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Abstract—Private information retrieval (PIR) is a crypto-
graphic protocol that enables a wide range of privacy-
preserving applications. Despite being extensively studied for
decades, it is still not efficient enough to be used in practice. In
this paper, we propose a novel PIR protocol named PIRANA,
based on the recent advances in constant-weight codes. It
is upto 188.6× faster than the original constant-weight PIR
(presented in Usenix SEC ’22). Most importantly, PIRANA
naturally supports multi-query. It allows a client to retrieve
a batch of elements from the server with a very small extra-
cost compared to retrieving a single element. To retrieve 2 730
elements, the amortized cost for retrieving a single element is
only 3.9ms in runtime and 3.0KB in bandwidth. We also discuss
a way to extend PIRANA to labeled private set intersection
(LPSI). Compared to existing LPSI protocols, PIRANA is more
friendly to the scenarios where the database updates frequently.

1. Introduction

Suppose a server S holds a database of n elements,
where each element consists of an identifier and a payload;
private information retrieval (PIR) allows a client C to
retrieve an element from S without revealing which element
was retrieved. It enables a wide range of privacy-preserving
applications such as private contact discovery [24], private
contact tracing [48], private navigation [49], anonymous
messaging [40], [35], safe browsing [31] and so on. Despite
being extensively studied for decades, PIR is still a hot
research topic in cryptography.

The PIR protocols can be roughly categorized into multi-
server PIR [17] and single-server PIR [34]. The multi-
server protocols are much more efficient in both compu-
tation and communication, and can achieve information-
theoretic security. However, their reliance of multiple non-
colluding servers is an unrealistic assumption in practice. In
contrast, the single-server protocols do not need this strong
assumption, at the cost of introducing a huge performance
overhead. It has been shown that the single-server protocols
are even slower than trivially having C download the entire
database [47].
Constant-weight PIR. Most of the single-server PIR pro-
tocols structure the database as a D-dimensional hyper-
cube [33], [38], [4], so that the communication overhead
∗Jian Liu and Jingyu Li are co-first authors.

could be O(D · D
√
n). However, in this way, most of S’s

operations need to involve the payloads, which incurs a large
computational overhead when the payload size is large. In
contrast, Mahdavi-Kerschbaum [37] propose a PIR protocol
that can generate a selection vector based on the identifiers
only, and it only needs to multiply the payloads to the
selection vector in the end; hence the main overhead of
this protocol is somehow independent of the payloads. The
protocol is based on constant-weight code, the codewords of
which have the same Hamming weight. They refer to this
PIR as constant-weight PIR (CwPIR for short). To generate a
selection vector, CwPIR encodes all identifiers and queries
into constant-weight codewords and runs a homomorphic
equality operator on them, resulting in (k− 1)n ciphertext-
ciphertext multiplications. Therefore, CwPIR cannot support
databases with a large number of elements. Their experimen-
tal results also confirm this (cf. Table 13 in [37]).

Multi-query PIR. In many scenarios, C may want to re-
trieve a batch of elements from S at once [24], [35], [32],
[42], which motivates multi-query PIR [4], [43]. Most of the
multi-query PIR protocols use batch codes [30] to encode
a collection of n elements into M codewords distributed
among B buckets; any L of the n elements can be recov-
ered by fetching at most one codeword from each bucket.
Therefore, C could use a separate single-query PIR to query
each bucket; to answer these B queries, S computes over
M < L · n codewords exactly once, which significantly
reduces the computational overhead. However, given that
B > L, this may introduce more communication overhead
than running L instances of single-query PIR (cf. Figure 12
in [4]). Therefore, existing multi-query PIR protocols offer
an unattractive trade-off: they reduce computation but add
communication overhead.

Labeled PSI. Labeled private set intersection (LPSI) can be
considered as multi-query PIR with a stronger security guar-
antee: it protects both C’s queries and S’s database. More
specifically, after the protocol, C only learns the elements
whose identifiers matches its queries, but nothing else about
other elements. Furthermore, the identifiers are keywords
instead of indices. To the best of our knowledge, all existing
LPSI protocols [13], [18] have S homomorphically evaluate
a large degree polynomial that interpolates the payloads.
Such protocols require several hours to setup due to the
expensive polynomial interpolations. This expensive setup
phase makes such protocols undesirable for scenarios where



the database updates frequently.
Our contribution. In this paper, we propose a novel PIR
protocol named PIRANA, which improves CwPIR [37]
to support more elements. Our starting point is to re-
place the homomorphic equality operator in CwPIR with
a SIMD-based one, which supports batch processing: it can
perform N (the number of slots in an SIMD ciphertext,
typically N = 4 096 or 8 192) equality checks with a
single ciphertext-ciphertext multiplication. As a result, S in
PIRANA only needs to run ciphertext-ciphertext multiplica-
tion for (k − 1)⌈n/N⌉ times, instead of (k − 1)n.

Most importantly, PIRANA naturally supports multi-
query. It allows C to retrieve a batch of elements from S
with a very small extra-cost in both communication and
computation, compared to retrieving a single element. In
particular, if we use 3-way cuckoo hashing as the batch
code, we are able to retrieve upto ⌊N/1.5⌋ elements with
only 3× higher computational cost and almost the same
communication cost compared to running the single-query
PIRANA once.

Furthermore, PIRANA can be easily extended to sup-
port labeled PSI. To protect S’s elements, we borrow the
idea of using oblivious PRF (OPRF) from [13]: S and C
apply OPRF to their identifiers; S uses the OPRF values to
mask the corresponding payloads; C retrieves the masked
payloads using multi-query PIRANA; C can get a correct
payload only if the corresponding query keyword is in the
intersection. Compared with the state-of-the-art LPSI pro-
tocols, we successfully get rid of the expensive polynomial
interpolations, hence we have less expensive setup phase.

We summarize our contribution as follows:

• We design a novel constant-weight PIR named
PIRANA. It is upto 188.6× faster than CwPIR [37].
(Section 3)

• We extend PIRANA to support multi-query. To retrieve
2 730 elements, the amortized cost for retrieving a
single element is only 3.9ms in runtime and 3.0KB
in bandwidth. (Section 4)

• We further extend PIRANA to support labeled PSI. It
is more friendly to the scenarios where the database
updates frequently. (Section 5)

• We provide a full-fledged implementation and extensive
evaluation. (Section 6)

2. Preliminaries

In this section, we describe some building blocks that
will be used in our protocols. A summary of notations is
shown in Table 1.

2.1. Homomorphic encryption

Fully Homomorphic Encryption (FHE) is an encryption
scheme that allows arbitrary operations to be performed

Notation Description

C client
S server
n DB size
pl a payload
CW (m, k) binary constant-weight code with length m

and Hamming weight k
N polynomial modulus degree in FHE number

of
slots in a SIMD ciphertext

p plaintext modulus, SIMD slot size
x a vector
x̃ an SIMD ciphertext
t ⌈n/N⌉
% modulo
L number of queries
BC(n,M,L,B)a batch code that encodes n elements into

M codewords in B buckets, supporting L

queries
C a batch code codeword
s ⌊N/B⌋

TABLE 1: Summary of frequent notations.

over encrypted data [27]. In practice, it is usually used in
a leveled fashion: the operations can only be performed for
a limited times, o.w., the ciphertexts cannot be decrypted.
In most FHE cryptosystems [9], [7], [25], [15], [8], plain-
texts are encoded as polynomials from the quotient ring
Zp[x]/(x

N + 1), where N is a power of 2, and p is the
plaintext modulus. The plaintext polynomials are then en-
crypted into ciphertext polynomials Zq[x]/(x

N+1), where q
is the ciphertext modulus that determines the security level,
as well as how many times the operations can be performed.

Most FHE cryptosystems support the single instruction
multiple data (SIMD) technique, which allows one to en-
crypt a vector of elements into a single ciphertext and pro-
cess these encrypted elements in a batch without introducing
any extra cost. An SIMD ciphertext has N slots, hence it
can be viewed as an encryption of a length-N vector over
Zn
p . Furthermore, an SIMD ciphertext also supports cyclic

rotations of its slots.
The homomorphic operations used in this paper are

summarized as follows:

• x̃← SIMDEnc(pk,x). The encryption algorithm takes
a plaintext vector x = [x1, ..., xN ] and outputs an
SIMD ciphertext denoted by x̃.

• x← SIMDDec(pk, x̃). The decryption algorithm takes
an SIMD ciphertext x̃ and outputs a plaintext vector x.

• z̃← SIMDAdd(x̃, ỹ). The addition algorithm takes two
SIMD ciphertexts x̃ and ỹ; outputs an encryption of



[x1 + y1, ..., xN + yN ].

• z̃ ← SIMDPmul(x̃,y). The ciphertext-plaintext mul-
tiplication takes a SIMD ciphertext x̃ and a plaintext
vector y; outputs an encryption of [x1y1, ..., xNyN ].

• z̃ ← SIMDMul(x̃, ỹ). The ciphertext-ciphertext multi-
plication takes two SIMD ciphertexts x̃ and ỹ; outputs
an encryption of [x1y1, ..., xNyN ].

• x̃′ ← SIMDRotate(x̃, c). The rotation algorithm takes
an SIMD ciphertext x̃ and an integer c ∈ [N ]; outputs
an encryption of

[
x(1+c)%N , ..., x(N+c)%N

]
.

2.2. Constant-weight code and CwPIR

Constant-weight code is a form of error detecting code
where its codewords are binary strings that share the same
Hamming weight k. Its code length m is the bit-length of
its codewords and code size n is the number of distinct
codewords. Clearly, for a fixed Hamming weight k, to
construct a constant-weight code of size n, one must choose
its code length m, s.t.,

(
m
k

)
≥ n. Then, we have

m ∈ O(
k
√
k!n+ k).

We denote the constant-weight code with length m and
Hamming weight k by CW (m, k). Algorithm 1 shows how
Mahdavi-Kerschbaum [37] map indices (i.e., i ∈ [n]) to
CW (m, k). Intuitively, it maps each i to the i-th valid
codeword from a sorted list of codewords, with a complexity
O(m+ k).

Algorithm 1 Mapping indices to constant-weight codewords

Input i ∈ [n] ,m, k ∈ N with
(
m
k

)
≥ n

Output x ∈ CW (m, k)
1: j := i
2: l := k
3: x := 0m

4: for m′ := m− 1, ..., 0 do
5: if j ≥

(
m′

l

)
then

6: x[m′] := 1

7: j := j −
(
m′

l

)
8: l := l − 1
9: end if

10: if l = 0 then
11: break
12: end if
13: end for
14: return x

Suppose an equality operator for checking the equality
of two values is defined as follows:

Definition 1 (Equality Operator). A function f is an equality
operator over a domain D if ∀x, y ∈ D,

f(x, y) =

{
1 if x = y
0 o.w.

An equality operator over constant-weight codewords could
be:

f(x,y) =
∏

y[i]=1

x[i] (1)

Mahdavi-Kerschbaum [37] propose a homomorphic
equality operator for constant-weight code based on
SealPIR’s oblivious expansion [4]. In more detail, to encrypt
a codeword x of length m, they separately encrypt the k
indices that correspond to 1s in x using FHE. To check
equality between an encrypted x and a plain codeword
y, they first expand the encrypted indices such that each
bit of x is in a separate ciphertext; then run the equality
operator (cf. equation 1) on the encrypted bits. The oblivious
expansion requires 2m(N−1)

N substitutionsand m ciphertext-
plaintext multiplications [4]; and the equality operator re-
quires (k − 1) ciphertext-ciphertext multiplications.

Mahdavi-Kerschbaum also propose a constant-weight
PIR named CwPIR [37] based on this homomorphic equality
operator. In a nutshell, it works as follows:

1) C maps its query to a constant-weight codeword x;
2) S maps each of its identifiers to a constant-weight

codeword yi;
3) C homomorphically encrypts the indices that corre-

spond to 1s in x, and sends the ciphertexts to S;
4) S obliviously expands them into m ciphertexts, which

correspond to the m bits of x;
5) For each yi, S runs the homomorphic equality operator

between x and yi; it results in a selection vector of
length n;

6) S returns the inner product between the selection vector
and the payloads.

Notice that the payloads get involved only when com-
puting the inner product in the last step, and that step only
requires ciphertext-plaintext multiplications. In contrast, the
mainstream PIR protocols [4], [41], [39], [3] represent
the database as a D-dimensional hypercube; they need to
compute inner products (involving the payloads) for each
dimension, and require ciphertext-ciphertext multiplications
from the second dimension and on (cf. Section 7). There-
fore, CwPIR is more friendly to databases with large pay-
loads. However, the selection vector generation (Step 5) in
CwPIR requires (k − 1)n ciphertext-ciphertext multiplica-
tions, which is disastrous when n is large.

2.3. Batch code

A batch code [30] (n,M,L,B)-BC encodes a collec-
tion of n elements into M codewords distributed among B
buckets; any L of the n elements can be recovered by fetch-
ing at most one codeword from each bucket. It is an essential
building block for multi-query PIR: C issues one PIR query
to each of the B buckets and receives B responses; to answer
these B queries, S computes over all M codewords exactly
once. Notice that smaller M leads to lower computation, and
smaller B leads to lower communication. Given M < L ·n,
the total computation done by S is lower than running L
instances of single-query PIR separately.



Angel et al. [4] introduce the notion of probabilistic
batch code (PBC) that differs from the traditional batch
codes in that it fails to be complete with probability p,
in exchange for a smaller M and B. They provide a PBC
construction based on 3-way cuckoo hashing, which encodes
n elements into M = 3n codewords distributed among
B = 1.5L buckets, with a failure probability of p = 2−40.

We summarize the operations of a (probabilistic) batch
code as follows:

• [C1, ...,CB ] ← Encode([pl1, ..., pln]), where Ci de-
notes vectors of codewords in the i-th bucket.

• [i′1, ..., i
′
B ] ← GenSchedule([i∗1, ..., i

∗
L]), which takes a

set of L queries and outputs a query for each of the B
buckets.

•
[
pli∗1 , ..., pli∗L

]
← Decode([C1[i

′
1], ..., CB [i

′
B ]]), which

takes B codewords and outputs L payloads.

3. Single-query PIRANA

In this section, we show how we design a faster constant-
weight PIR.

3.1. Single-query PIRANA for small payloads

We first consider the case that the payload size is smaller
than the slot size, |pl| ≤ p.
Intuition. We arrange the n elements of the database into a
matrix of N rows and t := ⌈n/N⌉ columns (for simplicity,
we assume N divides n), s.t., the i-th element is in row
r := i%N and column c := ⌈i/N⌉.

Naively, we can have C send t SIMD ciphertexts, where
only the r-th slot of the c-th ciphertext is 1 and all other slots
are 0s; S simply multiplies each column to each ciphertext
and adds the products together. Then, the payload pli∗ that C
wants to retrieve is in the r-th slot of the resulting ciphertext.
However, in this way, C needs to send t ciphertexts to S,
hence we want to reduce the number of ciphertexts to be
sent.

To this end, we encode the column c ∈ [1, ..., t] as a
constant-weight codeword x ∈ CW (m, k). Similarly, we
encode the column indices [1, ..., t] as t constant-weight
codewords [y1, ...,yt]. Then, C only needs to send m SIMD
ciphertexts: the r-th slot of each ciphertext corresponds to
each bit of x, and other slots are 0s. After running the
equality operators for [y1, ...,yt], S will get the same t
SIMD ciphertexts as in the aforementioned naive solution.
That is to say, we can achieve the same goal with the naive
solution by only sending m ∈ O( k

√
k!t + k) ciphertexts.

Figure 1 visualizes this process.
The protocol. The single-query PIRANA (for small pay-
loads) works as follows:

• Setup. Parameters for the homomorphic encryption are
chosen and keys are generated. S arranges its database
into a matrix of N rows and t := n/N columns (for
simplicity, we assume N divides n).

x
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Figure 1: Workflow of single-query PIRANA for small
payloads (suppose the element C wants to retrieve is in the
second row and second column).

• Query. Algorithm 2 shows how C generates a query
for retrieving the i∗ payload. It first maps i∗ to the
row index r and column index c of the matrix (Line 2-
3). Then, it maps c ∈ [1, ..., t] to a constant-weight
codeword x ∈ CW (m, k) (Line 4) and generates the
m SIMD ciphertexts based on x and r (Line 6-15).

• Answer. S runs Algorithm 3 to answer a query. For
each column, S maps the column index j ∈ [1, ..., t] to
a constant-weight codeword yj ∈ CW (m, k) (Line 3);
runs the equality operator between yj and x, resulting
in a selection vector w̃j (Line 4-5); and multiplies the
j-th column of the database to w̃j (Line 6). Then, it
adds the products of all columns together (Line 8) and
returns the inner product ṽ to C. Notice that v[r] = pli∗
and other elements of v are 0s.

• Extract. C decrypts ṽ and outputs its r-th slot.

In this way, S needs to run ⌈n/N⌉ ciphertext-plaintext



Algorithm 2 Single-query PIRANA: Query

Input i∗

Output [q̃1, ..., q̃m]
1: t := n/N ▷ For simplicity, we assume N divides n
2: r := i∗%N
3: c := ⌈i∗/N⌉
4: x ∈ CW (m, k)← run Algorithm 1 with c ∈ [1, ..., t]
5: Find the k positions [i1, ..., ik] in x, where x[i] = 1
6: for j := 1, ...,m do
7: for h := 1, ..., N do
8: if j ∈ [i1, ..., ik] and h = r then
9: qj [h] := 1

10: else
11: qj [h] := 0
12: end if
13: end for
14: q̃j ← SIMDEnc(qj)
15: end for

Algorithm 3 Single-query PIRANA: Answer (small pay-
loads)

Input [q̃1, ..., q̃m], [pl1, ..., pln] ▷ |pl| ≤ p
Output ṽ : v[i∗%N ] = pli∗ and other elements of v are

0s
1: Init [d1, ...,dt] : each dj is

[
pl(j−1)N+1, ..., pljN

]
2: for j := 1, ..., t do
3: yj ∈ CW (m, k)← run Algorithm 1 with j ∈ [t]
4: Find the k positions [i1, ..., ik] in yj , where yj [i] =

1
5: w̃j ← SIMDMul(q̃i1 , ..., q̃ik)
6: ũj ← SIMDPmul(w̃j ,dj)
7: end for
8: ṽ← SIMDAdd(ũ1, ..., ũt)
9: return ṽ

multiplications and ⌈n/N⌉·(k−1) ciphertext-ciphertext mul-
tiplications (recall that CwPIR [37] needs to run n · (k− 1)
ciphertext-ciphertext multiplications, which is its main over-
head).

3.2. Single-query PIRANA for large payloads

Notice that the returned ciphertext ṽ in Algorithm 3
has only one non-empty slot. We could make full use of
other empty slots to return a large payload via a rotate-
and-sum approach. Suppose a payload is as large as l
ciphertexts, i.e., |pl| = l ·N ·p. We could split each payload
into l · N small blocks and compute l · N ciphertexts: the
combination of their non-empty slots is the payload to be
retrieved. Then, for every N ciphertexts, S could rotate them
so that their non-empty slots are interlaced, and add them
together. As a result, S only needs to return l ciphertexts.
Algorithm 4 shows the details and Figure 2 visualizes this
process. Specifically, S runs as follows to answer a query:

❶ For each column, it runs Line 3-5 of Algorithm 3 to

Algorithm 4 Single-query PIRANA: Answer (large pay-
loads)

Input [q̃1, ..., q̃m], [pl1, ..., pln] ▷ |pl| = l ·N · p
Output [ṽ1, ..., ṽl] : v1[1]||...||vl[N ] = pli∗

1: Split each pl into pl1||...||pll·N

2: Init

d1,1 ... d1,l·N
...

. . .
...

dt,1 ... dt,l·N

: dj,i is
[
pli(j−1)N+1, ..., pl

i
jN

]
3: Init [ũ1, ..., ũl·N ]: each ũi is an encryption of 0N
4: for j := 1, .., t do
5: w̃j ← Run Line 3-5 of Algorithm 3
6: for i := 1, ..., l ·N do
7: f̃i ← SIMDPmul(w̃j ,dj,i)

8: ũi ← SIMDAdd(f̃i, ũi)
9: end for

10: end for
11: Init [ṽ1, ..., ṽl]: each vi is an encryption of 0N
12: for i := 1, ..., l do
13: for j := 1, ..., N do
14: ṽi ← SIMDAdd(ṽi, ũ(i−1)·N+j)
15: ṽi ← SIMDRotate(ṽi, 1)
16: end for
17: end for
18: return [ṽ1, ..., ṽl]

get a selection vector (Line 5).

❷ It multiplies the blocks of the N payloads in each
column to each selection vector, and repeats this for
all l ·N blocks of each payload (Line 7).

❸ It adds together the ciphertexts from different columns
(Line 8), resulting in l ·N ciphertexts.

❹ For every N ciphertexts, it rotates them so that their
non-empty slots are interlaced, and adds them together
(Line 11-17). There will be l inner products left for
the whole database. An important optimization here is
that we rotate ṽ instead of ũ,1 enabling us to rotate one
slot per rotation. Notice that the rotation becomes much
faster when the number of rotated slots is a power of
two. Therefore, rotating one (1 = 20) slot here is more
efficient than rotating an arbitrary number of slots.

3.3. Single-query PIRANA for large payloads and
small n

Notice that Algorithm 4 requires l · (N −1) rotations. In
this subsection, we first show Algorithm 5, which achieves
the same goal with Algorithm 4 but requires t · (N − 1)
rotations, hence it is more friendly to databases with large
payloads but a small n. Then, we show how can we find a
balance between Algorithm 4 and Algorithm 5.

1. We rotate ũ in Figure 2 because it is easy to visualize.
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Figure 2: Workflow of single-query PIRANA for large payloads (visualization of Algorithm 4).

The intuition is to pre-compute all N possible rotations
for each selection vector, then it no longer needs any rotation
when computing the inner product. In more detail, S first
rotates the payloads so that the values to be selected are
interlaced (Line 2). Notice that this step only needs to be
done once and should be in the setup phase (we simply leave
it in Algorithm 5). After running Line 3-5 of Algorithm 3, it
rotates each of the t selection vectors (N−1) times (Line 7-
9). Then, it multiplies the rotated selection vectors with the
corresponding rotated payloads (Line 11-13). In the end,
it adds every t · N products together, resulting in l inner
products (Line 14).

In practice, we could combine Algorithm 4 and Algo-
rithm 5 to minimize the number of rotations for a specific
l and t. Specifically, we could first run Algorithm 5, with
two modifications:

• In Line 7-9, it rotates the selection vector for (α − 1)
times (instead of (N − 1) times) and rotates N

α slots
per rotation.

• In Line 14, it does not add the N f̃s together, instead it
only adds the f̃s from t columns together (in a way like
in Line 8 of Algorithm 4), resulting in l ·N ciphertexts.

Then, it runs Algorithm 4 from Line 11, but only rotates
for (Nα − 1) times in Line 13-16. Now, the total number of
rotations becomes:

f(α) = (α− 1)t+ (
N

α
− 1)l.

The first-order derivative of f(α) is:

df(α)

dα
= t− N · l

α2
.

Algorithm 5 Single-query PIRANA: Answer (large pay-
loads and small n)

Input [q̃1, ..., q̃m], [pl1, ..., pln] ▷ |pl| = l ·N · p
Output [ṽ1, ..., ṽl] : v1[1]||...||vl[N ] = pli∗

1: Split each pl into pl1||...||pll·N

2: Init

d1,1 ... d1,l·N
...

. . .
...

dt,1 ... dt,l·N

: dj,i is
[
pli(j−1)N+1, ..., pl

i
jN

]
with an rotation of i

3: Init

ũ1,1 ... ũ1,N

...
. . .

...
ũt,1 ... ũt,N

: uj,i is an encryption of 0N

4: Init [ṽ1, ..., ṽl]: each vi is an encryption of 0N
5: for j := 1, .., t do
6: w̃j ← Run Line 3-5 of Algorithm 3
7: for i := 1, ..., N − 1 do
8: ũj,i ← SIMDRotate(w̃j , i)
9: end for

10: for h := 1, ..., l do
11: for i := 1, ..., N do
12: f̃i ← SIMDPmul(ũj,i,dj,(h−1)N+i)
13: end for
14: ṽh ← SIMDAdd(ṽh, f̃1, ..., f̃N )
15: end for
16: end for
17: return [ṽ1, ..., ṽl]

The second-order derivative of f(α) is:

d2f(α)

dα2
=

2lN

α3
> 0.



As the second-order derivative is always positive, we have:
1) If the first-order derivative is always negative (i.e. t−

N ·l
α2 < 0), f(α) is monotonically decreasing, hence it

is minimal when α is maximal (i.e, α = N ). In this
case, t < l

N .
2) If the first-order derivative is always positive (i.e. t −

N ·l
α2 > 0), f(α) is monotonically increasing, hence it is

minimal when α is minimal (i.e, α = 1). In this case,
t > l ·N .

3) If the first-order derivative is zero (i.e. t − N ·l
α2 = 0),

f(α) is minimal when α =
√

Nl/t.
Formally, we have:

argmin f(α)
1≤α≤N

=


N t < l

N√
Nl/t l

N ≤ t ≤ l ·N
1 t > l ·N

which implies that:
• when the payload size is large enough s.t., l ≥ tN , we

should run Algorithm 5;
• when the number of elements is large enough s.t., t ≥
lN , we should run Algorithm 4;

• in the middle ground case, we should combine Al-
gorithm 4 and Algorithm 5 as aforementioned, with
α =

√
Nl/t.

Remark. To rotate a ciphertext for a specific number of
slots, S needs to know the corresponding rotation key.
Therefore, C needs to transfer the rotation keys to S. This
is not a problem for either Algorithm 4 or Algorithm 5,
because both Algorithms only require S to rotate one slot
per rotation, hence C only needs to transfer one rotation key.
If we combine them, C has to transfer one more rotation key
for rotating N

α slots.

4. Multi-query PIRANA

In this section, we show how we extend PIRANA to
support multi-query with a very small extra-cost in both
communication and computation, compared to retrieving a
single element.

4.1. Multi-query PIRANA for small payloads

Intuition. Recall that in our single-query PIRANA, C sends
m SIMD ciphertexts to S; only one slot in each ciphertext
is useful and other slots are empty. Then, a natural question
to ask is that can we use other slots to batch more queries?
The answer is no because there may be multiple desired
elements reside on the same row, rendering the query invalid.
Thanks to the batch code, we could encode S’s database
into a (n,M,L,B)−BC and treat each bucket as a “row”;
then, the desired elements are for sure in different rows. If
N > B, we could split a bucket into multiple rows to reduce
the bucket size and make full use of the slots.

If we use 3-way cuckoo hashing as the batch code (cf.
Section 2.3), we are able to retrieve upto ⌊N/1.5⌋ elements

with only 3× higher computational cost and almost the same
communication cost compared to running the single-query
PIRANA once (for small payloads with |pl| ≤ p). In more
detail, recall that 3-way cuckoo hashing encodes n elements
into M = 3n codewords distributed among B = 1.5L
buckets; if we set B = N , we could maximize the number
queries i.e. L = N/1.5 and minimize the bucket size i.e.
3n/N . The number of columns determines both computa-
tional and communication costs, and it increases from n/N
(in single-query PIRANA) to 3n/N . Therefore, the compu-
tational cost increases exactly 3 times; the communication
cost increases from ( k

√
k!n/N + k) to ( k

√
k!3n/N + k),

which is insignificant.
The protocol. The multi-query PIRANA (for small pay-
loads) works as follows:

Algorithm 6 Multi-query PIRANA: Query

Input [i∗1, ..., i
∗
L]

Output [q̃1, ..., q̃m]
1: [i′1, ..., i

′
N ]← GenSchedule([i∗1, ..., i

∗
L])

2: for h := 1, ..., N do
3: xh ∈ CW (m, k) ← run Algorithm 1 with i′h ∈

[M/N ] ▷ For simplicity, we assume N divides M
4: Find k positions [i1, ..., ik] in xh, where xh[i] = 1
5: for j := 1, ...,m do
6: if j ∈ [i1, ..., ik] then
7: qj [h] := 1
8: else
9: qj [h] := 0

10: end if
11: end for
12: end for
13: for j := 1, ...,m do
14: q̃j ← SIMDEnc(qj)
15: end for

• Setup. Parameters for the homomorphic encryption are
chosen and keys are generated. S encodes its database
using a batch code BC(n,M,L,B):

[C1, ...,CB ]← Encode([pl1, ..., pln]),

where Ci denotes vectors of codewords in the i-th
bucket. If B < N , it splits each bucket into s := N/B
small buckets (for simplicity, we assume B divides N ).
That means the database is in fact encoded as:

[C1, ...,CN ]← Encode([pl1, ..., pln]),

• Query. C runs Algorithm 6 to generate the query
ciphertexts. More specifically, given L original indices
[i∗1, ..., i

∗
L], C first runs GenSchedule of the batch code

to generate indices [i′1, ..., i
′
B ] for each of the B buckets.

If the buckets has been split into N small buckets, the
corresponding indices [i′1, ..., i

′
N ] should be calculated

(Line 1). Then, it runs in a similar way as in Algo-
rithm 2, except that it needs to compute a constant-
weight codeword xh for each of the N slots (Line 4)
and uses xh to determine the value for that slot.

• Answer. S runs Algorithm 7 to answer these L queries
in a batch. It is mostly the same as Algorithm 3, except



that dj is a combination of the j-th elements in each
bucket (Line 2).

• Extract. C decrypts ṽ and gets [C1[i
′
1], ..., CB [i

′
N ]].

Then, it runs[
pli∗1 , ..., pli∗L

]
← Decode([C1[i

′
1], ..., CB [i

′
N ]]).

Algorithm 7 Multi-query PIRANA: Answer (small pay-
loads)

Input [q̃1, ..., q̃m], [C1, ...,CN ]
Output ṽ : v[j] = Cj [i

′
j ]

1: t := M/N ▷ For simplicity, we assume N divides M
2: Init [d1, ...,dt] : each dj is [C1[j], ...,CN [j]]
3: for j := 1, ..., t do
4: yj ∈ CW (m, k)← run Algorithm 1 with j ∈ [t]
5: Find the k positions [i1, ..., ik] in yj , where yj [i] =

1
6: w̃j ← SIMDMul(q̃i1 , ..., q̃ik)
7: ũj ← SIMDPmul(w̃j ,dj)
8: end for
9: ṽ← SIMDAdd(ũ1, ..., ũt)

10: return ṽ

4.2. Multi-query PIRANA for large payloads

Notice that only B out of N slots in ṽ (the returned
ciphertext of Algorithm 7) are non-zero and other slots are
empty. When the payloads are large (i.e., |pl| = l ·N ·p) and
B is small, it is desirable to combine multiple ciphertexts
into a single one in a similar way as in Algorithm 4. How-
ever, this time, there are B (instead of one) non-zero values
in ṽ, hence we cannot directly rotate-and-sum. Fortunately,
the positions for the non-zero values are somehow regular:
every N/B slots have a single non-zero value. Therefore,
we could extract each non-zero value into a separate SIMD
cipheretext. For example, to extract the first non-zero value,
we could multiply the ciphertext with a bit vector, where the
first N/B values are 1s and others are 0s. Then, we could
run as in Algorithm 4 separately for the l · N ciphertexts
for each bucket, resulting in l · B ciphertexts. Algorithm 8
shows the details.

For each column, S runs in a similar way as in Algo-
rithm 7 to generate a selection vector (Line 9-11). Then, it
multiplies the blocks of the N payloads in each column to
each selection vector, and repeats this for all l ·N blocks of
each payload (Line 12-14). Next, it runs as in Algorithm 4 to
combine every N ciphertexts (Line 19-25) and this process
will be repeated for each bucket. In this way, it requires
B · l · N rotations in total. However, we could rotate ũs
first to enumerate all rotations, and then extract the non-
zero value in each bucket. This optimization reduces the
of rotations to l · N . The cost is that C has to transfer N
rotations keys, but this only needs to be done once during
setup. Algorithm 9 shows this optimization. Notice that the
vector e needs to be rotated in corresponding to ũ (Line 8).

Algorithm 8 Multi-query PIRANA: Answer (large pay-
loads)

Input [q̃1, ..., q̃m], [C1, ...,CN ] ▷ |pl| = l ·N · p
Output [ṽ1, ..., ṽd]

1: t := M/N ▷ we assume N divides M
2: s := N/B ▷ we assume B divides N
3: Split each C[j] into C[j][1]||...||C[j][l ·N ]

4: Init

d1,1 ... d1,l·N
...

. . .
...

dt,1 ... dt,l·N

: dj,h is

[C1[j][h], ...,CN [j][h]]
5: for h := 1, ..., l ·N do
6: Init ũh: uh = 0N

7: end for
8: for j := 1, ..., t do
9: yj ∈ CW (m, k)← run Algorithm 1 with j ∈ [t]

10: Find the k positions [i1, ..., ik] in yj , where yj [i] =
1

11: w̃j ← SIMDMul(q̃i1 , ..., q̃ik)
12: for h := 1, ..., l ·N do
13: ũh := SIMDAdd(ũh,SIMDPmul(w̃j ,dj,h))
14: end for
15: end for
16: Init [ṽ1, ..., ṽl·B ]: each vi is an encryption of 0N
17: for h := 1, ..., B do
18: Init e : e[(h− 1) · s, ..., h · s]=1 and other slots are

0s
19: for i := 1, ..., l do
20: for j := 1, ..., N do
21: a← SIMDPmul(ũ(i−1)·N+j , e)
22: ṽ(h−1)l+i ← SIMDAdd(ṽ(h−1)l+i,a)
23: ṽ(h−1)l+i ← SIMDRotate(ṽ(h−1)l+i, 1)
24: end for
25: end for
26: end for
27: return [ṽ1, ..., ṽl·B ]

4.3. Further optimizations

To be complete, we describe some optimizations used
in our protocol. We remark that these optimizations were
proposed by prior work.
Using secret-key homomorphic encryption to reduce
query size. Notice that in the scenario of PIR, only C
needs to do encryption but no one else. To this end, we
could use a secret-key version of homomorphic encryption
instead of the public-key version. Given that the ciphertext
of homomorphic encryption is a tuple (c0, c1) in Z2

q[x],
if we use the secret-key version, c0 is sampled uniformly
at random in Zq[x] (whereas in the public-key version, it
depends on the public key). Therefore, instead of sending
c0, C can send the seed that has been used to generates c0,
and S can reconstruct c0 from the seed. This reduces the
query size by a factor 2×.
Using modulus switching to reduce answer size. Given



# elements n 220

payload size l ·N · p (l > 1) 20KB
# queries L < N 256

Mughees-Ren
[43]

# SIMDPmul 3l · n 3 145 728
# SIMDMul 3l·n

d + l ·B · d 110 592
# SIMDRotate l ·B(d2 + 3n

Bd + d(log d− 1)) 540 672
# ciphers (query) Bd

N 2
# ciphers (answer) l ·B 384

multi-PIRANA # SIMDPmul 3l · n+ B·l·N
2 4 718 592

# SIMDMul 3n/N 384
# SIMDRotate l·N

2 4 096
# ciphers (query)

√
6n/N + 2 30

# ciphers (answer) l ·B 384

TABLE 2: Comparison between Mughees-Ren [43] and multi-query PIRANA. (N = 8 192, p = 20; the batch code is based
on cuckoo hashing, hence B = 1.5L; d is a power of two and larger than (3n/B)1/3: d = 32 for n = 220 and B = 384)

Algorithm 9 Multi-query PIRANA: Answer with less rota-
tions (large payloads)

Input [q̃1, ..., q̃m], [C1, ...,CN ] ▷ |pl| = l ·N · p
Output [ṽ1, ..., ṽd]

1: s := N/B ▷ we assume B divides N
2: [ũ1, ..., ũl·N ]← Run Line 1-15 of Algorithm 8
3: Init [ṽ1, ..., ṽl·B ]: each vi is an encryption of 0N
4: for i := 1, ..., l do
5: for j := 1, ..., N do
6: ũ′

(i−1)N+j ← SIMDRotate(ũ(i−1)N+j , j − 1)
7: for h := 1, ..., B do
8: Init e : e[((h− 1) · s+ (j − 1))%N, ..., (h ·

s+ (j − 1))%N ]=1 and other slots are 0s
9: a← SIMDPmul(ũ′

(i−1)·N+j , e)
10: ṽ(h−1)l+i ← SIMDAdd(ṽ(h−1)l+i,a)
11: end for
12: end for
13: end for
14: return [ṽ1, ..., ṽl·B ]

that the returned ciphertexts will no longer be used for
further computations, we could use the modulus switching
technique [10] to reduce their sizes. Modulus switching is
a public operation that can reduce the ciphertext modulus
from q to q′, without affecting the plaintext. Since the size
of a FHE ciphertext is linear in log q, modulus switching
reduces it by a factor of log q

log q′ . Therefore, this trick allows
S to reduce the response size the the same factor.

More efficient rotations. The rotation operation is in fact
not rotating a vector as written in Section 2.1. Instead, it
works over a (N/2) × 2 matrix and rotates the columns.
This feature benefits Algorithm 9: it allows S to extract
two elements with a single rotation, reducing the number
of rotations (Line 6) as well as the number of ciphertext-
plaintext multiplications (Line 8) by a factor of 2×.

4.4. Comparison with Mughees-Ren [43]

A concurrent and independent work was proposed by
Mughees-Ren [43] to improve the performance of multi-
query PIR. They encode the elements in each bucket (of
a batch code) as a 3-dimensional hypercube and batch the
queries for different buckets into a single SIMD ciphertext.
They further use a rotate-and-sum approach to batch the
responses. However, this protocol inherits the drawback
from hypercube-based PIRs: most of S’s operations need
to involve the payloads, which incurs a large computational
overhead when the payload size is large. In contrast, the
expensive operations (ciphertext-ciphertext multiplications)
in PIRANA are independent of the payloads.

Table 2 provides a comparison between Mughees-
Ren [43] and multi-query PIRANA. For a large payload
size (i.e., |pl| = l ·N · p with l > 1), PIRANA is basically
better than Mughees-Ren’s protocol in all aspects except the
number of ciphertext-plaintext multiplications. In particular,
PIRANA saves ( 3n(l·N−d)

d·N + l · B · d) ciphertext-plaintext
multiplications and l(B · d2 + 3n

d + B · d(log d − 1) − N
2 )

rotations. Notice that the query size of PIRANA remains
the same as long as N > 1.5L, whereas the query size of
Mughees-Ren increases linearly with L.

The right-most column of Table 2 provides some con-
crete numbers for a specific database configuration. If
we take the experimental computation cost for each ho-
momorphic operation from Mughees-Ren’s paper (cf. Ta-
ble 2 in [43]), we could roughly achieve 8× speedup over
Mughees-Ren (444.0s vs. 3 567.7s). The advantage will be
more prominent when l is larger.

5. Labeled PSI

Private Set Intersection (PSI) allows two parties, a sender
and a receiver, to compute the intersection of their private
sets X and Y such that the receiver only learns X ∩ Y and
the sender learns nothing. Most PSI protocols are balanced,
i.e., the two sets are of similar size, and the two parties



have similar computation and storage capabilities. In par-
ticular, the communication cost of balanced PSI protocols
depends on the size of the larger set. On the other hand,
unbalanced PSI [14], [13], [18] focuses on the case that the
receiver’s set is much smaller than the sender’s and aims
to achieve a communication complexity that depends on the
size receiver’s set.

In some scenarios, the sender holds a label for each
item xi in its set and the receiver wants to learn the labels
corresponding to the elements in the intersection. Notice
that a labeled and unbalanced PSI (LPSI) protocol can
be considered as a multi-query PIR protocol that supports
keyword queries and protects S’s database. To this end, we
denote the sender by S and denote the receiver by C; we
use payload instead of label.

At a high level, existing LPSI protocols [13], [18] have
C encrypt the elements in Y using FHE and send the
ciphertexts to S; for each encrypted yi, S homomorphically
evaluates a polynomial that interpolates the payloads, i.e.,
F (xi) = pli ∀xi, and returns the results to C. In this way,
C will get pli if yi = xi. However, naively running in this
way will reveal information about the elements that are not
in the intersection. To this end, they have S and C apply an
OPRF [26] to the elements in X and Y ; S uses the OPRF
values to mask the corresponding payloads; C retrieves the
masked payloads by polynomial evaluation as above and
uses its OPRF values to unmask the payloads. In this way,
C can only get the elements that are in the intersection.
Such protocols require several hours for polynomial interpo-
lations, which makes them undesirable for scenarios where
the database updates frequently.

To extend multi-query PIRANA to LPSI (dubbed LPSI-
PIRANA), we need to improve it to (1) support keyword
queries and (2) protect S’s database. Challenge (1) is easy
to overcome as the constant-weight code naturally supports
keywords. However, mapping keywords instead of indices to
constant-weight codewords will increase the codeword bit-
length m. An alternative way is to apply cuckoo hashing
again to the elements inside each bucket. This time, when-
ever an element is assigned to a location that is occupied,
the old element is evicted and recursively reinserted using
a different hash function. In this way, we successfully map
keywords to indices. Notice that it is orthogonal to the use
of cuckoo hashing to batch multiple PIR queries.

Using cuckoo hashing inside each bucket will expand
the bucket for 1.5× and incur more queries. For the latter,
when we use 3-way cuckoo hashing, C needs to query three
positions for each bucket; whereas in multi-query PIRANA,
C only needs to query one position for each bucket. As a
result, LPSI-PIRANA is at least 4.5× slower than multi-
query PIRANA. Nevertheless, this is still better than existing
LPSI protocols. Recall that such protocols need to evaluate
a polynomial on the encrypted keyword, which happens in
modulo p (20-30 bits), but the (hashed) keyword (80-128
bits) is larger than p. To this end, they splits a (hashed)
keyword to occupy several sequential slots, and evaluate
polynomials on them separately, which introduces more
overhead than our solution.

For challenge (2), we borrow the idea of using OPRF to
hide the elements that are not in the intersection. Then, our
LPSI-PIRANA works as follows:

• Setup.
1) S computes (x′

i, x
′′
i ) = PRFk(xi) for all xi in its set

X . The payload pli is masked by x′′
i : pl′i := pli⊕x′′

i .
2) S uses cuckoo hashing to assign {x′

1, ..., x
′
n} to B

buckets.
3) Inside each buckets, S using cuckoo hashing to map

each x to an index and sort the payloads according
to their indices.

• Query.
1) For each yi ∈ [y1, ..., yL], S and C run OPRF so that

C gets (y′i, y
′′
i ) without learning the key.

2) C runs Algorithm 6 with input [y′1, ..., y
′
L],

2 and
sends the output [q̃1, ..., q̃m] to S.

• Answer. S runs Algorithm 7 (for small payloads) or
Algorithm 8 (for large payloads), and returns the results
to C.

• Extract. C runs the “Extract” of multi-query PIRANA,
and unmask the results using y′′s.

Compared with the state-of-the-art LPSI protocol [18], we
successfully get rid of the expensive polynomial interpola-
tions, and we also save ⌈M/N⌉ ciphertext-plaintext mul-
tiplications. Furthermore, recall that when N > B, we
could use the empty slots to batch more responses (cf.
Algorithm 8). This is not the case for [18], because all
of their slots are non-empty. Put it in another way, for
x /∈ Y , our protocol results in 0 in the corresponding slot,
whereas [18] results in a dummy value.

6. Evaluation

In this section, we provide a full-fledged implementation
for PIRANA and systematically evaluate its performance.

6.1. Implementation

We fully implement PIRANA in C++ based on the
Microsoft SEAL homomorphic encryption library (version
4.0)3. We use the Brakerski-Fan-Vercauteren (BFV) [7], [25]
scheme, with N ∈ {4096, 8192} and the default parameters
in SEAL for 128-bit security.

All ciphertext-plaintext multiplications and ciphertext-
ciphertext additions are implemented using number theoretic
transform (NTT). To this end, we encode all payloads into
NTT forms so that they can be multiplied directly to the
NTTed selection vectors. Such payload encoding only needs
to be done once in the setup phase and can be used for all
queries.

We use index queries to evaluate all PIR protocols; and
we use keyword queries to evaluate all LPSI protocols. We
run all experiments on an Intel Xeon Cooper Lake (with

2. For the ease of description, we map keywords to indices using
constant-weight code instead of cuckoo hashing.

3. https://github.com/Microsoft/SEAL



# elements n 28 29 210 211 212 213 214 215 216

DB Size (MB) 5.2 10 21 42 84 170 340 670 1 300
CwPIR [37]

k = 2
N = 213

Selection Vec. (s) 3.9 7.8 15.5 31.0 61.7 123.1 246.2 492.7 983.3
Inner Product (s) 0.2 0.4 0.8 1.6 3.3 6.5 13.1 26.2 52.3
Total server (s) 4.1 8.2 16.3 32.6 65.0 129.7 259.4 518.9 1 035.6

single-query
PIRANA
k = 2

N = 213

Selection Vec. (s) 0.001 0.001 0.001 0.001 0.001 0.001 0.027 0.05 0.1
Inner Product (s) 0.22 0.24 0.28 0.36 0.52 0.86 1.57 2.86 5.39
Total server (s) 0.22 0.24 0.28 0.36 0.52 0.86 1.6 2.9 5.49

Speedup 18.6× 34.2× 58.2× 90.6× 125× 151× 162.1× 178.9× 188.6×

TABLE 3: Microbenchmark of PIRANA and CwPIR (payload size is 20KB).

a base frequency of 3.4 GHz and turbo frequency of 3.8
GHz) server running Ubuntu 20.04. This setup is similar to
the setting of CwPIR [37]. All experiments were repeated
5 times and average values (the variances are very small)
were reported.

6.2. Evaluation of single-query PIRANA

We first compare PIRANA (a combination of Algo-
rithm 4 and Algorithm 5 with α depending on the number
of elements n and payload sizes) with CwPIR [37] in terms
of single-query PIR. To this end, we reproduce the results
of CwPIR (i.e., Table 7 in [37]) reported in their original
paper, by running their open-sourced implementation4. We
set (k = 2, N = 8 192) for both CwPIR and PIRANA,
and choose the minimal m that satisfies

(
m
k

)
> n and(

m
k

)
> n/N respectively. Our reproduced results of CwPIR

are better than their original results, for two reasons: (1) our
CPU is more advanced, and (2) we use a newer version of
the SEAL library (they use version 3.6).

We measure PIRANA by the same metric and list the
comparison results in Table 3. As expected, PIRANA’s
advantage in selection vector generation is significant com-
pared to CwPIR. Recall that CwPIR needs to run (k−1) ·n
ciphertext-ciphertext multiplications to generate a selection
vector, whereas PIRANA only needs to run ⌈n/N⌉ · (k−1)
times. Surprisingly, inner product calculation in PIRANA
is also much faster than that in CwPIR. The reason is that
the selection vector generated by CwPIR has n ciphertexts,
which need to be transformed to NTT to be multiplied to
the payloads, hence they need to run NTT for n times. In
contrast, our selection vector only has ⌈n/N⌉ ciphertexts, so
we save upto N times of NTT. Given our advantages in both
selection vector generation and inner product calculation, we
achieve upto 188.6× speedup over CwPIR.

On the other hand, the query size of PIRANA is upto
2.5× larger than CwPIR (the response sizes are roughly
equal). For example, when n = 216, the query size is
432KB in CwPIR and 1 080KB in PIRANA. Furthermore,
C in PIRANA needs to transfer additional 6.2MB rotation
keys during setup. However, as we will show next, this
communication overhead in PIRANA can be utilized to
batch upto ⌊N/1.5⌋ queries for free.

4. https://github.com/RasoulAM/constant-weight-pir

6.3. Evaluation of multi-query PIRANA

We compare multi-query PIRANA with the state-of-the-
art5 multi-query PIR, i.e., SealPIR6 with PBC [4]. Recall
that PBC is constructed based on 3-way cuckoo hashing,
which encodes n elements into M = 3n codewords dis-
tributed among B = 1.5L buckets, with a failure probability
of p = 2−40. We use PBC as the batch code as well, with the
same configuration as multi-SealPIR [4]. To be complete,
we also add PBC to the state-of-the-art single-server PIR
protocols: Spiral7 [39] and SimplePIR8 [1], making them
support multi-query. We leave out CwPIR [37] because it is
relatively slow.

We use (n = 220, |pl| = 256-byte) as the database
because most multi-query PIR benchmarks use this config-
uration. As the payload size is small, we use Algorithm 7 to
answer queries, which allows us to set N = 4 096 instead of
8 192. Then, the size for each small bucket is 3n/N = 768.
We set m = 40 and k = 2 to satisfy

(
m
k

)
> 768.

Figure 3 shows the comparison results for multi-query
PIRs. PIRANA is significantly better than all others in terms
of query generation and answer extraction. To generate a
query for 1 024 elements, PIRANA only needs 0.13s, 14.4×
faster than the best alternative (i.e., SimplePIR). To extract
1 024 elements, PIRANA only needs 38.1ms, 9.5× faster
than the best alternative. In terms of answer generation
and bandwidth usage, only SimplePIR shows a comparable
performance with PIRANA. However, SimplePIR is stateful
i.e., clients need to download and maintain a large state.
Indeed, during our experiments, we found that C needs to
maintain upto 4.8GB state in SimplePIR. This is clearly
unfriendly to mobile devices as well as the scenarios where
the database updates frequently. On the other hand, C in
PIRANA does not need to maintain any state except the
encryption keys.

Recall that we could retrieve ⌊N/1.5⌋ elements with
the same cost. Specifically, to retrieve 2 730 elements in
PIRANA, the amortized cost for retrieving a single element
is only 3.9ms runtime and 3.0KB bandwidth.

5. By the time we submitted this paper, the protocol of Mughees-
Ren [43] was not accepted and their code was unavailable. Thus, we only
provide a theoretical comparison in Section 4.4.

6. https://github.com/microsoft/SealPIR
7. https://github.com/menonsamir/spiral
8. https://github.com/ahenzinger/simplepir
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(c) Answer extraction time.
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Figure 3: Evaluation of multi-query PIRs (220 elements, 256-byte payloads).

6.4. Evaluation of LPSI-PIRANA

We evaluate PIRANA in terms of labeled PSI and
compare it with the state-of-the-art LPSI9 [18]. We took
the OPRF implementation directly from the source code
of [18]: it uses OMGDH-based OPRF, with the Elligator 2
map [6] for the FourQ elliptic curve [21]. Inside each bucket,
we apply cuckoo hashing to map keywords to indices as we
discussed in Section 5.

The setup phase of [18] is prohibitively slow due to
the expensive polynomial interpolation: it takes 1 256.3s
even with 32 threads. The most time-consuming part in the
setup phase of LPSI-PIRANA is encoding the payloads into
NTT forms, which takes only 157s with a single thread.
This is clearly insignificant compared to [18]. Therefore,
LPSI-PIRANA is more friendly to the scenarios where the
database updates frequently.

Cong et al. [18] introduce several algorithmic opti-
mizations for the polynomial evaluation. For example, they
split each bucket into subsets and evaluate a polynomial
for each subset separately, which reduces the number of
ciphertext-ciphertext multiplications at the cost of increasing
the number of ciphertexts to be returned. They also use the
windowing technique to reduce the multiplicative depth, but
it requires C to send more monomials to S. All these opti-

9. https://github.com/microsoft/APSI/

mizations require fine-tuning the parameters to find the best
trade-off between computation and communication, which
has been done in the source code of [18]. We simply follow
their parameters, which leads to lower performance for us:
3.72× slower in runtime and 2.6× larger in bandwidth, for
1 024 queries. We leave it as future work to optimize our
performance for LPSI-PIRANA.

7. Related Work

Early single-server PIR. Most of the early single-server
PIR protocols follow the blueprint of Kushilevitz and Os-
trovsky [33]: representing the database as a D-dimensional
hypercube. The original protocol proposed by Kushilevitz
and Ostrovsky is based on additively homomorphic en-
cryption, with a query size of O(

√
N logN) and a re-

sponse size of O(
√
N). Cachin et al. [11] instead use

the ϕ-Hiding assumption to achieve O(log4 N) query size
and O(logD N) response size. Gentry and Ramazan [28]
further reduce the query size of Cachin et al.’s approach
to O(log3−o(1) N). Chang [12] instantiates Kushilevitz-
Ostrovsky’s approach with Paillier homomorphic encryption
to achieve O(

√
N logN) query size and O(logN) response

size. This protocol was later generalized by Lipmaa [36]
with Damgard-Jurik encryption [22] to achieve O(log2 N)
query size and O(logN) response size. As it has been



pointed by Sion and Carbunar [47], such protocols are
even slower than trivially having C download the entire
database [47].
Expansion-based PIR. Aguilar-Melchor et al. [38] propose
XPIR, which applies a lattice-based homomorphic encryp-
tion [9] to the hypercube-based PIR. A major drawback of
XPIR is its communication cost: even encoding the database
into a 2 or 3-dimensional hypercube, the query vector still
consists of hundreds or thousands of ciphertexts; and the
high expansion factor of lattice-based cryptosystems makes
the matter worse.

SealPIR [4] gets rid of this bottleneck by introducing
an oblivious query expansion technique. In more detail, (1)
C sends S a ciphertext that homomorphically encrypts its
desired index i; (2) S obliviously expands it into a selection
vector of n ciphertexts where the i-th ciphertext encrypts
1 and others encrypt 0; (3) S returns the inner product
between the selection vector and the payloads. Notice that
a ciphertext can only be expanded into O(N) ciphertexts.
Therefore, C needs to send O(n/N) ciphertexts to S. To
reduce this communication overhead, S again structures
the database as a D-dimensional hyperrectangle so that
the above process can be recursively performed for each
dimension. As a result, C only needs to send O(D · D

√
n/N)

ciphertexts to S.
However, in this way, S needs to compute the inner

products between selection vectors and encrypted payloads
from the second dimension and on. To avoid the expen-
sive ciphertext-ciphertext multiplications, SealPIR [4] treat
the encrypted payloads as “plaintexts”, and run plaintext-
ciphertext multiplications instead. This technique trades one
ciphertext-ciphertext multiplication to multiple plaintext-
ciphertext multiplications, leading to a large expansion fac-
tor for the responses. OnionPIR [41] realizes ciphertext-
ciphertext multiplication via external product [16], which
reduces the response sizes but incurs a large computational
overhead. Spiral [39] further improves this idea by com-
posing Regev encryption [45] with GSW encryption [29] to
achieve a faster external product. MulPIR [3] uses alterna-
tive ways to reduce the communication of SealPIR. Namely,
it uses symmetric key FHE to reduce the upload size and
uses modulus switching to reduce the expansion factor. It
also introduces a new query expansion scheme to halve the
upload size for some specific parameter sets. However, as
shown by the benchmarks in [37], MulPIR requires a large
server runtime for answer generation.
SIMD-based PIR. FastPIR [2] uses the SIMD technique
the batch the one-hot encoding of the index, which is some-
how similar to single-query PIRANA. However, compared
to FastPIR, our solution is superior in three aspects: (1)
we use constant-weight code to encode the column index,
which significantly reduces the query size; (2) we propose
a customized rotation technique for large payloads; (3) we
use the empty slots to batch more queries. Another recent
SIMD-based PIR is from Mughees-Ren [43]. We refer to
Section 4.4 for a detailed comparison.
PIR with preprocessing. Beimel et al. [5] proved that a se-

cure PIR scheme must incur Ω(n) server-side work. Indeed,
if S touches fewer than n elements to answer a query, it
will learn that the untouched elements are for sure not to be
retrieved. To circumvent this lower bound, Beimel et al. [5]
propose the notion of PIR with preprocessing, in which the
database is processed in an encoded form. However, the
scheme proposed by Beimel et al. is only applicable to
multi-server PIR. Patel et al. [44] propose a single-server
solution, where C retrieves some helper data during prepro-
cessing and uses them to run online queries in sublinear
time. The computation cost of preprocessing is still linear
but they are mostly symmetric-key operations. However, the
preprocessing stage requires linear communication, which is
less desirable. In a recent breakthrough [20], Corrigan-Gibbs
and Kogan propose a two-server PIR scheme, which shows
promising sublinear efficiency in both theory and practice.
They also propose a way to transform their solution to
single-server PIR, but it requires running black-box PIR for
multiple times during preprocessing. This idea was further
explored in [19], [46], but none of these protocols has an
overall efficiency that is better than PIR without preprocess-
ing.

Another line of work in PIR with preprocessing is by
Hengzinger et al. [1] and Davidson et al. [23]. The key
observation is that in a LWE-based PIR, the bulk of S’s
computation is independent of the Cs’ queries and can
be preprocessed. Compared with [20], [19], [46], this pre-
processing only needs to be done once and can be used
for all queries. However, each C still needs to download
and maintain a large state, e.g., 4.8GB in our experiments,
clearly unfriendly to mobile devices and the scenarios where
the database updates frequently.

8. Conclusion

In this paper, we propose a novel PIR protocol named
PIRANA, based on the recent advances in constant-weight
codes. It is significantly faster than the original constant-
weight PIR. It allows a client to retrieve a batch of ele-
ments from the server with a very small extra-cost in both
communication and computation, compared to retrieving a
single element. We also discuss a way to extend PIRANA to
labeled private set intersection (LPSI). Compared to existing
LPSI protocols, PIRANA is more friendly to the scenarios
where the database updates frequently.
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