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Abstract. Anonymous routing is an important cryptographic primitive that allows users to commu-
nicate privately on the Internet, without revealing their message contents or their contacts. Until the
very recent work of Shi and Wu (Eurocrypt’21), all classical anonymous routing schemes are interactive
protocols, and their security rely on a threshold number of the routers being honest. The recent work of
Shi and Wu suggested a new abstraction called Non-Interactive Anonymous Router (NIAR), and showed
how to achieve anonymous routing non-interactively for the first time. In particular, a single untrusted
router receives a token which allows it to obliviously apply a permutation to a set of encrypted messages
from the senders. While Shi and Wu’s scheme is efficient in other dimensions, one unsatisfying aspect of
their construction is that the router takes time quadratic in the number of senders to obliviously route
their messages.
In this work, we show how to construct a non-interactive anonymous router scheme with sub-quadratic
router computation, assuming the existence of subexponential indistinguishability obfuscation and
one-way permutation. To achieve this, we devise new techniques for reasoning about a network of
obfuscated programs.

1 Introduction

Anonymous communication systems allow users to communicate without revealing their identities and
messages. The earliest design of an anonymous communication system goes back to Chaum [Cha81]
who proposed the design of an encrypted email service that additionally hides the identities
of the sender and the receiver. Since then, numerous approaches have been proposed to build
anonymous routing schemes [Cha81,Abe99,BG12,Cha88,CGF10,DMS04,GRS99,CBM15,ZZZR05,
vdHLZZ15,TGL+17,SBS02] – a key component of anonymous communication systems. These include
mix-nets [Cha81,Abe99,BG12], the Dining Cryptographers’ nets [Cha88,CGF10,APY20], onion
routing [DMS04,GRS99,DS18,CL05], multi-party-computation-based approaches [AKTZ17,HEK12,
SA19], multi-server PIR-write [CBM15,OS97,GIKM00], as well as variants [ZZZR05,vdHLZZ15,
TGL+17].

However, all of these routing schemes are interactive, where many servers or routers engage in
an interactive protocol to achieve routing. The security relies on threshold type assumptions, e.g.,
majority or at least one of the routers must be honest. This is unsatisfactory since the threshold-based
trust model increases the barrier of adoption, the interactivity leads to higher network latency, and
finally, the schemes provide no guarantees when all routers may be malicious, or worse yet, colluding
with a subset of the receivers and senders.

The recent work of Shi and Wu [SW21] was the first to study the feasibility of non-interactive
anonymous routing (NIAR) with a single, untrusted router which can additionally collude with
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a subset of senders and receivers. The setting is as follows: there are n senders and n receivers,
and each sender u wants to talk to a unique receiver v = π(u) given by the routing permutation
π. The NIAR scheme has a trusted setup that given a routing permutation π outputs encryption
keys for senders, decryption keys for receivers, and a routing token for the router that secretly
encrypts the routing permutation. In each time step, each sender uses its encryption key to encrypt a
message. The router upon collecting all the n ciphertexts applies the routing token to permute them
and convert them into n transformed ciphertexts, and delivers each receiver a single transformed
ciphertext. Each receiver learns their message by decrypting the received ciphertext with their key.
The computation of the permuted ciphertexts can be viewed as the router obliviously applying the
routing permutation π, without learning π.

NIAR was shown to have numerous applications in [SW21] including realizing a non-interactive
anonymous shuffle (NIAS) where n senders send encryptions of their private messages to an entity
called shuffler who, upon decryption, learns a permutation of the senders’ messages, without learning
the mapping between each message and the corresponding sender. A NIAS scheme can be used
to instantiate the shuffle model adopted in a line of work on distributed, differentially private
mechanisms [CSU+19,BBGN19b,GPV19,EFM+19,BEM+17,BBGN19a]. We can realize such a
NIAS construction from NIAR by having the shuffler act on behalf of the NIAR router and all n
receivers, as long as the underlying NIAR scheme provides meaningful security even when all the
receivers collude with the router – termed as receiver-insider security by Shi and Wu [SW21].

Shi and Wu [SW21] give a NIAR scheme that satisfies receiver-insider security assuming
the hardness of the decisional linear problem. Their scheme not only supports an unbounded
number of time steps, but also has good efficiency features: each sender only needs to send
Oλ(1) bits per time step to encrypt a bit,1 moreover, the sender and receiver keys are Oλ(1)
and the public parameters are Oλ(n) in size. What is undesirable is their token size and router
computation, both of which are quadratic in the number of users n, that is, Oλ(n

2). We also
stress that the quadratic router computation drawback pertains not only to the work of Shi and
Wu [SW21]. As Gordon et al. [GKLX22] pointed out, even in classical, interactive anonymous
routing constructions [Cha88,Cha81,SA19,HEK12], the total router computation is typically Ω(nm)
where n and m denote the number of clients and routers, respectively — therefore, in a peer-to-peer
environment where the clients also act as routers, the total computation would be quadratic in n.

The status quo gives rise to the following natural question:

Can we have a non-interactive anonymous router scheme with subquadratic router computa-
tion?

The recent work of Bünz, Hu, Matsuo and Shi [BHMS21] made a notable attempt at answering

the question. They could not fully achieve the above goal, but did suggest a scheme with O(λ
1
γ ·n1+γ)

router computation for any γ ∈ (0, 1). Their scheme has two significant drawbacks. First, their
subquadratic router computation comes at the price of relaxing the security definition to (ϵ, δ)-
differential privacy [DMNS06]. In other words, their scheme ensures that the adversary’s views
are indistinguishable only for two neighboring routing permutations (whereas full security requires
indistinguishability for any two routing permutations). Not only is differential privacy a significantly
weaker security notion, it can also leads to additional complications in terms of managing the privacy
budget. Second, their poly(λ) dependency is not a fixed one — to improve the dependence on the

1 Throughout the paper, we use Oλ(·) to hide poly(λ) multiplicative factors where λ denotes the security parameter.
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parameter n, we want to choose an arbitrarily small γ, however, this would significantly blow up
the polynomial dependence on the security parameter λ.

1.1 Our Results

We revisit the question of constructing an anonymous router scheme with subquadratic router
computation. As mentioned, this question has not been satisfactorily answered even in the classical
interative setting [Cha88,Cha81,SA19,HEK12,GKLX22]; however, we focus on the non-interactive
setting in our work.

We address the above question in the affirmative. Specifically, we propose a NIAR scheme
that achieves quasilinear in n router computation. Our NIAR scheme achieves a selective-security
relaxation of Shi and Wu’s receiver-insider security definition. In terms of assumptions, we need the
subexponential security of indistinguishability obfuscator [GGH+13,JLS21,GP20,WW20,BDGM20]
and one-way permutations.

Theorem 1.1 (Informal). Let λ be a security parameter. Let n = n(λ) be the number of senders/receivers.
Then, assuming the existence of subexponentially-secure indistinguishability obfuscator and one-way
permutations, there exists a NIAR scheme that satisfies selectively receiver-insider security. Further,
the asymptotical performance bounds are as follows:

1. the token size and router computation per time step is Õλ(n) where Õλ(·) hides poly(λ, log n)
factors for some fixed poly(·);

2. the per-sender communication and encryption time per bit of the message is Õλ(1);

3. each sender key is of length Õλ(1), each receiver key is of length Oλ(1).

Our work should be viewed as an initial theoretical exploaration of the feasibility of anonymous
router with subquadratic router computation. Our feasibility results naturally raise several open
questions for future work. Can we achieve subquadratic computation with polynomial-strength
security assumptions? Can we achieve subquadratic computation with standard assumptions? Last
but not the least, can we construct a scheme with good concrete performance?

Technical highlight. For achieving quasilinear router computation, we employ a novel approach
where we obfuscate polylogarithmically-sized gates in a layered routing network of size Õ(n), resulting
in a network of iO obfuscated circuits. Such an approach is reminiscent of the work of Canetti et
al. [CLTV15] who build levelled fully-homomorphic encryption scheme from iO. However, as we
elaborate later, our setting is significantly more challenging and requires novel techniques. In our
setting, there are multiple encrypters some of whom may be malicious, whereas in the setting of
Canetti et al. [CLTV15], there is a single encrypter who is assumed to be honest. In our construction,
it is important for each obfuscated gate to authenticate the outputs of an obfuscated circuit in
a previous layer. The notion of iO guarantees that obfuscations of two functionally equivalent
programs/circuits are indistinguishable. Despite the weak guarantee, iO has been shown to have
numerous applications. However, as also evident from prior works, computationally secure primitives
are generally incompatible with the functional equivalence requirements of iO. Therefore, in our
case we need to develop new iO-compatible techniques for authentication, and a key stepping stone
is the construction of a Somewhere Statistically Unforgeable (SSU) signature scheme.

Somewhere Statistically Unforgeable (SSU) signatures. We introduce a new signature
scheme called somewhere statistically unforgeable signatures for authentication. Informally, an SSU
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signature scheme is a signature scheme for which one can compute a pair of punctured signing
and punctured verification key w.r.t. a set of points X such that no valid signature even exists for
points out of the set X. Further, we require that the distributions of the real verification key and
punctured verification key be indistinguishable. This primitive can be seen to be in spirit with prior
work on somewhere statistically secure primitives [HW15,OPWW15]. We construct such a signature
scheme from the subexponential hardness of iO and OWPs.

Theorem 1.2. Assuming the existence of a subexponentially secure indistinguishability obfuscator
and one-way permutations, there exists a somewhere statistically unforgeable signature scheme for
sets Xt∗,x∗ = {(t, x) : t ̸= t∗ ∨ (t = t∗ ∧ x ̸= x∗)}.

2 Technical Roadmap

In this section, we give an overview of our techniques starting with defining the notion of a
non-interactive anonymous router (NIAR).

2.1 Background: Non-Interactive Anonymous Router (NIAR)

We review the original definition of Non-Interactive Anonymous Router (NIAR) by Shi and
Wu [SW21], using some of their notation and descriptions verbatim. Imagine that there are n
senders and n receivers, and each sender wants to talk to a distinct receiver. Henceforth we use π
to denote the routing permutation. For example, π(2) = 3 means that sender 2 wants to talk to
receiver 3.

A Non-Interactive Anonymous Router (NIAR) is a cryptographic scheme consisting of the
following, possibly randomized algorithms:

– ({eku}u∈[n], {rku}u∈[n], tk) ← Setup(1λ, tlen, len, n, π): the trusted Setup algorithm takes the

security parameter 1λ, the length of the time step tlen, the length of the messages len, the number
of senders/receivers n, and a permuation π. The algorithm outputs a sender key for each sender
denoted {eku}u∈[n], a receiver key for each receiver denoted {rku}u∈[n], and a token for the router
denoted tk.

– CTu,t ← Enc(eku, xu,t, t): sender u uses its sender key eku to encrypt the message xu,t ∈ {0, 1}len
where t ∈ {0, 1}tlen denotes the current time step. The Enc algorithm produces a ciphertext
CTu,t.

– (CT′
1,t,CT

′
2,t, . . . ,CT

′
n,t)← Rte(tk,CT1,t,CT2,t, . . . ,CTn,t): the routing algorithm Rte takes its

token tk (which encodes some permutation π), and n ciphertexts received from the n senders de-
noted CT1,t,CT2,t, . . . ,CTn,t, and produces transformed ciphertexts CT′

1,t,CT
′
2,t, . . . ,CT

′
n,t where

CT′
u,t is destined for the receiver u ∈ [n].

– x ← Dec(rku,CT
′
u,t, t): the decryption algorithm Dec takes a receiver key rku, a transformed

ciphertext CT′
u,t, a time step t, and outputs a decrypted message x.

Correctness is defined in the most natural manner, and we defer the formal definition to Section 3.2.
We focus on defining security.

Full security. In this paper, we would like to achieve “security with receiver-insider protection”
which is the main security notion suggested by Shi and Wu for NIAR [SW21]. Henceforth when we
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say full security, we mean security with receiver-insider protection. Roughly speaking, receiver-insider
protection requires that a corrupt receiver colluding with the router cannot learn which honest
sender it is receiving messages from. On the other hand, corrupt senders are allowed to learn who
their destinations are. Shi and Wu [SW21] argued that receiver-insider protection is sufficient for
most conceivable applications. In particular, to instantiate a Non-Interactive Anonymous Shuffler
(NIAS) scheme which leads to applications in shuffle-model distributed differential privacy [SW21],
security with receiver-insider protection is sufficient.

Henceforth, we use the notation KR and KS to denote the set of corrupt receivers and senders,
respectively; we use HS and HR to denote the set of honest senders and honest receivers, respectively.
Consider the following experiment NIAR-Exptb,A(1λ, tlen, len) parametrized by a bit b ∈ {0, 1}:

– n,KS ,KR, π
(0), π(1) ← A(1λ, tlen, len)

– ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, tlen, len, n, π(b))

– For t = 1, 2, . . .:

• if t = 1 then {x(0)u,t}u∈HS
, {x(1)u,t}u∈HS

← A(tk, {eku}u∈KS
, {rku}u∈KR

);

else {x(0)u,t}i∈HS
, {x(1)u,t}u∈HS

← A({CTu,t−1}u∈HS
);

• for u ∈ HS , CTu,t ← Enc(eku, x
(b)
u,t, t)

We say that A is admissible iff with probability 1, it guarantees that

1. Leak(π(0),KS ,KR) = Leak(π(1),KS ,KR) where Leak(π,KS ,KR) := {∀u ∈ KS : (u, π(u))}; and
2. for any u ∈ KR ∩ π(0)(HS) = KR ∩ π(1)(HS), x

(0)
v0,t

= x
(1)
v1,t

where for b ∈ {0, 1}, vb := (π(b))−1(u).
In other words, here we require that in the two alternate worlds b = 0 or 1, every corrupt receiver
receiving from an honest sender must receive the same message.

Definition 2.1 (Full security). We say that a NIAR scheme satisfies full security (i.e., secu-
rity with receiver-insider protection), iff for any non-uniform p.p.t. admissible A, its views in
the two experiments NIAR-Expt0,A(1λ, tlen, len) and NIAR-Expt1,A(1λ, tlen, len) are computationally
indistinguishable.

More intuitively, in experiment NIAR-Exptb,A, an adversary submits two permutations π(0) and

π(1), as well as two sets of honest plaintexts {x(0)u,t}u∈HS
and {x(1)u,t}u∈HS

in each time step. The

challenger returns a token for π(b), and ciphertexts for the vector {x(b)u,t}u∈HS
on behalf of honest

senders in every time step. Full security requires that as long as the adversary’s queries do not
allow it to trivially differentiate between the two worlds b = 0 and b = 1, it should not be able to
distinguish the two worlds. In particular, the adversary can trivially tell the two worlds apart if
the corrupt senders have different destinations, or if the corrupt receivers receive different messages
from honest senders in some time step in the two worlds. Therefore, an admissible adversary should
never submit such queries.

2.2 Strawman: A Single VBB-Obfuscated Program

If we had virtual blackbox (VBB) obfuscation, then a most straightforward strawman approach to
build a NIAR scheme is to use VBB obfuscation to obfuscate the following program which results in
the routing token:
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1. decrypt the all senders’ incoming ciphertexts;

2. permute the plaintexts according to the routing permutation π; and

3. re-encrypt the permuted messages under the corresponding receivers’ keys.

Here, we want the obfuscation to hide 1) all sender and receiver keys; and 2) the routing permutation
π itself.

This approach, however, has two significant drawbacks. First, VBB obfuscation is known to be
impossible [BGI+01b]. Second, even if we can somehow replace the VBB obfucation with a weaker
alternative such as indistinguishability obfuscation [GGH+13], this approach still completely fails in
terms of efficiency: because the obfuscated program has size linear in n, and the size and runtime of
the obfuscated program would be poly(n) — this defeats our purpose of achieving subquadratic
router computation.

2.3 Second Attempt: A Network of VBB-Obfuscated Programs

We first sketch an idea to address the efficiency concern, still using VBB obfuscation. Later in this
section, we will discuss how to replace the VBB obfuscation with indistinguishability obfuscation —
doing so raises many non-trivial challenges, and we need new techniques to resolve them.

To achieve quasilinear router computation, our idea is to use a network of obfuscated programs
rather than a single one. At a very high level, we will rely on a routing network.

Background on congestion-free routing network. A routing network is a layered directed
acyclic graph where the layers are numbered 0, 1, . . . , L. Directed edges exist between only adjacent
layers. The senders reside at layer 0 (also called the source layer) and the receivers reside at layer L
(also called the destination layer). Each internal vertex is called a gate; the incoming and outgoing
edges of a gate are called the gate’s input and output wires, respectively. We want each sender to
route a message to its designated receiver over a set of edge-disjoint paths. The path a sender u
takes to reach its receiver is also called its route, which consists an ordered list of wires/edges in
every level that the sender traverses to reach its destination. Now, if the sender attaches the route
to its message, each gate along the way will know which outgoing wire to route this message.

We want to obfuscate each gate inside this routing network, forming a network of obfuscated
programs. To make this idea work, the routing network must satisfy two properties:

– Efficiency. The routing network must be efficient for the resulting NIAR scheme to enjoy
quasilinear router computation. First, the total size of the routing network must be small — we
will use a routing network of size O(n log n). Second, each gate must have a small number of
inputs and outputs. In our routing network, each gate has O(log2 λ) inputs and outputs where λ
is the security parameter.

– Obliviousness. For security, it is important that the corrupt senders’ routes reveal no information
about honest senders’ destinations (beyond what is already leaked by the corrupt senders’ own
destinations). We formally define this notion in Definition 3.1 in the subsequent technical sections.

Indeed, a routing network satisfying these properties has been suggested in prior works [ACN+20,
RS21]. Their construction relies on a butterfly network of O(n log n) size, where each gate has
O(log2 λ) incoming and outgoing wires. The source and destination layers (i.e., layers 0 and L) have
2n vertices each, whereas every intermediate layer has at most O(n/ log2 λ) gates. Therefore, the
total number of wires in between adjacent layers must be upper bounded by O(n). Abstractly, their
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construction can be thought of as the following. Given a routing permutation π that maps the
senders to the receivers, a randomized algorithm AssignRoutes(1λ, n, π) performs the following route
assignment and it succeeds with all but negligible in λ probability:

– First, the AssignRoutes algorithm first maps each sender to a random position in the source layer,
and maps the i-th receiver to a fixed position 2i− 1 in the destination layer — henceforth we
may assume that each sender’s route also includes which source-layer vertex it is mapped to.

– Next, the AssignRoutes algorithm finds a set of edge-disjoint paths for each sender to route to its
receiver.

The obliviousness property is captured with respect to AssignRoutes algorithm as follows. We
say that a routing network satisfies obliviousness, iff there exists another simulated AssignRoutes∗

algorithm and a negligible function negl(·), such that for any corrupt set K ⊆ [n], for any two routing
permutations π0 and π1 such that π0(i) = π1(i) for any i ∈ K, for either b ∈ {0, 1},

{({rteu}u∈K, {rteu}u/∈K) : (rte1, . . . , rten)← AssignRoutes(1λ, n, πb)}
≈negl(λ){(

{rteu}u∈K,
{
rtebu

}
u/∈K

)
:
(
{rteu}u∈K,

{
rte0u, rte

1
u

}
u/∈K

)
← AssignRoutes∗(1λ, n, π0, π1,K)

}
.

A network of VBB obfuscated programs. Using the above routing network, each gate is a
circuitry that takes in O(log2 λ) inputs, where each input contains a sender’s message attached with
a route. The next hop on the route uniquely specifies which outgoing wire to route this message.
Therefore, the gate will then route every incoming message to an appropriate outgoing wire based
on the attached route information.

We can therefore construct an efficient NIAR scheme using VBB obfuscation as follows. The
Setup algorithm generates a master signing key sk and a verification key vk, as well as an authen-
ticated encryption key for each wire in the routing network — henceforth we use skw to denote
the wire key on some wire w. Each sender u’s encryption key includes 1) a wire key skw where w
denotes the wire of the source vertex corresponding to the sender; 2) its route denoted rteu, along
with a signature rsigu that vouches for the route information.

Next, for each gate in the routing network, the Setup algorithm obfuscates the following program,
which is parametrized with the wire keys of all its incoming and outgoing wires, as well as the global
verification key vk:

– Receive an authenticated ciphertext from every incoming wire w. Use the corresponding wire
key skw to verify and decrypt the incoming ciphertext. Abort if decryption fails; otherwise, we
obtain either a filler ⊥ or a tuple (m, t, rte, rsig) where m denotes a payload message, t denotes
the time, and (rte, rsig) is an authenticated route. Abort if rsig does not verify for rte.

– For incoming wires that do not decrypt to ⊥, check that they all have the same time step t.
Abort if the check fails.

– Assign each incoming (m, t, rte, rsig) tuple to the corresponding output wire specified by the next
hop on the rte. For all unpopulated outgoing wires, assign a filler ⊥ to it.

– At this moment, every outgoing wire w either carries a real tuple of the form (m, t, rte, rsig) or a
filler ⊥. Using the corresponding wire key skw, encrypt the tuple or filler on all outgoing wires
with an authenticated encryption scheme, and output the resulting ciphertexts.

7



Now, for sender u to send a message m to its receiver during time step t, the sender only has
to use its skw to encrypt (m, t, rteu, rsigu) using authenticated encryption. The algorithm for the
router to perform routing and for receivers to decrypt their received ciphertexts are defined in the
most natural manner.

In the above scheme, we stress that it is important to authenticate the inputs and outputs passed
to the obfuscated programs. Otherwise, a malicious router could easily swap one or more of the
inputs and observe whether any corrupt receivers’ outputs are affected. This can allow the malicious
router to infer which honest sender is sending to a corrupt receiver.

2.4 SSU Signatures

We want to replace the VBB obfuscation with indistinguishability obfuscation iO. This is the biggest
technical challenge and the most sophisticated part of our construction. The first challenge is a
well-known one: iO only provides indistinguishability for two functionally equivalent programs, and
this property is not the easiest to work with in security reductions. To make it even more challenging,
we need to work with a network of iOs, where the previous iO produces encrypted and authenticated
outputs which are then forwarded to the next iO as input — this is where we need to devise novel
proof techniques. To the best of our knowledge, the only previous work that uses iO with such a
multi-hop structure is the work by Canetti et al. [CLTV15], who used a sequence of iOs to construct a
fully homomorphic encryption scheme. However, we stress that our setting is much more challenging
from a technical perspective, since we have to handle corrupt encrypters whereas in the setting of
Canetti et al. [CLTV15], the encrypter is always honest. From another perspective, our work can
also be viewed as using a network of obfuscated programs to asymptotically speed up a special type
of function-hiding Multi-Client Functional Encryption (MCFE) — indeed, the earlier work of Shi
and Wu [SW21] pointed out that NIAR can be viewed as a function-hiding MCFE scheme.

A key challenge in our proof is that we have to show that for the challenge time step,2 the
adversary has to use the correctly evaluated ciphertexts on honest and filler wires during evaluation,
and it is unable to swap them to any other ciphertext of its choice. One technicality is that
the “functional equivalence” requirement iO does not work well with traditional computationally
authentication or signature schemes.

To make our proofs work, we need to introduce a special type of signature scheme called
Somewhere Statistically Unforgeable (SSU) Signature. Informally speaking, we want to have a
simulated setup algorithm that outputs a punctured signing key that can sign normally for all
non-challenge time steps, but for the challenge time step t∗ alone, it removes the ability to sign any
other message except the intended challenge message. Further, we need two important properties.
First, under the simulated setup, we want to guarantee that no other valid signatures exist for the
challenge time step t∗ except a unique signature for the challenge message alone (i.e., statistical
unforgeability). Second, we want to guarantee that the joint distribution of the (punctured signing
key, simulated verification key) pair is computationally indistinguishable from the joint distribution
of (punctured signing key, real verification key).

We are not aware of any existing signature scheme that satisfies the above properties. Among
these two properties, the first one is not too hard to achieve by modifying existing punctured
signature schemes such as the one by Bellare et al. [BSW16] which is a modification of the signature

2 Looking ahead, our selective security notion for NIAR forces the adversary to commit to a challenge time step
before receiving keys from the challenger. We defer the formal definition to Section 2.6.
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scheme of Sahai and Waters [SW14]. However, the second property, which turns out essential for
our final proof to work, requires non-trivial techniques to prove, and this is where we need the
cryptographic primitives to satisfy sub-exponential security. We now define a SSU signature scheme
more formally, and then describe a new construction that satisfies these security definitions.

Definition. An SSU signature scheme has similar syntax to a standard signature scheme, except
that the signing and verification keys both take a counter t (i.e., time step) along with the message
to be signed. We refer to t as the round. It contains the following algorithms:

– (sk, vk)← Setup(1λ, tlen, len): takes as input the security parameter 1λ, the length of the round
tlen, the length of the messages to be signed len, and outputs a signing key sk and a verification
key vk.

– sk∗ ← Puncture(sk, t∗, x∗): takes as input a signing key sk generated by the Setup algorithm,
a round t∗ ∈ {0, 1}tlen and message x∗ ∈ {0, 1}len, and outputs a punctured signing key sk∗.

– σ ← Sign(sk, t, x): a deterministic algorithm that takes as input a signing key sk generated by
Setup along with a round t ∈ {0, 1}tlen and a message x ∈ {0, 1}len and outputs a signature σ
for x w.r.t. t.

– σ ← PSign(sk∗, t, x): a deterministic algorithm that takes as input a punctured signing key sk∗

along with a round t and a message x, and outputs a signature σ for x w.r.t. t.

– 0 or 1 ← Vf(vk, t, x, σ): takes as input a verification key vk, a round t, a message x, and a
signature σ, and outputs 1 for accept and 0 for reject.

– (sk∗, vk∗)← SimSetup(1λ, tlen, len, t∗, x∗): takes as input the security parameter 1λ, the length
of the round tlen, the length of the messages to be signed len, a round t∗ ∈ {0, 1}tlen and message
x∗ ∈ {0, 1}len, and outputs a punctured signing key sk∗, and a punctured verification key vk∗.

For correctness, we want that for all (t∗, x∗) the Sign and PSign on their respective keys behave
identically on all (t, x) not of the form t = t∗ and x ̸= x∗. We defer the formal definition to Section 4
and focus on formally defining the required security properties next:

Definition 2.2 (Security for SSU Signatures). An SSU signature is said to be secure if it has the
following properties:

– Computational indistinguishability of simulated setup. For any λ, len, tlen ∈ N, any
t∗ ∈ {0, 1}tlen, any x∗ ∈ {0, 1}len, the following two probability ensembles indexed by λ are
computationally indistinguishable:

1. Real: Let (sk, vk)← Setup(1λ, tlen, len), sk′ ← Puncture(sk, t∗, x∗), output (sk′, vk).

2. Ideal: Let (sk∗, vk∗)← SimSetup(1λ, tlen, len, t∗, x∗), and output (sk∗, vk∗).

– Statistical unforgeability at (t∗, x∗). For all λ, len, tlen ∈ N, t∗ ∈ {0, 1}tlen, x∗ ∈ {0, 1}len,

Pr

[
(sk∗, vk∗)← SimSetup(1λ, tlen, len, t∗, x∗) :

∃ σ & x ̸= x∗ s.t. Vf(vk∗, t∗, x, σ) = 1

]
= 0,

Pr

[
(sk∗, vk∗)← SimSetup(1λ, tlen, len, t∗, x∗) :

∃ σ ̸= PSign(sk∗, t∗, x∗) s.t. Vf(vk∗, t∗, x∗, σ) = 1

]
= 0.
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Special constrained PRF. To construct an SSU signature scheme satisfying the aforementioned
properties, we will need a special constrained PRF scheme as a building block. A constrained
PRF satisfies the following: given a PRF key sk and a constraint C, it is possible to compute a
constrained key sk∗ that can evaluate the PRF only on points that satisfy the constraint C. In terms
of security, we require that even given the constrained key, the PRF evaluation on all points that do
not satisfy the constraint remain pseudorandom. For our purposes, the constraint C can be specified
by the tuple (t∗, x∗, y) ∈ {0, 1}tlen × {0, 1}len × {{0, 1}len ∪ {2len}} where we say that (t, x) satifies
the contraint only if

t ̸= t∗ or ((t = t∗) and (x ≥ y or x = x∗))

In Appendix A, we show how to instantiate such a constrained PRF from one-way functions,
using ideas inspired by the well-known GGM construction [GGM84].

SSU signature construction. We construct an SSU signature scheme from the subexponential
security of iO, a length-doubling injective PRG (which is implied by the existence of a one-way
permutation), and a constrained PRF with domain {0, 1}tlen × {0, 1}len.

Our starting point is the Sahai-Waters signature scheme [SW14] that satisfies computational
unforgeability. Since we are interested in achieving the stronger SSU notion, we need to modify their
construction and require subexponential security from our underlying primitives. More specifically,
our construction is as follows:

– Setup(1λ, tlen, len) samples a PRF key sk whose domain is the set {0, 1}tlen × {0, 1}len as the
signing key, and the verification key is an iO obfuscation of a circuit C[sk] parametrized by sk
defined as follows:

Circuit C[sk](t, x, σ):
if G(PRF(sk, t, x)) = G(σ), output 1. Otherwise, output 0.

– Sign(sk, t, x) computes the signature σ as the evaluation PRF(sk, t, x).

– Vf(vk, t, x, σ) treats vk as a program, and outputs vk(t, x, σ).

– Puncture(sk, t∗, x∗): Output a constrained PRF key sk∗ for the key sk and the constraint
(t∗, x∗, 2len).

– PSign(sk∗, t, x) computes the signature σ by evaluating the PRF on (t, x) using the constrained
key sk∗.

– SimSetup(1λ, tlen, len, t∗, x∗) samples a PRF key sk and sets sk∗ as the output ofPuncture(sk, t∗, x∗),
the punctured verification key vk∗ is an iO obfuscation of the circuit C̃[sk∗, t∗, x∗] parametrized
by (sk∗, t∗, x∗) defined as follows:

Circuit C̃[sk∗, t∗, x∗](t, x, σ):
• if t = t∗ and x ̸= x∗, output 0.

• else: if G(PRF.CEval(sk∗, t, x)) = G(σ), output 1, otherwise 0.

Proof Idea. First, let us discuss statistical unforgeability: if G is an injective PRG then our
signature scheme is unique, that is, for all points (t, x) there exists exactly one signature that will
be accepted by the verification key. So, there exists a unique signature for (t∗, x∗). This combined
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with the fact that vk∗ rejects signatures for all points of the form t = t∗ and x ̸= x∗ implies the
required statistical unforgeability property. We empahsize that the required injective PRGs can be
instantiated from OWPs via the Goldreich-Levin construction [GL89].

Showing indistinguishability of setups is more challenging. At a high level, to switch from vk to
the punctured verification key vk∗ requires 2len number of steps where in each step we puncture
the PRF key on a new message. To deal with such an exponential sequence of hybrids we require
subexponential security from both iO and PRGs. The actual proof additionally needs to be deal
with more subtleties including showing that all hybrids verification keys are succinct. We defer the
formal proof to Section 4.

2.5 Our Router Construction

Our construction follows the “network of obfuscated circuits” approach described in Section 2.3. In
particular, we need the following tools: (a) puncturable PRF that is used for encryption, (b) an
SSU signature scheme to authenticate routes and messages, (c) an iO obfuscator, and (d) a routing
network.

Notation. To describe our construction more formally, it will be helpful to introduce some notation
for the routing network. Recall that a routing network for n senders and n receivers is a layered
directed acyclic graph that has O(log n) layers numbered from 0, 1, . . . , L. Senders are assigned to
the input layer (i.e., layer-0) and receivers are assigned to the output layer (i.e., layer-L). Let G
be the number of gates contained in each of the L− 1 intermediate layers. There are (L− 1) ·G
gates overall, and we refer to the g-th gate in the ℓ-th layer by the tuple (ℓ, g) ∈ [L − 1] × [G].
Let W = O(log2 λ) be the number of incoming and outgoing wires in each gate. Overall, there are
L× [2 · n] wires where we index the i-th wire in the ℓ-th layer by the tuple (ℓ, i) ∈ [L]× [2n].3 We
refer to the W incoming wires of every gate (ℓ, g) by the set Input(ℓ,g) ⊆ [2n] and the W outgoing
wires by the set Output(ℓ,g) ⊆ [2n]. Finally, recall that a route rteu from sender u to receiver v is a
sequence of wires (j1, . . . , jL) where jℓ is a wire in the ℓ-th layer for all ℓ ∈ [L].

Next, we describe our routing scheme starting with the Setup algorithm.

Setup Algorithm. Given a routing permutation π, the Setup algorithm first runs the AssignRoutes
algorithm to sample a set of edge-disjoint routes {rteu}u∈[n] between each sender/receiver pair. Then,
for every wire (ℓ, i) ∈ [L]× [2n] in the routing network we sample (a) PRF key k(ℓ,i) for encryption,

(b) a signature key pair (msk(ℓ,i),mvk(ℓ,i))← Sig.Setup(1λ, tlen, len) for signing messages, and (c)

a signature key pair (rsk(ℓ,i), rvk(ℓ,i)) ← Sig.Setup(1λ, 0, len) for signing routes for len = Õλ(1).
Looking ahead, the route signatures keys for wires assigned to corrupt senders’ routes, and the
message signature keys for all other wires will be punctured to ensure “uniqueness of routes” and
“uniqueness of plaintext” properties respectively.

Given the above set of keys, consider a sender/receiver pair (u, v) with route rteu = (j1, . . . , jL).
Then sender u’s sender key eku and receiver v’s decryption key rkv are defined as follows:

eku =
(
k(1,j1),msk(1,j1), rteu = (rteu, rsigu = (rsig1, . . . , rsigL))

)
, rkv = k(L,jL) ,

where rsigℓ is the signature on rteu computed using the route signing key rsk(ℓ,jℓ).
4

3 To be more precise there are c · n wires in each layer for constant c ≥ 2, but for simplicity we assume c = 2 as this
is achieved by our proposed instantiation.

4 For route signature we let tlen = 0, henceforth we will ignore the round parameter for route signatures.
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Hardcoded values. Gate(ℓ,g) has hardcoded the following values:

– For each wire i ∈ Input(ℓ,g), the PRF key k(ℓ,i), the message verification key mvk(ℓ,i) and the route verification
key rvk(ℓ,i).

– For each wire i ∈ Output(ℓ,g) in layer ℓ+ 1, the PRF key k(ℓ+1,i) and the message signing key msk(ℓ+1,i).

– For the first layer ℓ = 1, we also hardwire the set Fg which contains wires i ∈ Input(ℓ,g) such that (1, i) was
not assigned to any users’ route.

Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)} corresponding to
the input wires. It computes as follows.

1. For each input wire i ∈ Input(ℓ,g):
(a) For the first layer (i.e., ℓ = 1) if i ∈ Fg, we continue to the next i. //This is a filler element and is

ignored.

(b) Decrypt and authenticate the message/route:
i. Decrypt CT(ℓ,i) by unmasking it with the value PRF(k(ℓ,i), t). Let (x, rte = (rte, rsig),msig) be the

plaintext.

ii. Abort if msig is an insvalid signature of (x, rte) w.r.t. mvk(ℓ,i) and round t.

iii. If x = rte = ⊥filler, go to the next i (It is a filler element and ignored).

iv. Parse rte as (j1, . . . , jL) and rsig = (rsig1, . . . , rsigL). Abort if either jℓ ≠ i or the next hop jℓ+1 is
not in the set Output(ℓ,g) or rsigℓ is an invalid signature of (j1, . . . , jL) w.r.t. rvk(ℓ,i).

(c) Prepare the output ciphertext CT(ℓ+1,jℓ+1):
i. For convenience, set j = jℓ+1.

ii. If CT(ℓ+1,j) has already been computed, then abort.

iii. For any intermediate layer (i.e., ℓ < L− 1), first compute a new message signature msig′ on (x, rte)
using msk(ℓ+1,j) and round t. Then, set CT(ℓ+1,j) as an encryption of the tuple (x, rte,msig′) by
masking it with the value PRF(k(ℓ+1,j), t).

iv. For the output layer (ℓ = L − 1), CT(L,j) is set to an encryption of the message x by masking it
with the value PRF(k(L,j), t).

2. For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet, compute filler ciphertexts:

(a) Set x = rte = ⊥filler.

(b) Compute msig′ on the (x, rte) using the key msk(ℓ+1,j) for round t.

(c) Set CT(ℓ+1,j) as an encryption of (x, rte,msig′) by masking it with the value PRF(k(ℓ+1,j), t).

3. Output {CT(ℓ+1,i) : i ∈ Output(ℓ,g)}.

Fig. 1: The circuit Gate(ℓ,g).
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To define the routing token tk, we attribute each gate (ℓ, g) ∈ [L − 1] × [G] of the routing
network with a circuit Gate(ℓ,g). Each of the circuits Gate(ℓ,g) take as input a time step t and a set
of W ciphertexts (one per incoming wire in Input(ℓ,g)), and outputs W output ciphertexts (one per
outgoing wire in Output(ℓ,g)). In Figure 1 we describe the circuit in more detail. The routing token
tk is then defined as follows:

tk = {iO(Gate(ℓ,g)) : (ℓ, g)× [L− 1]× [G]} .

We conclude the description of our scheme by discussing how encryption, routing and decryption
work.

Encryption Algorithm. For a sender u to send a message x to its receiver for time step t, the
sender first computes a message signature msig for the tuple (x, rteu) for round t, and encrypts the
tuple (x, rteu,msig) using its PRF key.

Enc(eku, xu, t) on input user u’s encryption key eku and plaintext xu and the round t, does the
following:

1. Parse eku as (k,msk, rteu).

2. Compute a signature msig of (xu, rteu) with the key msk for round t.

3. Compute the ciphertext CTu as an encryption of (xu, rteu,msig) by masking it with the
value PRF(k, t).

4. Output CTu along with the first wire i specified in rte.

Routing Algorithm. Then, in each time step, the router collects all n ciphertexts all applies the
obfuscated gate layer-by-layer to compute n ciphertexts for the receivers. More formally,

Rte(tk, t, (CT1, i1), (CT2, i2), . . . , (CTn, in)) on input the router token tk along with the round
number t, ciphertexts CT1, . . . ,CTn along with wire indices i1, . . . , in for round t, does the
following:

1. Parse tk = {Gate(ℓ,g) : ℓ ∈ [L− 1], g ∈ [G]}.
2. Compute ciphertexts for the input layer:

(a) For all k ∈ [n], set CT(1,ik) = CTk. // Real ciphertexts

(b) For each i ∈ [2n] where CT(1,i) is not defined, set CT(1,i) = ⊥filler. // Filler ciphertexts

3. Compute network of iO obfuscated gates layer-by-layer. That is, for layer ℓ ∈ 1, . . . , L− 1,
evaluate all the obfuscated gates at this layer as follows. For each g ∈ [G], let Input(ℓ,g) and
Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g). Then, evaluate the circuit

{CT(ℓ+1,i) : i ∈ Output(ℓ,g)} = Gate(ℓ,g)(t, {CT(ℓ,i) : i ∈ Input(ℓ,g)}).

4. Output (CT′
1 = CT(L,1),CT

′
2 = CT(L,3), . . . ,CT

′
n = CT(L,2n−1)).
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Decryption Algorithm. A receiver v learns its intended message by just decrypting the received
ciphertext using its PRF key. More formally,

Dec(rku,CT
′
u, t) on input user u’s receiver key rku, output ciphertext CTu, and a time step

t, does the following: Decrypt CT′
u with the PRF key rku by unmasking it with the value

PRF(rku, t). Output the obtained plaintext y.

Efficiency Analysis. Before we discuss the security proof, we address the efficiency of the above
scheme. First, observe that for each time step, the router computes each of the obfuscated circuits
at most once. Second, observe that the Gate circuit described above is of size poly(λ, log n): the
hardwired keys, the size of the ciphertexts are poly(λ, log n), hence operating over them requires at
most poly(λ, log n) size. Then, accounting for the polynomial blowup of the iO obfuscator, we can
conclude that the router can run each obfuscated circuit in time poly(λ, log n). Since there are at
most Õ(n) gates, we can conclude that the router computation per time step is bounded by Õλ(n)
where Õλ hides poly(λ, log n) factors for some fixed poly(·). Secondly, notice that each receiver’s key
contains a PRF key which is Oλ(1) in size. Sender key size is bounded by the size of the route which
is Õλ(1). Finally, per sender communication per time step is Õλ(1).

2.6 Defining Selectively Secure NIAR

We prove that our NIAR scheme satisfies selective security. Before we give a proof roadmap, we first
define selective security — it turns out that even the definition of selective security has non-trivial
technicalities.

First attempt. The first attempt is to just extend the full security definition (Definition 2.1) by
requiring the adversary to commit to a challenge time step t∗ upfront, as well as two challenge

plaintext vectors {x(0)u,t∗}i∈HS
and {x(1)u,t∗}i∈HS

. Unfortunately, upon closer examination, this approach
does not actually constitute any relaxation — the resulting definition would still be equivalent to
full security. Intuitively, the reason is that the adversary is still able to submit plaintext vectors
corresponding to the two different worlds b = 0 and b = 1 in all non-challenge time steps, and it
need not rely on the challenge time step to differentiate between the two worlds.

Recognizing that the näıve approach does not actually constitute any relaxation, we want to have
a single-challenge version of the definition where only in the challenge time step can the adversary
submit plaintext vectors of both worlds. In all other time steps, the adversary should submit only
one plaintext vector. It turns out non-trivial to define a well-formed, single-challenge notion. To
make such a definition well-formed, we have to first introduce a simulated setup algorithm which is
never used in the real-world, but needed for defining selective security.

Simulated setup algorithm. As mentioned, we need to introduce a simulated setup algorithm
for defining a meaningful selective relaxation. Specifically, the simulated setup algorithm Setup∗(1λ,

tlen, len, n, t∗, π(0), π(1), KS , {x(0)u,t∗ , x
(1)
u,t∗}u∈HS

) takes in the set of corrupt senders KS , the challenge

time step t∗, both permutations π(0), π(1), as well as the two challenge plaintexts {x(0)u,t∗ , x
(1)
u,t∗}u∈HS

),

and it outputs {eku}u∈KS
, {ek(0)u }u∈HS

, {ek(1)u }u∈HS
, {rku}u∈[n], and tk. Importantly, observe that

a single set of corrupt sender keys {eku}u∈KS
and the routing token tk must be simultaneously
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compatible with two different sets of honest sender keys {ek(0)u }u∈HS
and {ek(1)u }u∈HS

corresponding
to the two worlds b = 0 and b = 1, respectively, as long as the corrupt senders have the same
destinations in π(0) and π(1). More precisely, we want that as long as the corrupt senders have the
same destinations in π(0) and π(1), it must be that

- for either b ∈ {0, 1}, the terms
(
{eku}u∈KS

, {ek(b)u }u∈HS
, {rku}u∈[n], tk

)
output by Setup∗ have

the same joint distribution as the output of the real Setup(1λ, tlen, len, n, π(b)).

With this additional simulated setup algorithm, we are ready to define a meaningful selective
relaxation. Consider the following single-challenge, selective security experiment.

Selective security experiment SelSingleChb,A(1λ, tlen, len).

– n,KS ,KR, π
(0), π(1), t∗, {x(0)u,t∗ , x

(1)
u,t∗}u∈HS

← A(1λ, tlen, len);

– ({eku}u∈KS
, {ek(0)u }u∈HS

, {ek(1)u }u∈HS
, {rku}u∈[n], tk)

← Setup∗(1λ, tlen, len, n, t∗, π(0), π(1),KS , {x(0)u,t∗ , x
(1)
u,t∗}u∈HS

);

– ⊥ ← A(tk, {eku}u∈KS
, {rku}u∈KR

);

– For t = 1, 2, . . .:
• if t ̸= t∗: ({xu,t}u∈HS

, δt)← A(⊥), and for u ∈ HS , let CTu,t := Enc(ek
(δt)
u , xu,t, t);

• else if t = t∗: for u ∈ HS , let CTu,t∗ := Enc(ek
(b)
u , x

(b)
u,t∗ , t

∗);

• ⊥ ← A({CTu,t−1}u∈HS
);

The adversary is said to be admissible, iff with probability 1, Leak∗(π(0),KS ,KR, {x(0)u,t∗}u∈HS
) =

Leak∗(π(1),KS ,KR, {x(1)u,t∗}u∈HS
) where where the function Leak∗ (π,KS ,KR), {xu,t∗}u∈HS

) contains
the destination of each corrupt sender and the contents of the messages from honest senders to
corrupt receivers, as defined below:

Leak∗(π,KS ,KR, {xu,t∗}u∈HS
) := ({(u, π(u))}u∈KS

, {(u, xπ−1(u),t∗)}u∈KR,π−1(u)∈HS
)

Intuitively, the admissibility rule requires that the corrupt senders have the same destinations in
the two worlds, and that corrupt receivers receive the same messages from honest senders in the
two worlds.

Definition 2.3 (Selective security for NIAR). We say that a NIAR scheme satisfies selective
(single-challenge) security (with receiver insider protection), iff for any non-uniform p.p.t. ad-
missible adversary A, A’s views in SelSingleCh0,A(1λ, tlen, len) and SelSingleCh1,A(1λ, tlen, len) are
computationally indistinguishable.

To better understand this definition, it helps to think about an adaptive single-challenge
counterpart which is very similar to the above selective single-challenge definition, except that the
adversary need not commit to the challenge time step t∗ and the challenge honest plaintexts ahead
of time. In our subsequent technical sections, we prove the following lemma in Appendix B, which
says that adaptive, single challenge security implies full security (Definition 2.1).

Lemma 2.4. A NIAR scheme that is secure in the adaptive, single-challenge setting is also secure
by Definition 2.1.

Because our single-challenge, selective notion is clearly a relaxation of the adaptive, single-
challenge notion, it is also a meaningful relaxation of Definition 2.1.
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2.7 Proof Overview

We now give an informal proof overview of our NIAR scheme. The formal hybrids and proofs can
be found in Section 5.1. The selective security proof is with respect to a Setup∗ algorithm. So, let
us introduce it first.

Setup∗ Algorithm. Given sets of corrupt senders and receivers KS ,KR, challenge round t∗, routing

permutations π(0), π(1), and challenge messages {x(0)u,t∗}u∈HS
, {x(1)u,t∗}u∈HS

, the Setup∗ algorithm first

runs the AssignRoutes∗ algorithm to sample a set of edge-disjoint routes ({rteu}u∈KS
, {rte(0)u , rte(1)u }u∈HS

)
between each sender/receiver pair. Then, for every wire in the routing network, PRF key, message
signature key pair, route signature key pair are sampled as in Setup.

For β ∈ {0, 1}, set the sender keys as follows: For each u ∈ KS , set eku = (k(1,j1),msk(1,j1), rteu).

For each u ∈ HS and β ∈ {0, 1}, set ek
(β)
u = (k

(1,j
(β)
1 )

, msk
(1,j

(β)
1 )

, rte
(β)
u ). For each v ∈ [n], set the

receiver keys rkv = k(L,2v−1). The routing token tk is defined the same way as in Setup.

Indistinguishability of Setup and Setup∗. If the routing network satsifies obliviousness as

defined above, then, for either b ∈ {0, 1}, the terms
(
{eku}u∈KS

, {ek(b)u }u∈HS
, {rku}u∈[n], tk

)
output

by Setup∗(1λ, tlen, len, n, t∗, π(0), π(1),KS , {x(0)u,t∗ , x
(1)
u,t∗}u∈HS

) as described above have the same joint

distribution as the output of the real Setup(1λ, tlen, len, n, π(b)) as described above. This can be
proven by creating a simple reduction such that if for any b ∈ {0, 1} the aforementioned joint
distributions of Setup and Setup∗ could be distinguished with some noticeable probability, then,
the reduction can distinguish the following two distributions with noticeable probability and thus
break the obliviousness of the routing network.

– {({rteu}u∈KS
, {rteu}u∈HS

) : (rte1, . . . , rten)← AssignRoutes(1λ, n, π(b))}

–


(
{rteu}u∈KS

,
{
rte

(b)
u

}
u∈HS

)
:(

{rteu}u∈KS
,
{
rte

(0)
u , rte

(1)
u

}
u∈HS

)
← AssignRoutes∗(1λ, n, π(0), π(1),KS)


Notation. Let {rteu}u∈KS

be routes sampled for corrupt senders’ and let {rte(b)u }u∈HS
be routes

sampled for honest senders’ both consistent with the permutation π(b). We define the notion of a
corrupt, honest and filler wires w.r.t. the sampled routes. A wire (ℓ, i) is corrupt if it assigned by

Setup∗ to a corrupt senders’ route rteu, analogously a wire assigned to honest senders’ route rte(b)u

is referred to as honest wire, the rest are referred to as filler wires. We emphasize that it is possible
for a wire to be an honest wire in b = 0 but act as a filler in b = 1, and vice versa. However, if a
wire is corrupt in b = 0 then it is also corrupt in b = 1. Next, we define the notion of an “expected
route” for a honest/filler wire (ℓ, j) w.r.t. the challenge time step t∗ and challenge bit b. This is
exactly the route that contains the wire (ℓ, j) as computed by Setup∗. Similarly, we define the
notion of an “expected plaintext” for a filler/honest wire (ℓ, j) w.r.t. the challenge time step t∗ and
challenge bit b. This is exactly the plaintext that would appear on the wire had the router, after
getting honest senders’ ciphertexts for the challenge time step, run Rte honestly. For example, if
(ℓ, j) was assigned by Setup∗ to rte(b)u for honest sender u then the expected plaintext for this wire

is the tuple (x
(b)
u,t∗ , rte

(b)
u ) where rte

(b)
u = (rte(b)u , rsig) was computed by Setup∗. In fact, the notion of

“expected plaintext” can be generalized to the notion of “expected ciphertexts” as for a plaintext
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tuple (x
(b)
u,t∗ , rte

(b)
u ,msig) and time step t, the unique ciphertext encrypting the plaintext tuple using

a PRF key k is (x
(b)
u,t∗ , rte

(b)
u ,msig)⊕ PRF(k, t∗).

Intuition of Hybrids. We are now ready to discuss our sequence of hybrids. The high level idea is

to start with the real world hybrid Hyb
(b)
0 where the challenge bit is b and go through a sequence of

transitions to arrive at a hybrid Hyb
(b)
9 in which the adversary A’s view contains no information

about the challenge bit b, that is, Hyb
(0)
9 and Hyb

(1)
9 are identical.

In the real world hybrid Hyb
(b)
0 , information about the challenge bit b is present as follows: the

challenger provides the challenge ciphertexts CTu,t∗ = (x
(b)
u,t∗ , rte

(b),msig(b))⊕PRF.Eval(k(ℓ,i), t
∗) for

all u ∈ HS to the adversary.

To remove information about the bit b, we want to invoke semantic security of the encryption
scheme and change ciphertext to random values. Towards this end, we need to overcome a number
of issues.

– As ciphertext computation is done by XORing with some PRF output, hence, to invoke se-
mantic security we will puncture the PRF keys for filler/honest wires at t∗ so as to use the
pseudorandomness of PRF at punctured points property for invoking semantic security.

– After semantic security is invoked, it would not be possible to perform message authentication
checks inside the circuits for routing network gates. So, instead of decrypting and performing
message authentication checks, we want to directly do ciphertext comparison.

– In order to hope for ciphertext comparison, not only do we need the encryptions to be unique, we
also need that only one particular plaintext (the expected plaintext) is possible on a filler/honest
wire. Towards this end, we want to puncture the message signing keys to only sign the expected
message at the challenge time step t∗ and the message verification keys to only accept the
expected message at the challenge timestep t∗. But, doing this is not straightforward and needs
careful transitions in the proof as discussed next.

– In an obfuscated gate, message verification keys are present for all the input wires and message
signing keys are present for all output wires. Changing the keys to be punctured is a two step
process. For SSU signatures, the computational indistinguishability of simulated setup assumes
that the message signing key has already been punctured. So, the first step is to only puncture
the message signing key at challenge message and challenge round t∗ and the second step is to
also puncture out the message verification key. For the second step, while the circuit functionality
is changed, it is still okay as we only rely on the computational indisntiguishability of simulated
setup of SSU signatures and not on the security of indistinguishability obfuscation. But, this
is not the case for the first step: message signing keys are present inside the obfuscated gates,
hence, they may potentially change the circuit functionality. But for the security, all we can rely
on is the security of indistinguishability obfuscation. Hence, it is imperative that we ensure the
circuit functionality is preserved when we puncture the message signing keys.

– If we try to puncture out all the message signing keys of filler/honest wires in all layers in a
single shot, then, clearly the gate’s functionality is not preserved as the gate with punctured keys
cannot sign messages other than the expected message for the challenge timestep t∗. So, how do
we resolve this dilemma? We take a layered approach based on the key observation that none
of the message signing keys for the first layer for the filler/honest wires are in the view of the
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adversary. This is because the first layer of obfuscated gates contains the message signing keys
for the second layer and subsequently layer ℓ gates contain message signing keys for layer ℓ+ 1.

Based on the above issues, we come up with the following sequnece of hybrids:

Hybrid Hyb
(b)
0 : This is the real world experiment SelSingleChb,A.

Hybrids Hyb
(b)
1 ,Hyb

(b)
2 ,Hyb

(b)
3 : The foremost change we make is to ensure that no subversion of

messages from corrupt to filler/honest wire is possible by the adversary. This property will be

necessary later on in hybrids Hyb
(b)
6,ℓ,3 and Hyb

(b)
6,ℓ,5 for all ℓ ∈ [L−1] as will be highlighted below. This

change is accomplished in three steps - (i) puncture the route signing keys for all the corrupt wires
at the routes sampled by Setup∗ for those wires respectively, (ii) puncture the route verification
keys for all the corrupt wires, (iii) hardwire the expected route and expected route signatures and
update the route authentication to directly compare routes and route signatures against hardcoded
values.

Hybrid Hyb
(b)
4 : Puncture out the message signing keys for all filler/honest wires of layer ℓ = 1.

Then, the adversary’s view is identical as before (formal argument can be found in the transition

from Hyb
(b)
3 to Hyb

(b)
4 and Claim 5.8).

Hybrids Hyb
(b)
5 ,Hyb

(b)
6,1,1,Hyb

(b)
6,1,2: Puncture out the message verficitaion keys for all filler/honest

wires of layer ℓ = 1 (Hyb
(b)
5 ), then, hardcode the expected message signatures and messages (Hyb

(b)
6,1,1)

and then go on to hardcode the expected input ciphertext and puncture the PRF keys (Hyb
(b)
6,1,2).

Hybrid Hyb
(b)
6,1,3: Once this is done, we are ready to try to puncture out the message signing keys

for all filler/honest wires of layer ℓ = 2 (Hyb
(b)
6,1,3). These are hardwired in the gates in the first layer

ℓ = 1. Even though these punctured keys cannot sign messages other than the challenge messages
for the challenge round t∗, now unlike the single shot approach, we argue that no other message
for the challenge round t∗ could have ever been signed by the unpunctured signing keys for layer

ℓ = 2 in the previous hybrid Hyb
(b)
6,1,2. This is for a couple of reasons. Firstly, if a message is being

sent from filler/honest wire (1, i) to filler/honest wire (2, j), then, the punctured route verification
key for layer ℓ = 1 would have ensured that for the challenge round it was indeed the challenge
message. Secondly, if the adversary is trying to subvert a message from a corrupt wire in layer ℓ = 2
to a filler/honest wire (2, j), then, this is not possible because of the first set of changes we made

(Hyb
(b)
1 ,Hyb

(b)
2 ,Hyb

(b)
3 ). Consequently, the security of indistinguishability obfuscation can be invoked

to transition from Hyb
(b)
6,1,2 to Hyb

(b)
6,1,3 (formal proof in Claim 5.12).

Hybrids Hyb
(b)
6,1,4,Hyb

(b)
6,1,5: Similar to Hyb

(b)
4 , we can puncture out the message verficitaion keys for

all filler/honest wires of layer ℓ = 2 (Hyb
(b)
6,1,4) and then, hardcode the expected message signatures

and messages and then go on to hardcode the expected output ciphertext and puncture the PRF

keys (Hyb
(b)
6,1,5).

Cascading effect. Once layer ℓ = 2 is done, similiar arguments can be made for layer ℓ = 3 and so
on. This cascading effect carries on for all the rest of the layers and we make simiar changes one

layer at a time to finally arrive at hybrid Hyb
(b)
6,L−1,5.
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Hybrid Hyb
(b)
7 : In this hybrid, we invoke the pseudorandomness of PRF at punctured points to

change all the hardcoded ciphertexts to be uniformly random values except for a select few following
wires. If an honest wire in the last layer has the destination that is corrupt, then, we do not make
any change to the hardwired outgoing ciphertexts.

Hybrids Hyb
(b)
8 ,Hyb

(b)
9 : In Hyb

(b)
7 , the only sources of information of challenge bit b are the hardwired

message signing and verification keys for all filler/honest wires in all the circuits. So, in these hybrids,
we unpuncture all the message signing and verification keys.

Analysis of the final hybrid: In hybrid Hyb
(b)
9 , we claim that everything can be simulated from the

leakage function which is identical in both worlds. In other words, this hybrid contains no information
about the challenge bit b. This is not too difficult to see. Observe that for all corrupt wires, while
the punctured route verification keys and expected routes are hardwired in the obfuscated circuits,
they are the same across the two worlds b = 0 and b = 1. Further, punctured PRF keys that are
hardwired contain no information about b. Most hardwired ciphertexts in the obfuscated gates are
uniformly random values and the ones that are not random (honest wires with corrupt receiver as
destination) have the same value across the two worlds by the admissibility criteria. Lastly, for the
challenge round t∗, the circuit description (Figure 13) treats filler and honest wires exactly the same.

Hence, Hyb
(0)
9 and Hyb

(1)
9 are identical. Formal arguments for this can be found in Claim 5.18.

3 Preliminaries

In this section we are going to define the building blocks necessary for our NIAR construction.

3.1 Notations

We use ‘ ’ to denote that a value is irrelevant. For instance, in (a, , c) the second value is irrelevant
and can be anything. Often times, we use a short hand {yi : i ∈ [n]} to denote an ordered sequence
(y1, . . . , yn). For instance {yi : i ∈ [n]} ← f(t, {xi : i ∈ [n]}) means (y1, . . . , yn)← f(t, x1, . . . , xn).

Notation for subexponential security. In this paper, whenever we say that a cryptographic
building block satisfies subexponential security, we only need the version where the adversary is
probabilistic polynomial-time (p.p.t.), but the security failure probability is subexponentially small.
More specifically, we want that there exists 0 < γ < 1 such that for any probabilistic polynomial-
time (p.p.t.) time adversary A, there is some sufficiently large security parameter λ such that the
probability that A breaks the the scheme’s security is upper bounded by 2−λγ

.
Throughout the paper, we often say that some cryptographic building block satisfies subexpo-

nential security w.r.t. the parameter 0 < γ < 1, to explicitly denote the γ parameter in the above
notion.

3.2 Correctness of NIAR

The syntax and security of NIAR was defined earlier in Section 2.1 and Section 2.6. For completeness,
we define correctness below. Without loss of generality, we may assume that each plaintext message
is a single bit — if the plaintext contains multiple bits, we can always split it bit by bit and encrypt
it over multiple time steps. Correctness requires that with probability 1, the following holds for
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any λ ∈ N, any (x1, x2, . . . , xn) ∈ {0, 1}n, and any t ∈ {0, 1}tlen: let ({eku}u∈[n], {rku}u∈[n], tk) ←
Setup(1λ, tlen, len, n, π), let CTu,t ← Enc(eku, xu, t) for u ∈ [n], let (CT′

1,t,CT
′
2,t, . . . ,CT

′
n,t) ←

Rte(tk, CT1,t, CT2,t, . . ., CTn,t), and let x′u ← Dec(rku,CT
′
u,t) for u ∈ [n]; it must be that

x′π(u) = xu for every u ∈ [n].

3.3 Routing Networks

Imagine we have a direct acyclic graph henceforth called a routing network with 2n sources and 2n
destinations. Suppose we have n producers, each of whom assigned to a distinct source vertex. We
also have n consumers, each of whom assigned to a distinct destination vertex. Now, each producer
wants to route one product to a distinct consumer, and the desired mapping between the producers
and consumers is called the routing permutation π. To avoid congestion, we want all n routes to be
over edge-disjoint paths. Earlier works [ACN+20,RS21] have constructed such a routing network
with the following properties.

– Congestion-free routing. There exists a randomized algorithm AssignRoutes(1λ, n, π) that takes
in the security parameter λ and the routing permutation π, and with 1 − negl(λ) probability,
outputs the following information for each producer u ∈ [n]: 1) which source vertex the producer
u is mapped to; and 2) the path that producer u traverses to reach its consumer which is
assigned to some destination vertex. Henceforth, the above information is called the route for
producer u, often denoted rteu. As mentioned, all producers’ routes are edge-disjoint. We allow
the AssignRoutes(1λ, n, π) algorithm to have a negligibly small failure probability in which case
it outputs ⊥.

– Layered construction. The network is layered. We may imagine that the source and destination
vertices form two special layers numbered 0 and L, respectively, and all other intemediate-layer
vertices are henceforth called gates. Directed edges, henceforth called wires, exist only between
adjacent layers ℓ and ℓ+ 1.

– Efficiency. The network has O(log n) layers, and each intermediate layer has at most O(n/ log2 λ)
gates. Each gate has O(log2 λ) incoming wires and O(log2 λ) outgoing wires. Thus, the number
of wires between any two adjacent layers is guaranteed to be O(n).

– Obliviousness. The network and the corresponding AssignRoutes(1λ, π) algorithm satisfies a
privacy property. Informally speaking, imagine that a subset of the producers are corrupt, and
they can learn their routes to their respective destinations (including which source nodes the
corrupt producers are assigned to). We want that the choice of the corrupt producers’ routes are
independent of the honest producers’ destinations. We will formally define this privacy property
below.

Definition 3.1 (Obliviousness of a routing network). We say that a routing network satisfies
obliviousness, iff there exists another simulated AssignRoutes∗ algorithm and a negligible function
negl(·), such that for any corrupt set K ⊆ [n] of producers, for any two routing permutations π0 and
π1 such that π0(i) = π1(i) for any i ∈ K, for either b ∈ {0, 1},

{({rteu}u∈K, {rteu}u/∈K) : (rte1, . . . , rten)← AssignRoutes(1λ, n, πb)}
≈negl(λ){(

{rteu}u∈K,
{
rtebu

}
u/∈K

)
:
(
{rteu}u∈K,

{
rte0u, rte

1
u

}
u/∈K

)
← AssignRoutes∗(1λ, n, π0, π1,K)

}
,

where ≈negl(λ) means that the left-hand-side and the right-hand-side have statistical difference at
most negl(λ).
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The definition says that the simulated AssignRoutes∗ algorithm should take in two routing
permutations π0 and π1 that are consistent regarding all corrupt producers’ destinations. Now,
AssignRoutes∗ must output two sets of routes for π0 and π1 respectively, such that the routes for
the corrupt producers are shared between the both routing permutations π0 and π1, and then the
routes for honest producers are generated in a compatible way for each of π0 and π1. Not only so,
for either b ∈ {0, 1}, the union of the corrupt producers’ routes {rteu}u∈K and the honest producers’
routes {rtebu}u/∈K output by the simulated AssignRoutes∗ must be indistinguishable from running the
real-world AssignRoutes using permutation πb. Intuitively, the definition wants that the generation
of the corrupt producers’ routes be decomposed from the honest producers’ destinations. In this
sense, the corrupt producers’ routes do not leak information about honest producers’ destinations
(beyond what is already leaked by the corrupt producers’ destinations, and barring a negligibly
small statistical difference).

Remark 3.2. Our definition of obliviousness is not the same as the “data obliviousness” notion
of Asharov et al. [ACN+20] and Ramachandran and Shi [RS21] — their notion requires that the
access patterns of the routing algorithm not depend on the input data when executed on a RAM.
On the other hand, our notion is closely related to a line of work called “oblivious routing” from
the standard algorithms literature [R0̈2,HKLR05], where roughly speaking, we want that a player’s
route be independent of others’ destinations. Interestingly, it turns out that the bucket-based butterfly
network construction of Asharov et al. [ACN+20] and Ramachandran and Shi [RS21] also satisfies
the latter notion of obliviousness, or more formally, Definition 3.1 — this is directly implied by their
proofs [ACN+20,RS21] even though not explicitly noted in their works.

Useful notations. Throughout the paper, we will use G to denote the maximum number of gates
in each intermediate layer, and we use L− 1 to denote the total number of layers for gates. We use
a tuple (ℓ, g) ∈ [L− 1]× [G] to refer to the g-th gate in layer ℓ. We use a tuple (ℓ, i) ∈ [L]× [2n] to
index the wires incoming into layer-ℓ gates, which are also the wires outgoing from layer-(ℓ − 1)
gates. The wires outgoing from the final layer-(L− 1) gates will be indexed as (L, i) where i ∈ [2n].
For convenience, we introduce the notation Input(ℓ,g) to denote the indices of wires incoming into
the gate indexed (ℓ, g), and we use Output(ℓ,g) to denote the indices of wires outgoing from the gate
(ℓ, g). In other words, the wires coming into gate (ℓ, g) are the set {(ℓ, w)}w∈Input(ℓ,g) , and the wires
outgoing from gate (ℓ, g) are the set {(ℓ+ 1, w)}w∈Output(ℓ,g) .

As mentioned, the route of producer u ∈ [n], denoted rteu, includes which source vertex u is
assigned to, and the set of wires it traverses to reach the destination vertex that corresponds to its
consumer. We often denote rteu := (j1, . . . , jL) where j1 denotes the source vertex (which can also
be thought of as a wire) the producer u is assigned to, jL denotes the destination vertex 2π(u)− 1
that corresponds to u’s consumer, and for every ℓ ∈ [2, L− 1], jℓ denotes a wire incoming into a
layer-ℓ gate that the route traverses.

In our routing network, there are more wires in each layer than the number of producers or
consumers. Therefore, some wires do not carry load. Henceforth in our paper, we also call such
wires that do not carry actual load filler wires.

3.4 Constrained PRF

We need a constrained PRF where the input consists of a pair t ∈ {0, 1}tlen and x ∈ {0, 1}len. We
also call t the round and x the message. Each constraint can be specified by a tuple (t∗, x∗, y) ∈
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{0, 1}tlen × {0, 1}len × {{0, 1}len ∪ {2len}} — it means that the constrained key should be able to
evaluate the PRF’s outcome at any point (t, x) such that

t ̸= t∗ or ((t = t∗) and (x ∈ [y:] ∪ {x∗}))

where [y:] denotes the set of all messages of length len that are lexicographically greater than or equal
to y. In other words, for some constrained round t∗, the constrained key only works for messages
that are lexicographically greater than or equal to y ∈ {0, 1}len or equal to x∗.

A constrained pseudorandom function consists of the following algorithms:

– sk← Gen(1λ, tlen, len): takes in a security parameter 1λ, the length tlen of the round, the length
len of the input message, and outputs a secret key sk.

– σ ← Eval(sk, t, x): a deterministic function that takes in a secret key sk, a round number
t ∈ {0, 1}tlen, a message x ∈ {0, 1}len, and outputs the evaluation outcome σ.

– sk∗ ← Constr(sk, t∗, [y:] ∪ {x∗}): takes in a secret key sk, a constrained round t∗, the set of
messages [y:]∪{x∗} that can be evaluated for the constrained round t∗, and outputs a constrained
key sk∗.
For the special case when y = 2len, we sometimes also simply write sk∗ ← Constr(sk, t∗, {x∗})
or sk∗ ← Constr(sk, t∗, x∗) to mean that only x∗ can be evaluated for the constrained round t∗.

– σ ← CEval(sk∗, t, x): a deterministic function that takes in a constrained key sk∗, a round
t ∈ {0, 1}tlen and a message x ∈ {0, 1}len, outputs the evaluation outcome σ.

Correctness. We say that a constrained PRF scheme satisfies correctness if the constrained key
preserves functionality when evaluated at permitted points. Formally, we require that for any
λ, len, t∗ ∈ {0, 1}tlen, any y ∈ {0, 1}len ∪ {2len}, any x∗ ∈ {0, 1}len, any (t, x) ∈ N× {0, 1}len such that
t ̸= t∗ or x ∈ [y:] ∪ {x∗},

Pr

[
sk← Gen(1λ, tlen, len),
sk∗ ← Constr(sk, t∗, [y:] ∪ {x∗}) : Eval(sk, t, x) = CEval(sk∗, t, x)

]
= 1

Security.We say that a constrained PRF scheme is secure, if given some constrained keys, the original
PRF’s evaluation outcomes at forbidden points (i.e., points that the constrained keys cannot evalu-
ate) remain pseudorandom. Formally, consider the following experiment ExptCPRFA,b(1λ, tlen, len)
parametrized by a bit b ∈ {0, 1}:

– The challenger calls sk← Gen(1λ, tlen, len).

– The adversary A can adaptively make the following queries:
• Eval: A submits a pair (t, x), and the challenger returns to A the evaluation outcome
Eval(sk, t, x).

• Constr: A submits a tuple (t∗, x∗, y), and the challenger computes a constrained key sk∗ ←
Constr(sk, t∗, [y:] ∪ {x∗}) and returns sk∗ to A.
• Challenge: A submits a challenge pair (t̃, x̃). If b = 0, the challenger returns a random string
of appropriate length to A. Else, the challenger computes Eval(sk, t̃, x̃) to A.

– A outputs a guess b′ ∈ {0, 1}, the experiment outputs b′.

We say that A is admissible iff the following constraints hold with probability 1:
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1. For any (t, x) submitted in an Eval query, the challenge (t̃, x̃) ̸= (t, x);

2. For any tuple (t∗, x∗, y) submitted during an Constr query, it must be that t̃ = t∗ and x̃ /∈
[y:] ∪ {x∗}.

Definition 3.3 (γ-subexponential security of constrained PRF). We say that a constrained PRF
scheme is γ-subexponentially secure, iff for any probabilistic polynomial-time (p.p.t.) admissible
adversary A, for any len that is polynomially bounded in λ, there exists λ0 such that for any λ > λ0,
|Pr[ExptCPRFA,0(1λ, tlen, len) = 1]− Pr[ExptCPRFA,1(1λ, tlen, len) = 1]| ≤ 2−λγ

.

3.5 Puncturable PRF

A puncturable PRF is a special case of constrained PRF defined as follows:

– sk← Gen(1λ, len) := CPRF.Gen(1λ, len, 0): takes in a security parameter 1λ, the length len of
the input message, and outputs a secret key sk

– σ ← Eval(sk, x) := CPRF.Eval(sk, x,⊥): a deterministic function that takes in a secret key sk, a
message x ∈ {0, 1}len, and outputs the evaluation σ.

– sk∗ ← Puncture(sk, x∗) := CPRF.Constr(sk, x∗,⊥): takes in a secret key sk, a point x∗ to be
punctured, and outputs a punctured key sk∗. This means that the punctured key can only be
used to evaluate at x ̸= x∗.

– σ ← PEval(sk∗, x) := CPRF.CEval(sk∗, x,⊥): a deterministic function that takes in a punctured
key sk∗, and a message x ∈ {0, 1}len, outputs the evaluation outcome σ.

3.6 Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (iO) was first defined in [BGI+01a]. Recent works
have shown constructions from well-founded assumptions [JLS21,GP20,WW20,BDGM20]. We give
the formal definition below, taken almost verbatim from Jain et al. [JLS21].

Definition 3.4 (Indistinguishability Obfuscator (iO)). A uniform p.p.t. algorithm iO is called an
indistinguishability obfuscator for polynomial-sized circuits if the following holds:

– Completeness: For every λ ∈ N, every circuit C with input length n, every input x ∈ {0, 1}n,
we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(1λ, C)

]
= 1.

– γ-Subexponential Security: For any two ensembles {C0,λ}λ, {C1,λ}λ of polynomial-sized
circuits that have the same size, input length, and output length, and are functionally equivalent
(i.e., C0,λ(x) = C1,λ(x) for every λ and x), for any p.p.t. adversary A, there exists λ′ such that
for any λ > λ′, ∣∣∣Pr[A(iO(1λ, C0,λ)) = 1]− Pr[A(iO(1λ, C1,λ)) = 1]

∣∣∣ < 2−λγ

.
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3.7 Pseudorandom Generators

Definition 3.5 (γ-Subexponential Pseudorandom Generator). We say that a function G : {0, 1}∗ →
{0, 1}∗ is a γ-subexponential pseudorandom generator if the following holds:

– There exists a function ℓ such that |G(x)| = ℓ(|x|) > |x| for all x ∈ {0, 1}∗, and
– For all PPT adversaries A there exists a λ′ such that for all λ > λ′, it holds that∣∣∣Pr [A(1λ, G(x)) = 1: x

$←− {0, 1}λ
]
− Pr

[
A(1λ, r) = 1: r

$←− {0, 1}ℓ(λ)
]∣∣∣ < 2−λγ

.

4 Proofs for Our SSU Signature Scheme

In Section 2.4, we defined the syntax and security of an SSU signature. We complete the definitions
by giving the correctness definition below.

Correctness of SSU signature. An SSU signature is said to be correct iff the following holds,

– For all λ, len, tlen ∈ N, t ∈ {0, 1}tlen, x ∈ {0, 1}len,

Pr

[
(sk, vk)← Setup(1λ, tlen, len)

σ ← Sign(sk, t, x)
: Vf(vk, t, x, σ) = 1

]
= 1.

– For any λ, len, tlen ∈ N, t∗, t ∈ {0, 1}tlen, x∗, x ∈ {0, 1}len such that it is not the case that t = t∗

and x ̸= x∗,

Pr

[
(sk, vk)← Setup(1λ, tlen, len),

sk∗ ← Puncture(sk, t∗, x∗)
: Sign(sk, t, x) = PSign(sk∗, t, x)

]
= 1.

Parameter choices for our SSU signature scheme. Earlier in Section 2.4, we described an
SSU signature scheme. To prove security, we additionally need to provide the parameters of the
scheme, which we describe below.

We need the following building blocks:

– A constrained PRF scheme PRF = (Gen,Constr,Eval,CEval), satisfying the syntax and secu-
rity properties given in Section 3.4. Specifically, we require that it satisfies γPRF-subexponential
security (Definition 3.3) for some parameter γPRF > 0. We also assume that the outputs of Eval
and CEval are of length λ, where λ is the security parameter given to Gen.

– An injective, length-doubling γG-subexponential pseudorandom generator (Definition 3.5), for
some γG > 0.

– And indistinguishability obfuscation scheme iO which satisfies γiO-subexponential security
(Definition 3.4) for some γiO > 0.

Then, we define γ = min{γPRF, γG, γiO}, and we instantiate PRF, G and iO with security
parameter λ2/γ .
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4.1 Proof of Security

We now prove the security of our SSU signature scheme.

Lemma 4.1. Suppose that iO satisfies completeness and that G is injective. Then, the above SSU
signature scheme satisfies statistical unforgeability at t∗.

Proof. If iO satisfies completeness, then the verification key vk, which is an obfuscation of the
circuit C̃[sk∗, t∗, x∗], behaves identical to C̃[sk∗, t∗, x∗] itself. On inputs (t, x, σ) where t = t∗

and x ̸= x∗, C̃[sk∗, t∗, x∗] always rejects. If t = t∗ and x = x∗, C̃[sk∗, t∗, x∗] only accepts if
G(PRF.CEval(sk∗, t, x)) = G(PSign(sk∗, t, x)) = G(σ), which by the injectivity of G implies that
σ = PSign(sk∗, t, x). Thus, both conditions for statistical unforgeability given in Definition 2.2 are
satisfied.

Lemma 4.2. Suppose that PRF is a γPRF-subexponentially-secure constrained PRF, iO is a γiO-sub-
exponentially secure indistinguishability obfuscator, and G is a γG-subexponential pseudorandom
generator. Then, the above SSU signature scheme satisfies computational indistinguishability of
simulated setup.

Proof. Below, we abuse notation and refer to the y-th string in {0, 1}len, ordered lexicographically,
simply as y. In addition, we write y ≥ y′ for two strings y, y′ ∈ {0, 1}len if y = y′ or y comes
after y′ lexicographically. Fix t∗ and x∗, and consider a PPT adversary A. We show that A has
negligible distinguishing advantage for the two distributions given in Definition 2.2. We do this via
a sub-exponential number of hybrid experiments {Hyby}y∈{0,1}len , which we now define.

For y ∈ {0, 1}len, let sky be a constrained key that can sign any message (t, x) where t ̸= t∗ or
(t = t∗ and (x = x∗ or x ≥ y)), and define circuit Cy[sky, t

∗, x∗] to be the following circuit:

Circuit Cy[sky, t
∗, x∗](t, x, σ):

– if t = t∗ and x /∈ [y:] ∪ {x∗}: output 0;
– else:

• if G(PRF.CEval(sky, t, x)) = G(σ), output 1, otherwise output 0.

Experiment Hyby. Hyby is defined as follows:

– let sk← PRF.Gen(1λ, tlen, len);

– let sk∗ ← PRF.Constr(sk, t∗, {x∗});

– sky ← PRF.Constr(sk, t∗, [y:] ∪ {x∗});

– let vk← iO(1λ
2/γ

, Cy[sky, t
∗, x∗]); and

– output (sk∗, vk).

Clearly, the circuit C1[sk1, t
∗, x∗] is functionally equivalent to the circuit C[sk]. The circuit

C2len+1[sk2len+1, t
∗, x∗] is functionally equivalent to the circuit C̃[sk∗, t∗, x∗]. Moreover, Cx∗ [skx∗ , t∗, x∗]

and Cx∗+1[skx∗+1, t
∗, x∗, x∗ + 1] are functionally equivalent. By the security of iO, we have that
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Real is computationally indistinguishable from Hyb1, Ideal is computationally indistinguishable
from Hyb2len+1, and Hybx∗ and Hybx∗+1 are computationally indistinguishable.

Below, we show that for any y ̸= x∗, an adversary has advantage less than O(2−len2) in
distinguishing Hyby and Hyby+1. Since the number of hybrids is 2len + 1, this proves the lemma. We
do this via a sequence of subhybrids, as follows.

– Hyby,1: Runs in the same way as Hyby, except we now compute vk← iO(Ĉy[sky+1, t
∗, x∗, αy]) to

be an obfuscation of a different circuit Ĉy[sky+1, t
∗, x∗, αy], which we define below, and where

sky+1 ← PRF.Constr(sk, t∗, [y + 1:] ∪ {x∗}), and αy ← G(PRF.CEval(sky, t
∗, y)).

– Hyby,2: Runs in the same way as Hyby,1, except that we now compute αy ← G(r), where

r
$←− {0, 1}λ2/γ

.

– Hyby,3: Runs in the same way as Hyby,2, except that we now compute αy
$←− {0, 1}2λ2/γ

.

– Hyby,4: Runs in the same way as Hyby,3, except that we now compute αy
$←− {0, 1}2λ

2/γ

\{
G(r) : r ∈ {0, 1}2λ

2/γ
}
.

Circuit Ĉy[sky+1, t
∗, x∗, αy](t, x, σ):

– If t = t∗ and x /∈ [y:] ∪ {x∗}: output 0;
– Else if t = t∗ and x = y:

• If G(σ) = αy, output 1, otherwise output 0.

– Else:

• if G(PRF.CEval(sky+1, t, x)) = G(σ), output 1, otherwise output 0.

The following claims finish the proof.

Claim 4.3. Assume that iO is γiO-subexponentially secure. Then A has advantage at most 2−len2 in
distinguishing Hyby from Hyby,1.

Proof. The only difference between the two hybrids is the circuit which is obfuscated as vk. Fix the
randomness of the experiment except for the randomness used in iO to generate vk. There must
be a way to fix this randomness which preserves A’s distinguishing advantage. In this way, we fix
the two circuits Cy and Ĉy whose obfuscations are given to A. If A distinguishes between these

two experiments with probability greater than 2−len2 , then a straightforward reduction shows a
distinguishing adversary against the security of iO with the same advantage. Since it holds that

2−len2 ≥ 2−λ2
= 2−λ(2/γ)·γ ≥ 2−λ(2/γ)·γiO ,

and since iO is used with security parameter λ2/γ , assuming Cy and Ĉy are functionally equivalent,
this contradicts γiO-security of the scheme iO.

We now argue functional equivalence of Cy and Ĉy. It is clear that Cy(t, x, σ) = Ĉy(t, x, σ)
on all inputs except for those of the form (t∗, y, ). For such inputs, equivalence follows because
αy = G(PRF.CEval(sky, t

∗, y)), and thus the equality check is the same across both circuits.
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Claim 4.4. Assume that PRF is γPRF-subexponentially secure. Then A has advantage at most 2−len2

in distinguishing Hyby,1 from Hyby,2.

Proof. The only difference between the two hybrids is the way that the value αy which is embedded
in Ĉy is generated. Assume A distinguishes between these two experiments with probability greater

than 2−len2 . We build a reduction A′ to the security of PRF. A′ interacts with the constrained PRF
challenger, and at the same time runs Hyby,2 with A, except for the following differences:

– instead of computing sk∗ directly, A′ submits a Constr query (t∗, x∗, 2len + 1) to the challenger,
and uses the received value as sk∗.

– instead of computing sky+1 directly, A′ submits a Constr query (t∗, x∗, y + 1) to the challenger,
and uses the received value as sky+1.

– Before computing vk, A′ submits the Challenge query (t∗, y). It then receives a value σy
from the challenger, uses the hardcoded value αy = G(σy) when computing the obfuscation of
Ĉy[sky+1, t

∗, x∗, αy].

Note that A′ is an admissible adversary, since it does not make any Eval queries to the challenger,
and the Challenge query is at position (t∗, y), where neither sk∗ or sky+1 can evaluate at that
point. Observe that if the challenger outputs σy = Eval(sk, t∗, y), then the view of A is identical to

that in Hyby,1. If the challenger outputs σy
$←− {0, 1}λ2/γ

, then the view of A is identical to that in

Hyby,2. Thus, we have that A′ distinguishes these two scenarios with probability greater than 2−len2 .
Since it holds that

2−len2 ≥ 2−λ2
= 2−λ(2/γ)·γ ≥ 2−λ(2/γ)·γPRF ,

and PRF is initialized with security parameter λ2/γ , A′ contradicts γPRF-subexponential security of
PRF.

Claim 4.5. Assume that G is a γG-subexponential pseudorandom generator. Then A has advantage
at most 2−len2 in distinguishing Hyby,2 from Hyby,3.

Proof. The only difference between the two hybrids is the way that the value αy which is embedded

in Ĉy is generated. In Hyby,2, αy is the output of G on a random input in {0, 1}λ2/γ
, and in Hyby,3,

αy is a uniform random value in {0, 1}2λ2/γ
. If A distinguishes between these two experiments with

probability greater than 2−len2 , then a straightforward reduction shows a distinguishing adversary
against the security of G with the same advantage. Since it holds that

2−len2 ≥ 2−λ2
= 2−λ(2/γ)·γ ≥ 2−λ(2/γ)·γG ,

and G is evaluated on inputs of size λ2/γ , this contradicts γG-subexponential security of G.

Claim 4.6. A has advantage at most 2−len2 in distinguishing Hyby,3 from Hyby,4.

Proof. The only difference between the two hybrids is the way that the value αy which is embedded

in Ĉy is generated. In Hyby,3, αy is a uniform random value in {0, 1}2λ2/γ
, and in Hyby,3, αy is a
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uniform random value in {0, 1}2λ
2/γ

\
{
G(r) : r ∈ {0, 1}2λ

2/γ
}
. Thus A’s distinguishing advantage is

(unconditionally) upper bounded by the probability that αy ends up in
{
G(r) : r ∈ {0, 1}2λ

2/γ
}
in

Hyby,3. We have that

Pr
[
αy ∈

{
G(r) : r ∈ {0, 1}2λ

2/γ
}

in Hyby,3

]
=

2λ
2/γ

22λ
2/γ

= 2−λ2/γ
< 2−len2 ,

which proves the claim.

Claim 4.7. Assume that iO is γiO-subexponentially secure. Then A has advantage at most 2−len2 in
distinguishing Hyby,4 from Hyby+1.

Proof. The only difference between the two hybrids is the circuit which is obfuscated as vk. Fix the
randomness of the experiment except for the randomness used in iO to generate vk. There must
be a way to fix this randomness which preserves A’s distinguishing advantage. In this way, we fix
the two circuits Ĉy and Cy+1 whose obfuscations are given to A. If A distinguishes between these

two experiments with probability greater than 2−len2 , then a straightforward reduction shows a
distinguishing adversary against the security of iO with the same advantage. Since it holds that

2−len2 ≥ 2−λ2
= 2−λ(2/γ)·γ ≥ 2−λ(2/γ)·γiO ,

and since iO is used with security parameter λ2/γ , assuming Ĉy and Cy+1 are functionally equivalent,
this contradicts γiO-security of the scheme iO.

We now argue functional equivalence of Ĉy and Cy+1. It is clear that Ĉy(t, x, σ) = Cy+1(t, x, σ)
on all inputs except for those of the form (t∗, y, ). For such inputs, since αy is outside the image of
G, Ĉy always outputs 0, which is the same behavior as that of Cy+1, since y ̸= x∗.

5 Proofs for Our NIAR Scheme

In this section, we prove that the NIAR construction presented in Section 2.5 is selectively secure as
defined in Definition 2.3. In the following sections, we say that a wire is “corrupt” or “honest” if it
is on a path which originates with a corrupted or honest sender respectively. We say all other wires
are “filler” wires. Also, we sometimes use the shorthand “wire (ℓ, j)” to refer to jth wire in the ℓth

layer.

To prove selective security, we first need to define the Setup∗ algorithm, as shown in Figure 2.

Claim 5.1. If the routing network satsifies obliviousness as defined in Definition 3.1, then, for either

b ∈ {0, 1}, the terms
(
{eku}u∈KS

, {ek(b)u }u∈HS
, {rku}u∈[n], tk

)
output by Setup∗(1λ, tlen, len, n, t∗, π(0),

π(1),KS , {x(0)u,t∗ , x
(1)
u,t∗}u∈HS

) as described in Figure 2 have the same joint distribution as the output

of the real Setup(1λ, tlen, len, n, π(b)) as described in Section 2.5.
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Setup∗(1λ, tlen, len, n, t∗, π(0), π(1),KS , {x(0)
u,t∗ , x

(1)
u,t∗}u∈HS ): on inputs the security paramter 1λ, the length of

the time step tlen, the individual message length len, the number of parties n, the challenge round t∗, two
permutations π(0), π(1), a set of corrupt senders KS ⊂ [n], and the challenge messages {x(0)

u,t∗ , x
(1)
u,t∗}u∈HS , does

the following where HS = [n] \ KS :

1. Sampling Wire Keys: For each wire (ℓ, i) in [L]× [2n]:
(a) Sample PRF key k(ℓ,i) ← PRF.Gen(1λ) as the encryption key for this wire.

(b) Sample two pairs of signing and verification keys, one for signing routes and other for signing messages,

(rsk(ℓ,i), rvk(ℓ,i))← Sig.Setup(1λ, tlen, L · log (2n)) ,

(msk(ℓ,i),mvk(ℓ,i))← Sig.Setup(1λ, tlen, tlen+ len+ n · 2L · log (2n)) .

2. Sampling Routes: Run the AssignRoutes∗ procedure (Section 3.3) on inputs (1λ, n, π(0), π(1),KS) to

compute the output out. Abort if out = ⊥. Else parse out as ({rte′u}u∈KS , {rte
′(0)
u , rte

′(1)
u }u∈HS ). For each

sender u ∈ KS do the following:
(a) Parse rte′u = (j1, . . . , jL).

(b) Sign rte′u using route signing keys for each wire along rte′u. That is, for ℓ ∈ [L] compute rsigℓ =
Sig.Sign(rsk(ℓ,jℓ), 1, rte

′
u).

(c) Set rteu = (rte′u, rsig1, . . . , rsigL).
For each sender u ∈ HS and for each β ∈ {0, 1}, do the following:

(a) Parse rte
′(β)
u = (j1, . . . , jL).

(b) Sign rte
′(β)
u using route signing keys for each wire along rte

′(β)
u . That is, for ℓ ∈ [L] compute rsig

(β)
ℓ =

Sig.Sign(rsk(ℓ,jℓ), 1, rte
′(β)
u ).

(c) Set rte
(β)
u = (rte

′(β)
u , rsig

(β)
1 , . . . , rsig

(β)
L ).

3. Setting Routing Token:
(a) For each merge-split gate (ℓ, g) in [L− 1]× [G], compute an indistinguishability obfuscation Gate(ℓ,g) ←

iO(1λ,Gate(ℓ,g)) of the circuit Gate(ℓ,g) described in Figure 1.

(b) Set tk = {Gate(ℓ,g) : ℓ ∈ [L− 1], g ∈ [G]}.

4. Setting Sender Keys: For each u ∈ KS , set eku = (iu, k(1,iu),msk(1,iu), rteu). For each u ∈ HS and

β ∈ {0, 1}, set ek(β)u = (iu, k(1,iu),msk(1,iu), rte
(β)
u ).

5. Setting Receiver Keys: For each v ∈ [n], set rkv = k(L,2v−1).

6. Output ({eku}u∈KS , {ek
(0)
u }u∈HS , {ek

(1)
u }u∈HS , {rku}u∈[n], tk).

Fig. 2: The Setup∗ algorithm for the routing scheme.

Proof. One can create a simple reduction such that if for any b ∈ {0, 1} the aforementioned joint
distributions of Setup and Setup∗ could be distinguished with some noticeable probability, then,
the reduction can distinguish the following two distributions with noticeable probability and thus
break the obliviousness of the routing network.

– {({rteu}u∈KS
, {rteu}u∈HS

) : (rte1, . . . , rten)← AssignRoutes(1λ, n, π(b))}
–

{(
{rteu}u∈KS

,
{
rte

(b)
u

}
u∈HS

)
:
(
{rteu}u∈KS

,
{
rte

(0)
u , rte

(1)
u

}
u∈HS

)
← AssignRoutes∗(1λ, n, π(0), π(1),KS)

}
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Theorem 5.2. Suppose that PRF is a polynomially secure puncturable PRF, Sig is a polynomially
secure deterministic SSU signature scheme, and iO is a polynomially secure indistinguishability
obfuscation scheme. Then, our NIAR construction in Section 2.5 satisfies selective security as defined
in Section 2.1.

In our paper, we instantiate the polynoially secure deterministic SSU signature scheme assuming
the existence of a subexponentially secure indistinguishability obfuscation scheme and one-way
permutations (Theorem 1.2). Consequently, we obtain the following corollary.

Corollary 5.3 (Restatement of Theorem 1.1.). Let λ be security parameter. Let n = n(λ) be the
number of senders/receivers. Then, assuming the existence of subexponentially-secure indistinguisha-
bility obfuscator and one-way permutations, there exists a NIAR scheme that satisfies selectively
receiver-insider security. Further, the asymptotical performance bounds are as follows:

1. the token size and router computation per time step is Õλ(n) where Õλ(·) hides poly(λ, log n)
factors for some fixed poly(·);

2. the per-sender communication and encryption time per bit of the message is Õλ(1);

3. each sender key is of length Õλ(1), each receiver key is of length Oλ(1).

5.1 The Hybrids

We prove computational indistinguishability of hybrid experiments SelSingleCh0,A (1λ, tlen, len) and
SelSingleCh1,A(1λ, tlen, len) via a sequence of hybrids, which we describe below. In each hybrid,

the challenger plays a game with a PPT adversary A. The first hybrid Hyb
(0)
0 is identical to

SelSingleCh0,A(1λ, tlen, len), and the last hybrid Hyb
(1)
0 is identical to SelSingleCh1,A(1λ, tlen, len).

Proving indistinguishability of the worlds thus reduces to proving indistinguishability between each
adjacent pair of hybrids.

The hybrid sequence we follow is Hyb
(0)
0 → . . . → Hyb

(0)
13 → Hyb

(1)
13 → . . . → Hyb

(1)
0 and their

descriptions are as follows for b ∈ {0, 1}. In the middle, there is a sequence of 8(L − 1) hybrids

{Hyb(0)6,ℓ,i}ℓ∈[L−1],i∈[8], with nine hybrids per layer, which we refer to as the “inner hybrids.”

Hybrid Hyb
(b)
0 : In this hybrid, the challenger plays the game SelSingleChb,A(1λ, tlen, len) with A.

Hybrid Hyb
(b)
1 : This hybrid is identical to Hyb

(b)
0 except that for all the corrupt wires, the challenger

punctures the route signing keys at the corresponding routes and uses these punctured keys to
generate the route signatures. More specifically, for each wire (ℓ, i = jℓ), where jℓ ∈ rte∗u for some
sender u ∈ KS , we compute the route signatures as follows:

(rsk(ℓ,i), rvk(ℓ,i))← Sig.Setup(1λ, tlen, L · log(2n)) ,
rsk′(ℓ,i) ← Sig.Puncture(rsk(ℓ,i), 1, rte

∗
u) ,

rsig∗ℓ = Sig.PSign(rsk′(ℓ,i), 1, rte
∗
u) .

Hybrid Hyb
(b)
2 : This hybrid is identical to Hyb

(b)
1 except that the challenger uses the simulated

setup to generate route signing/verification keys for all the corrupt wires. More specifically, for each
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wire (ℓ, i = jℓ), where jℓ ∈ rte∗u for some sender u ∈ KS , we compute the route signatures as follows:

(rsk∗(ℓ,i), rvk
∗
(ℓ,i))← Sig.SimSetup(1λ, tlen, L · log(2n), 1, rte∗u) ,

rsig∗ℓ = Sig.PSign(rsk∗(ℓ,i), 1, rte
∗
u).

Then, we replace the gates Gate(ℓ,g) for all ℓ ∈ [L− 1], g ∈ [G] as described in Figure 3.

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
0 except that for each corrupt input wire i ∈ Input(ℓ,g), route verification

key rvk∗(ℓ,i) is hardcoded instead of rvk(ℓ,i).

Procedure. Same as in Hyb
(b)
0 .

Fig. 3: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
2 .

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
2 . Additionally, for each corrupt input wire i ∈ Input(ℓ,g), suppose it is on

expected route rte∗u = (rte
∗
u = (j∗1 , . . . , j

∗
L), (rsig

∗
1, . . . , rsig

∗
L)) for some sender u ∈ [n]. Then, hardcode (i, rte∗u).

Procedure.

– Step 1: For each input wire i ∈ Input(ℓ,g), if it is a filler/honest wire, then, compute as in Hyb
(b)
2 . Else:

• Step (a) is same as in Hyb
(b)
2 .

• Step (b): Decrypt and authenticate the message/route:

∗ Steps i, ii, iii are same as in Hyb
(b)
2 .

∗ Step iv: Parse rte as ((j1, . . . , jL), (rsig1, . . . , rsigL)) and perform the following checks to authenticate
the route rte: If rte ̸= rte

∗
u, abort. If rsigℓ ̸= rsig∗ℓ , abort.

• Step (c): Prepare the output ciphertext CT(ℓ+1,jℓ+1):
∗ Step i: Let j = j∗ℓ+1. If CT(ℓ+1,j) has already been computed, then abort.
∗ Step ii: If ℓ < L − 1, compute msig′ = Sig.Sign(msk(ℓ+1,j), t, (x, rte

∗
u)) and CT(ℓ+1,j) =

(x, rte∗u,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).

∗ Step iii is same as in Hyb
(b)
2 .

– Steps 2 and 3 are same as in Hyb
(b)
2 .

Fig. 4: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
3 .

Hybrid Hyb
(b)
3 : In this hybrid, for each corrupt wire, we perform the route authentication checks

by comparing with hardcoded routes and corresponding signatures. Specifically, in each gate we
hardcode the relevant routes sampled by Setup along with the route signature as computed in hybrid

Hyb
(b)
2 . Then, we replace the gates Gate(ℓ,g) for all ℓ ∈ [L− 1], g ∈ [G] as described in Figure 4.
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Hybrid Hyb
(b)
4 : This hybrid is identical to Hyb

(b)
3 , except that the challenger punctures the message

signing keys for all filler/honest wires (1, i) in the first layer at the challenge round t∗ and challenge

plaintext x̃∗ = (x
(b)
u,t∗ , rte

(b)
u ) (or x̃∗ = (⊥filler,⊥filler) in case of filler). That is, for each such wire

(1, i),

(msk(1,i),mvk(1,i))← Sig.Setup(1λ, tlen, tlen+ len+ n · 2L · log(2n)),
msk′(1,i) ← Sig.Puncture(msk(1,i), t

∗, x̃∗).

Then, for each such wire (1, i) in the first layer, whenever the challenger has to compute message
signature for any round, it computes the message signatures for the first layer as follows:

msig(1,i) = Sig.PSign(msk′(1,i), ·, ·).

Hybrid Hyb
(b)
5 : This hybrid is identical to Hyb

(b)
4 , except that the challenger uses the simulated

setup to puncture message signing/verification keys for all filler/honest wires (1, i) in the first layer

at the challenge round t∗ and challenge plaintext x̃∗ = (x
(b)
u,t∗ , rte

(b)
u ) (or x̃∗ = (⊥filler,⊥filler) in case

of filler). That is, for each such wire (1, i),

(msk∗(1,i),mvk∗(1,i))← Sig.SimSetup(1λ, tlen, tlen+ len+ n · 2L · log(2n), t∗, x̃∗).

Then, the challenger replaces the gates Gate(1,g) for all g ∈ [G] as described in Figure 5.

Notation. Let Input(1,g) and Output(1,g) be the set of input and output wires of gate Gate(1,g).

Hardcoded values. Same as in Hyb
(b)
3 except that for each filler/honest wire i ∈ Input(1,g), the message

verification key mvk∗(1,i) is hardcoded instead of mvk(1,i).

Procedure. Same as in Hyb
(b)
3 .

Fig. 5: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
5 .

Hybrid Hyb
(b)
6,ℓ,1 for each ℓ ∈ [L − 1]: This hybrid is identical to Hyb

(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1),

except that for all the gates in this layer Gate(ℓ,g) for all g ∈ [G], for all filler/honest wires (ℓ, i)

in the input layer ℓ, the challenger hardcodes the expected challenge message x∗(ℓ,i) = x
(b)
u,t∗ (or

x∗(ℓ,ı) = ⊥filler in case of filler wire), the expected route rte∗ = rte∗u (or rte∗ = ⊥filler in case of filler

wire) and the message signature msig∗(ℓ,i) = Sig.PSign(msk∗(ℓ,i), t
∗, (x∗, rte∗)) for the challenge round

t∗ and compares the message, route and message signature in the decrypted plaintext agaist the
respective hardcoded challenge message, expected route and message signature instead of checking
via Sig.Vf . Subsequently, for the outgoing wires, it uses x∗(ℓ,i) and rte∗ for computing the outgoing

ciphertexts in layer ℓ+ 1. More formally, for all g ∈ [G], the gates Gate(ℓ,g) are changed as described
in Figure 6.
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Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1). Additionally, round t∗ is hardcoded and for each

filler/honest input wire i ∈ Input(ℓ,g), the expected challenge message x∗
(ℓ,i), expected route rte∗ and signature

msig∗(ℓ,i) are hardcoded.

Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)} corresponding to
the input wires. Depending on the layer ℓ, it computes as follows.

– Step 1: For each input wire i ∈ Input(ℓ,g), if t ̸= t∗ or wire i is corrupt, then, compute as in Hyb
(b)
6,ℓ−1,5 (or

Hyb
(b)
5 if ℓ = 1). Else:

• Step (a) is same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

• Step (b): Decrypt and authenticate the message/route:
∗ Step i: compute the plaintext (x, rte,msig) = CT(ℓ,i) ⊕ PRF.Eval(k(ℓ,i), t

∗).
∗ Step ii: If x ̸= x∗

(ℓ,i) or rte ̸= rte∗ or msig ̸= msig∗(ℓ,i), then abort.

∗ Steps iii and iv are same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

• Step (c): Prepare the output ciphertext CT(ℓ+1,jℓ+1):

∗ Step i is same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

∗ Step ii: If ℓ < L − 1, compute msig′ = Sig.Sign(msk(ℓ+1,j), t
∗, (x∗

(ℓ,i), rte
∗)) and CT∗

(ℓ+1,j) =
(x∗

(ℓ,i), rte
∗,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).

∗ Step iii: If ℓ = L− 1, compute CT∗
(L,j) ← (x∗

(ℓ,i),⊥,⊥)⊕ PRF.Eval(k(L,j), t).
– Step 2: For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet, compute filler ciphertexts

as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1) if t ̸= t∗. Else:

• Step (a): Set x = ⊥filler and rte = ⊥filler.

• Steps (b) and (c) are same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

– Step 3 is same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

Fig. 6: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,1.

Hybrid Hyb
(b)
6,ℓ,2 for each ℓ ∈ [L− 1]: This hybrid is identical to Hyb

(b)
6,ℓ,1, except that now, when

generating all circuits for layer ℓ, the challenger punctures the hardcoded decryption keys and
hardcodes the expected input ciphertexts and corresponding plaintexts for all filler/honest input
wires for the challenge round t∗. In other words, for each filler/honest input wire (ℓ, i) that is on
the route rte∗, do the following.

– The challenger hardcodes the expected input ciphertext CT
∗
(ℓ,i) = (x∗(ℓ,i), rte

∗, msig∗(ℓ,i)) ⊕
PRF.Eval(k(ℓ,i), t

∗) and compares the input ciphertext with hardcoded ciphertext instead of
decrypting and performing subsequent checks.

– In addition, the challenger hardcodes the punctured PRF key k(ℓ,i) at challenge round t∗:
k∗(ℓ,i) ← PRF.Puncture(k(ℓ,i), t

∗).

Formally, the behavior of gate Gate(ℓ,g) for all g ∈ [G] as described in Figure 7.
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Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ,1, except that for each filler/honest wire i ∈ Input(ℓ,g), CT

∗
(ℓ,i) is hardcoded

along with the corresponding challenge message x(ℓ,i) and route rte∗, and msig∗(ℓ,i) is not hardcoded anymore. In
addition, the punctured PRF key k∗

(ℓ,i) is hardcoded instead of k(ℓ,i), and is used for decrypting on wire (ℓ, i)
during all rounds t ̸= t∗.

Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)} corresponding to
the input wires. Depending on the layer ℓ, it computes as follows.

– Step 1: For each input wire i ∈ Input(ℓ,g), if t ̸= t∗ or wire i is corrupt, then, compute as in Hyb
(b)
6,ℓ,1. Else:

• Steps (a) and (c) are same as in Hyb
(b)
6,ℓ,1.

• Step (b): if CT∗
(ℓ,i) ̸= CT

∗
(ℓ,i), then abort. If wire i is filler, go to the next i.

– Steps 2 and 3 are same as in Hyb
(b)
6,ℓ,1.

Fig. 7: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,2.

Hybrid Hyb
(b)
6,ℓ,3 for each ℓ ∈ [L− 1]: This hybrid is identical to Hyb

(b)
6,ℓ,2, except that the challenger

punctures the message signing keys for all filler/honest wires (ℓ+ 1, i) on the path rte∗ = rte∗u (or

rte∗ = ⊥filler in case of filler wire) at the challenge round t∗ and challenge message x∗(ℓ+1,i) = x
(b)
u,t∗

(or x∗(ℓ+1,i) = ⊥filler in case of filler wire). That is, for each such honest wire (ℓ+ 1, i),

(msk(ℓ+1,i),mvk(ℓ+1,i))← Sig.Setup(1λ, tlen, tlen+ len+ n · 2L · log(2n)),
msk′(ℓ+1,i) ← Sig.Puncture(msk(ℓ+1,i), t

∗, (x∗(ℓ+1,i), rte
∗
u)).

Then, the behavior of gate Gate(ℓ,g) for all g ∈ [G] is changed as described in Figure 8.

Hybrid Hyb
(b)
6,ℓ,4 for each ℓ ∈ [L − 1]: This hybrid is identical to Hyb

(b)
6,ℓ,3, except that the

challenger uses the simulated setup to puncture message signing/verification keys for all filler/honest

wires (ℓ+ 1, i) on the path rte∗ at the challenge round t∗ and challenge message x∗(ℓ,i) = x
(b)
u,t∗ (or

x∗(ℓ,i) = ⊥filler in case of filler wire). That is, for each such wire (1, i),

(msk∗(ℓ+1,i),mvk∗(ℓ+1,i))← Sig.SimSetup(1λ, tlen, tlen+ len+ n · 2L · log(2n), t∗, (x∗(ℓ,i), rte
∗)).

Then, the challenger replaces the gates Gate(ℓ,g) and Gate(ℓ+1,g) for all g ∈ [G] as described in Figure 9
and Figure 10.
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Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ,2, except that for each filler/honest wire i ∈ Output(ℓ,g) in the output

layer ℓ+ 1, the punctured message signing key msk′(ℓ+1,i) is hardcoded instead of msk(ℓ+1,i).

Procedure.

– Step 1: For each input wire i ∈ Input(ℓ,g), if t ̸= t∗ or wire i is corrupt, compute as in Hyb
(b)
6,ℓ,2. Else:

• Steps (a), (b) are same as in Hyb
(b)
6,ℓ,2.

• Step (c): Prepare the output ciphertext CT(ℓ+1,jℓ+1):

∗ Steps i and iii are same as in Hyb
(b)
6,ℓ,2.

∗ Step ii: If ℓ < L − 1, compute msig′ = Sig.PSign(msk′(ℓ+1,j), t
∗, (x

(b)
u,t∗ , rte

∗
u)) and CT∗

(ℓ+1,j) =

(x
(b)
u,t∗ , rte

∗
u,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).

– Step 2: For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet, compute filler ciphertexts

as in Hyb
(b)
6,ℓ,2 if t ̸= t∗. Else:

• Step (a): Set x = ⊥filler and rte = ⊥filler.
• Step (b): Compute msig′ = Sig.PSign(msk′(ℓ+1,j), t

∗, (x, rte)).
• Step (c): Compute CT∗

(ℓ+1,j) ← (x, rte,msig′)⊕ PRF.Eval(k(ℓ+1,j), t
∗).

– Step 3 is same as in Hyb
(b)
6,ℓ,2.

Fig. 8: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,3.

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ,3 except that for each filler/honest wire i ∈ Output(ℓ,g), message signing

key msk∗(ℓ+1,i) is hardcoded instead of msk′(ℓ+1,i).

Procedure. Same as in Hyb
(b)
6,ℓ,3.

Fig. 9: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,4.

Notation. Let Input(ℓ+1,g) and Output(ℓ+1,g) be the set of input and output wires of gate Gate(ℓ+1,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ,3 except that for each filler/honest wire i ∈ Input(ℓ+1,g), message

verification key mvk∗(ℓ+1,i) is hardcoded instead of mvk(ℓ+1,i).

Procedure. Same as in Hyb
(b)
6,ℓ,3.

Fig. 10: The circuit Gate(ℓ+1,g) in hybrid experiment Hyb
(b)
6,ℓ,4.
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Hybrid Hyb
(b)
6,ℓ,5 for each ℓ ∈ [L−1]: This hybrid is identical to Hyb

(b)
6,ℓ,4, except that now, when gen-

erating all circuits for layer ℓ, for all filler/honest wires (ℓ+ 1, i) on the path rte∗ the challenger hard-

codes the expected output ciphertexts for the challenge round t∗: CT
∗
(ℓ+1,i) = (x

(b)
u,t∗ , rte

∗
u,msig∗(ℓ+1,i))⊕

PRF.Eval(k(ℓ+1,i), t
∗) if ℓ < L − 1, else CT

∗
(L,i) = (x

(b)
u,t∗ ,⊥,⊥) ⊕ PRF.Eval(k(L,i), t

∗). Then, in-
stead of dynamically computing the output ciphertext inside the gate, the challenger simply
uses the hardcoded ciphertext. In addition, the challenger hardcodes punctured keys k∗(ℓ+1,i) ←
PRF.Puncture(k(ℓ,i), t

∗) for the output wires into Gate(ℓ,g).

At this point, since both honest and filler wires are dealt with by comparing the inputs to fixed
ciphertexts, and outputting fixed ciphertexts, the gate does not need to know which wires are honest
and which are fillers during round t∗. We change the flow of the program to reflect this.

Formally, the behavior of gate Gate(ℓ,g) for all g ∈ [G] is as described in Figure 11.

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as Hyb
(b)
6,ℓ,4 except that for each filler/honest wire i ∈ Output(ℓ,i) in the output layer

ℓ+ 1, the punctured PRF key k∗
(ℓ+1,i) is hardcoded instead of k(ℓ+1,i).

Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)} corresponding to
the input wires. Depending on the layer ℓ, it computes as follows.

1. Step 1: For each input wire i ∈ Input(ℓ,g), if t ̸= t∗ or wire i is corrupt, compute as in Hyb
(b)
6,ℓ,5. Else:

(a) If ℓ = 1 and i ∈ Fg, continue to next i. //This is a filler element and is ignored.
(b) Authenticate the message/route: If CT∗

(ℓ,i) ̸= CT
∗
(ℓ,i), then abort.

2. For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet, compute filler ciphertexts as in

Hyb
(b)
6,ℓ,5 if t ̸= t∗. Else compute filler/honest ciphertexts as CT∗

(ℓ+1,j) = CT
∗
(ℓ+1,j).

3. Output {CT(ℓ+1,i) : i ∈ Output(ℓ,g)}.

Fig. 11: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,5.

Hybrid Hyb
(b)
7 : This hybrid is same as Hyb

(b)
6,L−1,5 except that the challenger changes the hardcoded

ciphertexts as follows: In gates Gate(L−1,g) for all g ∈ [G], for all honest output wires i ∈ Output(L−1,g),
if the corresponding receiver is corrupt, then, do not change anything. Else, if it is an honest output
wire whose corresponding receiver is honest, or if it is filler wire i ∈ Output(L−1,g), or if it filler/honest
wire i in any Gate(ℓ,g) for any ℓ < L− 1 and for any g ∈ [G], then, change the hardcoded ciphertext

to be encryption of ⊥filler. That is, for wire (ℓ, i), set CT
∗
(ℓ,i) = random.

Hybrid Hyb
(b)
8 : This hybrid is same as Hyb

(b)
7 except that the challenger unpunctures all the message

verification keys that were previously puncutured: for all the message signing/verification keys for
all filler/honest wires (ℓ, i) on the path rte∗ in all the layers, the challenger uses setup and puncture

algorithms instead of simulated setup at the challenge round t∗ and challenge message x∗(L,i) = x
(b)
u,t∗
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(or x∗(L,i) = ⊥filler in case of filler wire). That is, for each such wire (ℓ, i),

(msk(ℓ,i),mvk(ℓ,i))← Sig.Setup(1λ, tlen, tlen+ len+ n · 2L · log(2n)),
msk′(ℓ,i) ← Sig.Puncture(msk(ℓ,i), t

∗, (x∗(L,i), rte
∗)).

Then, for each such wire (ℓ, i), whenever the challenger has to compute message signature for any
round for a filler/honest wire, it computes as: msig(ℓ,i) = Sig.PSign(msk′(ℓ,i), ·, ·).

Hybrid Hyb
(b)
9 : This hybrid is same as Hyb

(b)
8 except that the challenger unpunctures all the message

signing keys that were previously puncutured: for all the message signing/verification keys for all
filler/honest wires (ℓ, i) on the path rte∗ in all the layers, the challenger uses setup algorithm only
and does not puncture anymore at the challenge round t∗ and challenge message x∗(L,i). That is, for

each such wire (ℓ, i),

(msk(ℓ,i),mvk(ℓ,i))← Sig.Setup(1λ, tlen, tlen+ len+ n · 2L · log(2n)).

Then, for each such wire (ℓ, i), whenever the challenger has to compute message signature for any
round for a filler/honest wire, it computes as: msig(ℓ,i) = Sig.Sign(msk(ℓ,i), ·, ·).

To summarize, at this point the circuit Gate(ℓ,g) for all ℓ ∈ [L− 1] and g ∈ [G] is as in Figure 12
and Figure 13.

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Gate(ℓ,g) has hardcoded the following values:

– For each wire i ∈ Input(ℓ,g) in layer ℓ:
• if corrupt : the PRF key k(ℓ,i), the message verification key mvk(ℓ,i), the route verification key rvk∗(ℓ,i),

the expected route rte∗u.
• if filler/honest : the PRF key k∗

(ℓ,i), the message verification key mvk(ℓ,i), the route verification key rvk(ℓ,i),

the expected challenge ciphertext CT
∗
(ℓ,i).

– For each wire i ∈ Output(ℓ,g) in layer ℓ+ 1:
• if corrupt : the PRF key k(ℓ+1,i), the message signing key msk(ℓ+1,i).
• if filler/honest : the PRF key k∗

(ℓ+1,i), the message signing key msk(ℓ+1,i), the expected challenge ciphertext

CT
∗
(ℓ+1,i).

– If ℓ = 1, the set Fg which contains indices i ∈ Input(ℓ,g) such that i /∈ {πs(2k − 1) : k ∈ [n]}.
– The challenge round t∗.

Fig. 12: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
9 : notation and hardcoded values.
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Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)} corresponding to
the input wires. Depending on the layer ℓ, it computes as follows.

1. For each input wire i ∈ Input(ℓ,g):
(a) If ℓ = 1 and i ∈ Fg, continue to next i. //This is a filler wire and is ignored.
(b) Decrypt and authenticate the message/route:

If it is a filler/honest wire and t = t∗: If CT∗
(ℓ,i) ̸= CT

∗
(ℓ,i), then abort.

If it is a (corrupt wire) or (filler/honest wire and t ̸= t∗):
i. Compute the plaintext (x, rte,msig) = CT(ℓ,i) ⊕ PRF.Eval(k(ℓ,i), t).
ii. If msig is not a valid signature of (x, rte) w.r.t. mvk(ℓ,i) and round t, then abort.
iii. If x = ⊥filler and rte = ⊥filler, go to the next i. // This is a filler wire and is ignored.
iv. Parse rte as ((j1, . . . , jL), (rsig1, . . . , rsigL)) and perform the following checks to authenticate the

route rte:
If it is a corrupt wire: If rte ̸= rte

∗
u, abort. If rsigℓ ̸= rsig∗ℓ , abort.

If it is an honest wire and t ̸= t∗: Parse rte as ((j1, . . . , jL), (rsig1, . . . , rsigL)) and perform the
following checks to authenticate the route rte: If jℓ ̸= i or jℓ+1 /∈ Output(ℓ,g), then abort. If rsigℓ is
not valid signature of (j1, . . . , jL) w.r.t. rvk(ℓ,i), then abort.

(c) Prepare the output ciphertext CT(ℓ+1,jℓ+1):
If it is a corrupt wire:
i. Let j = j∗ℓ+1. If CT(ℓ+1,jℓ+1) has already been computed, then abort.
ii. If ℓ < L − 1, compute msig′ = Sig.Sign(msk(ℓ+1,j), t, (x, rte

∗
u)) and CT(ℓ+1,j) = (x, rte∗u,msig′) ⊕

PRF.Eval(k(ℓ+1,j), t).
iii. If ℓ = L− 1 (output layer), compute CT(L,j) ← (x,⊥,⊥)⊕ PRF.Eval(k(L,j), t).
If it is an honest wire and t ̸= t∗:
i. Let j = jℓ+1. If CT(ℓ+1,jℓ+1) has already been computed, then abort.
ii. If ℓ < L− 1 (intermediate layer), compute msig′ = Sig.Sign(msk(ℓ+1,j), t, (x, rte)) and CT(ℓ+1,j) ←

(x, rte,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).
iii. If ℓ = L− 1 (output layer), compute CT(L,j) ← (x,⊥,⊥)⊕ PRF.Eval(k(L,j), t).

2. For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet:

If t = t∗, compute filler/honest ciphertexts as CT∗
(ℓ+1,j) = CT

∗
(ℓ+1,j).

If t ̸= t∗, compute filler ciphertexts:

(a) Set x = rte = ⊥filler.
(b) Compute msig′ = Sig.Sign(msk(ℓ+1,j), t, (x, rte)).
(c) Compute CT(ℓ+1,j) ← (x, rte,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).

3. Output {CT(ℓ+1,i) : i ∈ Output(ℓ,g)}.

Fig. 13: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
9 : procedure.

5.2 Proofs of Indistinguishability

Let the number of corrupt senders be θ = |KS | ≤ n.

Claim 5.4. For b ∈ {0, 1}, adversary A’s views in Hyb
(b)
0 and Hyb

(b)
1 are identical.

Proof. The difference between Hyb
(b)
0 and Hyb

(b)
1 is that the for all the corrupt wires, the route

signing keys are unpunctured in the former and punctured in the latter hybrid experiment. While no
route signing keys are in the view of the adversary, the adversary does get route signatures for corrupt
senders and these are computed differently across two hybrids. In the former, they are computed
using Sig.Sign algorithm and in the latter they are computed using Sig.PSign algorithm. It follows
from the correctness of the SSU signature scheme as defined in Section 4 that the input/output
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behaviour of these two algorithms is identical for all constrained points. As these signatures are

generated by the challenger for some constrained points, hence, adversary A’s views in Hyb
(b)
0 and

Hyb
(b)
1 are identical.

Claim 5.5. For b ∈ {0, 1}, assuming the SSU signature scheme satisfies computational indis-

tinguishability of simulated setup, adversary A’s views in Hyb
(b)
1 and Hyb

(b)
2 are computationally

indistinguishable.

Proof. The difference between hybrids Hyb
(b)
1 and Hyb

(b)
2 is that in hybrid Hyb

(b)
1 , for all the

corrupt wires, the route signing/verification key pair (rsk′(ℓ,i), rvk(ℓ,i)) is used where the signing

key is punctured and the verification key is unpunctured. Whereas in hybrid Hyb
(b)
2 , for all the

corrupt wires, the route signing/verification key pair (rsk∗(ℓ,i), rvk
∗
(ℓ,i)) is used where both the keys

are punctured and are generated using simulated setup. There are θ corrupt wires in each layer
ℓ = 1, . . . , L. For the sake of simplicity, call these total of L · θ wires to be w1, . . . , wL·θ. We will

show that the adversary A’s views in Hyb
(b)
1 and Hyb

(b)
2 are computationally indistinguishable via a

sequence of hybird H
(b)
1,0, . . . ,H

(b)
1,L·θ where in H1,i, for wire wj , the route signing/verification key pair

(rsk∗wj
, rvk∗wj

) is used if j ≤ i, else the pair (rsk′wj
, rvkwj ) is used. With this sequence, observe that

H
(b)
1,0 is identical to Hyb

(b)
1 and H

(b)
1,L·θ is identical to Hyb

(b)
2 . We will show that H

(b)
1,i−1 and H

(b)
1,i are

computationally indistinguishable for all i ∈ [L · θ] and then, by triangle inequality it follows that

Hyb
(b)
1 and Hyb

(b)
2 are computationally indistinguishable.

All that remains to show now is that for all i ∈ [L · θ], H(b)
1,i−1 and H

(b)
1,i are computationally

indistinguishable. Let wire wi be on the route rte∗u for some u ∈ KS . Observe that the difference

between the two hybrids is that for wire wi in H
(b)
1,i−1, the route signing/verification key pair

(rsk′wi
, rvkwi) is used, whereas in H

(b)
1,i , the route signing/verification key pair (rsk∗wi

, rvk∗wi
) is used.

Then, we can create a simple reduction from the computational indistinguishability of the two
hybrids to the computational indistinguishability of simulated setup of SSU signature scheme which
states that the following two distibutions are computationally indistinguishable.

1. Let (rskwi , rvkwi)← Setup(1λ, tlen, len), rsk′wi
← Puncture(rsk, 1, rte∗u), and output (rsk′wi

, rvkwi).
2. Let (rsk∗wi

, rvk∗wi
)← SimSetup(1λ, tlen, len, 1, rte∗u), and output (rsk∗wi

, rvk∗wi
).

Remark 5.6. Observe that in H
(b)
1,i−1 and H

(b)
1,i both, the adversary’s view never contains rsk′wi

or
rsk∗wi

, but only route signatures computed using these signing keys. Hence, while the adversary A’s
views in the two hybrids can be simulated using these keys, a weaker form would suffice where the
adversary only has oracle access to the signing keys. But, we still use this stronger form to keep the
signature scheme same for message as well as route signatures and as we will see later , making such
a switch for message signing keys indeed requires this stronger form where the adversary has access
to some punctured message signing keys. Looking ahead this would be required because unlike route
signing keys, message signing keys are hardcoded in the obfuscated gates provided to the adversary
A.

Claim 5.7. For b ∈ {0, 1}, assuming that the SSU signature scheme is deterministic and statistically

unforgeable and the indistinguishability obfuscation scheme is secure, adversary A’s views in Hyb
(b)
2

and Hyb
(b)
3 are computationally indistinguishable.
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Proof. The difference between the hybrids Hyb
(b)
2 and Hyb

(b)
3 is in the way route authentication

checks are performed for all corrupt wires in all the obfuscated gates. In particular, for all gates
Gate(ℓ,g) for ℓ ∈ [L − 1] and g ∈ [G], after decryption of incoming ciphertext on a corrupt wire
(ℓ, i) and message authentication of the plaintext (containing route information rteu = (rteu =

(j1, . . . , jL), (rsig1, . . . , rsigL)) for some user u ∈ KS), the route authentication in hybrid Hyb
(b)
2 is

performed by checking

jℓ = i, jℓ+1 ∈ Output(ℓ,i), Sig.Vf(rvk∗(ℓ,i), rteu, 1, rsigℓ) = 1. (1)

If any of these checks fail, the circuit aborts further computation. On the other hand, the route

authentication in hybrid Hyb
(b)
3 is performed by checking

rteu = rte∗u, rsigℓ = rsig∗ℓ , (2)

where the expected route for this wire rte∗u = (rte∗u = (j∗1 , . . . , j
∗
L), (rsig

∗
1, . . . , rsig

∗
L)) is hardcoded in

the gate circuit. If we can argue that for all gates Gate(ℓ,g) for ℓ ∈ [L−1] and g ∈ [G], the gate circuit
in the two hybrid experiments have identical input/output behaviour, then, the computational
indistinguishability of the adversary A’s views in the two hybrids follows from the security of the
indistinguishability obfuscation scheme.

All that remains to be shown is that for any gate Gate(ℓ,g), the input/output behaviour of the
circuits in the two hybrids is indeed identical. In other words, we want to show that it is equivalent
to check either Equation (1) or Equation (2). If Equation (2) is satisfied, then, it is straighforward
to observe that Equation (1) is also satisfied. It is non-trivial to see that whenever Equation (1) is
satisfied, then, Equation (2) is also satisfied. To see this, notice that rvk∗(ℓ,i) is a punctured route
verification key and satisfies statistical unforgeability at round 1 and value (j∗1 , . . . , j

∗
L) as defined

in Definition 2.2. Hence, the signature verification algorithm will only accept signature rsig∗ℓ for
(j∗1 , . . . , j

∗
L) and no other signature for this or any other route. Then, it follows that Equation (2) is

also satisfied.

Claim 5.8. For b ∈ {0, 1}, adversary A’s views in Hyb
(b)
3 and Hyb

(b)
4 are identical.

Proof. The difference between Hyb
(b)
3 and Hyb

(b)
4 is that the for all the filler/honest wires (1, i), the

message signing keys are unpunctured in the former and punctured in the latter hybrid experiment

at the challenge rount t∗ and the respective challenge plaintexts x̃∗ = (x
(b)
u,t∗ , rte

(b)
u ) in case of honest

wire for some u ∈ HS or x̃∗ = (⊥filler,⊥filler) in case of filler wire. But, as none of these message

signing keys are in the view of the adversary, hence, it follows that the adversary A’s views in Hyb
(b)
3

and Hyb
(b)
4 are identical.

Claim 5.9. For b ∈ {0, 1}, assuming the SSU signature scheme satisfies computational indis-

tinguishability of simulated setup, adversary A’s views in Hyb
(b)
4 and Hyb

(b)
5 are computationally

indistinguishable.

Proof. The difference between hybrids Hyb
(b)
4 and Hyb

(b)
5 is that in hybrid Hyb

(b)
5 , for all the

filler/honest wires (1, i), the message signing/verification key pair (msk′(1,i),mvk(1,i)) is used where

the signing key is punctured and the verification key is unpunctured. Whereas in hybrid Hyb
(b)
5 ,

for all the filler/honest wires, the message signing/verification key pair (msk∗(1,i),mvk∗(1,i)) is used
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where both the keys are punctured and are generated using simulated setup. Suppose that there are
η < 2n filler/honest wires in the first layer ℓ = 1. For the sake of simplicity, call these η wires to be

w1, . . . , wη. We will show that the adversary A’s views in Hyb
(b)
4 and Hyb

(b)
5 are computationally

indistinguishable via a sequence of hybird H
(b)
4,0, . . . ,H

(b)
4,η where in H4,i, for wire wj , the message

signing/verification key pair (msk∗wj
,mvk∗wj

) is used if j ≤ i, else the pair (msk′wj
,mvkwj ) is used.

With this sequence, observe that H
(b)
4,0 is identical to Hyb

(b)
4 and H

(b)
4,η is identical to Hyb

(b)
5 . We will

show that H
(b)
4,i−1 and H

(b)
4,i are computationally indistinguishable for all i ∈ [η] and then, by triangle

inequality it follows that Hyb
(b)
4 and Hyb

(b)
5 are computationally indistinguishable.

All that remains to show now is that for all i ∈ [η], H
(b)
4,i−1 and H

(b)
4,i are computationally

indistinguishable. Observe that the difference between the two hybrids is the treatment of message
signing/verification key pair for wire wi. If wire wi is an honest wire, then, the challenge plaintext

is x̃∗ = (x
(b)
u,t∗ , rte

(b)
u ) for some user u ∈ HS . Else, if it is a filler wire, then, the challenge plaintext

is x̃∗ = (⊥filler,⊥filler). In H
(b)
4,i−1, the message signing/verification key pair (msk′wi

,mvkwi) is used,

whereas in H
(b)
4,i , the message signing/verification key pair (msk∗wi

,mvk∗wi
) is used. In both the above

hybrids the puncturing is done at challenge round t∗ and challenge plaintext x̃∗. We can create a
simple reduction from the computational indistinguishability of the two hybrids to the computational
indistinguishability of simulated setup of SSU signature scheme which states that the following two
distibutions are computationally indistinguishable.

1. Let (mskwi ,mvkwi)← Setup(1λ, tlen, tlen+len+n·2L·log (2n)),msk′wi
← Puncture(mskwi , t

∗, x̃∗),
and output (rsk′wi

, rvkwi).

2. Let (msk∗wi
,mvk∗wi

)← SimSetup(1λ, tlen, tlen+len+n·2L·log (2n), t∗, x̃∗), and output (msk∗wi
,mvk∗wi

).

Claim 5.10. For b ∈ {0, 1} and ℓ ∈ [L− 1], assuming the SSU signature scheme is a deterministic
signature scheme and is statistically unforgeable at the simulated point and that the indistinguishability

obfuscation scheme is secure, adversary A’s views in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1) and Hyb

(b)
6,ℓ,1 are

computationally indistinguishable.

Proof. For the sake of simplicity, we define Hyb
(b)
6,0,5 = Hyb

(b)
5 in this proof.

The only difference between Hyb
(b)
6,ℓ,1 and Hyb

(b)
6,ℓ−1,5 is in the way that the message signatures

msig(ℓ,i) for all filler/honest wires i ∈ Input(ℓ,g) are verified inside of each obfuscated program

Gate(ℓ,g), g ∈ [G] during round t∗. In Hyb
(b)
6,ℓ−1,5, this is done by using the verification algorithm

Sig.Vf , whereas in Hyb
(b)
6,ℓ,1 this is done by checking msig(ℓ,i) is equal to to the hardcoded signature

msig∗(ℓ,i), by checking that the signed message x is equal to the hardcoded message x∗(ℓ,i). and by
checking that the route rte is equal to the hardcoded route rte∗.

We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n− θ + 1}.
We define Hyb′α to produce programs {Gate(ℓ,g)}g∈[G] which verify all message signatures msig(ℓ,i)

as in Hyb
(b)
6,ℓ,1 when i < α, and as in Hyb

(b)
6,ℓ−1,5 when i ≥ α. It is clear that Hyb′1 = Hyb

(b)
6,ℓ−1,5 and

that Hyb′2n−θ+1 = Hyb
(b)
6,ℓ,1. Proving the claim thus reduces to proving indistinguishability between

Hyb′α−1 and Hyb′α for all α. Note that the only difference between Hyb′α and Hyb′α−1 is in the
behavior of a single Gate(ℓ,g) for g such that α ∈ Input(ℓ,g). Provided that the circuits obfuscated in
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Hyb′α−1 and Hyb′α to produce Gate(ℓ,g) are functionally equivalent, a simple reduction to security of
the obfuscation scheme shows that Hyb′α−1 and Hyb′α are computationally indistinguishable. Thus
we have reduced the claim to showing functional equivalence of the two circuits in question.

To show functional equivalence, we observe that the only possible point at which the circuit
outputs could differ is where CT(ℓ,α) is an encryption of some message (x(ℓ,α), rte,msig(ℓ,α)) with
respect to round t∗ which was not generated honestly. It is clear that in Hyb′α, because the filler/honest
message x∗(ℓ,i), route rte∗ and signature msig(ℓ,α) are hardcoded, Gate(ℓ,g) rejects all dishonestly
generated ciphertexts. Because of statistical unforgeability of the SSU signature scheme at point
(t∗, x∗(ℓ,i)) with respect to the keypair (msk∗(ℓ,α),mvk∗(ℓ,α)) which was generated by Sig.SimSetup,

the only message that is accepted by Sig.Vf is (x∗(ℓ,i), rte
∗), and by the fact that the scheme is a

determistic signature scheme, the only accepted signature is msig∗(ℓ,α). Thus, in Hyb′α−1 at round t∗,
Gate(ℓ,g) also rejects all inputs where CT(ℓ,α) encrypts a message which was dishonestly generated.
It follows that the circuits have identical behavior with respect to CT(ℓ,α), and thus are functionally
equivalent.

Claim 5.11. For b ∈ {0, 1} and ℓ ∈ [L− 1], assuming correctness of the punctured PRF scheme and

the indistinguishability obfuscation scheme is secure, adversary A’s views in Hyb
(b)
6,ℓ,1 and Hyb

(b)
6,ℓ,2

are computationally indistinguishable.

Proof. The only difference between Hyb
(b)
6,ℓ,2 and Hyb

(b)
6,ℓ,1 is that in the obfuscated programs

{Gate(ℓ,g)}g of Hyb
(b)
6,ℓ,2, the obfuscated programs honest/filler wire keys are punctured at t∗, and

during round t∗ honest/filler wire ciphertexts CT(ℓ,i) are not decrypted directly, and instead are

compared with a fixed value CT
∗
(ℓ,i), whose corresponding decryption is also hardcoded and used for

the rest of the procedure.

We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n− θ + 1}.
We define Hyb′α to produce programs {Gate(ℓ,g)}g∈[G] which are identical to those in Hyb

(b)
6,ℓ,1,

except for the following differences:

– For all i < α, hardcode punctured key k∗(ℓ,i). Treat input honest/filler wire ciphertexts CT(ℓ,i) in

the same way as in Hyb
(b)
6,ℓ,2 (i.e., do not decrypt directly, instead check whether CT(ℓ,i) = CT

∗
(ℓ,i),

and if so, use corresponding hardcoded plaintext in the rest of the procedure.

– For all i ≥ α, hardcode non-punctured key k(ℓ,i). Treat input honest/filler wire ciphertexts CT(ℓ,i)

in the same way as in Hyb
(b)
6,ℓ,1 (i.e., decrypt directly and proceed as normal).

It is clear that Hyb′1 = Hyb
(b)
6,ℓ,1 and that Hyb′2n−θ+1 = Hyb

(b)
6,ℓ,2. Proving the claim thus reduces

to proving indistinguishability between Hyb′α−1 and Hyb′α for all α. Note that the only difference
between Hyb′α and Hyb′α−1 is in the circuit Gate(ℓ,g) which is used to generate a single obfuscated

program Gate(ℓ,g) for g such that α ∈ Input(ℓ,g). Provided that the circuits obfuscated in Hyb′α−1

and Hyb′α to produce Gate(ℓ,g) are functionally equivalent, a simple reduction to security of the
obfuscation scheme shows that Hyb′α−1 and Hyb′α are computationally indistinguishable. Thus we
have reduced the claim to showing functional equivalence of the two circuits in question.

To show functional equivalence, note that the behavior of Gate(ℓ,g) only differs across Hyb′α−1

and Hyb′α in terms of the behavior for the input wire (ℓ, α− 1). We focus on this wire. In Hyb′α−1,
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Gate(ℓ,g) only accepts exactly one value for CT(ℓ,α−1) during round t∗. This is because Gate(ℓ,g)
decrypts CT(ℓ,α−1) and then compares the decrypted plaintext to fixed hardcoded values, and aborts
if they are unequal. Since decryption is deterministic, only one such ciphertext CT(ℓ,α−1) does
not cause an abort. Since in Hyb′α Gate(ℓ,g) hardcodes this exact ciphertext and the corresponding
plaintext, the behavior with respect to round t∗ is identical. Because of correctness of the punctured
PRF key at all non-punctured points t ̸= t∗, the behavior of Gate(ℓ,g) between Hyb′α−1 and Hyb′α
across all other rounds are also identical. Thus, Gate(ℓ,g) is functionally equivalent across these two
subhybrids.

Claim 5.12. For b ∈ {0, 1} and ℓ ∈ [L − 1], assuming correctness of the SSU signature scheme,

and assuming the indistinguishability obfuscation scheme is secure, adversary A’s views in Hyb
(b)
6,ℓ,2

and Hyb
(b)
6,ℓ,3 are computationally indistinguishable.

Proof. The only difference between Hyb
(b)
6,ℓ,3 and Hyb

(b)
6,ℓ,2 is that in Hyb

(b)
6,ℓ,3, for honest/filler output

wires (ℓ+ 1, i), the challenger hardcodes punctured message signing keys msk′(ℓ+1,i) instead of
unpunctured ones. The obfuscated gates then use the punctured signing algorithm Sig.PSign when
signing outgoing messages at layer ℓ+ 1.

We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n− θ + 1}.
We define Hyb′α to produce programs {Gate(ℓ,g)}g∈[G] which are identical to those in Hyb

(b)
6,ℓ,2,

except for the following differences:

– For all i < α, hardcode punctured signing key msk′(ℓ+1,i), and sign messages for output wire
(ℓ+ 1, i) using Sig.PSign.

– For all i ≥ α, hardcode non-punctured signing key msk(ℓ+1,i), and sign messages for output wire
(ℓ+ 1, i) using Sig.Sign.

It is clear that Hyb′1 = Hyb
(b)
6,ℓ,2 and that Hyb′2n−θ+1 = Hyb

(b)
6,ℓ,3. Proving the claim thus reduces

to proving indistinguishability between Hyb′α−1 and Hyb′α for all α. Note that the only difference
between Hyb′α and Hyb′α−1 is in the circuit Gate(ℓ,g) which is used to generate a single obfuscated

program Gate(ℓ,g) for g such that α ∈ Output(ℓ,g). Provided that the circuits obfuscated in Hyb′α−1

and Hyb′α to produce Gate(ℓ,g) are functionally equivalent, a simple reduction to security of the
obfuscation scheme shows that Hyb′α−1 and Hyb′α are computationally indistinguishable. Thus we
have reduced the claim to showing functional equivalence of the two circuits in question. Functional
equivalence follows directly from correctness of the SSU signature scheme and the observation that
no message is ever signed with respect to round t∗ except for the exact message which was punctured.

Claim 5.13. For b ∈ {0, 1} and ℓ ∈ [L − 1], assuming the SSU signature scheme satisfies com-

putational indistinguishability of simulated setup, adversary A’s views in Hyb
(b)
6,ℓ,3 and Hyb

(b)
6,ℓ,4 are

computationally indistinguishable.

Proof. The only difference between Hyb
(b)
6,ℓ,4 and Hyb

(b)
6,ℓ,3 is that in Hyb

(b)
6,ℓ,4, the message signing

and verification keys for wires (ℓ+ 1, i), i ∈ [2n] are all generated using Sig.SimSetup, whereas in

Hyb
(b)
6,ℓ,3 they are generated using Sig.Setup and Sig.Puncture.
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We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n− θ + 1}.
We define Hyb′α to generate message keypairs (msk(ℓ+1,i),mvk(ℓ+1,i)) using Sig.SimSetup for

all i < α, and to generate (msk(ℓ+1,i),mvk(ℓ+1,i)) using Sig.Setup and Sig.Puncture for all i ≥ α.

It is clear that Hyb′1 = Hyb
(b)
6,ℓ,3 and that Hyb′2n−θ+1 = Hyb

(b)
6,ℓ,4. Proving the claim thus reduces

to proving indistinguishability between Hyb′α−1 and Hyb′α for all α. Note that the only difference
between Hyb′α and Hyb′α−1 is in the keypair (msk(ℓ+1,α−1),mvk(ℓ+1,α)). As such, a simple reduction
to computational indistinguishability of the simulated setup of the SSU signature scheme shows this
indistinguishability. This proves the claim.

Claim 5.14. For b ∈ {0, 1}, assuming the indistinguishability obfuscation scheme is secure, adversary

A’s views in Hyb
(b)
6,ℓ,4 and Hyb

(b)
6,ℓ,5 are computationally indistinguishable.

Proof. The only difference between Hyb
(b)
6,ℓ,5 and Hyb

(b)
6,ℓ,4 is in the behavior of circuits {Gate(ℓ,g)}g∈[G]

used to generated the obfuscated programs {Gate(ℓ,g)}g∈[G]. In Hyb
(b)
6,ℓ,5 during round t∗, for hon-

est/filler output wires (ℓ+ 1, i), Gate(ℓ,g) sets CT(ℓ+1,i) to be a hardcoded value CT
∗
(ℓ+1,i), where

CT
∗
(ℓ+1,i) = (x

(b)
u,t∗ , rte

∗
u,msig∗(ℓ+1,i))⊕PRF.Eval(k(ℓ+1,i), t

∗) if ℓ < L−1, else CT∗
(ℓ+1,i) = (x

(b)
u,t∗ ,⊥,⊥)⊕

PRF.Eval(k(L,i), t
∗), and outputs this value for wire (ℓ+ 1, i).

We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n− θ + 1}.
We define Hyb′α to produce programs {Gate(ℓ,g)}g∈[G] which are identical to those in Hyb

(b)
6,ℓ,4,

except for the following difference. During round t∗:

– For all i < α such that (ℓ+ 1, i) is a filler/honest wire, output CT(ℓ+1,i) = CT
∗
(ℓ+1,i) for this wire.

– For all i ≥ α, act as in Hyb
(b)
6,ℓ,4.

It is clear that Hyb′1 = Hyb
(b)
6,ℓ,4 and that Hyb′2n−θ+1 = Hyb

(b)
6,ℓ,5. Proving the claim thus reduces

to proving indistinguishability between Hyb′α−1 and Hyb′α for all α. Note that the only difference
between Hyb′α and Hyb′α−1 is in the circuit Gate(ℓ,g) which is used to generate a single obfuscated

program Gate(ℓ,g) for g such that α ∈ Output(ℓ,g). Provided that the circuits obfuscated in Hyb′α−1

and Hyb′α to produce Gate(ℓ,g) are functionally equivalent, a simple reduction to security of the
obfuscation scheme shows that Hyb′α−1 and Hyb′α are computationally indistinguishable. Thus we
have reduced the claim to showing functional equivalence of the two circuits in question.

To show functional equivalence, observe that the only wire where the two circuits could possibly
differ is the output wire (ℓ+ 1, α− 1). Functional equivalence then follows directly from the following
facts:

– No corrupt wire from layer ℓ could be re-routed to a filler/honest wire in layer ℓ+ 1 because of

the hardwired routes for corrupt wires in hybrid Hyb
(b)
3 (Figure 4).

– During round t∗, the plaintext (x, rte,msig′) encrypted by Gate(ℓ,g) to form CT(ℓ+1,α−1) in Hyb′α−1

has values x and rte are fixed and exactly equal to the corresponding plaintext components of
CT

∗
(ℓ+1,α−1) in Hyb′α, along with the fact that the SSU signature scheme produces deterministic

signatures (which means that the signature msig′ is also fixed and equal to the corresponding
component of CT

∗
(ℓ+1,α−1)).
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Claim 5.15. For b ∈ {0, 1}, assuming pseudorandomness of the PRF at punctured points, adversary

A’s views in Hyb
(b)
6,L−1,5 and Hyb

(b)
7 are computationally indistinguishable.

Proof. The difference between the two hybrids is in how are the hardcoded ciphertexts for the
challenge round t∗ for all the filler/honest wires in all the layers (with the exception of honest
outpout wires directed towards corrupt receievers in the last layer) computed by the challenger.

In Hyb
(b)
6,L−1,5, the hardcoded ciphertext for wire (ℓ, i) is of the form CT

∗
(ℓ,i) = (x̃∗,msig∗(ℓ,i)) ⊕ y∗,

where msig∗(ℓ,i) = Sig.PSign(msk∗(ℓ,i), t
∗, x̃∗) and y∗ = PRF.Eval(k(ℓ,i), t

∗). If it is an honest wire

corresponding to route rte
(b)
u for some u ∈ HS , then, x̃

∗ = (x
(b)
u,t∗ , rte

(b)
u ). Else, if it is a filler wire, then,

x̃∗ = (⊥filler,⊥filler). On the other hand, in Hyb
(b)
7 , for a filler/honest wire (ℓ, i), CT

∗
(ℓ,i) = random.

To argue the computationally indistinguishability of adversary’s view in these two hybrids, notice
that the hardcoded PRF key k∗(ℓ,i) is punctured at t∗, whereas y∗ is the PRF evaluation at exactly
this punctured point. So, one can use the pseudorandomness of the PRF at punctured points to
show the computational indistinguishability.

For a filler/honest wire (ℓ, i), we want to change from CT
∗
(ℓ,i) = (x̃∗,msig∗(ℓ,i))⊕ y∗ to CT

∗
(ℓ,i) =

random, where y∗ = PRF.Eval(k(ℓ,i), t
∗). We first invoke the psuedorandomness of PRF at punctured

points to change to y∗ = random′. Then, we can change from CT
∗
(ℓ,i) = (x̃∗,msig∗(ℓ,i))⊕ random′ to

CT
∗
(ℓ,i) = random as both are identically distributed. This is exactly what we want in Hyb

(b)
7 .

Claim 5.16. For b ∈ {0, 1}, assuming the SSU signature scheme satisfies computational indis-

tinguishability of simulated setup, adversary A’s views in Hyb
(b)
7 and Hyb

(b)
8 are computationally

indistinguishable.

Proof. Similar to Claim 5.9, except that here the message verification keys are changed from
punctured to unpunctured for all the filler/honest wires (ℓ, i) in all the layers.

Claim 5.17. For b ∈ {0, 1}, assuming the indistinguishability obfuscation scheme is secure, adversary

A’s views in Hyb
(b)
8 and Hyb

(b)
9 are computationally indistinguishable.

Proof. The difference between the two hybrids is that in Hyb
(b)
8 , for all the filler/honest wires

(ℓ, i), punctured message signing key msk′(ℓ,i) is used, whereas in Hyb
(b)
9 , unpunctured message

signing key msk(ℓ,i) is used. We will argue that for all the circuits, Gate(ℓ,g), the input/output
behaviour is still the same. Hence, the indistinguishability of the two hybrids follows through a
sequence of intermediate hybrid transitions where we switch the circuit for one gate at a time and
the computational indistinguishability of any two consequtive intermediate hybrids can be shown
through a simple reduction to the security of the indistinguishability obfuscation scheme.

All that remains to be shown is that all the circuits Gate(ℓ,g) in the two hybrids have identical
input/output behaviour. Observe that the only points where the circuits in the two hybrids may
differ are precisely the points that were punctured. msk(ℓ,i) can be used to sign even for challenge
round t∗ and non-challenge messages x ̸= x∗ but msk′(ℓ,i) can’t sign for these points. But observe

that in Hyb
(b)
9 , msk(ℓ,i) is never used to sign messages for the challenge round t∗ as the hardcoded

ciphertexts are directly used instead. Hence, it follows that all the circuits Gate(ℓ,g) in the two
hybrids indeed have identical input/output behaviour.

Claim 5.18. Adversary A’s views in Hyb
(0)
9 and Hyb

(1)
9 are identical.
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Proof. Recall the formal description of circuits Gate(ℓ,g) described in Figure 12 and Figure 13. It

suffices to argue that Hyb
(b)
9 and Hyb

(1−b)
9 contain no information about the challenge bit b. Observe

that the gate circuit had no information about challenge bit b in the real world description. So, the
only new sources of information about it could be the changes done to the circuit that are highlighted
in the figures. We will now argue that all of them have no information about the challenge bit b.

– For each corrupt wire i ∈ Input(ℓ,i), punctured route verification rvk∗(ℓ,i) is hardwired. These
keys are punctured at routes rte∗u for some u ∈ KS . Notice that in Setup∗, these routes are
sampled before routes are sampled for honest users. Hence, it follows, that the punctured route
verification keys for corrupt senders do not contain any information about the challenge bit b.
For these wires, rte∗ is also hardcoded. The admissibility criteria dictates that for each u ∈ KS ,
π(0)(u) = π(1)(u). Hence, the hardcoded routes for corrupt senders also have no information
about the challenge bit b.

– For each filler/honest wire i ∈ Input(ℓ,i), the punctured PRF key k∗(ℓ,i) is hardwired. This key is
punctured at the challenge round t∗, and hence has no information about the challenge bit b.
For these wires, the expected challenge ciphertext CT

∗
(ℓ,i) is also hardcoded. As all of these are

uniformly random values, hence, it follows that they have no information about the challenge
bit b.

– For each filler/honest wire i ∈ Output(ℓ,i), the punctured PRF key k∗(ℓ+1,i) is hardwired. This
key is punctured at the challenge round t∗, and hence has no information about the challenge
bit b. For these wires, the expected challenge ciphertext CT

∗
(ℓ+1,i) is also hardcoded. If ℓ ̸= L− 1,

all of these are uniformly random values, hence, it follows that they have no information about
the challenge bit b. If ℓ = L− 1 and the wire’s destination is not a corrupt receiver, then also all
of these are uniformly random values. Hence, it follows that they have no information about the
challenge bit b. If ℓ = L− 1 and the wire’s destination is a corrupt receiver, then, the hardcoded
value is the what the corrupt receiver would expect. The admissibility criteria dictates that if
two different honest senders are sending some message to a corrupt receiver in the two worlds
b = 0 and b = 1, then, the message values by the two honest senders should be the same. Hence,
it follows that the same ciphertext value is hardcoded in the two worlds and consequently, it
leaks no information about the challenge bit b.

– It is possible that a wire could be filler when b = 0 and honest when b = 1. Hence, it could have
different treatment by the circuit procedure in the two worlds. But notice that in both hybrids

Hyb
(0)
9 and Hyb

(1)
9 , for the challenge round t = t∗, the treatment of filler and honest wires is

exactly the same. Hence, it leaks no information about the challenge bit b.

From the above analysis, it follows that adversary A’s views in Hyb
(0)
9 and Hyb

(1)
9 are identical.
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Appendix

A Constrained PRF Construction

We construct a constrained PRF (CPRF) family Fs : {0, 1}rlen+len → {0, 1}2(rlen+len) as defined in
Section 3.4 based on the Goldreich-Goldwasswer-Micali tree-based PRFs [GGM86].

Recall that the GGM construction uses a length-doubling pseudorandom generator G : {0, 1}ℓ →
{0, 1}2ℓ. Denote the two halves of the output of the PRG G as G(z) = G0(z)G1(z). Then, the
PRF with seed s on input z whose binary decomposition is z = z1z2 . . . zn (where z1 is the most
significant bit and zn is the least significant bit) is defined as Fs(z) = Gzn(. . . Gz2(Gz1(s))).

A.1 Construction

Let G : {0, 1}rlen+len → {0, 1}2(rlen+len) be a length-doubling PRG. Then, our construction is as
follows.

– sk← Gen(1λ, tlen, len): Choose a uniformly random seed s
$←{0, 1}rlen+len and output sk = s.

– σ ← Eval(sk, t, x): Let t = t1 . . . ttlen and x = x1 . . . xlen be the binary decompositions of t and x.
Compute σ ← Gxlen

(. . . Gx1(Gttlen(. . . Gt1(s)))) and output σ.

– sk∗ ← Constr(sk, t∗, [y:] ∪ {x∗}): We consider two cases based on the value of y.

• If y > 0. Let t∗ = t∗1 . . . t
∗
tlen, y−1 = y1 . . . ylen, and x = x1 . . . xlen be the binary decompositions

of t, y − 1, and x. Further, for a bit b, denote by b = b ⊕ 1 its compliment bit. Let
z = Gt∗tlen

(. . . Gt∗1
(s)). Let S = {k|yk = 0} be the set of indices k of y − 1 where yk = 0. Let

its size be |S| = ℓ ≤ len and denote these indices as i1, . . . , iℓ in increasing order. Compute
σ∗ ← Eval(sk, t∗, x∗),

sk1 = Gt∗1
(s),

sk2 = Gt∗2
(Gt∗1

(s)),

...

sktlen = Gt∗tlen
(Gt∗tlen−1(. . . Gt∗1

(s))),

sktlen+1 = Gyi1
(Gyi1−1(. . . Gy1(z))),

sktlen+2 = Gyi2
(Gyi2−1(. . . Gy1(z))),

...

sktlen+ℓ = Gyiℓ
(Gyiℓ−1(. . . Gy1(z))),

and output sk∗ = (t∗, [y:] ∪ {x∗}, σ∗, sk1, . . . , sktlen+ℓ).

• Else if y = 0. In this case, output sk∗ = (t∗, [y:] ∪ {x∗}, σ∗, sk1, . . . , sktlen, z).

– σ ← CEval(sk∗, t, x): The output varies based on the value of t, y, and x as follows:

• If t = t∗ and x ̸= x∗. Output ⊥.
• Else if t = t∗ and x = x∗. Output σ∗.
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• Else if t = t∗, x ∈ [y:] and y > 0. Let y − 1 = y1 . . . ylen, and x = x1 . . . xlen be the binary
decompositions of y − 1 and x. Let k be the smallest index for which xk ̸= yk. As x > y, it
must be the case that xk = 1, yk = 0. Hence, k ∈ S = {i1, . . . , iℓ}. Let k = ij . In other words,
xk = yij . Output σ ← Gxlen

(. . . Gxk+1
(sktlen+j)).

• Else if t = t∗, x ∈ [y:] and y = 0. Let x = x1 . . . xlen be the binary decompositions of and x.
Output σ ← Gxlen

(. . . Gx1(z)).

• Else if t ̸= t∗. Let t = t1 . . . ttlen, t
∗ = t∗1 . . . t

∗
tlen, and x = x1 . . . xlen be the binary decompo-

sition of t, t∗ and x. Let j be the smallest index for which tj ̸= t∗j . In other words, tj = t∗j .
Output σ ← Gxlen

(. . . Gx1(Gttlen(. . . Gtj+1(skj)))).

A.2 Security Proof

Lemma A.1. Suppose that PRGs are sub-exponentially secure. Then, the above CPRF scheme is
sub-exponentially secure as defined in Section 3.4.

Proof. We prove that experiments ExptCPRFA,0 and ExptCPRFA,1 are sub-exponentially close via
a sequence for hybrid experiments HybA,0, HybA,1, HybA,2. The hybrid sequence is similar to the
ones used in proving security of GGM tree-based PRFs [GGM86] and functional pseudorandom
functions [BGI14]. The experiment HybA,b parametrized by b ∈ {0, 1, 2} is as follows.

– The challenger honestly runs the Gen algorithm to obtain sk = s.

– The adversary A can make the following queries adaptively:

• Eval: A submits a pair (t, x). If b = 0 or b = 2, the challenger responds honestly by starting
with s as the root node of the GGM tree and traversing down the path corresponding to
t||x. If b = 1, the challenger responds with a random bit-string of length 2(tlen+ len) in a
consistent manner as follows. It traverses down the path corresponding to t||x and for each
node on the path, it checks if the node is marked. If it is marked, it means that this node was
already traversed through in an earlier query, so the challenger does not sample a uniformly
random bit-string for the node. Else, the challenger marks the node and samples a uniformly
random bit-string of appropriate length (tlen+ len for intermediate nodes and 2(tlen+ len)
for leaf node) for this node. The challenger responds with the uniformly random value set
corresponding to the leaf node on this path.

• Constr: A submits a tuple (t∗, x∗, y). If b = 0 or b = 2, the challenger responds honestly by
starting with s as the root node of the GGM tree and computing all the intermediate and
leaf values in the tree as described in the construction. If b = 1, the challenger responds in a
uniformly random and consistent manner as follows. For computing σ∗, z, sk1, . . . , sktlen+ℓ,
the challenger traverses down the respective paths in the tree and computes the uniformly
random values for each node on the path based on whether that node is marked or not as
described earlier for Eval queries and sets the response accordingly.

• Challenge: A submits a challenge pair (t̃, x̃) satisfying the admissibility criteria as defined
in the security definition in Section 3.4. If b = 0, the challenger responds honestly by starting
with s as the root node of the GGM tree and traversing down the path corresponding to
t∗||x∗. If b = 1, the challenger responds with a unformly random value in a consistent manner
based on whether the leaf node corresponding to t̃||x̃ is marked or not as described earlier for
Eval queries. If b = 2, the challenger responds with a random bit-string of length 2(tlen+ len).

– A outputs a guess b′ ∈ {0, 1}, the experiment outputs b′.

50



Observe that HybA,0 is same as ExptCPRFA,0 and HybA,2 is same as ExptCPRFA,1. To complete
the proof, we show that the views of the adversary in experiments HybA,0 and HybA,1 are sub-
exponentially close in Lemma A.2 and those in HybA,1 and HybA,2 are sub-exponentially close in
Lemma A.3.

Lemma A.2. Suppose that PRGs are sub-exponentially secure. Then, there exists a constant
0 < γ < 1 such that for any probabilistic polynomial-time (p.p.t.) admissible adversary A, for any
len that is polynomially bounded in λ, there exists λ0 such that for any λ > λ0,

|Pr[HybA,0(1λ, tlen, len) = 1]− Pr[HybA,1(1λ, tlen, len) = 1]| ≤ 2−λγ
.

Proof. Suppose there exists an adversary A such that

|Pr[HybA,0(1λ, tlen, len) = 1]− Pr[HybA,1(1λ, tlen, len) = 1]| = ϵ(1λ, tlen, len)

for some ϵ that is not sub-exponentially small. Then, we show that A can be used to construct a
reduction B that can break the sub-exponetial security of PRGs. We consider a sequence of hybrid
experiments HA,i for i ∈ {0, 1, . . . , tlen+ len+ 1} where i corresponds to the level of tree where B
will place its challenge in its interation with A.

The experiment HA,i parametrized by i ∈ {0, 1, . . . , tlen+ len} is as follows.

– The challenger honestly runs the Gen algorithm to obtain sk = s.
– The adversary A can make the following queries adaptively:
• Eval: A submits a pair (t, x). The challenger traverses down the path corresponding to t||x

and for each node on the path upto level i (where root node is at level 0), it checks if the node
is marked. If it is marked, it continues down the path. Else, the challenger marks the node
and samples a uniformly random bit-string of appropriate length (tlen+ len for intermediate
nodes and 2(tlen+ len) for leaf node) for this node. After level i, the challenger computes
the output value by starting with the uniformly random value set at level i on this path and
evaluating the PRG G for the rest of the path based on the (i+ 1)th to (tlen+ len)th bits of
t||x.
• Constr: A submits a tuple (t∗, x∗, y). For computing σ∗, z, sk1, . . . , sktlen+ℓ, the challenger
traverses down the respective paths in the tree and computes the values for each node
on the path based the same way (uniformly random and consistent values till level i anf
PRG evaluations subsequently) as described earlier for Eval queries and sets the response
accordingly.
• Challenge: A submits a challenge pair (t̃, x̃) satisfying the admissibility criteria as defined

in the security definition in Section 3.4. The challenger responds with the value obtained by
traversing down the path corresponding to t̃||x̃ in the same way as described earlier for Eval
queries.

– A outputs a guess i′ ∈ {0, 1}, the experiment outputs b′.

Observe that hybrid experiment HA,0 is same as HybA,0 and HA,tlen+len is same as HybA,1. Further,
as A’s advantage in distinguishing HA,0 and HA,1 is at least ϵ(1λ, tlen, len). Then, there must exist
i ∈ {1, . . . , tlen+ len} such that

|Pr[HA,i−1(1λ, tlen, len) = 1]− Pr[HA,i(1λ, tlen, len) = 1]| ≥ ϵ(1λ, tlen, len)

tlen+ len
.
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Next, notice that the only difference between HA,i−1 and HA,i is how the values for nodes at
level i are generated. In HA,i−1, they are PRG evaluation on the value of their parent node. In
HA,i, they are random values. The reduction B will try to plant the PRG challenges at level i as

follows. The PRG challenger C chooses a random bit b
$←{0, 1}. If b = 0, C chooses polynomial

number of PRG seeds s and sends PRG evaluations G(s) to B as PRG challenges. If b = 1, C sends
polynomial number of uniformly random values to B as PRG challenges. B chooses a random value
i ∈ {1, . . . , tlen + len}. Then, B interacts with A and for all of A’s queries, B computes all node
values for all levels except level i as described in HA,i−1. For computing node values at level i, B
uses the PRG challenges it obtained. Finally, A outputs a bit b′ ∈ {0, 1} to B. B outputs b′ to C.

Observe that in the above game, if b = 0, then, A’s view corresponds to HA,i−1, and if b = 1,
then, A’s view corresponds to HA,i Therefore, B’s winning probability is as follows:

Pr[B wins] =
1

2
Pr[b′ = 0|b = 0] +

1

2
Pr[b′ = 1|b = 1]

=
1

2

(
1− Pr[b′ = 1|b = 0]

)
+

1

2
Pr[b′ = 1|b = 1]

=
1

2
+

1

2

(
Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

)
=

1

2
+

1

2
(Pr[HA,i(1λ, tlen, len) = 1]−

Pr[b′ = 1|b = 0]− Pr[HA,i−1(1λ, tlen, len) = 1])

≥ 1

2
+

1

2

ϵ(1λ, tlen, len)

tlen+ len
.

Therefore, B can break the sub-exponetial security of PRGs.

Lemma A.3. Suppose that PRGs are sub-exponentially secure. Then, there exists a constant
0 < γ < 1 such that for any probabilistic polynomial-time (p.p.t.) admissible adversary A, for any
len that is polynomially bounded in λ, there exists λ0 such that for any λ > λ0,

|Pr[HybA,1(1λ, tlen, len) = 1]− Pr[HybA,2(1λ, tlen, len) = 1]| ≤ 2−λγ
.

Proof. Similar to Lemma A.2.

B Proof of Lemma 2.4

As mentioned in Section 2.6, to better understand our selective security notion for NIAR, it helps
to think about an adaptive single-challenge counterpart which is very similar to the above selective
single-challenge definition, except that the adversary need not commit to the challenge time step t∗

and the challenge honest plaintexts ahead of time.

Definition B.1 (Adaptive single-challenge security for NIAR). We say that a NIAR scheme satisfies
adaptive single-challenge security (with receiver insider protection), iff for any non-uniform p.p.t.
admissible adversary A, A’s views in the following experiments AdSingleCh0,A(1λ, tlen, len) and
AdSingleCh1,A(1λ, tlen, len) are computationally indistinguishable.

Adaptive single-challenge experiment AdSingleChb,A(1λ, tlen, len).
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– n,KS ,KR, π
(0), π(1) ← A(1λ, tlen, len);

– ({eku}u∈KS
, {ek(0)u }u∈HS

, {ek(1)u }u∈HS
, {rku}u∈[n], tk)

← Setup∗(1λ, tlen, len, n,⊥, π(0), π(1),KS);

– ⊥ ← A(tk, {eku}u∈KS
, {rku}u∈KR

);

– For t = 1, 2, . . .:

• ({x(0)u,t}u∈HS
, {x(1)u,t}u∈HS

, δt)← A(⊥) where δt ∈ {0, 1, “challenge”};
• if δt ∈ {0, 1}, then for u ∈ HS , let CTu,t := Enc(ek

(δt)
u , x

(δt)
u,t , t);

• else if δt = “challenge”, then for u ∈ HS , let CTu,t := Enc(ek
(b)
u , x

(b)
u,t, t);

• ⊥ ← A({CTu,t−1}u∈HS
);

The adversary A is said to be admissible iff with probability 1, the following hold:

– There is a unique time step henceforth denoted t∗ in which A sets δt to be “challenge”; and

– Leak∗(π(0),KS ,KR, {x(0)u,t∗}u∈HS
) = Leak∗(π(1),KS ,KR, {x(1)u,t∗}u∈HS

).

Clearly, Definition 2.3 is a selective relaxation of Definition B.1. The following lemma states
that Definition B.1 implies the full security definition, i.e., Definition 2.1.

Lemma B.2 (Restatement of Lemma 2.4). A NIAR scheme that is secure by Definition B.1 is also
secure by Definition 2.1.

Proof. We can show that any NIAR scheme that is secure by Definition B.1 is also secure by
Definition 2.1 through a straightforward hybrid argument. Imagine that the challenger always uses
Setup∗ to generate two sets of honest encryption keys and the same set of corrupt sender keys. We
can now consider a sequence of Q+ 1 hybrids where Q is the total number of encryption queries. In
the i-th hybrid where i ∈ [Q+1], the challenger answers the first i−1 encryption queries using b = 1,
and answers the remaining queries using b = 0. It is not hard to see that the first hybrid is identically
distributed as NIAR-Expt0, and the last hybrid is identically distributed as NIAR-Expt1. Any pair of
adjacent hybrids are computationally indistinguishable through a straightforward reduction to the
adaptive single-challenge security.
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