
Leveling Dilithium against Leakage
Revisited Sensitivity Analysis and Improved Implementations

Melissa Azouaoui1, Olivier Bronchain1,2, Gaëtan Cassiers2,3,4, Clément
Hoffmann2, Yulia Kuzovkova1, Joost Renes1, Tobias Schneider1, Markus
Schönauer1, François-Xavier Standaert2 and Christine van Vredendaal1

1 NXP Semiconductors, firstname.lastname@nxp.com
2 UCLouvain, Belgium, firstname.lastname@uclouvain.be

3 Graz University of Technology, Austria, firstname.lastname@iaik.tugraz.at
4 Lamarr Security Research, Austria

Abstract. CRYSTALS-Dilithium has been selected by the NIST as the new stan-
dard for post-quantum digital signatures. In this work, we revisit the side-channel
countermeasures of Dilithium in three directions. First, we improve its sensitivity
analysis by classifying intermediate computations according their physical security
requirements. This allows us to identify which parts of Dilithium must be protected
against Differential Power Analysis (DPA), which parts must be protected against
Simple Power Analysis (SPA) and which parts can leak in an unbounded manner. Sec-
ond, we provide improved gadgets dedicated to Dilithium, taking advantage of recent
advances in masking conversion algorithms. Third, we combine these contributions
with standard shuffling techniques in order to design so-called leveled implementations
that offer an improved security vs. performance trade-off compared to the state-of-
the-art. Our benchmarking results additionally put forward that the randomized
version of Dilithium can lead to significantly more efficient implementations (than its
deterministic version) when side-channel attacks are a concern.
Keywords: Dilithium · Masking · Lattice-based Cryptography · Post-Quantum
Cryptography · Side-Channel Countermeasures

1 Introduction
The world’s digital security infrastructure has always relied on a range of efficient and
secure cryptographic primitives, including both symmetric and asymmetric solutions. In
particular for asymmetric cryptography, RSA and ECC are the ubiquitous schemes in
practice. However, with the advent of powerful and dedicated quantum computers, the
established asymmetric cryptographic schemes, that we mainly use for key exchange and
digital signatures, will no longer provide the desired security.

In 2016, the National Institute of Standards and Technology (NIST) has launched a
standardization effort for cryptographic schemes that can withstand quantum cryptanaly-
sis [Nat]. Recently in 2022, the NIST announced the first Post-Quantum Cryptography
(PQC) schemes to be standardized. Mainly, (CRYSTALS-)Kyber [ABD+19] for Key Encap-
sulation Mechanism (KEM), and (CRYSTALS-)Dilithium [DLL+17] for digital signatures.
Both Kyber and Dilithium are lattice-based schemes, and in recent years the analysis of
lattice-based PQC schemes and their implementations has become a prominent area of
research. This is not only due to their widely accepted strong security but also because of
their implementation efficiency in comparison to other PQC schemes.

Although a PQC scheme can be secure against classic and quantum adversaries, this is
not sufficient to provide practical security in the embedded context. The implementations

mailto:{firstname.lastname@nxp.com}
mailto:{firstname.lastname@uclouvain.be}
mailto:{firstname.lastname@iaik.tugraz.at}

2 Leveling Dilithium against Leakage

of cryptographic schemes on constrained devices can be targeted by physical attacks, which
include Side-Channel Analysis (SCA) and Fault Injection (FI) attacks. Over the last years,
PQC KEM’s have attracted most of the attention when it comes to SCA. Indeed, most
KEM’s in the NIST competition, including Kyber, rely on the Fujisaki-Okamoto (FO)
transformation [FO99] which is a simple and generic technique to achieve IND-CCA security.
Unfortunately, the leakage of the re-encryption step in the FO transformation leads to very
powerful SCA’s, demonstrated and analyzed in many recent works, including but not limited
to [RRCB20, REB+22, UXT+22]. An adversary can also exploit leakage from the Number
Theoretic Transformation (NTT) or from the Key Derivation Function (KDF) to extract
the long term secret key or the shared secret key [RPBC20, HHP+21, KPP20, PPM17].
This variety of threats implies a large attack surface leading to significant overheads when
protecting PQC KEM’s against SCA’s [ABH+22].

To the best of our knowledge, digital signatures, including Dilithium, have received
much less attention than KEM’s with respect to SCA. The main results include a work
by Ravi et al. [RJH+18] that shows that to achieve existential forgery an attacker only
requires knowledge of one part of the secret key in Dilithium, namely s1. Marzougui et
al. [MUTS22] exploit leakage of the zero coefficients in the secret signing nonce y for
multiple signatures and recover the secret key by leveraging least squares regression and
integer linear programming. Liu et al. [LZS+21] also present an SCA on Dilithium, which
is able to recover the secret key from the leakage of a single bit of the secret signing
nonce y for multiple signatures. The authors use this side-channel information to define a
problem called the Fiat-Shamir Integer LWE, and show that it can be solved efficiently.
This attack is very reminiscent of the well-known lattice reduction attacks on (EC)DSA
(and other Schnorr-like signature schemes) with partial nonce leakage, originally due to
Howgrave-Graham and Smart [HS01] and very recently improved by Sun et al. [SETA22].
Liu et al. showed that their attack requires a relatively low number of signatures. This
result, along with previous works and the fact that the side-channel analysis of Dilithium
is quite a new research topic for the community, highlights the vital need to protect the
future digital signature standard against these threats and future threats.

The amount of published works appears to be even scarcer when it comes to protecting
Dilithium against side-channel attackers. Again to the best of our knowledge, the main
contribution comes from Migliore et al. [MGTF19]. They present masked gadgets for
Dilithium, and a power-of-two modulus masked version of it.

Contributions. In this work we tackle the challenge of efficiently protecting Dilithium
implementations on embedded devices. Our contributions are the following.

First, we revisit the sensitivity analysis of Migliore et al. [MGTF19]. Interestingly,
we notice that the authors do not consider some intermediates as sensitive even though
they can be explicitly used to recover the secret key. Conversely, some were unnecessarily
protected since they could be computed from the signature and the public key. These
observations lead to improved security and to more efficient signature generation.

Second, based on our sensitivity analysis we propose new and improved masked gadgets
for the main operations of Dilithium (namely the bound check, the secret sampling and
the decomposition) and for all NIST security levels. To the best of our knowledge, our
work presents the first masked Dilithium design compliant with the future standard for
all the parameter sets. Then, inspired by the analysis of leveled implementations by
Azouaoui et al. [ABH+22], we additionally discuss how to level the implementation of
Dilithium by identifying SPA and DPA targets for both its deterministic and randomized
versions, and preventing these attack vectors with the appropriate (masking and shuffling)
countermeasures. In other words, we use our revised sensitivity analysis to describe efficient
strategies to protect ephemeral and long term secrets of Dilithium against leakage.

Finally, we provide a complete benchmark for an ARM Cortex-M4 microcontroller,

Azouaoui et al. 3

which includes individual components, their comparison with Migliore et al., and perfor-
mances of full signature generation for deterministic and randomized versions of Dilithium.
Our results show that significant performance improvements can be achieved by leveling
the implementation. Furthermore, they highlight the advantages of randomized Dilithium
compared to its deterministic variant in the context of physical attacks.

2 Background
We next detail the notations used in the paper and the Dilithium signature scheme.

2.1 Polynomial arithmetic notations
All arithmetic operations in the paper are denoted over the polynomial ring R =
Zq[X]/(Xn + 1). We denote a polynomial with small caps such as p ∈ R, a vector
of polynomials with bold letters such as x ∈ Rk and a matrix of polynomials with capital
bold letters such as X ∈ Rk×k′ . For Dilithium, the parameters of the ring are the prime
q = 223 − 213 + 1 and the degree n = 256. For z, α ∈ Z we write z mod±α to mean the
unique integer z′ in]− α

2 ,
α
2] (resp., [−α−1

2 , α−1
2]) with z ≡ z′ mod α if α is even (resp.,

odd). The notation z mod±α implies that all the coefficients in z are given with mod±α.
With this, we can define the following norms on Zq, R and Rk respectively:

∥z∥∞ = |z mod±q|, ∥p∥∞ = max
i
∥pi∥∞, ∥w∥∞ = max

i
∥wi∥∞,

with z ∈ Zq, p ∈ R, pi being the i-th coefficient of p, w ∈ Rk and wi being the i-
th polynomial in w. Additionally, we define Sη = {w ∈ R : ∥w∥∞ ≤ η} and S̃η =
{w mod±2η : w ∈ R}. This means that the coefficients of an element in Sη or S̃η are in
the range [−η, η] or]− η, η], respectively. We use the notation x← X whenever we assign
a uniformly random element of a set X to a variable x. The symbol ∥ is used for the
concatenation of two bit strings, the function H is an expandable output function (XOF).

2.2 Dilithium
Dilithium is a digital signature scheme based on the MLWE (Module Learning With
Errors) and the SelfTargetMSIS (Module Short Integer Solution) problems [LS15]. It is
the primary standard selected by the NIST for quantum safe digital signatures. Its main
features are: random sampling from a uniform distribution instead of a discrete Gaussian
distribution, a focus on keeping the public key and the signature as small as possible in
terms of their bit size, and being easy to adjust for different security levels by only changing
the dimensions of the matrices and vectors involved. For a comprehensive description of
the algorithm we refer to the proposal [DLL+17] and the supplementary material A. Note
that the pseudocode presented there and in the rest of the paper is a variation from the
reference implementation described in [DLL+17, p.17]. The key differences are highlighted
in Section 3.3. In this paper we refer to the implemented version if not stated otherwise.
We describe the Dilithium key generation and signature generation algorithms in the
following paragraphs. Since the verification does not involve long-term secret variables
(and therefore does not leak sensitive information), we do not consider it in this work.
Table 1 provides the Dilithium parameters for different NIST security levels.

3 Sensitivity analysis
In this section, we analyze Dilithium’s key generation and signature algorithms and discuss
the sensitivity of all the variables and functions potentially leading to side-channel attacks.

4 Leveling Dilithium against Leakage

Table 1: Dilithium parameters.
NIST Security level 2 3 5

q (modulus) 223 − 213 + 1 223 − 213 + 1 223 − 213 + 1
d (number of dropped bits from t) 13 13 13

τ (# of ± 1’s in c) 39 49 60
γ1 (y coefficient range) 217 219 219

γ2 (low order rounding range) (q-1)/88 (q-1)/32 (q-1)/32
(k, l) (dimensions of A) (4,4) (6,5) (8,7)
η (secret key range) 2 4 2

β (= τ · η) 78 196 120
ω (max. # 1’s in h) 80 55 75

average number of signing iterations 4.25 5.1 3.85

This sensitivity analysis indicates which operations/variables need to be protected against
leakage. Following, we also explain how to level the implementation of Dilithium. That
is, how to exploit the different sensitivity of different operations in order to protect them
with the appropriate (more or less expensive) countermeasures. Doing so we also compare
our analysis to the one previously proposed in [MGTF19].

3.1 Motivation & Methodology
Leveling was first proposed by Pereira, Standaert and Vivek [PSV15] and later applied
to several symmetric authentication, encryption and authenticated encryption schemes
(see for example Bellizia et al.’s survey [BBC+20]). The main observation shared by all
these works is that the leakage-resistance of composite cryptographic constructions can be
translated into minimum security requirements for its different components. In turn, these
requirements can be fulfilled efficiently with different protection mechanisms resulting in
more efficient side-channel protected implementations.

Classification. The first step to level an implementation is to classify the different types
of attacks that can be performed on the intermediate variables. We next classify them into
three categories as introduced in [BBC+20] and applied to Kyber in [ABH+22]. The first
category is Differential Power Analysis (DPA), where the adversary can gain information
on a secret thanks to her access to a large number of leakage traces with a varying input.
This setting corresponds to the standard context when targeting (the first-round S-box
of) a block cipher implementation. The second class of attacks is called Simple Power
Analysis (SPA), for which the adversary can only observe leakages for a small (bounded)
number of different inputs (possibly with averaging). This setting typically corresponds to
the case of attacks against the ephemeral secrets manipulated in an ECC implementation
with point randomization, or to the case of attacks against the key scheduling part of
a block cipher implementation. A third category is for data that can be fully leaked to
the adversary without compromising the security of the cryptographic primitive, either
because it is public or because we can prove this leakage does not harm the security.

Generally, it is more expensive to protect a variable against DPA’s than against SPA’s,
while values that can leak in an unbounded manner do not require any protection. In the
following, we therefore represent Dilithium’s algorithms as block diagrams, with different
colors used for each category of attack. Namely red is used when DPA resistance is required,
orange for SPA resistance and blue when the value can be fully leaked.

Type of countermeasures. The previously detailed categories imply that the different
parts of a Dilithium implementation may need to resist DPA and SPA, raising the question
of which countermeasure to implement in each case.

Azouaoui et al. 5

The mainstream solution to prevent DPA is masking, and our following investigations
will therefore rely on this standard choice. Precisely, we will use arithmetic masking to
protect polynomial operations, Boolean masking to protect hash function calls, and set the
number of shares d as our main security parameter. We refer to Section 4 for additional
details on masking as well as new gadgets dedicated to Dilithium.

By contrast, and as discussed in [BGS15, UBS21], masking is not the most cost-effective
solution to protect ephemeral secrets. This is because the security gains that are obtained
by bounding the number of observed leakages and by masking are only summed when both
countermeasures are combined. By contrast, it was shown that parallelism in hardware
and shuffling (which emulates parallelism) in software can lead to SPA security more
efficiently. Interestingly, shuffling has already been studied in the context of lattice-based
cryptography, especially for the NTT’s [RPBC20, HSST22]. In this work, we will leverage
a shuffled implementation of the NTT from [RPBC20] to protect SPA targets. We refer
to Subsection 5.2 for details about the instantiation of this SPA countermeasure.

Concretely our goal is therefore to combine the shuffling countermeasure with an
appropriate amount of masking. As will be confirmed in Section 6, such a leveled approach
leads to a better trade-off between the physical security and the performances of an
implementation, since it allows selecting the appropriate countermeasures for each target
computation and to combine countermeasures in a more cost-effective manner.

3.2 Application to Dilithium
In the following, we classify all the intermediate variables involved in Dilithium’s key
generation and signature generation algorithms as DPA targets, SPA targets and public
values. To do so, we first classify variables between sensitive ones (for DPA or SPA)
or public values. We then differentiate between DPA and SPA targets. The resulting
classification is summarized in color-coded diagrams: Figure 1 and Figure 2.

Starting with generalities, we first note that the public key can be leaked to the
adversary over the whole scheme (since it is public). The public matrix A can also be
leaked since it is deterministically derived from ρ. A similar status holds for some parts
of the secret key sk := (ρ,K, tr, s1, s2, t0), since similar variables are contained in the
public key. Concretely, tr does not need to be protected either since it is a hash of pk.
We additionally note that the vector of polynomials t0 can be leaked as well. Indeed, the
Dilithium security proofs consider t (hence t0 and t1) to be public [DLL+17].1 Furthermore,
we do not consider message recovery attacks on the message M . As a result, only the
vector of polynomials s1 and s2, and K, must be protected against DPA in order to avoid
side-channel attacks leading to a signature forgery. These variables are denoted in filled red
circles in Figure 1 and Figure 2. Next, we detail which other variables must be protected
against side-channel attacks to avoid the leakage of long-term sensitive secrets. We start
with their sensitivity analysis for the key generation followed by the signing procedure.

3.2.1 Key generation sensitivity

During key generation, the variable ζ has to be protected as it is the seed for all subsequent
values (e.g., K). Similarly, ς has to be protected as well, since it serves as a seed
to deterministically generate the long term secrets s1 and s2. Since key generation is
performed only once, an attacker only has access to a single trace, hence the orange coloring
corresponding to SPA. As described above, all the other variables in the key generation
can be leaked or are public, hence do not need side-channel protection.

1As a result t could be fully part of the public key. In order to reduce the size of the public key, t is
decomposed into t0 and t1. The public key only contains t1 instead of t. This choice reduces the size
of the public key by a factor close to two at the cost of a slightly increased signature size. However, the
secret key size increases since it must contain t0.

6 Leveling Dilithium against Leakage

ζ H

ρ

ς

K

ExpandA

ExpandS

A

s1

s2

◦

+ t Power2Round

t1 t0

H tr

Figure 1: Graphical representation of the key generation. Output: pk = (ρ, t1), sk =
(ρ,K, tr, s1, s2, t0). Red filled circles: long term secret keys (aka DPA targets). Orange:
SPA protection required. Blue: no side-channel protection required.

3.2.2 Signature generation sensitivity

As detailed above, both tr and t0, the message M , the seed ρ, the hash µ and the
public matrix A are public. However, the vector of polynomials y is sensitive and must
be protected. Indeed, given a valid signature σ = (c̃, z,h), the secret vector s1 can be
recovered from z = y + cs1 for known y [MUTS22]. A similar analysis applies to w0 which
can lead to the recovery of s2. As a result, the vector of polynomials w must be protected:
w0 is directly derived from w, and it is possible to solve the system of equations Ay = w
for known A and w to recover y in most cases (see Section 3.3 for details). For the same
reason, ρ′ must be protected since it is used as a seed to obtain y.

Continuing with the signing procedure, the vector of polynomials w1 is reconstructed
from the signature and public key during verification. Hence, it cannot lead to an attack
against the secret key.2 Similarly, the challenge c can also be left unprotected since it is
derived from w1 and public inputs. Then, before the bound check is performed, both z and
r̃ must be protected implying the need for secure bound check implementation. However,
after successful rejection checks, they do not leak information about other sensitive values
and can be leaked to the adversary.3 For z this is trivial, as it is part of the signature. In
the case of r̃, this can be shown by the equation:

Az− ct = w− cs2 = αw1 + r̃.

Indeed, for a valid signature, none of the values A, z, c, t, and w1 are sensitive and α
is a known parameter of the algorithm. Therefore, r̃ can be computed using only public
values, so there is no need to keep it protected after a successful signing process. A public
r̃ is quite handy, because it allows us to compute the hint h completely on public data.

Based on the previous classification, we finally need to determine the variables that
are only SPA targets (meaning that the adversary can only observe a small number of
traces with different inputs leading to information on those targets). For this purpose, we
observe that the output of ExpandMask is indistinguishable from random since it is derived
deterministically from the secret random seed ρ′. Therefore, the subsequent sensitive
values (namely y,w,w0) are ephemeral, since they are obtained from the seed ρ′ and fixed
public matrix A without any other data allowing a DPA. It then remains that a SPA can
be performed on ExpandMask based on the limited number of varying values for κ, which
depends on whether the deterministic or randomized version of Dilithium is considered.
(The same holds for Ay based on the fact that every polynomial in y is multiplied by

2The value w1 does not leak information about y after the signature is successfully calculated. This is
due to the LWR (Learning With Rounding) assumption. The assumption is independent of rejection, and
so w1 can be unmasked even when the corresponding signature gets rejected. See also [BG14].

3This refers to the rejection checks on z and r̃. The one on h is not sensitive.

Azouaoui et al. 7

tr

M

H µ

K

H ρ′

ρ ExpandA A

ExpandMask y

κ

◦ w Decompose

w1 w0

H c̃

SampleInBall

c

c

s1

y

◦

+ z

z

c

s2

w0

◦

+
−

r̃

r̃

t0

c

◦

+

w1

MakeHint h

Figure 2: Graphical representation of the signing procedure, taking as input sk,M and
outputting σ = (c̃, z,h). Curved arrows represent rejection checks. Red filled circles:
long term secret keys (aka DPA targets). Red: DPA protection required. Orange: SPA
protection required. Blue: no side-channel protection required.

multiple polynomials in A.) In the deterministic case, the bound on the number of κ
values that can be observed depends on the number of rejections and can reach ≈ 20 on
average.4 In the randomized case, it is tightly bound to 1. We emphasize that despite y
and operations involving it are SPA targets, this value is – right after the secret key – the
most sensitive variable in Dilithium signing. Hence, even when using more cost-effective
SPA countermeasures only, it is important to ensure they offer sufficient security and
Dilithium’s randomized version comes with a quantitative benefit in this respect.

An intermediate attack path. The previous description suggests that the polynomial
multiplication c · s1 should be protected against DPA while y and z should be protected
against SPA (a similar situation holds with s2, w0 and r̃). This leads to the additional
observation that leakage on the SPA-protected y and z could be used on order to gain
information about the DPA-protected multiplication c · s1. We next provide heuristic
arguments why this attack path should not lead to simple attacks against Dilithium.

First, turning information on the (21-bit) z into information on the (8-bit) c · s1 is
affected by the algorithmic noise of the (20-bit) y. For illustration, we show on Figure 3
the mutual information of the polynomial multiplication output given the Hamming weight
of y and z, with the bitsize of y used as a security parameter. As this bitsize increases,
the mutual information decreases significantly below the mutual information of ≈ 2.5 that
would be observed for an ephemeral leakage on c · s1 without algorithmic noise.

Second, and as will be discussed next, y and z must be SPA-secure which in turn
implies that their manipulation will be shuffled. Given the size of the polynomials in
Dilithium, the shuffling will be over a 256-permutation which, if properly implemented,
can further reduce the mutual information on cs1 by a factor 256 [VMKS12].

We conjecture the combination of these observations make this attack path difficult to
4For Level-3 parameters, y is sampled on average 5.1 times with ExpandMask. More precisely, within

each ExpandMask execution, ρ′ is hashed together with l = 5 independent inputs to generate all the
polynomials in y. This results on average in a total of 25.5 hashes of ρ′ with independent inputs.

8 Leveling Dilithium against Leakage

2 4 6 8 10 12 14 16 18 20 22

1

2

Bitsize of y coefs

M
I(

c
·s

1
;H

W
(y

),
H

W
(z

))

Figure 3: Mutual information leakage on c ·s1 given the Hamming weight of y and z. Green
(resp., blue) vertical line corresponds to Level-2 (resp., Level-3 and Level-5) parameters.

exploit in practice and leave its further investigation/formalization as an interesting scope
for further research. In particular, we note that is shares both interesting similarities and
significant differences with hard physical learning problems like Learning Parity with Leak-
age [DFH+16] (generalized to larger fields) or Learning With Physical Rounding [DMMS21]
(tweaked with a polynomial structure and, more annoyingly, non-uniform secrets).

3.3 Differences with [MGTF19].
Most of our claims made above do align with the ones made in [MGTF19]. However, our
conclusions on w and r̃ slightly differ, which we discuss in the following.

Protecting w. First we look at w, in particular at the system of equations that produces
it: Ay = w. It is possible to solve this system for y, if the matrix A has one more row
than columns. This is the case for NIST security levels 3 and 5, where A has dimensions
6× 5 and 8× 7 respectively. Even a simple solver is able to compute y in less than two
minutes on a laptop, with original Dilithium parameters.5 For level 2, since the matrix
A is square (of dimensions 4× 4) and random, it is most likely invertible.6 Hence, with
knowledge of w, y can be computed simply as y = A−1 ·w. This shows that w must be
protected (or rather w0, since w1 is public), contrary to the approach in [MGTF19].

Unmasking r̃. Before we look at r̃ we need to address a variation of the signing procedure
in Dilithium. The original pseudocode for the signing algorithm described in [DLL+17]
only keeps the output w1 from Decompose(w). Then, instead of r̃ = w0 − cs2 it computes
r = w−cs2. The rejection check on r̃ is done on r0, which comes from Decompose(r). Also,
the MakeHint function works slightly different and takes r, c, t0 as input (but produces
the same exact output h). In [MGTF19] however, the r-version is used while the r̃-version
is never mentioned. This is not a problem when it comes to comparing our security
assessments. To see this, consider the equation:

r = w− cs2 = αw1 + w0 − cs2 = αw1 + r̃.
5First, the polynomials of the first column of A are reduced to monic form via Gaussian elimination on

the coefficients. Then, the fact that aijXk · Xn−k = −aijX0(mod Xn + 1) is used to eliminate all but
one polynomial in the first column. The remaining polynomial then allows us to eliminate all others in the
first row, from column 2 onwards. The procedure is repeated on the second column, etc. The solver was
implemented in Matlab and tested with the parameters given in [DLL+17] for security levels 3 and 5.

6Since the entries of A are elements of R, and R contains qn = 8380417256 elements, it is highly
unlikely that two rows of A are linearly dependent. Therefore, the determinant of A is almost always
non-zero and an inverse matrix exists.

Azouaoui et al. 9

This shows that r and r̃ can be calculated from each other using the public values w1
and α. So any consideration regarding the sensitivity classification of one of these values,
automatically applies to the other one as well. In [MGTF19], the value r is never unmasked
which means that the calculation of the hint h must be protected against side-channel
attacks. But as we explained above, r̃ can be recreated from public values after a valid
signature is output. So we consider r̃ as public after the checks on z and r̃.

4 Improved masked gadgets
In this section, we describe the techniques used for masking Dilithium. First, we recall
some standard notions of masking along with the notations used in this paper. Then,
we provide a set of new gadgets dedicated to Dilithium operations. For each of them,
we justify their correctness and discuss their probing security. Finally, we discuss their
instantiation to the case of the different parameter sets of Dilithium.

4.1 Masking background
Masking is a popular countermeasure against side-channel attacks. It consists in splitting
any sensitive variable x into d shares [CJRR99]. Concretely, d − 1 shares are chosen
uniformly at random. Hence, any subset of d− 1 shares remains independent of the secret
x, forcing the adversary to exploit d shares simultaneously to extract sensitive information.
This property must be maintained during the entire execution of the masked circuit. This
is formalized in the probing model, ensuring that the adversary learns no information
about the secret by having access to d− 1 intermediate variables [ISW03].

In lattice-based cryptography, two types of masking are used. The first one is Boolean
masking. In such a case, the sharing of a k-bit Boolean variable x is written as xB,k

and satisfies the property that x =
⊕d−1

i=0 xB,ki where xB,ki is the i-th share of x. The
notation xB,k[j] denotes the sharing of the j-th bit of x. Boolean masking is typically
used for protecting symmetric primitives such as hash functions. The second one is
arithmetic masking. In such a case, the sharing of a variable x ∈ Zq is expressed as xAq

such that x =
∑d−1
i=0 x

Aq

i mod q where x
Aq

i is the i-th share of x. Arithmetic masking is
typically used to perform polynomial operations such as additions and multiplications.
Since both arithmetic and Boolean masking are used to protect lattice-based cryptography,
gadgets are required to convert masking from one type to another. To convert from
arithmetic to Boolean masking, we use SecA2BModpdq . Similarly to convert from Boolean
masking to arithmetic masking, we use SecB2AModpdq . Eventually, we also leverage the
gadget SecAddModpdq that performs a modular addition operating on inputs protected with
Boolean masking. We refer to [BC22] for an implementation of these algorithms.

In this work, the probing security is ensured thanks to the Probe Isolating Non
Interference (PINI) security notion [CS20]. Fulfilling PINI ensures probing security and
the composition of PINI gadgets is PINI as well. Since the new gadgets we propose can be
expressed as composition of PINI gadgets previously proposed by Bronchain and Cassiers,
it directly implies that they are PINI and therefore probing secure.

4.2 SecLeq

We first introduce SecLeqdψ
(
xB,k

)
described in Algorithm 2. It outputs a bit b equal to 1

if the input Boolean sharing of the k-bit variable x is less than or equal to a bound ψ.

Correctness. We next detail the correctness of Algorithm 2 for the case of 0 ≤ ψ < 2k−1.
The first step in SecLeq consists in doing an addition of x with the (k + 1)-bit two’s

10 Leveling Dilithium against Leakage

Algorithm 1 SecUnMaskdk
(
xB,k

)
Input: Boolean sharing xB,k with 0 ≤ x < 2k.
Output: Output the k-bit unmasked value x.

1: yB,k ← Refreshd
k

(
xB,k

)
▷ Refresh based on the ISW multiplication [CS21, Algorithm 3].

2: x←
⊕d−1

i=0 xB,k
i

Algorithm 2 SecLeqdψ
(
xB,k

)
Input: Boolean sharing xB,k with 0 ≤ x < 2k and ψ ≥ 0.
Output: For 0 ≤ ψ < 2k − 1, public bit b with b = 1 if x ≤ ψ and b = 0 otherwise. If ψ ≥ 2k − 1,

trivially returns b = 1.

1: x′B,k+1 ← SecAddd
k+1

(
xB,k, 2k+1 − ψ − 1

)
2: b← SecUnMaskd

1
(
x′B,k+1[k]

)
complement representation of −(ψ+ 1) to obtain x′ = x−ψ− 1. As a result, the output b
must be set to 1 only if x′ is strictly negative. Because of the input conditions 0 ≤ x < 2k
and 0 ≤ ψ < 2k − 1, the resulting x′ is included in −2k ≤ x < 2k which fits in a k + 1-bit
two complement representation, hence no overflow occurs in the subtraction. The second
step consists in unmasking the (k + 1)-th bit of x′ which corresponds to the sign bit of the
two’s complement representation. Eventually, the case of ψ ≥ 2k − 1 is trivial. Indeed,
x ≤ 2k − 1 hence x is always smaller or equal to ψ.

Proposition 1. Algorithm 2 is PINI if b is public.

Proof. SecUnMask is PINI as a consequence of [CGMZ21, Lemma 2]7. Therefore, if b is
public, Algorithm 2 is a composition of PINI gadgets.

Usage in Dilithium. SecLeq is not a high-level component of Dilithium but is instead
used as a building block in Algorithm 3 and Algorithm 4. We note that the SecAdddk+1
in SecLeq can be generically implemented with the full-adder based addition proposed
in [BC22, Algorithm 6]. In the context of Dilithium, the added constant is public and fixed
by the parameter set, enabling possible optimization of the adder taking into account the
bits of the constant as well as the fact that only the sign bit (and so all the intermediate
carries) must be explicitly computed. These optimizations depend on the constant and
can lead to the saving of multiple SecAnd’s and XOR’s.

4.3 SecBoundCheck

Algorithm 3 describes SecBoundCheckdq,λ0,λ1

(
xAq

)
which returns a bit b if the input

arithmetic sharing xAq satisfies the property −λ0 ≤ x ≤ λ1 mod q.

Correctness The first step in Algorithm 3 is to add λ0 to the input sharing of x resulting in
a sharing of x′. As a result, the output bit b will be set to one if and only if 0 ≤ x′ ≤ λ0 +λ1
mod q. The second step is to check that condition thanks to SecLeq. To do so, the
arithmetic sharing x′Aq of x′ is converted to a Boolean sharing x′B,k thanks to SecA2BModp.
The resulting sharing fulfills the input conditions of SecLeq. Indeed, (x′ mod q) < q and
q < 2k implies x′ < 2k. Additionally, since λ0 and λ1 are positive integers, we ensure that
λ0 + λ1 ≥ 0. The returned bit by SecBoundCheck is the one returned by SecLeq.

7Refresh is (d − 1)-free-SNI [CS21]. Therefore, all its outputs and any set of at most t probes inside
the gadget can be simulated by knowing its output and t of its input shares

Azouaoui et al. 11

Algorithm 3 SecBoundCheckdq,λ0,λ1

(
xAq

)
Input: Arithmetic sharing xAq , integer q < 2k and λ0 + λ1 < q with λ0 ≥ 0 and λ1 ≥ 0.
Output: Bit b with b = 1 if −λ0 ≤ x ≤ λ1 mod q, b = 0 otherwise.

1: x′Aq

0 ← x
Aq

0 + λ0 mod q ▷ b = 1 iff 0 ≤ x′ ≤ λ1 + λ0 mod q

2: x′B,k ← SecA2BModpd
q

(
x′Aq

)
3: b← SecLeqd

λ0+λ1

(
x′B,k

)

Proposition 2. Algorithm 3 is PINI.

Proof. The first addition is applied only on the first share hence PINI. SecA2BModpdq is PINI
by [BC22, Proposition 4], and Algorithm 2 is PINI by Proposition 1. Hence, Algorithm 3
is PINI since it is the composition of PINI gadgets.

Usage in Dilithium. SecBoundCheck can be used to perform both rejection checks
∥z∥∞ < γ1−β and ∥r̃∥∞ < γ2−β, where γ1, γ2 and β are defined by Dilithium specifications
(see Table 1). In the first case, SecBoundCheck is instantiated with λ0 = λ1 = γ1 − β − 1,
where the −1 is due to the strict inequality in the norm check. Similarly, in the second
case, SecBoundCheck is instantiated with λ0 = λ1 = γ2 − β − 1.

4.4 SecSampleModp

Algorithm 4 describes SecSampleModp which samples uniformly x over the range −ϕ0 ≤
x ≤ ϕ1 mod p and outputs an arithmetic sharing when provided with a masked uniform
randomness stream (xB,k0 ,xB,k1 , . . .).

Algorithm 4 SecSampleModpdq,ϕ0,ϕ1

(
xB,k0 ,xB,k1 , . . .

)
Input: Bounds ϕ0 and ϕ1 with ϕ0 ≥ 0, ϕ1 ≥ 0 and ϕ0 + ϕ1 < q.
Output: Arithmetic sharing xAq with uniformly distributed x such that −ϕ0 ≤ x ≤ ϕ1 mod q.

1: k ← ⌈log2(ϕ0 + ϕ1 + 1)⌉
2: i← 0
3: while ¬SecLeqd

ϕ0+ϕ1

(
xB,k

i

)
do

4: i← i+ 1
5: xAq ← SecB2AModpd

q

(
xB,k

i

)
6: xAq [0]← xAq [0]− ϕ0 mod q

Correctness. We first note that the output sharing should be uniform on a continuous
range [−ϕ0, ϕ1] which contains ϕ0 + ϕ1 + 1 integers. This range can be represented with
k-bits such that ϕ0 +ϕ1 + 1 ≤ 2k. The first step in Algorithm 4 is to consume its uniformly
distributed input bits under the form of sharing xB,ki while the obtained x is strictly larger
than ϕ0 + ϕ1. This inequality is checked by leveraging SecLeq described in Algorithm 2.
Once the inequality is not satisfied, the obtained x is uniformly distributed on the range
0 ≤ x ≤ ϕ0 +ϕ1. The Boolean sharing of x is then converted into an arithmetic sharing xAq .
Finally, −ϕ0 mod q is added to this arithmetic sharing, resulting in x being uniformly
distributed over −ϕ0 ≤ x ≤ ϕ1 mod q.

Proposition 3. Algorithm 4 is PINI assuming that whether each xi satisfies xi > ϕ0 + ϕ1
is public information and that xi∗ ≤ ϕ0 + ϕ1 for some integer i∗.

12 Leveling Dilithium against Leakage

Proof. The assumptions imply that the output value of the SecLeq gadget calls are public
and that the gadget terminates with the number of iterations being public. Therefore,
the gadget SecSampleModp can be viewed as a circuit composed of PINI gadgets, hence
Algorithm 4 is itself PINI.

Usage in Dilithium. SecSampleModp is used during both key generation and signing
Dilithium procedures. First, during ExpandS in key generation, a secret key coefficient
x in s1 or s2 is sampled such that −η ≤ x ≤ η where η ∈ {2, 4} depending on the
Dilithium parameter set. This sampling can be masked with SecSampleModpdq,η,η (·).
For these parameters, rejections can occur and a fresh x passes the SecLeq check with
probability 5

8 and 9
16 , respectively. Second, during ExpandMask signature generation, a

coefficient x of y is sampled such that −γ1 < x ≤ γ1 where γ1 is a power of two such
that γ1 ∈ {217, 219} depending on the parameter set. As a result, this sampling can be
masked thanks to SecSampleModpdq,γ1−1,γ1

(·). For these parameters, no resampling of x is
required. Indeed, SecLeqd2γ1−1 (·) is used which satisfies the trivial condition ϕ ≥ 2k − 1
since ϕ = 2γ1 − 1. The k must not be evaluated at run time since it is directly derived
from the Dilithium parameter set. As an example for the ExpandMask execution during
signature generation, k ∈ {18, 20} depending on the parameter set. We note that in both
ExpandS and ExpandMask, the x is sampled from the output of a hash function, which is
most efficiently protected using Boolean masking. This explains why we consider only
sampling in Boolean domain.8 Moreover, whether the samples have to be rejected is public
information in the original security proof of Dilithium.

4.5 SecDecompose

The SecDecompose gadget presented in Algorithm 5 enables to compute the decomposition
(w1, w0) of a coefficient w such that w = αw1+w0 mod q with w0 = w mod±α. Concretely,
we leverage the fact that w1 can be leaked to the adversary since it is computed during
signature verification, and hence must not be protected against side-channel attacks. The
first step of our gadget is to derive w1 from wAq . Then, w0

Aq is obtained by computing
w0

Aq = wAq − α · w1 mod q. To the best of our knowledge, there is no generic and
efficient method for a masked division to compute w0

Aq divided by α to get w1. Hence,
we next specialize the extraction of w1 to the different parameter sets of Dilithium.

Correctness Level 2. For the NIST level 2 parameters of Dilithium, we have α = (q−1)/44.
Hence, α−1 = −44 mod q. For these parameters, w1 can be extracted by performing a
division with reminder such that:

⌊αw1 + w0

α
⌉ = ⌊(αw1 + w0) · −α

−1

q − 1 ⌉, (1)

≈ ⌊(αw1 + w0)−α
−1

q
⌉, (2)

which in turn can be performed by using the Compress function defined as:

Compress(x, δ, q) = ⌊x · δ
q
⌉ mod δ, (3)

8An alternative solution is to leverage arithmetic to arithmetic conversion. It would require to first
generate a random sharing xAϕ0+ϕ1 resulting in a uniform x modulus ϕ0 + ϕ1. Then, that sharing of x
must be converted to arithmetic sharing with modulus q such as xAq . Yet to our knowledge, there exists
no arithmetic to arithmetic conversion more efficient than the combination of SecLeq and SecB2AModp.

Azouaoui et al. 13

Algorithm 5 SecDecomposedq,α
(
wAq

)
Input: Arithmetic sharing wAq , prime integer q with q < 2k integer α with 0 < α < q and

α = 2γ2.
Output: Arithmetic sharing w0

Aq and integer w1 such that w = αw1 + w0 mod q.

1: if NIST Level 3 or Level 5 then
2: bAq ← wAq + γ2 mod q
3: b′Aq ← α−1 · bAq − 1 mod q
4: b′B,k ← SecA2BModpd

q

(
b′Aq

)
5: w1

B,k′
← b′B,k[[0, k′[]

6: else ▷ NIST Level 2
7: w1

B,k′
← SecCompressd

q,−α−1

(
wAq

)
8: w1 ← SecUnMaskd

k′

(
w1

B,k′
)

9: w0
Aq ← wAp − α · w1 mod q

for which a masked version at any order is presented in [CGMZ21]. The Compress function
can be used since −α−1 ≪ q. Hence, the error does not have an impact on the results.
This fact has been checked exhaustively for all possible values of w mod q.9

Correctness Level 3 & Level 5. Next, we check the correctness of SecDecompose for
NIST level 3 and level 5 parameters. In such cases, α = (q − 1)/16. Hence, α−1 = −16
mod q. The first steps in Algorithm 5 execute the following processing to w in order to
derive b′ such that;

b′ = α−1 · ((αw1 + w0) + α

2)− 1 mod q, (4)

which can be alternatively expressed as:

b = w1 + α−1 · (w0 −
α

2) mod q, (5)

= w1 + 16 · (α2 − w0) mod q. (6)

There, we note that α
2 − w0 is strictly positive thanks to the definition of Decompose.

Indeed, it follows from −α/2 ≤ w0 ≤ α/2. As a result, w1 can simply be contained in
the 4 LSBs of the binary representation of b′. This is done thanks to the combination of
SecA2BModpdq and just keeping the 4 LSBs of the output.10

Proposition 4. Algorithm 5 is PINI if w1 is public.

Proof. If w1 is public, Algorithm 5 is the composition of PINI gadgets hence it is PINI.

5 Implementation
We now discuss the different designs we compare later in Section 6. We first detail both
the DPA and SPA countermeasures we consider. Second, we describe the implementations,
both fully masked and leveled, and both for the deterministic and the randomized version
of Dilithium. We stress that having leveled and fully masked implementations enables us
to measure the gain offered by leveling. All our results are based on modified versions
of the Dilithium implementations provided by the PQM4 project [KRSS]. These are C
implementations with optimized assembly for polynomial arithmetic and hash functions.

9[CGMZ21] only considers δ equal to a power of two. We take δ as an arbitrary positive number.
10We note that only the LSBs of the SecA2BModpd

q have to be explicitly computed. As a result, this can
save several SecAnd when the SecA2BModpd

q from [BC22] is used.

14 Leveling Dilithium against Leakage

5.1 DPA countermeasures
To protect against DPA, we make use of masking with the gadgets presented in Section 4
and the underlying masked additions and conversions gadgets such as SecA2BModp, SecAdd,
SecAddModp or SecB2AModp. We rely on their state-of-the-art bitsliced implementations
introduced by Bronchain and Cassiers, which offer (to the best of our knowledge) the best
performances on Cortex-M4 [BC22]. Eventually, we use the same masked Keccak as the
one provided in [BC22]. We additionally leverage arithmetic masking with q modulus for all
the polynomial operations and then apply share-wise the optimized polynomial arithmetic
from the PQM4 implementations. Interestingly, the smaller modulus q′ approach for the
NTT in s1 ◦ c proposed in [AHKS22] could also be used. However, it requires an arithmetic
to arithmetic masking conversion from q′ to q in order to perform the addition with y. We
leave the study of such a trade-off for future works.

5.2 SPA countermeasures
We start with SPA countermeasure for polynomial arithmetic and the Keccak permutation.

SPA protected polynomial arithmetic. In order to protect polynomial arithmetic against
SPA, we leverage shuffling [HOM06, VMKS12]. Concretely, we use the fact that operations
must be performed on the 256 coefficients independently. Hence, we first generate a
permutation in the range [0, 256[and then apply the operation on each of the coefficients
according to that permutation. This is used for polynomial additions, subtractions, base-
multiplications as well as norm checks. Our implementation is a plain C implementation,
hence it does not benefit from optimized assembly as the unprotected version does.

For shuffling the NTT’s, Ravi et al. [RPBC20] present different techniques leading to a
trade-off between cost and security. Attacks against this shuffling countermeasure have
been studied in [HSST22]. Since the total cost of the NTT, even shuffled, remains relatively
small compared to the total cost of the full execution, this paper focuses on the most
secure shuffling countermeasure proposed in [RPBC20], named the Coarse-Full-Shuffled
strategy. We directly re-use the code provided along with [RPBC20] for this task.

SPA protected Keccak. A first option to protect Keccak against SPA would be to
shuffle its operations. However, shuffling with a relatively small permutation does not
necessarily bring the expected SPA security on low noise devices since the permutation
can then be directly targeted by the adversary and sometimes recovered with a single
trace [UBS21].11 Since Keccak only allows to shuffle on 5 to 25 independent elements,
relying on a shuffled Keccak to achieve SPA security is a risky option. As a result, we
rather assume that a Keccak coprocessor is available on our target microcontrollers (as it
will likely be the method of choice to deploy post-quantum cryptography in a foreseable
feature). As discussed in [USS+20, BMPS21], the latter is in general a very efficient option
to obtain SPA security (which then relies on the parallelism of the implementation). For
our following benchmarks, this Keccak hardware accelerator is assumed to perform one
permutation round every clock cycle for a total of 24 Cycles per Keccak permutation.

5.3 Deterministic Dilithium
Deterministic Fully Masked. For the fully masked deterministic Dilithium, we rely on
the gadgets presented above as well as a masked Keccak in software. Concretely, we use
a masked Keccak for H(K||µ) and within ExpandMask. In ExpandMask, the randomness

11The smallest permutation considered for polynomial operations is 256, which is significantly larger
than the permutations over 25 independent operations studied in [UBS21].

Azouaoui et al. 15

generation in SecSampleModp (see Algorithm 4 Line-3) is performed with a call to the
secure XOF (based on Keccak). The multiplication Ay is performed on each of the shares of
y independently by leveraging the optimized arithmetic operations in [KRSS]. For the w
decomposition, we leverage the new gadget SecDecompose presented in Algorithm 5 with
the appropriate parameters given in Subsection 4.5. Similarly, the protected rejections
∥z∥∞ < γ1 − β and ∥r̃∥∞ < γ2 − β are implemented thanks to SecBoundCheck presented
in Algorithm 3. Eventually, similarly to SecLeq in Algorithm 3, we unmask the public
signature z and r̃ using the SecUnMask gadget, in order to maintain probing security.

Deterministic Leveled. For the leveled variant of Dilithium, the only usage of Keccak
that needs to be secured against DPA is H(K||µ). Hence, for this purpose, we use the
masked software implementation. ExpandMask uses only the SPA protected version of
Keccak (coprocessor). The multiplication Ay and the decomposition of w are performed
in a shuffled manner. Eventually, we note that the masked addition in s1c+ y requires
to only add y to the first share of s1c. This addition is shuffled as well. Interestingly, we
note that no refresh is required for the unmasking as long as it is performed by adding
the shares of s1c into the first one. Indeed, by doing so, each produced intermediate is an
ephemeral secret thanks the fact that it is an addition with the ephemeral secret y.12

5.4 Randomized Dilithium
The randomized version of Dilithium enables a larger degree of freedom in the generation
of the uniform vector of polynomial y compared to the deterministic version. Indeed, for
the deterministic version, the randomness sampling in Algorithm 4 is based on secured
XOF (Keccak) which can be a bottleneck in terms of performances. For the randomized
version, the first option is to directly generate the vector y from a TRNG. We also note
that the previously mentioned TRNG can be replaced by an unprotected Keccak in case
one lacks a trusted randomness source. In both cases, the resulting implementation does
not weaken the security of Dilithium as y remains uniform even though it is not following
the specification of the Dilithium third round submission.

Randomized Fully Masked. For the fully masked randomized version of Dilithium,
randomness sampling in SecSampleModp (Line-3) can be directly performed with the
TRNG instead of the costly masked XOF as done for the deterministic version. This
produces a Boolean sharing of the uniform y. A subsequent SecB2AModp must be applied
to obtain an arithmetic sharing of y, as detailed in Algorithm 4. All the other operations
are performed similarly to the fully masked deterministic version.

Randomized Leveled. Finally, for the randomized leveled implementation of Dilithium,
we consider the generation of y performed directly from the TRNG. All the other operations
are performed similarly to the leveled deterministic version.

6 Benchmarks
In this section, we report the performances of the Dilithium implementations described
in Section 5. Precisely, we first describe the benchmarking setup used for this purpose.
Second, we report the performance improvement provided by the new gadgets of Section 4
compared to the ones of [MGTF19]. Then, we describe the cost of each individual operation
in Dilithium’s signature generation (without considering the rejections). Based on this, we

12For completeness, we also report in Supplementary Material B the performances of Dilithium signature
generation when a custom software shuffled Keccak is used within ExpandMask.

16 Leveling Dilithium against Leakage

discuss the benefits of leveled Dilithium signature generation, and we compare the perfor-
mance of both deterministic and randomized versions when side-channel countermeasures
are required. Performances are given for Dilithium with Level-3 parameters (see Table 1),
but the resulting discussion applies to all Dilithium security levels.

6.1 Benchmarking setup
In order to evaluate the execution time, we use a similar benchmarking setup as the one
provided in [BC22], which itself is based on the PQM4 benchmarking initiative for PQC
signatures and KEMs [KRSS]. More precisely, the benchmarks are performed with the
NUCLEO-L4R5ZI demonstration board. The cycle counts are measured thanks to the
cycle-accurate counter DWT_CCYCNT. With the considered clock configuration, the TRNG
of the microcontroller provides 32 fresh random bits every 53 Cycles. This TRNG is used
as the randomness for the side-channel countermeasures (i.e., shuffling and masking) as
well as for the ExpandMask in randomized versions of Dilithium.

6.2 Gadgets improvements
In the following, we compare the gadgets presented in Section 4 and the corresponding ones
in [MGTF19] proposed by Migliore et al. and report the results in Figure 4. To enable a fair
comparison, we implemented the gadgets as described in [MGTF19] by leveraging the PINI
property and the bitslice gadgets from [BC22] for SecAdd, SecAddModp, SecA2BModp and
SecB2AModp. We note that [MGTF19] uses a parameter w reflecting the bus width of the
target CPU, which implies that operations might be performed on more bits than necessary.
In our implementation, we do not use that parameter w as the operations are performed
on the exact necessary number of bits as allowed by bitslicing. Similarly, [MGTF19]
performed masked SecAnd with public values to isolate bits on secret variables. Individual
bits are trivially isolated in our implementations thanks to bitslicing.

SecSampleModp. Both version of SecSampleModp as used in the signature generation are
similar. The difference is that the subtraction with ϕ0 is performed in Boolean masking
for [MGTF19] and in arithmetic masking in Algorithm 4. As a result, our new gadget
saves the cost of one SecAdd by replacing it by a share-wise addition. This results in a
speedup of an approximate factor 1.2, as highlighted in Figure 4b.

SecBoundCheck. Our SecBoundCheck also simplifies the one proposed in [MGTF19]
where a SecA2BModp is performed followed by two SecAdd’s.13 Our construction replaces
one of these additions by one arithmetically masked addition, which is almost free. This
leads to a performance improvement by a factor ≈ 1.1, as reported in Figure 4d.

SecDecompose. Finally, we compare the two implementations of SecDecompose. Inter-
estingly, the main improvement comes from the fact that we first extract w1 efficiently
and then unmask it to compute w0. This improvement relieson the sensitivity detailed in
Section 3.3: w1 is considered as sensitive by Migliore et al. while it is not in Algorithm 5.
In short, the implementation based on [MGTF19] starts with a SecA2BModp, continues
with several (≈ 10) additions and finally performs a SecB2AModp to obtain the arithmetic
sharing of w0. The new gadget only requires a single SecA2BModp and some share-wise
operations with arithmetic masking. Overall, the new gadget runs ≈ 3.8 times faster.

Finally, we note that for Level-2 parameters, the α changes and the gadget from Migliore
et al. does not apply. Our implementation of SecDecompose for Level-2 parameters is

13Only SecBoundCheck is described for Boolean sharing in [MGTF19]. Here we assume that a SecA2BModp
is performed before the end to match Algorithm 3 specifications.

Azouaoui et al. 17

2 4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc

le
s

new

[MGTF19]

(a) SecSampleModp comparison.

2 4 6 8 10 12 14 16

1

1.2

1.4

Number of shares

G
ai

n

new

(b) SecSampleModp gains.

2 4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc

le
s

new

[MGTF19]

(c) SecBoundCheck comparison.

2 4 6 8 10 12 14 16

1

1.2

1.4

Number of shares

G
ai

n

new

(d) SecBoundCheck gains.

2 4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc

le
s

new

[MGTF19]

(e) SecDecompose comparison.

2 4 6 8 10 12 14 16

3

4

5

6

Number of shares

G
ai

n

new

(f) SecDecompose gains.

Figure 4: Comparison between new gadgets and [MGTF19] for NIST Level-3 parameters.

slightly slower than for Level-3 and Level-5. Indeed, in the SecCompress, the SecA2BModp
must be performed on a slightly larger modulus increasing the cost by a factor ≈ 1.2.

6.3 Deterministic Dilithium Level-3 Components
The performance of each operation within the deterministic version of Dilithium is re-
ported in Table 2. This table contains the numbers for both fully masked and leveled
implementations. Next, we compare these two implementations. We observe that the
signature generation is more efficient with the leveled implementation. For two shares,
24 986 kCycles are needed for the fully masked implementation vs. only 6757 kCycles for
the leveled implementation. Hence, leveling offers an improvement by a factor ≈ 3.7.
Similarly, for 8 shares, the leveled implementation is ≈ 17.58× faster than the fully masked
implementation. These gains can be explained by the following observations:

• ExpandMask: A large proportion of the gains provided by leveling are due to the cost
difference between the ExpandMask of the two implementations. Indeed, the masked
version requires the execution of a masked XOF followed by SecSampleModp (described
in Algorithm 4). Hence, ExpandMask represents about 55 % of the total run time in
the fully masked case. For the leveled implementation, ExpandMask is only required
to be resistant to SPA, hence we leverage an unprotected HW coprocessor which
significantly reduces the run time. Concretely both the expensive masked XOF and
the SecA2BModp within Algorithm 4 are no longer required.

18 Leveling Dilithium against Leakage

Table 2: Performance of the deterministic Dilithium Level-3 components: number of clock
cycles when running on a STM32L4R5 and using the TRNG for masking randomness (32-bit
randomness every 53 Cycles). Reported numbers are in kCycles. The numbers are for a
single execution of the component (does not consider repetitions due to rejections).

d 2 4 6 8
Masked Leveled Masked Leveled Masked Leveled Masked Leveled

sign 24,986.8 6,757.8 70,708.4 8,100.7 131,252.0 9,641.8 201,737.5 11,471.5
NTT(s) 185.4 185.4 370.8 370.7 556.2 556.3 741.6 741.6
ExpandA 2,160.8 2,160.8 2,160.8 2,160.8 2,160.8 2,160.8 2,160.8 2,160.8
H(K||µ) 367.0 367.2 1,094.5 1,094.9 2,006.2 2,006.8 3,237.9 3,238.6
ExpandMask 12,860.2 3.0 37,913.5 3.0 69,920.0 3.0 110,770.7 3.0
Ay 382.2 2,459.8 764.4 2,459.8 1,146.6 2,459.8 1,528.7 2,459.7
Decompose 2,971.8 134.7 9,443.7 134.8 18,475.8 134.8 27,724.9 134.8
y + s1c 174.9 238.3 349.8 387.4 524.5 536.5 699.5 685.5
w0 − s2c 209.9 398.3 419.6 584.5 629.4 770.7 839.3 956.7
reject 4,826.7 216.3 16,522.9 216.2 33,062.4 216.2 50,462.1 216.2
umsk 372.8 119.2 1,174.7 195.3 2,258.1 285.4 3,041.5 344.6

• Decompose and rejection checks: A similar gain is obtained for Decompose and the
rejections since the leveled implementation is based on shuffling instead of masking.

• Polynomial arithmetic: In this case, the most important observation is that the
matrix multiplication Ay is cheaper in the fully masked implementation for the
number of shares considered. Indeed, the multiplication is performed share-wise
while it requires shuffling in the leveled version. Despite the complexity of the matrix
multiplication increases linearly with the number of shares while it is constant for
the shuffled version, the first solution is cheaper even up to 8 shares. A similar trend
exists for y + s1c and w0 − s2c. In the fully masked case, the addition of y and w0
is performed independently on all the shares, whereas the leveled implementation
only requires a single shuffled addition on the first share of sic.

6.4 Randomized Dilithium Level-3 Components
The performance numbers for the randomized version of Dilithium are reported in Table 3.
The trends are similar to the deterministic versions. For 8 shares, the leveled implementation
is ≈ 14.1× faster than the fully masked implementation. Compared to the results presented
for the deterministic version in Table 2, the main difference lies in the ExpandMask’s cost. In
both the leveled and fully masked cases, no XOF is used and the randomness is sampled from
the TRNG. However, in the fully masked version, the TRNG is used to sample the Boolean
shares in Algorithm 4 and a SecB2AModp is still required subsequently. Hence, ExpandMask
remains an expensive block even in the randomized version of Dilithium, because its output
must be masked. By contrast, for the leveled implementation, the TRNG is directly used to
generate the uniform (unshared) y, hence leading to an (almost) negligible cost. The other
components (namely Decompose, rejection and polynomial operations) of the signature
generation are shared between the deterministic and randomized version of Dilithium,
therefore they show identical trends as discussed previously.

By comparing the numbers provided in Table 2 and Table 3, we observe that the
randomized version of Dilithium is faster than the deterministic version in every scenario,
which is mostly due to the dominating cost of the masked Keccak. Besides, we note that
the randomized version of Dilithium also requires milder assumptions for its side-channel
security to hold. First, it limits the SPA attack path discussed in Subsubsection 3.2.2
to lower complexities. More generally, it does not allow the adversary to average traces
for the same inputs, which improves its security against SPA when the latter is based

Azouaoui et al. 19

Table 3: Performance of the randomized Dilithium Level-3 components: number of clock
cycles when running on a STM32L4R5 and using the TRNG for masking randomness (32-bit
randomness every 53 cycles). Reported numbers are in kCycles. The numbers are for a
single execution of the component (does not consider repetitions due to rejections).

d 2 4 6 8
Masked Leveled Masked Leveled Masked Leveled Masked Leveled

sign 15,375.7 6,459.2 42,050.6 7,074.4 78,880.8 7,703.7 117,273.8 8,301.9
NTT(s) 185.4 185.4 370.7 370.7 556.2 556.2 741.7 741.6
ExpandA 2,160.8 2,160.7 2,160.8 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7
H(K||µ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ExpandMask 3,594.3 72.1 10,342.5 72.1 19,555.1 72.1 29,547.5 72.1
Ay 382.3 2,459.5 764.4 2,459.5 1,146.6 2,459.5 1,528.8 2,459.6
Decompose 2,977.9 134.6 9,445.6 134.7 18,475.4 134.7 27,724.6 134.7
y + s1c 174.9 238.2 349.7 387.2 524.6 536.3 699.5 685.4
w0 − s2c 210.0 398.2 419.7 584.2 629.5 770.3 839.4 956.5
reject 4,841.9 216.1 16,528.4 216.1 33,062.2 216.1 50,457.0 216.1
umsk 372.7 119.2 1,174.5 195.2 2,257.7 285.3 3,041.3 344.5

on parallelism. The combination of these observations naturally calls for considering the
randomized Dilithium in application contexts where side-channel attacks are a concern.

7 Conclusion and open problems
In this work, we analyzed side-channel protected implementations of Dilithium by mixing
different contributions. First, we presented an updated sensitivity analysis for its key
generation and signing algorithms. Our results show that a previous work in this direction
was slightly flawed, with some parts leading to insecurities and other parts leading to
inefficiencies. They also exhibit the interesting potential for leveling the implementations
of Dilithium, by distinguishing between DPA and SPA targets. Based on our sensitivity
analysis, we then presented new gadgets to mask Dilithium for all its parameter sets. Our
gadgets improve over the state-of-the-art, leading to performance gains of factors up to
of 3.8. They also fill gaps for which it was previously unknown how to efficiently apply
masking (e.g., the decompose operation for the NIST Level 2 parameters). Finally, we
presented the first masked and leveled implementations of Dilithium on an ARM Cortex-M4
microcontroller. Our benchmark confirms the interest of leveling the implementation, which
can lead to significant performance improvements. Overall, our analysis and benchmark
also highlight that the randomized variant of Dilithium provides notably better side-
channel properties, thanks to a smaller attack surface allowing more efficient protected
implementations. We therefore believe that it should be the default variant for embedded
devices when side-channel leakage needs to be taken into account.

These results suggest two important directions for further research.
First, the sensitivity analysis on which we rely is based on the heuristic identification

of SPA and DPA attack paths. While this approach provides an intuitive way to spot
necessary conditions for secure implementations, it also leaves the formalization of sufficient
conditions (with sound proofs in practically relevant leakage models) as a major challenge.
In particular, and contrary to the context of symmetric cryptography where the granularity
of leakage-resistant modes of operation is rather coarse [BBC+20], the implementation
of post-quantum public-key algorithms typically relies on finer-grain blocks, which may
therefore be more difficult to analyze. For example, the elementary operations in Figures 1
and 2 do not always correspond to cryptographic primitives with well-defined black box
security guarantees. This challenge also leads to the more prospective question whether
other (possibly new) designs could offer better security guarantees against leakage than
Dilithium – for example by facilitating the reduction of the alternative attack path discussed

20 Leveling Dilithium against Leakage

in Subsubsection 3.2.2 to hard physical learning problems.
Second, our investigations put forward the need to protect some computations against

SPA and other computations against DPA. But here as well, the separation between these
attacks is less strict than in the symmetric setting. For example, some of the SPA attack
paths, despite indeed targeting ephemeral secrets, do not need to recover those secrets
in full and may therefore be very powerful and hard to prevent (i.e., small leakages can
be amplified thanks to mathematical cryptanalysis). As a result, another important open
problem is to evaluate the proposals made in this paper for reaching SPA and DPA security
concretely, in different implementation contexts, and to try improving them.

References
[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber algorithm specifications and supporting documentation.
NIST PQC Round, 3:4, 2019.

[ABH+22] Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova,
Tobias Schneider, and François-Xavier Standaert. Systematic study of decryp-
tion and re-encryption leakage: The case of kyber. In COSADE, volume 13211
of Lecture Notes in Computer Science, pages 236–256. Springer, 2022.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Daan
Sprenkels. Faster kyber and dilithium on the cortex-m4. In ACNS, volume
13269 of Lecture Notes in Computer Science, pages 853–871. Springer, 2022.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-level vs. implementation-level physical security in symmetric
cryptography - A practical guide through the leakage-resistance jungle. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I,
volume 12170 of Lecture Notes in Computer Science, pages 369–400. Springer,
2020.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):553–588, 2022.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In CT-RSA, volume 8366 of Lecture
Notes in Computer Science, pages 28–47. Springer, 2014.

[BGS15] Sonia Belaïd, Vincent Grosso, and François-Xavier Standaert. Masking and
leakage-resilient primitives: One, the other(s) or both? Cryptogr. Commun.,
7(1):163–184, 2015.

[BMPS21] Olivier Bronchain, Charles Momin, Thomas Peters, and François-Xavier Stan-
daert. Improved leakage-resistant authenticated encryption based on hardware
AES coprocessors. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):641–
676, 2021.

[CGMZ21] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order polynomial comparison and masking lattice-based encryption. IACR
Cryptol. ePrint Arch., page 1615, 2021.

Azouaoui et al. 21

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.

[CS21] Jean-Sébastien Coron and Lorenzo Spignoli. Secure shuffling in the probing
model. IACR Cryptol. ePrint Arch., page 258, 2021.

[DFH+16] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault,
Daniel Masny, and François-Xavier Standaert. Towards sound fresh re-keying
with hard (physical) learning problems. In CRYPTO (2), volume 9815 of
Lecture Notes in Computer Science, pages 272–301. Springer, 2016.

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS - dilithium: Digital signatures from
module lattices. IACR Cryptol. ePrint Arch., page 633, 2017.

[DMMS21] Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier Stan-
daert. Exploring crypto-physical dark matter and learning with physical
rounding towards secure and efficient fresh re-keying. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):373–401, 2021.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 537–554. Springer, 1999.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure kyber.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):88–113, 2021.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart
card implementation resistant to power analysis attacks. In ACNS, volume
3989 of Lecture Notes in Computer Science, pages 239–252, 2006.

[HS01] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital signature
schemes. Des. Codes Cryptogr., 23(3):283–290, 2001.

[HSST22] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme.
Adapting belief propagation to counter shuffling of ntts. IACR Cryptol. ePrint
Arch., page 555, 2022.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 463–481. Springer, 2003.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks
on keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):243–268,
2020.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

22 Leveling Dilithium against Leakage

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[LZS+21] Yuejun Liu, Yongbin Zhou, Shuo Sun, Tianyu Wang, Rui Zhang, and Jingdian
Ming. On the security of lattice-based fiat-shamir signatures in the presence of
randomness leakage. IEEE Trans. Inf. Forensics Secur., 16:1868–1879, 2021.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking dilithium - efficient implementation and side-channel evaluation. In
ACNS, volume 11464 of Lecture Notes in Computer Science, pages 344–362.
Springer, 2019.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
Profiling side-channel attacks on dilithium: A small bit-fiddling leak breaks it
all. IACR Cryptol. ePrint Arch., page 106, 2022.

[Nat] National Institute of Standards and Technology. Post-
quantum cryptography standardization. https://
csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In CHES, volume 10529 of Lecture
Notes in Computer Science, pages 513–533. Springer, 2017.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
resilient authentication and encryption from symmetric cryptographic primi-
tives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages 96–108. ACM, 2015.

[REB+22] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chat-
topadhyay, and Sujoy Sinha Roy. Will you cross the threshold for me? generic
side-channel assisted chosen-ciphertext attacks on ntru-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):722–761, 2022.

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Side-channel assisted existential forgery attack on
dilithium - A NIST PQC candidate. IACR Cryptol. ePrint Arch., page 821,
2018.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay.
On configurable SCA countermeasures against single trace attacks for the
NTT - A performance evaluation study over kyber and dilithium on the ARM
cortex-m4. In SPACE, volume 12586 of Lecture Notes in Computer Science,
pages 123–146. Springer, 2020.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on cca-secure lattice-based PKE and kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

[SETA22] Chao Sun, Thomas Espitau, Mehdi Tibouchi, and Masayuki Abe. Guessing
bits: Improved lattice attacks on (EC)DSA with nonce leakage. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(1):391–413, 2022.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Azouaoui et al. 23

[UBS21] Balazs Udvarhelyi, Olivier Bronchain, and François-Xavier Standaert. Security
analysis of deterministic re-keying with masking and shuffling: Application
to ISAP. In COSADE, volume 12910 of Lecture Notes in Computer Science,
pages 168–183. Springer, 2021.

[USS+20] Florian Unterstein, Marc Schink, Thomas Schamberger, Lars Tebelmann,
Manuel Ilg, and Johann Heyszl. Retrofitting leakage resilient authenticated
encryption to microcontrollers. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(4):365–388, 2020.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/em analysis on post-
quantum kems. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):296–322,
2022.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In ASIACRYPT, volume 7658 of Lecture Notes
in Computer Science, pages 740–757. Springer, 2012.

24 Leveling Dilithium against Leakage

A Dilithium Description
Key generation. The key generation is defined in [DLL+17, Fig 4.] and is recalled in
Algorithm 6. Initially, a random bit string ζ is created and used to generate three seeds ρ,
ς and K thanks to the hash function H. A public matrix A for which all coefficients are
uniform in Zq is generated from ρ. Two secret vectors s1 ∈ Slη and s2 ∈ Skη are derived
from ς. Then, the vector t = As1 + s2 is calculated. This is an instance of MLWE, where
s1 and s2 are hard to calculate given A and t. Next, the bit representation of t is split
up into high order bits t1 and low order bits t0. Only t1 will be part of the public key,
to keep its size as small as possible. For the same reason the matrix seed ρ is part of the
output, rather than the whole matrix A. Lastly, ρ∥t1 gets hashed to tr. The output is the
public key pk = (ρ, t1) and the secret key sk = (ρ,K, tr, s1, s2, t0).

Algorithm 6 KeyGen.
1: ζ ← {0, 1}256

2: (ρ, ς,K) = H(ζ) ▷ (ρ, ς, K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256

3: A = ExpandA(ρ) ▷ A ∈ Rk×l

4: (s1, s2) = ExpandS(ς) ▷ (s1, s2) ∈ Sl
η × Sk

η

5: t = As1 + s2
6: (t1, t0) = Power2Round(t, d)
7: tr = H(ρ∥t1) ▷ tr ∈ {0, 1}256

8: return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

Signature. Similarly, we now describe the signing procedure in Algorithm 7. We refer
to [DLL+17, Fig 4.] for a more detailed description. The input is the secret key sk and a
message M . The message is preprocessed with H into a bit string µ of fixed length. For
deterministic signing, µ is used together with K to produce a seed ρ′. For the randomized
version the seed ρ′ is generated randomly. This seed and a rejection counter κ (initially
set to κ = 0) are used to sample the secret polynomial y ∈ S̃lγ1

with ExpandMask. Then,
the product w = Ay is decomposed via division with remainder into w1 and w0. The
challenge c̃ is the hash of µ∥w1. For further calculations, c̃ is converted into a polynomial
c that contains strictly τ coefficients set to ±1 and the others set to zero. This polynomial
is then used to calculate z and r̃. To ensure the security and correctness of the scheme,
two checks are performed:

∥z∥∞ < γ1 − β, ∥r̃∥∞ < γ2 − β,

where β = η · τ . If any of the two conditions does not hold, κ is increased and the process
starts over (beginning with the sampling of a new y). After successful checks, a hint h is
calculated. This is needed in the verification step to make up for the “lost” information
of t0. Two more checks are performed on ct0 and h. Again, if these conditions are not
met, the signature is rejected and κ is increased. Otherwise, if all checks are successful,
the signature σ = (c̃, z,h) can be output.

Azouaoui et al. 25

Algorithm 7 Sign(sk,M).
1: A = ExpandA(ρ)
2: µ = H(tr∥M) ▷ µ ∈ {0, 1}512

3: κ = 0, (z,h) = ⊥
4: ρ′ = H(K∥µ) (or ρ′ $← {0, 1}512 for randomized signing) ▷ ρ′ ∈ {0, 1}512

5: while (z,h) = ⊥ do
6: y = ExpandMask(ρ′, κ) ▷ y ∈ S̃l

γ1
7: w = Ay
8: (w0,w1) = Decompose(w, 2γ2)
9: c̃ = H(µ∥w1) ▷ c̃ ∈ {0, 1}256

10: c = SampleInBall(c̃) ▷ c ∈ Bτ

11: z = y + cs1
12: r̃ = w0 − cs2
13: if ∥z∥∞ ≥ γ1 − β or ∥r̃∥∞ ≥ γ2 − β then (z,h) = ⊥
14: else
15: h = MakeHint(r̃, c, t0,w1, γ2)
16: if ∥ct0∥∞ ≥ γ2 or the # of 1’s in h is greater than ω then (z,h) = ⊥
17: κ = κ+ l

18: return σ = (c̃, z,h)

B Additional performance numbers

Table 4: Performance of the deterministic Dilithium Level-3 components with
software shuffled Keccak: number of clock cycles when running on a STM32L4R5 and
using the TRNG for masking randomness (32-bit randomness every 53 Cycles). Reported
numbers are in kCycles. The numbers are for a single execution of the component (does
not consider repetitions due to rejections).

d 2 4 6 8
Masked Leveled Masked Leveled Masked Leveled Masked Leveled

sign 24,986.8 10,548.1 70,708.4 11,892.0 131,252.0 13,431.8 201,737.5 15,261.0
NTT(s) 185.4 185.4 370.8 370.7 556.2 556.3 741.6 741.6
ExpandA 2,160.8 2,160.8 2,160.8 2,160.8 2,160.8 2,160.8 2,160.8 2,160.8
H(µ||K) 367.0 367.2 1,094.5 1,094.9 2,006.2 2,006.8 3,237.9 3,238.6
ExpandMask 12,860.2 3,793.3 37,913.5 3,794.4 69,920.0 3,793.0 110,770.7 3,792.5
Ay 382.2 2,459.8 764.4 2,459.8 1,146.6 2,459.8 1,528.7 2,459.7
Decompose 2,971.8 134.7 9,443.7 134.8 18,475.8 134.8 27,724.9 134.8
y + s1c 174.9 238.3 349.8 387.4 524.5 536.5 699.5 685.5
w0 − s2c 209.9 398.3 419.6 584.5 629.4 770.7 839.3 956.7
reject 4,826.7 216.3 16,522.9 216.2 33,062.4 216.2 50,462.1 216.2
umsk 372.8 119.2 1,174.7 195.3 2,258.1 285.4 3,041.5 344.6

	Introduction
	Background
	Polynomial arithmetic notations
	Dilithium

	Sensitivity analysis
	Motivation & Methodology
	Application to Dilithium
	Differences with DBLP:conf/acns/MiglioreGTF19.

	Improved masked gadgets
	Masking background
	SecLeq
	SecBoundCheck
	SecSampleModp
	SecDecompose

	Implementation
	DPA countermeasures
	SPA countermeasures
	Deterministic Dilithium
	Randomized Dilithium

	Benchmarks
	Benchmarking setup
	Gadgets improvements
	Deterministic Dilithium Level-3 Components
	Randomized Dilithium Level-3 Components

	Conclusion and open problems
	Dilithium Description
	Additional performance numbers

