
Synchronous Perfectly Secure Message Transmission with
Optimal Asynchronous Fallback Guarantees

Giovanni Deligios1 and Chen-Da Liu-Zhang⋆2

1 gdeligios@inf.ethz.ch, ETH Zurich
2 chen-da.liuzhang@ntt-research.com, NTT Research

Abstract. Secure message transmission (SMT) constitutes a fundamental network-layer building
block for distributed protocols over incomplete networks. More specifically, a sender S and a receiver
R are connected via ℓ disjoint paths, of which at most t paths are controlled by the adversary.
Perfectly-secure SMT protocols in synchronous and asynchronous networks are resilient up to ℓ/2
and ℓ/3 corruptions respectively. In this work, we ask whether it is possible to achieve a perfect
SMT protocol that simultaneously tolerates ts < ℓ/2 corruptions when the network is synchronous,
and ta < ℓ/3 when the network is asynchronous.
We completely resolve this question by showing that perfect SMT is possible if and only if 2ta +ts <
ℓ. In addition, we provide a concretely round-efficient solution for the (slightly worse) trade-off
ta + 2ts < ℓ.
As a direct application of our results, following the recent work by Appan, Chandramouli, and
Choudhury [PODC’22], we obtain an n-party perfectly-secure synchronous multi-party compu-
tation protocol with asynchronous fallback over any network with connectivity ℓ, as long as
ta + 3ts < n and 2ta + ts < ℓ.

1 Introduction

1.1 Motivation

Secure message transmission (SMT) is a fundamental building block that allows to run more complex
distributed protocols over incomplete networks (e.g. consensus protocols, secret-sharing, or secure com-
putation protocols). It allows a sender S and a receiver R of an incomplete network of point-to-point
channels to communicate securely [9]. Justified by the fact that in a ℓ-connected graph there are at least
ℓ disjoint paths among any two nodes [14], one often considers the abstraction in which S and R are
simply connected via ℓ channels (also called wires), representing vertex-disjoint paths in the network
graph. Assuming an adversary that can corrupt at most t parties in the network, this translates to at
most t of the ℓ wires being under the control of the adversary (the ones containing a corrupted node),
while the remaining ℓ − t wires can be considered secure channels. In other words, the secure message
transmission problem asks to construct a secure channel between S and R from ℓ channels of which an
unknown subset of t is under full control of the adversary.

Protocols for SMT can be classified with respect to the underlying communication model. Two promi-
nent models in the literature are the synchronous and asynchronous models. In the synchronous model,
channels are guaranteed to deliver messages within a known delay. In contrast, in the asynchronous
model, the delivery of messages can be delayed arbitrarily by the adversary. As a consequence, parties
cannot wait to receive messages from all parties to proceed in the protocol execution, as there is no way
to distinguish a corrupted party who does not send a message from an honest party whose message is
delayed.

Perfectly secure SMT can be achieved in the synchronous model if up to ts < ℓ/2 wires are cor-
rupted [9, 8, 12], while perfectly secure SMT in the asynchronous model can only tolerate up to ta < ℓ/3
corrupted wires. It is therefore natural to investigate whether there is a protocol that achieves (simulta-
neously) security guarantees in both network models. More concretely, we ask the following question:

⋆ This work was partially carried out while the author was at CMU. Supported in part by the NSF award
1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship,
a PNC center for financial services innovation award, and a Cylab seed funding award.

Under what conditions does there exist a perfectly-secure message transmission protocol that tol-
erates up to ts wires to be corrupted if the network is synchronous, and also up to ta if the network
is asynchronous?

We completely resolve this question by providing several feasibility and impossibility results. More
concretely, we show that 2ta + ts < ℓ is necessary and sufficient for a perfectly-secure message trans-
mission protocol that tolerates up to ts (resp. ta) corrupted wires if the network is synchronous (resp.
asynchronous).

With the recent work by Appan, Chandramouli and Choudhury [1] on perfectly-secure synchronous
multi-party computation (MPC) with asynchronous fallback, we obtain an n-party perfectly-secure syn-
chronous MPC with asynchronous fallback over any network with connectivity ℓ, as long as ta + 3ts < n
and 2ta + ts < ℓ.

Finally, as a result of independent interest, we show that assuming the slightly worse trade-off3 of
ta + 2ts < ℓ, we can achieve a similar perfectly secure message transmission protocol, but that runs in
3 rounds when the network is synchronous. This round complexity is essentially optimal, given that in
the purely synchronous setting the optimal number of rounds is 2 [18, 16].

1.2 Technical Overview

Feasibility. Our feasibility result has three main ingredients:

– A compiler, which given black-box access to a synchronous (enhanced) secure message transmis-
sion protocol and an asynchronous one, provides a protocol with security in both synchronous (up
to ts corruptions) and asynchronous (up to ta ≤ ts corruptions) networks, assuming the trade-off
2ta +ts < ℓ. Intuitively, the synchronous (respectively asynchronous) protocol should provide most of
the security guarantees if the network is synchronous (respectively asynchronous). The synchronous
protocol either runs successfully or guarantees that the sender detects that the network is asyn-
chronous, and can fallback on the asynchronous protocol. The main challenge is ensuring that, if the
network is synchronous, the adversary cannot convince the sender to run the asynchronous protocol,
which only tolerates a lower corruption threshold.

– A Synchronous SMT protocol with the additional guarantees that, if the network is asynchronous,
either the protocol succeeds or the sender is sure that the network is asynchronous. The construction
is round-based. Intuitively, the sender tries to send a secret pad to the receiver by secret sharing
the pad and sending each share over one of the ℓ wires. If too many errors were introduced by the
adversary, the receiver cannot reconstruct the pad, but can inform the sender (via a reliable public
channel that also needs to be constructed, which we denote by RMT). The sender can then detect a
faulty wire and repeat the process excluding this wire (with a fresh pad and a lower degree sharing).
If the sender and the receiver successfully share a secret pad, the actual message can be one-time-pad
encrypted and sent over the public channel.
The main challenge to overcome is properly dealing with erasures (that can originate from faulty
wires or by delays on honest wires). In our model when the network is asynchronous, the adversary
can convince the sender to exclude an honest wire by simply delaying a message along this wire by
longer than the round time. If the sender excludes too many (honest) wires and decreases the degree
of the sharing accordingly, eventually the shares on the ta actually corrupted wires determine the
secret pad, and secrecy is lost. This is where the trade-off comes into play: we only allow the sender
to eliminate up to ts − ta wires. This fixes the problem in the asynchronous setting because the
starting degree is ts, so after removing ts − ta wires, the remaining degree is still ts − (ts − ta) = ta.
Moreover, if the network is synchronous, it is guaranteed that the protocol succeeds at the latest
after the last wire is excluded: there are ℓ−(ts − ta) = ℓ− ts + ta non-excluded wires (among which ta

are corrupted), and the sharing has degree ts − (ts − ta) = ta. Since 2ta < ℓ− ts, the reconstruction is
successful. In turn, if at this point the protocol does not succeed, the sender is sure that the network
is asynchronous. Therefore, the resulting protocol runs in at most ts − ta rounds when the network
is synchronous.

3 This trade-off is worse given that ta ≤ ts. Note that any protocol with asynchronous security is also secure
when run over a synchronous network.

2

– An Asynchronous SMT protocol. This protocol does not require any additional properties for the
higher synchronous corruption threshold of ts, and therefore any protocol from the literature can be
used in a black-box fashion. We report a known construction in our notation and prove its security.

Impossibility. We prove that our feasibility result is tight, by showing that the trade-off assumption
2ta + ts < ℓ on the corruption thresholds we made up to this point is not only sufficient, but also
necessary to achieve secure message transmission in this hybrid model. Towards contradiction, consider
2ta + ts = n. Partition the channels into three sets K, A, B of sizes |A| = |B| = ta and |K| = ts. At a
high level, the idea is as follows: the information travelling over the channels in A and B must completely
determine the message being transmitted (even if no information is transmitted over K). This is because
in the synchronous setting, the transmission succeeds when there are ts corruptions. However, if the
network is asynchronous, the adversary can delay all the information via the channels in K, and control
half of the remaining channels, which are enough to tamper with the output of the receiver. Proving this
precisely requires a carefully designed scenario-based argument.
Round-Efficient Synchronous SMT with Sub-Optimal Trade-Off. We slightly strengthen these
assumptions to ta + 2ts < n to achieve a protocol that almost achieves the optimal round complexity
of protocols in the purely synchronous model. Intuitively, the stronger trade-off helps for the following
reason: if the network is asynchronous, the adversary can delay messages on up to ts-wires (and change
those on up to ta), and the receiver can still not be sure the network is asynchronous (the ts erasures could
also originate on wires in a synchronous network). During the transmission of a secret pad, this results
in ts + ta actual wrong shares. Under the stronger assumption, ts + ta < n − ts, which is the number of
wrong shares that can be tolerated (in the sense of at least detected) in the purely synchronous setting.
Therefore, erasures can simply be treated as wrong values, greatly reducing the need for interaction
between S and R.

Some of our constructions heavily exploit the linearity of the underlying secret sharing schemes and
the fact that errors are always introduced on the same wires. In this setting, the language of error-
correcting codes significantly improves the exposition. For consistency, we adopt this language for all
of our constructions. It is well known that threshold secret sharing schemes and maximum distance
separable codes are essentially equivalent. Lemma 10, for example, can be understood as constructing
a secret sharing scheme from an appropriate code. It should therefore not come as a surprise that at
many points we talk about secret sharing schemes or certain error-correcting codes interchangeably. More
details can be found in [6].

1.3 Related Work

Synchronous Protocols with Asynchronous Fallback. A recent line of works [2, 4, 3, 7, 15, 1, 11]
has investigated the feasibility and efficiency of distributed protocols (consensus and secure computation
protocols) that are secure in both synchronous and asynchronous networks. All these works assume a
complete network of point-to-point channels among the parties. Our work expands upon this line by
considering the simplest building block for distributed protocols over incomplete networks.
Secure Message Transmission. The problem of SMT in synchronous networks has been widely in-
vestigated [9, 17, 19, 13, 10, 18]. Perfectly-secure SMT can be achieved, allowing multiple rounds of
interaction between the sender and the receiver, if and only if t < ℓ/2 channels are under control of
the adversary [9]. Several works focused on improving the round complexity, achieving optimal 2-round
constructions [18, 16]. In the asynchronous model, the number of corrupted channels tolerated decreases
to t < n/3 for perfect security, but interestingly it is still possible up to t < ℓ/2 corruptions [5] when
allowing a small probability of error.

1.4 Outline of the Paper

In Section 2 we introduce our model and a definition for secure message transmission. Section 3 contains
the feasibility result for 2ta + ts < n, and Section 4 includes the corresponding tight impossibility result.
In Section 5, we show a protocol with concrete round efficiency (when the network is synchronous),
under the trade-off ta + 2ts < n. Finally, Section 6 concludes putting by things together and posing open
problems.

3

2 Preliminaries

2.1 Model

Adversary. We consider an active threshold adversary which is allowed to adaptively (based on the
information gathered during the execution of the protocol) corrupt a subset of at most t of the parties
(in the secure message transmission abstraction, this amounts to corrupting t channels). We assume
that the adversary is computationally unbounded and we consider information theoretic security for our
protocols.

Network Topology. We consider an incomplete network of point-to-point secure channels among par-
ties. We identify the network as a graph, where parties represent vertices and channels represent edges.
We say a graph is ℓ-connected if ℓ is the minimum number of edges that must be removed in order to
disconnect any two vertices in the graph (two vertices are disconnected if there is no path with these
vertices as endpoints). The connectivity ℓ is equal to the number of disjoint paths between any two given
vertices [14]. We assume that the network topology is fixed and known to the parties before executing a
protocol.

Communication Model. We consider a model in which parties have access to local clocks and are not
a priori aware of the network conditions when executing a protocol. We distinguish two possibilities: the
synchronous model and the asynchronous model.

In the synchronous model, the local clocks are synchronized, and messages are guaranteed to be
delivered within some known time bound ∆. The communication can then naturally be described as
proceeding in rounds, where for N ∋ r ≥ 1, each message received in the time slot [r∆, (r + 1)∆)
(according to the local clock of each party) is regarded as a round r message.

In the asynchronous model, parties do not have access to synchronized clocks. The adversary is allowed
to schedule the delivery of messages arbitrarily, but each message sent by honest parties must eventually
be delivered (this guarantee is needed if one wishes to make statements about protocol termination).
In this setting, one describes protocols in a message-driven fashion. This means that, upon receiving a
message, a party adds this message to a pool of received messages and checks weather a list of conditions
specified from the protocol is satisfied to decide on its next action (sending a message, producing output,
terminating, etc.).

In our model, both descriptions can be adopted. In a round-based protocol, if a message is received
outside of the time allocated for a certain round, it is ignored. In the secure message transmission
abstraction, the assumptions on the communication network directly translate into assumptions on the
ℓ wires connecting S and R. However, the assumed maximum delay on the resulting channels needs to
account for the delays of all channels in the corresponding paths (meaning each wire will have a delay
of d · ∆, where d denotes the diameter of the network graph).

2.2 Definitions

A secure message transmission protocol allows two parties, connected by multiple channels (wires), to
communicate securely even when a subset of the channels is under the control of an adversary.

This abstraction captures the scenario in which two parties part of an incomplete network of secure
channels wish to communicate securely. Disjoint paths in the network graph serve as channels. A channel
is corrupted if at least one of the parties (nodes) on the path is corrupted. Notice that all guarantees are
lost if either the sender or the receiver do not follow the protocol.

We slightly deviate from usual definitions by requiring that the sender protocol also produces a
Boolean output. Intuitively, the output is 1 if the sender knows the protocol succeeded. Similarly, the
receiver is allowed to output a value ⊥. Intuitively, this means they could not produce a valid output.

Definition 1. (Secure Message Transmission) Let Π be a protocol executed between S (the sender) with
input m ∈ F and randomness r1 and output b ∈ {0, 1} and R (the receiver) with randomness r2 and
output v ∈ F ∪ {⊥}, connected by channels (c1, . . . , cℓ). We say Π is a protocol for SMT achieving:

– (t-correctness) if whenever up to t channels are under control of the adversary, if S has input m,
then R outputs v = m and S outputs b = 1;

4

– (t-perfect4 privacy) if for all m, m′, for all k ≥ 1, for all I ⊆ {1, . . . , ℓ} such that |I| ≤ t, the
distributions of T k

I,m and T k
I,m′ are equal, where T k

I,m denotes the random variable whose values are
the k-th messages travelling on the channels {ci}i∈I when the sender has input m;

– (t-termination) if whenever up to t channels are under control of the adversary, S and R terminate;
– (t-weak correctness) if whenever up to t channels are under control of the adversary, if S has input

m, then
• R outputs m or ⊥;
• R outputs m or S outputs 0.

If Π achieves t-correctness, t-perfect privacy and t-termination, we say that Π is t-perfectly secure.

In what follows, unless otherwise stated, an SMT protocol is to be understood as perfectly secure.
Depending on the assumptions made on the channels ci, we will consider two cases. If the channels
are synchronous (cf. Section 2.1), we will talk about synchronous SMT (sSMT); if the channels are
asynchronous we will talk about asynchronous SMT (aSMT).

3 Secure Message Transmission with Fallback

Throughout this section, we work in the abstract setting of an honest sender and receiver connected by ℓ
channels, t of which are under full control of the adversary, and the remaining ℓ − t are secure channels.

We show an SMT protocol which is secure regardless of whether the sender and the receiver are
connected by synchronous or asynchronous channels. The protocol tolerates up to ts < ℓ/2 channels to
be under the control of the adversary if the channels are synchronous, and up to ta < ℓ/3 if the channels
are asynchronous, under optimal trade-offs on the corruption thresholds 2ta + ts < ℓ (optimality of the
trade-offs is discussed in Section 4).

3.1 Compiler

First, we present a compiler that combines a synchronous sSMT protocol and an asynchronous aSMT
protocol to obtain a protocol that is secure in both communication models. The synchronous component
needs to provide certain guarantees even the channels are asynchronous, while the asynchronous one
does not require any additional guarantees. More specifically let ΠsSMT = (Ss, Rs) be an SMT protocol
with the following properties:

– If (c1, ..., cℓ) are synchronous channels: ts-security.
– If (c1, ..., cℓ) are asynchronous channels: ta-(perfect) privacy, ta-weak correctness, ta-termination.

Moreover, let ΠaSMT = (Sa, Ra) be an SMT protocol with the following properties:

– If (c1, ..., cℓ) are asynchronous channels: ta-security.

The sender and the receiver first run the synchronous protocol. If the network is synchronous, then ts-
security guarantees that the protocol succeeds. In this case, the asynchronous protocol is not run. If the
network is asynchronous, ta-weak correctness guarantees that any output by the receiver matches the
message sent by the sender. However, in this case the protocol might also fail and the receiver might not
produce output. If this happens, ta-weak correctness of the synchronous protocol comes to the rescue
again: the sender can detect that something went wrong and run the asynchronous protocol. Asyn-
chronous secure message transmission does not require interaction: if the receiver has already produced
output while running the synchronous protocol, they simply ignore any further messages. Otherwise,
ta-security of the asynchronous component guarantees that the protocol terminates successfully. Notice
that even when the network is asynchronous, the synchronous protocol still ta-provides privacy. This
idea is formalized in the following protocol.

4 By requiring the distributions T k
I,m and T k

I,m′ to be statistically close or computationally indistinguishable
one obtains the notion of statistical security and computational security. In this paper, we are only concerned
with perfect security.

5

Code for Sh(m, r1):

1: b← Ss(m, r1);
2: if b = 1 then
3: return b;
4: else
5: b← Sa(m, r1);
6: return b;
7: end if

Code for Rh(r2):

1: v ← Rs(r2);
2: if v ̸= ⊥ then
3: return v;
4: else
5: v ← Ra(r2);
6: return v;
7: end if

Protocol ΠhSMT(ΠsSMT, ΠaSMT)

Lemma 1. If (c1, ..., cℓ) are synchronous channels and at most ts channels are under control of the
adversary, then ΠsSMT achieves ts-security.

Proof. Let’s first argue about correctness. By ts correctness of ΠsSMT, Rs outputs m, and by ts-
termination Rs terminates. So Rh outputs m. By the same reasoning, since Ss outputs 1, Sh outputs
1 and terminates (and never runs Sa). Since ΠsSMT achieves ts-privacy, and Protocol ΠaSMT is not run,
ts-privacy is preserved. To conclude, ts termination follows from ts-termination and ts-correctness of
ΠsSMT.

Lemma 2. If (c1, ..., cℓ) are asynchronous channels and at most ta channels are under control of the
adversary then ΠhSMT achieves ta-security.

Proof. Let’s first argue about correctness. By ta-weak correctness of ΠsSMT we only need to distinguish
two cases. If Rs outputs v = m then Rh outputs b = m (even if Sh might run Sa). In this case, if Ss

outputs b = 1, then Sh outputs b = 1 and terminates. Else, it runs Sa(m, r1), and by ta-correctness of
ΠaSMT it outputs b = 1 and terminates. Else, if Rs output v = ⊥, then ta-weak correctness of ΠsSMT
guarantees that Ss outputs b = 0. This means that Sh runs Sa(m, r1) and Ra runs Ra(r2). Therefore,
by ta-correctness of ΠaSMT, the output of Sa (and therefore Sh) is b = 1, while Ra (and therefore Rh)
outputs v = m. From ta-perfect privacy of ΠsSMT and ΠaSMT directly follows ta-perfect privacy of ΠhSMT.
Arguing about termination is straightforward.

3.2 Synchronous RMT with Asynchronous Detection

Before describing our construction for ΠsSMT, it will be useful to discuss the weaker primitive of Robust
Message Transmission (RMT). Intuitively, an RMT protocol is an SMT protocol that provides no privacy
guarantees (i.e. a public channel between the sender and the receiver that the adversary cannot tamper
with). More formally, an RMT protocol is a protocol satisfying the correctness and termination properties
of Definition 1. In the context of secure message transmission, such a primitive is often referred to as
broadcast.

Consider the scenario where a sender S and a receiver R are connected by ℓ channels (c1, . . . , cℓ) of
which at most t < ℓ/2 under control of the adversary and the remaining ℓ − t are secure channels. Here
RMT can be achieved by S sending the same message over all channels, and R taking a majority decision
over the received messages (this is the same as encoding and decoding using an (1, ℓ)-repetition code).

We use RMT as a building block in our synchronous sSMT protocols. To provide the security guar-
antees we are after in our synchronous model with asynchronous fallback, we require enhanced RMT
protocols. More specifically, when the channels are asynchronous and up to ta are under control of the
adversary, we still require that either S′s message is correctly delivered to R, or that S detects that
something went wrong. This is formalized in the following protocol and lemmas.

6

Code for S(m):
Initialize b := 0;
Round 1: send m over ci for all 1 ≤ i ≤ ℓ;
Round 2: if ok is received over at least ts + 1 channels, set b := 1; output b and terminate;

Code for R():

Initialize v := ⊥;
Round 1: if there is m ∈ F received over at least ts + 1 channels, set v := m and send ok over ci for all
1 ≤ i ≤ ℓ;
Round 2: output v and terminate;

Protocol Πts
sRMT

Lemma 3. Assume that ta ≤ ts < ℓ/2. If (c1, ..., cℓ) are synchronous channels and at most ts channels
are under control of the adversary, then ΠsRMT achieves ts-correctness and ts-termination.

Proof. Since the channels are synchronous, in Round 1 the receiver R receives the value m over at least
ℓ − ts > ts distinct channels (and any m′ ̸= m over at most ts). This means that R sets v = m and sends
ok over all channels. Therefore, in Round 2, the receiver R outputs v = m, while the sender S receives
the message ok over at least ℓ − ts > ts distinct channels, and outputs b = 1. Arguing about termination
is straightforward, as the protocol is round-based.

Lemma 4. Assume that ta ≤ ts < ℓ/2. If (c1, ..., cℓ) are asynchronous channels and at most ta channels
are under control of the adversary, then ΠsRMT achieves ta-weak correctness and ta-termination.

Proof. If the receiver outputs v ̸= ⊥ in Round 2, they have received at least ts +1 ≥ ta +1 > ta messages
v over distinct channels in Round 1. This means that at least 1 of these messages came from an honest
channel, which means that v = m. On the other hand, if the receiver R outputs ⊥, there is no message m
that they have received over ts + 1 channels in Round 1, and therefore they do not send the message ok
over any channel to S in Round 2. Since the adversary can produce at most ta ≤ ts < ts +1 messages ok,
then the sender S outputs 0 in Round 2. Arguing about termination is straightforward, as the protocol
is round-based.

3.3 Synchronous SMT with Asynchronous Detection

We show a sSMT protocol which is ts-secure when the network is synchronous and ta-secure when the
network is asynchronous, under the (provably optimal) trade-off assumption 2ta + ts < ℓ.

The protocol takes after one of the first synchronous constructions introduced by Dolev et al. [9].
The idea is the following: the sender S selects a random pad and secret shares it using a (ℓ, ts)-threshold
secret sharing scheme, sending each share over a distinct channel. The receiver R tries to reconstruct the
secret from the received shares. If reconstruction fails because too many shares were tampered with by
the adversary, the receiver R sends the received messages back to S via sRMT (the roles of sender and
receiver are reversed in this sub-protocol). The sender S identifies at least one corrupted channel, and
the process is then repeated (with a fresh pad and a lower degree sharing) excluding this faulty channel.

In a purely synchronous setting, in each round of interaction the number of corrupted channels
strictly decreases, so that after at most (ts + 1)-rounds R receives a pad correctly. Once a pad has been
transmitted successfully, in the following round S can use the pad to one-time-pad encrypt the message
and send it to R via sRMT.

In our setting things are more complicated. If the channels are asynchronous, the adversary could
convince S that a certain channel is corrupted by simply delaying the message on this channel by longer
than the round time ∆. By doing so, the adversary can force S to eliminate honest channels one-at-a-
time, until the degree of the sharing of the pad is low enough that the ta known shares determine the
secret pad, thus violating privacy.

To overcome this problem, one must keep S from removing too many channels (at most ts−ta), so that
the degree of the sharing is never smaller than ta. This solves a problem but creates others: since now we
can never eliminate all the corrupted channels even if the network is synchronous, how do we guarantee
correctness? Our trade-off assumption 2ta + ts < ℓ plays a crucial role here. To be consistent with the

7

rest of the presentation, we explain the protocol using the language of error-correcting codes. Lemma 10
guarantees that, for all ℓ and i < ℓ there exists a pair (C(i), h(i)) where C(i) is an (ℓ − i, ts + 1 − i, ℓ − ts)-
linear MDS code such that for all x ∈ C(i) the scalar product h(i)xT is uniformly random in F even
when up to ts − i symbols of x are known. Let decodeC(i)(y) be an (efficient) decoding algorithm for
C(i) returning a pair (b, x). If decoding is succesful, then b = 1 and x ∈ C, otherwise b = 0. To ease the
notation, we consider that the sRMT protocol runs in 1 round.

Code for S(m, r1)

1: elimChannels← ∅;
2: b← 0; // records success of pad transmission

Round 2r − 1, for r ≥ 1 :
3: k ← #elimChannels;
4: if k > ts − ta then // prevents sender from eliminating too many channels
5: return b;
6: end if
7: b̄← ΠsRMT(elimChannels); // tell R what channels to consider
8: if b̄ = 0 then
9: return b̄;

10: end if
11: x←$ C(k);
12: ci ← xi; // send i-th symbol of x along ci

Round 2r:
13: y′ ← ΠsRMT();
14: if y′ = ok then
15: e← m + h(k)xT ; // one-time-pad encryption
16: b← ΠsRMT(e);
17: return b;
18: end if
19: if y′ = ⊥ then
20: return b;
21: end if
22: p← smallest index such that y′ ̸= x; // find one corrupted channel
23: elimChannels← elimChannels ∪ {p};
Code for R()

24: v ← 0;
25: b′ ← 0; // true only successfully communicating ok to the sender// true only after successful decoding
Round 2r − 1, for r ≥ 1:
25: elimChannels′ ← ΠsRMT();
26: if elimChannels′ ̸= ⊥ then
27: k′ ← #elimChannels′;
28: for i /∈ elimChannels′ do
29: yi ← ci; // only read values on good channels
30: end for
31: if yj ̸= ⊥ for all j /∈ elimChanels′ then
32: (v, x′)← decodeC0 (y);
33: end if
34: end if
Round 2r:
35: if b′ = 1 then
36: e′ ← ΠsRMT();
37: if e′ ̸= ⊥ then
38: m′ ← e′ − h(k′)x′; // one-time-pad decryption
39: return m′;
40: end if

Protocol Πts,ta
sSMT

(
Πts

sRMT,
{
C(k), h(k)}ts−ta

k=1

)

8

41: if e′ = ⊥ then
42: return e′

43: end if
44: end if
45: if v=1 then
46: b′ ← ΠsRMT(ok);
47: end if
48: if v = 0 then
49: b′ ← ΠsRMT(y); // information to identify corrupted channels
50: end if

Lemma 5. Assume 2ta+ts < ℓ, ta ≤ ts, and ts < ℓ/2. Then, if the channels (c1, . . . , cℓ) are synchronous
and at most ts are under control of the adversary, protocol Πta,ts

sSMT achieves ts-security.

Proof. To begin, we argue about ts-correctness. In any round, by ts-correctness of sRMT we have
elimChannels′ = elimChannels, so that k = k′. Therefore S and R agree on the code being used
for transmission of the code-word x and on the set of channels to consider. In any given round, either de-
coding of the code-word x′ is successful, or S detects one corrupted channel and adds it to elimChannels.
If the adversary does not introduce any errors in the code-word x, then decoding succeeds. If decoding
fails (or does not happen at all because a value was erased), then the adversary has introduced at least
one error in the code-word x. Hence in Round r + 1, the sender S will find at least one index p such that
y′ ̸= x, and add p to elimChannels. Decoding always succeeds when k = k′ = #elimChannels = ts −ta.
In this case, dmin

(
C(k)) = ℓ−ts, while the number of corrupted channels is at most ts−(ts−ta) = ta. Since

by assumption ta ≤ n−ts−1
2 , then also ta ≤

⌊
dmin(C(k))−1

2

⌋
. If decoding succeeds, then x = x′ and (again

thanks to ts-correctness of sRMT) it follows that m′ = e′ − h(k′)x′ = e − h(k)x = m + h(k)x − h(k)x = m
and b = 1. To argue about ts-perfect privacy, we show that in each round the adversary learns no infor-
mation about the secret pad h(k)x. This is guaranteed by Lemma 10 if the number of corrupted channels
is strictly smaller than dim

(
C(k)) = ts + 1 − k. Because the number of corrupted channels equals ts − k

for all k, the claim holds. Termination is straightforward as the protocol is round-based.

Lemma 6. Assume 2ta + ts < ℓ, ta ≤ ts, and ts < ℓ/2. If the channels (c1, . . . , cℓ) are synchronous and
at most ts are under control of the adversary, protocol Πta,ts

sSMT achieves ta-weak correctness, ta-perfect
privacy, and ta-termination.

Proof. We first argue about ts-correctness. If R outputs ⊥, then ta-weak correctness of ΠsRMT guarantees
that S outputs 0. Assume that R outputs m′ ̸= ⊥. Then, by inspection of the protocol, we know that
v = 1 (which also implies a symbol was received on all channels not in elimChannels), m′ = e′ −h(k′)x′,
and x′ = decode(k′)

C (y). Notice that ta-weak correctness of ΠsRMT guarantees that k′ = k and e = e′.
Since decoding was successful, we know that x′ = x, as the maximum number of errors introduced by
the adversary is ta, while dmin

(
C(k)) = ℓ − ts, so that the assumption 2ta + ts < ℓ guarantees that

ta ≤
⌊

dmin(C(k))−1
2

⌋
. Therefore, m′ = e′ − h(k′)x′ = e − h(k)x = m + h(k)x − h(k)x = m. To argue about

ta-perfect privacy, we show that in each round the adversary learns no information about the secret pad
h(k)x. This is guaranteed by Lemma 10 if the number of corrupted channels is strictly smaller than
dim

(
C(k)) = ts + 1 − k. Observe that at any point in the execution of the protocol k ≤ ts − ta. Since

the number of corrupted channels is at most ta, then for all k we have dim
(
C(k)) ≥ ts + 1 − (ts − ta) ≥

ta + 1 > ta, and the claim holds. Termination is straightforward as the protocol is round-based.

3.4 Asynchronous SMT

We present an SMT protocol that is secure when channels (c1, . . . , cℓ) are asynchronous even if up to ta of
them are under control of the adversary. This protocol can be used as the asynchronous protocol ΠaSMT
in the compiler ΠhSMT of Section 3.1. Since we do not require any ad-hoc properties, we can employ any
protocol from the literature in a black-box fashion, but we describe a protocol for completeness.

The idea is simple: the sender secret shares their input with a (ℓ, ta)-threshold secret sharing scheme
sending each share along a distinct channel. The receiver waits until they have received 2ta +1 consistent

9

shares, and then reconstructs the secret. We describe the protocol using the language of error correcting
codes for consistency with other constructions presented. Let (C, h) be a code and a vector as in Lemma
10, with ts = ta. As a result, C is an (ℓ, ta + 1, 2ta + 1) MDS code. Let decodeC(y) denote an (efficient)
decoding algorithm for C returning a couple (b, x). If decoding is successful x is the decoded code-word
and b = 1, otherwise b = 0 .

Code for S(m, r1):

4: x←$ {y ∈ C |hyT = m};
5: ci ← xi;

Code for R():

1: receivedCounter← 0;
2: y← (⊥, . . . ,⊥);

Upon receiving a value on channel ci do
6: yi ← ci

7: receivedCounter← receivedCounter + 1;
8: if receivedCounter ≥ ℓ− ta then
9: for 1 ≤ i ≤ ℓ do

10: if yi = ⊥ then
11: yi ← 0;
12: end if
13: end for
14: (b, x′)← decodeC(y);
15: if b = 1 then
16: m′ ← hx′T ;
17: return m′;
18: end if
19: end if

Protocol Πta
aSMT(C, h)

Lemma 7. Assume 3ta < ℓ. If (c1, ..., cℓ) are asynchronous channels and at most ta channels are under
control of the adversary, then protocol Πta

aSMT(C, h) achieves ta- security.

Proof. Let’s first argue about ta-correctness. Assume the receiver R outputs m′. Then m′ = hx′T so that
it suffices to show that x = x′. Since in this case we know b = 1, it means the decodeC(y) terminated
successfully. At most ta + (ℓ − (ℓ − ta)) symbols of y′ are different than those of x (at most ta ones
received from channels under control of the adversary and at most ℓ − (ℓ − ta) set to 0 by R) and
therefore x′ = x, because dmin(C) = 2ta + 1. Lemma 10 directly implies ta-perfect privacy, since hxT is
statistically independent from the at most ta symbols of x that the adversary learns. Finally, since at
least ℓ− ta values travelling on channels not under control of the adversary are eventually delivered to R,
the algorithm decodeC(y) eventually succeeds, because y contains at most ta errors and ta ≤ ⌊ dmin(C)−1

2 ⌋.
This guarantees ta-termination.

4 Impossibility Result

We justify the trade-off assumptions made in the SMT constructions from previous sections, and show
that the trade-off 2ta + ts < ℓ, together with the trivial constraints ta ≤ ts and ts < ℓ/2, is necessary to
achieve perfectly secure message transmission in our hybrid model. The following Lemma is inspired by
proofs in [5, 2, 4], from which we also borrow some notation.

Lemma 8. Let ta ≤ ts. There exists no SMT protocol that is both ts-perfectly secure if the channels are
synchronous and ta-perfectly secure if the channels are asynchronous, for ts + 2ta ≥ ℓ.

Proof. Let 2ta + ts = ℓ, and assume there is a SMT protocol Π that is ts-perfectly secure when the
channels are synchronous and ta-perfectly secure when the channels are asynchronous. Let K, A, B denote
a partition of the set of ℓ channels such that |A| = |B| = ta and |K| = ts. Consider the following scenarios.

10

– Scenario 1. All channels are synchronous, the sender S has input message m1 ∈ F and randomness
r1. The receiver randomness is r′

1. The adversary corrupts the channels in K and simply deletes all
messages on these channels. Let α1 denote the messages travelling on channels A and β1 denote the
messages travelling on channels B in this execution. Denote by T1 the time it takes for this protocol
to terminate (with respect to the receiver’s local clock).

By ts-perfect privacy of Π and because ta ≤ ts, it follows that, for all m2 ̸= m1 ∈ F, there exist sender
and receiver randomness r2 and r′

2 such that the messages travelling on channels A are exactly α1.5 With
this observation in mind, consider the following scenarios.

– Scenario 2. All channels are synchronous and bidirectional, the sender S has input message m2 ∈ F
and randomness r2. The receiver randomness is r′

2. The adversary corrupts the channels in K and
simply deletes all messages on these channels. Let α2 = α denote the messages travelling on the
wires A, and β2 denote the messages travelling on the wires B. Denote by T2 the time it takes for
this protocol to terminate (with respect to the receiver’s local clock).

– Scenario 3. All channels are asynchronous and bidirectional, the sender S has input m1 ∈ F and
randomness r1, and the receiver R has randomness r′

2. The adversary delays all messages travelling
on the channels in K by longer than T1 + T2. Furthermore the adversary corrupts the channels in B,
and sends messages according to β2 from the sender to the receiver, and according to β1 from the
receiver to the sender. Furthermore, the adversary schedules the delivery of messages according to
executions of Scenarios 1 and 2.

In Scenario 1, by ts-correctness of Π, the receiver outputs m1. By the same reasoning, in Scenario 2, the
receiver outputs m2. In scenario 3, the view of the receiver is identical to that of Scenario 2. However,
by ta-correctness of Π, the receiver outputs m1, which is a contradiction, since we assumed m1 ̸= m2.

5 Round-Efficient Synchronous SMT with Sub-Optimal Trade-off

Assuming the trade-off ta + 2ts < ℓ, we show a protocol ΠsSMT with the properties required for the com-
piler presented in Section 3.1 and that runs in 3 rounds when the network is synchronous. This (almost)
matches the optimal round complexity of purely synchronous protocols (2 rounds). Our construction
adapts known ideas (cf. [18, 16]) to the context of security with fallback. Before giving an overview of
the protocol, we establish the main technical tools used in the construction. In Section A we provide
basic concepts about error-correcting codes needed for our goals.

Lemma 9 ([18], Lemma 2). Let C be an (ℓ, k, d)-linear code over Fq. Let H be the parity-check matrix
of C. Let E be a linear subspace of Fn

q such that w(e) < d for all e ∈ E. Then

σ|E : E → Fℓ−k
q

e 7→ HeT

is injective.

Proof. Consider ker(σ|E). If c ∈ C then c ∈ ker(σ). Since 0 ∈ C, then for all 0 ̸= e ∈ E we have
e /∈ C, because the minimum Hamming distance of C is d and w(e) = d(e, 0) < d. Hence, ker(σ|E) =
ker(σ) ∩ E = {0}.

Definition 2. Let Y ⊆ Fn
q . A pseudo-basis of Y is a subset W ⊆ Y such that σ(W) is a basis of the

linear subspace ⟨σ(Y)⟩ of Fn−k
q .

Remark 1. (Computing Errors from Syndromes and a Pseudo-Basis) For some q > ℓ−k consider
the set X =

{
x(1), . . . , x(q)} ⊆ C, and the set E =

{
e(1), . . . , e(q)} ⊆ Fn

q with the property that #{j :
∃k. e

(k)
j ̸= 0} = d (i.e. errors all introduced at the same d coordinates). Finally, let Y = {y(1), . . . , y(q)},

5 This reasoning does not go through if we allow for an error probability in the protocols. In fact, this impossibility
result does not apply to statistically secure message transmission.

11

where y(k) = x(k) + e(k). Knowing the code-words X and a pseudo-basis of Y, one can compute the set
E , as follows.

Consider the syndromes σ
(
e(k)) for all 1 ≤ k ≤ q. Since σ

(
e(k)) = σ

(
y(k)) ∈ ⟨σ (Y)⟩, given a pseudo-

basis W =
{

y(i)}
i∈I

of Y, for all 1 ≤ k ≤ q there exist (and can be efficiently computed) coefficients{
λ

(k)
i

}
i∈I

⊂ Fq such that

σ
(

e(k)
)

=
∑
i∈I

λ
(k)
i σ

(
y(i)
)

.

From σ
(
y(i)) = σ

(
x(i) + e(i)) = σ

(
x(i))+ σ

(
e(i)) = σ

(
e(i)) it follows that

σ
(

e(k)
)

=
∑
i∈I

λ
(k)
i σ

(
e(i)
)

= σ

(∑
i∈I

λ
(k)
i e(i)

)
.

Due to the assumptions made on the error vectors, by Lemma 9 we know that the syndrome map σ is
injective when restricted to the set E , which implies

e(k) =
∑
i∈I

λ
(k)
i e(i).

Remark 1 should already hint to a possible approach. The intuition is the following: the receiver R
picks ℓ random field elements, encodes them using an (ℓ, ts, ts + ta + 1) MDS code, and then sends the
i-th coordinate of the each code-word to the sender via channel ci. The sender receives these code-words
with errors introduced by the adversary. Notice that, if the network is asynchronous, the adversary can
modify up to ta symbols of a code-word and erase up to ts symbols. However, we can still ensure that
the ts + ta errors occur at the same coordinates for all words: if the coordinates at which erasures happen
exceed ts, then the sender knows that the channels are asynchronous.

Once the error versions of the code-words have been received, the sender S computes a pseudo-basis,
and communicates it to R via RMT together with the syndromes of the errors introduced on code-
words that are not in the pseudo-basis. Using Remark 1, the receiver R can now compute all the errors
introduced by the adversary on all the code-words sent to S. The code-words in the pseudo-basis have
been revealed to the adversary, but the remaining words can now be used as shared secret randomness
between S and R to one-time-pad encrypt messages and communicate them via RMT

Error-correcting codes need not give any privacy guarantees. For our purposes, however, the knowledge
that the adversary gains by seeing up to ts coordinates of a code-word must not completely determine the
code-word (the remaining entropy can be extracted to use as an encryption pad). Considering appropriate
codes solves this issue: it is well-known that certain classes of codes are equivalent to threshold-secret
sharing schemes. Some details are provided in Section A.

Lastly, in order for R to correctly compute the errors introduced by the adversary, the minimum
distance of the code used must be greater than ts + ta.

Does there exists a code with all the required properties? The following lemma answers this question
in the affirmative, under the assumption that ta + 2ts < ℓ. Let U denote a uniformly distributed random
variable over Fq, and let X = (X1, . . . , Xℓ) denote a uniformly distributed random variable over C.

Lemma 10. There exists an (ℓ, ts + 1, ℓ − ts)-linear code C and a vector h ∈ Fn
q such that, for all

I ⊆ {1, . . . , ℓ} with |I| ≤ ts, the joint distributions ((Xi)i∈I , U) and
(
(Xi)i∈I , hXT

)
are equal.

Proof. Let C′ be an (ℓ+1, ts +1, ℓ− ts +1) Reed-Solomon code. Such a code exists for all choices of ℓ and
ts ≤ ℓ (assuming a large enough q). Let C be the code of length ℓ defined as follows: x ∈ C if and only if
there exists y ∈ Fq such that (x, y) ∈ C′. In other words, C is composed of all code-words of C′ deprived of
the last component: we write x′ 7→ x for the projection map. Since this map is linear, the code C is a linear
code. If x1, x2 ∈ C then d(x1, x2) ≥ d(x′

1, x′
2)−1 ≥ dmin(C′)−1 ≥ ℓ−ts, so that the minimum distance of

C is ℓ − ts. The dimension of C remains ts + 1: let b′
1, . . . , b′

ts+1 be a basis of C′. Suppose that there exist
Fq ∋ λi’s such that

∑ts+1
i=1 λibi = 0. Then

∑ts+1
i=1 λib′

i ∈ C′ and d
(∑ts+1

i=1 λibi, 0
)

= 1, which contradicts
our assumptions on ts. Now to the second part of the lemma. For each x ∈ C there is a (unique, because
the minimum distance of C′ is greater than one) xn+1 ∈ Fq such that (x, xn+1) = x′ ∈ C′. Assume (h, α)
to be a vector in C′⊥ such that α ̸= 0, so that hxT = (h, α)x′T − αxn+1 = −αxn+1. Furthermore, since

12

the dimension of C′ is ts +1, any ts +1 coordinates completely determine a code-word. Let I ⊂ {1, . . . , ℓ}
such that |I| ≤ ts. For all a, {βi}i∈I ∈ Fq we have

Pr
(
hXT = a

∣∣ (Xi)i∈I = (βi)i∈I

)
=

Pr
(

Xn+1 = a

−α

∣∣∣∣ (Xi)i∈I = (βi)i∈I

)
=

Pr
(

U = a

−α

)
.

(1)

To find such a vector (h, α) consider the parity-check matrix H of C′. Since C′ is an MDS code, there is
at least one row of H of the form (h, α) with non-zero α.

Remark 2. Lemma 10 guarantees that for all a ∈ Fq and for all I with |I| ≤ t, the probability
Pr
(
hxT = a

∣∣ (Xi)i∈I = (βi)i∈I

)
= 1/|F|q. Then, for all e with support I, also has

Pr
(
h(x + e)T = a

∣∣ (Xi)i∈I = (βi)i∈I

)
=

Pr
(
hxT = a − heT

∣∣ (Xi)i∈I = (βi)i∈I

)
= 1/|F|q.

(2)

Intuitively, this means that good randomness to use for one-time-pad encryption of the message can be
extracted even from a code-word containing errors.

We now present the protocol. Let PseudoBasisC
(
y(1), . . . , y(q)) be an algorithm that, given vec-

tors y(1), . . . , y(q) with q ≥ ℓ − dim(C), efficiently computes a pseudo-basis for these vectors. Let
ComputeErrorsC

(
W, x(1), . . . , x(q), σ, p

)
be an algorithm that, given a pseudo-basis of some corrupted

versions of x(1), . . . , x(q), computes the error introduced on x(p) from the syndrome σ = σ(e(p)) as
described in Remark 1. Let C and h be as in Lemma 10.

Code for S(m):

1: b← 0;
Round 1:
2: erasureCounter← 0;
3: for 1 ≤ i ≤ ℓ do
4:

(
y

(1)
i , . . . , y

(ts+1)
i

)
← ci;

5: if y
(j)
i missing for some j then

6: erasureCounter← erasureCounter + 1;
7: end if
8: end for
9: if erasureCounter ≥ ts + 1 then

10: return b;
11: end if
12: for 1 ≤ j ≤ ts + 1 do
13: y(j) ←

(
y

(j)
1 , . . . , y

(j)
ℓ

)
;

14: end for
15: W ← PseudoBasisC

(
y(1), . . . , y(q));

16: y(p) ←
{

y(j)}ts+1
j=1

\W; // find vector not in the pseudo-basis
17: σ ← H(y(p))T ; // the syndrome of y(p)

18: pad← h(y(p))T ; // the pad to use for encryption
Round 2, 3:
12: b← ΠsRMT (W, s, m + pad);
13: return b;
Code for R(r2):

14: v ← ⊥;
Round 1:

Protocol Πts,ta
sSMT (C, h)

13

15: x(1), . . . , x(ts+1) ←$ C;
16: for 1 ≤ i ≤ ℓ do
17: ci ←

(
x

(1)
i , . . . , x

(ts+1)
i

)
;

18: end for
Round 2,3:
19: (W ′, σ′, m′)← ΠsRMT();
20: if (W ′, σ′, m′) ̸= ⊥ then
21: p′ ← index not in W ′;
22: e′(p′) ← ComputeErrorsC

(
W ′, x(1), . . . , x(ts+1), σ′, p′);

23: y′(p′) = x(p′) + e′(p′);
24: pad′ ← h(y′(p′))T ;
25: v ← m′ − pad′;
26: return v;
27: else
28: return v;
29: end if

Lemma 11. Assume ta + 2ts < ℓ and ta ≤ ts. If (c1, ..., cℓ) are synchronous channels and at most ts

channels are under control of the adversary, then protocol Πts,ta

sSMT(C, h) achieves ts-security.

Proof. Let’s first argue about ts-correctness. To begin, notice that the adversary can erase values on at
most ts channels, which means that erasureCounter ≤ ts for the entire duration of the protocol. Since
the channels ci’s are synchronous and at most ts are under control of the adversary, by ts-correctness of
protocol Πts

sRMT the sender S sets b = 1, outputs b = 1, and terminates. In Round 1, the adversary can
introduce at most ts errors in each code-word sent by R, and errors are introduced at the same subset of
at most ts coordinates for all code-words. If e(j) denotes the error introduced by the adversary on code-
word x(j), then w(e(j)) ≤ ts < ℓ − ts = dmin(C), so that the assumptions of Lemma 9 and Remark 1 are
satisfied. Again, by ts-correctness of protocol Πts

sRMT, we know that (W ′, σ′, m′) = (W, σ, m + pad) ̸= ⊥;
These facts combined guarantee that p′ = p and e′(p′) is the actual error introduced by the adversary
during transmission of x(p), so that y′(p′) = y(p), resulting in pad′ = pad. In conclusion, the receiver R
outputs v = m′ − pad′ = m + pad − pad′ = m and terminates in Round 2;

Let’s now argue about ts-perfect privacy. Clearly, the messages sent in Round 1 by R are independent
of S’s input m. Let’s restrict our attention the the messages sent in Round 2 by S. Here, the same
message is sent through each channel (via Πts

sRMT), so that we can simply consider one such message
(W, σ, m + pad). Since the x(i)’s are independent, the distributions of the pseudo-basis W and x(p) are
independent. Furthermore, the adversary could compute σ on its own, since σ = H(y(p)) = H(e(p)). To
conclude, Lemma 10 and Remark 2 guarantees that the distribution of pad is uniformly random despite
knowing up to ts components of x(p). This also means that m + pad is uniformly random.

Arguing about termination is straight-forward, as the protocol is round-based.

Lemma 12. Assume ta + 2ts < ℓ and ta ≤ ts. If (c1, ..., cℓ) are asynchronous channels and at most ta

channels are under control of the adversary, then protocol Πts,ta

sSMT(C, h) achieves ta-weak correctness and
ta-perfect privacy.

Proof. Let’s first argue about ta-weak correctness. If erasureCounter ≥ ts, the sender S does not
participate in the ΠsRMT subprotocol and the receiver R outputs ⊥. Assume that receiver R outputs ⊥.
Then, by ta-weak correctness of Πts

sRMT, the sender S outputs 0. On the other hand, if R does not output
⊥, and by ta-weak correctness of Πts

sRMT this means that R sets (W ′, σ′, m′) = (W, σ, m + pad). Notice
that in this case the sender’s erasureCounter ≤ ts. If e(j) denotes the error introduced by the adversary
on code-word x(j), then w(e(j)) ≤ ts + ta < ℓ − ts = dmin(C), so that the assumptions of Lemma 9 and
Remark 1 are satisfied. Then, reasoning as in the proof of Lemma 11 we can conclude that R outputs m.
The ta-perfect privacy property follows fromta ≤ ts reasoning as in the proof of Lemma 11. Termination
straightforward, as the protocol is round-based.

14

6 Conclusions

6.1 Putting Things Together

We have investigated the feasibility and optimality of perfectly secure message transmission protocols that
achieve security in both synchronous and asynchronous networks. The following corollaries summarize
the main results.

Corollary 1. There exists a perfectly secure SMT protocol that is ts-secure when run over a synchronous
network, and ta-secure when run over an asynchronous network if and only if 2ta + ts < ℓ.

Corollary 2. There exists a perfectly secure SMT protocol that is ts-secure when run over a synchronous
network, ta-secure when run over an asynchronous network, and runs in 3 rounds when the network is
synchronous, if ta + 2ts < ℓ.

Using Theorem 6.1 from [1], combined with our SMT protocol from Corollary 1, we obtain an n-party
perfectly-secure MPC protocol over networks with ℓ-connectivity, for any ta ≤ ts satisfying 3ts + ta < n
and 2ta + ts < ℓ.

Corollary 3 ([1], Theorem 6.1; restated for incomplete networks). Let n be the number of parties
and ℓ be the connectivity of the network. Let ta ≤ ts, such that 3ts + ta < n and 2ta + ts < ℓ. Moreover,
let f : Fn → F be a function represented by an arithmetic circuit over a field F. Then, there is an n-party
MPC protocol evaluating f over any network with ℓ connectivity, such that:

– Correctness: (a) When the network is synchronous and there are up to ts corruptions, all honest
parties correctly evaluate the function (with all honest inputs taken into account), and (b) when the
network is asynchronous and there are up to ta corruptions, all honest parties correctly evaluate the
function (with n − ts inputs taken into account).

– Privacy: The view of the adversary is independent of the inputs of the honest parties.

6.2 Open Problems

Our work leaves several interesting research directions. For example, an interesting efficiency problem
is whether under the optimal trade-off assumptions there exist protocols for perfectly secure message
transmission that match the optimal round complexity of purely synchronous protocols. Another excit-
ing direction is exploring whether our techniques can be employed to achieve security for synchronous
protocols with asynchronous fallback in incomplete networks for other complex tasks such as distributed
key generation, parallel broadcast, state-machine replication, etc.

6.3 Acknowledgments

The authors would like to thank Martin Hirt for some very insightful discussions related to the material
in this work.

References

[1] Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. “Perfectly-Secure Synchronous
MPC with Asynchronous Fallback Guarantees”. In: ACM Symposium on Principles of Distributed
Computing (2022).

[2] Erica Blum, Jonathan Katz, and Julian Loss. “Synchronous Consensus with Optimal Asynchronous
Fallback Guarantees”. In: Nov. 2019, pp. 131–150.

[3] Erica Blum, Jonathan Katz, and Julian Loss. “Tardigrade: An Atomic Broadcast Protocol for
Arbitrary Network Conditions”. In: Advances in Cryptology – ASIACRYPT 2021. Ed. by Mehdi
Tibouchi and Huaxiong Wang. Cham: Springer International Publishing, 2021, pp. 547–572. isbn:
978-3-030-92075-3.

[4] Erica Blum, Chen-Da Liu Zhang, and Julian Loss. “Always Have a Backup Plan: Fully Secure
Synchronous MPC with Asynchronous Fallback”. In: Advances in Cryptology – CRYPTO 2020.
Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. LNCS. Springer, Aug. 2020.

15

[5] Ashish Choudhury et al. “Secure message transmission in asynchronous networks”. In: J. Parallel
Distrib. Comput. 71 (Aug. 2011), pp. 1067–1074.

[6] Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty Computation
and Secret Sharing. Cambridge University Press, 2015.

[7] Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. “Round-efficient byzantine agreement
and multi-party computation with asynchronous fallback”. In: Theory of Cryptography Conference.
Springer. 2021, pp. 623–653.

[8] Yvo Desmedt and Yongge Wang. “Perfectly secure message transmission revisited”. In: Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2002,
pp. 502–517.

[9] Danny Dolev et al. “Perfectly Secure Message Transmission”. In: J. ACM 40.1 (Jan. 1993), pp. 17–
47.

[10] Juan Garay, Clint Givens, and Rafail Ostrovsky. “Secure message transmission by public discussion:
A brief survey”. In: International Conference on Coding and Cryptology. Springer. 2011, pp. 126–
141.

[11] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. “Optimal Synchronous Approximate
Agreement with Asynchronous Fallback”. In: ACM Symposium on Principles of Distributed Com-
puting. Springer. 2022.

[12] Kaoru Kurosawa and Kazuhiro Suzuki. “Almost secure (1-round, n-channel) message transmission
scheme”. In: IEICE transactions on fundamentals of electronics, communications and computer
sciences 92.1 (2009), pp. 105–112.

[13] Kaoru Kurosawa and Kazuhiro Suzuki. “Truly efficient 2-round perfectly secure message transmis-
sion scheme”. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2008, pp. 324–340.

[14] Karl Menger. “Zur allgemeinen kurventheorie”. In: Fund. Math. 10 (1927), pp. 96–1159.
[15] Atsuki Momose and Ling Ren. “Multi-Threshold Byzantine Fault Tolerance”. In: Proceedings of

the 2021 ACM SIGSAC Conference on Computer and Communications Security. CCS ’21. Vir-
tual Event, Republic of Korea: Association for Computing Machinery, 2021, pp. 1686–1699. isbn:
9781450384544. doi: 10.1145/3460120.3484554. url: https://doi.org/10.1145/3460120.
3484554.

[16] Nicolas Resch and Chen Yuan. Two-Round Perfectly Secure Message Transmission with Optimal
Transmission Rate. Cryptology ePrint Archive, Report 2021/158. 2021.

[17] Hasan Md Sayeed and Hosame Abu-Amara. “Efficient perfectly secure message transmission in
synchronous networks”. In: Information and Computation 126.1 (1996), pp. 53–61.

[18] Gabriele Spini and Gilles Zémor. “Perfectly Secure Message Transmission in Two Rounds”. In:
Proceedings, Part I, of the 14th International Conference on Theory of Cryptography - Volume
9985. Berlin, Heidelberg: Springer-Verlag, 2016, pp. 286–304. isbn: 9783662536407.

[19] K Srinathan, Arvind Narayanan, and C Pandu Rangan. “Optimal perfectly secure message trans-
mission”. In: Annual International Cryptology Conference. Springer. 2004, pp. 545–561.

16

https://doi.org/10.1145/3460120.3484554
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.1145/3460120.3484554

A Error-Correcting Codes

Let Fq be a finite field. Let Fℓ
q denote the ℓ-dimensional vector space over Fq.

Definition 3. An (ℓ, k)-linear code C over Fq is a k-dimensional linear subspace of Fℓ
q.

We denote elements of C (also called code-words) with bold-face lower-case letters (x, y, z, . . .), and
think of them as vectors of length ℓ with entries in Fq (by fixing a basis of Fℓ

q, typically the canonical
one). A linear code C is uniquely determined by its generator matrix G. This is simply the matrix
representing the linear bijection Fk

q → C. One can also consider linear maps . Alternatively, a code C is
uniquely determined by its parity-check matrix H, that is the matrix representing the unique linear map
Fℓ

q → Fℓ−k
q whose kernel is exactly C.

Definition 4. Let x, y ∈ C. The Hamming distance between x and y, denoted by d(x, y), is the number
of entries in which the two vectors differ, that is d(x, y) = #{j ∈ [ℓ] : xj ̸= yj}.

Definition 5. The Hamming weight of a code-word x, denoted by w(x), is simply d(x, 0).

Definition 6. The minimum distance of C, denoted by dmin(C) is the minimum among all Hamming
distances between elements of C, that is dmin(C) = minx,y∈C d(x, y).

It is easy to show that dmin(C) is equal to the minimum Hamming weight among code-words of C.

Lemma 13. (Singleton Bound) Let C be an (ℓ, k)-linear code over Fq. Then dmin(C) + k ≤ ℓ + 1.

Definition 7. Let C be an (ℓ, k)-linear code over Fq. If dmin(C) + k = ℓ + 1 then we say C is a maximum
distance separable (MDS) code.

Even though it is not needed, we often make the minimum distance of an (ℓ, k)-linear MDS code
explicit, and we talk about (ℓ, k, d)-linear MDS codes.

Intuitively, as long as the number of errors introduced in a code-word x (changes in the coordinates
of x with respect to a fixed basis) is less than (dmin(C) − 1)/2, then x can be recovered uniquely. We
refer to this process as decoding. If the number of errors exceeds this threshold, then, as long as it is
less than the minimum distance, the fact that an error has occurred can at least be detected. A class
of MDS codes for which efficient decoding algorithms exist are Reed-Solomon codes. Threshold secret
sharing schemes and MDS codes are essentially equivalent, so that talking in terms of one or the other
is mostly a choice of language. For more details, we refer to [6].

17

	Synchronous Perfectly Secure Message Transmission with Optimal Asynchronous Fallback Guarantees

