
Improved Constant-weight PIR with an Extension for Multi-query

Jian Liu∗

Zhejiang University
liujian2411@zju.edu.cn

Jingyu Li∗

Zhejiang University
jingyuli@zju.edu.cn

Di Wu
Zhejiang University
wu.di@zju.edu.cn

Kui Ren
Zhejiang University
kuiren@zju.edu.cn

Abstract
Homomorphic equality operator is essential for many secure
computation tasks such as private information retrieval (PIR).
However, the folklore homomorphic equality operator is typi-
cally considered to be impractical as its multiplicative depth
depends on the input bit-length. In Usenix SEC ’22, Mahdavi-
Kerschbaum propose a homomorphic equality operator with a
constant multiplicative depth, based on constant-weight code.
On that basis, they propose constant-weight PIR (CwPIR for
short); compared with other PIR protocols, CwPIR is more
friendly to databases with large payloads and can support
keyword query almost for free. Unfortunately, CwPIR cannot
support databases with a large number of elements, which
limits its real-world impact.

In this paper, we propose a homomorphic constant-weight
equality operator that supports batch processing, hence it can
perform thousands of equality checks with a much smaller
amortized cost. Based on this improved homomorphic equal-
ity operator, we propose a novel PIR protocol named PIRANA,
which inherits all advantages of CwPIR with a significant im-
provement in supporting more elements. We further extend
PIRANA to support multi-query. To the best of our knowl-
edge, PIRANA is the first multi-query PIR that can save both
computation and communication. Our experimental results
show that our single-query PIRANA is upto 30.8× faster than
CwPIR; our multi-query PIRANA saves upto 163.9× com-
munication over the state-of-the-art multi-query PIR (with a
similar computational cost).

1 Introduction

Suppose a server S holds a database of n elements, where
each element consists of an identifier (index or keyword) and
a payload; private information retrieval (PIR) allows a client
C to retrieve an element from the database without reveal-
ing which element was retrieved. It enables a wide range of

∗Jian Liu and Jingyu Li are co-first authors.

privacy-preserving applications such as private contact discov-
ery [17], private contact tracing [36], private navigation [37],
anonymous messaging [25, 30], and safe browsing [22]. De-
spite being extensively studied for decades, PIR is still a hot
research topic.

The PIR protocols can be roughly categorized into multi-
server PIR [13] and single-server PIR [24]. The multi-server
protocols are much more efficient in both computation and
communication, and can achieve information-theoretic secu-
rity. However, their reliance of multiple non-colluding servers
is an unrealistic assumption in practice. In contrast, the single-
server protocols do not have this strong assumption, but in-
troduce a huge performance overhead. It has been shown that
such protocols are even slower than trivially having C down-
load the entire database [35]. Furthermore, most of existing
PIR protocols only support index queries, and they require
extra communication rounds to reduce keyword PIR to in-
dex PIR [12]. On the other hand, keyword queries are more
commonly used in real-world applications.

Constant-weight PIR. Recently, Mahdavi-Kerschbaum [27]
propose a PIR based on constant-weight code, the codewords
of which have the same Hamming weight. They refer to
this PIR as constant-weight PIR (CwPIR for short). They
design homomorphic equality operators for constant-weight
codewords with a multiplicative depth that only depends on
the Hamming weight k of the code, not the bit-length m of
the codewords. CwPIR works as follows: (i) C/S maps its
query/identifiers to constant-weight codeword(s); (ii) C ho-
momorphically encrypts the indices that correspond to 1s in
its query codeword, and sends the ciphertexts to S; (iii) S
obliviously expands them into m ciphertexts, which corre-
spond to the m bits of the query codeword; (iv) for each of
the n identifiers, S runs the homomorphic equality operator
between the identifier codeword and the query codeword, lead-
ing to a selection vector of length n; (v) S returns the inner
product between the selection vector and the payloads. Com-
pared with prior arts, CwPIR is more friendly to databases
with large payloads, and can support keyword query with
minor modification, no extra rounds, and minimal overhead.

i

However, CwPIR needs to run ciphertext-ciphertext multipli-
cation for (k−1)n times, hence it cannot support databases
with a large number of elements. Their experimental results
also confirm this (cf. Table 13 in [27]).
Our contribution. In this paper, we propose a novel PIR
protocol named PIRANA, which inherits all advantages of
CwPIR [27] with a significant improvement in supporting
more elements. Our starting point is to replace the homomor-
phic equality operator in CwPIR with a novel SIMD-based
one, which supports batch processing: it can perform N (the
number of slots in an SIMD ciphertext) equality checks with a
single ciphertext-ciphertext multiplication (instead of N). As
a result, S in PIRANA only needs to run ciphertext-ciphertext
multiplication for (k− 1)⌈n/N⌉ times (instead of (k− 1)n).
We further extend PIRANA to support multi-query by replac-
ing the constant-weight code with a bloom filter. Prior multi-
query PIR protocols trade communication for computation:
they introduce more communication overhead than process-
ing multiple queries separately. To the best of our knowledge,
PIRANA is the first multi-query PIR that can save both compu-
tation and communication. Its basic idea is to batch multiple
queries using bloom filter and batch multiple responses using
oblivious rotation. In particular, the oblivious rotation scheme,
initially proposed by us, allows one to rotate an element from
an unknown slot of an SIMD ciphertext to a designated slot. It
could be of independent interest. We fully implement PIRANA
and systematically evaluate its performance.

We summarize our contribution as follows:

• We propose a novel homomorphic equality operator
that supports batch processing for constant-weight code-
words. (Section 3)

• We design a novel constant-weight PIR named PIRANA,
which is upto 30.8× faster than CwPIR proposed by
Mahdavi-Kerschbaum [27]. (Section 4)

• We propose the first muti-query PIR that can save
both computation and communication. It saves upto
163.9× communication over the state-of-the-art multi-
query PIR [2] (with a similar computational cost). (Sec-
tion 5)

• We provide a full-fledged implementation and extensive
evaluation. (Section 6)

2 Preliminaries

In this section, we describe some building blocks for our
protocols.

2.1 Homomorphic encryption
Fully Homomorphic Encryption (FHE) is an encryption
scheme that allows arbitrary functions to be performed over

Notation Description

C client

S server

n DB size

id an identifier

pl a payload

CW (m,k) binary constant-weight code with length m and

Hamming weight k

N polynomial modulus degree in FHE number of

slots in a SIMD ciphertext

p plaintext modulus, SIMD slot size

q ciphertext modulus

x a bit array

x̃ an SIMD ciphertext

t ⌈m/N⌉
s ⌈n/N⌉
% modulo

L number of queries

BC(n,M,L,B) a batch code that encodes n elements into M

codewords in B buckets, supporting L queries

C a batch code codeword

BL(m,k) a bloom filter of length m with k hash functions

H hash function

Table 1: Summary of frequent notations.

encrypted data [19]. In practice, it is usually used in a lev-
eled fashion, i.e., only a predefined number of operations
can be performed. In most FHE cryptosystems [5–7, 10, 18],
plaintexts are encoded as polynomials from the quotient ring
Zp[x]/(xN +1), where N is a power of 2, and p is the plain-
text modulus. The plaintext polynomials are then encrypted
into ciphertext polynomials Zq[x]/(xN + 1), where q is the
ciphertext modulus that determines the security level and the
number of operations that can be performed.

Most FHE cryptosystems support single instruction mul-
tiple data (SIMD), which encrypts multiple elements into a
single ciphertext and processes these encrypted elements in a
batch without introducing any extra cost. An SIMD cipher-
text has N slots, hence it can be viewed as an encryption of
a length-N vector over Zp. Notice that the SIMD technique
also supports cyclic rotations of its slots.

The homomorphic operations used in this paper are sum-
marized as follows:

• x̃← SIMDEnc(pk,x). The encryption algorithm takes
a plaintext vector x = [x1, ...,xN] and outputs an SIMD
ciphertext denoted by x̃.

ii

• x← SIMDDec(pk, x̃). The decryption algorithm takes
an SIMD ciphertext x̃ and outputs a plaintext vector x.

• z̃← SIMDAdd(x̃, ỹ). The addition algorithm takes two
SIMD ciphertexts x̃ and ỹ; outputs an encryption of
[x1 + y1, ...,xN + yN].

• z̃← SIMDPmul(x̃,y). The ciphertext-plaintext multipli-
cation takes a SIMD ciphertext x̃ and a plaintext vector
y; outputs an encryption of [x1y1, ...,xNyN].

• z̃← SIMDMul(x̃, ỹ). The ciphertext-ciphertext multipli-
cation takes two SIMD ciphertexts x̃ and ỹ; outputs an
encryption of [x1y1, ...,xNyN].

• x̃′ ← SIMDRotate(x̃,c). The rotation algorithm takes
an SIMD ciphertext x̃ and an integer c ∈ [N]; outputs an
encryption of

[
x(1+c)%N , ...,x(N+c)%N

]
.

2.2 Constant-weight code
Constant-weight code is a form of error detecting code where
its codewords are binary strings that share the same Hamming
weight k. Its code length m is the bit-length of its codewords
and code size n is the number of distinct codewords. Clearly,
for a fixed Hamming weight k, to construct a constant-weight
code of size n, one must choose its code length m, s.t.,

(m
k

)
≥ n.

Then, we have
m ∈ O(

k√k!n+ k).

We denote the constant-weight code with length m and Ham-
ming weight k by CW (m,k).

Mahdavi-Kerschbaum [27] propose ways to map both in-
dices and keywords to constant-weight codewords. Algo-
rithm 1 shows how they map indices (i.e., i∈ [n]) to CW (m,k).
Intuitively, it maps each i to the i-th valid codeword from a
sorted list of codewords, with a complexity O(m+ k).

Algorithm 1 Mapping indices to constant-weight codewords

Input i ∈ [n] ,m,k ∈ N with
(m

k

)
≥ n

Output x ∈CW (m,k)
1: j := i
2: l := k
3: x := 0m

4: for m′ := m−1, ...,0 do
5: if j ≥

(m′
l

)
then

6: x[m′] := 1
7: j := j−

(m′
l

)
8: l := l−1
9: end if

10: if l = 0 then
11: break
12: end if
13: end for
14: return x

Algorithm 2 Mapping keywords to constant-weight code-
words
Input kw ∈ KW,m,k ∈ N, a set of hash functions (Hi :
|KW| → [m])

Output x ∈CW (m,k)
1: i := 1
2: k′ := 0
3: x := 0m

4: while k′ < k do
5: h := Hi(kw)
6: if x[h] = 0 then
7: x[h] := 1
8: k′ := k′+1
9: else

10: i := i+1
11: end if
12: end while
13: return x

It becomes tricky to map keywords to constant-weight
codewords: keywords could be from a large domain KW;
m and k need to be chosen s.t.

(m
k

)
≥ |KW|, which could lead

to prohibitively large m,k. To address this issue, Mahdavi-
Kerschbaum [27] propose a lossy mapping (Algorithm 2),
which allows a small probability that distinct keywords are
mapped to the same codeword.

An equality operator for checking the equality of two values
is defined as follows:

Definition 1 (Equality Operator). A function f is an equality
operator over a domain D if ∀x,y ∈ D,

f (x,y) =
{

1 if x = y
0 o.w.

An equality operator over constant-weight codewords could
be:

f (x,y) = ∏
y[i]=1

x[i] (1)

2.3 Batch code
A batch code (n,M,L,B)-BC encodes a collection of n ele-
ments into M codewords distributed among B buckets; any L
of the n elements can be recovered by fetching at most one
codeword from each bucket. It is an essential building block
for multi-query PIR: C issues one PIR query to each of the B
buckets and receives B responses; to answer these B queries,
S computes over all M codewords exactly once. Notice that
smaller M leads to lower computation, and smaller B leads to
lower communication. Given M < L ·n, the total computation
done by S is lower than running L instances of single-query
PIR separately.

Angel et al. [2] introduce the notion of probabilistic batch
code (PBC) that differs from the traditional batch codes in

iii

that it fails to be complete with probability p, in exchange for
a smaller M and B. They provide a PBC construction based
on 3-way cuckoo hashing, which encodes n elements into
M = 3n codewords distributed among B = 1.5L buckets, with
a failure probability of p = 2−40.

We summarize the operations of a batch code as follows:

• [(id1,C1), ...,(idB,CB)] ← Encode([(id1, pl1), ...,(idn,
pln)]), where (idi,Ci) denotes vectors of identifiers and
codewords in the i-th bucket.

• [id′1, ..., id
′
B]← GenSchedule([id1, ..., idL]), which takes

a set of L queries and outputs a query for each of the B
buckets.

• [pl1, ..., plL] ← Decode([C1, ...,CB]), which takes B
codewords and outputs L payloads.

2.4 Bloom filter
A bloom filter BL(m,k) is a data structure for efficient mem-
bership test [4]. It is a bit array x of length m initialized with
0s. It is also equipped with k hash functions {Hi}; the output
of each hash function is uniformly distributed in [m]. To insert
an element x into the bloom filter, one computes k positions:
hi = Hi(x) ∀i ∈ [k], and set each of these k positions in x as 1
(x[hi] := 1). To test if an element has been inserted into the
bloom filter, k positions are computed in the same way; if any
of these positions in x is 0, the element is for sure not in the
bloom filter; otherwise, the element is declared to be in the
bloom filter with the following false positive rate:

ε = (1− e−kL/m)k (2)

where L is the number of elements that has been inserted into
the bloom filter.

3 SIMD-based Homomorphic Equality Opera-
tor

Mahdavi-Kerschbaum [27] propose a homomorphic equality
operator for constant-weight code based on SealPIR’s obliv-
ious expansion [2]. In more detail, to encrypt a codeword x
of length m, they separately encrypt the k indices that cor-
respond to 1s in x using FHE. To check equality between
an encrypted x and a plain codeword y, they first expand the
encrypted indices such that each bit of x is in a separate ci-
phertext; then run the equality operator (cf. equation 1) on the
encrypted bits. The oblivious expansion requires 2m(N−1)

N sub-
stitutions1 and m ciphertext-plaintext multiplications [2]; and
the equality operator requires (k− 1) ciphertext-ciphertext
multiplications.

1The runtime of substitution is roughly twice that of ciphertext-plaintext
multiplication.

Algorithm 3 SIMD-based homomorphic equality operator

Input [x̃1, ..., x̃t] and y, with x1||...||xt = x
Output ṽ: if x = y, v[1] = 1 and others are 0s; o.w. v = 0N

1: Find the k indices [i1, ..., ik] in y, where y[i] = 1
2: a := 1
3: for i ∈ [i1, ..., ik] do
4: j := ⌊i / N⌋
5: c := i % N−1
6: ũa← SIMDRotate(x̃ j,c)
7: a := a+1
8: end for
9: ṽ := SIMDMul(ũ1, ..., ũk)

10: e := 0N , e[1] := 1
11: ṽ← SIMDPmul(ṽ,e)

In this section, we propose a faster homomorphic equality
operator based on SIMD, where x is directly encrypted into
[x̃1, ..., x̃t] s.t. x = x1||...||xt and t = ⌈m/N⌉.2 The homomor-
phic equality operator is described in Algorithm 3. For each
index i with y[i] = 1, it rotates the corresponding element in
x to the first slot (Line 4-6), leading to a ciphertext ũa with
ua[1] = x[i]. Then, it multiplies [ũ1, ..., ũk] altogether and gets
ṽ (Line 9) with

v[1] = ∏
y[i]=1

x[i].

Clearly, v[1] is the result of the equality operator. In the end,
it clears out other slots of ṽ by multiplying it to a plaintext e
(Line 11).

Algorithm 3 requires k rotations and (k− 1) ciphertext-
ciphertext multiplications, plus one ciphertext-plaintext mul-
tiplication. Given that the runtime of rotation is roughly twice
that of ciphertext-plaintext multiplication, our approach saves
(5mN−4m

N −2k−1) ciphertext-plaintext multiplications com-
pared to that proposed by Mahdavi-Kerschbaum [27]. More
importantly, our approach supports batch processing: given
that Algorithm 3 only uses the first slot of u (Line 6), we
could in fact make full use of its N slots to run N equality
tests in a batch.
Batched homomorphic equality operator. Algorithm 4 de-
scribes our batched version. It compares x with N different
ys. For each y, it runs Algorithm 3 with two modifications:

• It rotates x[i] to the l-th slot, instead of the first slot
(Line 7-8).

• It leaves out the ciphertext-ciphertext multiplication
among ũs. Instead, it clears out the useless slots of each
ũ and adds it to the corresponding w̃ (Line 10-11).

The above process leads to k ciphertexts [w̃1, ..., w̃k] with
wa[j] = y j[ia]. Then, it multiplies [w̃1, ..., w̃k] altogether and

2For simplicity, we assume N divides m.

iv

Algorithm 4 Batched homomorphic equality operator

Input [x̃1, ..., x̃t] and [y1, ...,yN], with x1||...||xt = x
Output ṽ: for each l ∈ [N], if x = yl , v[l] = 1; o.w. v[l] = 0

1: Init [w̃1, ..., w̃k]: each w̃i is an encryption of 0N

2: for l := 1, ...,N do
3: Find the k positions [i1, ..., ik] in yl , where yl [i] = 1
4: a := 1
5: for i ∈ [i1, ..., ik] do
6: j := ⌊i / N⌋
7: c := i % N− l
8: ũ← SIMDRotate(x̃ j,c)
9: e := 0N , e[l] := 1

10: ũ← SIMDPmul(ũ,e)
11: w̃a := SIMDAdd(w̃a, ũ)
12: a := a+1
13: end for
14: end for
15: ṽ := SIMDMul(w̃1, ..., w̃k)
16: return ṽ

gets ṽ (Line 15) with

v[j] = ∏
y j [i]=1

x[i], ∀ j ∈ [N].

In this way, it accomplishes N homomorphic equality opera-
tors with a single ciphertext-ciphertext multiplication (which
is the most expensive operation).
Remark. Mahdavi-Kerschbaum [27] also use the SIMD tech-
nique (but in a different way) when benchmarking their ho-
momorphic equality operators. They encrypt each bit of x in
a separate SIMD ciphertext, which means they use m SIMD
ciphertexts to encrypt a single x. To make use of other slots,
they encrypt N different xs in these ciphertexts. Then, they
measure the amortized time of comparing these xs with a
single y. Notice that batching in this way has no relation with
PIR; indeed, they did not apply this approach to their CwPIR.
In contrast, our proposed homomorphic equality operator nat-
urally implies PIR, as shown in next section.

4 Single-query PIRANA

In this section, we present our constant-weight PIR. It is
mostly based on the batched homomorphic equality oper-
ator in Algorithm 4. The rough idea is to divide the database
into s := ⌈n/N⌉ chunks and run Algorithm 4 separately for
each chunk.

4.1 Single-query PIRANA for small payloads

For small payloads, the size of which is smaller than the slot
size i.e., |pl|< p, the workflow of PIRANA is as follows:

Algorithm 5 Single-query PIRANA for small payloads

Input [x̃1, ..., x̃t] and [(y1, pl1), ...,(yn, pln)]
Output ṽ : Suppose x = yi, then v[i % N] = pli and other

elements of v are 0s
1: s := ⌈n/N⌉ ▷ For simplicity, we assume N divides n
2: for i := 1, ..,s do
3: Run Algorithm 4 with input ([x̃1, ..., x̃t] ,[

y(i−1)N+1, ...,y(i−1)N+N
]
) and get output ũi

4: ũi← SIMDPmul(ũi,
[

pl(i−1)N+1, ..., pl(i−1)N+N

]
)

5: end for
6: ṽ← SIMDAdd(ũ1, ..., ũs)
7: return ṽ

• Setup. Parameters for the homomorphic encryption are
chosen and keys are generated. For each identifier idi,
S maps it to a constant-weight codeword yi of length m
and weight k.

• Query. C maps its query to a constant-weight code-
word x in the same way as S; encrypts x into t = ⌈m/N]
SIMD ciphertexts [x̃1, ..., x̃t] s.t. x= x1||...||xt ; and sends
[x̃1, ..., x̃t] to S.

• Answer. S runs Algorithm 5 to generate a response. It
proceeds in two phases:

1. Selection vector generation. For each chunk, S
runs Algorithm 4 with [x̃1, ..., x̃t] and the corre-
sponding ys in that chunk, and gets an encrypted
selection vector ũ (Line 3).

2. Inner product calculation. S multiplies the pay-
loads to the corresponding slots of ũ (Line 4).
Given that x matches (at most3) one y, there will be
(at most) one “1” in all slots of all us, hence only
(at most) one payload will be kept and all others
will be cleared out. In the end, S adds together all
ciphertexts (Line 6), and returns the result ṽ to C.

• Extract. C decrypts ṽ and outputs the non-empty slot (if
any).

In this way, S needs to run s · k · N rotations, (s · k ·
N + s) ciphertext-plaintext multiplications, and s · (k−1) =
⌈n/N⌉ · (k− 1) ciphertext-ciphertext multiplications (recall
that CwPIR [27] needs to run (k−1) ·n ciphertext-ciphertext
multiplications, which is its main overhead).

We could further reduce the number of rotations from s · k ·
N to t ·(N−1) (notice that s ·k > n≫ t). The key observation
is that, in Line 8 of Algorithm 4, the same ũ will appear
multiple times. Therefore, we could pre-compute all possible
ũs. Algorithm 6 describes this optimization. In more detail,

3In index PIR, x matches exactly one y; in keyword PIR, x matches one y
or there is no match.

v

Algorithm 6 Single-query PIRANA for small payloads with a
reduced number of rotations
Input [x̃1, ..., x̃t] and [(y1, pl1), ...,(yn, pln)]
Output ṽ : Suppose x = yi, then v[i % N] = pli and other

elements of v are 0s

1: Init

ũ1,1 ... ũ1,N
...

. . .
...

ũt,1 ... ũt,N

: each ui, j is an encryption of 0N

2: for i := 1, ..., t do
3: for j := 1, ...,N−1 do
4: ũi, j← SIMDRotate(x̃t ,(j−1))
5: end for
6: end for
7: s := ⌈n/N⌉ ▷ For simplicity, we assume N divides n
8: for j := 1, ..,s do
9: Init [w̃1, ..., w̃k]: each w̃ is an encryption of 0N

10: for l := 1, ...,N do
11: Find the k positions [i1, ..., ik] in y(j−1)N+l , where

y(j−1)N+l [i] = 1
12: a := 1
13: for i ∈ [i1, ..., ik] do
14: e := 0N , e[l] := 1
15: f̃← SIMDPmul(ũ⌊i / N⌋,i % N−l ,e)
16: w̃a := SIMDAdd(w̃a, f̃)
17: a := a+1
18: end for
19: end for
20: g̃ := SIMDMul(w̃1, ..., w̃k)

21: ṽ j← SIMDPmul(g̃,
[

pl(j−1)N+1, ..., pl(j−1)N+N

]
)

22: end for
23: ṽ← SIMDAdd(ṽ1, ..., ṽs)
24: return ṽ

for each x̃i, S rotates it (N−1) times to enumerate all possible
rotations of x̃i. This leads to t×N different ũs (Line 1-6 in
Algorithm 6). Then, it runs in a similar4 way as Algorithm 5,
with only one modification: instead of rotating x̃ to get ũ,
S directly picks ũ from the pre-computed values (Line 15).
We emphasize that this trick also allows us to rotate 2x slots
per rotation (x = 0 in our case), which is more efficient than
rotating an arbitrary number of slots.

4.2 Single-query PIRANA for large payloads

Notice that the returned ciphertext ṽ in Algorithm 5 6 has
(at most) one non-empty slot. Algorithm 7 shows how we
make full use of other empty slots to return a large payload
(assuming a payload is as large as l ciphertexts, i.e., |pl| =
l ·N · p), and Figure 1 visualizes this process. Specifically, S

4The description is different because we can no longer use Algorithm 4
as a blackbox.

Algorithm 7 Single-query PIRANA for large payloads

Input [x̃1, ..., x̃t] and [(y1, pl1), ...,(yn, pln)]
Output [ṽ1, ..., ṽl] : Suppose x = yi, then v1[1]||...||v1[N]||...
||vl [1]||...||vl [N] = pli ▷ |pl|= l ·N · p

1: s := ⌈n/N⌉ ▷ For simplicity, we assume N divides n

2: Init

d1,1 ... d1,l·N
...

. . .
...

ds,1 ... ds,l·N

: each di, j is [pl j
(i−1)N+1, ...,

pl j
(i−1)N+N], and pl1

(i−1)N+a||...||pll·N
(i−1)N+a = pl(i−1)N+a

3: Init [w̃1, ..., w̃l·N]: each w̃i is an encryption of 0N

4: for i := 1, ..,s do
5: Run Algorithm 4 with input ([x̃1, ..., x̃t] ,[

y(i−1)N+1, ...,y(i−1)N+N
]
) and get output ũi

6: for j := 1, ..., l ·N do
7: f̃ j← SIMDPmul(ũi,di, j)

8: w̃ j← SIMDAdd(̃f j, w̃ j)
9: end for

10: end for
11: Init [ṽ1, ..., ṽl]: each vi is an encryption of 0N

12: for i := 1, ..., l do
13: for j := 1, ...,N do
14: ṽi← SIMDAdd(ṽi, w̃(i−1)·N+ j)
15: ṽi← SIMDRotate(ṽi,1)
16: end for
17: end for
18: return [ṽ1, ..., ṽl]

splits each payload into l ·N small blocks (Line 2) and runs
as follows to answer a query:

❶ For each of the s chunks, it runs Algorithm 4 to get a
selection vector (Line 5). Notice that the optimization in
Algorithm 6 is also applicable here, but we leave it out
for the ease of presentation.

❷ It multiplies the blocks of N payloads to each selection
vector, and repeats this for all l ·N blocks of each payload
(Line 7).

❸ It adds together the ciphertexts from different chunks
(Line 8), resulting in l ·N ciphertexts.

❹ For every N ciphertexts, it rotates them so that their
non-empty slots are interlaced, and adds them together
(Line 11-17). By doing this, there will be l ciphertexts
left for the whole database. An important optimization
here is that we rotate ṽ instead of w̃, which allows us to
rotate one slot per rotation.

Steps 2-4 above involve s · l ·N ciphertext-plaintext multi-
plications and l · (N−1) rotations. We remark that when s is
small, S first rotates the selection vectors in a way like Line
2-6 in Algorithm 6 to enumerate all N possible rotations; and

vi

.

.

.

pl1
pl2

plN

Algorithm 4

x

d1,1 d1,2 d1,𝑙 " 𝑁. . .
0

pl2

.

.

.

0

. . .

𝑙 " 𝑁
0

1

.

.

.

0

0

pl2

.

.

.

0

1

0

pl2

.

.

.

0

1

+

.

.

.

pl

pl

pl

x

ds,1 ds,2 ds, 𝑙 " 𝑁. . .
0

0

.

.

.

0

. . .

0

0

.

.

.

0

0

0

.

.

.

0

0

0

.

.

.

0

.

.

.
.
.
.

𝑠 − 1 𝑁 + 1

𝑠 − 1 𝑁 + 2

s " 𝑁

.

.

.

pl2

pl2

.

.

.

pl2

2

. . .

pl2

pl2

.

.

.

pl2

1

N 𝑙 " 𝑁

𝑙 − 1 𝑁 + 2

𝑙 − 1 𝑁 + 1

1

2

2

3 4

0

pl2

.

.

.

0

. . .

𝑙 " 𝑁

0

pl2

.

.

.

0

1

0

pl2

.

.

.

0

1

+
Algorithm 4

1

Figure 1: Workflow of single-query PIRANA for large payloads (visualization of Algorithm 7).

Algorithm 8 Single-query PIRANA for large payloads (small
n)

Input [x̃1, ..., x̃t] and [(y1, pl1), ...,(yn, pln)]
Output [ṽ1, ..., ṽl] : Suppose x = yi, then v1[1]||...||v1[N]||...
||vl [1]||...||vl [N] = pli ▷ |pl|= l ·N · p

1: s := ⌈n/N⌉ ▷ For simplicity, we assume N divides n

2: Init

d1,1 ... d1,l·N
...

. . .
...

ds,1 ... ds,l·N

: each di, j is [pl j
(i−1)N+1, ...,

pl j
(i−1)N+N] with an rotation of (j−1)

3: Init

ũ1,1 ... ũ1,N
...

. . .
...

ũs,1 ... ũs,N

: each ui, j is an encryption of 0N

4: Init [ṽ1, ..., ṽl]: each vi is an encryption of 0N

5: for i := 1, ..,s do
6: Run Algorithm 4 with input ([x̃1, ..., x̃t] ,[

y(i−1)N+1, ...,y(i−1)N+N
]
) and get output ũi

7: for j := 1, ...,N−1 do
8: ũi, j← SIMDRotate(ũi,(j−1))
9: end for

10: for c := 1, ..., l do
11: for j := 1, ...,N do
12: w̃ j← SIMDPmul(ũi, j,di,(c−1)N+ j)
13: end for
14: ṽc← SIMDAdd(ṽc, w̃1, ..., w̃N)
15: end for
16: end for
17: return [ṽ1, ..., ṽl]

then multiply the rotated selection vectors to the rotated pay-
loads. In this case, the number of rotations becomes s ·(N−1),
which is more friendly to databases with a small n but large
payloads. Algorithm 8 describes this optimization. In more
detail, S first rotates the payloads so that the values to be
selected are interlaced (Line 2). Notice that this step only
needs to be done once for all queries. After running Algo-
rithm 4, it rotates each of the s selection vectors (N−1) times
(Line 7-9). Then, it multiplies the rotated selection vectors
with the corresponding rotated payloads (Line 11-13). In the
end, it adds every s ·N products together, resulting in l inner
products.

In practice, we could combine Algorithm 7 and Algorithm 8
to minimize the number of rotations for specific l and s. In
more detail, we could first run Algorithm 8, but with two
modifications:

• It rotates the selection vector for (α−1) times (instead
of (N−1) times) and rotates N

α
slots per rotation.

• In Line 14, it does not add the N w̃s together, instead
it only adds the w̃s from s chunks together, resulting in
l ·N w̃s.

Then, it runs Algorithm 7 from Line 11, but only rotates
for (N

α
− 1) times in Line 13-16. Now, the total number of

rotations becomes:

f (α) = (α−1)s+(
N
α
−1)l.

The first-order derivative of f (α) is:

d f (α)
dα

= s− N · l
α2 .

vii

The second-order derivative of f (α) is:

d2 f (α)
dα2 =

1
α3 > 0.

As the second-order derivative is always positive, we have:

1. If the first-order derivative is always negative (i.e. s−
N·l
α2 < 0), f (α) is monotonically decreasing, hence it is
minimal when α is maximal (i.e, α = N). In this case,
s < l

N .

2. If the first-order derivative is always positive (i.e. s−
N·l
α2 > 0), f (α) is monotonically increasing, hence it is
minimal when α is minimal (i.e, α = 1). In this case,
s > l ·N.

3. If the first-order derivative could be zero (i.e. s− N·l
α2 = 0),

f (α) is minimal when α =
√

Nl/s.

Formally, we have:

argmin f (α)
1≤α≤N

=

N s < l

N√
Nl/s l

N ≤ s≤ l ·N
1 s > l ·N

which implies that:

• when the payload size is large enough s.t., l ≥ sN, we
should run Algorithm 8;

• when the number of elements is large enough s.t., s≥ lN,
we should run Algorithm 7;

• in the middle ground case, we should combine Al-
gorithm 7 and Algorithm 8 as aforementioned, with
α =

√
Nl/s.

5 Multi-query PIRANA

As we mentioned in Section 2.3, existing multi-query PIR
protocols need to query B buckets for L elements, and C has to
use a separate single-query PIR to query each bucket. Given
that B > L, this may introduce more communication overhead
than running L instances of single-query PIR. Therefore, exist-
ing multi-query PIR protocols offer an unattractive trade-off:
they reduce computation but add communication overhead.

In this section, we show that, by combining the idea of our
single-query PIRANA with batch code and bloom filter, we
come up with the first multi-query PIR protocol that can save
both computation and communication.

The key observation is that our SIMD-based homomorphic
equality operator (Algorithm 3 and 4) still work even if the
non-zero bits’ indices in y (denoted Iy = {i1, ..., ik}) is a sub-
set of the non-zero bits’ indices in x (denoted Ix = {i1, ..., iK}),
i.e., Iy ⊆ Ix. Then, our starting point is to have C insert mul-
tiple queries into x. However, this will easily lead to false

positives: Iy ⊆ Ix1 ∪ Ix2 but y is neither x1 nor x2. To reduce
such false positive rate, we have C insert multiple queries into
a bloom filter BL(m,k) and encrypt the bloom filter in the
same way as before, leading to x̃. Then, for an id, S computes
the k hash values of id: Iy = {i1, ..., ik}, and runs Line 2-11 of
Algorithm 3, resulting in ṽ that satisfies:

• if id belongs to the multi-query, v[1] = 1;

• otherwise, v = 0N .

However, this idea will not work for Algorithm 5-8. For ex-
ample, in Line 6 of Algorithm 5, multiple non-zero payloads
may collide in the same slot of ṽ. Thanks to the batch code,
we could use the bloom filter to query one payload from each
bucket to avoid collisions, and we could use the same bloom
filter to query all buckets.

5.1 Multi-query PIRANA for large payloads
The workflow of our multi-query PIR (for large payloads) is
as follows:

Algorithm 9 Multi-query PIR - Query

Input [id1, ..., idL]
Output [x̃1, ..., x̃t]

1: [id′1, ..., id
′
B]← GenSchedule([id1, ..., idL])

2: x := 0m

3: for i := 1, ...,B do
4: for j := 1, ...,k do
5: x[H j(i||id′i)] := 1
6: end for
7: end for
8: [x̃1, ..., x̃t]← SIMDEnc(x) ▷ t = ⌈m/N⌉ and we assume

N divides m for simplicity

• Setup. Parameters for the homomorphic encryption are
chosen and keys are generated. S encodes its database
using a batch code BC(n,M,L,B):

[(id1,C1), ...,(idB,CB)]← Encode([(id1, pl1), ...,
(idn, pln)]),

where (idi,Ci) denotes vectors of identifiers and code-
words in the i-th bucket.

• Query. C runs Algorithm 9 to generate the query ci-
phertexts. More specifically, given L original queries
[id1, ..., idL], C first runs GenSchedule of the batch code
to generate queries [id′1, ..., id

′
B] for each of the B buckets

(Line 1). Then, it inserts these queries into a bloom filter
BL(m,k). Notice that the same identifier may appear in
different buckets, hence each id′i needs to be bound with
its bucket index i to avoid collisions (Line 5). In the end,
S encrypts the bloom filter x into t ciphertexts [x̃1, ..., x̃t]
(Line 8) and sends them to S.

viii

• Answer. S runs Algorithm 10 to generate a response.
In more detail, it first inserts each id j (bound with its
bucket index i) into a separate “bloom filter”, denoted by
y (Line 5); and then runs Algorithm 8 for each bucket to
retrieve the desired codeword from that bucket (Line 8)5.
Notice that if we adopt the optimization of Algorithm 6
(i.e., pre-computing all rotations), Line 1-6 of Algo-
rithm 6 only need to be done once and can be reused for
all B buckets.

• Extract. C decrypts [ṽ1, ..., ṽB] and gets [C1, ...,CB].
Then, it runs

[pl1, ..., plL]← Decode([C1, ...,CB]).

Algorithm 10 Multi-query PIR - Answer (for large payloads)

Input [x̃1, ..., x̃t], [(id1,C1), ...,(idB,CB)]
Output [ṽ1, ..., ṽB]

1: for i := 1, ...,B do
2: for j := 1, ..., |idi| do
3: yi, j := 0m

4: for l := 1, ...,k do
5: yi, j[Hl(i||id j)] := 1
6: end for
7: end for
8: Run Algorithm 8 with input ([x̃1, ..., x̃t] , [(yi,1,Ci,1),

...,(yi,|idi|,Ci,|idi|)]) and get output ṽi ▷ Notice that
Algorithm 8 will return multiple ṽs for a large payload.
We leave out this detail for the ease of presentation.

9: end for
10: return [ṽ1, ..., ṽB]

5.2 Multi-query PIRANA for small payloads
If |C|> N · p, the slots of each ṽ (returned by Algorithm 10)
can be fully utilized; otherwise, some slots will be empty. In
the later case, we could add different ṽs together to reduce the
response size. However, the non-zero payloads from different
ṽs may collide in the same slot.

Given that there is only one non-zero payload in each ci-
phertext, we could rotate these non-zero payloads to make
them interlaced. The challenge is that the original positions
of these non-zero payloads are unknown to S. To this end,
we design a scheme for oblivious rotation (in Algorithm 11),
which allows S to rotate a non-zero element from an unknown
slot to a designated slot.

The idea of oblivious rotation is borrowed from binary
search. Suppose there is a single non-zero element in an
SIMD ciphertext ũ; that element is either in the first-half or in
the second-half of the N slots of ũ. If the designated slot is in

5We use Algorithm 8 because the bucket size is likely to be small. It it is
large, we could use Algorithm 7 instead.

the first-half, S generates a ciphertext ṽ, which is a rotation of
ũ from the second-half to the first-half (Line 5). Then, it adds
ṽ and ũ (Line 6). Now, the non-zero element is for sure in
the first-half, then it clears out the second-half of ũ (Line 7).
Similarly, if the designated slot is in the second-half, S rotates
ũ from the first-half to the second-half (Line 10) and clears
out the first half (Line 12). S runs this process recursively
until reaching the designated slot. Now, the non-zero element
is in the i-th slot of the returned ciphertext ṽ.

Algorithm 11 Oblivious rotation

Input i, ũ ▷ there is only one non-zero element in ũ and its
position is unknown.

Output ṽ ▷ rotate the non-zero element to the i-th slot.
1: a := 1,b := N
2: for j := 1, ..., logN do
3: c := a+(b−a)/2
4: if c > i then
5: ṽ← SIMDRotate(ũ,2 j)
6: ũ← SIMDAdd(ũ, ṽ)
7: set u[c : (c+2 j)] to 0s ▷ multiply ũ by a plaintext
8: b := c−1
9: else

10: ṽ← SIMDRotate(ũ,−2 j)
11: ũ← SIMDAdd(ũ, ṽ)
12: set u[(c−2 j) : c] to 0s
13: a := c+1
14: end if
15: end for
16: return ṽ := ũ

Algorithm 12 shows how S answers multi-query for small
payloads. It assumes each codeword C can fit into a slot,
i.e., |C|< p. However, it can trivially support the case where
|C|< N

B · p.

Algorithm 12 Multi-query PIR - Answer (for small payloads)

Input [x̃1, ..., x̃t], [(id1,C1), ...,(idB,CB)]
Output ṽ

1: for i := 1, ...,B do
2: for j := 1, ..., |idi| do
3: yi, j := 0m

4: for l := 1, ...,k do
5: yi, j[Hl(i||id j)] := 1
6: end for
7: end for
8: Run Algorithm 6 with input ([x̃1, ..., x̃t] , [(yi,1,Ci,1),

...,(yi,|idi|,Ci,|idi|)]) and get output ũi
9: Run Algorithm 11 with input (i, ũi) and get output w̃i

10: end for
11: ṽ← SIMDAdd(w̃1, ..., w̃B)
12: return ṽ

ix

5.3 False positives in a bloom filter
Recall that a bloom filter has a false positive rate:

ε = (1− e−kL/m)k.

Given that we need to run M membership tests for a multi-
query, the false positive rate for a multi-query is Mε. For
example, if we configure the bloom filter s.t. ε = 2−42, we
could get a false positive rate of ≈ 2−20 for a database of 220

elements.
If a false positive happens in a bucket, the query in that

bucket will fail, but will not affect other buckets. Still, C will
not get all its desired elements. However, before sending the
query, C could run Step 2-7 of Algorithm 10 by itself to learn
which bucket will fail (if any). In scenarios where C needs
to retrieve more than a batch of L elements, it can adjust
its current set of queries, e.g., move the id that causes false
positives to the next batch. In scenarios where false positives
are unacceptable, we could switch back to the constant-weight
PIR as we will show next.

5.4 Multi-query PIRANA based on constant-
weight code

Notice that the number of elements in each bucket is roughly
M
B , which could be much smaller than n. If we use our
constant-weight PIR to query each bucket, we could use
a smaller m, which allows us to batch multiple constant-
weight codewords into a single ciphertext. Recall that in Al-
gorithms 5-8, each x corresponds to a single constant-weight
codeword. If N > m, we could in fact have C store multiple
codewords in x. For example, to query L = 256 elements from
n = 220 elements, if we use PBC [2] to encode the database,
we have M = 3n = 3 145 728, B = 1.5L = 384, and there are
M
B = 8 192 elements in each bucket. If we set k = 2, we have
m = 129. For a ciphertext with N = 8 192, we could in fact
have C batch ⌊N

m⌋= 63 queries into a single ciphertext. As a
result, instead of sending B = 384 ciphertexts, C only needs
to send ⌈ B

63⌉= 7 ciphertexts to S. Algorithm 13 shows how
C generates query ciphertexts in this way.

Algorithm 13 Constant-weight multi-query PIR - Query

Input [id1, ..., idL]
Output [x̃1, ..., x̃d] ▷ d = ⌈B

c ⌉ where c = ⌊N
m⌋

1: [id′1, ..., id
′
B]← GenSchedule([id1, ..., idL])

2: Map [id′1, ..., id
′
B] to constant-weight code: [z1, ...,zB]

3: for i := 1, ...,d do
4: xi := z(i−1)c+1||...||z(i−1)c+c
5: x̃i← SIMDEnc(xi)
6: end for

Algorithm 14 shows how S generates responses for
constant-weight multi-query PIR with large payloads. For

small payloads, it can simply replace Algorithm 7 with Algo-
rithm 6 and Algorithm 11. Knowing the split points for differ-
ent codewords, S can easily extend [x̃1, ..., x̃d] into B cipher-
texts. However, this is unnecessary; instead, S can use them di-
rectly to compute the selection vectors (Line 4). By assuming
|idi|= N, S can make full use of the slots in x̃ j for ciphertext-
ciphertext multiplication when running Algorithm 8. When
|idi| < N, S can pad [(yi,1,Ci,1), ...,(yi,|idi|,Ci,|idi|)] with ele-
ments from other buckets. Similarly, when |idi| > N, S can
pad [(yi,|idi|−N ,Ci,|idi|−N), ...,(yi,|idi|,Ci,|idi|)] with elements
from other buckets. We leave out this detail for the ease of
presentation.

Algorithm 14 Constant-weight multi-query PIR - Answer
(for large payloads)

Input [x̃1, ..., x̃d], [(id1,C1), ...,(idB,CB)]
Output [ṽ1, ..., ṽB]

1: for i := 1, ...,B do
2: Map idi to constant-weight code: [yi,1, ...,yi,|idi|]
3: Pick x̃ j where the i-th query codeword resides
4: Run Algorithm 7 with input (x̃ j, [(yi,1,Ci,1), ...,

(yi,|idi|,Ci,|idi|)]) and get output ṽi ▷ For simplicity, we
assume |idi|= N

5: end for
6: return [ṽ1, ..., ṽB]

6 Evaluation

In this section, we provide a full-fledged implementation for
PIRANA and systematically evaluate its performance.

6.1 Implementation
We fully implement PIRANA based on the Microsoft SEAL
homomorphic encryption library (version 4.0)6. We use the
Brakerski-Fan-Vercauteren (BFV) [5, 18] scheme with N =
8192, 30-bit plaintext modulus (for each SIMD slot) and 218-
bit ciphertext modulus, which enables us to have a 128-bit
security level.

All ciphertext-plaintext multiplications and ciphertext-
ciphertext additions are implemented using number theoretic
transform (NTT). To this end, we encode all payloads into
NTT forms so that they can be multiplied directly to the NT-
Ted selection vectors. Such payload encoding only needs to
be done once and can be used for all queries.

We run all experiments on an Intel Xeon Cooper Lake
(with a base frequency of 3.4 GHz and turbo frequency of 3.8
GHz) server running Ubuntu 20.04. This setup is similar to
the setting of CwPIR [27]. All experiments were repeated 5
times and average values (the variances are very small) were
reported.

6https://github.com/Microsoft/SEAL

x

https://github.com/Microsoft/SEAL

elements n 28 29 210 211 212 213 214 215 216

codeword length m 24 33 46 65 92 129 182 257 363
DB Size (MB) 5.2 10 21 42 84 170 340 670 1 300

CwPIR [27]
k = 2

N = 213

Selection Vec. (s) 3.9 7.8 15.5 31.0 61.7 123.1 246.2 492.7 983.3
Inner Product (s) 0.2 0.4 0.8 1.6 3.3 6.5 13.1 26.2 52.3
Total server (s) 4.1 8.2 16.3 32.6 65.0 129.7 259.4 518.9 1 035.6

single-query
PIRANA

k = 2
N = 213

Selection Vec. (s) 1.0 1.1 1.3 1.7 2.5 4.1 7.3 13.7 26.8
Inner Product (s) 0.7 0.7 0.7 0.8 1.0 1.3 2.3 3.7 6.9
Total server (s) 1.7 1.8 2.1 2.5 3.5 5.4 9.6 17.5 33.6

Speedup 2.4× 4.6× 7.8× 13× 18.6× 24× 27× 29.6× 30.8×

Table 2: Microbenchmark of PIRANA and CwPIR.

6.2 Evaluation of single-query PIRANA

We first compare PIRANA (a combination of Algorithm 7 and
Algorithm 8 with α depending on the number of elements n
and payload sizes) with CwPIR [27] in terms of single-query
PIR. To this end, we reproduce the results of CwPIR (Table 7
and Figure 2) reported in their original paper, by running their
open-sourced implementation7. Our reproduced results are
better than their original results, for two reasons: (1) our CPU
is more advanced, and (2) we use a newer version of the SEAL
library (they use version 3.6). We measure PIRANA by the
same metric and list the comparision results in Table 2 and
Figure 2.

Microbenchmark. We first microbenchmark the main stages
of CwPIR (reproducing Table 7 in [27]) and PIRANA. We
measure the runtime for an increasing number of elements
n (from 28 to 216) with a somehow constant payload size
(20KB). We set k = 2,N = 8192 for both CwPIR and PIRANA.
For each n, we choose the minimal m that satisfies

(m
k

)
> n.

With such parameter configurations, the client runtime and the
upload/download bandwidth will be the same in both CwPIR
and PIRANA: in both approaches, C will generate a single
ciphertext, send it to S, receive and decrypt the same number
of ciphertexts. Furthermore, the client runtime is insignificant
compared to the server runtime. To this end, we focus on
comparing the server runtime.

Recall that S in CwPIR [27] proceeds in three stages to
answer a query: query expansion, selection vector generation,
and inner product calculation. Since there is no query expan-
sion in PIRANA, we combine the runtime of query expansion
in CwPIR into its selection vector generation for the ease of
presentation.

Table 2 lists the microbenchmark results. As expected,
PIRANA’s advantage in selection vector generation is sig-
nificant compared to CwPIR. Recall that CwPIR needs to
run (k− 1) · n ciphertext-ciphertext multiplications to gen-
erate a selection vector, whereas PIRANA only needs to run
⌈n/N⌉ · (k−1) times. Surprisingly, inner product calculation

7https://github.com/RasoulAM/constant-weight-pir

in PIRANA is also much faster than that in CwPIR. The reason
is that the selection vector generated by CwPIR has n cipher-
texts, which need to be transformed to NTT to be multiplied
to the payloads, hence they need to run NTT for n times. In
contrast, our selection vector only has ⌈n/N⌉ ciphertexts, so
we save upto N times of NTT.

To sum up, given our advantages in both selection vector
generation and inner product calculation, we achieve upto
30.8× speedup over CwPIR.

100 200 300 400 500

101

102

103

Payload size (KB)

R
un

tim
e

(s
) PIRANA

CwPIR
MulPIR
SealPIR
Spiral

Figure 2: Runtime for different payload sizes (# elements is
214).

Large payloads. Next, we set n= 214 and measure server run-
time by increasing the payload size from 100KB to 500KB (re-
producing Figure 2 in [27]). The code provided by Mahdavi-
Kerschbaum can support at most 100KB payloads for n = 214,
hence we extrapolate their runtime for larger payloads. Notice
that the results (Figure 2 in [27]) reported by their original
paper were also extrapolated. In contrast, our PIRANA can
indeed support large payloads, hence all results of PIRANA
were truly measured (rather than being extrapolated). Fig-
ure 2 shows that PIRANA’s advantage over CwPIR is also

xi

https://github.com/RasoulAM/constant-weight-pir

significant for large payloads.
We also compare our runtime with SealPIR8 [2],

MulPIR9 [1] and Spiral10 [29]. The open-sourced code for
these protocols cannot support large payloads either (SealPIR
and Spiral can support at most 10KB payloads and MulPIR
can support 20KB at most). Therefore, we again extrapolated
their runtime. The results show that MulPIR is even much
slower than CwPIR, which is consistent with the results re-
ported in [27]. The results also show that the performance
of SealPIR, Spiral and PIRANA are in the same level; even
though PIRANA is slightly slower, it gains the benefit of better
supporting keyword queries.

6.3 Evaluation of multi-query PIRANA

Next, we compare multi-query PIRANA with the state-of-the-
art multi-query PIR, i.e., SealPIR with PBC [2]. Recall that
PBC is constructed based on 3-way cuckoo hashing, which
encodes n elements into M = 3n codewords distributed among
B = 1.5L buckets, with a failure probability of p = 2−40. To
provide a fair comparison, we have to configure the bloom
filter to satisfy Mε < 2−40. However, this will lead to a large
filter length m. For example, to query n = 214 elements in
a database, we need to set ε = 2−56 to achieve Mε ≈ 2−40.
Given that we want to minimize the multiplicative depth, we
set the number of hash functions k = 5. For a multi-query
of size L = 256, we need to set m = 1 485 112 based on
Equation 2, hence C needs to send ⌈m

N ⌉ ciphertexts to S, which
is 91 for N = 16 384. Even though it is still smaller than multi-
SealPIR, which needs to send B = 384 ciphertexts, it is less
satisfactory.

Given this failure probability, we use our constant-weight
version PIRANA for multi-query, i.e., Algorithm 13 and 14.
We use PBC as the batch code as well, with the same con-
figuration as multi-SealPIR [2]. For n = 214 elements in the
database and L= 256 queries, we only need to set the constant-
weight codeword length m = 10. As a result, we can batch
819 codewords in a ciphertext with N = 8 192, and C only
needs to send one ciphertext to S.

Table 3 lists the microbenchmark results for both multi-
SealPIR and multi-PIRANA. It shows that multi-PIRANA is
significantly better than multi-SealPIR in terms of query time
and query size. This is because multi-PIRANA only requires
C to send a single ciphertext to query B buckets, whereas
multi-SealPIR needs to send B ciphertexts. In more detail, it
takes 4ms for SealPIR to generate a single-query for L = 1.
However, for multi-query, the amortized generation time for
each query increases, as it needs to generate B > L queries.
In contrast, the amortized generation time for each query in
multi-PIRANA is roughly the single-query generation time
divided by L. For example, when L = 256, the amortized gen-

8https://github.com/microsoft/SealPIR
9https://github.com/OpenMined/PIR

10https://github.com/menonsamir/spiral

queries L 1 16 64 256
buckets B 1 24 96 384

multi-
SealPIR

[2]
N = 212

query (ms) 4 4.5 4.5 4.5
answer (s) 5 1.4 0.5 0.2

extract (ms) 10 15 15 15
query (KB) 90.7 136.1 136.0 136.0

answer (KB) 1812 2716 2716 2716

multi-
PIRANA

k = 2
N = 213

query (ms) 4.4 0.28 0.07 0.02
answer (s) 15.7 5.29 1.86 0.76

extract (ms) 2.07 3.52 3.50 3.36
query (KB) 211.3 13.2 3.3 0.83

answer (KB) 402.2 754.9 754.9 754.9

Table 3: Amortized costs for multi-query SealPIR and
PIRANA (214 elements, 100KB payloads).

eration time for each query in multi-PIRANA is only 0.02ms,
225× faster than multi-SealPIR. The advantage of multi-
PIRANA is also prominent when considering the query size
(upload bandwidth). For L = 256, the amortized query size
in multi-PIRANA is only 0.83KB; compared with the 136KB
amortized query size in multi-SealPIR, we save 163.9× com-
munication.

In this experiment, the payload size is 100KB, which fully
occupies each ciphertext space, hence S returns O(B) cipher-
texts in both multi-SealPIR and multi-PIRANA. Nevertheless,
multi-PIRANA still has a significantly better extraction time
and answer size than multi-SealPIR, due to the expansion
factor in SealPIR (cf. Section 7). The server runtime for an-
swer generation in multi-PIRANA is 3.8× slower than that in
multi-SealPIR. Considering our gain in client runtime and
bandwidth, this is a real bargain especially in mobile applica-
tions.

7 Related Work

Early single-server PIR. Most of the early single-server
PIR protocols follow the blueprint of Kushilevitz and Os-
trovsky [23]: representing the database as a D-dimensional
hypercube. The original protocol proposed by Kushilevitz
and Ostrovsky is based on additively homomorphic encryp-
tion, with a query size of O(

√
N logN) and a response size of

O(
√

N). Cachin et al. [8] instead use the φ-Hiding assump-
tion to achieve O(log4 N) query size and O(logD N) response
size. Gentry and Ramazan [20] further reduce the query size
of Cachin et al.’s approach to O(log3−o(1) N). Chang [9] in-
stantiates Kushilevitz-Ostrovsky’s approach with Paillier ho-
momorphic encryption to achieve O(

√
N logN) query size

and O(logN) response size. This protocol was later general-
ized by Lipmaa [26] with Damgard-Jurik encryption [16] to
achieve O(log2 N) query size and O(logN) response size. As
it has been pointed by Sion and Carbunar [35], such protocols

xii

https://github.com/microsoft/SealPIR
https://github.com/OpenMined/PIR
https://github.com/menonsamir/spiral

are even slower than trivially having C download the entire
database [35].

Lattice-based PIR. Aguilar-Melchor et al. [28] propose
XPIR, which applies a lattice-based homomorphic encryp-
tion [7] to the hypercube-based PIR. A major drawback of
XPIR is its communication cost: even encoding the database
into a 2 or 3-dimensional hypercube, the query vector still
consists of hundreds or thousands of ciphertexts; and the high
expansion factor of lattice-based cryptosystems makes the
matter worse.

SealPIR [2] gets rid of this bottleneck by introducing a
query expansion technique. In more detail, (1) C sends S a
ciphertext that homomorphically encrypts its desired index
i; (2) S obliviously expands it into a selection vector of n
ciphertexts where the i-th ciphertext encrypts 1 and others
encrypt 0; (3) S returns the inner product between the selec-
tion vector and the payloads. Notice that a ciphertext can only
be expanded into O(N) ciphertexts. Therefore, C needs to
send O(n/N) ciphertexts to S. To reduce this communica-
tion overhead, S structures the database as a D-dimensional
hyperrectangle so that the above process can be recursively
performed for each dimension. As a result, C only needs to
send O(D · D

√
n/N) ciphertexts to S.

However, in this way, S needs to compute the inner products
between selection vectors and encrypted payloads from the
second dimension and on. To avoid the expensive ciphertext-
ciphertext multiplications, SealPIR [2] treat the encrypted pay-
loads as “plaintexts”, and run plaintext-ciphertext multiplica-
tions instead. This technique trades one ciphertext-ciphertext
multiplication to multiple plaintext-ciphertext multiplications,
leading to a large expansion factor for the responses. Onion-
PIR [31] realizes ciphertext-ciphertext multiplication via ex-
ternal product [11], which reduces the response sizes but
incurs a large computational overhead. Spiral [29] further
improves this idea by composing Regev encryption [33] with
GSW encryption [21] to achieve a faster external product.

MulPIR [1] uses alternative ways to reduce the commu-
nication of SealPIR. Namely, it uses symmetric key FHE to
reduce the upload size and uses modulus switching to reduce
the expansion factor. It also introduces a new query expansion
scheme to halve the upload size for some specific parameter
sets. However, as shown by our benchmarks (cf. Figure 2) and
also the benchmarks in [27], MulPIR requires a large server
runtime for answer generation.

PIR with preprocessing. Beimel et al. [3] proved that a se-
cure PIR scheme must incur Ω(n) server-side work. Indeed, if
S touches fewer than n elements to answer a query, it will learn
that the untouched elements are for sure not to be retrieved.
To circumvent this lower bound, Beimel et al. [3] propose
the notion of PIR with preprocessing, in which the database
is processed in an encoded form. However, the scheme pro-
posed by Beimel et al. is only applicable to multi-server PIR.
Patel et al. [32] propose a single-server solution, where C

retrieves some helper data during preprocessing and uses
them to run online queries in sublinear time. The computa-
tion cost of preprocessing is still linear but they are mostly
symmetric-key operations. However, the preprocessing stage
requires linear communication, which is less desirable. In a
recent breakthrough [15], Corrigan-Gibbs and Kogan propose
a two-server PIR scheme, which shows promising sublinear
efficiency in both theory and practice. They also propose a
way to transform their solution to single-server PIR, but it
requires running black-box PIR for multiple times during pre-
processing. This idea was further explored in [14, 34], but
none of them has an overall efficiency that is better than PIR
without preprocessing.

Keyword PIR. Most existing solutions for keyword PIR trans-
form the problem to index PIR. For example, Chor et al. [12]
propose a solution, where C interactively query S to obtain
the index of its desired keyword so that index PIR can be
performed. Another example is to use probabilistic hashing
to map keywords into a small table and then use index PIR to
query the table [1]. However, we believe that equality opera-
tors are the most natural solutions for keyword PIR, and we
have shown that, by far, PIRANA provides the best support
for equality operators.

8 Conclusion

In this paper, we propose a homomorphic constant-weight
equality operator that supports batch processing. On that basis,
we propose a novel PIR protocol named PIRANA. Compared
with its closest competitor, PIRANA can support databases
with a larger number of elements. We further extend PIRANA
to support multi-query. To the best of our knowledge, it is
the first multi-query PIR that can save both computation and
communication. We provide a full-fledged implementation
and extensive evaluation.

References

[1] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication-computation trade-offs in PIR.
In Michael Bailey and Rachel Greenstadt, editors, 30th
USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, pages 1811–1828. USENIX Asso-
ciation, 2021.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
T. V. Setty. PIR with compressed queries and amortized
query processing. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pages 962–979. IEEE
Computer Society, 2018.

xiii

[3] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the servers computation in private information retrieval:
PIR with preprocessing. In Mihir Bellare, editor, Ad-
vances in Cryptology - CRYPTO 2000, 20th Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2000, Proceedings, vol-
ume 1880 of Lecture Notes in Computer Science, pages
55–73. Springer, 2000.

[4] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[5] Zvika Brakerski. Fully homomorphic encryption with-
out modulus switching from classical gapsvp. IACR
Cryptol. ePrint Arch., page 78, 2012.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Trans. Comput. Theory,
6(3):13:1–13:36, 2014.

[7] Zvika Brakerski and Vinod Vaikuntanathan. Fully ho-
momorphic encryption from ring-lwe and security for
key dependent messages. In Phillip Rogaway, editor,
Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 505–524. Springer,
2011.

[8] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with poly-
logarithmic communication. In Jacques Stern, editor, Ad-
vances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Crypto-
graphic Techniques, Prague, Czech Republic, May 2-
6, 1999, Proceeding, volume 1592 of Lecture Notes in
Computer Science, pages 402–414. Springer, 1999.

[9] Yan-Cheng Chang. Single database private information
retrieval with logarithmic communication. In Huax-
iong Wang, Josef Pieprzyk, and Vijay Varadharajan, edi-
tors, Information Security and Privacy: 9th Australasian
Conference, ACISP 2004, Sydney, Australia, July 13-15,
2004. Proceedings, volume 3108 of Lecture Notes in
Computer Science, pages 50–61. Springer, 2004.

[10] Jung Hee Cheon, Andrey Kim, Miran Kim, and
Yong Soo Song. Homomorphic encryption for arith-
metic of approximate numbers. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Informa-
tion Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I, volume 10624 of Lecture Notes in
Computer Science, pages 409–437. Springer, 2017.

[11] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and
Malika Izabachène. TFHE: fast fully homomorphic
encryption over the torus. J. Cryptol., 33(1):34–91,
2020.

[12] Benny Chor, Niv Gilboa, and Moni Naor. Private in-
formation retrieval by keywords. IACR Cryptol. ePrint
Arch., page 3, 1998.

[13] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In 36th An-
nual Symposium on Foundations of Computer Science,
Milwaukee, Wisconsin, USA, 23-25 October 1995, pages
41–50. IEEE Computer Society, 1995.

[14] Henry Corrigan-Gibbs, Alexandra Henzinger, and
Dmitry Kogan. Single-server private information re-
trieval with sublinear amortized time. In Orr Dunkelman
and Stefan Dziembowski, editors, Advances in Cryptol-
ogy - EUROCRYPT 2022 - 41st Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, Trondheim, Norway, May 30 - June
3, 2022, Proceedings, Part II, volume 13276 of Lecture
Notes in Computer Science, pages 3–33. Springer, 2022.

[15] Henry Corrigan-Gibbs and Dmitry Kogan. Private in-
formation retrieval with sublinear online time. In Anne
Canteaut and Yuval Ishai, editors, Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 44–75. Springer, 2020.

[16] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A
generalization of paillier’s public-key system with ap-
plications to electronic voting. Int. J. Inf. Sec., 9(6):371–
385, 2010.

[17] Daniel Demmler, Peter Rindal, Mike Rosulek, and
Ni Trieu. PIR-PSI: scaling private contact discovery.
Proc. Priv. Enhancing Technol., 2018(4):159–178, 2018.

[18] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. IACR Cryptol.
ePrint Arch., page 144, 2012.

[19] Craig Gentry. A Fully Homomorphic Encryption
Scheme. PhD thesis, Stanford, CA, USA, 2009.
AAI3382729.

[20] Craig Gentry and Zulfikar Ramzan. Single-database
private information retrieval with constant communi-
cation rate. In Luís Caires, Giuseppe F. Italiano, Luís
Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
Automata, Languages and Programming, 32nd Interna-
tional Colloquium, ICALP 2005, Lisbon, Portugal, July

xiv

11-15, 2005, Proceedings, volume 3580 of Lecture Notes
in Computer Science, pages 803–815. Springer, 2005.

[21] Craig Gentry, Amit Sahai, and Brent Waters. Homomor-
phic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryp-
tology - CRYPTO 2013 - 33rd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 75–92. Springer, 2013.

[22] Dmitry Kogan and Henry Corrigan-Gibbs. Private block-
list lookups with checklist. In 30th USENIX Secu-
rity Symposium (USENIX Security 21), pages 875–892.
USENIX Association, August 2021.

[23] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: Single database, computationally-private infor-
mation retrieval. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, FOCS
’97, page 364, USA, 1997. IEEE Computer Society.

[24] Eyal Kushilevitz and Rafail Ostrovsky. Replication
is NOT needed: SINGLE database, computationally-
private information retrieval. In 38th Annual Symposium
on Foundations of Computer Science, FOCS ’97, Mi-
ami Beach, Florida, USA, October 19-22, 1997, pages
364–373. IEEE Computer Society, 1997.

[25] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle: An efficient communication system with
strong anonymity. Proc. Priv. Enhancing Technol.,
2016(2):115–134, 2016.

[26] Helger Lipmaa. An oblivious transfer protocol with
log-squared communication. In Jianying Zhou, Javier
López, Robert H. Deng, and Feng Bao, editors, Informa-
tion Security, 8th International Conference, ISC 2005,
Singapore, September 20-23, 2005, Proceedings, vol-
ume 3650 of Lecture Notes in Computer Science, pages
314–328. Springer, 2005.

[27] Rasoul Akhavan Mahdavi and Florian Kerschbaum.
Constant-weight PIR: Single-round keyword PIR via
constant-weight equality operators. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1723–
1740, Boston, MA, August 2022. USENIX Association.

[28] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR : Private information
retrieval for everyone. Proc. Priv. Enhancing Technol.,
2016(2):155–174, 2016.

[29] Samir Jordan Menon and David J. Wu. SPIRAL: fast,
high-rate single-server PIR via FHE composition. In
43rd IEEE Symposium on Security and Privacy, SP 2022,

San Francisco, CA, USA, May 22-26, 2022, pages 930–
947. IEEE, 2022.

[30] Prateek Mittal, Femi Olumofin, Carmela Troncoso,
Nikita Borisov, and Ian Goldberg. PIR-Tor: Scalable
anonymous communication using private information re-
trieval. In 20th USENIX Security Symposium (USENIX
Security 11), San Francisco, CA, August 2011. USENIX
Association.

[31] Muhammad Haris Mughees, Hao Chen, and Ling Ren.
Onionpir: Response efficient single-server PIR. In Yong-
dae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi,
editors, CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021, pages 2292–
2306. ACM, 2021.

[32] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private
stateful information retrieval. In David Lie, Moham-
mad Mannan, Michael Backes, and XiaoFeng Wang,
editors, Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages
1002–1019. ACM, 2018.

[33] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In Harold N. Gabow and
Ronald Fagin, editors, Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

[34] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran,
and Bruce M. Maggs. Puncturable pseudorandom sets
and private information retrieval with near-optimal on-
line bandwidth and time. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Confer-
ence, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part IV, volume 12828 of Lecture Notes
in Computer Science, pages 641–669. Springer, 2021.

[35] Radu Sion and Bogdan Carbunar. On the practicality
of private information retrieval. In Proceedings of the
Network and Distributed System Security Symposium,
NDSS 2007, San Diego, California, USA, 28th February
- 2nd March 2007. The Internet Society, 2007.

[36] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri,
and Dawn Song. Epione: Lightweight contact tracing
with strong privacy. IEEE Data Eng. Bull., 43(2):95–
107, 2020.

[37] David J. Wu, Joe Zimmerman, Jérémy Planul, and
John C. Mitchell. Privacy-preserving shortest path com-
putation. In 23rd Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2016, San Diego, Cali-

xv

fornia, USA, February 21-24, 2016. The Internet Society,
2016.

xvi

	Introduction
	Preliminaries
	Homomorphic encryption
	Constant-weight code
	Batch code
	Bloom filter

	SIMD-based Homomorphic Equality Operator
	Single-query PIRANA
	Single-query PIRANA for small payloads
	Single-query PIRANA for large payloads

	Multi-query PIRANA
	Multi-query PIRANA for large payloads
	Multi-query PIRANA for small payloads
	False positives in a bloom filter
	Multi-query PIRANA based on constant-weight code

	Evaluation
	Implementation
	Evaluation of single-query PIRANA
	Evaluation of multi-query PIRANA

	Related Work
	Conclusion

