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Abstract. Combining theoretical-based traditional attack method with practical-
based side-channel attack method provides more accurate security estimations for
post-quantum cryptosystems. In CRYPTO 2020, Dachman-Soled et al. integrated
hints from side-channel information to the primal attack against LWE schemes.
This paper develops a general Fourier analytic framework to work with the dual
attack in the presence of hints. Distinguishers that depend on specific geometric
properties related to hints are established. The Fourier transform of discretized
multivariate conditional Gaussian distribution on Zdq is carefully computed and
estimated, some geometric characteristics of the resulting distinguisher are ex-
plored and a new model of dual attack is proposed. In our framework, an ad-
versary performs the BKZ algorithm directly in a projected lattice to find short
projection components, and then recovers them by MLLL algorithm to make a
distinction. This method relies on a reasonable assumption and is backed up by
naturally formed mathematical arguments. The improvements and the assump-
tion are validated by experiments. For examples, for a Kyber768 instance, with
200 hints, the blocksize can be reduced by at least 188 and the time complex-
ity can be reduced by a factor of greater than 255. After adding 300 hints to a
FireSaber instance, even in the worst case, the blocksize drops from 819 to 542,
and the cost drops from 2255.61 to 2174.72.

1 Introduction

We are facing an urgent task of gradually replacing classical public key systems with
new ones because of the rapid advance of computing technology. Especially for the
coming era of quantum computer, concerns of threats to break several widely used
public key cryptographic schemes promote the innovations on post-quantum cryptog-
raphy. In 2017, the US National Institute of Standards and Technology (NIST) solicited
proposals for post-quantum cryptography (PQC) primitives including public key en-
cryption/key encapsulation mechanisms and digital signatures to prepare for the real-
ity of practical quantum computing. Proposals to PQC have come from several dif-
ferent areas. For examples, there were submissions of code-based, lattice-based and



multivariate-based schemes. In July 2022, NIST identified four candidate algorithms
for standardization. Among them, three candidates are from the family of lattice-based
cryptography. In particular, the two primary algorithms recommended by NIST – Kyber
and Dilithium – are both built on lattice hard problems.

There are two classes of well studied mathematical hard problems to support lattice-
based cryptography, one class is the NTRU problem and the other is the learning with
error (LWE) problem (as well as its variants). We shall say a bit more on the latter as our
discussion falls into this category. The LWE problem, proposed by Regev [29], is one of
the most important computational problems and is proved to be at least as hard as (quan-
tumly) solving some (approximate) shortest vector problems. There are many variants
of LWE such as RLWE (Ring-LWE) and MLWE (Module-LWE). It is mentioned that
learning with rounding (LWR) problem is another LWE variant with determined errors.
We have seen many exciting applications of LWE in post-quantum cryptography, for
examples, NIST PQC standard Kyber, the third round candidate algorithm Saber and
the second round candidate algorithms FrodoKEM, Newhope are all based on LWE.

In cryptanalysis, there are four notable types of attacks for public key systems based
on LWE. They are lattice attack, algebraic attack, BKW attack and attack based on the
failure of decryption. In practice, the fact that the number of available samples is re-
stricted makes lattice attack method an effective choice. This type of attack includes
dual attack and primal attack. The basic idea of both is to transform the problem into
searching short vectors in certain lattice, and then solve it by lattice reduction algo-
rithms. It is noted that the complexities for dual attack and primal attack are quite sim-
ilar for most cryptosystems.

This paper will mainly work with dual attack. This kind of attack was first pro-
posed by Micciancio and Regev [25] in 2009. In a dual attack, for a given instance
(A, b) ∈ Zm×nq ×Zmq , the adversary looks for a large number of short vectors in certain
lattice and then calculates the inner products of b with (the first m entries of) these vec-
tors respectively. A distinguisher will be used to determine whether b is from an LWE
instance or a uniform instance by revealing the difference in the distributions of these
inner products in the two cases. Using this distinguisher, the secret can also be obtained
easily. Dual attack has been studied extensively since it was proposed. An optimization
of dual attack for LWE with small secret was suggested by Albrecht et al. [3] in 2014.
A further analysis of dual attack was given by Alkim et al. [6] in 2016. In [1], Albrecht
introduced the “scaling factor” and achieved further optimization for “sparse” small
secret. In 2021, Li et al. [21] proved that the cost function of dual attack is actually a
U-shape function and applied binary search to predict the minimum cost. In the same
year, Guo et al. [17] presented an improved distinguisher that in combination with a
guessing step. A new two-step lattice reduction strategy was also given.

With the rapid development of lattice-based cryptography, it is natural to consider
whether sensitive side-channel information can be extracted and how to assess the threat
of side-channel attacks. There have been many researches in this regard, see, for exam-
ple, [2, 7, 10, 12, 18, 27]. In 2020, Dachman-Soled et al. [15] initiated a study of using
pieces of side-channel information about secret/error as “hints”, and integrating them
into the primal attack. The reduction of the cost of primal attack after adding those hints
was discussed. This opens a new direction of mixing the theoretical-based lattice attack
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method and practical-based side-channel attack method to advance the cryptanalysis of
LWE schemes.

In this paper, we consider the idea of integrating hints into the dual attack. The
mathematical formulation and characterization of hints seem to make it a natural and
appropriate combination with dual attack. We shall use the Fourier transform in this
setting in an extensive manner.

The Fourier transform has always been a powerful tool as long as a right model
setup is provided. The dual attack against LWE schemes fits in such a situation well. It
has been proven that the Fourier transform of the so called discrete normal (or Gaussian)
distribution on the group Zdq can be served as a distinguisher to identify the error distri-
bution from the uniform distribution [32]. Such a distribution is essentially a discretized
version of the normal distribution N(0, σ2

χId). Some invariant property of Gaussian
function under the (continuous) Fourier transform enables one to use the classical Pois-
son summation formula in a neat manner to achieve the desired result. [32] suggested
a refined Fourier analytic method by introducing and characterizing local widths and
calculated Fourier transforms of several more distributions to investigate the local be-
haviors of a distinguisher. Some of their ideas are influential and generalized further in
this work.

In the first part of this paper, we present an extensive study of dual attack using
Fourier distinguisher. We establish a general framework to deal with the discretization
of any type of multivariate normal distribution N(µ,Σ). The particular interest here
is to cover the case of the covariance matrix Σ being degenerate. Therefore the condi-
tional multivariate normal distribution derived from hints can be accommodated. It is
noted that the (continuous) Fourier transform of a general Gaussian function in an r-
dimensional space is still a Gaussian function, but due to the measure theoretical nature
of integration, care must be taken when we perform the Fourier transform of the Gaus-
sian function (i.e. pdf of N(µ,Σ)) with a degenerate matrix Σ. We are able to obtain a
nice expression of the Fourier transform of a discrete (multivariate) normal distribution
on Zdq after a smooth application of the Poisson summation formula. A distinguisher is
thus implied.

The generality of the distinguisher is reflected by the dependency on more aspects
of each short vector and we can work with more geometrical features of the hints. More
precisely, it is only the length of some projected component of the short vector that
determines the distinguish advantage. This leads to a natural idea that we could simply
look for short components in the projected lattice and then recover them to the ones
belong to the original lattice. To make a distinction, some transformation may be nec-
essary in theoretical analysis. The above ideas indicate a new model of the dual attack
with hints, which is proposed in the second part of this paper. This new approach relies
on a reasonable assumption and is backed up by naturally formed mathematical argu-
ments. The lattice used in this approach has a lower dimension and a smaller volume.
By analyzing the relationship between the complexity of dual attack and the parameters
(i.e. volume and dimension) of the lattice, the performance of our model is proved the-
oretically. Some benefits have been discovered, making it seems natural and convenient
to add hints to a dual attack. Experiments verify the efficiency of our new model as well
as the assumption we based on. Multiple hints can indeed significantly reduce the cost
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of the dual attack. For examples, for a Kyber768 instance, with 200 hints, the blocksize
can be reduced by at least 188 and the time complexity can be reduced by a factor of
greater than 255. After adding 300 hints to a FireSaber instance, even in the worst case,
the blocksize drops from 819 to 542, and the cost drops from 2255.61 to 2174.72.

The paper is organized into 5 sections. Necessary preparations together with some
relevant mathematical background and useful algorithms are given in Section 2. In Sec-
tion 3, we develop a Fourier analytic framework for deriving distinguish advantages in
the presence of hints. The corresponding distinguisher is also given. Based on this, we
propose a new model of the dual attack with hints in Section 4, in which short vec-
tors are searched in a new lattice of a lower dimension and a smaller volume, and then
restored to make a distinction. This new approach relies on a reasonable assumption,
some explanations for it are also given. Experiments in Section 5 verify this assumption
as well as the efficiency of our new model. Some additional benefits of adding hints to
dual attack are also listed.

2 Preliminaries

In this section, we provide necessary preparations for the discussion of the integration
of hints to the dual attack against LWE-based encryption schemes. These include some
relevant mathematical background and useful algorithms.

2.1 BKZ

A lattice basis reduction algorithm transforms a lattice basis to a new one that consists
of short lattice vectors. This paper will mainly use the BKZ algorithm and its variants.

The Hermite factor The quality of the output of a lattice reduction algorithm can be
characterized by the Hermite factor. Let d ≤ k be two positive integers and B ∈ Rk×d
be a matrix whose column vectors form a basis of a d-dimensional lattice L ⊆ Rk.
Then the volume/determinant of L is defined as vol(L) = det(L) =

√
det(BTB).

Definition 1. We say that a lattice reduction algorithm has a Hermite factor δ0, if its
output basis satisfies the following condition:

‖b1‖ ≤ δd0 det(L)
1
d ,

where the input is a basis of a d-dimensional lattice L and b1 is the first output vector.

The BKZ algorithm and its variants are generally regarded as the most common and
efficient lattice reduction algorithms. There is a blocksize parameter β in BKZ, which
determines the quality of the output vectors. To be specific, for a β that is not too small
(for example, β ≥ 50), the Hermite factor is predictable by the following heuristic,
which has been experimentally verified in [13].

Heuristic 1 BKZ-β(β ≥ 50) achieves Hermite factor δ0(β) ≈
(

β
2πe (πβ)

1
β

) 1
2(β−1)

.
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The sieving algorithm One could choose to use sieving or enumeration as the SVP
oracle when performing BKZ. In this paper, we will be focusing on the former. As
assumed in [6], in this case, a typical run of BKZ produces a large number of short
vectors whose norms are all close to that of the shortest output vector.

Assumption 1 For a d-dimensional lattice L, given any of its basis as input, BKZ-β
provides 20.2075β short vectors in one run when using sieving as the SVP oracle, whose
norms are all close to δ0(β)d · det(L)

1
d .

The cost of BKZ is usually estimated using some heuristic assumptions. When the
blocksize is set to β, its runtime is generally considered as 2cβ+o(β), where c is a con-
stant. In 2016, Becker et al. [11] showed that applying spherical LSF to sieving al-
gorithms leads to c = 0.292 in the classical case, while when considering quantum
situation, the search process can be accelerated so that c is reduced to 0.265. As done
in [4, Footnote 5], in this paper, we shall calculate the cost of BKZ in a relatively accu-
rate way without ignoring o(β) as follows.

Assumption 2 When using sieving as the SVP oracle, the runtime of BKZ-β is

TBKZ(β) =

{
20.292β+16.4 classical case
20.265β+16.4 quantum case

.

It is generally considered that the short vectors found by BKZ are non-directional,
that is, they have balanced coefficients. More precisely, each entry of the obtained short
vectors is assumed to be subject to the same Gaussian distribution independently.

Assumption 3 ( [16]) Let v ∈ Rd be a short vector found by BKZ, then each entry of
v follows a Gaussian distribution with mean 0 and standard deviation ‖v‖√

d
.

2.2 Fourier Transform

The Fourier transform characterizes mathematical duality in that a function localized
in the time domain can be also viewed to spread out across the frequency domain. It
has been shown to be a very powerful tool for lattice theory. We will use the Fourier
transforms on the abelian groups Rd and Zdq respectively. The latter is also called the
discrete Fourier transform.

Definition 2. (1) For a rapidly decreasing smooth function f : Rd → C 4, its Fourier
transform f̂ : Rd → C is given by

f̂(y) =

∫
Rd
e−2πi<x,y> · f(x) dx, ∀y ∈ Rd.

(2) For a function f : Zdq → C, its discrete Fourier transform f̂ : Zdq → C is given by

f̂(y) =
∑
x∈Zdq

e
−2πi<x,y>

q · f(x), ∀y ∈ Zdq .

4 I.e., f and all its (partial) derivativesDβf satisfy supx∈Rd |xαDβf(x)| <∞ for every α, β ∈
Nd. Such a function is said to be in the Schwartz space. The Fourier transform can be extended
to a larger family of functions, including probability density functions.
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The following is a useful property of the Fourier transform of a function composed
with an affine transform.

Lemma 1. ( [26, Section 8.2.3]) For a rapidly decreasing smooth function f : Rd →
C, let M ∈ Rd×d be an invertible matrix and h ∈ Rd, then the Fourier transform of
f(Mx+ h) is 1

| det(M)| · e
2πi〈h,M−T y〉f̂(M−T y).

The next classical Poisson summation formula provides a fundamental way to link
a function with its Fourier transform in terms of periodic summations of the function
and its Fourier transform. This naturally involves a lattice and its dual.

Lemma 2. ( [30, Proposition 15]) Let L be a d-dimensional lattice and L∗ be its dual
lattice. For a rapidly decreasing smooth function f : Rd → C,∑

x∈L
f(x) = det(L∗)

∑
y∈L∗

f̂(y).

In our latter discussion, the Poisson summation formula will be used in a slightly dif-
ferent form. For a ∈ R \ {0} and h ∈ Rd, we define g(x) = f(ax + h), and it is easy
to see that ĝ(y) = 1

|a|d · e
2πi<h,y>

a · f̂
(
y
a

)
according to lemma 1. Combining this with

lemma 2, the following corollary is obtained.

Corollary 1. Let L be a d-dimensional lattice and L∗ be its dual lattice. Given a ∈
R \ {0}, h ∈ Rd. For a rapidly decreasing smooth function f : Rd → C,∑

x∈L
f(ax+ h) =

det(L∗)

|a|d
·
∑
y∈L∗

e
2πi<h,y>

a · f̂
(y
a

)
.

2.3 Multivariate Normal Distribution

Definition 3. The singular value decomposition (SVD) of a matrix M ∈ Rm×n (m ≥
n) of rank r is given by

M = UDV T ,

whereU ∈ Rm×m, V ∈ Rn×n are both orthogonal matrices,D is anm×n rectangular

diagonal matrix of the form D =

 σ1

.
.
.
σn

O(m−n)×n

 with σ1 ≥ · · · ≥ σr > 0 and

σr+1 = · · · = σn = 0. The SVD for the case of m < n is similar.

When M ∈ Rm×m is a symmetric matrix, we can simply consider its eigenvalue
decomposition (EVD). In this case, M = QDQT for an orthogonal matrix Q and

a diagonal matrix D. More precisely, D =

λ1
λ2

. . .
λm

 with {λi}mi=1 being the

eigenvalues of M , and the column vectors of Q are the eigenvectors of M .
SVD makes it easier to give definitions of pseudo inverse and pseudo determinant

of a matrix. Specifically, let M ∈ Rm×n(m ≥ n) be a matrix of rank r, suppose its
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SVD is M = UDV T , where D =


σ1

. . .
σr

0

. . .
0

O(m−n)×n

, σ1 ≥ · · · ≥ σr > 0. We define

the pseudo inverse of D as D∼ =


1
σ1

. . .
1
σr

0

. . .
0

O(m−n)×n

 and the pseudo inverse of M as

M∼ = V D∼UT . We define the pseudo determinant of M as rdet(M) = σ1 ·σ2 · · ·σr.
These definitions will be very useful when considering degenerate multivariate normal
distribution.

Definition 4. Let d be a positive integer. For µ ∈ Rd 5 and a symmetric matrix Σ ∈
Rd×d of rank r, we denote the (continuous) multivariate normal distribution with mean
µ and covariance matrix Σ by Nd(µ,Σ), whose probability density function(pdf) is

fdµ,Σ(x) =

{
1

(2π)
r
2 ·
√
rdet(Σ)

· e− 1
2 (x−µ)

TΣ∼(x−µ), x ∈ µ+ Span(Σ)

0, else
.

As the entries of the secret and error are usually selected from Zq in the actual
schemes, the finite discrete version constrained on Zdq needs to be considered. We give
the following definition.

Definition 5. Let d be a positive integer. For µ ∈ Rd and a symmetric matrix Σ ∈
Rd×d, we denote Gd,q(µ,Σ) to be the (discrete) multivariate normal distribution de-
rived from Nd(µ,Σ) with the probability mass function (pmf) being

gd,qµ,Σ(x) =

∑
t∈Zd f

d
µ,Σ(x+ tq)

fdµ,Σ(Zd)
, x ∈ Zdq ,

where fdµ,Σ is the pdf of Nd(µ,Σ).

Conditional multivariate normal distribution plays an important role in our analy-
sis. The following result is a straightforward derivation from properties of the standard
multivariate normal distributions (see also in [15]).

Lemma 3. Let r < d be two positive integers. Let x ∼ Nd(µx, Σx) be a random
vector. For a matrix M ∈ Rr×d of rank r and a random vector g ∼ Nr(0, Σg), we
denote y = Mx + g. Then the conditional multivariate normal distribution (x|y) also
follows a multivariate normal distribution Nd(µx|y, Σx|y), where{

µx|y = µx +ΣxM
T (MΣxM

T +Σg)
−1(y −Mµx)

Σx|y = Σx −ΣxMT (MΣxM
T +Σg)

−1MΣx
.

5 Sometimes the definition may need to be extended to µ ∈ C.
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In addition, we also need to use some notations about orthogonal projection when
analyzing the conditional distribution derived from hints.

Definition 6. Let X ∈ Rd×t(t ≤ d) be a matrix of rank t and F = Span(X). We
denote the orthogonal projection matrix onto F by ΠX or ΠF , and its complement by
Π⊥X = I −ΠX or Π⊥F = I −ΠF . More specifically, ΠX = X · (XTX)−1 ·XT .

It is easy to see that the orthogonal projection matrix is symmetric and idempotent.

2.4 LWE

The Learning With Error (LWE) problem has been a popular problem, especially with
its exciting application in post-quantum cryptography. In the original definition of LWE,
the secret s is uniformly picked in Znq . Later, LWE in Hermite Normal Form (HNF) was
developed, in which the entries of s subject to the same distribution as those of e. In
2009, Applebaum et al. [8] showed that LWE in HNF does not lose security compared
with standard LWE and they gave a way of transforming the distribution of the secret
to be that of the error through Gaussian elimination.

Definition 7. For positive integers n,m, q, let χ be a distribution over Zq with mean
0 and a small standard deviation of σχ, then the Decision-LWE (in Hermite Normal
Form) with parameters (m,n, q, χ) is to distinguish pair

(A, b← U
(
Zmq
)
) and (A, b = As+ e (mod q)), where A← U(Zm×nq ), s← χn, e← χm.

LWE in HNF is widely used in building cryptographic schemes. For example, NIST
PQC algorithms Kyber [9], LAC [24] and Newhope [5] all use the same distribution to
sample the entries of the secret and error. In this paper, we also focus on this case.

As mentioned earlier, lattice attacks are usually regarded as the most practical choices
due to the limited number of available samples. We consider dual attack in this paper.

Dual Attack In a dual attack, the adversary aims to distinguish between the LWE
instance and uniform instance by a distinguisher, with which the secret can also be
easily obtained. The steps of dual attack are described below. For a target instance
(A, b) ∈ Zm×nq ×Zmq , firstly, the attacker constructs a lattice L of dimension d = m+n
and volume qn as follows:

L =

{(
x
y

)
∈ Zd : ATx ≡ y (mod q)

}
.

It has the following lattice basis:

B =

(
Im Om×n
AT qIn

)
∈ Zd×d.

Then, the attacker looks for short vectors in L and then uses them to make a distinction.

Broadly speaking, for each short vector w =

(
u
v

)
, he/she calculates the value of 〈u, b〉
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(mod q). When b ← U(Zmq ), 〈u, b〉 (mod q) also follows the uniform distribution

over Zq , while if b = As+ e (mod q), we denote S =

(
e
s

)
, then

〈u, b〉 = uT (As+ e) = vT s+ uT e = 〈S,w〉 (mod q)

will be relatively small as S,w are both short vectors. The difference in the distributions
of 〈u, b〉 (mod q) in the two cases is key to the distinction.

A specific idea of constructing a distinguisher is given in [19]. For any pmf φ over
Zq , its bias is defined as B(φ) = Ex∼φ

[
e
− 2πix

q

]
and it is easy to see that B(φ) = φ̂(1).

Suppose that M short vectors wj =

(
uj
vj

)
, j = 1, 2, · · · ,M are used in a dual at-

tack. Let f〈uj ,b〉 be the pmf of 〈uj , b〉 (mod q), j = 1, 2, · · · ,M . The attacker cal-

culates the sample average
∑M
j=1 e

−
2πi〈uj,b〉

q

M and it becomes closer to the true mean∑M
j=1 B

(
f〈uj,b〉

)
M as M increases. In fact, the so called “distinguish advantage” is rel-

evant to the difference between the values of
∑M
j=1 B

(
f〈uj,b〉

)
M in the two cases. To be

more precisely, it is 0 when b is from a uniform instance, and the larger

∣∣∣∣∣
∑M
j=1 B

(
f〈uj,b〉

)
M

∣∣∣∣∣ =∣∣∣∣∣
∑M
j=1 B

(
f〈S,wj〉

)
M

∣∣∣∣∣ is in the other case, the better the distinction will be.

Suppose that ‖wj‖ ≤ L, j = 1, 2, · · · ,M . In 2011, an estimation B
(
f〈S,wj〉

)
≥

e
−

2π2·‖wj‖
2·σ2χ

q2 ≥ e
−

2π2·L2·σ2χ
q2 := ε was given in [22], this means ε can be viewed

as the advantage from wj . This method of calculating advantages is widely used, for
example, in [6,17,32]. According to the Chernoff-Hoeffding inequality as shown below,
M = O

(
1
ε2

)
samples are sufficient to amplify the success rate of the attack to a constant.

Lemma 4. Let ξ1, · · · , ξM be real-valued independent bounded random variables with
ξj ∈ [c, d] and E[ξj ] = µj , j = 1, 2, · · · ,M , then for all ε ≥ 0,

Pr

∣∣∣∣∣∣ 1M
M∑
j=1

(ξj − µj)

∣∣∣∣∣∣ ≥ ε
 ≤ 2 · e−

2Mε2

(d−c)2 .

3 Analyzing the Distinguish Advantage of Dual Attack with Hints
by Fourier Transform

As indicated in [15], during an actual attack against an LWE scheme, an attacker might
be able to get some “hints” about the secret and/or the error from sources such as side
channel information and decryption failures. Combining these hints with a primal attack
may leads to a more effective attack. In this section, we investigate the Fourier analytic
method in the dual attack in a great detail, some ideas in [32] are pushed further. Some
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Fourier transform on Zdq produces a better distinguish advantage. This is done by inte-
grating hints into the dual attack and then applying the (continuous) Fourier transform
on a suitable space of a lower dimension. The latter step is mathematically critical.
These rigorous theoretical results support the accurate disclosure of the situation after
integrating hints to the dual attack. To be specific, we get the following conclusions.

1. Corollary 2 tells us that, in the presence of hints, the distinguish advantage from
each short vector found in L is larger (could be significantly larger provided that
sufficiently many hints are available).

2. As described in remark 3, adding hints makes the direction of a short vector in L an
indicator that affects its distinguish advantage. More precisely, unlike the previous
case where the advantage depends only on the length of the short vector, now it is
also affected by the distance between the short vector and the span of all the hint
description vectors.

3. A new distinguisher for the dual attack matching the case with hints is proposed
in algorithm 1. Some tricks are used to settle the problem that the argument of the
Fourier transform is different for each of the short vectors. Moreover, the effect of
this new distinguisher is shown in Section 3.4.

3.1 Integrating Hints into a Dual Attack

Given an LWE instance (A, b = As+ e (mod q)) and a short vector w =

(
u
v

)
found

in L. As mentioned earlier, in a dual attack, the attacker calculates 〈u, b〉 (mod q) to
distinguish the LWE instance from the uniform instance.

It is noted that if (A, b) is an LWE instance, then 〈u, b〉 = 〈S,w〉 (mod q). We
denote the pmfs of S and 〈S,w〉 (mod q) by fS and f〈S,w〉 respectively. [32] contains

some indiction that f̂〈S,w〉(1) = f̂S(w) can be used to estimate the distinguish ad-
vantage from w, for S from discrete Gaussian (unconditionally). The next proposition
extends a conclusion in [32] 6.

Proposition 1. (1) Let x be a d-dimensional continuous random vector over Rd with
pdf f . For any v ∈ Rd, we denote the pdf of (the random variable over R) 〈v, x〉 by
f〈v,x〉, then

f̂〈v,x〉(y) = f̂(yv), ∀y ∈ R.

(2) Let x be a d-dimensional discrete random vector over Zdq with pmf f . For any
v ∈ Zdq , we denote the pmf of (the random variable over Zq) 〈v, x〉 (mod q) by
f〈v,x〉, then

f̂〈v,x〉(y) = f̂(yv), ∀y ∈ Zq.
6 Our extension consists of four parts. Firstly, the result is generalized to the continuous case.

Secondly, the independence among the coefficients of the random vector is no longer required.
Thirdly, the pdf/pmf of each entry can be different. Finally, we prove that the case of v = 0
also applies to the proposition.
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A proof of proposition 1 is provided in appendix A. Taking y = 1 in the above
proposition, we get f̂〈v,x〉(1) = f̂(v). Hence, when b follows a uniform distribution
over Zdq , the pmf of 〈u, b〉 is constant over Zq and thus its Fourier transform takes value

0 at 1, i.e., f̂〈u,b〉(1) = 0. While in the other case, it becomes a non-zero complex

number f̂〈u,b〉(1) = f̂〈S,w〉(1) = f̂S(w). Therefore, the difference of the values of

f̂〈u,b〉(1) for these two cases can be used to distinguish. In particular, a lower bound of
|f̂S(w)| will be useful for estimating the advantage with respect to w.

Since we are focusing on LWE in HNF, it can be assumed that S ∼ Gd,q
(
0, σ2

χId
)

in the original setup without any hints, i.e. fS = gd,q0,σ2
χId

. However, a more accurate
posterior distribution of S can be derived if the adversary obtains some hints about S,
and the pmf of S also changes accordingly.

In particular, a hint is characterized as the specific value 〈S, v〉 of the inner product
of S with some vector v, without knowing S. We call the vector v hint description
vector. For the case with multiple hints, the matrix representation is often used. Suppose
the attacker obtains t hints about S, let Y ∈ Zd×t 7 be the matrix whose column vectors
are t linearly independent hint description vectors, then hints can be written in the form
of R = Y TS ∈ Zt×1. According to lemma 3, the conditional distribution (S|Y TS =
R) still obeys a normal distribution, whose mean and covariance matrix are{

µh = Y (Y TY )−1R
Σh = σ2

χId − σ2
χY (Y TY )−1Y T

.

Hence, we assume S ∼ Gd,q (µh, Σh) and fS = gd,qµh,Σh after integrating hints
R = Y TS. Let V be the span of the column vectors of Y (i.e. V = Span(Y )), we
decompose S into S = SV + SV ⊥ with SV ∈ V, SV ⊥ ∈ V ⊥. One important fact to
note is that, after adding hints, µh, Σh can also be written as{

µh = ΠV · S = SV
Σh = σ2

χ · (Id −ΠV ) = σ2
χ ·Π⊥V

.

In summary, the mean µh actually gives the orthogonal projection SV of S onto the
subspace V , while Σh is exactly the orthogonal projection matrix onto V ⊥ times σ2

χ,
and they satisfy µh ∈ Span(Σh)⊥.

3.2 Estimating Distinguish Advantages by Fourier Analysis

From the above, we can draw the conclusion that after integrating hints R = Y TS,

the distinguish advantage brought by each short vector w depends on ĝd,qµh,Σh(w). Thus,
a calculation of its value is needed and a tighter lower bound for its absolute value
is desirable. The (discrete) multivariate normal distribution on Zdq is defined in terms

7 To simplify the analysis, we assume that Y is an integer matrix here. Actually, we can also
handle the case of Y ∈ Rd×t, as we shall see later, it is Span(Y ) that works. By multiplying
a large integer, we can always transform Y into an integer matrix. In addition, we notice that
the hints that are available in practice usually have integral coefficients.
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of (continuous) multivariate normal distribution while its (discrete) Fourier transform
involves the (continuous) Fourier transform and the Poisson summation formula. For
the former, an interesting fact to note is that the Fourier transform of a (continuous)
multivariate normal distribution is still a (continuous) multivariate normal distribution
(without normalization).

Proposition 2. Let d be a positive integer, given µ ∈ Rd and a symmetric matrix Σ ∈
Rd×d of full rank. Then for any y ∈ Rd, we have

(1) f̂dµ,Σ(y) =
e−

1
2
µTΣ−1µ·(2π)

d
2√

det(Σ)
· fd−iΣ−1µ,Σ−1(2πy) = e−2πi<µ,y> · e−2π2yTΣy .

(2) fdµ,Σ(y) =
e−

1
2
µTΣ−1µ

(2π)
d
2 ·
√

det(Σ)
· ̂fdiΣ−1µ,Σ−1

(
y
2π

)
.

For completeness, we give a proof of proposition 2 in appendix B. It is important
to note that, the matrix Σ is required to be of full rank in proposition 2. However, as
mentioned earlier, the covariance matrix becomes Σh = σ2

χ · Π⊥V after adding t hints
R = Y TS, then rank(Σh) = d− t < d. Hence, further consideration is needed.

For the case where rank(Σ) = r < d, it is known that fdµ,Σ is supported by
µ + Span(Σ). To avoid integration on a set with zero measure, we should perform
the Fourier transform on the abelian group Span(Σ) (an r-dimensional subspace). Now
suppose that the EVD of Σ is Σ = QDQT , where D =diag{σ1, · · · , σr, 0, · · · , 0}.
Then Σ∼ = QD∼QT . We write Dh := diag{σ1, · · · , σr} ∈ Rr×r, and denote the ma-
trix consisting of the first r column vectors ofQ byQr. Then for any x ∈ µ+Span(Σ),

fdµ,Σ(x) =
1

(2π)
r
2 ·
√

rdet(Σ)
· e−

1
2
(x−µ)TΣ∼(x−µ) t=x−µ

======
1

(2π)
r
2 ·
√

rdet(Σ)
· e−

1
2
tTΣ∼t

=
1

(2π)
r
2 ·
√

rdet(Σ)
· e−

1
2
tTQD∼QT t z=QT t

======
1

(2π)
r
2 ·
√

rdet(D)
· e−

1
2
zTD∼z

u=(z1 ··· zr)T
===========

1

(2π)
r
2 ·
√

det(Dh)
· e−

1
2
uTD−1

h
u = fr0,Dh(u).

It can be seen that there is a one-to-one correspondence between x ∈ µ+ Span(Σ) and
u ∈ Rr described by the following relationships:

u = QTr (x− µ)
x = µ+Qr · u
fdµ,Σ(x) = fr0,Dh(u)

.

Thus, when rank(Σ) = r, fdµ,Σ is actually equivalent to the r-dimensional normal
distribution function fr0,Dh(u).

Next, we turn to the discrete case. When x ∈ Zd ∩ (µ+ Span(Σ)), we have u =
QTr (x−µ) ∈

(
QTr

(
Zd − µ

))
∩Rr = L(QTr )−QTr µ, where L(QTr ) refers to the lattice

taking QTr as a set of generating vectors 8. Let P ∈ Rr×r be a lattice basis of L(QTr ),
i.e. L(QTr ) = L(P ). In particular, since µh ∈ Span(Σh)⊥ is always true after adding

8 As QTr contains d(> r) r-dimensional vectors, it does not form a lattice basis.
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hints, for the sake of simplicity, we will focus only on the case of µ ∈ Span(Σ)⊥ in the
rest of our discussion. For any z ∈ Rd, let y = Σz and w = QT z, then we have

0 =< µ, y >= µTQDQT z = µTQDw = µTQ


σ1w1

.

.

.
σrwr

0

.

.

.
0

 = µTQr

σ1w1

...
σrwr

 .

Since Q is orthogonal and z can be arbitrary, we conclude that µTQr = 0. This implies
that u = QTr x. So when x ∈ Zd ∩ (µ+ Span(Σ)), we have u ∈ L(QTr ) = L(P ).

We are now ready to compute the (discrete) Fourier transform of the pmf gd,qµ,Σ of the
(discrete) multivariate normal distribution over Zdq . We combine the above analysis with
the Poisson summation formula to deal with this computation regardless of whether the
rank of Σ is full or not. The specific calculation process is as follows. For any y ∈ Zdq ,

ĝd,qµ,Σ(y) =
∑
z∈Zdq

e
−2πi<z,y>

q · gd,qµ,Σ(z) =
∑
z∈Zdq

e
−2πi<z,y>

q ·
∑
t∈Zd f

d
µ,Σ(z + tq)

fdµ,Σ(Zd)

=
1

fdµ,Σ(Zd)
·
∑
z∈Zdq

∑
t∈Zd

e
−2πi<z,y>

q · fdµ,Σ(z + tq)

=
1

fdµ,Σ(Zd)
·
∑
z∈Zdq

∑
t∈Zd

e
−2πi<z+tq,y>

q · fdµ,Σ(z + tq)

x=z+tq
=======

1

fdµ,Σ(Zd)
·
∑
x∈Zd

e
−2πi<x,y>

q · fdµ,Σ(x)

=
1

fdµ,Σ(Zd)
·

∑
x∈Zd∩(µ+span(Σ))

e
−2πi<x,y>

q · fdµ,Σ(x)

u=QTr ·x==========
x=µ+Qr·u

1

fdµ,Σ(Zd)
·
∑

u∈L(P )

e
− 2πi〈µ+Qru,y〉

q · fr0,Dh (u)

Prop.2
=======

e
− 2πi〈µ,y〉

q

fdµ,Σ(Zd)
·
∑

u∈L(P )

e

−2πi
〈
u,QTr y

〉
q ·

1

(2π)
r
2 ·
√

det(Dh)
· ̂fr

0,D
−1
h

(
u

2π

)

=
e
− 2πi〈µ,y〉

q

fdµ,Σ(Zd)
·

1

(2π)
r
2 ·
√

det(Dh)
·
∑

u∈L(P )

e
i

〈
u,−

2πQTr y

q

〉
· ̂fr

0,D
−1
h

(
u

2π

)

Cor.1
======

e
− 2πi〈µ,y〉

q

fdµ,Σ(Zd)
·

1

(2π)
r
2 ·
√

det(Dh)
·

(2π)r

det (L(P ))

∑
k∈L∗(P )

f
r

0,D
−1
h

(
2πk −

2πQTr y

q

)

=
e
− 2πi〈µ,y〉

q

fdµ,Σ(Zd)
·

1

det(L(P ))

∑
k∈L∗(P )

(2π)
r
2√

det(Dh)
· fr

0,D
−1
h

(
2π

(
k −

QTr y

q

))

Prop.2
=======

e
− 2πi〈µ,y〉

q

fdµ,Σ(Zd)
·

1

det(L(P ))

∑
k∈L∗(P )

f̂r0,Dh

(
k −

QTr y

q

)

=
e
− 2πi〈µ,y〉

q

fdµ,Σ(Zd)
·

1

| det(P )|
· f̂r0,Dh

(
L
∗
(P )−

QTr y

q

)
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While on the other hand,

f
d
µ,Σ

(
Zd
)

=
∑
x∈Zd

f
d
µ,Σ(x) =

∑
x∈Zd∩(µ+span(Σ))

f
d
µ,Σ(x)

u=QTr ·x==========
x=µ+Qr·u

∑
u∈L(P )

f
r
0,Dh

(u)
Prop.2

=======
∑

u∈L(P )

1

(2π)
r
2 ·
√

det(Dh)
· ̂fr

0,D
−1
h

(
u

2π

)
Cor.1

======
1

(2π)
r
2 ·
√

det(Dh)
·

(2π)r

det(L(P ))
·
∑

k∈L∗(P )

f
r

0,D
−1
h

(2πk)

=
1

| det(P )|
∑

k∈L∗(P )

(2π)
r
2√

det(Dh)
· fr

0,D
−1
h

(2πk)
Prop.2

=======
1

| det(P )|
∑

k∈L∗(P )

f̂r0,Dh
(k)

=
1

| det(P )|
· f̂r0,Dh (L

∗
(P )).

To sum up, we get the following expression for ĝd,qµ,Σ :

ĝd,qµ,Σ(y) = e
− 2πi<µ,y>

q ·
f̂r0,Dh

(
L∗(P )− QTr y

q

)
f̂r0,Dh

(L∗(P ))
= e
− 2πi<µ,y>

q ·
f̂r0,Dh

(
L∗
(
QTr

)
− QTr y

q

)
f̂r0,Dh

(L∗ (QTr ))
, ∀y ∈ Zdq .

Next, we shall derive a lower bound for
∣∣∣∣ĝd,qµ,Σ(y)∣∣∣∣ to estimate the advantage each

short vector can bring. Applying proposition 2 to the above expression for ĝd,qµ,Σ and
using the definition of fr

0,D−1
h

, we have

ĝd,qµ,Σ(y) = e
− 2πi<µ,y>

q ·

∑
k∈L∗(P )

(2π)
r
2√

det(Dh)
· fr

0,D−1
h

(
2π
(
k − QTr

q

))
∑
k∈L∗(P )

(2π)
r
2√

det(Dh)
· fr

0,D−1
h

(2πk)

= e
− 2πi<µ,y>

q ·
∑
k∈L∗(P ) e

− 1
2

(
2πk−2π

QTr y

q

)T
·Dh·

(
2πk−2π

QTr y

q

)
∑
k∈L∗(P ) e

− 1
2
(2πk)T ·Dh·(2πk)

= e
− 2πi<µ,y>

q ·
∑
k∈L∗(P ) e

−2π2kTDhk · e
4π2yTQrDhk

q · e
−2π2yTQrDhQ

T
r y

q2∑
k∈L∗(P ) e

−2π2kTDhk
.

This means that e
2πi<µ,y>

q · ĝd,qµ,Σ(y) is a positive real number which can be bounded
below in the following manner

e
2πi<µ,y>

q · ĝd,qµ,Σ(y) = e
−2π2yTQrDhQ

T
r y

q2 ·
∑
k∈L∗(P ) e

−2π2kTDhk · e
4π2yTQrDhk

q∑
k∈L∗(P ) e

−2π2kTDhk

= e
−2π2yTQrDhQ

T
r y

q2 ·
∑
k∈L∗(P ) e

−2π2kTDhk ·

e 4π2yTQrDhk
q +e

−4π2yTQrDhk
q


2∑

k∈L∗(P ) e
−2π2kTDhk

≥ e
−2π2yTQrDhQ

T
r y

q2 ·
∑
k∈L∗(P ) e

−2π2kTDhk · 1∑
k∈L∗(P ) e

−2π2kTDhk
= e

−2π2yTQrDhQ
T
r y

q2
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= e
−2π2yTQDQT y

q2 = e
−2π2yTΣy

q2 .

What we have discussed actually proves the following theorem.

Theorem 1. Let d be a positive integer. Let Σ ∈ Rd×d be a symmetric matrix and
µ ∈ Span(Σ)⊥. Suppose that rank(Σ) = r and the EVD of Σ is Σ = QDQT ,
where D = diag{σ1, · · · , σr, 0, · · · , 0}, σi > 0, i = 1, 2, · · · , r. We define Dh =
diag{σ1, · · · , σr} ∈ Rr×r, and denote the lattice taking QTr as a set of generating
vectors by L(QTr ). Let L∗

(
QTr
)

be the dual lattice of L(QTr ), then

ĝd,qµ,Σ(y) = e−
2πi<µ,y>

q ·
f̂r0,Dh

(
L∗
(
QTr
)
− QTr y

q

)
f̂r0,Dh (L

∗ (QTr ))
, ∀y ∈ Zdq .

Furthermore, we have

e
2πi<µ,y>

q · ĝd,qµ,Σ(y) =
∣∣∣∣ĝd,qµ,Σ(y)∣∣∣∣ ≥ e− 2π2yTΣy

q2 , ∀y ∈ Zdq .

As we mentioned in Section 2.4, it has been proven that a short vector w in L gives

a distinguish advantage e−
2π2σ2χ‖w‖

2

q2 . This can be interpreted by the above theorem as
the case where Σ = σ2

χId and µ = 0 since wT · σ2
χId · w = σ2

χ‖w‖2. Theorem 1
improves the argument not only to the case of a general nonsingular symmetric Σ, but
also to the case where Σ is degenerated. We note that the latter case requires a careful
and non-trivial proof and this proof reveals some useful information.

Besides the extension ofΣ, µ is also generalized to be an arbitrary (non-zero) vector
in Span(Σ)⊥. According to theorem 1, in this case, ĝd,qµ,Σ(y) is a complex number and
its argument changes with y. This leads to the need of making some adjustments on
the distinguisher, and the details will be discussed in Section 3.3. Fortunately, as we

shall see, the lower bound of
∣∣∣∣ĝd,qµ,Σ(y)∣∣∣∣ given in theorem 1 still indicates the advantage

from w can be e
−2π2wTΣhw

q2 after adding hints, recall that Σh is the covariance matrix
of (S|Y TS = R). This can be made more explicit in the following corollary.

Corollary 2. Given hints R = Y TS. Let V = Span(Y ). For any short vector w ∈
L\{0} found by BKZ, we decompose it intow = wV +wV ⊥ withwV ∈ V,wV ⊥ ∈ V ⊥.

Then the dual attack advantage from w is e−
2π2σ2χ‖wV⊥‖

2

q2 .

Proof. This is simply because

wTΣhw = wT · σ2
χΠ
⊥
V · w = σ2

χ · wTV ⊥ · wV ⊥ = σ2
χ‖wV ⊥‖2. ut

Remark 1. As mentioned in assumption 3, it is generally believed that the short vectors
found by BKZ in L have balanced coefficients, and hence belong to Zdq .

Remark 2. Corollary 2 shows the improvement of hints over dual attack. The advantage

with respect to w goes from e
−

2π2σ2χ‖w‖
2

q2 to e−
2π2σ2χ‖wV⊥‖

2

q2 thanks to hints R = Y TS.
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As wV ⊥ is a projection of w and ‖wV ⊥‖2 = ‖w‖2−‖wV ‖2, the advantage is increased

by a factor of e
2π2σ2χ‖wV ‖

2

q2 after adding hints.

Remark 3. Although short vectors returned by BKZ are of similar lengths, the distin-
guish advantages with respective these vectors are different. As corollary 2 asserts that
the lengths of their orthogonal projections onto V ⊥ are the determining factors. To be
specific, when the length of w is fixed, the closer the direction of w is to V , the greater
the distinguish advantage is. In other words, the direction plays some roles when hints
exist. On the other hand, it may be a better option for the adversary to shift his/her focus
from the length of w to that of wV ⊥ .

Remark 4. It can be seen in theorem 1 that µ has no effect on
∣∣∣∣ĝd,qµ,Σ∣∣∣∣. More precisely,

the final advantage e−
2π2wTΣhw

q2 = e
−

2π2σ2χ‖wV⊥‖
2

q2 is independent of µh. This seems
reasonable because of the independence between SV and SV ⊥ . In particular, as SV =
µh has already been given by the hints, the unknown part of 〈S,w〉 (mod q) is actually

〈SV ⊥ , wV ⊥〉 = 〈S,w〉 − 〈SV , w〉 = 〈u, b〉 − 〈µh, w〉 (mod q).

This quantity will replace 〈u, b〉 to construct a new distinguisher in the next subsection.

3.3 A NEW Distinguisher

Now, let us post further explanations about how to build a distinguisher during an actual
dual attack with hints. Some details should to be noted when the case is extended to

µ 6= 0. Suppose that M short vectors wj =
(
uj
vj

)
∈ L, j = 1, 2, · · · ,M are used. In

the original distinguisher described in Section 2.4, the advantage of each short vector is
to add up before taking the absolute value, that is, the adversary will calculate

∑M
j=1 B

(
f〈S,wj〉

)
M

=

∑M
j=1 f̂S(wj)

M
=

∑M
j=1

̂
gd,qµh,Σh

(wj)

M
=

∑M
j=1 e

−
2πi〈µh,wj〉

q ·
∣∣∣∣ ̂
gd,qµh,Σh

(wj)

∣∣∣∣
M

.

However, this is a sum of M complex numbers with different arguments, a lower
bound of its absolute value can no longer be obtained by a common lower bound of{∣∣∣∣ĝd,qµh,Σh(wj)

∣∣∣∣}M
j=1

. It should be pointed out that this situation does not occur without

hints as the secret/error vector is always picked from a distribution with a mean of 0.
In this subsection, we propose a new distinguisher that can handle this problem by

some interesting tricks. Its essential idea is to rotate the Fourier transform with respect
to each of the short vectors into a real number respectively, this achieves a similar effect
as taking the absolute value.

Another thing to notice is that, as mentioned in remark 3, nowwV ⊥ is the only com-
ponent that determines the advantage fromw. So in the new distinguisher, its length will
be used as a criterion for selecting short vectors, instead of w. To be specific, suppose
that the adversary uses M short vectors {wj}Mj=1 that satisfy ‖(wj)V ⊥‖ ≤ l, 1 ≤ j ≤
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M , then as M increases, the “rotated” arithmetic mean
∑M
j=1 e

2πi〈µh,wj〉
q ·e

−2πi〈uj,b〉
q

M
becomes closer to∑M

j=1 e
2πi〈µh,wj〉

q ·B
(
f〈uj ,b〉

)
(1)

M
=

∑M
j=1 e

2πi〈µh,wj〉
q · f̂〈uj ,b〉(1)

M

=


∑M
j=1 e

2πi〈µh,wj〉
q ·f̂b(uj)
M

= 0 b← U(Zmq )

∑M
j=1 e

2πi〈µh,wj〉
q ·f̂S(wj)

M
≥

∑M
j=1 e

−
2π2σ2χ‖(wj)V⊥‖

2

q2

M
≥ e−

2π2σ2χl
2

q2 := ε b← LWE

.

In the actual attack, only the real part is considered, that is, the adversary calcu-

lates
∑M
j=1 cos

(
2π(〈µh,wj〉−〈uj,b〉)

q

)
M and checks if it is closer to 0 or ε. According to the

Chernoff-Hoeffding inequality (lemma 4), if b← U(Zmq ), then

Pr

∣∣∣∣∣∣
M∑
j=1

cos

(
2π (〈µh, wj〉 − 〈uj , b〉)

q

)∣∣∣∣∣∣ ≥ ε

2

 ≤ 2 · e
−Mε2

8 .

On the other hand, the probability Pr
[∑M

j=1 cos
(

2π(〈µh,wj〉−〈uj ,b〉)
q

)
< ε

2

]
is even

smaller when b is from an LWE instance. Taking M = O
(

1
ε2

)
, we can make e

−Mε2
8

a constant, and hence achieve a high success rate of the dual attack. The specific algo-
rithm of this new distinguisher is given in algorithm 1.

Algorithm 1: Distinguish
Input: Short vectors {wj}Mj=1 of length no more than l found by BKZ in L.
Output: 0 for b← U(Zmq ) and 1 for b← LWE.
sum← 0;
for j = 1 to M do

sum← sum+ cos

(
2π(〈µh,wj〉−〈uj ,b〉)

q

)
;

if sum ≥ ε
2

then
return 1;

else
return 0;

It is known that, in the original dual attack, the value of 〈S,w〉 = 〈u, b〉 (mod q)
is used to distinguish, as S,w are both short vectors. However, as mentioned in remark
4, after adding hints R = Y TS, the component µh = SV is available and it is a
better estimation of S than 0. To put it more clearly, SV ⊥ = S − µh is shorter than S.
Hence, a better distinction will be obtained by calculating 〈SV ⊥ , w〉 = 〈u, b〉−〈µh, w〉
(mod q). As we shall see, that is exactly what algorithm 1 does. The construction of
this new distinguisher is very natural.
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Remark 5. It has been proven that this distinguisher works for all w ∈ L that belong
to Zdq . This range can be extended further since if w′ − w ∈ V , i.e. w′V ⊥ = wV ⊥ , then

e
2πi〈µh,w〉

q · e
−2πi〈S,w〉

q = e−
2πi〈S,wV⊥〉

q = e−
2πi〈S,w′

V⊥〉
q = e

2πi〈µh,w′〉
q · e

−2πi〈S,w′〉
q .

This means that two vectors have the same orthogonal projection onto V ⊥ can give the
same distinguish advantage. This idea will be used later in Section 4.2.

3.4 The Effect of the New Distinguisher

In the previous subsection, we have established a new distinguisher for the dual at-
tack with hints. Given t hints R = Y TS and a short vector w in L, an advantage

e
−2π2σ2χ‖wV⊥‖

2

q2 can be achieved, where V = Span(Y ) and wV ⊥ is the orthogonal

projection of w onto V ⊥. As it was remarked, this is an e
2π2σ2χ‖wV ‖

2

q2 -times increase
compared to the distinguish advantage without any hint.

Now, let us show the difference in the advantages of the same vector before and after
the integration of hints. Let m∗, β∗ represent the optimal number of samples and the
optimal BKZ blocksize respectively when finding w in L without hints. To get vectors
of the same length for comparison, we still use m∗ and β∗ when hints exist9. Following
the balance assumption of BKZ, we can estimate the improvement as follows:

e
−

2π2σ2χ‖wV⊥‖
2

q2 ≈ e−
2π2σ2χ( d−td )‖w‖2

q2 =

(
e
−

2π2σ2χ‖w‖
2

q2

) d−t
d

.

I.e. it is approximately the original value to the power of d−t
d . This is used in table 1

to display the distinguish advantages for several LWE schemes, with numbers of hints
being 0, 50, 100, 150, 200, 300 and 400.

Table 1: The effects of different numbers of hints on the enhancement of advantages.
schemes m∗ β∗ 0 50 100 150 200 300 400

Newhope512 569 382.67 2−39.7 2−37.9 2−36.0 2−34.2 2−32.4 2−28.7 2−25.0

Kyber768 690 619.80 2−64.3 2−62.1 2−59.9 2−57.7 2−55.5 2−51.1 2−46.7

FireSaber 944 819.20 2−85.0 2−82.8 2−80.7 2−78.5 2−76.4 2−72.0 2−67.7

Frodo1344 1275 924.91 2−96.0 2−94.1 2−92.3 2−90.5 2−88.6 2−85.0 2−81.3

As we can see from table 1, hints produce a large increase in the advantages. That
is to say, if the dual attack is still executed in the original lattice L, with multiple
hints, each short vector w can bring a significantly improved advantage at the same
search cost. However, a more efficient new model of the dual attack with hints will be
presented in the next section.

9 In fact, with hints, the optimal number of samples and blocksize m∗h, β
∗
h will change after

rebalancing. But to make the comparison more intuitive, we still use the same sample number
and blocksize. The discussion of calculating m∗h, β

∗
h will be given in the next section.
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4 A New Model of the Dual Attack with Hints

From Table 1, hints can indeed increase the advantage from each vector, thus reducing
the number of vectors needed as well as the blocksize β required. However, on the other
hand, for a smaller β, an increase in the length of the short vector found inevitably leads
to a decrease in its advantage. Unfortunately, in general, the positive effect of hints on
the advantage is relatively small compared to the negative impact of the decrease in
β. Moreover, because of the near-orthogonality of vectors in high-dimensional spaces,
very few of the short vectors found in L are close to V to provide high advantages.
In conclusion, if we still perform the dual attack in the original lattice L, β cannot be
drastically reduced by adding hints, so neither can the attack cost.

In fact, there are two fundamental reasons for the limited cost reduction. The first
one is that we do not change the lattice for finding short vectors, which has a high
dimension and its volume is not small. So the cost of performing BKZ in it cannot be
low. The other cause is that we do not have a limit on the projection lengths of short
vectors, and the vectors with high advantages cannot be screened out. For these reasons,
in the following, we shall suggest a new model of dual attack with hints that can settle
both problems simultaneously and further reduce the complexity. More specifically,
firstly, as described in Section 4.1, short vectors will be found in the projected lattice.
Then, we recover the corresponding vectors in L by the method given in Section 4.2.
Some transformations in theoretical analysis are performed to extend the input range of
algorithm 1 to fit these recovered vectors. Finally, a complete dual attack process and
its complexity analysis are summarized in Section 4.3.

4.1 Searching Short Vectors in a New Lattice

As mentioned earlier, for each w, wV ⊥ is the only component that determines the ad-
vantage. If we still look for w in L, not only is the attack expensive, but we can only
control the length of w, not that of wV ⊥ . One key point is that, it may be more efficient
to search wV ⊥ directly in the projected lattice by BKZ to make sure wV ⊥ is as short
as possible, and then find a w ∈ L that satisfies Π⊥V · w = wV ⊥ . Let us describe the
process in detail.

After obtaining t hints R = Y TS, we construct a new lattice as follows:

LV ⊥ := Π⊥V ·L.

It is easy to see that LV ⊥ is made up of the projections of the lattice vectors in L

onto V ⊥. Compared to the original lattice, its dimension is reduced by t. Using the
idea described in [15], a lattice basis BV ⊥ of LV ⊥ can be easily calculated by the
LLL algorithm, or more precisely, the MLLL algorithm, which will be discussed later
in Section 4.2. The specific steps are as follows:

1. Compute B′ := Π⊥V ·B, where B is a basis of L given in Section 2.4.
2. Apply the MLLL algorithm on B′ to eliminate linear dependencies. Delete t zero

vectors in the output result and the remaining d− t vectors form BV ⊥ .
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Given the new basis, the volume of the new lattice can be obtained directly since
vol (LV ⊥) = |det(BV ⊥)|. But in fact, a proper estimation of vol (LV ⊥) can be ac-
quired with an overwhelming probability by a mathematical means even without calcu-
lating BV ⊥ . We shall use a slight extension of the Fact 14 of [15] to predict the volume
of the projected lattice.

Proposition 3. Let L be a d-dimensional lattice and X = (v1 v2 · · · vt) contains
linearly independent vectors of Rd. Suppose that X̃ = (a1v1 a2v2 · · · atvt) forms
a primitive set10 of vectors of L, ai ∈ R∗, i = 1, 2, · · · t, then L′ := Π⊥X · L is a
(d− t)-dimensional lattice and vol(L′) = vol(L)√

det(X̃T X̃)
= vol(L)

|a1···at|·
√

det(XTX)
.

We provide a straightforward and elementary proof of this result in appendix C. As can

be seen from proposition 3, ifL is an integer lattice, then X̃ ∈ Zd×t and
√

det
(
X̃T X̃

)
≥

1. This implies that the projection lattice must have a smaller volume. On the other hand,
we can find the primitiveness of the hint description matrix Y with respect to L is a
determining factor in vol (LV ⊥). According to the definition and properties of the dual

lattice, it is easy to verify that B−T =

(
Im −A

q

On×m
1
q
In

)
is a basis of L∗. We decompose

Y into Y =

(
Y1
Y2

)
, where Y1 ∈ Zm×t, Y2 ∈ Zn×t, then

Y TB−T = (Y T1 Y T2 )

(
Im −Aq

On×m
1
q In

)
=

(
Y T1

−Y T1 A+ Y T2
q

)
.

It is easy to see that for any hint description matrix Y ∈ Zd×t, qY consists of t linearly
independent vectors of L as qY TB−T ∈ Zd. Moreover, for any vector v ∈ L ∩
Span(Y ), suppose that v = Y α where α ∈ Rt, then we have

vTB−T = αT · Y TB−T = αT
(
Y T1

−Y T1 A+ Y T2
q

)
∈ Zd.

Hence (Y2 − ATY1) · α ∈ qZn. A large number of experiments show that α ∈ qZt
is always true when taking Y ← U(Zd×t). This leads to the fact that qY is a set of
primitive vectors of L. Then, from proposition 3, the volume of the new lattice is

vol (LV ⊥) =
vol(L)

qt ·
√

det(Y TY )
=

qn−t√
det(Y TY )

. (1)

Admittedly, there are a few exceptions. Equation (1) may not be true when the great-
est common divisor of all entries of (Y2 − ATY1) is not 1. But this only happens with
a very small probability. The above analysis is summarized as the following heuristic.

10 Recall that a primitive set T of lattice vectors is the one that can be extended to a lattice basis
of L, namely, L ∩ Span(T ) = L(T ).

20



Heuristic 2 Given hints R = Y TS with hint description matrix Y ∈ Zd×t, the volume
of LV ⊥ is vol (LV ⊥) =

qn−t√
det(Y TY )

with an overwhelming probability.

Given the dimension and volume of LV ⊥ , the cost of the search phase can be cal-
culated. Specific complexity analysis is given in Section 4.3. It is worth noting that,
vol (LV ⊥) < vol(L) is always true, whether equation (1) is true or not. This is advan-
tageous to the adversary in a dual attack. We give an explanation in the following.

Remark 6. The hints we are addressing here are of the type “perfect hints” in [15], but
the way of integrating them is like that of the “short vector hints” in [15]. In fact, for a
short target vector ξ in some integer lattice L, if the attacker gets a hint r = 〈ξ, v〉, then
he/she has two ways of optimizing the attack:

Way 1: Let ξ =

(
ξ
1

)
, v =

(
v
−r

)
, then

〈
ξ, v
〉
= 0, i.e. ξ ∈ Span(v)⊥. Let L be a

properly selected lattice containing ξ, as the Kannan’s embedding is used to construct
L in [15], then we can search ξ in the new lattice L ∩ Span(v)⊥.
Way 2: Actually r = 〈ξ, v〉 gives the orthogonal projection of ξ onto Span(v):

ξv :=
〈ξ, v〉
‖v‖2

· v =
r

‖v‖2
v,

we can just convert the target vector to the rest of the unknown component of ξ:

ξv⊥ = ξ − ξv,

i.e., the orthogonal projection of ξ onto Span(v)⊥. It will be looked for in the new lattice
Π⊥Span(v) · L. (Or similarly, the projection components of its dual vectors are searched
in Π⊥Span(v) · L

∗.)
In general, as can be seen in [15], the first way usually increases the volume of the

lattice, i.e. vol
(
L ∩ Span(v)⊥

)
> vol(L), while the second method always results in

a reduction in the volume of the lattice, that is, vol
(
Π⊥Span(v) · L

)
< vol(L). The reason

the first way is more suitable for a primal attack is that, the increase in the volume
of the lattice makes the primal attack easier. To be specific, as the length of the target

vector


e
s
1

 is fixed, the longer the other vectors in the lattice, the easier it is to find the

target vector11. But instead, in a dual attack, the short vectors found in L (or LV ⊥ ) will
be used to make a distinction by calculating the inner product. The shorter the lattice
vectors, the smaller the inner product, the more effective the attack. This explains why
it is better to use the first approach in the primal attack, but here, we tend to choose the
second one to improve the dual attack.

4.2 Recovering w from wV ⊥ to Make a Distinction

As the attacker calculates 〈u, b〉 − 〈µh, w〉 to distinguish, the process of recovering w
from wV ⊥ is necessary. Although theorem 1 and corollary 2 only work for w ∈ Zdq ,

11 As reported in [23, 31], the λi-gap λi
λ1

among the successive minima of a lattice especially its
λ2-gap often provides more efficient SVP search algorithms.
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from some ideas in remark 5, under certain assumption, it is enough to restore any
w ∈ L that satisfies Π⊥V · w = wV ⊥

12. In fact, an idea of recovering such a w is
already included in the steps of computing BV ⊥ .

The LLL algorithm was proposed by Lenstra et al. [20] in 1982, to reduce the in-
put lattice basis to another one with better orthogonality. One of the disadvantages of
LLL is that the input must consist of linearly independent vectors. In 1987, Pohst [28]
overcome this limitation. A modification of the LLL algorithm named the MLLL algo-
rithm was given, whose input range was extended to a set of spanning vectors of the
lattice. We want to point out that, in addition to its major contribution in terms of elim-
inating linear dependence, there is also a “relation matrix” H in the algorithm given
in [28] (also can be seen in [14, Section 2.6.4]), which records how the output basis is
represented by the original generating vectors.

Let us go back to the dual attack with t hints R = Y TS. Let α1, · · · , αd be the d
column vectors of B. Recall that V = Span(Y ) and we denote γi = Π⊥V · αi, i =
1, 2, · · · , d. It is easy to see that {γi}di=1 is a set of spanning vectors of LV ⊥ . Given
this set as input to MLLL, it will output an LLL-reduced basis ζ1, · · · , ζd−t of LV ⊥

and a relation matrix H = (hij) ∈ Zd×(d−t), such that

ζj =

d∑
i=1

hijγi, j = 1, 2, · · · , d− t.

These d− t equations are the key to recovering w. The recovery process is divided into
the following two steps.
· Step 1: Find zj ∈ Z, j = 1, 2, · · · , d− t, such that wV ⊥ =

∑d−t
j=1 zjζj .

By applying the Gram-Schmidt orthogonalization to ζ1, · · · , ζd−t, we could get

ζ∗1 , · · · , ζ∗d−t and µj,k =
〈ζj , ζ∗k〉
‖ζ∗k‖2

, j = 1, 2, · · · , d− t; k = 1, 2, · · · , j − 1.

We represent wV ⊥ as a linear combination of ζ∗1 , · · · , ζ∗d−t, i.e.

wV ⊥ =
d−t∑
j=1

cjζ
∗
j , where cj =

〈
wV ⊥ , ζ

∗
j

〉
‖ζ∗j ‖2

, j = 1, 2, · · · , d− t.

These {cj}d−tj=1 will be used to obtain {zj}d−tj=1. On the one hand, for g ∈ {1, · · · , d− t},

〈
wV ⊥ , ζ

∗
g

〉
=

〈
d−t∑
j=1

cjζ
∗
j , ζ
∗
g

〉
= cg

∥∥ζ∗g∥∥2 .
12 Actually, there are infinitely many vectors in L that satisfy this condition. We just need to get

any one of them, no matter how long it is, the advantage from it is always e
−2π2σ2χ‖wV⊥‖

2

q2 .
Moreover, according to remark 9, only one of them can be used, otherwise a high correlation
will be raised.
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On the other hand,

〈
wV ⊥ , ζ

∗
g

〉
=

〈
d−t∑
j=1

zjζj , ζ
∗
g

〉
=

d−t∑
j=g

zj
〈
ζj , ζ

∗
g

〉
=

d−t∑
j=g

zj

〈
ζ∗j +

j−1∑
k=1

µj,kζ
∗
k , ζ
∗
g

〉

= zg
∥∥ζ∗g∥∥2 + d−t∑

j=g+1

zjµj,g
∥∥ζ∗g∥∥2 =

zg + d−t∑
j=g+1

zjµj,g

∥∥ζ∗g∥∥2 .
(2)

By comparing the above equations, we have

cg = zg +

d−t∑
j=g+1

zjµj,g, g = 1, 2, · · · , d− t.

Hence, we could calculate zd−t, zd−t−1, · · · , z1 in sequence:

zg = cg −
d−t∑

j=g+1

µj,g · zj , g = d− t, d− t− 1, · · · , 1.

· Step2 : Recover w from wV ⊥ .
Now we can represent wV ⊥ using {γi}di=1 as

wV ⊥ =

d−t∑
j=1

zjζj =

d−t∑
j=1

zj

(
d∑
i=1

hijγi

)
=

d∑
i=1

d−t∑
j=1

zjhijγi.

It obviously corresponds to a vector w ∈L as follows:

w =

d∑
i=1

kiαi, where ki =
d−t∑
j=1

zjhij .

Remark 7. It is easy to see that the MLLL algorithm to γ1, · · · , γd and the Gram-
Schmidt orthogonalization procedure on ζ1, · · · , ζd−t do not need to be repeated for
each wV ⊥ . In fact, as can be seen in [28], the MLLL algorithm keeps track of the
Gram-Schmidt orthonormal basis, its length and the projection coefficients {µj,k} of
the current lattice basis during the running time. As a result, let Bj = ‖ζ∗j ‖2 and

µj,k =
〈ζj ,ζ∗k〉
Bk

, with minor modifications, we could make MLLL directly output

ζ∗j , Bj , µj,k, j = 1, 2, · · · , d− t; k = 1, 2, · · · , j − 1,

as well as ζ1, · · · , ζd−t instead of performing the Gram-Schmidt orthogonalization pro-
cedure again. However, the {cj}d−tj=1 and {zj}d−tj=1 corresponding to each wV ⊥ need to
be solved one by one.

Using the method above, we could attach each wV ⊥ to a corresponding w ∈ L

that satisfies Π⊥V ·w = wV ⊥ . However, since these w’s may not belong to Zdq , a further
transformation is necessary in theoretical analysis. In fact, our distinguish process relies
on the following assumption.
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Assumption 4 For each short vector wV ⊥ found by BKZ in LV ⊥ , there exists a w′ ∈
Zdq , such that w′V ⊥ = wV ⊥ .

We remark that this is a reasonable assumption as explained in the following. From
assumption 3, for each vector wV ⊥ found by BKZ, its coefficients are balanced, and it
will correspond to a w′ also of short length, such that Π⊥V · w′ = wV ⊥ and ‖w′‖ ≈√

d
d−t ·‖wV ⊥‖. Since in the dual attack against actual schemes,

√
d
d−t ·‖wV ⊥‖ �

√
dq

is always true, the probability of w′ ∈ Zdq is extremely high. One can think that each

entry of w′ follows a normal distribution with mean 0 and standard deviation ‖wV⊥‖√
d−t ,

and then estimate the probability

Pr
[
w′ ∈ Zdq

]
=

erf

 q
2

√
2 · ‖wV⊥‖√

d−t

d

, (3)

where erf is the error function erf(x) = 2√
π

∫ x
0
e−y

2

dy. Experiments show that this
probability is always 1 in all schemes in Section 5.

Under assumption 4, each w ∈ L recovered by the above method can still be used
in algorithm 1 (even though it may not belong to Zdq). This is because

e

2πi
〈
µh,w

〉
q ·e

− 2πi〈S,w〉
q = e

−
2πi

〈
S
V⊥ ,w

〉
q = e

−
2πi

〈
S,w

V⊥
〉

q = e
−

2πi

〈
S,w′

V⊥

〉
q = e

2πi
〈
µh,w

′
〉

q ·e
−

2πi
〈
S,w′

〉
q .

Suppose that M short vectors {(wj)V ⊥}
M
j=1 that satisfy ‖(wj)V ⊥‖ ≤ l, 1 ≤ j ≤ M

are found. As discussed above, the MLLL recovers {wj}Mj=1 ⊆ L and there exist
{w′j}Mj=1 ⊆ Zdq such that (w′j)V ⊥ = (wj)V ⊥ , 1 ≤ j ≤ M . The attacker calculates
∑M
j=1 e

2πi〈µh,wj〉
q ·e−

2πi〈uj,b〉
q

M and it is easy to see that it becomes closer to 0 as M in-
creases when b is uniformly random. While on the other hand, if b is from an LWE

instance, the value becomes
∑M
j=1 e

2πi〈µh,w′j〉
q ·e−

2πi〈S,w′j〉
q

M . Since theorem 1 and corol-
lary 2 apply to w′j ∈ Zdq , j = 1, 2, · · · ,M , we know the above value is getting closer
to

∑M
j=1 e

2πi
〈
µh,w

′
j

〉
q · f̂S(w′j)

M
≥

∑M
j=1 e

−
2π2σ2χ

∥∥∥∥(w′j)V⊥
∥∥∥∥2

q2

M
=

∑M
j=1 e

−
2π2σ2χ

∥∥∥∥(wj)V⊥
∥∥∥∥2

q2

M
≥ e
−

2π2σ2χl
2

q2

as M increases. Therefore, the distinguish procedure can be performed as before.
Furthermore, the processes of recovery and distinguish can be done together. More

specifically, for each (wj)V ⊥ , the attacker recovers the corresponding wj , computes the

value of cos
(

2π(〈µ,wj〉−〈uj ,b〉)
q

)
and adds it to the previous sum just like algorithm 1.

Remark 8. Assumption 4 is only used for the theoretical analysis. The adversary does
not need to figure out what exactly

{
w′j
}M
j=1

are when performing an actual attack.

Remark 9. As we know, the independence among random variables is a requirement
of Chernoff-Hoeffding inequality. In fact, in the original case, the independence among
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{〈S,wj〉}Mj=1 comes from 〈wj , wk〉 ≈ 0 for any 1 ≤ j < k ≤ M . This approxi-
mation is based on two assumptions – the balance assumption of BKZ and the near-
orthogonality assumption of high-dimensional spaces. After adding hints, the indepen-
dence becomes dependent on 〈(wj)V ⊥ , (wk)V ⊥〉 ≈ 0. It should be pointed out that
{(wj)V ⊥}

M
j=1 are exactly the outputs of BKZ now, and they still belong to a high-

dimensional space (although the dimension goes down by t). To sum up, the indepen-
dence before or after the integration of hints relies on the same assumptions under
different dimensions. Our algorithm may results in a (negligible) loss of independence.

4.3 Summary and the Complexity Analysis

Let us start with a summary. In our new model, we divided the process of dual attack
with hints into three parts: search, recovery and distinguish. First, we apply the way
given in Section 4.1 to use BKZ to find enough short vectors wV ⊥ in LV ⊥ . After
performing the MLLL algorithm of γ1, · · · , γd whose complexity is much lower than
BKZ, the recovery&distinguish process for each wV ⊥ will be carried out one by one.

Now let us consider the cost of the dual attack with hints under this new model.
In the following, we shall give a discussion on the choice of the optimal number of
samples m∗h, the optimal BKZ blocksize β∗h to search wV ⊥ , and a total cost model of
the dual attack with t hints R = Y TS under heuristic 2. Suppose that the adversary
uses m samples in a dual attack and he/she applies BKZ-β on LV ⊥ , then the length

of each short vector found is l(d, β) =
δd−t0 (β)·q

n−t
d−t

(det(Y TY ))
1

2(d−t)
, where d = m + n, thereby

bringing an advantage ε(d, β) = e
−

2π2σ2χl(d,β)
2

q2 .
To reach a constant success rate, from lemma 4, the attacker needs O

(
1

ε2(d,β)

)
short

vectors in LV ⊥ . Thus, according to assumption 1, the process of BKZ has to be repeated
at least R(d, β) times, where R(d, β) = max

{
1, 1

ε2(d,β)·20.2075β

}
. Then the cost of the

search phase is
Ts(d, β) = TBKZ(β) ·R(d, β).

Now the attacker needs to perform the recovery&distinguish procedure onR(d, β) ·
20.2075β short vectors in LV ⊥ one by one 13. Since most of the variables involved in this
process belong to R, we will use “flop” which could denote one addition, subtraction,
multiplication or division of floating point numbers to express the complexity of this
process. For each wV ⊥ , the complexity of each step in this process is as follows:

– calculate {cj}d−tg=1: As wV ⊥ , ζ∗j ∈ Rd, d multiplications and d − 1 additions are
required for each inner product

〈
wV ⊥ , ζ

∗
j

〉
. Hence, calculating all {cj}d−tg=1 costs

2d(d− t) flops.
– calculate {zg}d−tg=1: d− t−g multiplications, d− t−g additions and one subtraction

are required for calculating zg . Then {zg}d−tg=1 take (d−t−1)(d−t)
2 × 2 + (d − t) =

(d− t)2 flops in total.
13 Since the calculations of different wV⊥ ’s is independent, it is easy to implement this pro-

cess in parallel for multiple wV⊥ ’s. We only consider the time complexity of the non-parallel
implementation here.
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– calculatew: Each ki needs d−tmultiplications and d−t additions, moreover, d−1
additions between d-dimensional vectors and d d-dimensional scalar multiplication
are required to obtain w. Therefore, the total number of flops spent in this step is
2(d− t) · d+ (d− 1) · d+ d · d = 4d2 − 2dt− d.

– calculate sum: Besides two inner products, one subtraction, one multiplication, one
division, and one addition, we also need a cosine operation. In practice, a cosine
operation is not much slower than a division operation, so we can assume that a
cosine operation costs c0 flops, where c0 is a small constant. Thus, about O(d)
flops are required in this step, which is much lower than other steps.

To sum up, only considering the second-order terms, we can roughly get the total
time complexity of the recovery&distinguish processes for all short vectors is

Tr&d(d, β) = R(d, β) · 20.2075β · (7d2 − 6dt+ t2).

As the entries of the basis of the projected lattice are generally not integers, we can
also view the complexity of the search phase as the number of floating point operations
needed. Therefore, the time complexity of the whole dual attack is

Th(d, β) =

{
R(d, β) ·

(
20.292β + 20.2075β ·

(
7d2 − 6dt+ t2

))
classical case

R(d, β) ·
(
20.265β + 20.2075β ·

(
7d2 − 6dt+ t2

))
quantum case

.

In the following, we mainly consider the case of t < min{m,n}, i.e. the number
of hints does not exceed the numbers of the entries of s and e 14. Actually, under this
condition, an important fact from our experiments is that, for the parameters in the
actual schemes,

Th(d, β) ≈ Ts(d, β) > Tr&d(d, β)

is always true in both the classical case and the quantum case. With the assumption
Th(d, β) = Ts(d, β), we can further ease the calculation of the attack cost.

It has been proven by [21, 25] that in the original dual attack (i.e. t=0 ), the optimal

dimension d∗ of the dual attack is a function of β, to be specific, d∗ =
√

n·ln(q)
ln(δ0(β))

. We

find that after adding t hints R = Y TS, a nice relation between the optimal dimension
d∗h and β is still available:

d∗h(β) =

√√√√√ ln

(
qn−t√

det(Y T Y )

)
ln(δ0(β))

+ t. (4)

In fact, (4) is the only zero of the derivative of l(d, β) with respect to d :

∂l(d, β)

∂d
=

∂

[
δd−t0 ·

(
qn−t√

det(Y T Y )

) 1
d−t

]
∂d

= δ
d−t
0 · ln(δ0) ·

(
qn−t√

det(Y TY )

) 1
d−t

+ δ
d−t
0 ·

(
qn−t√

det(Y TY )

) 1
d−t
· ln
(

qn−t√
det(Y TY )

)
·
−1

(d− t)2

14 This seems reasonable as it is hard to get so many hint. On the other hand, it may not make
sense to analyze security in terms of dual attack when t ≥ m or t ≥ n.
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= δ
d−t
0 ·

(
qn−t√

det(Y TY )

) 1
d−t
·

ln(δ0)− ln

(
qn−t√

det(Y T Y )

)
(d− t)2

 .

Hence, the adversary just needs to search for the optimal β∗h, such that

β∗h = min
β
{Th (d∗h(β), β)} . (5)

Then the number of samples required is

m∗h = d∗h (β
∗
h)− n. (6)

The whole process of the dual attack with hints is summarized in algorithm 2.

5 Discussion and Experiments

In 2020, Dachman-Soled et al. [15] put forward the idea of integrating “hints” about
the secret and/or error obtained through side channel information to the primal attack.
They showed the fact that hints do reduce the cost of primal attack by experiments. In
this paper, this idea is extended to the dual attack, some additional benefits of adding
hints to the dual attack compared with the primal attack are found.

The “primitive” requirement is a big limitation when integrating perfect hints to
a primal attack. In order to estimate the attack cost after adding a perfect hint, it is
necessary to ensure the hint description vector is a primitive vector of the dual lattice
of the current lattice. The hints will be added one by one following the steps described
below. First, the attacker needs to convert the hint description vector to a primitive
vector of the dual lattice of the current lattice. Then he/she adds the converted hint to
the lattice and gets a new lattice. The basis, volume, mean and covariance matrix of this
new lattice are all need to be recalculated 15. When adding the next hint, it also needs to
be converted to a primitive vector of the dual lattice of the new lattice. This process will
be repeated t times when adding t hintsR = Y TS. However, the case of the dual attack
is much simpler. It can be seen from our previous analysis that, the t hints can be added
at once. In particular, not only the primitiveness, but even the linear independency is no
longer required. As can be seen from corollary 2, it is only the span of Y that matters.

The effect of hints on the dual attack is very intuitive. Even though the adversary
searches short vectors in the original lattice L by BKZ, the total cost will still be re-

duced since the advantage of each short vector w increases by a factor of e
2π2σ2χ‖wV ‖

2

q2 .
We have mentioned a more effective attack, in which the search process is performed
in the projected lattice LV ⊥ of a lower dimension and a smaller volume. In particular,
heuristic 2 is useful for predicting the volume and thus the attack cost without calculat-
ing a new basis. Even when heuristic 2 is not used, the calculation of the new basis is
required only once. So the dual attack with hints has a simple cost model as discussed
in Section 4.3. In addition, the influence of the number of hints on the cost of the dual
15 As the computation is heavy, two lightweight implementations with limited functionality are

also proposed in [15]. They maintain less information, but can only be used under certain
conditions.
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Algorithm 2: Dual attack with hints Y TS = R.
Input: LWE parameters A, b, q, n, σχ, hint description matrix Y .
Output: 0 for b← U(Zmq ) and 1 for b← LWE.
Set t← the number of columns in Y ;
Set β∗h ← minβ {Th (d∗h(β), β)};
Set d← d∗h(β

∗
h);

Set m← d− n;
Set L← l(d, β∗h);

Set ε← e
−

2π2σ2χL
2

q2 ;

Set (α1 α2 · · · αd)←
Im Om×n
AT qIn

 ;

for i = 1 to R(d, β∗h) do
perform BKZ(ζ1, · · · , ζd−t) to find short vectors in L

(V )
d .

Set ΠV⊥ ← Id − Y (Y TY )−1Y T ;
for i = 1 to d do

Set γi ← ΠV⊥ · αi;
ζj , ζ

∗
j , Bj , µj,k (j = 1, · · · , d− t; k = 1, · · · , j − 1), H = (hi,j)← MLLL(γ1, · · · , γd);

sum← 0;
for each wV⊥ found by BKZ do

for j = 1 to d− t do

cj ← 〈
w
V⊥ ,ζ

∗
j 〉

Bj
;

for g = d− t to 1 do
s← 0;
for j = g + 1 to d− t do

s = s+ zg · µj,g;
zg = cg − s;

w ← 0;
for i = 1 to d do

ki ← 0;
for j = 1 to d− t do

ki ← ki + zj · hi,j ;
w ← w + ki · αi;

sum← sum+ cos

(
2π(〈µ,wj〉−〈uj ,b〉)

q

)
;

if sum ≥ ε
2

then
return 1;

else
return 0;
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attack is very clear, to be specific, as the number of hints increases, the total cost is
bound to get lower.

However, when perfect hints are added to a primal attack, the situation is a bit more
complicated. To simplify the analysis, let us consider the case with only one hint first.
We denote L′ to be the lattice used by the attacker in a primal attack. As mentioned in
remark 6, an increase in volume makes the primal attack easier. But this may not occur
after integrating a hint r =< v, S >. To be specific, the volume of the new lattice will
increase by a factor of ‖v‖, where v is the primitive vector transformed from v with
respect to (L′)∗. It should be pointed out that although the original hint description
vector v is usually an integer vector, v may not belong to Zdq after being made primitive.
This is because (L′)∗ is not an integer lattice 16. So the case of ‖v‖ < 1 may occurs.
It is even more complex to predict the case when multiple hints are added to a primal
attack. The attacker has to add hints in turn and makes actual calculations.

Besides several benefits mentioned above regarding the primitive requirement, the
number of hints added each time, and the prediction of the cost after adding hints,
another advantage of adding hints to the dual attack is that an additional embedding
like the Kannan’s embedding is no longer required. Based on this, we believe that the
integration of hints to a dual attack may be more natural. Although it depends on as-
sumption 4, the fact that the probability in equation (3) is always 1 in all schemes we
test may make us more optimistic about this assumption.

In this section, we will show the effect of hints on the dual attack by experiments.
Using multiple hints, the cost of the attack can be greatly reduced. We mainly consider
the case of t < min{m,n}. Some hints of a similar form to the ones used in [15] are
integrated 17 and the substantial reduction in cost is verified.

In table 2, we show the relationship between the total cost of the dual attack and the
number of added hints in Kyber768 both in the classical case and in the quantum case.
The time complexity of the search phase in the classical case is denoted by T (c)

s , while
that in the quantum case is written as T (q)

s . Tr&d represents the time complexity of
the recovery&distinguish process for all short vectors. The optimal number of samples
m∗h and the optimal blocksize β∗h after adding hints are also given. m∗h is the optimal
sample number predicted by equation (6), experiments show that there is only a very
small difference between m∗h and m∗h. The situations of other schemes are shown in
appendix D. We remark that although β is an integer in practice, regarding it as a real
number gives a better estimate of m∗h. One can simply round it to an integer.

It can be seen from table 2 that, adding multiple hints can significantly reduce the
cost of dual attack against a Kyber768 instance. Surprisingly, with 200 hints, even in
the worst case, the blocksize can be reduced by 188 and the time complexity can be
reduced by a factor of 255. Further, if more hints are available, such as 250 hints, the
instance will be reduced to only 128-bit safe against the dual attack in the classical case
and 118-bit safe in the quantum case.

16 By contrast, the primitiveness of v with respect to the integer lattice L is considered in dual
attack.

17 This kind of hints is the one with the least volume reduction ( i.e. det(Y TY ) = 1 ) . So the
experimental results given in this section show the effect of hints on the dual attack in the worst
case.
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Table 2: The relationships between m∗h,m
∗
h, β
∗
h, log2(T

(c)
s ), log2(T

(q)
s ), log2(Tr&d)

and t respectively in Kyber768.
t m∗h m∗h β∗h log2(T

(c)
s ) log2(T

(q)
s ) log2(Tr&d)

0 690 693.79 619.80 197.38 180.65 152.44
50 656 655.79 572.16 183.47 168.02 142.44

100 614 616.67 524.85 169.66 155.49 132.49
150 576 577.15 477.88 155.94 143.04 122.61
200 535 537.21 431.30 142.34 130.69 112.80
250 495 496.81 385.14 128.86 118.46 103.07
300 456 455.90 339.45 115.52 106.36 93.43
400 370 372.31 249.75 89.33 82.58 74.45

Another interesting thing is that, m∗h, β
∗
h are both the same in the classical and

quantum cases, as they are well predicted by equations (5) and (6). It is worth noting
that this occurs not only in Kyber768, but in all schemes in appendix D. Moreover, the
logarithms of costs log2(Ts) and log2(Tr&d) decrease linearly with respect to t in all
schemes, as dom∗h and β∗h. It should be pointed out that, to show the fact that Th ≈ Ts in
all schemes both in the classical case and in the quantum case, we use a more accurate
cost model of BKZ as described in assumption 2 which may leads to a difference of
216.4 times compared with the core-SVP model used in most other papers. However, it
is the change in cost after adding hints that should be observed.

Finally, attention should be paid to the security with side channel information, the
leakage of information should be avoided as much as possible. Especially for those
schemes whose original security margins are small, a few hints would put them over
the edge. For example, as can be seen in appendix D, just several hints can make a
Newhope512 instance be less than 128-bit security against the dual attack.

References

1. Albrecht, M.R.: On dual lattice attacks against small-secret lwe and parameter choices in
helib and seal. In: Advances in Cryptology – EUROCRYPT 2017. pp. 103–129. Springer
International Publishing (04 2017). https://doi.org/10.1007/978-3-319-56614-6 4

2. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module lwe keys un-
der the ntt. IACR Transactions on Cryptographic Hardware and Embedded Systems 2018(3),
173–213. https://doi.org/10.46586/tches.v2018.i3.173-213

3. Albrecht, M.R., Faugère, J.C., Fitzpatrick, R., Perret, L.: Lazy modulus switching for the
bkw algorithm on lwe. In: Krawczyk, H. (ed.) Public-Key Cryptography – PKC 2014. pp.
429–445. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

30



4. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving
usvp and applications to lwe. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology –
ASIACRYPT 2017. pp. 297–322. Springer International Publishing, Cham (2017)

5. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T., Schwabe, P., Ste-
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A The proof of proposition 1

The so called unit impulse function δ(x) is given by

δ(x) =

{
+∞ x = 0
0 else and

∫
Rd
δ(x) dx = 1.

It is an important tool in our proof. One of the most commonly used properties of it is,
δ(x) and constant 1 are the Fourier transforms of each other.

In the following, we shall give a proof of proposition 1(1) for the continuous case.
This proof can be easily extended to the discrete case using the unit impulse train in
parallel.
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First of all, we give the proof for the case where the coefficients of x are inde-
pendent of each other. In this case, we can decompose f(x) as f(x) = f1(x1) ·
f2(x2) · · · fd(xd). Since < v, x >=

∑d
j=1 vjxj , we have f<v,x> = ⊗dj=1fvjxj , then

f̂<v,x> =
∏d
j=1 f̂vjxj . As the pdf of vjxj is

fvjxj (x) =

{
1
|vj |

fj
(
x
vj

)
vj 6= 0

δ(x) vj = 0
, j = 1, 2, · · · , d,

the Fourier transform of fvjxj (x) is

f̂vjxj (y) =

 1
|vj |

̂
fj
(
x
vj

)
(y) = 1

|vj |
· |vj | · f̂j(vjy) = f̂j(vjy) vj 6= 0

1 vj = 0
, j = 1, 2, · · · , d.

Moreover, because when vj = 0, the pdf fj also satisfies

1 =

∫
R
fj(x)dx =

∫
R
fj(x) · e−2πi<x,0>dx = f̂j(0) = f̂j(vjy),

the result can be combined to

f̂vjxj (y) = f̂j(vjy), j = 1, 2, · · · , d.

Hence, we have

f̂<v,x>(y) =

d∏
j=1

f̂vjxj (y) =

d∏
j=1

f̂j(vjy) = f̂(yv).

Now let us consider the general case. We denote the covariance matrix of x by Σx.
By performing EVD on Σx, we have

QΣxQ
T =

λ1
. . .

λd

 := D,

where λ1, · · · , λd are the eigenvalues of Σx and Q is an orthonormal matrix. Let y =
Qx and we denote the pdf of y by g, then

g(y) =
1

|det(Q)|
· f
(
Q−1y

)
= f(QT y) and ĝ(z) = f̂(QT z).

We denote the covariance matrix of y by Σy , then Σy = QΣxQ
T = D is a di-

agonal matrix, thus the coefficients of y are independent of each other. Then g(y) can
be decomposed as g(y) = g1(y1) · · · gn(yn). Since < v, x >= vTx = vTQTQx =<
Qv, y >, and we have

f̂<v,x>(z) = ̂f<Qv,y>(z) = ĝ(zQv) = f̂(QT · z ·Qv) = f̂(zv).
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B The proof of proposition 2

Since Σ is a real symmetric matrix, we could perform the EVD of it and obtain

STΣS =

 λ1

λ2

. . .
λd

 := D,

where λ1, · · · , λd are the eigenvalues of Σ, and S is an orthonormal matrix. Then

SDST = Σ. We denote A =


√
λ1 √

λ2

. . . √
λd

 and B = SA, it can be easily

proven that BBT = Σ, so det(B) =
√
det(Σ), then

f̂dµ,Σ(y) =

∫
Rn

1

(2π)
d
2

√
det(Σ)

e−
1
2
(x−µ)TΣ−1(x−µ) · e−2πi<x,y>dx

z=x−µ
======

∫
Rn

1

(2π)
d
2

√
det(Σ)

e−
1
2
zTΣ−1z · e−2πi<z+µ,y>dz

=
e−2πi<µ,y>

(2π)
d
2

√
det(Σ)

∫
Rn
e−

1
2
zTΣ−1z · e−2πi<z,y>dz

z=Bu
=====

e−2πi<µ,y>

(2π)
d
2

√
det(Σ)

∫
Rn
e−

1
2
uTBTΣ−1Bu · e−2πi<Bu,y> det(B)du

=
e−2πi<µ,y>

(2π)
d
2

∫
Rn
e−

1
2
uTAT STΣ−1SAu · e−2πi<Bu,y>du

=
e−2πi<µ,y>

(2π)
d
2

∫
Rn
e−

1
2
uT u · e−2πiuTBT ydu

=
e−2πi<µ,y>

(2π)
d
2

∫
Rn
e
− 1

2

[
(u+2πiBT y)T (u+2πiBT y)+4π2yTBBT y

]
du

=
e−2πi<µ,y>

(2π)
d
2

∫
Rn
e−

1
2‖u+2πiBT y‖2 · e−2π2yTΣydu

=
e−2πi<µ,y> · e−2π2yTΣy

(2π)
d
2

∫
Rn
e−

1
2‖u+2πiBT y‖2du

=
e−2πi<µ,y> · e−2π2yTΣy

(2π)
d
2

· (2π)
d
2 = e−2πi<µ,y> · e−2π2yTΣy

= e−2π2(yTΣy+ i
π
µT y) = e−

1
2
µTΣ−1µ · e−2π2

[
(y+ i

2π
Σ−1µ)T ·Σ·(y+ i

2π
Σ−1µ)

]
= e−

1
2
µTΣ−1µ · e−

1
2

[
(2πy+iΣ−1µ)TΣ(2πy+iΣ−1µ)

]
= e−

1
2
µTΣ−1µ · f−iΣ−1µ,Σ−1(2πy) · (2π)

d
2 ·
√

det(Σ−1)

=
e−

1
2
µTΣ−1µ · (2π)

d
2√

det(Σ)
· f−iΣ−1µ,Σ−1(2πy).

Then (1) has already been proved. Taking Σ′ = Σ−1, µ′ = −iΣ′µ and z = 2πy in (1),
we can easily prove (2).
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C The proof of proposition 3

Let us start with the proof for a simple case where ai = 1, 1 ≤ i ≤ t. As X = (v1 v2
· · · vt) is a primitive vector set, it can be extended to a basisB = (v1 · · · vt vt+1 · · · vd)
of L. We write F = Span(X), then for any j ≥ t+ 1, vj can be decomposed into

vj =

t∑
k=1

ajkvk + v⊥j ,

with v⊥j ∈ F⊥. And it is easy to see that B⊥ := (v⊥t+1 · · · v⊥n ) is a basis of L′. Then
for any j ≥ t+ 1, we have

〈vi, vj〉 =

〈
vi,

t∑
k=1

ajkvk + v⊥j

〉
=

t∑
k=1

ajk 〈vi, vk〉+
〈
vi, v

⊥
j

〉
.

Hence, for j ≥ t+1, when 1 ≤ i ≤ t, 〈vi, vj〉 =
t∑

k=1

ajk 〈vi, vk〉, while if t+1 ≤ i ≤ d,

〈vi, vj〉 =
t∑

k=1

ajk 〈vi, vk〉+
〈
v⊥i , v

⊥
j

〉
. Therefore,

vol(L) =
√

det(BTB) =

√√√√√√√√√√√det


〈v1, v1〉 · · · 〈v1, vt〉 〈v1, vt+1〉 · · · 〈v1, vd〉

· · · · · ·
〈vt, v1〉 · · · 〈vt, vt〉 〈vt, vt+1〉 · · · 〈vt, vd〉
〈vt+1, v1〉 · · · 〈vt+1, vt〉 〈vt+1, vt+1〉 · · · 〈vt, vd〉

· · · · · ·
〈vd, v1〉 · · · 〈vd, vt〉 〈vd, vt+1〉 · · · 〈vd, vd〉



=

√√√√√√√√√√√det



〈v1, v1〉 · · · 〈v1, vt〉 0 · · · 0
· · · · · ·

〈vt, v1〉 · · · 〈vt, vt〉 0 · · · 0

〈vt+1, v1〉 · · · 〈vt+1, vt〉
〈
v⊥t+1, v

⊥
t+1

〉
· · ·

〈
v⊥t , v

⊥
d

〉
· · · · · ·

〈vd, v1〉 · · · 〈vd, vt〉
〈
v⊥d , v

⊥
t+1

〉
· · ·

〈
v⊥d , v

⊥
d

〉



=

√√√√√det

〈v1, v1〉 · · · 〈v1, vt〉· · ·
〈vt, v1〉 · · · 〈vt, vt〉

 ·
√√√√√det

〈v⊥t+1, v
⊥
t+1

〉
· · ·

〈
v⊥t , v

⊥
d

〉
· · ·〈

v⊥d , v
⊥
t+1

〉
· · ·

〈
v⊥d , v

⊥
d

〉


=
√

det(XTX) ·
√

det(BT⊥ ·B⊥) =
√

det(XTX) · vol(L′).

The third equal sign holds by adding column k(1 ≤ k ≤ t) multiplied (−ajk) in turn
to column j for t+ 1 ≤ j ≤ d. In summary, we have

vol(L′) =
vol(L)√
det(XTX)

when ai = 1, i = 1, 2, · · · , t.
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As for the more general case, we define X̃ = (a1v1 · · · atvt), then

vol(L′) =
vol(L)√

det(X̃T · X̃)
=

vol(L)

|a1 · · · at| ·
√
det(XTX)

.

D Experiments on some actual schemes

Table 3: The relationships between various parameters and t in Newhope512.
t m∗h m∗h β∗h log2(T

(c)
s ) log2(T

(q)
s ) log2(Tr&d)

0 569 572.72 382.67 128.14 117.81 102.37
50 520 523.96 336.26 114.59 105.51 92.54

100 472 474.61 290.44 101.21 93.37 82.83
150 423 424.60 245.29 88.02 81.40 73.24
200 373 373.85 200.90 75.06 69.64 63.78
250 319 322.28 157.37 62.35 58.10 54.45
300 268 269.79 114.71 49.90 46.80 45.29
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Table 4: The relationships between various parameters and t in FireSaber.
t m∗h m∗h β∗h log2(T

(c)
s ) log2(T

(q)
s ) log2(Tr&d)

0 944 948.70 819.20 255.61 233.49 194.68
50 905 908.29 772.39 241.94 221.08 184.97

100 863 867.65 725.82 228.34 208.74 175.11
150 823 826.72 679.49 214.81 196.46 165.40
200 782 785.53 633.43 201.36 184.26 155.74
300 699 702.22 542.19 174.72 160.08 136.59
400 616 617.53 452.29 148.47 136.26 117.69
500 531 531.21 364.00 122.69 112.96 99.11

Table 5: The relationships between various parameters and t in Frodo1344.
t m∗h m∗h β∗h log2(T

(c)
s ) log2(T

(q)
s ) log2(Tr&d)

0 1275 1279.91 924.91 286.47 261.50 217.44
100 1192 1194.57 843.43 262.68 239.91 200.39
200 1104 1108.56 762.70 239.11 218.52 183.48
300 1019 1021.80 682.79 215.77 197.34 166.74
400 934 934.23 603.80 192.71 176.41 150.18
500 845 845.74 525.85 169.95 155.75 133.81
600 752 756.23 449.09 147.53 135.41 117.68
700 663 665.52 373.69 125.52 115.43 101.81
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