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Abstract—Biometric data are uniquely suited for connecting
individuals to their digital identities. Deriving cryptographic
key exchange from successful biometric authentication there-
fore gives an additional layer of trust compared to password-
authenticated key exchange. However, biometric data differ
from passwords in two crucial points: firstly, they are sensitive
personal data that need to be protected on a long-term basis.
Secondly, efficient feature extraction and comparison compo-
nents resulting in high intra-subject tolerance and low inter-
subject distinguishability, documented with good biometric
performance, need to be applied in order to prevent zero-effort
impersonation attacks.

In this work, we present a protocol for secure and efficient
biometrics-authenticated key exchange that fulfils the above
requirements of biometric information protection compliant
with ISO/IEC 24745. The protocol is based on established fuzzy
vault schemes and validated with good recognition perfor-
mance. We build our protocol from established primitives for
password-authenticated key exchange using oblivious pseudo-
random functions. Our protocol is independent of the biometric
modality and can be instantiated both based on the security
of discrete logarithms and lattices.

We provide an open-source implementation of our pro-
tocol instantiated with elliptic curves and a state-of-the art
unlinkable fingerprint fuzzy vault scheme that is practical
with transaction times of less than one second from the image
capture to the completed key exchange.

Index Terms—authenticated key exchange, oblivious pseudo-
random function, fuzzy vault, biometric information protection

1. Introduction

Biometric characteristics provide unique, non-reputable,
and accurate identification of individuals over several
decades [1]. This makes them suited for bridging the gap
between real and digital identities in a way passwords or
other machine-generated identifiers cannot. At the same time
however, these properties also make them uniquely vulner-
able. In particular, biometric information cannot be revoked
or replaced in the same way a password or cryptographic

token can. Once a digital representation of a biometric
characteristics or template has been leaked, the underlying
source (e.g., a particular finger or eye), can no longer be
used securely for authentication. In fact, biometric templates
provide no form of protection of the underlying data, as they
can be reversed to samples sufficient for attacks [2]–[4].

Due to this risk, biometric data have been recognised
as sensitive personal data by the European Union’s General
Data Protection Regulation (GDPR) [5] and the ISO/IEC
24745 International Standard on Biometric Information Pro-
tection [6]. The latter defines three security requirements for
secure biometric systems: i) unlinkability and renewability,
meaning that an attacker cannot connect two protected bio-
metric templates stored in different applications, and new
templates from the same source look indistinguishable to a
previously stored reference, ii) irreversibility, it should be
impossible for an attacker to retrieve original samples given
only protected templates, and iii) performance preservation,
the computational performance and the recognition accuracy
of the system should not be impacted significantly by adding
a layer of protection to the original data.

At first sight, the performance preservation requirement
in ISO/IEC 24745 seems to be a question of convenience
only. However, it details a second and crucial dimension
that determines the security of biometric authentication: the
accuracy of the underlying biometric comparison function.
Contrary to passwords, which can be compared in an exact
manner, captured samples of the same biometric character-
istic are never exactly equal, but fuzzy. They are subject
to noise such as aging, environmental influence, or image
quality. Comparison of two samples is therefore based on
some measure of similarity. If this measure is too imprecise,
or the feature representation is not discriminative enough,
an authentication system is not capable of accurately dis-
tinguishing between mated comparisons, where the samples
stem from the same subject, and non-mated authentication
attempts, where the samples stem from different subjects.
Trust in the derived authentication is consequently low.

Recently, the idea of building authenticated key ex-
change on the basis of biometrics has gained interest with
the proposal of Biometrics-Authenticated Key Exchange
(BAKE) [7]. Analogously to password-authenticated key
exchange (PAKE) [8], a client and server negotiate a shared
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cryptographic key that should be equal if and only if the
biometric authentication was successful.

With their protocol, the authors of [7] achieve security
in terms of the protection of the biometric data. However,
their biometric comparator is vulnerable, as we show by
reproducing their results experimentally. The reason for this
imprecision is a fingerprint comparison algorithm that is
specific to their protocol, but has not been evaluated in
terms of biometric performance (i.e., accuracy). We give
this evaluation and show that the algorithm is barely able to
distinguish between mated comparison trials within the same
identity and non-mated comparison trials between different
identities. More generic protocols both on symmetric fuzzy
PAKE [9] and asymmetric fuzzy PAKE [10] have been
proposed. However, with regard to biometrics, they have
the following shortcomings: symmetric fuzzy PAKE [9]
does not achieve protection of the biometric data, which
is shared with the server in cleartext. Asymmetric fuzzy
PAKE [10] achieves security in both dimensions in theory,
but is inefficient in practice as it is based on generic obliv-
ious transfer which is performed once for each bit in the
biometric template. In addition, [9] and [10] only enable
comparison of fixed-length biometric representations. The
most accurate comparison metric for fingerprints, one of
the most popular biometric modalities, is however based
on variable-length representations, the similarity of which
cannot be expressed as a distance function.

1.1. Contribution

In this work, we present a protocol for biometrics-
authenticated key exchange that addresses the deficiencies
of previous works [7], [9], [10] and achieves effective pro-
tection of the biometric data while building on accurate and
established biometric comparison functions that have been
evaluated and improved in the literature over many years.
Our protocol is efficient with execution times of under one
second from the biometric capture to the completed key
exchange, including communication cost. More precisely,
we contribute:

• Secure biometrics-authenticated key exchange from
established primitives: fuzzy vaults [11], oblivious
pseudo-random functions (OPRF), and key encapsu-
lation mechanisms (KEM). Our two-round protocol
can be instantiated both with a discrete logarithm
OPRF [8] and Diffie-Hellman key exchange [12] as
well as lattice-based OPRF [13] and KEM [14].

• Interchangeability of biometric modalities: our pro-
tocol can be instantiated with any fuzzy vault scheme
and thereby different biometric modalities and fea-
ture representations. In particular, it is compatible
with both fixed-length and variable-length represen-
tations of biometric characteristics.

• Resistance against offline attacks: one known flaw
of fuzzy vault schemes for biometric authentication
are offline attacks. In our protocol, we remove the
checksum typically used to verify authentication

attempts and replace it with authenticated key ex-
change that requires interaction for every attempt.

• Protection of the biometric data in storage and trans-
fer compliant with ISO/IEC 24745 [6]: if the un-
derlying fuzzy vault scheme achieves unlinkability,
renewability, irreversibility and performance preser-
vation, our protocol preserves these properties.

• Open-source implementation: an implementation of
our protocol instantiated with elliptic curves and
a state-of-the art unlinkable fingerprint fuzzy vault
scheme [15] is available at https://anonymous.4open.
science/r/bake-7057. We show that our protocol
achieves real-world efficiency with transaction times
of under one second from the fingerprint image
capture at the sensor to the completed key exchange.

1.2. State-of-the-Art

We look at the state-of-the-art to motivate two principles
for secure biometrics-authenticated key exchange: recogni-
tion accuracy and reciprocal interaction.

The main concern with the protocol proposed in [7] is
the generation of the biometric secret key constructed from
fingerprint representations. The authors use a simplified
version of the well-studied nearest-neighbour approach first
proposed by [16], which they chose due to its anticipated ro-
tation invariance. However, this algorithm and its flaws have
been studied for two decades, specifically, its inability to
tolerate missing genuine minutiae [17]. It has therefore been
found unusable in practice, and improved rotation-invariant
fingerprint recognition algorithms have been proposed that
mitigate the known shortcomings [17]. Such improved al-
gorithms require a more complex comparison subsystem
however, and are not compatible with the constructor offered
in [7]. Notably, the paper [7] fail to state the recognition
accuracy of their iris and fingerprint based protocols, and
do not give an experimental evaluation detailing the security
with regard to the biometric performance. Their construction
for iris is based on the established fixed-length feature
representation IrisCode [18] and can be assumed to achieve
adequate accuracy.

Secondly, the public keys derived from the biometric
secret keys in [7] are vulnerable to offline attacks: in their
construction, any adversary can guess a biometric template
and attempt to decode a chosen message encapsulated with
a public key without interacting with another party. In such
an attack, the adversary does not have to guess an exact
biometric feature representation, but succeeds as soon as
she finds an input that is close enough with regard to the
distance metric used. This probability can be expressed as
the false-match rate of the biometric system, i.e., the pro-
portion of authentication attempts from non-mated samples
falsely accepted as authentication attempts of an enrolled
data subject. Again, low accuracy leads to a low effort in
an offline search attack.

Even with high accuracy, offline attacks expose biomet-
ric data to high risks. Therefore, we construct our protocol
such that interaction is required for every adversarial guess,
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TABLE 1. COMPARISON OF OUR PROTOCOL TO RELATED WORK.

Scheme Asymmetric Efficient Accurate ISO/IEC 24745

fPAKE [9] ✗ ✓ ✓ ✗

fuzzy aPAKE [10] ✓ ✗ ✓ ✗

BAKE [7] ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓

which allows for rate-limiting that can be enforced as long
as at least one party remains honest.

An overview of how our proposed scheme compares to
the works discussed above can be found in Table 1.

Other related work has been directed on extracting uni-
formly distributed cryptographic keys directly from biomet-
ric templates without running an interactive protocol [19].
Similar to [9] and [10], only fixed-length representations
are considered that can be compared with some distance
metric. From fuzzy extractors, two-factor authentication pro-
tocols have been built [20]. More recently, [21] proposed a
session key generation protocol specifically for fingerprint
based on so-called cancellable biometrics, which are one-
way transforms on the biometric data that are not based on
well-studied cryptographic problems and can therefore not
be assumed to underlie certain hardness assumptions.

1.3. Technical overview

Before we describe our protocol in detail, we give a
conceptual overview of our approach.

Fuzzy vault. The fuzzy vault scheme first proposed by [11]
builds on error-correcting codes, more specifically, Reed-
Solomon codes. First, a random polynomial f of degree τ−1
is generated. Then, the elements of a biometric feature set
t are encoded onto f as (a, f(a)) for a ∈ t. In the original
scheme, these true points corresponding to t are then hidden
by a large number of random coordinates (x, y) that do not
lie on f . The union of both sets of points is then regarded
a locked fuzzy vault V , which is stored at a server together
with a hash H(f) for further reference.

It has to be noted that this original construction has been
found to be insecure against correlation attacks between
different locked fuzzy vault records [15]. Next to the large
memory requirements, finding random points that hide the
secret polynomial f truly is a hard problem. Therefore,
improved schemes have been developed by [15], which is
the scheme we use in our implementation.

For verification, a biometric probe feature set t′ is cap-
tured. From the locked fuzzy vault V , only points with x-
coordinates in the set t′ are selected and a polynomial f ′

is interpolated over these points. If the intersection is larger
than τ , meaning that at least τ points in t and t′ align, then
H(f ′) = H(f), and the verification is successful. Here, τ
refers to the biometric decision threshold, which is chosen
as the correction capacity of the Reed-Solomon code.

In addition to correlation attacks, which have been miti-
gated by [15], a persisting point of attack in this protocol is
provided by the checksum H(f). By guessing a biometric
template t′, running the verification protocol, and comparing
the hash of the result H(f ′) with the provided checksum
H(f), an attacker can run an offline brute-force search
effectively and efficiently. Note that there is no need to
try and guess random codewords, i.e., secret polynomials.
Rather, it is sufficient to guess some template t′ that is within
distance τ of the stored biometric template t, which has
significantly lower brute-force security.

In our protocol, we therefore omit the computation and
storage of H(f), and replace it with an OPRF evaluation
followed by a KEM. Thereby, we gain two improvements in
one: firstly, the fuzzy vault scheme becomes secure against
offline brute-force attacks. Secondly, instead of a binary
verification, we can derive a shared cryptographic key if
and only if the biometric verification was successful.

OPRF evaluation. The secret polynomial f is the informa-
tion that is used as input to the OPRF. The evaluation that
takes place obliviously is a signature using a secret key k
held by a third party we call the signer. In practice, this
party can be instantiated with a secure hardware execution
environment located at the server. Its only objective is
evaluating the OPRF, and it therefore at no point sees any
biometric information. From the OPRF evaluation, the client
receives a signature of f without learning the signing key k,
and the signer does not learn f . Based on this signature, a
secret key skt with respect to template t is derived, and its
corresponding public key pkt can be computed accordingly.

The evaluation of the OPRF is the component that
enforces an interaction for each guess a biometric template.
In terms of a brute-force attack, the public key pkt allows
for similar confirmation of a correct guess as was previously
provided by the hash H(f). However, in order to compute
pkt, a signature needs to be obtained. As long as the OPRF
key k remains secret, an offline search is therefore infeasible.

Key exchange. During an enrolment phase, a public key
pkt derived from template t is stored at the server. For
authentication, a client computes a fresh key pair (skt′ , pkt′)
derived from her freshly captured feature vector t′. The
server now encapsulates a cryptographic key using the user’s
stored reference public key pkt. The user can decapsulate the
key if and only if her fresh probe secret key skt′ corresponds
to the stored public key. Due to the fuzzy vault construction,
(skt′ , pkt) will only be a meaningful key pair if f ′ = f , i.e.,
only if t and t′ are within correction capacity τ .

1.4. Structure of Paper

The rest of this paper is structured as follows: In Sec-
tion 2, background information and definitions required for
the construction of our protocol are presented. As our main
contribution, Section 3 presents our BAKE protocol with
security definitions and proof sketches. Section 4 presents
the experimental evaluation of the protocol and practical
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TABLE 2. SELECTED BIOMETRIC FEATURE REPRESENTATIONS.

Modality Template Fixed-Length Ordered Type

Face DCNN embedding ✓ ✓ float

Fingerprint Minutiae ✗ ✗ integer

FingerCode ✓ ✓ binary

Iris IrisCode ✓ ✓ binary

comparison with related work, before we outline our con-
clusions in Section 5.

2. Preliminaries

The framework for automated and interoperable biomet-
ric recognition has been standardised in ISO/IEC 19794-1
[22], and subsequent parts of the standard define biometric
data interchange formats for the modalities fingerprint, face,
iris, voice, handwritten signatures, and vascular biometrics.
For the scope of our work, we look at the three most preva-
lent modalities fingerprint, face, and iris, for which well-
tested fuzzy vault schemes exist. An overview of common
feature representations is given in Table 2.

2.1. Fingerprint Recognition

The representation extracted from a fingerprint sample
to be used for biometric recognition is its ridge lines, which
can be captured both with capacitive, optical, or touchless
sensors. From the pattern of ridge lines, significant points
known as minutiae are extracted as compact and distinguish-
ing features, specifically, ridge endings and bifurcations,
namely the location and orientation where one ridge line
splits into two. As specified in ISO/IEC 19794-2 [23], a
minutiae template is represented as a list of tuples (x, y, θ)
of the x- and y-coordinates of the minutiae given in pixels
from the left upper corner of the captured image along with
their tangential angle θ with respect to the x-axis. It is
important to note that a set of minutiae has no meaningful
inherent ordering, even though the template lists them by
x-coordinate. The typical number of genuine minutiae in a
human fingerprint ranges from 40-100 [7], depending on the
image quality and environmental factors during capture.

While minutiae-based representations have the potential
for high recognition accuracy, they come with the challenge
of potential rotation of the captured sample and hence the
cloud of minutiae points and non-linear transformations
that need to be addressed through costly and difficult pre-
alignment processes. Therefore, fixed-length fingerprint rep-
resentations have been proposed, the most prominent of
which is the FingerCode [24] representation. Using a set
of Gabor filters, FingerCode templates yield a translation-
invariant and to some degree rotation-invariant representa-
tion of a fingerprint image. Most importantly, FingerCode
templates are of fixed-length and ordered by dimension,
which enables the use of simple comparison functions such

as Hamming distance or Euclidean distance. Such functions
produce dissimilarity scores, such that a verification attempt
is accepted when the comparison score is below the thresh-
old τ , and rejected else.

Note that generally speaking, rotation invariance is a
property independent of minutiae-based or fixed-length rep-
resentations, even though it is more commonly found in the
latter. A fitting example is Minutia Cylinder Code (MCC)
[17], a rotation-invariant minutiae-based template represen-
tation. Approaches to handle rotation and pre-alignment for
minutiae templates include [25] and [26]. For the scope
of our work, we do not deal with the challenge of pre-
alignment further, but assume user guidance through the
capture process, e.g., through the hardware design of the
capture device. In our experimental evaluation, we use a
pre-aligned dataset to model this scenario adequately [27].

Minutiae-based comparators are more complex due to
the problem of finding an accurate mapping between two
unordered, noisy sets containing of a variable number of
two-dimensional points. Even for mated comparison trials,
the number of detected minutiae and their location varies
depending on the image quality and possible impairing
factors such as dirt, wounds, or water on the finger. Common
approaches to minutiae comparators have been based on
closest neighbours [16], fixed-radius neighbourhoods [17],
or graph-based approaches [28]. Despite their differences
and individual shortcomings, they share one common aim: at
least τ minutiae points need to be mapped uniquely between
the two sets, such that each pairing is considered a matching
minutiae pair.

2.2. Biometric Performance Metrics

Biometric performance testing and reporting is stan-
dardised in ISO/IEC 19795-1 [29] and subsequent parts
of the standard. Reporting the performance of a biometric
system within this framework is an important foundation for
benchmarking, reproducibility, and reliability of research in
biometrics.

The evaluation of biometric systems is based on two
components: error rates and throughput rates. In terms of
throughput rates, both the computational speed of the trans-
action and the time needed for the user to interact with the
system are considered. Error rates report on the accuracy of
the system. For a verification scenario, the most important
terms and metrics are:

- False Non-Match Rate (FNMR): proportion of mated
comparisons that resulted in a reject decision.

- False Match Rate (FMR): proportion of non-mated
comparisons that resulted in an accept decision.

The FMR can be thought of as the security level of the
biometric system, detailing how many zero-effort imposters
were able to be verified. In real-life scenarios, systems with
a FMR below 1% are considered secure, while high-security
applications such as automated border control require a
FMR lower than 0.1% [30]. The FNMR on the other hand
can be considered as the convenience level of the system,
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detailing how many mated comparison trials were not able
to be verified. A FNMR up to 5% is considered acceptable.

The trade-off between FMR and FNMR can be plotted as
a Detection Error Trade-Off (DET) curve, where the FMR
and FNMR are computed for every comparison score in
the test set as the decision threshold. The advantage of a
DET compared to single-number statistics is therefore its
threshold independence.

Factors impacting the recognition performance of a bio-
metric system are first and foremost the sample quality both
during enrolment and verification, and the robustness of
the feature representation and comparison algorithm with
regard to rotation, translation, and noise of the samples.
Furthermore, any feature transformation such as binarisation
may impact the accuracy of the system.

2.3. Fuzzy Vault

The concept of fuzzy vaults was first introduced by [11],
who propose a scheme that allows to lock a secret f using a
biometric feature secret set t using a probabilistic algorithm.
The output of this algorithm is a locked fuzzy vault that can
be unlocked using a second biometric feature set t′, if there
are enough points the intersection of t and t′. We give a
short definition of their original scheme before we move on
to the state-of-the-art for different biometric modalities.

Definition 1 (Fuzzy Vault Scheme [11]). Let C be an error-
correcting code (e.g., a Reed-Solomon code) with correction
capacity τ and H : C → {0, 1}2λ, for security parameter λ,
be a cryptographic hash function. Then, a fuzzy vault scheme
is a set of the following algorithms:

• (f, V ) ← lock(t): On input of a biometric feature
set t, the algorithm samples a random secret poly-
nomial f ∈ C and outputs a locked fuzzy vault V .

• f ′ ← unlock(V, t′): On input of a locked fuzzy
vault V and a biometric feature set t′, the algorithm
outputs an opening polynomial f ′ ∈ C.

The reconstructed output can be compared against the origi-
nal input using H(f). A basic authentication protocol based
on fuzzy commitment is given in Figure 1.

Instantiation for Fingerprint. The original schemes by
[11] and a similar scheme by [31] have been proven to be
insecure due their construction based on large point clouds
to hide the secret f , which are vulnerable to correlation
attacks [32]. Therefore, [15] presented an improved scheme
to mitigate correlation attacks (see [15], Section 1.2.3) that
fulfils the requirements of ISO/IEC 24745 [6].

The improved fuzzy vault scheme has first been con-
structed for minutiae-based fingerprint representations [15].
Here, minutiae are encoded into a finite field Fp using
absolute pre-alignment and quantisation to account for a
certain degree of noise with regard to the position of the
minutiae. The set of minutiae t ⊂ Fp is then considered the
biometric template. A polynomial f ∈ Fp[x] of degree τ−1
is chosen uniformly at random and locked as

Enrolment
Setup party Server
t reference template
(f, V )← lock(t)

H(f), V

store (H(f), V )

Verification
Client Server
t′ probe template (H(f), V )

request H(f), V

H(f), V

f ′ ← unlock(V, t′)

return H(f) = H(f ′)

Figure 1. Fuzzy vault authentication protocol based on [11].

lock(t) = (f, f(x) +
∏
a∈t

(x− a)) =: (f, V ).

To unlock the vault, V is evaluated on the probe minutiae
set t′ and decoded using a Reed-Solomon decoder, yielding

unlock(V, t′) = decode({(b, V (b)) | b ∈ t′}) =: f ′.

Lemma 1 (Theorem 1 in [15]). Let (f, V )← lock(t) be a
commitment to a polynomial f ∈ Fp[x] with minutiae set t,
and f ′ ← unlock(V, t′) an unlocking of V using a minutiae
set t′. Then, f = f ′ if and only if |t ∩ t′| ≥ τ .

Analogue constructions exist for iris [33] and face [34]
recognition, which we refer the reader to for full details.

2.4. Entropy of Biometric Representations

The entropy of biometric data is a topic that is often re-
ferred to in works about fuzzy cryptographic primitives [9].
In the literature, the entropy of a face has been determined
at 56 bits [35], a minutiae-based fingerprint representation
at 82 bits [36], and an iris at 249 bits [37]. However, these
numbers can only be considered as an upper bound of the
entropy of a certain biometric instance, as the amount of
information in a biometric sample heavily depends on the
capture device used and its fidelity (e.g., its resolution) as
well as the feature extraction algorithm used.

In addition, [15] argues that it is not in all scenarios
sensible to use the entropy of a single biometric template
as a measure for security, which is an overestimate when it
comes to comparisons between biometric features. Here, the
false-accept security defined as log2(FMR−1) gives a more
accurate measure, as it is sufficient for an attacker to guess
a template that is close enough to a reference template.
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2.5. Cryptographic Primitives

Definition 2 (Pseudo-Random Function, [38]). A family of
functions fk : {0, 1}m → {0, 1}n with key k ∈ {0, 1}λ is
called pseudo-random (PRF) if the following holds:

• fk(x) is efficiently computable from k and x.
• It is not efficiently decidable whether one has access

to a computation oracle for fk(·) or to an oracle
producing uniformly random bit strings of length m.

Definition 3 (Oblivious Pseudo-Random Function, [39]). A
two-party protocol π between a client and a server is an
oblivious pseudo-random function (OPRF) if there exists
some PRF family fk, such that π privately realizes the
following functionality:

• Client has input x; Server has input k.
• Client outputs fk(x); Server outputs nothing.

Definition 4 (Hashed Diffie-Hellman OPRF, [40]). Let G
be a cyclic group, x ∈ {0, 1}∗ the client input, k ∈ Zq the
server’s secret key, HG : {0, 1}∗ → G and HZq

: {0, 1}∗ →
Zq hash functions that output values G and Zq, respectively.
The protocol HashDH consists of the following algorithms:

• (B, r) ← blind(x): The client samples a random
r ←$ Zq and outputs B ← [r]HG(x).

• S ← sign(B, k): On input B ∈ G, the server
outputs S ← [k]B.

• sk← unblind(S, r): On input S ∈ G and r ∈ Zq,
the client outputs sk← HZq

(x, [r−1]S).

As a result of this protocol, the client privately obtains
HZq (x, [k]HG(x)) without learning k and without the server
learning x.

Definition 5 (Key Encapsulation Mechanism, [41]). A key
encapsulation mechanism (KEM) is a scheme with three
algorithms KeyGen, encap and decap, where

• (pk, sk)← KeyGen(1λ): takes as input the security
parameter λ and outputs a public key pk and a secret
key sk.

• ctx ← encap(ck, pk): takes as input a key ck and
public key pk and outputs an encapsulation ctx←
encap(ck, pk) of ck under the public key pk.

• ck ← decap(ctx, sk): takes as input an encapsu-
lated key ctx and a secret key sk and outputs a
decapsulated key ck.

We require that for all (pk, sk) generated from KeyGen
we have that ck = decap(encap(ck, pk), sk), except with
negligible probability, and that the scheme is CCA secure.

A KEM can, e.g., be instantiated with (Elliptic Curve)
Diffie Hellman [42], RSA [43] or CRYSTALS-Kyber [14].

3. Biometrics-Authenticated Key Exchange

In this section, we introduce our protocol for Biometrics-
Authenticated Key Exchange (BAKE) built from generic
fuzzy commitment schemes, oblivious pseudo-random func-
tions (OPRFs) and key-encapsulation mechanisms (KEMs).

3.1. Setting

For our proposed protocol, we assume that a biometric
capture device is linked to a client which performs the
preprocessing and feature extraction, and acts as a communi-
cating party in the protocol. Its communication counterparts
are a server which controls a database of locked fuzzy vaults
and client reference public keys, and a signer which is in
possession of a secret OPRF key. In practice, the signer can
be instantiated by a trusted execution environment at the
server. For this reason, we do not model direct communica-
tion between the client and the signer, but work under the
harder assumption that all communication between client
and signer is seen by the server. This is a common practice
in biometric information protection [44], as it allows for
enhanced network security choices that protect the party
handling secret key material. For example, the signer can
be set up in a local area network that does not have to be
accessible over the internet.

3.2. Threat model

The goal of an adversary taking control over one or more
of the parties participating in the BAKE protocol is to obtain
or guess a biometric feature vector that is close enough to
an enrolled reference template to authenticate to either this
or other systems, or to retrieve personal information about
the enrolled data subjects from it. Guessing a feature vector
is always an attack on a biometric system. However, two
measures can be taken to prevent an attacker from authen-
ticating with a guess: firstly, presentation attack detection
(PAD) can be applied at the capture device. In reality, it is a
hard problem to construct a presentation attack artefact, e.g.,
a silicone finger with a stolen fingerprint, that is sufficiently
realistic to pass PAD barriers. Secondly, repeated guesses of
biometric feature vectors are only feasible if the attacker re-
ceives confirmation that the guess is correct. In our protocol,
such confirmation can only be obtained through an OPRF
evaluation, which itself requires interaction. Therefore, we
enforce rate-limiting on the number of repeated authentica-
tion attempts both at the server and the signer, such that
brute-force attempts can be detected and denied.

For offline brute-force searches, a secondary attack
mechanism of an adversary is to obtain the secret OPRF
key held by the signer in order to run an offline brute-force
search on the reference database. With regard to the enrol-
ment database, we assume an honest enrolment transaction
for all reference subjects for which information is stored in
the database. In practice, this could be realised by a trusted
third party we refer to as the setup party. Going forward,
we only model security for the verification transactions of
the system.

Given these threats, we work under the assumption that
PAD is applied at the capture device, and that the capture
device is always honest in the sense that it does not store
or publish the biometric features it sees. It is evident that
a client wins the security game trivially when it stores and
discloses templates from data subjects. Therefore, we model
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the case where an adversary wants to learn templates from
subjects who do not provide it to the capture device. With re-
gard to man-in-the-middle attacks, we assume authenticated
communication channels between all parties, such that an
adversary needs to gain control of a party that is actively
involved in the protocol. Similarly, the parties win trivially
when all three of them collude, which is why we do not
model this case in more detail.

Overall, we assume that an adversary implicitly keeps a
state of all information it has seen from previous algorithms
and that any adversary has access to a realistic amount
of classical computing power and is not restricted from
running an efficient brute-force search in terms of storage
or computation power.

3.3. Modification of Fuzzy Vault Schemes

In the original improved fuzzy vault schemes, the de-
coding algorithm with highest performance both in terms
of execution times and accuracy is the Guruswami-Sudan
decoder [45]. In all three fuzzy vault schemes discussed in
our work [15], [33], [34], the algorithm of [45] is used in
a list decoding mode. Unlocking a fuzzy vault with feature
vector t′ corresponds to a randomised brute-force decoding
strategy, where subsets of t′ are chosen uniformly at random
and evaluated as unlocking sets for the reference fuzzy vault.

During this randomised decoding, a candidate polyno-
mial f ′ is generated for each subset and compared against
the stored hash H(f) corresponding to the biometric refer-
ence template t. When a candidate polynomial is found for
which H(f) = H(f ′), the decoding attempts are stopped.
If no candidate polynomial is found within a certain number
of decoding attempts, the underlying comparison of t and
t′ is classified as a non-mated comparison trial.

In our protocol however, we do not wish to store H(f) at
the server as it allows for offline brute-force attacks. Instead,
we run the full decoding attempts until the threshold for non-
mated comparison trials is reached, even when we expect
a mated comparison trial. During decoding, we temporarily
store all candidate polynomials and sort them with respect
to their frequency. For a mated comparison, we expect the
correct candidate polynomial f ′ for which H(f ′) = H(f) to
appear as the most frequently reconstructed polynomial due
to the large overlap of the sets t and t′. A similar strategy is
applied in [31] and is supported by our experimental evalu-
ation, showing only a negligible deviation with regard to the
biometric performance between the hash-verified decoding
and highest-frequency decoding strategies.

Notably, the FMR and thereby security of the system is
not affected by the change to highest-frequency decoding,
as non-mated comparisons still yield no matching candidate
polynomial. If no matching candidate polynomial has been
found before the threshold of the list decoder, this includes
the polynomial that occurs most often. Therefore, only
changes in the FNMR rate or convenience of the overall
system can be expected, when the most frequent polynomial
in a mated comparison is not the matching candidate poly-
nomial. This occurs for example in cases where the second

most frequent polynomial is the matching candidate poly-
nomial. If one wished to improve upon the FNMR, a viable
strategy would be running the authentication protocol for
a certain number of most frequent polynomials. However,
for the scope of our work, the FNMR degradation is not
significant, and most importantly, the security in terms of
FMR is not impacted.

3.4. Protocol

Definition 6. The BAKE protocol consists of the following
algorithms:

• pp ← setup(1λ): The setup algorithm de-
fines a universe P , randomness space R, key
space K and a cryptographic hash function
H : {0, 1}∗ → {0, 1}2λ. Further, the setup algorithm
publicly defines an error-correcting code C with
correction capacity τ . All following algorithms im-
plicitly inherit pp.

• (f, V ) ← lock(t): The algorithm takes as input a
biometric template t, samples a random polynomial
f ∈ C, and outputs f and a locked fuzzy vault V .

• f ′ ← unlock(V, t′): The algorithm takes as input a
biometric probe feature vector t′ and locked fuzzy
vault V , and outputs an opening polynomial f ′.

• (B, r) ← blind(f): The algorithm samples a ran-
dom element r ∈ R and outputs an element B ∈ P .

• S ← sign(B, k): On input B ∈ P and key k ∈ K,
the server outputs a signature S ∈ P .

• sk ← unblind(S, r): On input S ∈ P and r ∈ R,
the algorithm outputs an secret key sk ∈ K.

• (sk, pk) ← KeyGen(1λ): The algorithm outputs a
secret key sk ∈ K and a public key pk ∈ P .

• pk ← pkGen(sk): The algorithm takes as input a
secret key sk ∈ K and outputs a corresponding
public key pk ∈ P .

• ctx← encap(ck, pk): The algorithm takes as input
a cryptographic key ck and outputs its encapsulation
ctx← encap(ck, pk) under the public key pk.

• ck← decap(ctx, sk): The algorithm takes as input
an encapsulated key ctx and a secret key sk and
outputs a decapsulated key ck.

The BAKE protocol is executed between the three parties
client, server and signer in two modes: enrolment, which is
given in Figure 2 and verification, given in Figure 3.

During enrolment (Figure 2), a client public key cpkt is
derived from a biometric reference template t, and stored at
the server together with a locked fuzzy vault V of t using
a secret random polynomial f . First, the client generates f
and locks the vault with template t. Then, it initiates the
OPRF evaluation on input f . The signer signs the blinded
input f using the OPRF key k, and client is able to unblind
and obtain its secret key cskt, from which it computes the
corresponding public key cpkt. To conclude the enrolment
step, the client sends the tuple (V, cpkt, id) to the server to
be stored for future reference.
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For verification and key exchange (Figure 3), the client
requests the fuzzy vault V stored at the server for identity
id, and, using a biometric probe t′, unlocks the vault to a
polynomial f ′. Then, the OPRF evaluation on f is computed
analogously to the enrolment step. At the same time, the
client and server generate ephemeral key pairs to prepare
the key exchange. Additionally, the server has a static key
pair (ssk, spk) that is not derived form any biometric infor-
mation. We assume that the client has already stored spk,
such that the server does not need to transmit it each time.
Once all keys have been generated, the server encapsulates
a common key using the client’s public key cpkt. The client
can decapsulate the common key if and only if the secret
reconstructed from the fuzzy vault was correct, i.e., in the
case where t and t′ are closer than threshold τ .

3.5. Security Definitions

Following the definition of the BAKE protocol in Figures
2 and 3, we give formal definitions of the security of the pro-
tocol. For simplicity, we model the use of identifiers within
the enrolment database implicitly. In theory, an adversary
wants to learn a biometric feature vector that is close to any
enrolled template. In practice however, it always needs to
choose a specific identity to attack or run attacks on multiple
specific identities in parallel. The following definitions and
proof sketches model security in the case where a template t
is enrolled in the database held by the server, and an honest
client would use a feature vector t′ to authenticate.

Denote by f−1 = log2(FMR−1) the false-accept secu-
rity of a biometric feature extractor and comparator, let ℓ be
the rate limit enforced by the server and the signer, and let
ℓA be the brute-force capacity of the attacker A.

Definition 7. (Correctness) We say that a BAKE protocol
is correct, if a capture subject presenting a biometric probe
feature vector t′ and identifier id can successfully authen-
ticate to an honest server if and only if dist(t′, tid) ≤ τ
for a fixed biometric verification threshold τ , except with
negligible probability.

Definition 8. (Client Privacy) We say that a BAKE protocol
has client privacy, if an adversary A controlling the client
has the following advantage in obtaining a biometric feature
vector t′ that is close to an enrolled biometric template t:

Pr

dist(t, t′) < τ :

pp← setup(1λ)
{V, cpkt} ← enroll(pp, t)
(B′, cpke)← A(pp, V )

(sske, spke)← KeyGen(1λ)
S′ ← sign(B′, k)

t′ ← A(S′, spk, spke, ctx)

 ≤ ℓf−1 + negl(λ).

Definition 9. (Server Privacy) We say that a BAKE pro-
tocol has server privacy, if an adversary A controlling the
computation server has the following advantage in obtaining
a biometric feature vector t′ that is close to an enrolled

biometric template t:

Pr

dist(t, t′) < τ :

pp← setup(1λ)
{V, cpkt} ← enroll(pp, t)
B′ ← A(pp, {V, cpkt})

S′ ← sign(B′, k)
t′ ← A(S′)

 ≤ ℓf−1 + negl(λ).

If client and server run the protocol BAKE honestly, the
signer only sees the blinded element, which is information-
theoretically secure, and hence, independent of the biometric
template. We therefore do not model signer privacy.

The advantage of an adversary controlling both the client
and the server effectively reduces to server privacy. In this
scenario, the information the adversary needs to guess is the
signed element S′. However, as discussed above, the signer
cannot distinguish between signing requests for different
biometric feature vectors corresponding to mated authen-
tication attempts, or repeated signing requests for a single
identity aimed at running a brute-force search. Therefore,
rate-limiting at the signer can be enforced by user-specific
OPRF keys. This way, the signer will learn the identifier
of the user attempting to authenticate, but is not able to
gain any more knowledge about her biometric data, while
effectively preventing the server from learning it.

The advantage of an adversary controlling both the client
and the signer initially reduces to the definition of client
privacy, as the adversary seeks to learn the reference public
key stored during enrolment. However, after running one
(unsuccessful) authentication attempt for a specific identity,
the adversary will receive the encapsulated key derived from
the biometric reference data of the data subject in question.
From that point on, it can guess a biometric feature vector,
issue a a signature by use of the signing key, and compare
the resulting key against the obtained one. Therefore, we
realistically model an adversary controlling both the client
and the signer as being able to run an offline search on
the biometric enrolment database. We note that due to
the architecture considerations, this scenario is somewhat
unlikely in practice, and a more realistic threat is the server
and signer colluding.

Definition 10. (Client-Signer Privacy) We say that a BAKE
protocol has client-signer privacy, if an adversary A con-
trolling both the client and the authentication server does not
have an advantage in obtaining a biometric feature vector
t′ that is close to any enrolled biometric template t above
running a brute-force search on V .

Pr


dist(t, t′) < τ :

pp← setup(1λ)
{V, cpkt} ← enroll(pp, t)
(B′, cpke)← A(pp, id, V )
(sske, spke)← KeyGen(1λ)

S′ ← A(B′, k)
ctx← encap(cks, cpkt)
t′ ← A(S′, spk, spke, ctx)


≤ ℓAf

−1 + negl(λ).

Definition 11. (Server-Signer Privacy) We say that a BAKE
protocol has server-signer privacy if an adversary A con-
trolling both the computation server and the authentication
server does not have an advantage in obtaining a biometric
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Enrolment
Setup party Server Signer
t reference template ssk ∈ K k ∈ K

spk ∈ P
(f, V )← lock(t)

(B, r)← blind(f)

B B

S ← sign(B, k)

S S

cskt ← unblind(S, r)

cpkt ← pkGen(cskt)

V, cpkt, id

store
(V, cpkt, id)

Figure 2. BAKE enrolment protocol.

Verification
Client Server Signer
t′ probe feature vector ssk ∈ K k ∈ K
spk ∈ P spk ∈ P

(V, cpkt, id)

id

V

f ′ ← unlock(V, t′)

(B′, r′)← blind(f ′)

(cske, cpke)← KeyGen(1λ) (sske, spke)← KeyGen(1λ)

B′, cpke B′

ctx← encap(cks, cpkt) S′ ← sign(B′, k)

S′, spke, ctx S′

cskt′ ← unblind(S′, r′)

cpkt′ ← pkGen(cskt′)

ckc ← decap(ctx, cskt′)

return H(ckc) = H(cks)

Figure 3. BAKE verification protocol.

feature vector t′ that is close to any enrolled biometric
template t above running a brute-force search on V .

Pr

dist(t, t′) < τ :

pp← setup(1λ)
{V, cpkt} ← enroll(pp, t)

f ′ ← unlock(V, t′)
B′ ← blind(f ′)

(cske, cpke)← KeyGen(1λ)
t′ ← A(pp, id, V, B′, k, cpkt, cpke)

 ≤ ℓAf
−1 + negl(λ).

3.6. Instantiation Based on Discrete Logarithms
In this section, we give an instantiation of the protocol

defined in Figures 2 and 3 using cryptographic primitives

that build on the security of discrete logarithms (DL). Con-
cretely, we instantiate the universe P with a cyclic group G,
which can be the group of points on an elliptic curve, and
the key space K and randomness space R with a scalar field
Zq, where q is the order of G. Further, we also define two
hash functions HG : {0, 1}∗ → G and HZq : {0, 1}∗ → Zq.

Building on these foundations, the respective algorithms
of Definition 6 are instantiated with the Hash-DH OPRF
defined in Definition 4 and ephemeral Diffie-Hellman key
exchange with a key-derivation function KDF. The detailed
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protocols for enrolment and verification are defined in Fig-
ures 4 and 5, respectively. In the following, we refer to the
verification protocol in Figure 5 as DL-BAKE.

3.7. Security Proofs
In this section, we provide theorems stating the security

of the protocols above based on the hardness of discrete
logarithms, and we sketch the security proofs.

Theorem 1 (Correctness). Assume that a probe sample t′ is
within the verification threshold τ compared to a biometric
template tid for some registered identity id. Then the DL-
BAKE protocol in Figure 5 is correct.

Proof sketch. This follows directly from the construction.
If the probe sample t′ is within the verification threshold τ
compared to a biometric template tid for some registered
identity id, then the client will successfully reconstruct
the correct polynomial f ′ using interpolation. From the
correctness of the OPRF, the KEM and the KDF, we then
conclude that the client and the server compute the same
values, and the data subject is correctly authorised.

Theorem 2 (Client Privacy). Let A0 be an adversary against
client privacy in the DL-BAKE protocol in Figure 5 with
advantage ϵ0. Then there exists an adversary A1 against the
fuzzy vault V with advantage ϵ1 and an adversaryA2 against
the OPRF with advantage ϵ2, such that ϵ0 ≤ ϵ1+f−1(1+ϵ2).
The runtime of A0 is essentially the same as of A1 and A2.

Proof sketch. We consider a single log-in attempt by an
adversary A0 controlling the client. If A0 guesses a bio-
metric probe, the probability that this probe is close to the
reference sample is approximately f−1. Furthermore, if A0

with probability ϵ0 can output a valid probe sample t′ given
access to the fuzzy vault V , we can trivially turn A0 into an
adversary A1 against V with the same advantage. Moreover,
if A0 with advantage f−1 can output a valid probe sample
t′ when having access to values signed with key k, then we
can turn A0 into an adversary A2 against the OPRF. Finally,
we observe that the KEM are independent of tid, and hence,
an adversary A0 cannot learn anything from interacting with
this protocol. We conclude that the protocol achieves client
privacy.

Theorem 3 (Server privacy). Let A0 be an adversary against
server privacy the DL-BAKE protocol in Figure 5 with
advantage ϵ0. Then there exists an adversary A1 against the
fuzzy vault V with advantage ϵ1 and an adversaryA2 against
the OPRF with advantage ϵ2, such that ϵ0 ≤ ϵ1+f−1(1+ϵ2).
The runtime of A0 is essentially the same as of A1 and A2.

We omit the proof of Theorem 3 since it is similar to
Theorem 2.

Theorem 4 (Client-Signer Privacy). Let A0 be an adversary
against client-signer privacy in the DL-BAKE protocol in
Figure 5 with advantage ϵ0 controlling both the client and
the signer. Then ϵ0 ≤ f−1 and A0 has no advantage
in guessing a biometric probe within the threshold of an
enrolled template above a brute-force search.

Proof sketch. We consider a colluding malicious client
and malicious signer. Assume that A0 runs the verifica-
tion protocol once on any input probe t′ and receives
(S′, spke, H(cks)) from the server. Then A0 can guess
a biometric probe, interpolate to get a polynomial f ′ and
execute the OPRF on input f ′ using the signer’s key k. For
each guess, A0 can check if the KDF output corresponds to
H(cks). No information about any enrolled template tid is
encoded in the messages from the server.

Theorem 5 (Server-Signer Privacy). Let A0 be an adversary
against server-signer privacy in the DL-BAKE protocol in
Figure 5 with advantage ϵ0 controlling both the server and
the signer. Then ϵ0 ≤ f−1 and A0 has no advantage in
guessing a biometric template within the threshold of an
enrolled template above a brute-force search.

Proof sketch. We consider a colluding malicious server and
malicious signer. Then A0 can guess a biometric probe,
interpolate to get a polynomial f ′ and execute the OPRF
on input f ′ using the signer’s key k. For each guess, A0

can check if [HZq
(B′)]G = cpkr. No information about

any enrolled template tid is encoded in the messages from
the client.

3.8. Improved Security using NIZK

The protocol can be further secured by the addition
of non-interactive zero-knowledge proofs (NIZK). Namely,
we show how to apply a standard Chaum-Pederson zero-
knowledge proof [46] using a Fiat-Shamir transform [47]
yielding a non-interactive proof.

The NIZK is added to prove the honest evaluation of
the OPRF. Thereby, a client can verify that the signer com-
puted the signature honestly. In the case of an unsuccess-
ful authentication attempt, the client therefore gains more
knowledge about the reason of failure, and can potentially
reveal a corrupted signer. We note that above this additional
information, the passively secure protocol already allows for
the protection of the biometric data even in the presence of
malicious adversaries, as long as at least one of the parties
remains honest as given by the security definitions above.
A detailed verification protocol with the addition of NIZK
is given in Appendix A.

3.9. Instantiation Based on Lattices

Our protocol can also be instantiated with lattice-based
cryptographic primitives, which are assumed to yield post-
quantum security for correct parameter choices [48]. Two
components in the protocol need to be instantiated: the
OPRF and the KEM.

A construction of lattice-based OPRFs has recently been
proposed by [13], which builds on the security of the Ring
Learning-with-Errors (R-LWE) problem [49], and we give
an intuition for how this construction can be embedded in
our protocol. The authors of [13] base their OPRF on a PRF
using a gadget matrix G−1, the discrete logarithm equivalent
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Enrolment (DL instantiation)
Setup party Server Signer
t reference template ssk ∈ Zq k ∈ Zq

spk ∈ G
f ← Fp[x] : deg(f) = τ + 1

V (x) = f(x) +
∏
a∈t

(x− a)

x← f(0)

r ←$ Zq

B ← [r]HG(x)

B B

S = [k]B

S S

U ← [r−1]S = [k]HG(x)

cskt ← HZq (U)

cpkt ← [cskt]G

V, cpkt, id

store
(V, cpkt, id)

Figure 4. BAKE enrolment protocol instantiated with discrete-logarithm OPRF and Diffie-Hellman key exchange.

of which can be thought of as a product of group generators,
where a generator is included in the product if the input bit is
true, and omitted else, see [50] for more details. This specific
PRF construction is put in place to enable verifiability and
security against active adversaries.

However, the zero-knowledge proofs appended to the
lattice-based PRF for active security are not practical for
real-life situations, with proof sizes of several gigabytes
[13]. Therefore, we only look at the case of passive secu-
rity for the lattice instantiation, which can be significantly
simplified by replacing the PRF with a hash function.

Then, the OPRF can be executed as given in the paper,
continuing to omit all zero-knowledge proofs. The hashed
input is blinded by building an R-LWE sample from it, and
sent to the signer to obtain a signature with a secret OPRF
key k. The signer computes the signature as another R-LWE
sample, and the signed input can be recovered by the client
by subtracting a public commitment to k and rounding.

Finally, the Diffie-Hellman key exchange can easily
be replaced with a lattice-based KEM, e.g., the recently
standardised CRYSTALS-Kyber [14]. Then, the server en-
capsulates a common key using the client’s stored reference
public key. The client can only decapsulate the key if her
secret key constructed from the probe feature vector aligns
with the public key previously stored at the server, i.e., if
and only if the biometric inputs were found to be a mated
comparison trial.

4. Experimental Evaluation

We evaluated our protocol instantiated with elliptic
curves presented in Figure 5 experimentally and show the

results in this section. Our experiments were run on a com-
modity notebook with Intel Core i7-8565U CPU@1.80GHz
and 8GB RAM. Our code is available at https://anonymous.
4open.science/r/bake-7057 and includes automated installa-
tion scripts with all dependencies for easy reproducibility.

For the fingerprint fuzzy vault instantiation, we used
the open-source implementation provided by [15] with all
original parameter settings. This ensures perfect replace-
ability with other state-of-the-art fuzzy vault instantiations,
such as [33] for iris and [34] for face. In particular, we
run our implementation on the same fingerprint database
MCYT-330 [27] and same feature extractor, Digital Per-
sona’s FingerJetFX open source edition minutiae extractor1.
This means that all evaluations of biometric performance
can be compared directly to the original paper of [15] and
papers that compare their work with the latter [33], [34].

The only modification applied to the implementation of
[15] is in the unlocking function. Here, [15] use the stored
hash H(f) of the secret polynomial f corresponding to a
reference template t, which allows for offline brute force
attacks. Our protocol prevents offline attacks by removing
the hash and using highest-frequency decoding in its place
(see Section 3.3). As discussed above, this does not impact
the security in terms of the false-match rate of our protocol.

Our implementation of the OPRF and Diffie-Hellman
key exchange is based on OpenSSL. For all cryptographic
operations, we used P-256 [51] as the elliptic curve and
SHA-256 as the hash function.

To begin, we give a more detailed comparison of our
work with closely related work in Table 3 by extending

1. http://www.digitalpersona.com/fingerjetfx
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Verification (DL instantiation)
Client Server Signer
t′ probe feature vector ssk ∈ Zq k ∈ Zq

spk ∈ G spk ∈ G
(V, cpkt, id)

id

V

find {(b, y(b)) : b ∈ t′}
and decode to f ′ ∈ Fp[x]

x′ ← f ′(0)

r′ ←$ Zq

B′ ← [r′]HG(x
′)

cske ←$ Zq sske ←$ Zq

cpke ← [cske]G spke ← [sske]G

B′, cpke B′

cks ← KDF([sske]cpke, S′ = [k]B′

[ssk]cpke, [sske]cpkt,

cpke, spke, cpkt, spk)

S′, spk, spke, H(cks) S′

B′ ← [r′−1]S′ = [k]HG(x
′)

cskt′ ← HZq (B
′)

cpkt′ ← [cskt′ ]G

ckc ← KDF([cske]spke,

[cske]spk, [cskt′ ]spke,

cpke, spke, cpkt′ , spk)

return H(ckc) = H(cks)

Figure 5. BAKE verification protocol instantiated with discrete-logarithm OPRF and Diffie-Hellman key exchange.

TABLE 3. TABLE 1 IN [7] UPDATED WITH OUR PROTOCOL.

Scheme Technique Rounds Compatibility ISO/IEC 24745 [6]

fPAKE-1 [9] Garbled Circuits 5

iris, fixed-length fingerprint

✗

fPAKE-2 [9] PAKE + Secret Sharing 2 ✗

fuzzy aPAKE-1 [10] Secret Sharing + OT 2 ✗

fuzzy aPAKE-2 [10] aPAKE 2 ✗

BAKE-1 [7] Random Linear Codes 1 minutiae-based fingerprint ✗

BAKE-2 [7] Secret Sharing + Polynomial Interpolation 1 iris ✗

DL-BAKE (ours) Fuzzy Vault + OPRFs 2 minutiae-based fingerprint, iris, face ✓

Table 1 in [7] with our protocol. In terms of round efficiency,
our protocol compares well to [9] and [10] with two rounds
of communication, whereas [7] constructed a one-round
protocol. In terms of the protection of the biometric data
compliant with ISO/IEC 24745 [6], our protocol is the only
compliant one: we inherit unlinkability, renewability and
irreversibility from the fuzzy vault schemes. Moreover, we

show that our protocol is efficient in terms of execution
times in Table 4 and Figure 7 as well as in terms of biometric
performance shown in Figure 6. In comparison, fPAKE [9]
does not achieve irreversibility as templates are disclosed to
the server in cleartext, fuzzy aPAKE [10] does not achieve
computational efficiency, and [7] do not achieve an accept-
able biometric performance, as we show in Appendix B.
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Figure 6. Biometric performance for the DL-BAKE protocol instantiated
with fingerprint fuzzy vault [15].
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Figure 7. Execution times in milliseconds for the DL-BAKE protocol
instantiated with fingerprint fuzzy vault [15].

TABLE 4. EXECUTION TIMES IN MILLISECONDS FOR THE DL-BAKE
PROTOCOL INSTANTIATED WITH FINGERPRINT FUZZY VAULT [15].

Polynomial degree τ − 1

6 8 10 12 14 16

Feature extraction 200.59and preprocessing

lock 2.38

unlock 112.24 185.99 276.37 385.26 511.91 694.87

OPRF 0.21

KeyGen, pkGen 0.05

encap 0.16

decap 0.15

Verification 313.4 387.15 477.53 586.42 713.07 896.03(Figure 5)

FMR (%) 1.04% 0.04% 0.00% 0.00% 0.04% 0.09%

1− FNMR (%) 92.88% 88.79% 81.97% 73.18% 60.45% 44.09%

Estimated security 17 23 29 36 44 —in bits [15]

Regarding the computational performance and recogni-
tion accuracy of our protocol, we give timings for increasing
polynomial degrees τ−1 in Table 4, where τ is the biometric
decision threshold. At the same time, we give the biometric
performance in FMR and FNMR along with the estimated
false-accept security in bits as evaluated in [15]. As these
security levels are derived from the FMR and our modified
unlocking function does not impact the FMR, we are able
to refer to the evaluation performed in [15] directly. For
an acceptable recognition accuracy at τ − 1 = 8, the
execution of the protocol DL-BAKE given in Figure 5 takes
387.15 milliseconds. To compare, the fastest setting reported
in Table 2 in [7] also achieves 387 milliseconds, but at
significantly lower accuracy (see Appendix B).

The execution times are dominated by the constant cost
of feature extraction (200.59 milliseconds) and the cost for
unlocking, which is dependent on the polynomial degree.
Figure 7 visualises these dominating costs. We note that
timing for the enrolment part of the protocol given in
Figure 4 is 203.23 milliseconds, where feature extraction
dominates compared to the locking at 2.38 milliseconds.
However, the enrolment step is a one-time effort of the setup
of the system, and does not affect verification performance.

Accordingly, Figure 6 shows the trade-off between FMR
and FNMR for our protocol. To conclude the efficiency
evaluation of our protocol, we report that the communication
cost of objects transferred between the parties during the
verification step of the protocol is 65 bytes for any point
on the elliptic curve (i.e., cpke, spke, B

′ and S′), 152 bytes
for a locked fuzzy vault for the best parameter choice of
τ − 1 = 8, and 32 bytes for the hash digest.

5. Conclusion

In this work, we constructed secure biometrics-
authenticated key exchange from fuzzy vaults and proved
its security in compliance with ISO/IEC 24745. Our BAKE
protocol is efficient both in terms of execution times and
biometric performance.

The combination of asymmetric, secure and effi-
cient biometrics-authenticated key exchange has not been
achieved in prior works. Related protocols are either sym-
metric, and thus does not provide protection of the biometric
data on the server side, or inefficient in terms of compu-
tational speed due to their generality, or else insufficient
in terms of recognition accuracy, allowing for zero-effort
imposter attacks and low-effort brute-force security. The
accuracy deficiencies of the latter can not be addresses
by exchanging the biometric comparison subsystem, as the
construction is specific to the imprecise comparator used.

In our protocol, we enforce communication for every
adversarial guess through OPRFs. Using established and
interchangable fuzzy vault schemes for different biomet-
ric modalities, the encoded secret polynomial is input to
the OPRF, yielding a derived client keypair. During the
key exchange, the server uses the stored keypair generated
during the enrolment process, and the client uses a freshly
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extracted and signed keypair. Thereby, the key exchange is
only successful if the two biometric samples were close.

Furthermore, we show that our protocol can be in-
stantiated both with classical primitives, namely discrete
logarithm based OPRFs and Diffie-Hellman key exchange,
as well as with lattice-based OPRFs and KEMs.

Future work includes addressing the necessary pre-
alignment processes of minutiae-based fingerprint represen-
tations. A promising approach both with regard to rota-
tion and entropy is the use of 4-finger captures, where
four fingerprints are captured within one image. Through
the relative position of the fingers, pre-alignment can be
realised more efficiently than based on minutiae, and the
intra-identity independence of fingerprint patterns yield the
fourfold entropy of the biometric data. Notably, the imple-
mentation of the minutiae fuzzy vault evaluated in our work
includes the option of combining four fingerprints into one
fuzzy vault. However, auxiliary alignment data required for
pre-alignment are not yet discussed in this context.
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Appendix A.

In this Appendix, we give a verification protocol with
NIZK as discussed in Section 3.7. The protocol is given in
Figure 8.

Appendix B.

In this appendix, we give the experimental evaluation of
the recent work on biometrics-authenticated key exchange
proposed by [7]. Specifically, we show the biometric per-
formance of their construction for fingerprint and discuss
its shortcomings.

For this evaluation, we implemented Algorithm 2 in [7]
according to the description available in the paper.2 Accord-
ing to the description, we set the number of neighbours for
each minutia at µ = 4 and, iterating through the minutiae in
the template, construct the vectors vj,ρ from the minutia’s x-
and y-coordinates which are given in pixels (i.e., integers)
from the upper left corner. The calculation of the Euclidean
distances dj,1, ..., dj,4 therefore result in floating point num-
bers, whereas the angles ϕj,ρ,1, ..., dj,ρ,6 remain as integer
values. In Section 6.2.2 in [7], the authors state that the
number of neighbours µ = 4 originates an encoding of the
values dj,ρ and ϕj,ρ,ω into µ = 4 bits each. This relation
is not clear to us and we were not able to satisfactorily
follow the reasoning given by the authors of [7] during
an email exchange. Therefore, we give the evaluation of
the biometric performance for the original float and integer
values, which can be considered an upper bound for the
performance of a binary encoding. As comparison function,
we determined the set difference by mapping minutiae based
on their minimal Hamming distance.

We evaluated our implementation of Algorithm 2 in [7]
on the FVC2004 DB-1 [52], which is the least challenging
out of the four databases used in [7] in terms of image
quality and rotation of the fingerprint images. We compare
the performance against a state-of-the art rotation invariant
minutiae comparator, SourceAFIS [28], in Figure 9.

From the evaluation, it becomes evident that the finger-
print comparison algorithm proposed by [7] does not have
an acceptable performance. For the optimal threshold, the

2. We are happy to provide our Python code on request. In an email
exchange with the authors of [7] however, they stated that they could not
share their implementation due to licensing of a sponsor.
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Verification (DL instantiation with NIZK)
Client Server Signer
t′ probe template ssk ∈ Zq k ∈ Zq

spk ∈ G spk ∈ G
(V, cpkt, id)

id

V

find = {(b, V (b)) : b ∈ t′}
and decode to f ′ ∈ Fp[X]

x′ ← f ′(0)

r′ ←$ Zq

B′ ← [r′]HG(x
′)

cske ←$ Zq sske ←$ Zq

cpke ← [cske]G spke ← [sske]G

B′, cpke B′

cks ← KDF([sske]cpke, S′ = [k]B′

[ssk]cpke, [sske]cpkt, K = [k]G

cpke, spke, cpkt, spk) w ←$ Zq

A = [w]B′

D = [w]G

c = HZq (B
′, S′,K,G,A,D)

z = w − ck

S′, spk, spke, H(cks)

K, c, z

S′

K, c, z

B′ ← [r′−1]S′ = [k]HG(x
′)

cskt′ ← HZq (B
′)

cpkt′ ← [cskt′ ]G

ckc ← KDF([cske]spke,

[cske]spk, [cskt′ ]spke,

cpke, spke, cpkt′ , spk)

A′ = [z]B′ + [c]S′

D′ = [z]G+ [c]K

c′ = H(B′, S′,K,G,A′, D′)

return (c = c′, H(ckc) = H(cks))

Figure 8. BAKE verification protocol with discrete-logarithm NIZK.

FMR is measured at 27.8% with a FNMR of 25.4%. Both
of these values are not close to the required FMR of 0.1%
[30] and FNMR below 5%. Compared to the state-of-the-
art, the performance that can be achieved in this dataset
lies at a FMR of 1.01% at FNMR of 17.29%. This shows
the challenging nature of the dataset, which was collected
as a fingerprint verification challenge with the goal of pro-
viding challenging fingerprint samples. Therefore, we also
evaluated evaluated both algorithms on the less challenging
CASIA-FPV53 database. However, the result are similar

3. http://biometrics.idealtest.org

with a FMR of 27.6% and FNMR of 30.90% for BAKE-
1 compared to a FMR of 1.13% and FNMR of 9.85% for
SourceAFIS.

To conclude, the fingerprint comparison algorithm pro-
posed for the construction in [7] is not able to distinguish
between mated and non-mated comparison trials to a satis-
factory degree.
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Figure 9. Comparison score distributions for BAKE-1 [7] (top) and SourceAFIS [28] (bottom) on the FVC2004 DB-1 database [52].
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Figure 10. Comparison score distributions for BAKE-1 [7] (top) and SourceAFIS [28] (bottom) on the CASIA-FPV5 database (http://biometrics.idealtest.
org).
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