value of

(𝛾𝑖 − 𝑎𝑥𝑖 mod 𝑞) is information theoretically fixed from A’s view,
but 𝑥𝑖 can still take any value in Z𝑞 with equal probability. Now
for every label 𝜏𝑖 for whichA has queried a signature, the values
of 𝑥𝑖 and 𝛾𝑖 are fixed modulo 𝑞 from A’s view, as it is also granted
Λ𝑖 = 𝑔

𝛾𝑖
1 . However we know that there exists at least one label

for which A has not queried a signature, and since, for 𝑖 ∈ [𝑡],
𝑠𝑖 ≠ 0 mod 𝑞, it holds that ⟨𝒙, 𝒔⟩ ≠ 𝑧E mod 𝑞 with all but negligible
probability. So once again, under the assumption that computing
discrete logarithms is hard, 𝑧E + 𝑏𝑟 − ⟨𝒙, 𝒔⟩ is invertible modulo 𝑞,
and B can solve its SCDH challenge by outputting:

𝑓 𝑎
2

1 = (Λ · 𝑔−(𝛼𝑤E+⟨𝜸 ,𝒔 ⟩)
1 ) (𝑧E+𝑏𝑟−⟨�̄�,𝒔 ⟩)

−1
.

Let us now consider case (2): there exist (𝜏𝑖 , 𝑥𝑖 , 𝜎𝑖 ) ∈ 𝑇 for each
𝑖 ∈ [𝑡], but one cannot efficiently extract, fromA’s view, a witness

𝑤 satisfying (𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤) ∈ R, i.e., such that 𝑦 = 𝑔
⟨𝒙,𝒔 ⟩
1 ℎ𝑤 .

As before, we denote, for 𝑖 ∈ [𝑡], 𝑇H [𝜏𝑖 ] = (𝛾𝑖 , 𝑥𝑖 , 𝑅𝑖 ), and 𝜎𝑖 :=
(𝑥𝑖 ,Λ𝑖 , 𝑟𝑖 , ∅). The case 𝜋 = ∅ is identical to that of case (1). Now if
𝜋 ≠ ∅, once againB runs (𝑧E,𝑤E) ← E2 (srs, b, 𝑦, 𝜋), thus obtaining
(𝑧E,𝑤E) ∈ Rc, which satisfy 𝑦 = 𝑔

𝑧E
1 ℎ𝑤E = 𝑓

𝑎𝑧E+𝛼𝑤E

1 . However,
since (𝑦, (𝑥1, . . . , 𝑥𝑡 ),𝑤E) ∉ R (otherwise B would have efficiently
extracted a witness), it must be that ⟨𝒙, 𝒔⟩ ≠ 𝑧E mod 𝑞.

From the pairing check, it holds that:

𝑦𝐵𝑟
∏
𝑖∈[𝑡 ]

𝑅
𝑠𝑖
𝑖

= Λ1/𝑎

⇔ 𝑓
𝑎𝑧E+𝛼𝑤E+𝑎𝑏𝑟
1

∏
𝑖∈[𝑡 ]
(𝑓 −𝑎 (𝑥𝑖+𝑏𝑟𝑖 )+𝛾𝑖1 )𝑠𝑖 = Λ1/𝑎

⇔ 𝑓
𝑎2 (𝑧E+𝑏𝑟−⟨𝒙,𝒔 ⟩−𝑏 ⟨𝒓,𝒔 ⟩)+𝑎 (𝛼𝑤E+⟨𝜸 ,𝒔 ⟩)
1 = Λ

⇔ (𝑓 𝑎
2

1 )
𝑧E−⟨𝒙,𝒔 ⟩+𝑏 (𝑟−⟨𝒓,𝒔 ⟩) = Λ · 𝑔−(𝛼𝑤E+⟨𝜸 ,𝒔 ⟩)

1 .

Now if 𝑟 = ⟨𝒓, 𝒔⟩ mod 𝑞, since ⟨𝒙, 𝒔⟩ ≠ 𝑧E mod 𝑞, it holds that
𝑧E − ⟨𝒙, 𝒔⟩ + 𝑏 (𝑟 − ⟨𝒓, 𝒔⟩) is invertible modulo 𝑞. And as before, it
will also be invertible if 𝑟 ≠ ⟨𝒓 , 𝒔⟩ mod 𝑞, since otherwise A could
compute 𝑏 mod 𝑞. So B solves its challenge by outputting:

𝑓 𝑎
2

1 =

(
Λ · 𝑔−(𝛼𝑤E+⟨𝜸 ,𝒔 ⟩)

1

) (𝑧E−⟨𝒙,𝒔 ⟩+𝑏 (𝑟−⟨𝒓,𝒔 ⟩)−1

.

Hence, if NIZK is a proof of knowledge for Rc, B solves its SCDH
challenge with probability negligibly close to 𝜖 , which concludes
the proof that, in the SCDH assumption, and in the random oracle
model, the signature scheme is adaptively secure. □

5.3.2 Zero knowledge. We here show that evaluated signatures
guarantee the privacy of signed data.

Proof. Let A be a PT adversary for the zero-knowledge prop-
erty of LHSPed. In theZKrealA

experiment, the challenger runs (vk, sk) ←
Kg(1_,L,Rcom-ip), and hands vk toA.

During the signing queries phase,A adaptively sends queries
(𝜏, 𝑥) of its choosing to the challenger, who honestly computes
𝜎 ← Sign(sk, 𝜏, 𝑥), and sends 𝜎 toA.

In the choose phase A outputs (𝑦, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑡 ),𝑤). Note
that if this output causes either the real or simulated experiment
to output the error symbol ⊥, then both experiments do, and are
identical from A’s view. We hereafter assume this does not occur,
so for 𝑖 ∈ [𝑡], there exist 𝜎𝑖 := (𝑥𝑖 ,Λ𝑖 , 𝑟𝑖 , ∅) such that (𝜏𝑖 , 𝑥𝑖 , 𝜎𝑖 ) ∈ 𝑇 ,
and (𝑦, (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑡 ),𝑤) ∈ R(𝑡,𝒔)com-ip.

We proceed via a sequence of games, depicted in Figure 5. Game
0 is experiment ZKreal

A
, and the final game (Game 2) is experiment

ZKsim
A,S

. In all games, the signing queries and choose phases proceed
as described above (i.e. as in experiment ZKreal

A
, cf. Figure 2a).

We denote by 𝑆𝑖 the event A outputs 𝑏 ′ = 1 in Game i. Hence
Pr[𝑆0] = Pr[ZKreal

A
= 1], and Pr[𝑆2] = Pr[ZKsim

A,S
= 1] . By proving

that, from A’s view, each game is indistinguishable from the next,
we demonstrate thatA cannot, with significant probability, output
a different bit 𝑏 in experiments ZKreal

A
and ZKsim

A,S
. Changes from

one game to the next are highlighted for improved visibility.
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Game 0 to Game 1 Since NIZK is zero-knowledge, there exists a
simulator SNIZK = (SNIZK

kg ,SNIZK
prv ) for the ZK property of the scheme.

Here we substitute the key generation and proving algorithms of
NIZK by algorithms SNIZK

kg and SNIZK
prv respectively. Note that the

proof 𝜋 no longer depends on the witness𝑤 provided byA. By the
zero-knowledge property of NIZK, both games are indistinguish-
able to A, so:

|Pr[𝑆0] − Pr[𝑆1] | = negl(_). (4)

Game 1 to Game 2 Instead of using the signatures 𝜎1, . . . , 𝜎𝑡 to
evaluate Λ, Game 2 uses the secret signing key (𝑎, 𝑏, ^) and the
adversarially chosen labelled relation (R(𝑡,𝒔)com-ip, 𝜏1, . . . , 𝜏𝑡 ). Precisely,

Λ := 𝑦𝑎 ·
∏
𝑖∈[𝑡 ]
(H(𝜏𝑖 ) · 𝐵F^ (𝜏𝑖 ) )𝑎 ·𝑠𝑖 .

Note that though they are computed differently, the resulting values
of Λ in Game 1 and Game 2 are identical, hence:

Pr[𝑆2] = Pr[𝑆1] . (5)

One can now easily see that Game 2 is experiment ZKsim
A,S

, which
calls upon the simulators (Skg,Seval) described in Figure 5a. This
concludes the proof, since :���Pr[ZKsim

A,S
(_) = 1] − Pr[ZKreal

A
(_) = 1]

��� = |Pr[𝑆2] − Pr[𝑆0] | ,

which, combining Equations (4) and (5), is proven to be negligible.
□

5.4 Efficiency of LHSPed
The main cost for signing is a multi-exponentiation in G1, roughly
2 log(𝑞) group operations in G1. A signature consists of one group
element in G1, and two integers modulo 𝑞.

The time to evaluate a signature for a statement 𝑦 ∈ R(𝑡,𝒔)com-ip for
𝑡 ∈ N, 𝒔 ∈ Z𝑡𝑞 is dominated by that of the multi-exponentiation in
G1 computing Λ, which involves 𝑡 + 1 terms. Using Pippenger’s
algorithm, this requires ≈ 𝑡 log(𝑞)/log(𝑡 log(𝑞)) group operations.
An evaluated signature consists of three group elements inG1 (𝑦,Λ,
and one in 𝜋 ), and three integers modulo 𝑞 (due to 𝑟 and 𝜋 ).

The time to verify a signature is dominated by that of the multi-
exponentiation computing 𝑅𝜏 , involving 𝑡 terms, which requires
≈ 𝑡 log(𝑞)/log(𝑡 log(𝑞)) group operations.

6 EFFICIENT INSTANTIATION AND

EVALUATION

We here show how to efficiently instantiate the building blocks of
our HSNP scheme from Section 4. We then analyse the efficiency
of the resulting construction (that we call SPHinx), and compare it
with that of the most promising contender to our solution, based
on digital signatures and zkSNARKs.

6.1 Building blocks

Our building blocks are instantiated over bilinear groups ppG :=
(𝑞,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) of order 𝑞; hence F = Z𝑞 .

Commitment schemeCom. ForComwe use the KZG polynomial
commitment [40] in which the commitment c𝑝 to a univariate poly-
nomial 𝑝 (𝑋 ) is 𝑔𝑝 (𝑠)1 ℎ

𝑜𝑝
1 for a random 𝑜𝑝 ←$F. Here 𝑠 is a random

secret point chosen in Setup such that ck := ({𝑔𝑠𝑖1 , ℎ𝑠
𝑖

1 }
𝐷
𝑖=0, 𝑔

𝑠
2) for

some degree bound 𝐷 . In our instantiation 𝐷 ⩾ 𝑁 .5 To commit to a
scalar 𝑧 ∈ F we use a Pedersen commitment with the same key, i.e.,
c𝑧 = 𝑔𝑧1ℎ

𝑜𝑧
1 . The Com scheme is binding under the power discrete

logarithm assumption [43].

Universal CP-SNARK CPR . We instantiate this CP-SNARK with
a commit-and-prove version of theMarlin universal zkSNARK [21]
that we propose. This CP-SNARK, denoted CPMarlin

R
, is detailed in

Appendix A and is knowledge-sound under the SDH assumption
[8] in the algebraic group model [30]. We here give a brief overview
of it and state its efficiency.

Marlin is a zkSNARK for the NP-complete language of rank-1
constraint systems (R1CS) [33]. In R1CS a vector𝒚 is in the language,
defined by matrices A,B,C, if there exists a vector 𝒘 ′ such that,
for 𝒛 = (1,𝒚,𝒘 ′), it holds that A𝒛 ◦ B𝒛 = C𝒛. Our CPMarlin

R
turns

Marlin into a commit-and-prove SNARK in the sense that, given
a commitment c𝑥 and a public 𝒚, CPMarlin

R
proves that the R1CS

relation holds for 𝒛 = (1,𝒚, 𝒙,𝒘) where c𝑥 opens to a polynomial
𝑥 (𝑋 ) that, for a public subset T = {ℎ1, . . . , ℎ𝑡 }, satisfies 𝑥 (ℎ𝑖 ) = 𝑥𝑖 .
More precisely, in Marlin, every R1CS relation is associated to
a multiplicative subgroup H ⊂ F of cardinality |𝒛 |. Considering
a canonical ordering of H = {[, [2, . . . , [ |H |}, we define the set
T = {[ |𝒚 |+1, . . . , [ |𝒚 |+𝑡 } and the polynomial 𝜒𝑖 (𝑋 ) = ℎ𝑖 (𝑋 |H|−1)

|H | (𝑋−ℎ𝑖 ) .
Namely, 𝜒𝑖 (𝑋 ) is the Lagrange-basis polynomial over the domain
H corresponding to the point ℎ𝑖 . This allows one to verify that 𝝌
satisfies the properties (a)–(b)–(c).

Let us provide intuition on howwe turnMarlin into a CP-SNARK.
Notably, although any zkSNARK can be turned into a CP one by en-
coding the commitment verification in the R1CS relation (which can
be concretely expensive, see [14]), we use an alternative technique
to do this transformation efficiently. We start from the observa-
tion that a proof in Marlin includes a commitment to a polynomial
�̂� ′(𝑋 ) that interpolates the vector𝒘 ′ over a subset of points, such
that the first 𝑡 of them are exactly those in T. So our CPMarlin

R
augments Marlin by adding a proof that𝒘 ′ = (𝒙,𝒘) for the 𝒙 com-
mitted (as a polynomial) in c𝑥 . The latter proof is built by using a
CP-SNARK for this specific “prefix” relation.

Of course, compared to Marlin, CPMarlin
R

has some additional
costs. The proof ofCPMarlin

R
includes three more elements inG1 and

one element in F. To generate a proof about a statement (𝒚, (𝒙,𝒘)) ∈
R, the prover of CPMarlin

R
performs one extra multiexponentiation

of length |𝑤 | and two of length 𝑡 (as well as a few constant expo-
nentiations). CPMarlin

R
’s verifier needs to compute 4 more pairings.

Hence, the only non-negligible overhead are the |𝒘 | +2𝑡 exponentia-
tions for the prover. However, we observe that in comparison to the
remaining cost for generating a proof in Marlin, proof generation
in CPMarlin

R
is only ≈ 10% slower.

5For the plain commitment, 𝐷 = 𝑁 would be enough, and we wouldn’t need the ℎ𝑠 𝑗1
for 𝑗 ⩾ 1. The additional elements are for using this same commitment to instantiate
Marlin (see next building block).
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Key generation

- 𝑁 := |L |; ppG ← G(1_); ℎ←$G1;
- ck := (ppG, ℎ); srs← K(1_, ck)
- ^ ←$K
- 𝑎, 𝑏 ←$Z𝑞

- Γ1 ← ℎ𝑎 ; Γ2 ← 𝑔
1/𝑎
2 ; 𝐵 ← 𝑔𝑏1

- sk := (𝑎, 𝑏, ^); vk := (ck, srs, Γ1, Γ2, 𝐵,H)
- send vk toA.

Challenge

- For 𝑖 ∈ [𝑡], 𝜎𝑖 := (𝑥𝑖 ,Λ𝑖 , 𝑟𝑖 , ∅) ← Sign(sk, 𝜏𝑖 , 𝑥𝑖 )
- 𝑧 ← ⟨𝒙, 𝒔⟩; 𝑟 ← ⟨𝒓, 𝒔⟩
- 𝜋 ← NIZK.𝑃 (Rc, srs, 𝑦, (𝑧,𝑤))
- Λ← Γ𝑤1 ·

∏
𝑖∈[𝑡 ] (Λ𝑖 )𝑠𝑖

- send 𝜎 := (𝑦,Λ, 𝑟 , 𝜋) toA

- A outputs 𝑏 ′

Game 0

Key generation

- 𝑁 := |L |; ppG ← G(1_); ℎ←$G1;

- ck := (ppG, ℎ); (srs, td) ← SNIZK
kg (1

_, ck)
- ^ ←$K
- 𝑎, 𝑏 ←$Z𝑞

- Γ1 ← ℎ𝑎 ; Γ2 ← 𝑔
1/𝑎
2 ; 𝐵 ← 𝑔𝑏1

- sk := (𝑎, 𝑏, ^, td ); vk := (ck, srs, Γ1, Γ2, 𝐵,H)
- send vk toA.

Challenge

- For 𝑖 ∈ [𝑡], 𝜎𝑖 := (𝑥𝑖 ,Λ𝑖 , 𝑟𝑖 , ∅) ← Sign(sk, 𝜏𝑖 , 𝑥𝑖 )
- 𝑧 ← ⟨𝒙, 𝒔⟩; 𝑟 ← ⟨𝒓 , 𝒔⟩
- 𝜋 ← SNIZK

prv (Rc, srs, td, 𝑦)
- Λ← Γ𝑤1 ·

∏
𝑖∈[𝑡 ] (Λ𝑖 )𝑠𝑖

- send 𝜎 := (𝑦,Λ, 𝑟 , 𝜋) toA

- A outputs 𝑏 ′

Game 1

Key generation

- 𝑁 := |L |; ppG ← G(1_); ℎ←$G1;
- ck := (ppG, ℎ); (srs, td) ← SNIZK

kg (1
_, ck)

- ^ ←$K
- 𝑎, 𝑏 ←$Z𝑞

- Γ1 ← ℎ𝑎 ; Γ2 ← 𝑔
1/𝑎
2 ; 𝐵 ← 𝑔𝑏1

- sk := (𝑎, 𝑏, ^); vk := (ck, srs, Γ1, Γ2, 𝐵,H)
- send vk toA.

Challenge

- For 𝑖 ∈ [𝑡]: 𝑟𝑖 ← F^ (𝜏𝑖 )
- 𝑟 ← ⟨𝒓, 𝒔⟩
- 𝜋 ← SNIZK

prv (Rc, srs, td, 𝑦)
- Λ← 𝑦𝑎 · 𝐵𝑎 ·𝑟 ∏

𝑖∈[𝑡 ] (H(𝜏𝑖 ))𝑎 ·𝑠𝑖

- send 𝜎 := (𝑦,Λ, 𝑟 , 𝜋) toA

- A outputs 𝑏 ′

Game 2

Skg (1_,L,Rcom-ip)
- 𝑁 := |L |; ppG ← G(1_); ℎ←$G1;
- ck := (ppG, ℎ); (srs, td) ← SNIZK

kg (1
_, ck)

- ^ ←$K
- 𝑎, 𝑏 ←$Z𝑞

- Γ1 ← ℎ𝑎 ; Γ2 ← 𝑔
1/𝑎
2 ; 𝐵 ← 𝑔𝑏1

- sk := (𝑎, 𝑏, ^); vk := (ck, srs, Γ1, Γ2, 𝐵,H)
- output (sk, vk).

Seval (vk, sk, (R
(𝑡,𝒔)
com-ip, 𝜏1, . . . , 𝜏𝑡 ), 𝑦)

- For 𝑖 ∈ [𝑡]: 𝑟𝑖 ← F^ (𝜏𝑖 )
- 𝑟 ← ⟨𝒓, 𝒔⟩
- 𝜋 ← SNIZK

prv (Rc, srs, td, 𝑦)
- Λ← 𝑦𝑎 · 𝐵𝑎 ·𝑟 ∏

𝑖∈[𝑡 ] (H(𝜏𝑖 ))𝑎 ·𝑠𝑖
- output 𝜎 := (𝑦,Λ, 𝑟 , 𝜋)

(a) Description of simulators Skg,Seval for LHSPed.

Figure 5: Game steps and simulators proving zero-knowledge of LHSPed.

CP-SNARK CPev We instantiate this CP-SNARK using a commit-
and-prove version of the KZG polynomial evaluation argument
from [27], which we describe in Appendix B and prove knowledge-
sound under the SDH assumption [8] in the AGM [30]. So as to
ensure that scalars 𝑧 ∈ F are indeed committed as c𝑧 := 𝑔𝑧1ℎ

𝑜𝑧
1 ,

where 𝑜𝑧 ∈ F (as opposed to being a polynomial in F), our instanti-
ation of CPev also includes a Schnorr PoK of 𝑧, 𝑜𝑧 ∈ F. The cost of
generating the proof 𝜋𝑧 is essentially one multi-exponentiation of
length𝑑𝑒𝑔(𝜒𝑖 (𝑋 )) = |H|, while verification only requires 3 pairings,
and a few constant exponentiations.

ComLHS forRcom-ip We use the scheme LHSPed of Section 5. See
Section 5.4 for a summary of its costs.

6.2 Theoretical comparison and evaluation

Consider a computation 𝑓 , and corresponding relation R𝑓 contain-
ing tuples (𝑦, 𝒙,𝑤) such that𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑡 ,𝑤), where 𝑡 = |𝒙 |. We
analyse the cost of generating a proof asserting the existence of a
vector of data items 𝒙 ∈ F𝑡 , of signatures {𝜎𝑖 }𝑖∈[𝑡 ] , and of𝑤 ∈ D𝑤

satisfying (𝑦, 𝒙,𝑤) ∈ R𝑓 and, for 𝑖 ∈ [𝑡], VerSig(vk, 𝑥𝑖 , 𝜎𝑖 ) = 1.

We compare our SPHinxHSNP instantiation to the most promis-
ing alternative of Table 1, combining a standard signature scheme
with a zkSNARK. We recall that the Sig+SNARK solution uses a zk-
SNARK to prove both the correctness of the computation output 𝑦,
and the knowledge of messages and signatures (𝑥1, 𝜎1), . . . , (𝑥𝑡 , 𝜎𝑡 )
such that 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑡 ), and each 𝜎𝑖 is a valid signature for
𝑥𝑖 . For Sig+SNARK we consider an instantiation usingMarlin; for
brevity we call this solution SigMarlin.

For both solutions, the protocol’s cost can be split into (1) that of
proving correct evaluation of𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑡 ), denoted P( |𝒙 |+|𝑤 |),
which is essentially the cost of running the universal (CP)zkSNARK
(e.g. Marlin or CPMarlin

R
); and (2) that of proving the input data

was authenticated. Note that (1) is common to both SPHinx and
SigMarlin. So we are interested in comparing them for (2).

In SigMarlin, (2) is the cost of running Marlin to prove that, for
𝑖 ∈ [𝑡], VerSig(vk, 𝑥𝑖 , 𝜎𝑖 ) = 1. Let us denote cVer the number of
constraints in the associated R1CS instance. Since there are 𝑡 such
signatures to verify for a single computation, the extra cost for
the prover will be ≈ 𝑡 cVer log(𝑡 cVer), while verification requires
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an extra ≈ 𝑡 log(𝑡 cVer) operations. As arguments in Marlin are
constant size, the size of the proof is not affected.

On the other hand, in SPHinx, (2) consists of the costs of com-
mitting c𝒙 , c𝑧 , csum, running CPsvec and CPev, and evaluating and
verifying two LHSPed signatures. For 𝑞 of 255 bits, and values of
𝑡 ⩾ 100 (which we expect for most practical applications), these
operations entail less than 2|H| + 4𝑡 extra operations for the prover;
less than 2𝑡 +𝑂 (1) operations for the verifier; and an increase in
the proof size of 11 elements in G1 and 11 field elements.

Table 2 summarizes this theoretical comparison.

Solution Prover Verifier Proof size
SPHinx P( |𝒙 | + |𝑤 |) + 4𝑡 + 2|H| 3𝑡 + 𝑜 (1) 24|G1 | + 19|F|
SigMarlin P( |𝒙 | + |𝑤 | + cVer𝑡) 𝑡 log(𝑡 cVer) 13|G1 | + 8|F|
Table 2: Theoretical cost comparison of HSNP solutions.

Estimating cVer. Tomake the comparison in Table 2 more concrete,
we consider various signature schemes, and estimate the number
of constraints cVer to express signature verification with R1CS.

For EdDSA (without the hash evaluation, which, if using SHA2-
256, adds ≈ 79 000 constraints6) the cost is cVer ≈ 7 000, if imple-
mented over a SNARK-friendly elliptic curve. 7 Note that a single
fixed base-point (resp. variable-base) scalar multiplication requires
≈ 500 (resp ≈ 1 500) constraints (2 and 6 constraints respectively
per scalar bit). Schemes such as ECDSA or EC-Schnorr have a com-
parable number of constraints, as they require similar operations.

To avoid the cost of encoding (elliptic-curve) group operations,
one may be drawn to lattice-based schemes such as that of Lyuba-
shevsky [44]. Here verification requires two matrix-vector multi-
plications. Due to the large sizes of involved matrices, and range
proofs required for modular operations, the number of constraints
will be far over 5 000.

Finally, modular arithmetic in SNARKs is expensive, hence both
RSA and Schnorr signature verification will require well over 10 000
constraints. Indeed, the state of the art implementation (cf. xJsnark
[41]) of an RSA-2048 exponentiation requires 90 800 constraints.

Given these observations, we generously assume that cVer ≈
5 000. Plugging this value into the comparison of Table 2, one can
appreciate the important efficiency gains we expect.

7 EXPERIMENTAL EVALUATION

7.1 Implementation

We implemented a library for homomorphic signature schemes
for NP in Rust based on the arkworks8 libraries. We plan to open
source the code soon. Pairing-friendly curves are instantiated with
BLS12-381[12], a Barreto–Lynn–Scott curve of embedding degree
12, defined over a 381-bit prime field. Our library, hsnp, implements
and combines together each of the building blocks of SPHinx except
forMarlin (namely, referring to Appendix A.2, we implement CPR
with CPsvec but not Marlin, and benchmark Marlin separately
using its publicly available implementation9).
6Using the Zokrates library
7EthSnarks [https://ethresear.ch/t/low-overhead-secret-single-leader-election/5994/9]
8https://github.com/arkworks-rs
9https://github.com/arkworks-rs/marlin

We ran our experiments on a virtual machine running Debian
GNU/Linux with 8 cores Xeon-Gold-6154 clocked at 3GHz and with
98 GB of RAM. All the reported timings correspond to the median
of measurements over 10 executions.

7.2 Experimental set up

Weevaluate the performance of our implementation (called SPHinx)
on different benchmarks, comparing it with that of the solution out-
lined in Section 6.2 (SigMarlin). That is, usingMarlin to both prove
the given R1CS statement, and knowledge of signatures which ver-
ify for all data items used in the statement. To benchmark SPHinx,
we run all the components of our HSNP protocol on the given R1CS
instance, and add the resulting cost to that of running Marlin on
this same instance. To benchmark SigMarlin, we increase the size
of the given R1CS instance by adding 5 000 constraints per signed
input; this is done to account for the cost of signature verification,
as explained in Section 6.2. We stress that 5 000 is a very optimistic
estimate as the state-of-the-art suggests it is at least twice this cost.

We consider various benchmarks aiming to measure the perfor-
mance impact of signed inputs in computations of varying com-
plexity. We start with a general benchmark, which takes a circuit
of fixed size and measures the performance for varying numbers of
signed inputs. The goal of this benchmark is to see the relative per-
formance degradation of both solutions while the number of signed
inputs increases. Next, we evaluate and compare the performance
of SigMarlin and SPHinx when applied to realistic applications;
we consider computations typical in data streams such as sliding
window statistics (variance, histograms), and a computation that
models the application of predicting stock prices.

Remark 2 (On the role of labels). We recall that in the usage
of HSNP for VCS from Section 3.2 the labelling mechanism allows
expressing queries that first filter a portion of the stream, and then
apply a computation on the filtered portion. In all our benchmarks by
“signed inputs” we mean the signed values that are fed as input to the
R1CS relation after filtering, and not all the signed values in the data
stream. This property of labelling is important for the scaling of our
VCS solution on large streams as the complexity of the proof system
(notably the R1CS size) depends only on the size of the filtered portion
of the stream. This is significant in concrete terms. For instance, we
may have a stream comprising 𝑁 = 1 billion of values, yet we may
wish to compute the variance of the last 𝑡 = 1 million of them, in
which case the size of the R1CS encoding the variance depends only
on 𝑡 and not on 𝑁 .

7.3 Benchmarks

7.3.1 General circuits. We fix the size of the R1CS to 222 ≈ 4𝑀 and
consider a variable number of signed inputs ranging from 28 to 220.
The goal here is to measure the performance impact of handling
signed inputs in the different protocols.

7.3.2 Sliding window statistics. In the sliding window model for
data streams, a data owner streams data items to a server, and clients
are interested in the result of computations on the “window” of the
last 𝑡 items in the stream. This allows extracting useful information
about the stream, such as classical data science statistical tools. We
consider two such tools described hereafter. We assume data items
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and thresholds are represented as 32-bit integers, and denote by 𝑡
the number of measurements in the window.
Variance. This is a common tool to quantify the spread of a data10.
Computing the variance can be expressed by an R1CS with 𝑡 + 2
constraints and 2𝑡 + 2 variables.

Histograms. Histograms allow one to roughly assess the proba-
bility distribution of a given variable, by depicting the frequencies
of observations occurring in certain ranges of values. Denoting 𝑘
the number of prescribed intervals, constructing a histogram can
be expressed by an R1CS with 36𝑡𝑘 constraints, and 96𝑡𝑘 variables.
We also consider a more involved application of sliding window

statistics to real-time market data: that of model-driven prediction,
i.e. predicting stock prices. This task should be done frequently
in order to learn from recent price fluctuations and better predict
future ones.We consider a client querying the server for a prediction
of some company’s stock price in 5 days time, requiring that the
prediction model be based on data streamed over the past 𝑛 days.
Multi-linear regression. A potent model for this task is multi-
linear regression (MLR). Let 𝑘 be the number of indicators, used as
additional features for the model, computed by the server. Comput-
ing both the coefficients of the prediction model, and the predicted
value itself, can be expressed by an 𝑅1𝐶𝑆 with 𝑛(2𝑘2+8𝑘+4)+𝑘3+
5𝑘2 + 9𝑘 + 6 constraints, and 𝑛

(
3
2𝑘

2 + 15
2 𝑘 + 4

)
+𝑘3 + 4𝑘2 + 7𝑘 + 4

variables (see appendix D for details). Choosing 𝑘 := 20 results in
964𝑛 + 10 186 constraints, and 754𝑛 + 9 744 variables.
For these three computations, we run our experiments by syn-

thesizing R1CSs of the given size. Typically, one can extract more
precise information from the stream by increasing the number of
items on which the statistic is computed, i.e., 𝑡 in variance and his-
tograms and 𝑛 in MLR. Hence we evaluate the systems’ scalability
by running these benchmarks on growing values of 𝑡 (resp. 𝑛). We
used: 𝑡 ∈ [28, 220] for variance; 𝑡 ∈ [28, 213] and 𝑘 = 4 intervals for
histograms; 𝑛 ∈ [25, 210] and 𝑘 = 30 indicators for MLR. Though
𝑡 = 213 (resp. 𝑛 = 210) may look small, note that they imply R1CS
of size ≈ 3𝑀 for histograms with 𝑘 = 4 (resp. ≈ 2𝑀 for MLR with
𝑘 = 30).

7.4 Evaluation

7.4.1 Signing and proof size. SPHinx’s signature generation takes
500`𝑠 and only 80 Bytes of space. Moreover, both solutions have
constant-size proofs: SigMarlin’s proof is 880 Bytes while SPHinx’s
proof is 1760 Bytes.

7.4.2 Proving and verification time. Figure 6 (left) shows the prov-
ing and verification times for the benchmark with fixed-size R1CS;
Figure 6 (right) shows the results for the variance benchmark; Ta-
ble 3 highlights a selection of measurements for the histograms and
MLR benchmarks.

Our experiments show that SPHinx is much more scalable than
SigMarlin w.r.t. prover’s performance. In the variance benchmark,
the difference is significant with SPHinx being between 544× and
1340× faster than SigMarlin. For histograms and MLR, SPHinx’s
prover is still 7×–20× faster than SigMarlin’s.

10The spread of data is the extent to which it is squeezed towards a single value or
spread out across a wider range.

Besides proving time, the other scalability limitation of SigMarlin
is its memory consumption. This is due to the large R1CS sizes
induced by encoding signature verifications. In none of our bench-
marks we were able to execute SigMarlin on an instance with more
than 2048 signed inputs due to excessive RAM consumption. In con-
trast, we find that the prover’s performance of SPHinx is minimally
affected by the number of signed inputs and it can scale to large
instances. In the fixed-size R1CS benchmark (Figure 6–left) we can
observe the impact of signed inputs: in SPHinx generating a proof
for 220 signed inputs is only 2% slower than a proof for 28 inputs,
whereas SigMarlin’s performance degrades quickly. Another metric
to evaluate the impact of our technique is to compare SPHinx and
SigMarlin against a baseline represented byMarlin used to prove
the same computation with no authenticated inputs. This metric
highlights the overhead of proving validity of signed inputs in the
two solutions. In Figure 6 we observe that SPHinx is 1.07×–1.3×
slower thanMarlin, whereas SigMarlin is at least 7× slower than
Marlin (MLR with 𝑛 = 32 days) and up to 1300× slower (variance
with 𝑡 = 1024).

On the downside, SPHinx has slower verification than SigMarlin:11
the concrete time remains feasible though: e.g., verification takes
below 4s on the largest instances with 220 signed inputs and less
than 100ms in benchmarks with moderate input sizes. We see the
slower, yet feasible, verification time as a tradeoff to pay in order
to make proving feasible. Indeed, we note that running SigMarlin
on a computation with 220 signed inputs would require an R1CS
with ≈ 5.2 billions constraints, which is virtually prohibitive.

Prover time (s) Verifier time (ms)
Benchmark Input size SPHinx SigMarlin SPHinx SigMarlin
Histogram 𝑡 = 256 10 146 38 9

𝑘 = 4 𝑡 = 1024 39 606 46 10
𝑡 = 2048 75 1255 53 11
𝑡 = 4096 134 — 65 —

MLR 𝑛 = 32 days 17 105 39 9
𝑘 = 30 𝑛 = 128 days 47.7 417.3 45 10

𝑛 = 512 days 117 1733 54 11
𝑛 = 1024 days 220 — 69 —

Table 3: Costs in prover and verifier time, of SPHinx and

SigMarlin for histograms and MLR.
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A TURNINGMarlin INTO A CP-SNARK,

EFFICIENTLY

We here describe how to turn the Marlin universal zkSNARK [21]
into a commit-and-prove one.

We observe that a recent work [1], called ECLIPSE, proposes
a generic method that can be also used to turn Marlin into a CP-
SNARK. Their method is more general than ours as it can for ex-
ample deal with inputs committed across several commitments.
However, for the specific use case of our work, the advantage of
our conversion over ECLIPSE’s is that we can keep the size of the
proof and the verification time constant in the length of the com-
mitted vector, whereas in ECLIPSE these are logarithmic and linear
respectively (cf. [1, Table 1]).
BackgroundMarlin is a zkSNARK for the R1CS in which a relation
is defined by three matrices A,B,C and an instance vector 𝒚 is
considered in the language if there is a vector𝒘 ′ such that, for 𝒛 =

(1,𝒚,𝒘 ′), it holds A𝒛 ◦B𝒛 = C𝒛. UnderlyingMarlin is a polynomial
commitment scheme like the scheme Comwementioned in Section
6, where the commitment to a polynomial 𝑝 (𝑋 ) is the group element
𝑔
𝑝 (𝑠)
1 ℎ

𝑜𝑝
1 for a random 𝑜𝑝 ←$F. For the sake of our conversion,

we note that a proof in Marlin includes a commitment c𝑤′ to the
polynomial �̂� ′(𝑋 ) that interpolates the vector 𝒘 ′ (precisely the
evaluations (�̂� ′(ℎ1), . . . , �̂� ′(ℎ |𝒘′ |)) on a specific subset of points
is the vector𝒘 ′).
Turning Marlin into a CP-SNARK Our goal is to build a CP-
SNARK for R1CS and the commitment scheme Com where, given
a commitment c𝑥 and a public 𝒚, one can prove that the R1CS
relation holds for 𝒛 = (1,𝒚, 𝒙,𝒘) and c𝑥 opens to 𝒙 . To this end, our
CPMarlin

R
scheme augments Marlin with a proof that the vector𝒘 ′

encoded in the commitment c𝑤′ is of the form𝒘 ′ = (𝒙,𝒘), where
𝒙 is the opening of c𝑥 . More precisely, if c𝑥 is a commitment to a
polynomial 𝑥 (𝑋 ), we prove that in a specific public subset T ⊂ F
it holds ∀ℎ ∈ T : �̂� ′(ℎ) = 𝑥 (ℎ). We generate the latter proof via a
CP-SNARK for this specific relation that we call CPsvec and that
we describe in the next section.

A.1 A CP-SNARK for subvectors

Let T be a subset of F of cardinality 𝑡 and consider the following
relation

RT := {(𝑧 (𝑋 ), 𝑥 (𝑋 )) : ∀ℎ ∈ T : 𝑧 (ℎ) = 𝑥 (ℎ)}
We here present the main building block for makingMarlin a CP-
SNARK, which is a CP-SNARK CPsvec for RT.

The main idea of the proof system is that the statement ∀ℎ ∈
T : 𝑧 (ℎ) = 𝑥 (ℎ) holds if and only if the polynomial 𝑧 (𝑋 ) − 𝑥 (𝑋 )
is divisible by 𝑍T (𝑋 ) =

∏
ℎ∈T (𝑋 − ℎ), i.e., the polynomial that

vanishes in the subset T ⊂ F, and thus there exists a polynomial
𝑤 (𝑋 ) such that 𝑧 (𝑋 ) − 𝑥 (𝑋 ) = 𝑤 (𝑋 )𝑍T (𝑋 ).

Let _𝑖 (𝑋 ), for 𝑖 = 1 to 𝑡 , be the Lagrange polynomials over
domain T. By polynomial long division, 𝑧 (𝑋 ), 𝑥 (𝑋 ) can be uniquely
decomposed as

𝑧 (𝑋 ) =
𝑡∑︁
𝑖=1

𝑧𝑖_𝑖 (𝑋 ) + 𝑍T (𝑋 )𝑞𝑧 (𝑋 ),

𝑥 (𝑋 ) =
𝑡∑︁
𝑖=1

𝑥𝑖_𝑖 (𝑋 ) + 𝑍T (𝑋 )𝑞𝑥 (𝑋 ) .
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Therefore, if ∀ℎ ∈ T : 𝑧 (ℎ) = 𝑥 (ℎ) we can see that 𝑧 (𝑋 ) − 𝑥 (𝑋 )
is divisible by 𝑍T (𝑋 ). In the other direction, if there is𝑤 (𝑋 ) such
that 𝑧 (𝑋 ) − 𝑥 (𝑋 ) = 𝑤 (𝑋 )𝑍T (𝑋 ), then we can write 𝑧 (𝑋 ) = 𝑥 (𝑋 ) +
𝑤 (𝑋 )𝑍T (𝑋 ) from which we can conclude ∀ℎ ∈ T : 𝑧 (ℎ) = 𝑥 (ℎ),
since ZT (ℎ) = 0 on every ℎ ∈ T.

To prove that the committed polynomials (𝑧 (𝑋 ), 𝑥 (𝑋 )) ∈ RT,
the prover first commits to the polynomial 𝑤 (𝑋 ) = 𝑧 (𝑋 )−𝑥 (𝑋 )

𝑍T (𝑋 )
using a degree-2 polynomial 𝑟𝑤 (𝑋 ) ← 𝑟𝑤,0 + 𝑟𝑤,1𝑋 + 𝑟𝑤,2𝑋 2 to
make it hiding, i.e., c𝑤 ← 𝑔

𝑤 (𝑠)
1 ℎ

𝑟𝑤 (𝑠)
1 . Notice that after revealing

c𝑤 , there are still |F|2 possible choices for 𝑟𝑤 (𝑋 ). Furthermore, by
the homomorphic property of Com, c𝑧/c𝑥 is a commitment to the
polynomial 𝑤 (𝑋 )𝑍T (𝑋 ) with opening 𝑟𝑧 (𝑋 ) − 𝑟𝑥 ; the rest of the
proof is devoted to showing that this is the case. To this end, the
prover creates a commitment c0 to the 0 polynomial with opening
𝑟0 (𝑋 ) := 𝑟𝑧 (𝑋 ) − 𝑟𝑥 − 𝑟𝑤 (𝑋 )𝑍T (𝑋 ), i.e., c0 ← ℎ

𝑟0 (𝑠)
1 , and proves

that this the case. The latter is done by showing that the evaluation
of the polynomial in c0 in a random point 𝜌 (chosen after c0) is
0. This proof requires to reveal 𝑟0 (𝜌). Note that we still have that
ℎ
𝑟0 (𝑠)
1 and 𝑟0 (𝜌) are uniformly distributed thanks to the entropy of

𝑟𝑤 (𝑋 ).
The full description of the CP-SNARK CPsvec follows.

Kg(ck): output ck = ({𝑔𝑠𝑖1 , ℎ𝑠
𝑖

1 }
𝐷
𝑖=0, 𝑔

𝑠
2) as universal SRS.

Derive(ck,T): output ek = ck and vk = (𝑔1, ℎ1, 𝑔2, 𝑔𝑠2, 𝑔
𝑍T (𝑠)
2 )

Prove(ek, (c𝑧 , c𝑥 ), (𝑧 (𝑋 ), 𝑥 (𝑋 )), (𝑟𝑧 (𝑋 ), 𝑟𝑥 )):
- 𝑤 (𝑋 ) ← 𝑧 (𝑋 )−𝑥 (𝑋 )

𝑍T (𝑋 )
- 𝑟𝑤,0, 𝑟𝑤,1, 𝑟𝑤,2 ←$F
- 𝑟𝑤 (𝑋 ) ← 𝑟𝑤,0 + 𝑟𝑤,1𝑋 + 𝑟𝑤,2𝑋 2

- c𝑤 ← 𝑔
𝑤 (𝑠)
1 ℎ

𝑟𝑤 (𝑠)
1

- c0 ← ℎ
𝑟0 (𝑠)
1 where 𝑟0 (𝑋 ) := 𝑟𝑧 (𝑋 ) − 𝑟𝑥 − 𝑟𝑤 (𝑋 )𝑍T (𝑋 )

- 𝜌 ← H(c𝑧 , c𝑥 , c𝑤 , c0)
- 𝑞(𝑋 ) ← 𝑟0 (𝑋 )−𝑟0 (𝜌)

𝑋−𝜌 , c𝑞 ← ℎ
𝑞 (𝑠)
1 , 𝑦 ← 𝑟0 (𝜌)

- Output 𝜋 := (c𝑤 , c0, c𝑞, 𝑦)
VerProof (vk, (c𝑧 , c𝑥 ), 𝜋):
- 𝜌 ← H(c𝑧 , c𝑥 , c𝑤 , c0)
- Output 1 iff the following checks are satisfied

𝑒 (c𝑧/(c𝑥 · c0), 𝑔2) = 𝑒 (c𝑤 , 𝑔𝑍T (𝑠)2 )

𝑒 (c0ℎ
−𝑦
1 , 𝑔2) = 𝑒 (c𝑞, 𝑔𝑠−𝜌2 )

Completeness Follows from the discussion above, and the com-
pleteness of the polynomial commitment scheme used inMarlin.
Succinctness The proof size is constant (3 group elements and one
field element). For verification, the cost is poly(_).
Knowledge soundness Let us denoteT, (c𝑧 , c𝑥 ), 𝜋 := (c𝑤 , c0, c𝑞, 𝑦)
the output ofA in the knowledge soundness experimentGameKSND;
and ek := ck, vk := (𝑔1, ℎ1, 𝑔2, 𝑔𝑠2, 𝑔

𝑍T (𝑠)
2 ) the corresponding output

of Derive.
The polynomial commitment scheme used inMarlin is extractable,

hence the extractor E for CPsvec can extract, fromA’s view, poly-
nomials (𝑟, 𝑟0,E) from c0, while the evaluation proof (c𝑞, 𝑦) (verified
in the last check of our verification algorithm) ensures that 𝑟 (𝜌) = 0
and 𝑟0,E (𝜌) = 𝑦. Now since 𝜌 is chosen randomly after comput-
ing 𝑐0, with overwhelming probability it holds that 𝑟 is the zero
polynomial.

Similarly, from commitments c𝑧 , c𝑥 and c𝑤 , one can extract poly-
nomials 𝑧E (𝑋 ), 𝑥E (𝑋 ),𝑤E (𝑋 ), and openings 𝑟𝑧E (𝑋 ), 𝑟𝑥E (𝑋 ), 𝑟𝑤E (𝑋 ),
which, from the first equality check; from the homomorphic prop-
erty of the commitment scheme; and since we have verified that c0
commits to the zero polynomial, satisfy 𝑧E (𝑋 )−𝑥E (𝑋 ) = 𝑤E (𝑋 )𝑍T (𝑋 ).
Finally, since 𝑍T (𝑋 ) vanishes in T, E has successfully extracted
(𝑧E (𝑋 ), 𝑥E (𝑋 )) ∈ RT.
Composable zero-knowledge Intuitively, thanks to the fact 𝑟𝑤 is
chosen as a random polynomial of degree 2, even given commit-
ments c𝑤 , c0 and c𝑞 , the value of 𝑦 is uniformly distributed from
the adversary’s view. Hence a simulator can chose the polynomial
𝑟0 at random, compute c0 ← ℎ

𝑟0 (𝑠)
1 , and then compute c𝑤 from c0,

its inputs (c𝑧 , c𝑥 ), and 𝑍T (𝑠) (which it can compute as 𝑠 is included
in the trapdoor), i.e.,

c𝑤 ←
(
c𝑧
c𝑥 c0

)𝑍T (𝑠)−1

.

From there the simulator computes 𝜌, 𝑞(𝑋 ), c𝑞 and𝑦 as per protocol,
and the distribution of resulting simulated proofs is identical to
that output by real executions of the protocol.

A.2 The CP-SNARK CPMarlin
R

Here we detail our CP version ofMarlin.
Derive(ck):
- (ek′, vk′) ← Marlin.Derive(ck)
- (eksvec, vksvec) ← CPsvec .Derive(ck)
- Output ek = (ek′, eksvec) and vk = (vk′, vksvec)
Prove(ek,𝒚, c𝑥 , 𝒙, 𝑟𝑥 ,𝒘):
- 𝜋 ′ ← Marlin.Prove(ek′,R, 𝑦, (𝒙,𝒘))
- Parse 𝜋 ′ = (c𝑤′, 𝜋 ′′) with c𝑤′ = 𝑔

𝑤′ (𝑠)
1 ℎ

𝑟𝑤′ (𝑠)
1

- 𝜋svec ← CPsvec .Prove(eksvec, (c𝑤′, c𝑥 ),
(𝑤 ′(𝑋 ), ⟨𝒙,𝝀(𝑋 )⟩), (𝑟𝑤′ (𝑋 ), 𝑟𝑥 ))

- Output 𝜋 := (𝜋 ′, 𝜋svec)
VerProof (vk,𝒚, c𝑥 , 𝜋):
- Parse 𝜋 := (𝜋 ′, 𝜋svec) and 𝜋 ′ = (c𝑤′, 𝜋 ′′)
- Output 1 iff Marlin.VerProof (vk′,𝒚, 𝜋 ′) = 1 and

CPsvec .VerProof (vksvec, c𝑥 , c𝑤′, 𝜋svec) = 1.
Correctness, knowledge-soundness and zero-knowledge ofCPMarlin

R
follow from the properties of the underlying schemes.

B AN EFFICIENT INSTANTIATION OF THE

CP-SNARK CPev
This is a CP-SNARK for committed polynomial evaluation.
Prove(ek, 𝑦, (c𝑝 , c𝑧), (𝑝 (𝑋 ), 𝑧), (𝑜𝑥 , 𝑜𝑧)):
- 𝑞(𝑋 ) ← 𝑝 (𝑋 )−𝑧

(𝑋−𝑦)
- 𝑜𝑞 ←$F, c𝑞 ← 𝑔

𝑞 (𝑠)
1 ℎ

𝑜𝑞
1

- 𝑔← ℎ
𝑠−𝑦
1

- 𝛾, 𝛿, 𝜖, [ ←$F

- 𝑈 ← 𝑒 (ℎ𝛾1𝑔
𝛿 , 𝑔2)

- 𝑢 ← 𝑔
[

1ℎ
𝜖
1

- 𝜌 ← H(𝑦, c𝑝 , c𝑧 , c𝑞, 𝑢,𝑈 )
- 𝜎 ← 𝛾 − (𝑜𝑧 − 𝑜𝑥 )𝜌
- 𝜏 ← 𝛿 − 𝑜𝑞𝜌
- ` ← 𝜖 + 𝑜𝑧𝜌
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- a ← [ + 𝑧𝜌
- Output 𝜋 := (c𝑞, 𝑢, `, a, 𝜌, 𝜎, 𝜏)
VerProof (vk, 𝑦, (c𝑝 , c𝑧), 𝜋):
- 𝐴← 𝑒 (c𝑞, 𝑔𝑠−𝑦2 )𝑒 (c𝑧/c𝑝 , 𝑔2)
- 𝑈 ← 𝑒 (ℎ𝜎1𝑔

𝜏 , 𝑔2)𝐴𝜌 , for 𝑔← ℎ
𝑠−𝑦
1

- If 𝜌 ≠ H(𝑦, c𝑝 , c𝑧 , c𝑞, 𝑢,𝑈 ) output 0
- If 𝑔a1ℎ

`

1 ≠ 𝑢 · c𝜌𝑧 output 0
- Else output 1

Remark 3.
• In the HSNP scheme of Section 5, the vector of signed input data
is encoded into a polynomial. This allows us to use a CP-SNARK
for polynomial evaluation, rather than for the evaluation of inner
product.
• Elements (𝑢, 𝜌, `, a) of proof 𝜋 constitute a Schnorr NIZKPoK of
𝑧 ∈ F committed to in c𝑧 . This enforces that the opening 𝑜𝑧 to 𝑧 be a
scalar. Conversely, the opening 𝑜𝑥 to 𝑝 (𝑋 ) can itself be a polynomial,
since in the proof for knowledge soundness of our HSNP, the extractor
outputs 𝑜𝑥 (𝑋 ) ∈ F[𝑋 ], of degree ⩽ 𝐷 .

Completeness If 𝜋 := (c𝑞, 𝑢, `, a, 𝜌, 𝜎, 𝜏) is computed as per the
protocol description, then the verifier computes:

𝐴 = 𝑒 (𝑔
𝑝 (𝑠 )−𝑧
𝑠−𝑦

1 ℎ
𝑜𝑞
1 , 𝑔

𝑠−𝑦
2 )𝑒 (𝑔𝑧−𝑝 (𝑠)1 ℎ

𝑜𝑧−𝑜𝑥
1 , 𝑔2)

= 𝑒 (𝑔𝑝 (𝑠)−𝑧1 ℎ
(𝑠−𝑦)𝑜𝑞
1 , 𝑔2)𝑒 (𝑔𝑧−𝑝 (𝑠)1 ℎ

𝑜𝑧−𝑜𝑥
1 , 𝑔2)

= 𝑒 (ℎ (𝑠−𝑦)𝑜𝑞−𝑜𝑥+𝑜𝑧1 , 𝑔2) = 𝑒 (𝑔𝑜𝑞ℎ𝑜𝑧−𝑜𝑥1 , 𝑔2)
and

𝑈 = 𝑒 (ℎ𝛾−(𝑜𝑧−𝑜𝑥 )𝜌1 𝑔𝛿−𝑜𝑞𝜌 , 𝑔2)
(
𝑒 (𝑔𝑜𝑞ℎ𝑜𝑧−𝑜𝑥1 , 𝑔2)

)𝜌
= 𝑒 (ℎ𝛾1𝑔

𝛿 , 𝑔2).
This is exactly how 𝑈 is computed by the prover, and hence the
value 𝜌 computed by the verifier and that provided by the prover in
𝜋 are identical, if both parties follow the protocol. The final equality
holds by the perfect completeness of Schnorr proofs of knowledge.
Zero-knowledge At a high level, the zero knowledge simulator
works as follows. For key-generation, Skg runs the key generation
simulator for the commitment scheme, from which it obtains a
trapdoor td := (𝑠, 𝛼 := log𝑔1 (ℎ1)). This is also the trapdoor output
by Skg for CPev.

To simulate a proof for an instance 𝑦, (c𝑝 , c𝑧), algorithm Sprv
commits to any polynomial 𝑞∗, say the zero polynomial, i.e. c∗𝑞 ←

ℎ
𝑜∗𝑞
1 for 𝑜∗𝑞 ←$F. Then it simulates the proof for this commitment, by

sampling random 𝜌, 𝜎, 𝜏, a, ` ←$F, and computing𝐴∗ ← 𝑒 (c∗𝑞, 𝑔
𝑠−𝑦
2 )·

𝑒 (c𝑧/c𝑝 , 𝑔2);𝑈 ∗ ← 𝑒 (ℎ𝜎1𝑔
𝜏 , 𝑔2)𝐴𝜌 ; and𝑢∗ ← 𝑔a1ℎ

`

1 c
−𝜌
𝑧 . Then it sets

the output of the random oracle H on input (𝑦, c𝑝 , c𝑧 , c∗𝑞, 𝑢∗,𝑈 ∗) to
be 𝜌 . If this output value had already been set, then Sprv aborts,
however this occurs with negligible probability since 𝑈 ∗ is ran-
dom in G𝑇 (based on the randomness of 𝜎 and 𝜏). Finally Sprv
outputs 𝜋 := (c∗𝑞, 𝑢∗, `, a, 𝜌, 𝜎, 𝜏). From the perfect hiding property
of Com, and the zero-knowledge property of the Schnorr proof of
knowledge for c𝑧 , the simulation is indistinguishable from a real
execution.

B.1 Knowledge soundness

Knowledge soundness holds under the 𝑑 − SDH assumption (which
implies the hardness of computing discrete logarithms), and in the
algebraic group model (AGM) [30], which we recall below.

B.1.1 𝑑-Strong Diffie-Hellman assumption. The security of our
CPev CP-SNARK relies on the following assumption, which is a
slight variation of the original Strong Diffie-Hellman assumption
[8], as we provide less group elements to the adversary (it does not
see 𝑔𝑠2).

Assumption 2 (d-SDH). The 𝑑-Strong Diffie-Hellman assump-
tion holds for the bilinear group generator G if for any PT adver-
saryA, and for all large enough _, on the probability space ppG :=

(𝑞,G1,G2,G𝑇 , 𝑒) ← G(1_), chall := ((𝑔1, 𝑔𝑠1, . . . , 𝑔
𝑠𝑑

1 );𝑔2), 𝑔1
$←−

G1, 𝑔2
$←− G2 and 𝑠

$←− Z𝑞 , the following probability is negligible in
_:

Adv𝑑−sdh
A
(_) := Pr[(𝑟,𝑦) ← A (ppG, chall) ∧ 𝑦 = 𝑔

1
𝑠−𝑟
1 ] .

B.1.2 The algebraic group model. For additional efficiency, our
instantiation for CPev is proven extractable in the Algebraic Group
Model (AGM) [30], which replaces a Power Knowledge of Exponent
assumption. In the AGM, algorithms are modelled as algebraic, this
means that whenever an algorithm outputs a group element 𝑔, the
algorithmmust also output an explanation of𝑔 in terms of the group
elements that it has seen.

Definition B.1 (algebraic algorithm). Consider a cyclic group G
of prime order 𝑞, and a probabilistic algorithmAalg whose initial
input includes a description pp ofG. During its executionAalg may
interact with oracles or other parties and receive further inputs
including obliviously sampled group elements (these cannot be
sampled directly). Let 𝑳 ∈ G𝑛 be the list of all group elementsAalg
has been given so far such that all other inputs it has received do
not depend in any way on group elements. Then Aalg is said to
be algebraic if whenever it outputs a group element 𝑔 ∈ G, it also
outputs a vector 𝒂 ∈ Z𝑛𝑞 such that 𝑔 =

∏𝑛
𝑖=1 𝐿

𝑎𝑖
𝑖
. The coefficients 𝒂

are called the representation of 𝑔 with respect to 𝑳.

Knowledge-soundness proof of CPev The proof strategy is simi-
lar to that of [27, Thm. 10], only we rely on the AGM instead of a
knowledge assumption. First observe that an algebraic adversary for
knowledge soundnessAalg must output representations of group
elements c𝑝 and c𝑞 with respect to (𝑔1, 𝑔𝑠1, . . . , 𝑔

𝑠𝐷

1 ), (ℎ1, . . . , ℎ𝑠
𝐷

1 ).
These representations allow the simulator to effortlessly extract
polynomials 𝑝 (𝑋 ), 𝑞(𝑋 ) (of degree ⩽ 𝐷), 𝑜𝑥 (𝑋 ) and 𝑜𝑞 (𝑋 ) (of de-
gree ⩽ 𝐷) which satisfy c𝑝 = 𝑔

𝑝 (𝑠)
1 ℎ

𝑜𝑥 (𝑠)
1 and c𝑞 = 𝑔

𝑞 (𝑠)
1 ℎ

𝑜𝑞 (𝑠)
1 .

Next we use the rewinding technique [45] for proving the sound-
ness of the Schnorr proofs to extract scalars 𝑧, 𝑜𝑧 ,𝜓, 𝜙 such that
c𝑧 = 𝑔𝑧1ℎ

𝑜𝑧
1 and 𝐴 = 𝑒 (c𝑞, 𝑔𝑠−𝑦2 )𝑒 (c𝑧/c𝑝 , 𝑔2) = 𝑒 (ℎ𝜓1 𝑔

𝜙 , 𝑔2).
In more detail, consider the game between the challenger and

a malicious prover 𝑃∗ against the soundness of the Schnorr proof.
The challenger runs 𝑃∗ by fixing the values c𝑝 , c𝑧 , c𝑞 and changing
the oracle definition to get a fork with 𝜌 ′ = H(𝑦, c𝑝 , c𝑧 , c𝑞, 𝑢,𝑈 ) ≠ 𝜌 .
Algorithm 𝑃∗ will output two distinct forgeries corresponding to
the same random oracle query, but for distinct challenges 𝜌 and 𝜌 ′.
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By the Forking Lemma, it holds that rewinding𝑂 (𝑞H/𝜖𝑃∗ ) times,
where 𝑞H is the maximal number of random oracle queries made
by 𝑃∗ and 𝜖𝑃∗ its success probability, then one obtains `, a, 𝜎, 𝜏, and
` ′, a ′, 𝜎 ′, 𝜏 ′ with constant probability. These openings allow one to
compute 𝑧 := (a − a ′)/(𝜌 − 𝜌 ′), 𝑜𝑧 := (` − ` ′)/(𝜌 − 𝜌 ′), as well as
𝜓 := (𝜎 − 𝜎 ′)/(𝜌 ′ − 𝜌) and 𝜙 := (𝜏 − 𝜏 ′)/(𝜌 ′ − 𝜌) which satisfy the
aforementioned requirements.

Now assume the algebraic adversaryAalg for knowledge sound-
ness of CPev outputs a cheating statement (𝑦, (c𝑝 , c𝑧)) and proof
𝜋 = (c𝑞, 𝑢, `, a, 𝜌, 𝜎, 𝜏) such that it passes verification checks, but
the extracted values (𝑝 (𝑋 ), 𝑞∗ (𝑋 ), 𝑧∗, 𝑜𝑥 (𝑋 ), 𝑜𝑞 (𝑋 ), 𝑜𝑧 ,𝜓, 𝜙) do not
satisfy the expected relation 𝑝 (𝑦) = 𝑧∗. We denote 𝑔 := ℎ𝑠−𝑦 .

Assuming that the commitment scheme is binding, one of the
following must hold:
Case 1 The extracted polynomials do not satisfy the correct rela-
tion, even when evaluated in 𝑠 , i.e., 𝑞∗ (𝑠) ≠ 𝑝 (𝑠)−𝑧∗

𝑠−𝑦 . This type
of forgery can be reduced to the discrete logarithm problem for
(𝑔1, ℎ1) ∈ G1. Indeed, consider an adversary BDL for the discrete
logarithm problem, which gets as input a pair (𝑔1, ℎ1) ∈ G1.
Adversary BDL samples a random 𝑠 ←$F which it uses to sim-
ulate the srs for Aalg (using 𝑔1 and ℎ1 as in the real protocol),
so as to extract a tuple as described above. Now assuming the
binding of the commitment scheme, the verification check gives
us 𝐴 = 𝑒 (ℎ (𝑠−𝑦)𝑜𝑞 (𝑠)1 𝑔

𝑞∗ (𝑠) (𝑠−𝑦)
1 , 𝑔2)𝑒 (ℎ𝑜𝑧−𝑜𝑥 (𝑠)1 𝑔

𝑧∗−𝑝 (𝑠)
1 , 𝑔2) =

𝑒 (𝑔𝜙ℎ𝜓1 , 𝑔2). By the non-degeneracy of the pairing, we obtain:

ℎ
(𝑠−𝑦)𝑜𝑞 (𝑠)+𝑜𝑧−𝑜𝑥 (𝑠)−𝜓−(𝑠−𝑦)𝜙
1 = 𝑔

(𝑠−𝑦)𝑞∗ (𝑠)+𝑧∗−𝑝 (𝑠)
1 ,

where (𝑠 −𝑦)𝑞∗ (𝑠) +𝑧∗ −𝑝 (𝑠) is invertible modulo 𝑞, so BDL can
output the discrete logarithm of 𝑔1 in base ℎ1.

Case 2 The polynomial 𝑞∗ (𝑋 ) committed to in c𝑞 does not sat-
isfy the correct relation w.r.t. 𝑝 (𝑋 ) and 𝑧∗, but evaluated in
𝑠 it holds that 𝑞∗ (𝑠) =

𝑝 (𝑠)−𝑧∗
𝑠−𝑦 . This type of forgery can be

reduced to the 𝐷 − SDH assumption. Consider an adversary
BSDH for the 𝐷 − SDH problem, which gets as input a tuple
(𝑔1, 𝑔𝑠1, . . . , 𝑔

𝑠𝐷

1 ), it samples a random 𝛼 ∈ F and sets ℎ1 :=
𝑔𝛼1 , ℎ

𝑠
1 := (𝑔𝑠1)

𝛼 , . . . , ℎ𝑠
𝐷

1 := (𝑔𝑠𝐷1 )
𝛼 . It uses these values to simu-

late the srs forAalg, so as to extract a tuple as described above.
The checks on verification imply:

𝐴 = 𝑒 (𝑔𝑞
∗ (𝑠)

1 ℎ
𝑜𝑞 (𝑠)
1 , 𝑔

𝑠−𝑦
2 ) · 𝑒 (𝑔𝑧

∗−𝑝 (𝑠)
1 ℎ

𝑜𝑧−𝑜𝑥 (𝑠)
1 , 𝑔2)

= 𝑒 (ℎ𝑜𝑧−𝑜𝑥 (𝑠)+(𝑠−𝑦)𝑜𝑞 (𝑠)1 , 𝑔2) · 𝑒 (𝑔 (𝑠−𝑦)𝑞
∗ (𝑠)+𝑧∗−𝑝 (𝑠)

1 , 𝑔2)

= 𝑒 (ℎ𝑜𝑧−𝑜𝑥 (𝑠)+(𝑠−𝑦)𝑜𝑞 (𝑠)1 , 𝑔2) = 𝑒 (ℎ (𝑠−𝑦)𝜙+𝜓1 , 𝑔2)
Hence (𝑠 − 𝑦) (𝑜𝑞 (𝑠) − 𝜙) + (𝑜𝑧 − 𝑜𝑥 (𝑠)) − 𝜓 = 0 in F. So ei-
ther BSDH can efficiently compute 𝑠 as a root of the polyno-
mial (𝑋 − 𝑦) (𝑜𝑞 (𝑋 ) − 𝜙) + (𝑜𝑧 − 𝑜𝑥 (𝑋 )) − 𝜓 ∈ F[𝑋 ], which
allows it to solve any SDH challenge; or 𝑜𝑥 and 𝑜𝑞 are degree
zero polynomials, and 𝜙 = 𝑜𝑞 and 𝜓 = 𝑜𝑧 − 𝑜𝑥 . Assuming
this is the case, denote 𝑧 := 𝑝 (𝑦), and define the polynomial
𝑞(𝑋 ) := 𝑝 (𝑋 )−𝑧

𝑋−𝑦 ∈ F[𝑋 ], so that 𝑔 (𝑠−𝑦)𝑞 (𝑠)1 = 𝑔
𝑝 (𝑠)−𝑧
1 . Then

BSDH computes 𝑔𝑧−𝑧∗1 = 𝑔 (𝑠−𝑦) (𝑞
∗ (𝑠)−𝑞 (𝑠)) . Define the poly-

nomial 𝑞′(𝑋 ) := (𝑋 − 𝑦) (𝑞(𝑋 ) − 𝑞∗ (𝑋 )) − 𝑧 + 𝑧∗ and denote
𝑞′(𝑋 ) = ∑

𝑖 𝑞
′
𝑖
𝑋 𝑖 . We have that 𝑔𝑞

′ (𝑠)
1 = 1. By the hypothesis that

𝑞∗ (𝑋 ) does not satisfy the correct relation w.r.t. 𝑝 (𝑋 ) and 𝑧∗, it

holds that 𝑞′(𝑋 ) ≠ 0, and hence 𝑠 is a root of 𝑞′. This allows
BSDH to compute 𝑔1/𝑠

1 as follows. Consider 𝑞′
𝑖0
the first non-zero

coefficient of the polynomial 𝑞′(𝑋 ). Then there is a polynomial
𝑞′′(𝑋 ) of lower degree (which can be computed from the initial
instance), satisfying 𝑞′

𝑖0
𝑠𝑖0 = 𝑠𝑖0+1𝑞′′(𝑠), and so 𝑔

𝑞′𝑖0
1 = 𝑔

𝑠 ·𝑞′′ (𝑠)
1 ,

or equivalently 𝑔1/𝑠
1 = (𝑔𝑞

′′ (𝑠)
1 )1/𝑞

′
𝑖0 . Hence BSDH is able to solve

its 𝐷 − SDH challenge.

C APPLICATIONS

We here provide additional concrete applications for verifiable com-
putation on delegated data streams.
Statistics on health data Governments must periodically publish
health statistics to inform the public of the status of healthcare
systems. Clearly, the original data cannot be made public as it
contains sensitive information pertaining to the people receiving
health care. However, this raw information can be authenticated
by medical practitioners, who operate as trusted data providers.
The amount of medical data to be stored being large, the hospital
delegates its’ entire memory to the cloud. The government (the VCS
client) may then ask the could to compute authorised functions of
this data, and expects the answers to be accompanied by a proof. In
this case, the government (and the public being informed) is ensured
that the result of the computations are correct and originated in
legitimate medical data by using VCS.
Driving statistics Pay as you drive auto insurance involves paying
a rate proportional to the number of miles driven. For privacy, the
driver may not want to reveal her personal driving habits to the
insurance company. For integrity, the company wants to be sure
that every driver pays the correct premium. Though solutions for
this specific problem have been provided [5, 28], where the driver
also performs the computations on the data, by using VCS, we allow
formuchmore flexibility. Precisely, the driver (i.e. the data-provider)
can stream the data collected by the vehicle onto some cloud server.
The insurance company (the VCS client) can request from the server
the required function of this data to compute the driver’s premium,
ensuring the pay-as-you-drive functionality. Furthermore, if say,
the driver has an accident, both the insurance company, and law
enforcement officials, may request functions of the stored data
ascertaining whether the driver was speeding at the time of the
accident.

Hence this same data stored by the server can serve a wide vari-
ety of analysis purposes, as it will be stored in full by the server, and
the choice of applied function only comes into play upon request by
the insurance company. This contrasts to AD-SNARKS or previous
pay-as-you drive solutions, where the driver herself applies some
aggregate function to the data (so as to not reveal it in full), and
sends the results, along with a proof of integrity and authenticity
to the insurance company.
Sliding window statistics Several applications naturally generate
data streams as opposed to data sets. In telecommunications call
records are generated continuously. Typically, most processing is
done by examining a call record once or operating on a ’window’
of recent call records (e.g., to update customer billing information),
after which records are archived and not examined again. Other
applications include network traffic engineering, web tracking and
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personalisation (where the data streams are web log entries or click-
streams), medical monitoring (vital signs, treatments, and other
measurements), sensor databases, financial monitoring, and data
mining applications. In most of these applications, the goal is to
make decisions based on the statistics or models gathered over
the recently observed data elements. For example, one might be
interested in gathering statistics about packets processed by a set
of routers over the last day. In the sliding window model, data
elements arrive at every instant; each data element expires after
exactly N time steps; and the portion of data that is relevant to
gathering statistics or answering queries is the set of the last N
elements to arrive. The sliding window refers to the window of
active data elements at a given time instant.
Predicting market data An application of sliding window statis-
tics to real-time market data is that of model-driven prediction, i.e.
predicting stock prices. This difficult task should be done frequently
in order to learn from recent price fluctuations and try to better
predict future ones. A simple yet potent model for this task is multi-
linear regression (MLR). This model aims to predict the outcome of
an event which depends on multiple factors.

Using VCS, the server can compute the coefficients of the MLR
model, as well as the prediction of some stock price requested by a
client, while proving computations where performed honestly on
the expected data.
Machine learning classifiers on portions of streamed data

The goal of statistical classification in machine learning is to use an
object’s characteristics to identify which class it belongs to. These
characteristics are typically presented to the machine in a vector.
For our example these vectors are streamed to the server, which
computes the corresponding classifications. A clientmay then query
the server to ask if, among the previous 1000 vectors, any of them
are categorised in a certain class (e.g. a ’high risk’ class).

A linear classifier makes a classification decision based on the
value of a linear combination of the characteristics, i.e. based on the
result of a dot product between the input vector and some weight
vector. Such classifiers work well for problems with many variables,
reaching accuracy levels comparable to non-linear classifiers while
taking less time to train and use.

Quadratic classifiers generalise the linear model, and are gener-
ally used to extend the classifier’s ability to represent more complex
separating surfaces. Denoting the input vector 𝒙 , and for a learned
matrix 𝑨, vector 𝑩 and scalar 𝑐 , the class of 𝒙 will be decided based
on 𝒙𝑇𝑨𝒙 + 𝒃𝑇 𝒙 + 𝑐 .

For both types of classifiers, a final non-linear step is applied,
which checks if the output is in a given range.

D MULTI-LINEAR REGRESSION FOR

PREDICTING STOCK PRICES

An application of sliding window statistics to real-time market data
is that of model-driven prediction, i.e. predicting stock prices. This
difficult task should be done frequently in order to learn from recent
price fluctuations and try to better predict future ones.

A simple yet potent model for this task is multi-linear regression
(MLR). This model aims to predict the outcome of an event which
depends on multiple factors.

Assume a data provider streams Microsoft’s daily stock price to a
server, and a client queries the server for a prediction of Microsoft’s
closing price in 5 days time, requiring that the prediction model
be based on data streamed the past 𝑛 days. Using VCS, the server
can compute the coefficients of the MLR model, and the required
prediction, while proving to the client that the computations where
performed honestly on the expected data.

Until recently, the high infrastructure and maintenance costs of
handling real-time market data made it difficult for many firms to
adopt. However, cloud-based delivery has made real-time market
data accessible to a wide array of applications. One application that
benefits from this expanded access to real-time data sources is that
of model-driven prediction, i.e. predicting stock prices. This difficult
task should be done frequently in order to learn from recent price
fluctuations and try to better predict future ones. For efficiency
reasons, on may wish to delegate both the offline training and the
online prediction work (on authenticated data) to a third party
server. One simple, yet very efficient model for this task is multiple
linear regression (MLR). This models aims to predict the outcome
of an event which depends on multiple factors.

For our concrete example, assume a powerful server receives a
signed stream of Microsoft’s daily stock price. And a client queries
the server for a target it wants to predict: Microsoft’s Closing stock
price in 5 days, where the prediction model is computed based on
data received over the past 𝑁 days.

We hereafter explain how the server computes the coefficients
of an MLR, based on data received in the past 𝑁 days, to predict
the closing price of Microsoft in 5 days time.

The data streamed each day consists of four data items, which
provide the high, low, open and close prices. Hence the size of the
input used for computations is 4𝑁 .

The R1CS instance vector will thus contain at least 4𝑁 +2 entries,
to encode the signed data, the constant 1, and how far in the future
the prediction is for (5 days).
Evaluated computations. As the price itself is not sufficient to
produce useful predictions, the server first computes additional
indicators which will be used as features (inputs) for computing
the model. The server computes:

• the average price of the last 𝑇 days for varying periods
𝑇 . This adds 𝑛 −𝑇 + 1 entries (e.g. variables) to the R1CS
instance vector, and 𝑛 −𝑇 + 1 constraints (e.g. rows).
We also add these features shifted by varying time lags from
0 to 10 days, each inducing an extra 𝑛 − 𝑇 variables and
constraints.

• the aforementioned averages plus/minus a certain amount
of standard deviations, again shifted by varying numbers
of days.
To compute the rolling values of the standard deviation re-
quires an extra (𝑛−𝑇 ) (𝑇 +2) constraints, and (𝑛−𝑇 ) (2𝑇 +2)
variables. To then compute the value of a given feature adds
an extra (𝑛 −𝑇 ) variables and constraints (per feature).

• shifts of the original high, low, open and close price. This
adds 𝑛 variables and constraints per additional feature.

Denoting 𝑘 the total number of computed features, it will always
hold that the number of variables and constraints to prove correct
computation of these features is between 𝑘𝑛 and 2𝑘𝑛.24
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Days / Feat. Constraints Variables
Input size
n / 4n k 𝑛(2𝑘2 + 8𝑘 + 4) + 𝑘3 + 5𝑘2 + 9𝑘 + 6 𝑛

(
3
2𝑘

2 + 15
2 𝑘 + 4

)
+ 𝑘3 + 4𝑘2 + 7𝑘 + 4

n / 4n 20 964𝑛 + 10 186 754𝑛 + 9 744
n / 4n 30 2 044𝑛 + 31 776 1 579𝑛 + 30 814
n / 4n 40 3 524𝑛 + 72 366 2 704𝑛 + 70 684

Table 4: Size of R1CS instance for MLR application.

For each of the above features, an extra column is added to the
data table. We also add a new column for the value we want to
predict: the close price of 5 days in the future. This column copies
the close column and shifts it by 5 rows.

Let us denote 𝑍 the resulting 𝑛 × (𝑘 + 1) dataset (each column
corresponds either to the target or to one of the aforementioned
features), and𝑋 the matrix obtained by removing the target column
from𝑍 , and inserting a column of 1s as the first column of𝑋 . Finally
let 𝑌 be the 𝑛 × 1 target column.

The server now computes a vector of coefficients 𝒃 = (𝑏0, 𝑏1, . . . , 𝑏50)
such that 𝑌 = 𝑋 · 𝒃 . This can be done as:

𝒃 := (𝑋⊤ · 𝑋 )−1𝑋⊤𝑌 .

The computation of (𝑋⊤ · 𝑋 ) requires first computing all the
products of entries in 𝑋 and 𝑋⊤, so we add 𝑛(𝑘 + 1)2 constraints
and 𝑛 (𝑘+1) (𝑘+2)

2 new variables.
Then to compute the (𝑘 + 1) × (𝑘 + 1) entries of (𝑋⊤ · 𝑋 ) by

summing the aforementioned products, we need an extra (𝑘 + 1)2
variables and constraints.

The inversion adds an extra (𝑘 +1)3 variables and constraints for
intermediate computations And to prove that (𝑋⊤ · 𝑋 ) (𝑋⊤ · 𝑋 )−1

is the identity matrix requires (𝑘 + 1)2 constraints (but no extra
variables).

So (𝑋⊤ ·𝑋 )−1 adds 𝑛 × (𝑘 + 1)2 + 2(𝑘 + 1)2 + (𝑘 + 1)3 constraints
and 𝑛 (𝑘+1) (𝑘+2)

2 + (𝑘 + 1)2 + (𝑘 + 1)3 variables.
Multiplying by 𝑋⊤ adds an extra (𝑘 + 1)2𝑛 variables and con-

straints for intermediate computations. Then for the actual matrix
(𝑋⊤ · 𝑋 )−1𝑋⊤, we add an extra (𝑘 + 1)𝑛 constraints and variables.
So a total of ((𝑘 + 1)2 + (𝑘 + 1))𝑛 constraints and variables for the
multiplication by 𝑋⊤.

Multiplying by 𝑌 , adds an extra (𝑘 + 1)𝑛 intermediate variables
and constraints, and an extra (𝑘 + 1) of each for computing the
values (𝑏0, 𝑏1, . . . , 𝑏𝑘 ).

Finally, from the row of data 𝒙 = (𝑥1, . . . , 𝑥𝑘 ) consistent with
𝑍 corresponding to the most recent streamed record, the server
predicts the close price 5 days in the future by computing:

�̂� = 𝑏0 + 𝑏1𝑥1 + · · · + 𝑏50𝑥50 .

This adds 𝑘+1 variables to the R1CS instance (the claimed output
�̂� ), and an extra 𝑘 + 2 constraints.

The total size of the resulting R1CS is given in Table 4, where we
use the upper bound 2𝑘𝑛 for number of variables and constraints
needed for the generation of additional features.
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