
Low-latency implementation of the GIFT cipher
on RISC-V architectures

Gheorghe Pojoga1 and Kostas Papagiannopoulos2

1 University of Amsterdam, The Netherlands, gheorghe.pojoga@os3.nl
2 University of Amsterdam, The Netherlands, k.papagiannopoulos@uva.nl

Abstract. Lightweight cryptography is a viable solution for constrained computa-
tional environments that require a secure communication channel. To standardize
lightweight primitives, NIST has published a call for algorithms that address needs
like compactness, low-latency, low-power/energy, etc. Among the candidates, the
GIFT family of block ciphers was utilized in various NIST candidates due to its
high-security margin and small gate footprint. As a result of their hardware-oriented
design, software implementations of GIFT require additional optimization techniques
such as bitslicing and fixslicing to achieve optimal performance. Even though the per-
formance of these methods has been assessed for several ISA families such as x86 and
ARM, there is currently a lack of data with regards to their acceleration capabilities
for RISC-V. Since this ISA is an important element of the growing open-hardware
movement, our goal is to address this knowledge gap. Therefore, we have developed
several assembly implementations for both GIFT-64 and GIFT-128, using the RV32I
ISA, and performed a quantitative assessment of their performance using a physical
board i.e., Hifive1 Rev B. Our study has shown that by using bitslicing the number
of clock cycles can be reduced by 69.33% for GIFT-64 and 71.38% for GIFT-128,
compared to a naive assembly implementation, while fixslicing decreases the number of
clock cycles by 85.7% (GIFT-64) and 81.28% (GIFT-128). Nonetheless, the preferred
technique is fixslicing with key pre-computation, which can achieve a reduction of
88.69% (GIFT-64) and 95.05% (GIFT-128), while maintaining relatively low memory
requirements of 938 bytes (GIFT-64) and 1388 bytes (GIFT-128), respectively.
Keywords: GIFT, RISC-V, implementation, bitslicing, fixslicing

1 Introduction
Conventional cryptographic algorithms, such as AES-128, have satisfied most of the security
and privacy requirements of our society. However, due to multiple emerging areas which
employ constrained computational environments e.g., the automotive industry, internet of
things, sensor networks, healthcare systems, RFID tags, etc., more efficient and custom
cryptographic algorithms are needed. Such environments have multiple requirements
in addition to the ones for conventional cryptography e.g., low energy consumption,
small code size, and low chip area. For this reason, the National Institute of Standards
and Technology (NIST) has directed significant efforts toward standardizing lightweight
cryptography [9, 10, 16]. In this sense, it has issued a call for submissions in 2018 for
a lightweight AEAD (authenticated encryption with associated data) algorithm i.e., an
algorithm that is viable for low chip area, will require low RAM and ROM usage, as well
as, provide support for low energy, low power, and low latency implementations [11].
Multiple NIST applicants are based on/inspired by the GIFT family of block ciphers
i.e., ESTATE, Fountain, GIFT-COFB, HyENA, LOTUS-AEAD, and LOCUS-AEAD,
Simple64/Simple128, SUNDAE-GIFT, TGIF and TRIFLE [12].

mailto:gheorghe.pojoga@os3.nl
mailto:k.papagiannopoulos@uva.nl


2 Low-latency implementation of the GIFT cipher on RISC-V architectures

GIFT [2] is a family of block ciphers that consists of GIFT-64 and GIFT-128. It is
inspired by PRESENT [4], however, it is significantly smaller and faster, as well as, it
is resistant against linear hulls [8] i.e., the weak point of PRESENT. GIFT has been
the subject of multiple security assessments [2, 18, 13] while preserving a high-security
margin. Moreover, its low computational requirements make it a promising block cipher in
the context of constrained environments. However, due to its hardware-oriented design,
which involves a bit-oriented permutation layer, the software implementations require
non-trivial acceleration techniques to achieve viable performance. Depending on the
use case, such techniques can be aimed at optimizing the encryption latency i.e., the
number of clock cycles required for the encryption of a single block, or at increasing the
encryption throughput i.e., the overall number of encrypted bits per clock cycle, which can
be achieved by using a highly-parallelized implementation. Therefore, the design decisions
for the implementation depend on the metric that is meant to be improved. The goal
of this project is to optimize the encryption latency. Hence, we have used bitslicing [2]
and fixslicing [1], as acceleration techniques. The performance of these techniques has
been previously evaluated using ARM [1] and x86 [2] instruction set architectures (ISA),
however, there is a lack of data with regards to their performance on RISC-V. Considering
that the support for this ISA family is currently growing, as it is also regarded as the "Linux
of the open-hardware movement", a quantitative assessment of the available acceleration
techniques is required.

Contribution. This paper describes low-latency implementations of the GIFT cipher
on RISC-V (RV32I), using bitslicing and fixslicing as optimization techniques. The reason
we have used this ISA is that RV32I is the least complex RISC-V instruction set, except for
RV32E. Hence, our implementation can be easily adapted to any other RISC-V ISA, and
the results represent a lower bound for the possible optimization capabilities. Additionally,
we put forward an alternative description for fixslicing, which can be directly mapped to the
RISC-V architecture, as well as, an optimized matrix transposition, presented in appendix
8.1. Moreover, assembly implementations of the optimization techniques, in addition
to a naive (Baseline) implementation of cipher, have been developed. Our performance
assessment has shown that the preferred implementation is fixslicing in combination with
key pre-computation i.e., the number of clock cycles has been reduced by 88.69% and
95.05% for GIFT-64 and GIFT-128, compared to the baseline implementation. The source
code of the implementation can be found at https://github.com/gra2p/gift_risc-v.

2 GIFT CIPHER
GIFT is a family of block ciphers comprised of GIFT-64 and GIFT-128. Both ciphers
require a key of 128 bits and block sizes of 64 and 128 bits, respectively. They are based
on a substitution-permutation network (SPN) with 28 rounds for GIFT-64 and 40 rounds
for GIFT-128. Each round consists of four layers: SubCells, PermBits, AddRoundKey,
KeySchedule.
Data Representation. Each round i receives as input the cipher state Si−1(64,128-bits),
the key state Ki (128-bits) and the round constant Ci (6-bits), and produces Si, Ki+1

and Ci+1. S0 = bn−1bn−2bn−3 ...b0 is initialized with the plaintext, where n = 64, 128 and
b0 is the least significant bit of the plaintext. Additionally, Si can be represented as Si =

wn/4−1wn/4−2wn/4−3...w0, where wi = b4i+3b4i+2b4i+1b4i. Similarly, K1 = k127k126k125...k0,
where k0 is the least significant bit of the encryption key. Alternatively, the key state
can be represented as K1 = k7k6k5...k0, where kj is a 16-bit block. Moreover, the round
constant for round i is defined as Ci = c5c4c3c2c1c0, where c0 is the least significant bit.
The constant for round 1 is initialized to 1 i.e., C1 = 1.

SubCells. The substitution layer is the same for both GIFT-64 and GIFT-128, and is
based on an invertible 4-bit SBox, GS, presented in Table 1, i.e.,

https://github.com/gra2p/gift_risc-v


Gheorghe Pojoga and Kostas Papagiannopoulos 3

∀i ∈ [0, n/4] ∶ wi ← GS(wi), where n = 64, 128

Table 1: Specification of the GIFT SBox in hexadecimal notation.

w 0 1 2 3 4 5 6 7 8 9 a b c d e f
GS(w) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

PermBits. The permutation layer maps the bits from position i to position P (i) i.e.,

∀i ∈ [0, n) ∶ bP (i) ← bi, where n = 64, 128.

This layer is different for GIFT-64 and GIFT-128 i.e.,

P64(i) = 4⌊ i
16 ⌋ + 16((3⌊ 1 mod 16

4 ⌋ + (i mod 4)) mod 4) + (i mod 4)

P128(i) = 4⌊ i
16 ⌋ + 32((3⌊ 1 mod 16

4 ⌋ + (i mod 4)) mod 4) + (i mod 4)

AddRoundKey. This layer adds the round key Ki and the round constant Ci to the
cipher state Si. For GIFT-64,

∀i ∈ [0, 16) ∶ b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi,
where u← k1, v ← k0

For GIFT-128 the round key is added as follows,

∀i ∈ [0, 32) ∶ b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi,
where u← k5∣∣k4, v ← k1∣∣k0

The round constant is the same for both GIFT-64 and GIFT-128, and it is applied as
follows,

∀i ∈ [0, 5] ∶ b4i+3 ← b4i+3 ⊕ ci,
bn−1 ← bn−1 ⊕ 1, where n = 64, 128

KeySchedule. This layer is responsible for updating the round key and the round
constant and it is the same for both GIFT-64 and GIFT-128. The key state is updated as
follows,

k7∣∣k6∣∣...∣∣k1∣∣k0 ← k1⋙ 2∣∣k0⋙ 12∣∣...∣∣k3∣∣k2

The new round constant is computed using the following mapping:

(c5, c4, c3, c2, c1, c0)← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1)

3 Optimization techniques
3.1 Bitslicing
Bitslicing is an alternative representation for GIFT-64 and GIFT-128, which uses the Single
Instruction/Multiple Data (SIMD) paradigm to achieve improved performance in software
implementations [3]. This approach preserves the same layered structure of the, 28 or 40,
rounds. The steps SubCells and AddRoundKey can leverage this representation, in order
to reduce the number of the operations. Conversely, the steps PermBits and KeySchedule
remain unchanged. We have used the same approach to bitslicing, as presented by Banik
et al. [2].

Data Representation. Similarly to the classical representation, each round i receives
as input the cipher state Si−1 (64,128-bits), the key state Ki (128-bits) and round constant
Ci (6-bits). Ki and Ci preserve the same representation as in the classical approach, while
S is defined as follows,



4 Low-latency implementation of the GIFT cipher on RISC-V architectures

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S0
S1
S2
S3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bn−4 ... b8 b4 b0
bn−3 ... b9 b5 b1
bn−2 ... b10 b6 b2
bn−1 ... b11 b7 b3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where n = 64, 128.

SubCells. This representation of the cipher state allows the definition of the substitution
layer through a series of logical operations with multiplicative complexity of 4:

S1 ← S1 ⊕ (S0 ∧ S2)

T ← S0 ⊕ (S1 ∧ S3)

S2 ← S2 ⊕ (T ∨ S1)

S0 ← S3 ⊕ S2

S1 ← S1 ⊕ S0

S0 ← ¬S0

S2 ← S2 ⊕ (T ∧ S1)

S3 ← T

The benefit of this definition is that SubCells is applied to all nibbles in parallel i.e., it is
not necessary to sequentially match and replace each nibble.

AddRoundKey. The bitsliced representation prevents the necessity of performing
per-bit application of the round key and round constant. For GIFT-64 the round key is
added as follows,

S1 ← S1 ⊕ u
S0 ← S0 ⊕ v,

where u← k1, v ← k0

Similarly, in the case of GIFT-128 the round key is applied as,

S2 ← S2 ⊕ u
S1 ← S1 ⊕ v,

where u← k5∣∣k4, v ← k1∣∣k0

The round constant is applied to the cipher state of both GIFT-64 and GIFT-128 as
follows.

S3 ← S3 ⊕ T ,
where T = (1≪ n)⊕C, n=15,31 (GIFT-64, GIFT-128)

3.2 Fixslicing
The bitsliced representation significantly decreases the number of operations required for
applying SubCells and AddRoundKey, however, the effect on PermBits is insignificant,
even though this layer involves multiple per-bit operations, which result in performance
degradation for software implementations. Hence, a new acceleration technique, called
Fixslicing [1], has been proposed. Fixslicing preserves the same definition for SubCells as
in the case of bitslicing, however, the layers PermBits, KeySchedule, and AddRoundKey
for GIFT-128, require modifications. In order to accommodate this technique to a RISC-V
context, we have deviated from the original specification of Fixslicing [1]. Below we
present our modified representation of the slices, as well as, the adapted layers PermBits,
KeySchedule and AddRoundKey.

Data Representation. Similarly to bitslicing, the cipher state S is divided into four
slices. However, each slice (Si) is represented as a 4×4 matrix (in the case of GIFT-64) or a



Gheorghe Pojoga and Kostas Papagiannopoulos 5

4 × 8 matrix (in the case of GIFT-128). In contrast to the original Fixsliced representation
[1], we have used the Big-Endian notation to represent each slice i.e.,

Si =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bi+n−4+3n bi+n−8+3n ... bi+4+2n bi+2n

bi+n−4+2n bi+n−8+2n ... bi+4+2n bi+2n

bi+n−4+n bi+n−8+n ... bi+4+n bi+n

bi+n−4 bi+n−8 ... bi+4 bi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where i ∈ {0, 1, 2, 3}, and n ∈ {16, 32}

This alternative representation requires the modification of the AlignBits and KeySchedule
layers. Nonetheless, the benefit is that it offers a more natural mapping between the plain-
text bitstring and the internal representation of the slices. Additionally, each GIFT-128
slice is represented as a 4× 8 matrix, instead of two 4× 4 matrices in the original definition.
The reason is that RV32I does not have an inline barrel shifter instruction, which has
been used in the ARM implementation [1] to increase performance. Therefore, in our
context, splitting a GIFT-128 slice into two sub-slices adds additional complexity without
any performance gains. The new representation requires modification of several layers, as
presented in the next subsections i.e., GIFT-64 and GIFT-128.

GIFT-64. Fixslicing is based on the observation that after several repeated applications
of the permutation layer, the bits return to their initial position. In the case of GIFT-64,
this occurs, for all slices, every four rounds. Therefore, instead of performing the bit
permutations, one of the slices is fixed to the same configuration, while the other slices
are modified such that the SubCells mapping can be applied. The new layer replaces
PermBits, and in order to avoid confusion we will refer to it as AlignBits.

AlignBits. Since in the case of GIFT-64 all slices return to the initial position after
four permutations, any slice can be chosen as the fixed slice. We have decided to fix
S0. Moreover, for each of the four sub-rounds, the definition of AlignBits is different.
Therefore, the fixsliced implementation of GIFT-64 consists of 7 rounds, each containing 4
sub-rounds i.e.,

round 1: Si is rotated by i columns to the right.
round 2: Si is rotated by i rows downwards.
round 3: Si is rotated by i columns to the left.
round 4: Si is rotated by i rows upwards.

KeySchedule. Due to the division of each round into four sub-rounds with different
orders of the cipher state bits, we split the 16-bit blocks of the key state into pairs, and
their bits are permuted to match the cipher state, i.e.,

k0, k1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b7 b11 b15 b3
b6 b10 b14 b2
b5 b9 b13 b1
b4 b8 b12 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

k2, k3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b5 b6 b7 b4
b9 b10 b11 b8
b13 b14 b15 b12
b1 b2 b3 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

k4, k5 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b13 b9 b5 b1
b14 b10 b6 b2
b15 b11 b7 b3
b12 b8 b4 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

k6, k7 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b15 b14 b13 b12
b11 b10 b9 b8
b7 b6 b5 b4
b3 b2 b1 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Similarly to AlignBits, the KeySchedule must be different for each sub-round in order
to update each pair of key state block i.e., a sub-round i uses the mapping KeySchedulei.
Moreover, each pair is used every 4 sub-rounds. Hence, a given round i will use the pair
k2i−2, k2i−1.



6 Low-latency implementation of the GIFT cipher on RISC-V architectures

round 1: For this sub-round the pair k0, k1 is used. k1 is updated by rotating the entire
matrix downwards by 2 rows, and the first 2 rows of the resulting matrix to the left by 1
column. k0 is updated by rotating the entire matrix to the right by 1 column.
round 2: For sub-round 2 the pair k3, k2 is used. k3 is updated by rotating the entire
matrix to the right by 2 columns, and the inner columns of the resulting matrix by 1 row
upwards. k2 is updated by rotating the entire matrix downwards by 1 row.
round 3: For sub-round 3 the pair k5, k4 is used. k5 is updated by rotating the entire
matrix downwards by 2 rows, and the 2 inner rows of the resulting matrix by 1 column to
the right. k4 is updated by rotating the entire matrix to the left by 1 column.
round 4: For sub-round 4 the pair k7, k6 is used. k7 is updated by rotating the entire
matrix to the right by 2 columns, and the first 2 columns of the resulting matrix downwards
by 1 row. k6 is updated by rotating the entire matrix upwards by 1 row.

GIFT-128. In contrast to GIFT-64, slices do not return to the initial position after
4 applications of PermBits in the case of GIFT-128 i.e., Slice 0 takes 31 rounds, Slice
1 takes 10 rounds, Slice 2 takes 31 rounds and Slice 3 takes 5 rounds. Therefore, the
Slice 3 is fixed, to minimize the number of sub-rounds required. Hence, the fixsliced
implementation of GIFT-128 consists of 8 rounds, which contain 5 sub-rounds. Similarly to
fixslicing for GIFT-64, the bitsliced definition of SubCells is reused, as well as, PermBits
is substituted with AlignBits. Conversely, the definition of KeySchedule is not modified
i.e., the bitsliced version is used, therefore, an additional sublayer is added to AddRoundKey
to map the bitsliced key state to the fixsliced representation. This difference between
fixslicing for GIFT-64 and GIFT-128 is due to a significant performance overhead of a
potential modification of the KeySchedule since a trivial alignment of the key state to the
cipher state does not exist. Hence, the usage of an AddRoundKey sublayer is preferred due
to a lower performance penalty.

AlignBits. The Slice 3 is fixed, since it requires the smallest amount of rounds to
return to the initial position i.e., 5. Similarly to fixslicing for GIFT-64, each of the 5
sub-rounds uses a different definition of AlignBits i.e.,

round 1: Each 4 × 4 half of Si is rotated independently by i columns to the right.
round 2: The slices S0, S1 and S2 must be modified as follows:

S0: The slice must be rotated by 4 columns to the right. The rows 0 ↔ 1, as well as, 2
↔ 3 of the resulting first half must be swapped.

S1: The rows 0 ↔ 1, as well as, 2 ↔ 3 of the slice must be swapped.
S2: The slice must be rotated by 4 columns to the right. The rows 0 ↔ 1, as well as, 2

↔ 3 of the resulting second half must be swapped.

round 3: The slices S0, S1 and S2 must be modified as follows :

S0: The slice must be rotated 2 rows downwards. The columns of the first two rows must
be swapped as follows : 0↔ 1, 2↔ 3, 4↔ 5, 6↔ 7

S1: The following columns must be swapped : 0↔ 1, 2↔ 3, 4↔ 5, 6↔ 7.
S2: The slice must be rotated 2 rows downwards. The following columns of the resulting

first two rows must be swapped : 0↔ 1, 2↔ 3, 4↔ 5, 6↔ 7.

round 4: The slices S0, S1 and S2 must be rotated 2, 4, and 6 columns to the left.
round 5: The slices S0, S1 and S2 must be rotated 1, 2 and 3 rows upwards.

AddRoundKey. This layer is implemented the same way as in the case of bitslicing
since the same key scheduling algorithm is used. The only difference is that an additional
sublayer (MapKey) is introduced in order to map the bitsliced key state to the fixsliced
counterpart i.e., for each sub-round i the output of MapKey for k1∣∣k0 and k5∣∣k4 must be
aligned with the resulting S1 and S2 of respective AlignBits sub-round.



Gheorghe Pojoga and Kostas Papagiannopoulos 7

4 Implementation
In addition to the optimized GIFT implementations, we have developed assembly-based
baseline implementations for both GIFT-64 and GIFT-128 to assess the efficiency of these
techniques in the case of RISC-V. The programs have been executed using a development
board i.e., Hifive1 Rev B [15].

4.1 Integrated Memory
In order to improve the performance, we have leveraged the features provided by the
development board [14] i.e., the instructions have been stored in the Instruction Tightly-
Integrated Memory (ITIM), while the data has been stored in the Data Tightly-Integrated
Memory (DTIM). ITIM is a volatile memory that is used for high-performance and
predictable instruction delivery. Fetching an instruction from ITIM is equivalent to an
instruction-cache hit. The disadvantage of ITIM is its modest size of only 8 KiB which may
limit the code size. Data Tightly Integrated Memory (DTIM) is also a volatile memory,
however, it is used for storing data, instead of instructions. Even though ITIM can also
hold data besides instructions, the loads and stores of a core to its ITIM are less performant
than the loads and stores to its DTIM. Similar to ITIM, the main disadvantage of DTIM
is its size i.e., 16 KiB.

Additionally, QSPI Flash is the non-volatile memory of the chip, and it is also the
default location where the programs are loaded on the chip. The disadvantage of using
the QSPI Flash for storing the instructions of a running program is the unpredictable and
slow instruction delivery, which results in slower execution compared to programs located
entirely in ITIM. Nonetheless, an advantage of QSPI is its size i.e., 4 MB.

Therefore, in order to write high-performance programs for Hifive1 Rev B, it is important
to efficiently distribute program sections across QSPI, ITIM, and DTIM. The code size of
the GIFT cipher is fairly small thus all the implementations we developed as part of this
project were entirely loaded onto ITIM and DTIM. To ensure this, we have not used loop
unrolling as an optimization technique, since the resulting program would not fit entirely
in the ITIM and lead to significant performance degradation.

4.2 Baseline
The design of the program is as close as possible to the original definition of GIFT. The
cipher state is stored in 2 32-bit registers in the case of GIFT-64 and 4 registers in the case
of GIFT-128. The key state for GIFT-64 is stored in 8 registers i.e., as 16-bit block, while
for GIFT-128 it stored in 4 registers as 16-bit block pairs i.e., k7∣∣k6, k5∣∣k4, k3∣∣k2, k1∣∣k0.
The SubCells layer is implemented via a lookup table, which is stored in DTIM. The
permutation layer (PermBits) is implemented by isolating each bit, through a mask, and
shifting it to the new position, as well as, storing it in the correct register. Furthermore,
in order to apply the round key, k1 and k0 (GIFT-64), or k5∣∣k4 and k1∣∣k0 (GIFT-128),
must be expanded to 64, or 128 bits. The key expansion is applied twice i.e., for k1 and
k0, or k5∣∣k4 and k1∣∣k0.

In order to store the key state we have used 8 registers for GIFT-64 i.e., each 16-bit
block is stored in a separate register, and 4 registers for GIFT-128 i.e., the key state is
stored in pairs of 16-bit blocks (k7∣∣k6, k5∣∣k4, k3∣∣k2 and k1∣∣k0). The generation of the next
round key (KeySchedule), for GIFT-64, is done by rotating the least-significant 16-bits of
the respective registers, as well as, circularly moving the data among the registers holding
the key state. In the case of GIFT-128, the most significant 16 bits, as well as, the least
significant 16-bits of the register holding k1∣∣k0 must be rotated independently by 2 and 12
bits respectively. Afterwards, the 32-bit key state blocks are moved circularly between the
key state registers.



8 Low-latency implementation of the GIFT cipher on RISC-V architectures

4.3 Bitslicing
In contrast with the data representation of the baseline, in the case of bitslicing the cipher
state is stored in 4 32-bit registers, for both GIFT-64 and GIFT-128 i.e., one register
per slice (Si). The key states are stored similarly to the baseline implementations. The
SubCells layer has been implemented using the Boolean function from the previous section,
hence, avoiding the usage of a lookup table.

PermBits. Considering the definition of the permutation layer, in a bitsliced rep-
resentation the bits will only be moved within the same slice. Therefore, we can apply
this mapping for each slice independently. A naive implementation would use a series of
bit masks and bit shifts. In the case of S0 for GIFT-64, such an approach will require
54 instructions i.e., the bits b0 and b40 do not change their position, which results in
1 operation (mask & store in the resulting register), the bits b44 and b4 can be moved
together, which requires 4 instructions, the remaining 12 bits have to be moved individually,
and additionally we need 1 operation to store the result in s0, therefore, 1+4+12×4+1 = 54.

We improve this approach by considering the 16-bits of S0 as a 4 × 4 matrix:

b60b56b52b48b44b40b36b32b28b24b20b16b12b8b4b0 ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b60 b56 b52 b48
b44 b40 b36 b32
b28 b24 b20 b16
b12 b8 b4 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Considering the matrix representation, we can compute the transpose of S0, with 15
instructions. Afterwards, the columns 0 and 2 must be swapped to obtain the required
result, which can be done in 9 instructions. Therefore, with this method, we can achieve the
same result with only 24 instruction instead of 54. The same technique can be applied, with
slight changes, for the other slices, as well as, for GIFT-128, to optimize the permutation
layer. The full details are presented in Appendix 8.1.

AddRoundKey. An additional benefit of the bitsliced representation is the simplicity
of the AddRoundKey, which requires only 6 instructions for both GIFT-64 and GIFT-128
i.e., two xor instructions for the round key, and 4 instructions for the round constant, as
presented in Algorithms 1 and 2. Nonetheless, 8 cycles are consumed, because the load
byte operation (lb) requires 3 cycles, which results in 224 = 8 × 28 cycles for GIFT-64 and
320 = 8 × 40 cycles for GIFT-128, as presented in Section 5.

Algorithm 1 AddRoundKey (round key)
1: xor s0, s0, a0 ▷ apply V (k0 or k1∣∣k0)
2: xor s1, s1, a1 ▷ apply U (k1 or k5∣∣k4)

The algorithm 2, presents the implementation for GIFT-64. In the case of GIFT-128,
the only difference is that for the operation 3, we have used the mask 0x80000000 (1≪ 31),
as defined in section 3.1.

Algorithm 2 AddRoundKey (round constant GIFT-64)
1: lb t0, 0(s4) ▷ load round constant | s4-r.c. address
2: xor s3, s3, t0 ▷ apply round constant
3: li t0, 0x8000
4: xor s3, s3, t0 ▷ S3 ← S3 ⊕ (1≪ 15)

Furthermore, the key scheduling is the same as in the case of the baseline implementation
and does not require any modifications.



Gheorghe Pojoga and Kostas Papagiannopoulos 9

4.4 Fixslicing

The fixsliced implementation uses the same initial data representation as in bitslicing,
as well as, the same SubCells definition. Even though both GIFT-64 and GIFT-128
share the same idea of replacing PermBits with AlignBits, and therefore significantly
decreasing the complexity of the permutation layer, the way in which the round key is
adapted to the new representation is different. In the case of GIFT-64 AddRoundKey
remains unchanged i.e., the same as for bitslicing, while KeySchedule is expected to adjust
the key state such that it matches the cipher state for each sub-round. Conversely, for
GIFT-128 the KeySchedule for bitslicing is reused, while AddRoundKey is enhanced with
an additional sublayer (MapKey), which is meant to map the bitsliced key state to a fixsliced
representation, such that it can be applied to the cipher state.

In the case of GIFT-64 the implementations of AlignBits and KeySchedule follow the
definitions from the section 3.2. Conversely, for GIFT-128 the MapKey is different for each
sub-round, as well as, it is absent for the sub-round 5, since in this sub-round the bits return
to the initial, bitsliced, position i.e., the round key can be applied without modifications.
The mapping, for the sub-rounds 1-4, is implemented through bit permutations, which
leads to a shift of the computational complexity from the PermBits to the KeySchedule
layer. Our definition of the MapKey sub-layer is presented in Appendix 8.2.

4.5 Fixslicing with Key Precomputation

The goal of fixslicing is to minimize the complexity of the permutation layer, by performing
pseudo-permutations i.e., AlignBits. This has been achieved for both GIFT-64 and
GIFT-128, as it can be observed in Section 5. However, in the case of GIFT-128, the cost
of the lower complexity of PermBits is a significant performance penalty for AddRoundKey,
due to the additional sublayer i.e., MapKey. Nonetheless, the main source of performance
degradation is now related to the representation of the key, which can be addressed by
precomputing the key for all rounds and their sub-rounds. The downside of this method is
that additional memory is required in order to store the precomputed keys. In the case
of GIFT-64, 896 bits are required, in addition to the input block and the precomputed
round constants i.e., 896 = (nr rounds) × (nr sub-rounds) × ((size of k0) + (size of k1))
= 7 × 4 × (16 + 16). Similarly, in the case of GIFT-128, 2560 bits are required i.e., 2560 =
(nr rounds) × (nr sub-rounds) × ((size of k5∣∣k4) + (size of k1∣∣k0)) = 8 × 5 × (32 + 32).
However, as presented in Section 5 the increased data size, does not lead to higher memory
requirements, since Key Scheduling is omitted at runtime, which leads to a significantly
lower code size.

5 Results

The performance of our implementations has been measured, and is presented in Tables
2 and 3, together with the respective memory requirements in Tables 4 and 5. Each
implementation has been divided into 6 sections. The sections SubCells, PermBits,
AddRoundKey and KeySchedule represent the respective definitions presented in Section
2. The section Initialization represents the initialization of the data necessary for the
round function e.g. loading the cipher state and the key state. The Section Other includes
additional operations such as modifying the loop guard and performing branching for
each loop iteration. Additionally, we have measured the performance of the reference C
implementation [6], by using the gcc compiler version 11.1.0, provided by the RISC-V
GNU Compiler Toolchain [7], with the optimization flag -O3.



10 Low-latency implementation of the GIFT cipher on RISC-V architectures

Table 2: GIFT-64 implementations performance measurements.

Implementation Speed (clock cycles)
Initialization SubCells PermBits AddRoundKey KeySchedule Other Total

C reference (-O3) 32090 1904 37548 44100 12068 4055 131765
Baseline 18 4088 5432 3808 448 147 13941
Bitslicing 64 336 3052 224 532 68 4276
Fixslicing 56 336 609 287 672 34 1994
Fixslicing & KP 24 336 609 518 56 34 1577

Table 3: GIFT-128 implementations performance measurements.

Implementation Speed (clock cycles)
Initialization SubCells PermBits AddRoundKey KeySchedule Other Total

C reference (-O3) 34200 5360 97480 91800 17080 4955 250875
Baseline 16 11680 18400 11120 760 179 42155
Bitslicing 15 480 10320 320 840 90 12065
Fixslicing 14 480 1120 5352 840 87 7893
Fixslicing & KP 10 480 1120 360 80 35 2085

Table 4: GIFT-64 implementations, memory requirements.

Memory (bytes) Implementation
C reference (-O3) Baseline Bitslicing Fixslicing Fixslicing & KP

Code size 5890 1692 688 1090 762
Data size 388 168 52 80 176
Total 6278 1860 740 1170 938

Table 5: GIFT-128 implementations memory requirements.

Memory (bytes) Implementation
C ref. (-O3) Baseline Bitslicing Fixslicing Fixslicing & KP

Code size 1046 3642 1180 3618 892
Data size 432 240 72 192 496
Total 1478 3882 1252 3810 1388

6 Discussion
Mappings that involve multiple bit-level operations, such as permutations, are the main
source of performance degradation. As it can be observed in the Tables 2 and 3, the
bitsliced implementation has significantly reduced the number of clock cycles required for
SubCells and AddRoundKey. In the baseline implementation of SubCells, in order to use
the lookup table, each nibble was isolated and shifted to the least-significant bits of a
register, as well as, the replacement value was shifted to the correct position. This sequence
of operations results in significant performance penalties. The bitsliced implementation
of SubCells eliminates the need of isolating and shifting nibbles, hence, resulting in
more efficient computation of the substitution layer. In the case of AddRoundKey, the
acceleration is explained by the fact that key expansion, which involves multiple bit-level
operations, is not required since the round key can be directly applied to the required slices.
Moreover, it can be observed that the performance of the permutation layer has also been
improved. This is due to the technique described in Section 3, which reduces the number
of bit-level operations. Overall, the bitsliced implementations of GIFT-64 and GIFT-128
have reduced the number of required clock cycles by 69.33% and 71.38%, respectively.

Despite the significant acceleration obtained through bitslicing, PermBits has remained
the principal consumer of clock cycles. The fixsliced implementation of GIFT-64 has
resulted in a more uniform distribution of complexity across the layers, and it has reduced
the overall number of clock cycles by 85.7%, compared to the baseline. Even though the
fixsliced implementation of GIFT-128 has also reduced the total number of clock cycles
i.e., by 81.28%, instead of PermBits complexity being eliminated, it has been moved to



Gheorghe Pojoga and Kostas Papagiannopoulos 11

AddRoundKey, as it can be observed in Table 3, due to the additional sublayer i.e., MapKey.
Nonetheless, this complexity shift was beneficial, because it can be eliminated through key
pre-computation, as described in Section 3. By using fixslicing in combination with key
pre-computation, the number of clock cycles has been reduced by 88.69% for GIFT-64 and
by 95.05% for GIFT-128. Therefore, this is the technique that is capable of providing the
highest acceleration for GIFT on RV32I. Moreover, fixslicing with key pre-computation
also has lower memory requirements than its counter-part without key pre-computation
i.e., 938 bytes (GIFT-64) and 1388 bytes (GIFT-128). This is explained by a significant
decrease in the code size, which compensates for the increase in the data size. The decrease
is due to the elimination of the Key Scheduling section since the pre-computed round
keys are stored in memory in a hard-coded fashion. Nonetheless, the implementation with
the lowest memory requirements is bitslicing i.e., 740 bytes (GIFT-64) and 1252 bytes
(GIFT-128).

7 Conclusion and Future Work
We have identified three optimization techniques which are applicable for GIFT on RV32I
i.e., Bitslicing, Fixslicing and Fixslicing with key pre-computation. Each technique has
been implemented in assembly, and a quantitative assessment of their performance has been
executed. All techniques have significantly accelerated the encryption latency. Fixslicing
with key pre-computation has been identified as the most efficient technique, with a clock
cycle reduction of 88.69% for GIFT-64 and 95.05% for GIFT-128. This technique is
also applicable in memory-constrained environments. Alternatively, bitslicing can slightly
decrease the memory requirements, at the cost of a significantly higher latency. Regarding
future work on GIFT, the natural extension of the current approach is towards recent side-
channel resistant implementations such as code-based masking [17] and glitch-robust [5]
schemes, while employing slicing techniques to accelerate performance on the RISC-V
platform.

References
[1] Alexandre Adomnicai, Zakaria Najm, and Thomas Peyrin. Fixslicing: A new gift

representation: Fast constant-time implementations of gift and gift-cofb on arm
cortex-m. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):402–427, Jun. 2020.

[2] Subhadeep Banik, Sumit Pandey, Thomas Peyrin, Siang Meng Sim, and Yosuke Todo.
Gift: A small present. pages 321–345, 08 2017.

[3] Eli Biham. A fast new des implementation in software. In Eli Biham, editor,
Fast Software Encryption, pages 260–272, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[4] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher. In Pascal
Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems - CHES 2007, pages 450–466, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[5] Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware masking
in the transition- and glitch-robust probing model: Better safe than sorry. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021, Issue 2:136–158,
2021.



12 Low-latency implementation of the GIFT cipher on RISC-V architectures

[6] Gift. Reference implementation. https://github.com/giftcipher/gift, 2022.

[7] RISC-V GNU. Compiler toolchain. https://github.com/riscv-collab/
riscv-gnu-toolchain, 2022.

[8] Gregor Leander. On linear hulls, statistical saturation attacks, present and a crypt-
analysis of puffin. volume 6632, pages 303–322, 05 2011.

[9] Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha. Report
on lightweight cryptography. NISTIR 8114, 2017.

[10] Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, Çağdaş Çalık, and Donghoon
Chang. Status report on the first round of the nist lightweight cryptography stan-
dardization process. NISTIR 8268, 2019.

[11] NIST. Submission requirements and evaluation criteria for the
lightweight cryptography standardization process. https://csrc.
nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf, 2018.

[12] NIST. Lightweight cryptography, round 1 candidates. https://csrc.nist.gov/
Projects/lightweight-cryptography/round-1-candidates, 2022.

[13] Yu Sasaki. Integer linear programming for three-subset meet-in-the-middle attacks:
Application to gift. In IWSEC, 2018.

[14] SiFive. Fe310-g002 manual. https://www.sifive.com/documentation, 2022.

[15] SiFive. Hifive1 rev b. https://www.sifive.com/boards/hifive1-rev-b, 2022.

[16] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Çağdaş Çalık, Lwrence
Bassham, Jinkeon Kang, and John Kelsey. Status report on the second round of the
nist lightweight cryptography standardization process. NISTIR 8369, 2021.

[17] Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Standaert. Ef-
ficient and private computations with code-based masking. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(2):128–171, Mar. 2020.

[18] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. Milp-based differential attack on
round-reduced gift. Cryptology ePrint Archive, Report 2018/390, 2018. https:
//ia.cr/2018/390.

8 Appendix
8.1 Efficient matrix transposition
Let M be a 4 × 4 matrix defined as,

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

15 14 13 12
11 10 9 8
7 6 5 4
3 2 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let Mv be the row vector representation of M i.e. Mv ≡M , where

Mv = [15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]

The row vector representation of the transpose of M (MT ) is defined as,

https://github.com/giftcipher/gift
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/Projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-1-candidates
https://www.sifive.com/documentation
https://www.sifive.com/boards/hifive1-rev-b
https://ia.cr/2018/390
https://ia.cr/2018/390


Gheorghe Pojoga and Kostas Papagiannopoulos 13

MT v = [15 11 7 3 14 10 6 2 13 9 5 1 12 8 4 0]

A naive approach of mapping Mv to MT v, would be to group cells based on the shift
direction and amplitude i.e.,

(15, 10, 5, 0) : no shift
(14, 9, 4) : shift 3 cells to the right
(13, 8) : shift 6 cells to the right
(12) : shift 9 cells to the right
(3) : shift 9 cells to the left
(7, 2) : shift 6 cells to the left

(11, 6, 1) : shift 3 cells to the left

A better approach is to decompose the problem i.e., a 4 × 4 matrix can be treated as 2 × 2
matrix which contains in each cell a 2 × 2 matrix. Therefore we can first transpose each
inner 2 × 2 matrix, and as a last step the outer matrix i.e.,

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

15 14 13 12
11 10 9 8
7 6 5 4
3 2 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

15 11 13 9
14 10 12 8
7 3 5 1
6 2 4 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

15 11 7 3
14 10 6 2
13 9 5 1
12 8 4 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=MT

Mv can be mapped to the row vector representation of the intermediary matrix as
follows,

(15, 13, 10, 8, 7, 5, 2, 0) : no shift
(14, 12, 6, 4) : shift 3 cells to the right
(11, 9, 3, 1) : shift 3 cells to the left

Similarly, the row representation of the intermediary matrix is mapped to MT v as follows,

(15, 11, 14, 10, 5, 1, 4, 0) : no shift
(13, 9, 12, 8) : shift 6 cells to the right
(7, 3, 6, 2) : shift 6 cells to the left

Hence, with this approach, we can avoid the movement of one group of cells. Moreover,
the naive approach uses 6 shifts and 1 no-shift. One shift translates to 4 instructions on
RV32I, while 1 no-shift is implemented with 2 instructions. Hence, the naive approach
would use 26 assembly instructions. Conversely, the other approach uses 4 shifts and 2 no
shifts i.e., 20 assembly instructions. Therefore, the second method can save 6 instructions
for the transpose of a 4 × 4 matrix.

The same approach can be applied for computing the transpose of other types of
matrices. For instance, in the case of a 4× 8 matrix B the transpose, BT can be computed
as follows,



14 Low-latency implementation of the GIFT cipher on RISC-V architectures

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

31 23 29 21 27 19 25 17
30 22 28 20 26 18 24 16
15 7 13 5 11 3 9 1
14 6 12 4 10 2 8 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

31 23 15 7 27 19 11 3
30 22 14 6 26 18 10 2
29 21 13 5 25 17 9 1
28 20 12 4 24 16 8 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

31 23 15 7
30 22 14 6
29 21 13 5
28 20 12 4
27 19 11 3
26 18 10 2
25 17 9 1
24 16 8 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= BT

In the case of a 4×8 matrix, a naive computation of the transpose will require 31 groups,
i.e., 1 no-shift and 30 shift groups. Hence, the RV32I implementation would result in 122
instructions. Conversely, the new method requires only 10 shift groups and 3 no-shift
groups, which results in only 46 instructions.

8.2 MapKey definition
The MapKey sublayer is only present for GIFT-128. It is different for each sub-round, as
well as, it is absent for the sub-round 5 since in this sub-round the bits return to the
initial, bitsliced, position i.e., the round key can be applied without modifications. For
each sub-round i ∈ [1, 4], MapKeyi is applied independently to k1∣∣k0 and k5∣∣k4.

Before we proceed with the iterations of MapKey, we define the LeftShift and
RightShift operations, which represent the bit shifting in the respective direction of
a masked sequence of bits. The definition of RightShift is presented in Algorithm 3,
while LeftShift is implemented similarly, however, instead of srl, sll (logical left shift)
is used.

Algorithm 3 Right Shift
Require:

dst - destination register;
src - source register;
mask - used to isolate the required bits;
shift - the amount of right shift (in bits);

1: li t0, mask ▷ Load the mask in register t0
2: and t0, src, t0 ▷ Apply the mask and store result in t0
3: srl t0, t0, shift ▷ Shift isolated bits by <shift> cells to the right
4: or dst, dst, t0 ▷ Store the result in register <dst>

MapKey1 . Firstly, we consider the key state as a 4 × 8 matrix i.e.,



Gheorghe Pojoga and Kostas Papagiannopoulos 15

b31b30...b1b0 ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b31 b30 b29 b28 b27 b26 b25 b24
b23 b22 b21 b20 b19 b18 b17 b16
b15 b14 b13 b12 b11 b10 b9 b8
b7 b6 b5 b4 b3 b2 b1 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The mapping between bitstring and matrix representations does not require any
modification, since this is only a way of viewing the key state i.e., the key state is stored
in a register as a bitstring at all times. Firstly, we compute the transpose of this matrix,
as described in appendix 8.1, and return to the bitstring representation, which is then
updated, by using the algorithm 4. The result is the required fixsliced representation of
the key.

Algorithm 4 MapKey1 Swap
Require:

a4 - src. bitstring (after transpose);
a5 - the destination register;

1: RightShift a5, a4, 0x44444444, 1
2: RightShift a5, a4, 0x88888888, 3
3: LeftShift a5, a4, 0x11111111, 3
4: LeftShift a5, a4, 0x22222222, 1

MapKey2. For this sub-round we consider the key state as a bitstring i.e., as it is.
The bitsliced representation is mapped to the fixsliced counterpart through a series of
LeftShift and RightShift, as defined in algorithm 5.

Algorithm 5 MapKey2 Sublayer
Require:

a0 - the source bitstring;
a5 - the destination register;

1: li a5, 0x00200400
2: and a5, a0, a5
3: LeftShift a5, a0, 0x00000002, 30
4: RightShift a5, a0, 0x00801000, 3
5: LeftShift a5, a0, 0x00000008, 27
6: RightShift a5, a0, 0x02004000, 6
7: LeftShift a5, a0, 0x00000020, 24
8: RightShift a5, a0, 0x08010000, 9
9: LeftShift a5, a0, 0x00000080, 21

10: RightShift a5, a0, 0x20040000, 12
11: LeftShift a5, a0, 0x00000200, 18
12: RightShift a5, a0, 0x80100000, 15
13: LeftShift a5, a0, 0x00000801, 15
14: RightShift a5, a0, 0x00400000, 18
15: LeftShift a5, a0, 0x00002004, 12
16: RightShift a5, a0, 0x01000000, 21
17: LeftShift a5, a0, 0x00008010, 9
18: RightShift a5, a0, 0x04000000, 24
19: LeftShift a5, a0, 0x00020040, 6
20: RightShift a5, a0, 0x10000000, 27
21: LeftShift a5, a0, 0x00080100, 3
22: RightShift a5, a0, 0x40000000, 30

MapKey3. Similarly with MapKey2, we could not find a more efficient way of



16 Low-latency implementation of the GIFT cipher on RISC-V architectures

implementing this sublayer for round 3, other than a series of LeftShift and RightShift,
as presented in algorithm 6.

Algorithm 6 MapKey3 Sublayer
Require:

a0 - the source bitstring;
a4 - the destination register;

1: li t0, 0x00200400
2: and a4, a0, t0
3: LeftShift a4, a0, 0x00000001, 30
4: RightShift a4, a0, 0x00400800, 3
5: LeftShift a4, a0, 0x00000002, 27
6: RightShift a4, a0, 0x00801000, 6
7: LeftShift a4, a0, 0x00000004, 24
8: RightShift a4, a0, 0x01002000, 9
9: LeftShift a4, a0, 0x00000008, 21

10: RightShift a4, a0, 0x02004000, 12
11: LeftShift a4, a0, 0x00000010, 18
12: RightShift a4, a0, 0x04008000, 15
13: LeftShift a4, a0, 0x00010020, 15
14: RightShift a4, a0, 0x08000000, 18
15: LeftShift a4, a0, 0x00020040, 12
16: RightShift a4, a0, 0x10000000, 21
17: LeftShift a4, a0, 0x00040080, 9
18: RightShift a4, a0, 0x20000000, 24
19: LeftShift a4, a0, 0x00080100, 6
20: RightShift a4, a0, 0x40000000, 27
21: LeftShift a4, a0, 0x00100200, 3
22: RightShift a4, a0, 0x80000000, 30

MapKey4. An efficient implementation of MapKey for round 4 requires the representa-
tion of the key state as an 8 × 4 matrix i.e.,

b31b30...b1b0 ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b31 b30 b29 b28
b27 b26 b25 b24
b23 b22 b21 b20
b19 b18 b17 b16
b15 b14 b13 b12
b11 b10 b9 b8
b7 b6 b5 b4
b3 b2 b1 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Similarly to MapKey1, the transpose of this matrix is computed. The rows of the
resulting 8 × 4 matrix are swapped as presented in algorithm 7. The result is the required
fixsliced representation.

Algorithm 7 MapKey4 Swap
Require:

a4 - the source bitstring (after transpose);
a5 - the destination register;

1: RightShift a5, a4, 0xff000000, 24
2: RightShift a5, a4, 0x00ff0000, 8
3: LeftShift a5, a4, 0x0000ff00, 8
4: LeftShift a5, a4, 0x000000ff, 24


	Introduction
	GIFT CIPHER
	Optimization techniques
	Bitslicing
	Fixslicing

	Implementation
	Integrated Memory
	Baseline
	Bitslicing
	Fixslicing
	Fixslicing with Key Precomputation

	Results
	Discussion
	Conclusion and Future Work
	Appendix
	Efficient matrix transposition
	MapKey definition


