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Abstract—Biometric data are uniquely suited for connecting
individuals to their digital identities. Deriving cryptographic key
exchange from successful biometric authentication therefore gives
an additional layer of trust compared to password-authenticated
key exchange. However, biometric data differ from passwords in
two crucial points: firstly, they are sensitive personal data that
need to be protected on a long-term basis. Secondly, efficient
feature extraction and comparison components resulting in high
intra-subject tolerance and inter-subject distinguishability, doc-
umented with good biometric performance, need to be applied
in order to prevent zero-effort impersonation attacks.

In this work, we present a protocol for biometric resilient
authenticated key exchange that fulfils the above requirements
of biometric information protection compliant with ISO/IEC
24745. The protocol is based on established improved fuzzy
vault schemes and validated with good recognition performance.
We build our protocol from trusted primitives for password-
authenticated key exchange using oblivious pseudo-random func-
tions. Our protocol is independent of the biometric modality and
can be implemented based on the security of discrete logarithms
as well as lattices.

We provide an open-source implementation of our protocol
instantiated with elliptic curves and a state-of-the art unlinkable
fingerprint fuzzy vault scheme which achieves real-time efficiency
with transaction times of less than one second from the image
capture to the completed key exchange.

Index Terms—authenticated key exchange, oblivious pseudo-
random function, fuzzy vault, biometric information protection

I. INTRODUCTION

Biometric characteristics provide accurate and non-
reputable identification of individuals over several decades [1].
This makes them suited for bridging the gap between real
and digital identities in a way passwords or other machine-
generated identifiers cannot. At the same time however, these
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properties also make them uniquely vulnerable. In particular,
biometric information cannot be revoked or replaced in the
same way a password or cryptographic token can. Once a
digital representation of a biometric characteristic, further
referred to as a biometric template, has been leaked, the
underlying source (e.g., a particular finger or eye), can no
longer be used securely for authentication. In fact, biometric
templates provide no form of protection of the underlying data,
as they can be reversed to samples sufficient for attacks [2]-
[4].

Due to this risk, biometric data have been recognised as
sensitive personal data by the European Union’s General Data
Protection Regulation (GDPR) [5] and the ISO/IEC 24745
international standard on biometric information protection [6].
The latter defines three security requirements for secure bio-
metric systems: i) unlinkability and renewability, meaning that
an attacker cannot connect two protected biometric templates
stored in different applications, and new templates from the
same source look indistinguishable to a previously stored refer-
ence, ii) irreversibility, it should be impossible for an attacker
to retrieve original samples given only protected templates, and
iii) performance preservation, the computational performance
and the recognition accuracy of the system should not be
impacted significantly by adding a layer of protection to the
original data.

At first sight, the performance preservation requirement in
ISO/IEC 24745 seems to be a question of convenience only.
However, it details a second and crucial dimension that deter-
mines the security of biometric authentication: the accuracy
of the underlying biometric comparison function. Contrary
to passwords, which can be compared in an exact manner,
captured samples of the same biometric characteristic are never
exactly equal, but fuzzy. They are subject to noise such as
ageing, environmental influence, or image quality. Compari-
son of two samples is therefore based on some measure of
similarity. If this measure is too imprecise, or the feature
representation is not discriminative enough, an authentication
system is not capable of accurately distinguishing between
mated comparisons, where the samples stem from the same
subject, and non-mated authentication attempts, where the
samples stem from different subjects. Trust in the derived
authentication would consequently be low.

Recently, the idea of building authenticated key exchange on
the basis of biometrics has gained interest with the proposal of
Biometrics-Authenticated Key Exchange (BAKE) [7]. Analo-
gously to Password-Authenticated Key Exchange (PAKE) [8],
a client and server negotiate a shared cryptographic key that



should be equal if and only if the biometric authentication was
successful.

With their protocol, the authors of [7] achieve security in
terms of the protection of the biometric data with classical
security assumptions. However, their biometric comparator is
vulnerable, as we show by reproducing their results exper-
imentally. The reason for this imprecision is a fingerprint
comparison algorithm that is specific to their protocol, but has
not been evaluated in terms of biometric performance (i.e.,
accuracy). We provide this evaluation and show that the algo-
rithm is barely able to distinguish between mated comparison
trials within the same identity and non-mated comparison trials
between different identities. More generic protocols both on
symmetric fuzzy PAKE (fPAKE) [9] and asymmetric fuzzy
PAKE (fuzzy aPAKE) [10] have been proposed. However, with
regard to biometrics, they have the following shortcomings:
fPAKE [9] does not achieve protection of the biometric data,
which is shared with the server in plaintext. Fuzzy aPAKE
[10] achieves security in both dimensions in theory, but is
inefficient in practice as it is based on generic oblivious
transfer which is performed once for each bit in the biometric
template. In addition, [9] and [10] only enable comparison
of fixed-length biometric representations. The most accurate
comparison metric for fingerprints, one of the most popular
biometric modalities, is however based on variable-length
representations, the similarity of which cannot be expressed
as a simple distance function.

A. Contribution

In this work, we present a protocol for Biometric Resilient
Authenticated Key Exchange (BRAKE) that addresses the
deficiencies of previous works [7], [9], [10]. Our BRAKE
protocol achieves effective protection of the biometric data
while building on accurate and established biometric com-
parison functions that have been evaluated and improved in
the literature over many years. Our protocol is efficient with
execution times of under one second on commodity hardware
from the biometric capture to the completed key exchange,
including communication cost. More precisely, we contribute:

e Secure biometrics-authenticated key exchange from
trusted primitives: fuzzy vaults [11], Oblivious Pseudo-
Random Functions (OPRF), and Key Encapsulation
Mechanisms (KEM). Our two-round protocol can be
instantiated both with a discrete logarithm OPRF [8] and
Diffie-Hellman key exchange [12] as well as a lattice-
based OPRF [13] and KEM [14].

o Interchangeability of biometric modalities: our protocol
can be instantiated with different fuzzy vault schemes
that have been designed for different biometric modalities
and feature representations. In particular, it is compatible
with both fixed-length and variable-length representations
of biometric characteristics.

o Resistance against offline attacks: one known flaw of
fuzzy vault schemes for biometric authentication are
offline attacks [15]. In our protocol, we remove the check-
sum typically used to verify authentication attempts and
replace it with authenticated key exchange that requires
interaction for every attempt.

o Protection of the biometric data in storage and transfer
compliant with ISO/IEC 24745 [6]: if the underlying
fuzzy vault scheme achieves unlinkability, renewability,
irreversibility, and performance preservation, our proto-
col preserves these properties. Through our protocol’s
compatibility with lattice-based primitives, which are
assumed to be post-quantum secure, we further achieve
long-term protection of the underlying biometric data.

e Open-source implementation: an implementation of our
protocol instantiated with elliptic curves and a state-of-
the-art unlinkable fingerprint fuzzy vault scheme [15] is
available at https://github.com/dasec/BRAKE. We show
that our protocol achieves real-time efficiency with trans-
action times of under one second from the fingerprint im-
age capture at the sensor to the completed key exchange.

B. State-of-the-Art

We briefly discuss the state-of-the-art to motivate two
principles for secure biometrics-authenticated key exchange:
recognition accuracy and reciprocal interaction.

The main concern with the protocol proposed in [7] is the
generation of the biometric secret key constructed from fin-
gerprint representations. The authors use a simplified version
of the well-studied nearest-neighbour approach first proposed
by [16], which they chose due to its anticipated rotation
invariance. However, this algorithm and its flaws have been
studied for two decades, specifically, its inability to tolerate
missing genuine minutiae [17]. It has therefore been found un-
usable in practice, and improved rotation-invariant fingerprint
recognition algorithms have been proposed that mitigate the
known shortcomings [17]. Such improved algorithms require
a more complex comparison subsystem however, and are
not compatible with the constructor offered in [7]. Notably,
the authors of [7] fail to state the recognition accuracy of
their iris and fingerprint based protocols, and do not give an
experimental evaluation detailing the security with regard to
the biometric performance.

Their construction for iris is based on the established
fixed-length feature representation IrisCode [18] and can be
assumed to achieve adequate accuracy as long as the sam-
ple quality is high. It is worth noting that the state-of-the-
art in iris recognition is based on samples captured under
near-infrared light, and therefore requires designated capture
devices, i.e., near-infrared sensors. Such specific sensors are
however not part of most personal communications devices
such as smartphones. The use of classical iris recognition in
the Signal [19] messaging protocol as motivated by [7] is
therefore not meaningful. In such a scenario, iris recognition
in the visual spectrum would need to be considered, which
is a more challenging task and provides, as of today, lower
accuracy [20].

Secondly, the public keys derived from the biometric secret
keys in [7] are vulnerable to offline attacks: in their construc-
tion, any adversary can guess a biometric template and check
if it corresponds to the public key in hand, without interacting
with another party. In such an attack, the adversary does not
have to guess an exact biometric feature representation, but
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TABLE 1
COMPARISON OF OUR PROTOCOL TO RELATED WORK.

Compliant with

Scheme Asymmetric  Efficient  Accurate ISO/IEC 24745
fPAKE [9] X v v X
fuzzy aPAKE [10] v X v X
BAKE [7] v v X X
BRAKE (ours) v v v v

succeeds as soon as she finds an input that is close enough
with regard to the distance metric used. This probability can
be expressed as the false-match rate of the biometric system,
i.e., the proportion of authentication attempts from non-mated
samples falsely accepted as authentication attempts of an
enrolled data subject. Again, low biometric accuracy leads to
a low effort in an offline search attack.

Even with assumed high biometric accuracy, offline attacks
expose biometric data to high risks. Therefore, we construct
our protocol such that interaction is required for every ad-
versarial guess, which allows for rate-limiting that can be
enforced as long as at least one party remains honest. The
concept of enforcing interaction through a third party OPRF
service in itself is not new [21]. However, the construction
previously presented by [21] is neither trivially compatible
with fuzzy secrets such as biometric features, nor with lattice-
based primitives as our proposed protocol. In particular, no
lattice-based partially OPRF as required for the protocol given
in [21] is known as of today, and its construction lies outside
of the scope of this work.

An overview of how our proposed scheme compares to the
works discussed above can be found in Table 1. Other related
works have been directed on extracting uniformly distributed
cryptographic keys directly from biometric templates without
running an interactive protocol [22]. Similar to [9] and [10],
only fixed-length representations are considered that can be
compared with some distance metric. From fuzzy extractors,
two-factor authentication protocols have been built [23]. More
recently, [24] proposed a session key generation protocol
specifically for fingerprint based on so-called cancellable bio-
metrics, which are one-way transforms on the biometric data
that are not based on well-studied cryptographic problems and
can therefore not be assumed to underlie specific hardness
assumptions.

C. Technical Overview

Before we describe our protocol in detail, we give a con-
ceptual overview of our approach.

Improved Fuzzy Vault: The improved fuzzy vault scheme
was first proposed by [22] and builds on error-correcting
codes, more specifically, Reed-Solomon codes [25]. First, a
random polynomial f of degree 7 — 1 is generated, where
7 is the biometric verification threshold. Then, the elements
of a biometric feature set ¢ are encoded into a polynomial
V(z) = f(x)+]],c; (x — a). The polynomial V (x) is further
referred to as a locked fuzzy vault, which in the original

scheme is stored on a server together with a hash H(f) for
further reference.

For verification, a biometric probe feature set ¢ is cap-
tured. From the locked fuzzy vault V(z), a set of points
{b,V(b) | b € t'} is computed. Using Lagrange interpolation, a
polynomial f’ is reconstructed from the point in this unlocking
set. Again, 7 refers to the biometric decision threshold, which
is chosen as the correction capacity of the Reed-Solomon code.
Therefore it holds that if the intersection of ¢ and ¢’ is larger
than 7, then H(f") = H(f), and the verification is successful.

It has to be emphasized that this construction is an im-
provement upon the original construction by [11], which
has been found to be insecure against correlation attacks
between different locked fuzzy vault records [15]. Instead
of encoding biometric features directly into polynomials, the
original scheme uses large point clouds to hide the biometric
features. However, next to the large memory requirements,
finding random points that hide the secret polynomial f truly
is a hard problem. Therefore, improved schemes that work as
introduced above have been developed by [15], [26], [27], and
these are the constructions we use in our protocol.

Nevertheless, a persisting point of attack even in the im-
proved fuzzy vault schemes is provided by the checksum H (f)
stored alongside the vault V(). By guessing a biometric tem-
plate ', running the verification protocol, and comparing the
hash of the result H(f’) with the provided checksum H(f), an
attacker can run an offline brute-force search effectively and
efficiently. Note that there is no need to try and guess random
codewords, i.e., secret polynomials. Rather, it is sufficient to
guess some template ¢’ that is within distance 7 of the stored
biometric template ¢, which has significantly lower brute-force
security.

In our protocol, we therefore omit the computation and stor-
age of H(f), and replace it with an OPRF evaluation followed
by a KEM. Thereby, we gain two improvements in one: firstly,
the fuzzy vault scheme becomes secure against offline brute-
force attacks. Secondly, instead of a binary verification, we can
derive a shared cryptographic key if and only if the biometric
verification was successful.

OPRF Evaluation: The secret polynomial f is the infor-
mation that is used as input to the OPRF, which enforces
interaction during each attempted key exchange. The com-
putation that takes place obliviously is an evaluation using a
secret key k held by a third party we call the evaluator. In
practice, this party can be instantiated with a secure hardware
execution environment located at the server. Its only objective
is evaluating the OPRF, and it therefore never sees any
biometric information. From the OPRF evaluation, the client
receives an evaluation of f without learning the evaluation key
k, and the evaluator does not learn f. Based on this evaluation,
a secret key sk; with respect to template ¢ is derived, and its
corresponding public key pk, can be computed accordingly.

The evaluation of the OPRF is the component that enforces
an interaction for each attempted guess of a stored biometric
reference template ¢. In terms of a brute-force attack, the
public key pk, allows for similar confirmation of a correct
guess as was previously provided by the hash H( f). However,
in order to compute pk,, an evaluation needs to be obtained.



TABLE 2
SELECTED BIOMETRIC FEATURE REPRESENTATIONS.

Modality Template Fixed-Length ~ Ordered Type
Face DCNN embedding v v float
Fingerprint ~ Minutiae X X integer
FingerCode v v binary
Iris IrisCode v v binary

As long as the OPRF key k remains secret, an offline search
is therefore infeasible.

Key Exchange: During an enrolment phase, a public key
pk, derived from template ¢ is stored at the server. For
authentication, a client computes a fresh key pair (sky, pk,/)
derived from a freshly captured feature vector ¢’. The server
now encapsulates a cryptographic key using the user’s stored
reference public key pk,. The user can decapsulate the key
if and only if her fresh probe secret key sk, corresponds to
the stored public key. Due to the fuzzy vault construction,
(sky,pk,) will only be a meaningful key pair if f' = f, ie.,
only if ¢ and t’ are within correction capacity 7.

D. Structure of Paper

The rest of this paper is structured as follows: In Sec-
tion II, background information and definitions required for
the construction of our protocol are presented. As our main
contribution, Section III presents our BRAKE protocol with
security definitions and proof sketches. Section IV presents
the experimental evaluation of the protocol and practical com-
parison with related work, before we outline our conclusions
in Section V.

II. PRELIMINARIES

The framework for automated and interoperable biometric
recognition has been standardised in ISO/IEC 19794-1 [28],
and subsequent parts of the standard define biometric data
interchange formats for the modalities fingerprint, face, iris,
voice, handwritten signatures, and vascular biometrics. For
the scope of our work, we look at the three most prevalent
modalities fingerprint, face, and iris, for which well-tested
fuzzy vault schemes exist. An overview of common feature
representations is given in Table 2.

A. Fingerprint Recognition

The representation extracted from a fingerprint sample to be
used for biometric recognition are its ridge lines, which can be
captured both with capacitive, optical, or contactless capture
devices. From the pattern of ridge lines, significant points
known as minutiae are extracted as compact and distinguishing
features, specifically, ridge endings and bifurcations, namely
the location and orientation where one ridge line splits into
two. As specified in ISO/IEC 19794-2 [29], a minutiae tem-
plate is represented as a list of tuples (z,y, 8) of the x- and y-
coordinates of the minutiae given in pixels from the left upper
corner of the captured image along with their tangential angle

0 with respect to the x-axis. It is important to note that a set
of minutiae has no meaningful inherent ordering, even though
the template lists them by x-coordinate. The typical number of
genuine minutiae in a human fingerprint ranges from 40-100
[7], depending on the image quality and environmental factors
during capture.

While minutiae-based representations have the potential for
high recognition accuracy, they come with the challenge of
potential rotation of the captured sample and hence the cloud
of minutiae points and non-linear transformations that need
to be addressed through costly and difficult pre-alignment
processes. Therefore, fixed-length fingerprint representations
have been proposed, the most prominent of which is the
FingerCode [30] representation. Using a set of Gabor filters,
FingerCode templates yield a translation-invariant and to some
degree rotation-invariant representation of a fingerprint image.
Most importantly, FingerCode templates are of fixed-length
and ordered by dimension, which enables the use of simple
comparison functions such as Hamming distance or Euclidean
distance. These functions produce dissimilarity scores, such
that a verification attempt is accepted when the comparison
score is below the threshold, and rejected otherwise.

Note that generally speaking, rotation invariance is a prop-
erty independent of minutiae-based or fixed-length represen-
tations, even though it is more commonly found in the latter.
A fitting example is Minutia Cylinder Code (MCC) [17],
a rotation-invariant minutiae-based template representation.
Approaches to handle rotation and pre-alignment for minutiae
templates include [31] and [32]. For the scope of our work,
we do not deal with the challenge of pre-alignment further,
but assume user guidance through the capture process, e.g.,
through the hardware design of the capture device. In our
experimental evaluation, we use a pre-aligned dataset to model
this scenario adequately [33].

Minutiae-based comparators are more complex due to the
problem of finding an accurate mapping between two un-
ordered, noisy sets containing a variable number of two-
dimensional points. Even for mated comparison trials, the
number of detected minutiae and their location varies de-
pending on the image quality and possible impairing factors
such as dirt, wounds, or water on the finger. Common ap-
proaches to minutiae comparators have been based on closest
neighbours [16], fixed-radius neighbourhoods [17], or graph-
based approaches [34]. Despite their differences and individual
shortcomings, they share one common aim: a number of
minutiae points higher than the pre-defined threshold need
to be mapped uniquely between the two sets, such that each
pairing is considered a matching minutiae pair.

B. Biometric Performance Metrics

Biometric performance testing and reporting is standardised
in ISO/IEC 19795-1 [35] and subsequent parts of the standard.
Reporting the performance of a biometric system within
this framework is an important foundation for benchmarking,
reproducibility, and reliability of research in biometrics.

The evaluation of biometric systems is based on two compo-
nents: error rates and throughput rates. In terms of throughput



rates, both the computational speed of the transaction and
the time needed for the capture subject to interact with the
system are considered. Error rates report on the accuracy of
the system. For a verification scenario, the most important
terms and metrics are:

- False Non-Match Rate (FNMR): proportion of mated

comparisons that resulted in a reject decision.

- False Match Rate (FMR): proportion of non-mated com-

parisons that resulted in an accept decision.

The FMR can be thought of as the security level of the
biometric system, detailing how many zero-effort impostors
were able to be verified. In most scenarios, systems with a
FMR below 1% are considered secure, while high-security
applications such as automated border control require a FMR
lower than 0.1% [36]. The FNMR on the other hand can be
considered as the convenience level of the system, detailing
how many mated comparison trials were not able to be
verified. A FNMR up to 5% is considered acceptable [36].

The trade-off between FMR and FNMR can be plotted as
a Detection Error Trade-off (DET) curve, where the FMR
and FNMR are computed for every comparison score in the
test set as the decision threshold. The advantage of a DET
compared to single-number statistics is therefore its threshold
independence.

Factors impacting the recognition performance of a bio-
metric system are first and foremost the sample quality both
during enrolment and verification, and the robustness of the
feature representation and comparison algorithm with regard
to rotation, translation, and noise of the samples [37], [38].
Furthermore, any feature transformation such as binarisation
may impact the accuracy of the system.

C. Fuzzy Vault

The concept of fuzzy vaults was first introduced by [11],
who propose a scheme that allows to lock a biometric feature
secret set ¢t with a secret polynomial f using a biometric
feature secret set ¢ using a probabilistic algorithm. The output
of this algorithm is a locked fuzzy vault that can be unlocked
using a second biometric feature set t’, if there are enough
points the intersection of ¢ and t’. We give a short definition
of their original scheme before we move on to the state-of-
the-art for different biometric modalities.

Definition 1 (Fuzzy Vault Scheme [11]). Let C be an error-
correcting code, H : C — {0,1}?*, for security parameter \,
be a cryptographic hash function H, and let 7 a biometric
comparison threshold. Then, a fuzzy vault scheme is a set of
the following algorithms:

e (fyH(f),V) <« lock(t): On input of a biometric feature
set ¢, the algorithm samples a random secret f € C and
outputs a locked fuzzy vault V' together with the hash
digest H(f).

o f' < unlock(V,H(f),t'): On input of a locked fuzzy
vault V' and a biometric feature set ¢’, the algorithm
outputs an opening polynomial f’ € C. The unlocking
can be verified by comparing H(f) to H(f").

A basic authentication protocol based on the fuzzy vault
scheme is given in Figure 1.

Enrolment

Setup party Server

t reference template

(f,H(f),V) < lock(t)

H(f),V

-

store (H(f),V)

Verification
Client Server
t probe template (H(f),V)

request H(f),V

-

H(f),V

f' <+ unlock(V, H(f),t)
return H(f) = H(f")

Fig. 1. Fuzzy vault authentication protocol based on [11].

Instantiation for Fingerprint: The original schemes by [11]
and a similar scheme by [39] have been proven to be insecure
due their construction based on large point clouds to hide
the secret f, which are vulnerable to correlation attacks [40].
Therefore, [15] presented an improved scheme to mitigate
correlation attacks (see [15], Section 1.2.3), building on the
initial proposal by [22]. These improved fuzzy vault schemes
fulfil the requirements of ISO/IEC 24745 [6].

The improved fuzzy vault scheme has first been con-
structed for minutiae-based fingerprint representations [15].
Here, minutiae are encoded into a finite field IF,, using absolute
pre-alignment and quantisation to account for a certain degree
of noise with regard to the position of the minutiae. The set
of minutiae ¢ C I, is then considered the biometric template.
A polynomial f € Fp[z] of degree 7 — 1 is chosen uniformly
at random and locked as

lock(t) = (f. f(2) + [ (2 = a)) = (£, V).
act
To unlock the vault, V' is evaluated on the probe minutiae
set ¢’ and decoded using a Reed-Solomon decoder, yielding

unlock(V,t') = decode({(b, V(b)) | be t'}) = f'.

Lemma 1 (Theorem 1 in [15]). Let (f, H(f),V) < lock(t)
be a commitment to a polynomial f € FF,[x] with minutiae
set t, and f’ < unlock(V, H(f),t") an unlocking of V" using
a minutiae set ¢. Then, f = f’ if and only if [t N¢'| > 7.

Analogue constructions exist for iris [26] and face [27]
recognition, which we refer the reader to for full details.

D. Entropy of Biometric Representations

The entropy of biometric data is a topic that is often referred
to in works about fuzzy cryptographic primitives [9]. In the
literature, the entropy of a face has been determined at 56
bits [41], a minutiae-based fingerprint representation at 82 bits



[42], and an iris at 249 bits [43]. However, these numbers can
only be considered as an upper bound of the entropy of a
certain biometric instance, as the amount of information in
a biometric sample heavily depends on the capture device
used and its fidelity (e.g., its resolution) as well as the feature
extraction algorithm used.

In addition, [15] argues that it is not in all scenarios
appropriate to use the entropy of a single biometric template
as a measure for security, which is an overestimate when it
comes to comparisons between biometric features. Here, the
false-accept security defined as log,(FMR™!) gives a more
accurate measure, as it is sufficient for an attacker to guess a
template that is close enough to a reference template.

E. Cryptographic Primitives

Definition 2 (Pseudo-Random Function, [44]). A family of
functions fx : {0,1}* x {0,1}™ — {0,1}", with key k €
{0,1}*, are called Pseudo-Random Functions (PRFs) if the
following holds:

e fir(x) is efficiently computable from k and z.

« It is not efficiently decidable whether one has access to
a computation oracle for fj(-) or to an oracle producing
uniformly random bit-strings of length n.

Definition 3 (Oblivious Pseudo-Random Function, [45]). A
two-party protocol 7 between a client and a server is an Obliv-
ious Pseudo-Random Function (OPRF) if there exists some
PRF family fi, such that 7 privately realizes the following
functionality:

o Client has input z; Server has input k.
« Client outputs fi(x); Server outputs nothing.

Definition 4 (Hashed Diffie-Hellman OPREF, [46]). Let G be
a cyclic group of prime order p, x € {0,1}* the client input,
k € Z, the evaluator’s secret key, Hg : {0,1}* — G and
Hz, : {0,1}* — Z4 cryptographic hash functions that output
values in G and Z,, respectively. The protocol HashDH consists
of the following algorithms:

e (B,r) + blind(x): The client samples a random r <
Zq and outputs r and B < [r]Hg(z).
o S < eval(B,k): Oninput B € G, the evaluator outputs
S « [k]B.
e U < unblind(S,r): On input S € G and r € Z,, the
client outputs U < Hy,_(x,[r~']S).
As a result of this protocol, the client privately obtains
Hz, (z,[k]Hg(x)) without learning & and without the eval-
uator learning the input = nor the output U.

Definition 5 (Key Encapsulation Mechanism, [47]). A Key
Encapsulation Mechanism (KEM) is a scheme with three
algorithms KeyGen, encap and decap, where

o (pk,sk) < KeyGen(1%): takes as input the security
parameter A and outputs a public key pk and a secret
key sk.

e (ctx,7) < encap(pk): takes as input a public key
pk, samples a session pre-key 7, and outputs v and an
encapsulation ctx of « under the public key pk.

e 7 <+ decap(ctx,sk): takes as input an encapsulated
session pre-key ctx and a secret key sk and outputs a
decapsulated session pre-key '

We require that for all (pk,sk) generated from KeyGen we
have that v = decap(encap(y, pk), sk), except with negligi-
ble probability, and that the scheme is IND-CCA secure.

A KEM can, e.g., be instantiated with (Elliptic Curve) Diffie
Hellman [48], RSA [49] or CRYSTALS-Kyber [14].

III. BIOMETRIC RESILIENT AUTHENTICATED KEY
EXCHANGE

In this section, we introduce our protocol for Biometric
Resilient Authenticated Key Exchange (BRAKE) built from
a fuzzy vault scheme, an OPRF, and a KEM.

A. Setting

For our proposed protocol, we assume that a biometric
capture device is linked to a client which performs the prepro-
cessing and feature extraction, and acts as a communicating
party in the protocol. Its communication counterparts are a
server which controls a database of locked fuzzy vaults and
client reference public keys, and an evaluator which is in
possession of a secret OPRF key. In practice, the evaluator
can be instantiated by a trusted execution environment at the
server. For this reason, we do not model direct communication
between the client and the evaluator, but work under the
weaker assumption that all communication between client and
evaluator is seen by the server. This is a common practice
in biometric information protection [50], as it allows for en-
hanced network security choices that protect the party handling
secret key material. For example, the evaluator can be set up
in a local area network that does not have to be accessible
over the internet. In other applications, the separation of trust
allows for scenarios where several servers may connect to an
independent trusted third party service, thus increasing trust
in the entire system [21].

Furthermore, we assume that authenticated channels are es-
tablished between all participating parties, e.g, using standard
public-key infrastructure to make server public key material
accessible to the client. Depending on the context, this can
also be achieved by certificate-pinning during setup.

B. Threat Model

The goal of an adversary taking control over one or more of
the parties participating in the BRAKE protocol is to obtain
or guess a biometric feature vector that is close enough to
an enrolled reference template to authenticate to either this or
other systems, or to retrieve personal information about the
enrolled data subjects from it. Guessing a feature vector is
always an attack on a biometric system. However, two mea-
sures can be taken to prevent an attacker from authenticating
with a guess: firstly, Presentation Attack Detection (PAD) [51]
can be applied. In reality, it is a hard problem to construct
a presentation attack instrument, e.g., a silicone finger with
a stolen fingerprint, that is sufficiently realistic to pass PAD



barriers. Secondly, repeated guesses of biometric feature vec-
tors are only feasible if the attacker receives confirmation that
the guess is correct. In our protocol, such confirmation can
only be obtained through an OPRF evaluation, which itself
requires interaction. Therefore, we enforce rate-limiting on
the number of repeated authentication attempts both at the
server and the evaluator, such that brute-force attempts can
be detected and denied. In the setting where the evaluator
enforces rate-limiting, this must be done either with respect to
the server (which might have many users and, hence, the limit
must be quite big) or with respect to specific users (which
enforces user-specific evaluation keys). The former may allow
a malicious server to get many attempts to brute-force the
biometric sample of a single user before reaching the limit,
while the latter requires that the user identity is sent along
with the blinded value to the evaluator, and the correctness
must be verified with respect to this identity.

For offline brute-force searches, a secondary attack mecha-
nism of an adversary is to obtain the secret OPRF key held by
the evaluator in order to run an offline brute-force search on
the reference database. With regard to the enrolment database,
we assume an honest enrolment transaction for all reference
subjects for which information is stored in the database. In
practice, this could be realised by a trusted third party we
refer to as the setup party. Going forward, we only model
security for the verification transactions of the system.

Given these threats, we work under the assumption that
PAD is applied at the capture device, and that the capture
device is always honest in the sense that it does not store or
publish the biometric features it sees. It is evident that a client
wins the security game trivially when it stores and discloses
templates from data subjects. Therefore, we model the case
where an adversary wants to learn templates from subjects who
do not provide it to the capture device. With regard to man-in-
the-middle attacks, we assume authenticated communication
channels between all parties, such that an adversary needs to
gain control of a party that is actively involved in the protocol.
Similarly, the parties win trivially when all three of them
collude, which is why we do not model this in more detail.

Overall, we assume that an adversary implicitly keeps a state
of all information it has seen from previous algorithms and
that any adversary has access to a realistic amount of classical
computing power and is not restricted from running an efficient
brute-force search in terms of storage or computation power.

C. Modification of Fuzzy Vault Schemes

In the original improved fuzzy vault schemes, the decoding
algorithm with highest performance both in terms of execution
times and accuracy is the Guruswami-Sudan decoder [52]. In
all three fuzzy vault schemes [15], [26], [27] discussed in our
work, the algorithm of [52] is used in a list decoding mode.
Unlocking a fuzzy vault with feature vector ¢’ corresponds to
a randomised brute-force decoding strategy, where subsets of
t" are chosen uniformly at random and evaluated as unlocking
sets for the reference fuzzy vault.

During this randomised decoding, a candidate polynomial
f' is generated for each subset and compared against the

stored hash H(f) corresponding to the biometric reference
template t. When a candidate polynomial is found for which
H(f) = H(f’), the decoding attempts are stopped. If no
candidate polynomial is found within a certain number of
decoding attempts, the underlying comparison of ¢ and ¢’ is
classified as a non-mated comparison trial.

In our protocol however, we do not wish to store H(f) at
the server as it allows for offline brute-force attacks. Instead,
we run the full decoding attempts until the threshold for non-
mated comparison trials is reached, even when we expect
a mated comparison trial. During decoding, we temporarily
store all candidate polynomials and sort them with respect
to their frequency. For a mated comparison, we expect the
correct candidate polynomial f’ for which H(f') = H(f)
to appear as the most frequently reconstructed polynomial
due to the large overlap of the sets ¢ and ¢'. A similar
strategy is applied in [39] and is supported by our experimental
evaluation, showing only a negligible deviation with regard to
the biometric performance between the hash-verified decoding
and highest-frequency decoding strategies.

Notably, the FMR and thereby security of the system is not
affected by the change to highest-frequency decoding. In both
cases, no non-mated comparisons yield matching candidate
polynomials within the list decoder threshold. Therefore, the
polynomial that occurs with the highest frequency is also
not a matching candidate polynomial. Consequently, the FMR
is not affected by the change from hash-verified decoding
to highest-frequency decoding. Instead, only changes in the
FNMR or convenience of the overall system can be expected.
A degradation in terms of the FNMR occurs in the case where
the most frequent polynomial in a mated comparison is not the
matching candidate polynomial. This occurs for example in
cases where the second most frequent polynomial is the correct
candidate polynomial. If one wished to improve upon the
FNMR, a viable strategy would be running the authentication
protocol for a certain number of most frequent polynomials.
However, for the scope of our work, the FNMR degradation
is not significant, and most importantly, the security in terms
of FMR is not impacted.

In addition, the frequency pattern found in a mated com-
parison does not give an attacker an advantage in terms of
an offline-brute force attack. Through the additional roots
of the randomly generated secret polynomial f, a number
of seemingly correct polynomials of degree 7 — 1 could be
interpolated by an attacker that is not in possession of a mated
feature set. Therefore, a brute-force attack on a locked vault
alone, without the confirmation of H(f) or a successful key
exchange, corresponds to a non-mated comparison attempt
with no clear frequency pattern.

D. Protocol

In this Section, we give the formal definition of our
proposed protocol for biometric resilient authenticated key
exchange.

Definition 6 (Biometric Resilient Authenticated Key Ex-
change). A three-party protocol BRAKE between a client, a
server and an evaluator is a Biometric Resilient Authenticated



Key Exchange, if BRAKE privately realizes the following func-
tionalities:

o Enrolment: A trusted setup party inputs a biometric
reference template ¢ and corresponding identifier id.
The setup party computes a locked vault (f, V) based
on t. The evaluator inputs a key k. Then the parties
jointly compute a client public key cpk, derived from
f. The server outputs (V,cpk, = eval(f,k),id) and
the other parties outputs nothing. The enrolment protocol
is detailed in Figure 2.

o Verification: The client inputs a biometric probe fea-
ture set ¢’ and a biometric claim id, the server inputs
(V,cpk,,id) and the evaluator inputs k. The client
requests the locked vault V' for id and interpolates a
polynomial f’ from ¢'. The parties jointly compute a key
exchange on input f’. The server outputs a session key p
and the client outputs a session key p’ and a bit indicating
if H(p) = H(p'). The verification protocol is detailed in
Figure 3.

Here, the client will output the bit 1 if and only if
[t N¢'| > 7 for 7 the biometric verification threshold. For the
algorithms defined in Definition 6, we require the following
building blocks:

Definition 7 (Building blocks). We define the following
building blocks for the BAKE protocol:

e pp < setup(1*): The setup algorithm defines a universe
P, randomness space R, key space K and a cryptographic
hash function H : {0,1}* — {0, 1}?*. Further, the setup
algorithm defines an error-correcting code C with cor-
rection capacity 7. These are incorporated in the public
parameters pp and all following algorithms implicitly
inherit pp.

e (f,V) < lock(t): The algorithm takes as input a bio-
metric template ¢, samples a random polynomial f € C,
and outputs f and a locked fuzzy vault V. Note that the
fuzzy vault scheme do not include the hash digest H(f).

o f' + unlock(V,t'): The algorithm takes as input a
biometric probe feature vector ¢’ and locked fuzzy vault
V, and outputs an opening polynomial f’.

e (B,r) < blind(f): The algorithm samples a random
element 7 € R and outputs an element B € P.

e S < eval(B,k): On input B € P and key k € K, the
server outputs an evaluation S € P.

e sk < unblind(S,r): On input S € P and r € R, the
algorithm outputs an evaluation t U that can further be
used as (or to generate) a client secret key csk € K.

o (sk,pk) < KeyGen(1*): The algorithm outputs a secret
key sk € K and a public key pk € P.

e pk < pkGen(sk): The algorithm takes as input a secret
key sk € K and outputs a public key pk € P.

e (ctx,v) < encap(cpk): The algorithm takes as input a
client public key cpk, samples a session pre-key + and
outputs v and an encapsulation ctx of v under the public
key cpk.

e 7' + decap(ctx, csk): The algorithm takes as input an
encapsulated session pre-key ctx and a client secret key

csk and outputs a decapsulated session pre-key 7.

e p < KDF(cpk, spk, cpk,, spk,,): The key derivation
function KDF takes as input the client and server static and
ephemeral public keys cpk, spk, cpk,, spk, as well as a
session pre-key v and outputs a session key p € {0, 1}%*.

The detailed functioning of the BRAKE protocol can be seen
in Figures 2 and 3. We also give a short semantic description
in the following. During enrolment (Figure 2), a client public
key cpk, is derived from a biometric reference template ¢ and
the OPRF key k, and is stored at the server together with a
locked fuzzy vault V' of ¢ using a secret random polynomial f.
First, the client generates f and locks the vault with template
t. Note that now, the fuzzy vault scheme no longer includes
the hash digest H(f) of the secret polynomial sampled during
locking. Then, the client initiates the OPRF evaluation on input
f- The evaluator evaluates the blinded input B using the OPRF
key k, and the client is able to unblind and obtain its secret
key csk;, from which it computes the corresponding public
key cpk,. To conclude the enrolment step, the client sends
the tuple (V,cpk,,id) to the server to be stored for future
reference.

For verification and key exchange (Figure 3), the client
requests the fuzzy vault V stored at the server for identity
id, and, using a biometric probe ¢’, unlocks the vault to a
polynomial f’. Then, the OPRF evaluation on f is computed
analogously to the enrolment step. At the same time, the
client and server generate ephemeral key pairs to prepare the
key exchange. Additionally, the server has a static key pair
(ssk, spk) generated during setup that is not derived from
any biometric information. For the key exchange, we assume
that the client has access to the static server public key spk as
discussed above. Once all keys have been generated, the server
encapsulates a session pre-key v using the client’s public key
cpk,. The client can decapsulate «y if and only if the secret
reconstructed from the fuzzy vault was correct, i.e., in the
case where ¢ and t' are closer than threshold 7. Finally, the
session key p is derived from v using the client and server
static and ephemeral public keys cpk, spk, cpk,, spk, in the
key derivation function KDF.

E. Security Definitions

Following the definition of the BRAKE protocol in Figures
2 and 3, we give formal definitions of the security of the
protocol. For simplicity, we implicitly model the use of iden-
tifiers within the enrolment database. In theory, an adversary
wants to learn a biometric feature vector that is close to any
enrolled template. In practice however, it always needs to
choose a specific identity to attack or run attacks on multiple
specific identities in parallel. The following definitions and
proof sketches model security in the case where a template ¢
is enrolled in the database held by the server, and an honest
client would use a feature vector ¢’ to authenticate.

Notation. Denote by f~! = log,(FMR™') the false-
accept security of a biometric feature extractor and comparator,
let ¢ be the rate limit enforced by the server and the evaluator,
and let /4 be the brute-force capacity of the attacker .A.



Enrolment

Setup party Server Evaluator
t reference template ssk € K kek
id verified identity spk € P
(f, V) « lock(?)
(B, r) < blind(f)
B B
_— _—
S <+ eval(B,k)
S S
— —
cskt < unblind(S,r)
cpk, < pkGen(csk;)
V,cpk,, id
_—
store
(V, cpk,, id)
Fig. 2. BRAKE enrolment protocol.
Verification
Client Server Evaluator
t probe feature vector ssk e K kek
server public key spk € P spk € P
biometric claim id (V, cpk,, id)

id
|4
f' + unlock(V,t")
(B',r") + blind(f")
(cske, cpk,) KeyGen(1™)
B’, cpk,

S',spk,, ctx, H(p)

csky < unblind(S',r")

cpk,, < pkGen(csky)

7' < decap(ctx, csky )

o' + KDF(cpk,,, spk, cpk,, spk,,7’)
return H(p') = H(p)

Fig. 3. BRAKE verification protocol.

(sske, spk,) < KeyGen(1™)

(ctx,v) < encap(cpk,)

p < KDF(cpk,, spk, cpk,, spk,, )

S < eval(B', k)



Definition 8. (Correctness) We say that a BRAKE protocol is
correct if a capture subject presenting a biometric probe feature
vector ¢’ and identifier id can successfully authenticate to an
honest server if and only if [t N¢'| > 7 for a fixed biometric
verification threshold 7, except with negligible probability.

Definition 9. (Client Privacy) We say that a BRAKE protocol
has client privacy if an adversary A controlling the client has
the following advantage in obtaining a biometric feature vector
t’ that is close to an enrolled biometric template ¢:

pp + setup(1?)
{V, cpk,} < enroll(pp,t)

(B',cpk,) < A(pp,V)

N ’ . e < pp-1

Pr |dist(t,t') <7 : Viell: {(sske,spke) KeyGen(1") < Lf71 4 negl(N).
t' + A(S’, spk, spk,, ctx)

S’ «+ eval(B', k)

Definition 10. (Server Privacy) We say that a BRAKE pro-
tocol has server privacy if an adversary A controlling the
computation server has the following advantage in obtaining a
biometric feature vector ¢’ that is close to an enrolled biometric
template t:
pp ¢ setup(1?)
{V, cpk,} < enroll(pp,t)
il B’ + A(pp. {V. cpk,})
S’ « eval(B', k)
t'+— A(S)

Pr |dist(t,t)) <7 < Lf7! + negl()).

If client and server run the protocol BRAKE honestly, the
evaluator only sees the blinded element, which is information-
theoretically secure, and hence, independent of the biometric
template. We therefore do not model evaluator privacy.

The advantage of an adversary controlling both the client
and the server effectively reduces to server privacy. In this
scenario, the information the adversary needs to guess is
the evaluated element S’. However, as discussed above, the
evaluator cannot distinguish between evaluation requests for
different biometric feature vectors corresponding to mated
authentication attempts, or repeated evaluation requests for a
single identity aimed at running a brute-force search. There-
fore, rate-limiting at the evaluator can be enforced by user-
specific OPRF keys. This way, the evaluator will learn the
identifier of the user attempting to authenticate, but is not able
to gain any more knowledge about her biometric data, while
effectively preventing the server from learning it.

The advantage of an adversary controlling both the client
and the evaluator initially reduces to the definition of client
privacy, as the adversary seeks to learn the reference public
key stored during enrolment. However, after running one
(unsuccessful) authentication attempt for a specific identity,
the adversary will receive the encapsulated key derived from
the biometric reference data of the data subject in question.
From that point on, it can guess a biometric feature vector,
issue an evaluation by use of the evaluation key, and compare
the resulting key against the obtained one. Therefore, we
realistically model an adversary controlling both the client
and the evaluator as being able to run an offline search on
the biometric enrolment database. We note that due to the
architecture considerations, this scenario is somewhat unlikely
in practice, and a more realistic threat is the server and
evaluator colluding.
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Definition 11. (Client-Evaluator Privacy) We say that a
BRAKE protocol has client-evaluator privacy if an adversary A
controlling both the client and the authentication server does
not have an advantage in obtaining a biometric feature vector
t' that is close to any enrolled biometric template ¢ above
running a brute-force search on V:
pp ¢ setup(1?)

{V,cpk,} < enroll(pp,t)
(B, cpk,) + A(pp, id, V)
(sske, spk,) < KeyGen(1*)
5« A(B',k)
ctx < encap(cks, cpk,)
t' + A(S’, spk, spk,, ctx)

Pr |dist(t,t') <7 :

"Yiell]: < Laf~t+ negl(N).

Definition 12. (Server-Evaluator Privacy) We say that a
BRAKE protocol has server-evaluator privacy if an adversary
A controlling both the server and the evaluator does not have
an advantage in obtaining a biometric feature vector ¢’ that
is close to any enrolled biometric template ¢ above running a
brute-force search on V:
pp « setup(1*)
{V, cpk,} < enroll(pp,t)
f' < unlock(V,t")
B’ ¢ blind(f)
(csk., cpk,) « KeyGen(1*)
t' < Alpp.id,V, B', k, cpk,, cpk, )

Pr |dist(t,¢') <7 : < lAf~' + negl(N).

F. Instantiation Based on Discrete Logarithms

In this section, we give an instantiation of the protocol
defined in Figures 2 and 3 using cryptographic primitives that
build on the security of discrete logarithms (DL). Concretely,
we instantiate the universe P with a cyclic group G, which
can be the group of points on an elliptic curve, and the key
space K and randomness space R with a scalar field Z,, where
q is the prime order of G. Further, we also define two hash
functions Hg : {0,1}* — G and Hyz, : {0,1}* — Z,.

Building on these foundations, the respective algorithms of
Definition 7 are instantiated with the Hash-DH OPRF defined
in Definition 4 and ephemeral Diffie-Hellman key exchange
with a key-derivation function KDF. The detailed protocols
for enrolment and verification are defined in Figures 4 and
5, respectively. In the following, we refer to the verification
protocol in Figure 5 as DL-BRAKE. We note that in the setting
where the evaluator rate-limits the number of evaluations per
user, the protocol can trivially be updated to send the identity
of the user (or a fixed pseudonym) together with the blinded
value, and the evaluator evaluates a partially oblivious PRF
where the identity is a public input to the function together
with the secret evaluation key. Implementing the techniques
from [53], [54] allows us to perform this slightly different
evaluation without (noticeable) increased computation nor
communication compared to the protocol we have described.

G. Security Proofs

In this section, we provide theorems stating the security
of the protocols above based on the hardness of discrete
logarithms, and we sketch the security proofs.

Theorem 1 (Correctness). Assume that a probe sample ¢’ is
within the verification threshold 7 compared to a biometric



Enrolment (DL instantiation)

Setup party Server Evaluator
t reference template ssk € Zq k€
spk € G

fesFplz] :deg(f)=7-1
V()= f() + [[(z —a)

act
T <=$ Zyq
B = [l Ha(f)
B B
_— _—
S = [k]B
S S
—— —
U=[r""]S = [kHs(z)
csk; < Hz, (U)
cpk, = [csk¢]G
V, cpk,, id
_
store
v, cpk,, id)
Fig. 4. BRAKE enrolment protocol instantiated with discrete-logarithm OPRF and Diffie-Hellman key exchange.
Verification (DL instantiation)
Client Server Evaluator
t" probe feature vector ssk € Zq k€ Zq
spk € G spk € G
(V» cpk,, id)
id
_—
1%
PR A
find {(b, V(b)) : b€ t'}
and decode to f' € F,[z]
v s Zqg
B' = [r'|Hs(f")
cske <8 Zq sske <$ Zq
cpk, = [cske|G spk, = [sske]G
B', cpk, B’
_— —
cks < KDF([sske]cpk,, S' = [k]B'
[ssk]cpk,, [sske|cpk,,
cpk,, spk,, cpk,, spk)
S', spk,, H(ck) s’
2

U'=[r""18" = [k He(a)
csky HZq (U/)

cpk,, = [csky]G

ck. ¢+ KDF([cske]spk,,
[cske|spk, [csky/]spk,,
cpk,, spk,, cpk,,, spk)
return H (ck.) = H(cks)

Fig. 5. BRAKE verification protocol instantiated with discrete-logarithm OPRF and Diffie-Hellman key exchange.
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template ti4 for some registered identity id. Then the DL-
BRAKE protocol in Figure 5 is correct.

Proof sketch. This follows directly from the construction. If
the comparison result of the probe feature set ¢’ to a biometric
template t;d is within the the verification threshold 7 for
some registered identity id, then the client will successfully
reconstruct the correct polynomial f’ using interpolation. From
the correctness of the OPRF, the KEM, and the KDF, we then
conclude that the client and the server compute the same
values, and the data subject is correctly authorised. If the
distance between probe and reference feature set is more
than 7 points, by correctness of Lagrange interpolation, two
different polynomials will be reconstructed, and, but for a
collision in the hash function, the key exchange will fail. [

Theorem 2 (Client Privacy). Let Ag be an adversary against
client privacy in the DL-BRAKE protocol in Figure 5 with
advantage €y. Then there exists an adversary .4; against the
fuzzy vault V' with advantage €; and an adversary A, against
the OPRF with advantage €5, such that €y < €1 + f (1 +€2).
The runtime of Ay is essentially the same as of A; and As.

Proof sketch. We consider a single log-in attempt by an adver-
sary Ag controlling the client. If 4, guesses a biometric probe,
the probability that this probe is close to the reference sample
is approximately f~!. Furthermore, if .4y with probability €,
can output a valid probe sample ¢’ given access to the fuzzy
vault V, we can trivially turn Aq into an adversary .A; against
V' with the same advantage. Moreover, if Ay with advantage
£~ can output a valid probe sample t' when having access
to values evaluated with key k, then we can turn A into
an adversary A, against the OPRF. Finally, we observe that
the KEM are independent of t;4, and hence, an adversary 4,
cannot learn anything from interacting with this protocol. We
conclude that the protocol achieves client privacy. [

Theorem 3 (Server privacy). Let Ay be an adversary against
server privacy in the DL-BRAKE protocol in Figure 5 with
advantage €g. Then there exists an adversary .4; against the
fuzzy vault V' with advantage ¢; and an adversary A, against
the OPRF with advantage ez, such that €y < €1 + f~1(1 +€2).
The runtime of Ay is essentially the same as of A; and As.

We omit the proof of Theorem 3 since it is similar to
Theorem 2.

Theorem 4 (Client-Evaluator Privacy). Let 4y be an ad-
versary against client-evaluator privacy in the DL-BRAKE
protocol in Figure 5 with advantage €y controlling both the
client and the evaluator. Then ¢g < f~' and 4y has no
advantage in guessing a biometric probe within the threshold
of an enrolled template above a brute-force search.

Proof sketch. We consider a colluding malicious client and
malicious evaluator. Assume that Ay runs the verifica-
tion protocol once on any input probe t' and receives
(S, spk,, H(cks)) from the server. Then Ay can guess a
biometric probe, interpolate to get a polynomial f’ and execute
the OPRF on input f’ using the evaluator’s key k. For each
guess, Ay can check if the KDF output corresponds to H (cks).
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No information about any enrolled template ti4 is encoded in
the messages from the server. O

Theorem 5 (Server-Evaluator Privacy). Let A be an adver-
sary against server-evaluator privacy in the DL-BRAKE pro-
tocol in Figure 5 with advantage €y controlling both the server
and the evaluator. Then ¢y < f~! and Ay has no advantage
in guessing a biometric template within the threshold of an
enrolled template above a brute-force search.

Proof sketch. We consider a colluding malicious server and
malicious evaluator. Then Ay can guess a biometric probe,
interpolate to get a polynomial f’ and execute the OPRF on
input f’ using the evaluator’s key k. For each guess, Ag
can check if [Hz, (B')]G = cpk,. No information about any
enrolled template ;4 is encoded in the messages from the
client. O

H. Improved Security using NIZK

The protocol can be further secured by the addition of non-
interactive zero-knowledge proofs (NIZKs). We show how to
apply a standard Chaum-Pedersen zero-knowledge proof [55]
using a Fiat-Shamir transform [56] yielding a non-interactive
proof.

The NIZK is added to prove the honest evaluation of
the OPRF. Thereby, a client can verify that the evaluator
computed the evaluation honestly. In the case of an unsuc-
cessful authentication attempt, the client therefore gains more
knowledge about the reason of failure, and can potentially
reveal a corrupted evaluator. We note that above this additional
information, the passively secure protocol already allows for
the protection of the biometric data even in the presence of
malicious adversaries, as long as at least one of the parties
remains honest as given by the security definitions above. A
detailed verification protocol with the addition of NIZK is
given in Appendix A.

L. Instantiation Based on Lattices

Our protocol can also be instantiated with lattice-based
cryptographic primitives, which are assumed to yield post-
quantum security for correct parameter choices [57]. Two
components in the protocol need to be instantiated: the OPRF
and the KEM.

A construction of lattice-based OPRFs has recently been
proposed by [13], which builds on the security of the Ring
Learning With Errors (R-LWE) problem [58], and we give
an intuition for how this construction can be embedded in
our protocol. The authors of [13] base their OPRF on a PRF
using a gadget matrix G~1, the discrete logarithm equivalent
of which can be thought of as a product of group generators,
where a generator is included in the product if the input bit
is true, and omitted otherwise, see [59] for more details. This
specific PRF construction is put in place to enable verifiability
and security against active adversaries.

However, the zero-knowledge proof appended to the lattice-
based PRF for active security are not practical for real-
world situations due to proof sizes of several gigabytes [13].
Therefore, we only look at the case of passive security against



dishonest clients for the lattice instantiation, which can be
significantly simplified by replacing the PRF with a hash
function.

Then, the OPRF can be executed as given in [13], continuing
to omit one of the zero-knowledge proofs. The hashed input
is blinded with an R-LWE sample and sent to the evaluator to
obtain an evaluation by a secret OPRF key k. The evaluator
computes the evaluation as another R-LWE sample, and the
evaluated input can be recovered by the client by subtracting
a public commitment to k and rounding.

Finally, the Diffie-Hellman key exchange can easily be
replaced with a lattice-based KEM, e.g., the recently standard-
ised CRYSTALS-Kyber [14]. Then, the server encapsulates
a session pre-key using the client’s stored reference public
key. The client can only decapsulate the pre-key if its secret
key constructed from the probe feature vector aligns with the
public key previously stored at the server, i.e., if and only if
the biometric inputs were found to be a mated comparison
trial.

IV. EXPERIMENTAL EVALUATION

We evaluated our protocol instantiated with elliptic curves
presented in Figure 5 experimentally and show the results
in this section. Our experiments were run on a commod-
ity notebook with Intel Core i7-8565U CPU@1.80GHz and
8GB RAM. Our code is available at https://github.com/dasec/
BRAKE and includes automated installation scripts with all
dependencies in order to support the reproducibility of our
work.

For the fingerprint fuzzy vault instantiation, we used the
open-source implementation provided by [15] with all original
parameter settings, in particular, the minutiae quantisation and
encoding into a product of finite field Fa1s X Fo1s which ac-
commodates a unique encoding of at most ¢,,,, = 44 genuine
minutiae as described in [15]. Keeping the parameter choices
evaluated in the work of [15] ensures perfect replaceability
with other state-of-the-art fuzzy vault instantiations, such as
[26] for iris and [27] for face. In particular, we run our
implementation on the same fingerprint database MCYT-330
[33] and same feature extractor, Digital Persona’s FingerJetFX
open source edition minutiae extractor'. This means that all
evaluations of biometric performance can be compared directly
to the original paper of [15] and papers that compare their
work with the latter [26], [27].

The only modification applied to the implementation of [15]
is in the unlocking function. Here, [15] use the stored hash
H(f) of the secret polynomial f corresponding to a reference
template ¢, which allows for offline brute force attacks. Our
protocol prevents offline attacks by removing the hash and
using highest-frequency decoding in its place (see Section
III-C). As discussed above, this does not impact the security
in terms of the false-match rate of our protocol.

Our implementation of the OPRF and Diffie-Hellman key
exchange is based on OpenSSL. For all cryptographic opera-
tions, we used P-256 [60] as the elliptic curve and SHA-256
as the hash function.

Uhttp://www.digitalpersona.com/fingerjetfx
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To begin, we give a more detailed comparison of our work
with closely related work in Table 3 by extending Table 1
in [7] with our protocol. In terms of round efficiency, our
protocol compares well to [9] and [10] with two rounds of
communication. In order to prevent offline attacks, a minimum
number of two rounds of communication is necessary. There-
fore, [9], [10], and our protocol can be considered optimal
in terms of number of rounds. As [7] constructed a one-
round protocol, this leaves them open to offline attacks. In
terms of the protection of the biometric data compliant with
ISO/IEC 24745 [6], our protocol is the only compliant one: we
inherit unlinkability, renewability, and irreversibility from the
fuzzy vault schemes. Moreover, we show that our protocol is
efficient in terms of execution times in Table 4 and Figure 6 as
well as in terms of biometric performance shown in Figure 7.
In comparison, fPAKE [9] does not achieve irreversibility
as templates are disclosed to the server in plaintext, fuzzy
aPAKE [10] does not achieve computational efficiency, and
[7] does not achieve an acceptable biometric performance, as
we show in Appendix B.

Regarding the computational performance and recognition
accuracy of our protocol, we give timings for increasing
polynomial degrees 7 — 1 in Table 4, where 7 is the biometric
decision threshold. At the same time, we give the biometric
performance in FMR and FNMR along with the estimated
false-accept security in bits as evaluated in [15]. As these
security levels are derived from the FMR and our modified
unlocking function does not impact the FMR, we are able
to refer to the evaluation performed in [15] directly. For an
acceptable recognition accuracy at 7 — 1 = 8, the execution
of the protocol DL-BRAKE given in Figure 5 takes 387.15


https://github.com/dasec/BRAKE
https://github.com/dasec/BRAKE
http://www.digitalpersona.com/fingerjetfx

milliseconds. To compare, the fastest setting reported in Table
2 in [7] also achieves 387 milliseconds, but at significantly
lower accuracy (see Appendix B).

The execution times are dominated by the constant cost
of feature extraction (200.59 milliseconds) and the cost for
unlocking, which is dependent on the polynomial degree.
Figure 6 visualises these dominating costs. We note that timing
for the enrolment part of the protocol given in Figure 4
is 203.23 milliseconds, where feature extraction dominates
compared to the locking at 2.38 milliseconds. However, the
enrolment step is a one-time effort when setting up the system,
and does not affect verification performance.

Accordingly, Figure 7 shows the trade-off between FMR and
FNMR for our protocol. To conclude the efficiency evaluation
of our protocol, we report that the communication cost of
objects transferred between the parties during the verification
step of the protocol is 32 bytes for any point on the elliptic
curve P-256 [60] (i.e., cpk,, spk,, B’ and S’), 99 bytes for
a locked fuzzy vault of degree at most 43 and coefficients in
Fo1s, and 32 bytes for the hash digest.

V. CONCLUSIONS

In this work, we constructed secure biometrics-authenticated
key exchange from fuzzy vaults and proved its security in
compliance with ISO/IEC 24745. Our BRAKE protocol is
efficient both in terms of execution times and biometric
performance.

The combination of asymmetric, secure, and efficient

server uses the stored keypair generated during the enrolment
process, and the client uses a freshly extracted and evaluated
keypair. Thereby, the key exchange is only successful if the
two biometric samples were close.

Furthermore, we show that our protocol can be instantiated
both with classical primitives, namely discrete logarithm based
OPRFs and Diffie-Hellman key exchange, as well as with
lattice-based OPRFs and KEMs.

Future works may focus on addressing the necessary pre-
alignment processes of minutiae-based fingerprint represen-
tations. A promising approach both with regard to rotation
and entropy is the use of four-finger captures, where four
fingerprints are captured within one image. Through the rel-
ative position of the fingers, pre-alignment can be realised
more efficiently than based on minutiae, and the intra-identity
independence of fingerprint patterns yield the fourfold entropy
of the biometric data. Notably, the implementation of the
minutiae fuzzy vault evaluated in our work includes the option
of combining four fingerprints into one fuzzy vault. However,
auxiliary alignment data required for pre-alignment are not yet
discussed in this context.
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APPENDIX A

In this Appendix, we give a verification protocol with the
additional NIZK as discussed in Section III-G. The protocol
is given in Figure 8.

APPENDIX B

In this appendix, we give the experimental evaluation of
the recent work on biometrics-authenticated key exchange
proposed by [7]. Specifically, we show the biometric per-
formance of their construction for fingerprint and discuss its
shortcomings.

For this evaluation, we implemented Algorithm 2 in [7]
according to the description available in the paper. According
to the description, we set the number of neighbours for each
minutia at 4 = 4 and, iterating through the minutiae in the
template, construct the vectors v; , from the minutia’s x- and
y-coordinates which are given in pixels (i.e., integers) from the
upper left corner. The calculation of the Euclidean distances
d;1,...,d; 4 therefore result in floating point numbers, whereas
the angles ¢; , 1, ..., d; » 6 T€Main as integer values. In Section
6.2.2 in [7], the authors state that the number of neighbours
i = 4 originates an encoding of the values d; , and ¢; , .,
into 4 = 4 bits each. This relation is not clear to us and
we were not able to satisfactorily follow the reasoning given
by the authors of [7] during an email exchange. Therefore,

we give the evaluation of the biometric performance for the
original float and integer values, which can be considered
an upper bound for the performance of a binary encoding.
As comparison function, we determined the set difference by
mapping minutiae based on their minimal Hamming distance.

We evaluated our implementation of Algorithm 2 in [7] on
the FVC2004 DB-1 [61], which is the least challenging out
of the four databases used in [7] in terms of image quality
and rotation of the fingerprint images. We compare the per-
formance against a state-of-the art rotation invariant minutiae
comparator, Source AFIS [34]. From the evaluation, it becomes
evident that the fingerprint comparison algorithm proposed by
[7] does not have an acceptable performance. For the optimal
threshold, the FMR is measured at 27.8% with a FNMR of
25.4%. Both of these values are not close to the required FMR
of 0.1% [36] and FNMR below 5%. Compared to the state-of-
the-art, the performance that can be achieved in this dataset lies
at a FMR of 1.01% at FNMR of 17.29% using the Source AFIS
comparison algorithm?. This shows the challenging nature of
the dataset, which was collected as a fingerprint verification
challenge with the goal of providing challenging fingerprint
samples. Therefore, we also evaluated both algorithms on the
less challenging CASIA-FPV5® database. However, the result
are similar with a FMR of 27.6% and FNMR of 30.90% for
BAKE-1 compared to a FMR of 1.13% and FNMR of 9.85%
for SourceAFIS.

To conclude, the fingerprint comparison algorithm proposed
for the construction in [7] is not able to distinguish between
mated and non-mated comparison trials to a satisfactory de-
gree.

Zhttps://sourceafis.machinezoo.com/
3http://biometrics.idealtest.org
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Verification (DL instantiation with NIZK)
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Fig. 8. BRAKE verification protocol with discrete-logarithm NIZK.
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