
SNARGs and PPAD Hardness from the
Decisional Diffie-Hellman Assumption

Yael Tauman Kalai
Microsoft Research and MIT

Alex Lombardi∗

Simons Institute and UC Berkeley

Vinod Vaikuntanathan
MIT

October 14, 2022

Abstract

We construct succinct non-interactive arguments (SNARGs) for bounded-depth computations
assuming that the decisional Diffie-Hellman (DDH) problem is sub-exponentially hard. This is
the first construction of such SNARGs from a Diffie-Hellman assumption. Our SNARG is also
unambiguous : for every (true) statement x, it is computationally hard to find any accepting
proof for x other than the proof produced by the prescribed prover strategy.

We obtain our result by showing how to instantiate the Fiat-Shamir heuristic, under DDH, for
a variant of the Goldwasser-Kalai-Rothblum (GKR) interactive proof system. Our new technical
contributions are (1) giving a TC0 circuit family for finding roots of cubic polynomials over a
special family of characteristic 2 fields (Healy-Viola, STACS ’06) and (2) constructing a variant
of the GKR protocol whose invocations of the sumcheck protocol (Lund-Fortnow-Karloff-Nisan,
STOC ’90) only involve degree 3 polynomials over said fields.

Along the way, since we can instantiate Fiat-Shamir for certain variants of the sumcheck
protocol, we also show the existence of (sub-exponentially) computationally hard problems in
the complexity class PPAD, assuming the sub-exponential hardness of DDH. Previous PPAD

hardness results all required either bilinear maps or the learning with errors assumption.

∗This research was conducted in part while the author was at MIT.

Contents

1 Introduction 1
1.1 Technical Overview . 2

1.1.1 The Circuit Complexity of Root-Finding . 3
1.1.2 PPAD hardness with degree 2 sumchecks . 4
1.1.3 SNARGs via degree 3 sumchecks . 5
1.1.4 Cubic root finding: proving Lemma 1.3 . 6

1.2 Related Work . 7

2 Preliminaries 8
2.1 Cryptographic Groups . 8
2.2 Lossy Trapdoor Functions . 9
2.3 Correlation-Intractable Hash Families . 11
2.4 Lossy CI Hash Functions . 12
2.5 SNARGs for Bounded Depth Computations . 12

3 Root-Finding in TC0 13
3.1 Basic Finite Field Operations . 13
3.2 Finding roots of K-quadratics in L . 16
3.3 Finding roots of cubics in K . 17

4 PPAD-Hardness from Subexponential DDH 18

5 Delegation for Bounded Depth Computations from Subexponential DDH 20
5.1 Variable-Extended Formulations for Boolean Functions 20
5.2 A GKR protocol with degree 3 sumcheck polynomials 21

i

1 Introduction

Succinct non-interactive arguments (SNARGs) [Mic94] are short, easy to verify, and computationally
sound proofs that a statement x belongs to a potentially complex language L. In their strongest form,
one could hope for a non-interactive1 argument system for any L decidable in non-deterministic time
T (n) with proof size poly(λ, log T) and verification time poly(λ, log T) + Õ(n), where n = |x| and λ
is a security parameter. In the random oracle model, such arguments are known to exist [Mic94],
but there are significant concerns about whether it is possible to construct them based on falsifiable
and preferably standard computational assumptions [Bar01,GK03,GW11,BBH+19].

In this work, we consider SNARGs for a restricted class of languages: those computable by
logspace-uniform circuit families of bounded depth D (and arbitrary polynomial size S). These
were first studied in the interactive setting by Goldwasser, Kalai, and Rothblum [GKR08], who
constructed (statistically sound) interactive proofs of size D · poly logS and verification time
D · poly logS + Õ(n). Recently, a work of Jawale, Kalai, Khurana, and Zhang [JKKZ21] (building
upon [CCH+19]) showed how to convert this proof system into a SNARG by instantiating the
Fiat-Shamir heuristic [FS87,BR93] for the [GKR08] protocol in the standard model [CCH+19].
The [JKKZ21] SNARG is proved secure under the sub-exponential hardness of the learning with
errors (LWE) assumption. Aside from [JKKZ21], SNARGs for (even unbounded depth) deterministic
computation are now known from bilinear maps [KPY19,WW22,KLVW22], the polynomial hardness
of LWE [CJJ22], and a combination of the decisional Diffie-Hellman (DDH) and Quadratic Residuosity
(QR) assumptions [HJKS22,KLVW22].

SNARGs from DDH. In this work, we ask if SNARGs can be built from the DDH assumption
alone. We answer this question in the affirmative for SNARGs for bounded-depth computation:

Theorem 1.1. Assuming the sub-exponential hardness of DDH, there exist SNARGs for logspace-
uniform depth D computation. The SNARGs have proof size poly(λ) ·D and verification time
poly(λ)(D + n).

Moreover, our SNARGs are unambiguous [RRR16,CHK+19a], which means that they satisfy
a form of soundness even for true statements: for x ∈ L, it is computationally hard to find an
accepting proof for x other than the honestly generated proof guaranteed to exist by completeness.
Unambiguous SNARGs were previously constructed in [KPY20, JKKZ21] but only known using
either bilinear maps or LWE.

On a slightly more technical level, we show that (unambiguous) SNARGs for bounded depth can
be built from a weaker generic primitive than was known before: (lossy) correlation-intractable hash
functions [CGH98,CCH+19,JKKZ21] supporting the complexity class TC0. Previous work relied
on a stronger form of correlation intractability (CI) supporting functions in P (or, implicitly, NC).
Since CI for TC0 was constructed based on DDH in [JJ21], this essentially implies Theorem 1.1. We
discuss this in more detail in our technical overview (Section 1.1).

1As is common, we consider arguments in the common reference string (CRS) model, where the reference string is
set up in advance. Throughout this paper, our reference strings will be uniformly random without loss of generality.

1

PPAD-hardness from DDH. Closely tied to unambiguous SNARGs is the problem of showing
cryptographic hardness in the complexity class PPAD [Pap94,CHK+19a]. PPAD is a complexity
class arising from computational game theory that famously includes finding a Nash equilibrium
of bimatrix games as a complete problem [DGP09,CDT09]. The work of [CHK+19a] showed that
instantiating the Fiat-Shamir heuristic for (many variants of) the sumcheck protocol [LFKN90]
suffices to establish PPAD hardness.

In this work, towards instantiating Fiat-Shamir for the [GKR08] protocol, we show how to
instantiate Fiat-Shamir for variants of the sumcheck protocol that can be plugged into the [CHK+19a]
framework. Thus, we obtain PPAD-hardness from the sub-exponential DDH assumption.

Theorem 1.2. Assuming that DDH is sub-exponentially hard, the complexity class PPAD

contains problems that are sub-exponentially hard on average.

Again, we prove Theorem 1.2 by showing that lossy correlation intractable hash functions for
TC0 suffice to construct the non-interactive sumcheck protocol.

In the rest of this introduction, we give a brief overview of our techniques for proving Theorem 1.2
and Theorem 1.1.

1.1 Technical Overview

We begin by discussing our contributions regarding applying the Fiat-Shamir heuristic to the
sumcheck protocol [LFKN90]. To do so, we first recall the sumcheck protocol.

The Sumcheck Protocol. In the sumcheck protocol, the prover and verifier begin with a degree2

d polynomial f(x1, . . . , xn) in n variables over some finite field F. The prover wants to convince
the verifier of the value of the sum y =

∑
a∈{0,1}n f(a), where the sum is taken over F. This is

accomplished by the following interactive protocol:

• The prover sends the univariate polynomial g(x) =
∑

a2,...,an∈{0,1} f(x, a2, . . . , an).

• The verifier checks that g(0) + g(1) = y. If so, it samples a uniformly random β ← F and
sends β to the prover.

• The prover and verifier recursively execute the sumcheck protocol with respect to the polyno-
mial fβ(x2, . . . , xn) = f(β, x2, . . . , xn) and value yβ = g(β).

• In the base case, the verifier simply evaluates f(β1, . . . , βn), which it can do given a circuit
for f .

As shown in [CCH+19,JKKZ21], this protocol satisfies what is called (unambiguous) round-by-
round soundness. Concretely, what this means (for this protocol) is that once the polynomial g is
fixed by the prover, if g is not the correct “partial sum” polynomial, then with high probability
over the choice of β, the prover and verifier will recurse on a false statement (also note that if g is
the correct polynomial but the statement (f, y) is false, then the verifier will immediately reject).

2Here and below, by “degree” we refer to individual degree: a multivariate polynomial has individual degree ≤ d if
it has degree ≤ d in each variable.

2

Removing Interaction via Fiat-Shamir. In this work, we want a non-interactive variant of
the sumcheck protocol, which we obtain by instantiating the Fiat-Shamir heuristic [FS87,BR93]
for the sumcheck protocol. Concretely, this means that we will have n hash functions h1, . . . , hn
sampled from a hash family H, and the ith verifier challenge βi is instead computed as a hash
hi(f, y, g1, β1, . . . , gi) of the transcript so far.

Following the bad challenge function paradigm of [CCH+19], we call a challenge βi bad for
(f, y, g1, β1, . . . , gi) if (1) gi is not the correct polynomial g∗i =

∑
ai+1,...,an

f(β1, . . . , βi−1, x, a2, . . . , an)

and (2) the resulting recursive claim (fβ1,...,βi
, gi(βi)) is true. In the case of the sumcheck protocol,

the set of all bad β is precisely the set of roots of the polynomial gi(x)− g∗i (x). Note that there are
at most d such roots, as gi(x)− g∗i (x) is a nonzero polynomial of degree at most d. Thus, letting
F

(i)
1 , . . . , F

(i)
d denote functions where F (i)

j maps (f, β1, . . . , βi−1, gi) to the jth root of gi − g∗i in F
(if one exists), we know by [CCH+19] that the resulting non-interactive protocol is sound if each hi
is correlation-intractable (CI) [CGH98,CCH+19] for F (i)

1 , . . . , F
(i)
d .

Recall that a hash function family H is CI for a relation R (generalizing the case of a function
f) if given h ← H it is computationally hard to find an input α such that (α, h(α)) ∈ R. There
has been much recent progress on constructing CI hash functions based on standard cryptographic
assumptions (e.g. [CCH+19,PS19,BKM20,JJ21,HLR21]). The construction relevant to us in this
work is that of [JJ21], which built a CI hash function family supporting functions computable in
the complexity class TC0 (constant-depth threshold circuits) based on sub-exponential DDH.

Thus, in order to use the [JJ21] hash function family, we ask: what is the computational
complexity of the bad challenge functions F (i)

j ?

Naively, it is not even clear that the F (i)
j functions are in P, because even computing the

polynomial g∗i (as a function of f, β1, . . . , βi−1) seems to require time 2n−i. However, following
[JKKZ21], if the functions h1, . . . , hi−1 are lossy [PW08], we can guess the challenges β1, . . . , βi−1
in advance and non-uniformly hard-wire the polynomial g∗i in our security reduction (incurring a
sub-exponential security loss from guessing β1, . . . , βi−1). That is, we will actually define each hi
to be the composition of a [JJ21] hash function with a lossy trapdoor function family (LTDF).
The resulting composition will still be CI for TC0 circuits provided that inversion of a LTDF can
be computed in TC0, which we observe (see Section 2.2) is possible for a simple modification of
standard constructions [PW08,FGK+10].

1.1.1 The Circuit Complexity of Root-Finding

Finally, we arrive at the first of two main challenges in this work. With the setup so far, we have
reduced the problem to achieving correlation intractability for a circuit class that has the power
to find roots of univariate polynomials over a field F (and some additional TC0 operations). If
root-finding over finite fields were known to be in TC0, we would be done! Unfortunately, standard
root-finding algorithms [Ber70,Rab80,CZ81] are not known to be implementable in TC0. Indeed,
it is clear that some care is required: if p is a large (size 2λ) prime, finding roots of even degree 1

polynomials over Fp is at least as hard as computing mod p inverses a 7→ a−1 (mod p), which is
not known to be in TC0.

Thus, it is clear that to have any hope of TC0 root-finding, one must carefully choose the field F.
In this work, we make use of a special characteristic 2 field ensemble K = {Kn} studied by Healy

3

and Viola, over which many field operations (including the inversion map a 7→ a−1) are known to
be in TC0 [HV06]. In this work, we show:

Lemma 1.3 (informal, see Theorem 3.8). There is a TC0 circuit family that finds all roots of
cubic (d = 3) univariate polynomials over the [HV06] field ensemble.

We emphasize that the algorithm in Lemma 1.3 only finds roots that lie in the ground field K,
not (necessarily) roots that lie in extensions3 of K. Combining Lemma 1.3 with our discussion so
far, we obtain the following result:

Theorem 1.4 (informal). Fiat-Shamir for degree 3 sumcheck protocols over the [HV06] field
ensemble is sound using hash functions that are Lossy CI for TC0, and is therefore instantiable
under sub-exponential DDH.

That is, by carefully instantiating the field ensemble and designing a special-purpose root-finding
algorithm, we show how to use the [JJ21] hash function family to achieve a non-interactive sumcheck
for degree three polynomials. This is a very limited form of non-interactive sumcheck, but we
next show how to leverage this limited form of sumcheck to prove Theorems 1.1 and 1.2. Finally,
at the end of this overview we sketch a proof of Lemma 1.3, which is one of our main technical
contributions.

1.1.2 PPAD hardness with degree 2 sumchecks

First, we show that PPAD-hardness can be established making use of our non-interactive sumcheck
protocol for polynomials of degree as low as 2!

To employ the framework of [CHK+19a], all that we require is that our sumcheck protocol can
be used to prove membership in a NP-hard language. In [CHK+19a] this is accomplished by using
sumcheck over a large characteristic field as an argument system for #SAT.

Since our non-interactive sumcheck works over a characterestic 2 field, we instead start with
⊕SAT, the computational problem of counting the parity of the number of satisfying assignments
of a SAT formula. This problem is also NP-hard. Given such a SAT formula ϕ, this parity can then
be expressed as a sumcheck problem over K:

⊕SAT(ϕ) =
∑

a1,...,an∈{0,1}

ϕ(a1, . . . , an).

Moreover, ϕ can be arithmetized so that it is represented by a polynomial-size arithmetic circuit
over F2 ⊂ K. In order for our non-interactive sumcheck protocol to be applicable, we would need
the individual degree of this arithmetization to be at most 3. Given that we are doing a “standard”
arithmetization, what is the individual degree of ϕ? If ϕ is a CNF, this is nothing more than the
maximum number of clauses that an individual variable appears in.

Conveniently, it is known that ⊕SAT on arbitrary formulas reduces to ⊕SAT on CNFs (which
are not 3-regular) where each variable occurs in at most three clauses [Tov84]. This suffices to
establish Theorem 1.2 by invoking Theorem 1.4 and [CHK+19a] with respect to a degree 3 sumcheck
protocol.

3In fact, our algorithm finds all roots that lie in the unique degree 2 extension of K but not its algebraic closure.

4

Variable-Extended Formulations. While we have already proved Theorem 1.2, we will give a
slightly different second proof, since this will be a crucial step in proving Theorem 1.1. Specifically,
we will prove Theorem 1.2 by invoking a degree 2 (rather than 3) sumcheck protocol. To do this,
we start with the sumcheck problem above with respect to (the standard poly-size arithmetization
of) ϕ. The individual degree of ϕ may be very large; nevertheless, we will show that ⊕SAT(ϕ) can
be expressed as a different degree 2 sumcheck.

Concretely, we introduce new variables y1, . . . , ym, where m is the number of wires in the
NAND-circuit computing ϕ. Consider the polynomial f in n+m variables defined as

f(x1, . . . , xn, y1, . . . , ym) = ym
∏

(i,j,k)∈Gates(ϕ)

(yi + yjyk)
n∏

i=1

xi ∏
j∈Si

yj + (1− xi)
∏
j∈Si

(1− yj)

 ,

where for every i ∈ [n], Si ⊂ [m] is defined to be the subset of leaf vertices in ϕ that are assigned the
input xi. In words, f (arithmetically) computes an AND of polynomials indicating that each NAND
gate is computed correctly and polynomials indicating that the leaf variables were all assigned with
respect to a consistent x ∈ {0, 1}n. Thus, for boolean inputs, f(x1, . . . , xn, y1, . . . , ym) is either zero
or equal to ϕ(x1, . . . , xn) (which happens for one “consistent” assignment to y). Therefore,∑

a1,...,an∈{0,1}

ϕ(a1, . . . , an) =
∑

a1,...,an∈{0,1}
b1,...,bm∈{0,1}

f(a1, . . . , an, b1, . . . , bm),

so computing ⊕SAT(ϕ) reduces to an f -sumcheck. Finally, note that f has individual degree 2!
Indeed, it is linear in the xi, quadratic in the non-leaf yj (as they are each used in two gates of ϕ),
and quadratic in the leaf yj (each is used in one gate of ϕ and has a linear dependence in the “input
encoding” part of f).

In general, we say that the above transformation produces a “variable-extended formulation” of
a boolean formula ϕ (see Definition 5.2), and this is a key step in proving Theorem 1.1.

1.1.3 SNARGs via degree 3 sumchecks

Armed with our new approach of constructing variable-extended formulations of sumcheck poly-
nomials, we proceed to sketch our proof of Theorem 1.1. We prove Theorem 1.1 by choosing a
suitable variant of the [GKR08] protocol, modifying it to rely only on degree 3 sumchecks, and then
(essentially4) applying Theorem 1.4.

At a high level, the [GKR08] protocol5 proves that C(x) = y for a logspace-uniform depth D,
size S circuit C by iteratively producing pairs of claims about a multilinear extension encoding
of each layer Li of the computation tableau of the circuit (when evaluated on input x). That is,
each Li = Li(x) ∈ {0, 1}S is a string containing the value of all level i vertices in the evaluation of
C(x), and Li is interpreted as a function ℓi : {0, 1}logS → {0, 1}, which can then be extended to a
multilinear function ℓ̂i : KlogS → K. The GKR protocol begins with an evaluation claim about ℓ̂D

4The variant of [GKR08] that we use actually runs pairs of sumcheck protocols in parallel with shared verifier
randomness (as is done in [JKKZ21]), but this detail does not substantially change the proof.

5The variant of [GKR08] that we begin with is due to [JKKZ21]. We then modify it further in this paper.

5

(the end of the computation) and ends with a pair of evaluation claims about ℓ̂0; since the input
layer of C has only width n (rather than, say, S/D) ℓ̂0 can be evaluated in O(n) field operations
and thus can be checked by the verifier.

The key step is to understand how to reduce claims about ℓ̂i to claims about ℓ̂i−1; this boils
down to the “sumcheck-friendly” equation

ℓi(a) =
∑

b,c∈{0,1}log S

[
χ
(i)
add(a, b, c)

(
ℓi−1(b) + ℓi−1(c)

)
+ χ

(i)
mult(a, b, c)

(
ℓi−1(b)ℓi−1(c)

)]
,

where χadd, χmult are the gate indicator functions that take as input three wire labels (a, b, c) for
the circuit and indicates whether an addition (respectively, multiplication) gate is present at these
three wires. This equation can then be extended multilinearly to a similar equation relating ℓ̂i to
ℓ̂i−1.

Given this summary of the GKR protocol, the key question for us is as follows: what is the
degree of the sumcheck polynomials? By inspection, it turns out that this degree is one more
than the degree of the arithmetizations of χadd, χmult. Naively, their degree may be up to O(logS)

(i.e., the number of leaves in the boolean formulas for χadd, χmult), but by using variable-extended
formulations of these polynomials, we can reduce this degree to 2 (at the cost of adding O(logS)

auxiliary variables to the sumcheck). Note that it is crucial for prover efficiency that we only add
O(logS) (rather than poly logS) new variables, as the prover’s running time is exponential in this
number of variables. We show that an appropriate extended formulation exists making use of an
analysis due to Goldreich [Gol18] of χadd, χmult.

In total, this results in a GKR protocol variant relying on degree 3 sumchecks over K, and thus
we can instantiate Fiat-Shamir for this protocol based on sub-exponential DDH.

1.1.4 Cubic root finding: proving Lemma 1.3

Finally, we sketch a proof of Lemma 1.3, which states that roots of cubic polynomials over
Healy–Viola fields K can be computed in TC0. We will not resort to general-purpose root-finding
algorithms [Ber70,Rab80,CZ81] (which all have a high-depth iterative nature) but instead turn to
explicit formulae for roots of low degree polynomials. We show that these explicit formulae can be
converted into low-depth algorithms.

First, let us consider the degenerate cases of linear and quadratic polynomials.

• Root-finding for linear polynomials is equivalent to solving a linear equation over K, which
reduces to addition, multiplication, and inversion over K. These operations were shown to be
in TC0 in [HV06].

• Since K has characteristic 2, root-finding for quadratic polynomials reduces to finding roots of
polynomials of the form x2 + c and x2 + x+ c.6 Then:

6This follows from the fact that az2 + bz + c = 0 ⇐⇒ (a/b · z)2 + (a/b · z) + a/b2 · c = 0.

6

– The polynomial x2 + c always has a double root of c|K|/2,7 which can be computed in
TC0 via low-depth exponentiation [HV06].

– The polynomial x2+x+c has roots given by an explicit formula as a function of c related
to its orbit {c, c2, c4, . . . , c2n−1} under the Frobenius map α 7→ α2. The form depends on
the order of two dividing log|K| (which turns out to be 1 for the Healy–Viola fields) and
is given implicitly in our proof of Theorem 3.6.

Passing to a quadratic extension of K. We note that [CJJ21] also proves that quadratic
root-finding in K is in TC0 with a different approach; however, we give a more powerful algorithm
that actually finds roots of this polynomial in an explicit quadratic extension L ⊃ K (even when no
roots in K exist). This more powerful algorithm is necessary to prove the cubic case of Lemma 1.3.

In order for this to make sense, we must be able to construct L in a way so that operations
in L are similarly efficient to operations in K. Fortunately, we are able to do this with a careful
construction, noting that one way to construct a quadratic extension of K is to add to it a solution
to the equation x2 + x + ω = 0, where ω is an explicit cube root of unity in K. Since ω alone
generates a constant-size field, this greatly simplifies the problem of giving efficient algorithms for
operations over L. We show in Theorem 3.4 that all of the relevant field operations on L are in
TC0, which requires opening up the [HV06] construction and extending their analysis to L.

The Cubic Case. Finally, we compute roots of cubic polynomials over K using an algorithmic
variant of the cubic formula [Lag70] over characteristic 2 fields. At a high level, the characteristic 2

cubic formula reduces computing roots of a cubic polynomial (given its coefficients), modulo basic
operations, to the following tasks:

1. Finding roots of a related quadratic polynomial defined over K.

2. Computing the cube root map α 7→ α1/3 (modulo cube roots of unity).

3. Solving a constant-size linear system involving these cube roots.

In Section 3, we show that all of these procedures are computable in TC0 and thus roots of all cubic
polynomials can be computed in TC0.

One important subtlety is that the roots computed in (1) above are not necessarily in K, but in
the quadratic extension L; relatedly, (2) requires computing cube roots of elements of L. One must
be careful to argue that (in our setting) the cubic formula algorithm does not have to pass into a
degree 6 (or degree 3) extension of K, which we have not explicitly constructed.

For a full explanation/proof of Lemma 1.3, we refer the reader to Section 3 (Theorem 3.8).

1.2 Related Work

Fiat-Shamir in the Standard Model. Over the last few years, a line of work (including
[CCR16,KRR17,CCRR18,HL18,CCH+19,PS19,BKM20,JJ21,HLR21,CJJ21,CJJ22,HJKS22]) has
studied the instantiability of the Fiat-Shamir heuristic using concrete, efficiently computable hash

7This is the case since in characteristic 2 fields, −α = α for all α.

7

function families. Starting with the work of [CCH+19], there have been instantiations based on
standard cryptographic assumptions (initially the learning with errors assumption [CCH+19,PS19]).
The work of [JJ21] constructed NIZKs for NP under the sub-exponential DDH assumption by
building a hash family that is correlation-intractable for TC0 functions from sub-exponential DDH.
Beginning with the works of [CCH+19,JKKZ21], applying Fiat-Shamir to the [GKR08] protocol
(to construct SNARGs in the standard model) has been explicitly studied, including a construction
based on sub-exponential LWE [JKKZ21]. Finally, more recently the Fiat-Shamir approach has
been used to build succinct batch arguments for NP [CJJ21,CJJ22,HJKS22] which in turn imply
SNARGs for P [CJJ22,KVZ21].

SNARGs without Fiat-Shamir. There have additionally been constructions of SNARGs for P

that do not rely on the Fiat-Shamir heuristic [KPY19,GZ21,WW22,KLVW22], all of which currently
rely on some form of cryptographic bilinear maps.

Cryptographic Hardness of PPAD. Establishing hardness in PPAD based on cryptographic
assumptions has also received considerable attention, including [BPR15,GPS16,CHK+19a,CHK+19b,
EFKP20,LV20,KPY20,BCH+22]. Previously, PPAD-hardness was known under the following sets
of assumptions:

• Polynomially secure functional encryption [BPR15,GPS16], which can be built by a particular
combination of three concrete assumptions [JLS21],

• Super-polynomial hardness of a falsifiable assumption on bilinear maps [KPY20],

• The sub-exponential LWE assumption [JKKZ21], and

• A combination of (polynomially-secure) LWE and the (polynomial) hardness of iterated
squaring modulo a composite [BCH+22].

2 Preliminaries

2.1 Cryptographic Groups

Let G = {Gλ} be a group ensemble, indexed by a security parameter λ, such that group operations
(and testing equality) can be computed in time poly(λ).

Definition 2.1 (Decisional Diffie-Hellman Assumption). We say that the decisional Diffie-
Hellman (DDH) assumption with time T and advantage µ holds for G if any T (λ)-time
algorithm A(·) has advantage at most µ in distinguishing a random “DDH-tuple” (g, gx, gy, gxy)

from a tuple (g, gx, gy, gz) (for uniformly random x, y, z).

In this paper, we work exclusively with cryptographic groups satisfying the following conditions:8

8These groups will be used to instantiate the lossy trapdoor function component of a lossy CI hash family; the CI
component does not have to satisfy all of these properties (but DDH must still be sub-exponentially hard).

8

1. Iterated group multiplication g1, g2, . . . , gt 7→
∏t

i=1 gi can be computed by a poly(λ, t)-size,
low-depth circuit family. As in [JJ21], there are two flavors of results: one requires TC0 circuits
(which exist for, e.g., subgroups of Z×q), while the other requires threshold circuits (with
unbounded fanin) of depth o(log λ) (which exist for standard elliptic curve groups [JJ21]). In
the latter case, we will use complexity leveraging: re-define the group security parameter to
be κ = poly log λ, so that DDH remains polynomially hard and iterated multiplication can be
computed in depth o(log log λ).

2. The DDH assumption holds with inverse-subexonential µ = 2−λ
ϵ

for some constant ϵ > 0. If
iterated multiplication requires superconstant-depth threshold circuits, then we require the
assumption to hold for T = 2λ

ϵ
(so that we can complexity leverage as above), while if iterated

multiplication has TC0 circuits, then we only require the assumption to hold for T = poly(λ).

3. Letting M denote a uniformly random n(λ) × n(λ) matrix (for n(λ) = poly(λ)) modulo
N = |G|, we have that M is invertible with probability 1− negl(λ). This holds immediately
for prime-order groups or groups with order N that have no polynomial-size prime divisors.

As discussed in [JJ21], properties (1) and (2) are satisfied (that is, DDH is plausible) by common
examples such as (subgroups of) Z×q or groups of Fq-points of elliptic curves.

2.2 Lossy Trapdoor Functions

Lossy trapdoor functions were first defined and constructed in an influential work of Peikert and
Waters [PW08]. Loosely speaking, a lossy trapdoor function family contains two types of functions:
injective ones and lossy ones, such that one cannot distinguish between a random injective function
in the family and a random lossy function in the family. An injective function can be generated
together with a trapdoor, which allows one to efficiently invert the function, whereas a lossy function
“loses" most information about its preimage, since its image is much smaller than its domain.

Definition 2.2 ((T, ω)-Lossy Trapdoor Family). A quadruple (InjGen, LossyGen,Eval, Inv) of PPT
algorithms is said to be a (T, ω)-lossy trapdoor function family if there exist polynomials
n = n(λ), n′ = n′(λ), s = s(λ) and t = t(λ) for which the following syntax and properties are
satisfied:

• Syntax.

– InjGen(1λ) takes as input a security parameter 1λ and outputs a pair (k, td), where
k ∈ {0, 1}s is a key corresponding to an injective function and td ∈ {0, 1}t is a
corresponding trapdoor.

– LossyGen(1λ) takes as input a security parameter 1λ and outputs a key k ∈ {0, 1}s
corresponding to a lossy function.

– Eval(k, x) takes as input a key k ∈ {0, 1}s and an element x ∈ {0, 1}n and outputs
an element y ∈ {0, 1}n′

.

– Inv(k, td, y) takes as input a key k ∈ {0, 1}s, a trapdoor td ∈ {0, 1}t, and an element
y ∈ {0, 1}n′

, and outputs an element x ∈ {0, 1}n ∪ {⊥}.

9

• Properties. The following properties hold:

– Injective Mode. For every λ ∈ N and every k ∈ InjGen(1λ) the function Eval(k, ·) is
injective. Furthermore, for every x ∈ {0, 1}n(λ), Pr[Inv(k, td,Eval(k, x)) = x] = 1.9

– ω-Lossiness. For every λ ∈ N and every k ∈ LossyGen(1λ) the function Eval(k, ·) has
an image of size 2n(λ)−ω(λ).

– T -Security. There exists a negligible function µ such that for every poly(T)-size
adversary A and for every λ ∈ N,∣∣∣ Pr

k←G.LossyGen(1λ)
[A(k) = 1]− Pr

k←G.InjGen(1λ)
[A(k) = 1]

∣∣∣ = µ(T (λ))

Theorem 2.3. [PW08,FGK+10]. Assuming the sub-exponential hardness of DDH, for every
constant 0 < δ < 1 and every polynomial n(λ), there exists a constant 0 < ϵ < 1 for which
there exists a (T, ω)-lossy trapdoor function family for ω(λ) = n(λ)− λδ and T = 2λ

ϵ
.

Moreover, after a td-independent preprocessing step, inversion of this function family has
threshold circuits of depth O(d), provided that large fan-in multiplication over the DDH group
can be computed in depth d.

Proof. We slightly modify the construction due to [FGK+10] in order to obtain TC0 inversion:

• The public key is of the form gM , where g is a generator for an order p group where DDH

is hard and M is a k × k matrix with entries in {0, 1, . . . , p− 1}. In injective mode, M is a
uniformly random invertible matrix. In lossy mode, M is a uniformly random rank 1 matrix.
Injective and lossy modes are computationally indistinguishable under the DDH assumption.

• The input x is an element of {0, 1}n. To evaluate the function, one computes fgM (x) = gMx

by evaluating the matrix-vector product “in the exponent.”

• The trapdoor in injective mode is as follows:

td =
[
aij

]
ij
=M−1,

To invert, we compute f−1td (gz) = gM
−1z, where the matrix-vector product

M−1z =

∑
j

aijzj

i

is computed by exponentiating gzj 7→ gaijzj and then computing k different k-fold products.
Algorithmically, this is done as follows:

– First compute gj,ℓ = g2
ℓzj for all 0 ≤ j ≤ log p. This does not require td and is thus

considered a preprocessing step.
9Following [JKKZ21], we require perfect correctness for simplicity only.

10

– Given {gj,ℓ}, td =
[
aij

]
ij
, compute (for all i, in parallel)

gxi =
∏
j,ℓ

g
aij [ℓ]
j,ℓ ,

where aij [ℓ] denotes the ℓth bit of aij . xi can then be recovered by checking whether
the group element is idG or g. Since this online step consists of many parallel iterated
product operations, its threshold circuit depth essentially matches that of iterated group
multiplication.

• Finally, we observe that in lossy mode, fgM maps a domain of size pk to a range of size p,
thus achieving the desired amount of lossiness for p = 2λ and k = λ1/δ.

2.3 Correlation-Intractable Hash Families

In this section, we recall the notion of a correlation-intractable (CI) hash family originally defined
in [CGH98]. We start by recalling the notion of a hash family.

Definition 2.4. A hash family H is associated with two algorithms (H.Gen,H.Hash), and
parameters n = n(λ) and m = m(λ), such that:

• H.Gen is a PPT algorithm that takes as input a security parameter 1λ and outputs a
key k.

• H.Hash is a polynomial time computable (deterministic) algorithm that takes as input a
key k ∈ H.Gen(1λ) and an element x ∈ {0, 1}n(λ) and outputs an element y ∈ {0, 1}m(λ).

In what follows when we refer to a hash family, we usually do not mention the parameters n
and m explicitly.

Definition 2.5 (T -Correlation Intractable [CGH98]). A hash family H = (H.Gen,H.Hash) is said
to be T -correlation intractable (T -CI) for a function family F = {Fλ}λ∈N if the following two
properties hold:

• For every λ ∈ N, every f ∈ Fλ, and every k ∈ H.Gen(1λ), the functions f and H.Hash(k, ·)
have the same domain and the same co-domain.

• For every poly(T)-size A = {Aλ}λ∈N there exists a negligible function µ such that for
every λ ∈ N and every f ∈ Fλ,

Pr
k←H.Gen(1λ)

x←A(k)

[H.Hash(k, x) = f(x)] = µ(T (λ)).

Theorem 2.6. [JJ21] Assuming sub-exponential hardness of DDH against polynomial-time
attackers, there exists a constant ϵ > 0 and a T -correlation intractable hash family for TC0,
for T = T (λ) = 2λ

ϵ
.

11

2.4 Lossy CI Hash Functions

In this section we recall the notion of a lossy CI hash family, originally defined in [JKKZ21].

Definition 2.7 ((T, T ′, ω)-Lossy CI). A hash family

H = (H.Gen,H.LossyGen,H.Hash)

is said to be (T, T ′, ω)-lossy CI for a function family F if the following holds:

• (H.Gen,H.Hash) is a T -CI hash family for F (Definition 2.5).

• The additional key generation algorithm H.LossyGen takes as input a security parameter
λ and outputs hash key k, such that the following two properties hold:

– T ′-Key Indistinguishability. For every poly(T ′)-size adversary A, there exists a
negligible function µ such that for every λ ∈ N∣∣∣∣ Pr

k←H.LossyGen(1λ)
[A(k) = 1]− Pr

k←H.Gen(1λ)
[A(k) = 1]

∣∣∣∣ = µ(T ′(λ)).

– ω-Lossiness. For every λ ∈ N and every k ∈ H.LossyGen(1λ), denoting by n = n(λ)

the length of elements in the domain of H.Hash(k, ·),

|{H.Hash(k, x)}x∈{0,1}n(λ) |≤ 2n(λ)−ω(λ).

Theorem 2.8. There exists a (T, T ′, ω)-lossy CI hash family for F = {Fλ}λ∈N (Definition 2.5)
assuming the existence of the following primitives:

• A (T ′, ω)-lossy trapdoor function family G (Definition 2.2), such that for every λ ∈ N,
f ∈ Fλ, and k ∈ G.Gen(1λ), the domain of G.Eval(k, ·) is equal to the domain of f .

• A T -CI hash family H (Definition 2.5) for the function family F ′, where the family
F ′ = {F ′λ}λ∈N is defined as follows: for each λ ∈ N, f ′ ∈ F ′λ if and only if there exists
f ∈ Fλ, and (k, td) ∈ G.Gen(1λ) such that f ′λ(·) = fλ(G.Inv(k, td, ·)). In fact, this holds
even when G.Inv(k, td, ·) is replaced by the online phase of an offline/online (with respect
to td) algorithm for G.Inv.

2.5 SNARGs for Bounded Depth Computations

In this section we recall the main theorem from [JKKZ21], which claims that (a variant of) the GKR

protocol has a standard model Fiat-Shamir instantiation. The GKR protocol considered in [JKKZ21],
as well as the one considered in this work, is slightly different from the original protocol proposed
in [GKR08], and we elaborate on this protocol in Section 5.2. In what follows, when we refer to the
GKR protocol we refer to the protocol from [JKKZ21].

The GKR protocol is a publicly verifiable interactive proof for proving the correctness of log-space
uniform bounded depth computations. Let C be a log-space uniform circuit of depth d and size s.
The GKR protocol for proving that C(x) = 1 for a given input x ∈ {0, 1}n, consists of d = d(n)

12

sub-protocols. Each sub-protocol is a sum-check protocol with log s variables over a finite field F of
size poly(|C|). In [GKR08] and [JKKZ21] the finite field F is taken to be an extension of GF[2]. In
this work we take a particular field of size 2λ, for which computing roots of a degree-3 univariate
polynomial can be done in TC0. See Section 3 for details.

In what follows, for any field ensemble F = Fn and any c = cn ∈ N we let GKRF,c denote an
instantiation of the GKR protocol with the field F and where the degree of each variable in the
underlying sum-check protocols inside the GKR protocol is bounded by c. We let F = FF,c be the
function family where each f ∈ F has a degree c univariate polynomial p : F→ F hardwired into it.
It takes as input a degree c polynomial p′ specified by c+ 1 elements in F, and it outputs a root of
p− p′ (which is an element in F).

Theorem 2.9. [JKKZ21] Fix any field ensemble F = Fn and any c = cn ∈ N. Let ℓ denote
the number of rounds in each sum-check protocol in GKRF,c. Fix any T ′(λ) ≥ λ. Assume there
exists a constant ϵ > 0 for which there exists a (T, T ′, ω)-lossy CI hash family for the function
family FF,c, with T (λ) = 2ℓ·λ

ϵ
and ω(λ) = n(λ)− λϵ. Then there exists a hash family H such

that applying the Fiat-Shamir heuristic to the GKRF,c protocol with the hash family H results
with a T ′-sound SNARG scheme.

In Section 5 we show that any log-space uniform computation has a GKRF,c protocol with F
being any finite field ensemble of size |F|= 2λ and with c = 3. Moreover, in Section 3 we show
that computing a root of a degree 3 univariate polynomial over a specific finite field ensemble F
(constructed by Healy and Viola [HV06]) can be done in TC0. This, together with Theorem 2.9
and Theorems 2.3 and 2.6, yields our SNARG construction (Theorem 5.1).

3 Root-Finding in TC0

In this section, we recall the finite field ensemble constructed by Healy and Viola [HV06], who
show that their fields admit TC0 circuits for many basic finite field operations (addition, pairwise
multiplication, large fan-in multiplication, and exponentiation). We construct explicit degree-2
extensions of all finite fields in this ensemble and prove that the same basic operations in the field
extensions have TC0 circuits. Finally, we show that there are TC0 circuits finding all roots of a
given quadratic or cubic equation in the original field ensemble of [HV06].

The results of this section will be used in later subsections to instantiate the Fiat-Shamir
transform and show PPAD-hardness (Section 4) and delegation for bounded-depth computations
(Section 5).

3.1 Basic Finite Field Operations

Following Healy and Viola [HV06], we define the following field ensemble {Kn}n=2·3ℓ .

Definition 3.1 (Healy-Viola Fields). The Healy-Viola (HV) field Kn, which is an extension of
F2 of degree n = 2 · 3ℓ, is defined to be the polynomial ring F2[x]/(x

2·3ℓ + x3
ℓ
+ 1).

13

Theorem 3.2 (Healy-Viola [HV06]). The field ensemble {Kn} admits a polynomial-size10 TC0

circuit family for the following operations:

• Addition: (α1, . . . , αt) 7→
∑t

i=1 αi over K.

• (Large fan-in) Multiplication: (α1, . . . , αt) 7→
∏t

i=1 αi over K.

• Exponentiation: (α, T) 7→ αT over K. The TC0 circuit size is poly(n, log T).

In this work, we need to extend Theorem 3.2 to hold over not just K but a degree-2 extension L/K.

Definition 3.3 (Degree-2 field extension of HV fields). The degree-2 field extension {Ln}n=2·3ℓ

of Kn is defined to be the polynomial ring L = K[y]/(y2 + y + ω), where ω = x3
ℓ ∈ K.

We first show that the polynomial y2 + y + ω is irreducible over K (so that L is in fact a field),
which follows by the following standard algebraic argument. Since the polynomial has degree 2, it
suffices to show that all the roots of y2 + y + ω in a fixed algebraic closure K = F2 are not in K.
We do so by arguing that, on the one hand, any root of y2 + y + ω in the algebraic closure K has
degree exactly 4 over F2,11 and on the other hand, K does not contain any degree-4 field elements.
The latter follows from the fact that deg(K) = 2 · 3ℓ is not divisible by 4, so it does not contain a
subfield of degree 4 over F2.12

It remains to argue that any root of y2 + y + ω in the algebraic closure K has degree exactly 4

over F2. This holds by the following analysis: we know that ω2 + ω+1 = 0 over K (but ω ̸∈ F2), so
F2[ω] has degree 2 over F2. Moreover, y2 + y + ω is irreducible over F2[ω] ≃ F4. Thus, any root of
y2 + y + ω lies in F16 (realized as a degree 2 extension of F2[ω]) but not F4.

Having established that L is well-defined, we proceed to generalize Theorem 3.2.

Theorem 3.4. The field ensemble {Ln} admits a polynomial-size TC0 circuit family for the
following operations:

• Addition: (α1, . . . , αt) 7→
∑t

i=1 αi over L.

• (Large fan-in) Multiplication: (α1, . . . , αt) 7→
∏t

i=1 αi over L.

• Exponentiation: (α, T) 7→ αT over L. The TC0 circuit size is poly(n, log T).

Theorem 3.4 follows by a very similar approach as the proof of Theorem 3.2, making use of some
additional properties of L.

Proof. Note that α ∈ L is given as an explicit bivariate polynomial α0(x)+α1(x)y for α0(x), α1(x) ∈
K. An AC0[⊕] ⊆ TC0 circuit family for addition then follows immediately by component-wise

10As usual, the circuit size will be polynomial in the description length of its input, which will be at least n as a
single field element is an n-bit string.

11An element α in a field extension K of F2 is said to have degree d if d is the minimal degree of a nonzero polynomial
p over F2 such that p(α) = 0 (over K).

12Fpd is a subfield of Fpn if and only if d | n.

14

addition. Additionally, note that since(
α0(x) + α1(x)y

)(
β0(x) + β0(x)y

)
= α0(x)β0(x) +

(
α1(x)β0(x) + α0(x)β1(x)

)
y + α1(x)β1(x)y

2

= α0(x)β0(x) +
(
α1(x)β0(x) + α0(x)β1(x)

)
y + α1(x)β1(x)(y + ω)

=
(
α0(x)β0(x) + α1(x)β1(x)ω

)
+
(
α1(x)β0(x) + α0(x)β1(x) + α1(x)β1(x)

)
y,

an AC0[⊕] ⊆ TC0 circuit for pairwise multiplication over L follows from the analogous circuits over
K.

Next, we consider large fan-in multiplication. Suppose we are given t field elements α(1), . . . , α(t) ∈
Ln and we want to compute

∏
α(i) ∈ Ln. To do this, we view each α(i) as a bivariate polynomial

over Z, and compute (in TC0) the bivariate polynomial representation of
∏
α(i). [HAB02] argues

that the analogous product for univariate polynomials can be done in (uniform) TC0, but we can
see the same holds for our bivariate polynomials via the following reduction:

• Given a bivariate polynomial α(i)(x, y), define the polynomial β(i)(z) = α(i)(z, zn·t); the
coefficients of β(i) can be computed with a TC0 circuit.

• Compute the polynomial
∏
β(i) ∈ Z[z] by invoking [HAB02].

• Map the coefficients of
∏
β(i) to the coefficients of

∏
α(i)(x, y) via the correspondence zk 7→

xk (mod nt) · y⌊k/nt⌋; this map can also be computed in TC0.

Finally, we must reduce this bivariate polynomial
∏
α(i)(x, y) modulo (x2·3

ℓ
+x3

ℓ
+1, y2+y+x3

ℓ
);

this can be done via the following process:

• Reduce each y exponent modulo 15 (since y15 ≡ 1, as y ∈ L is in a degree 4 extension of F2),

• Reduce each (constant) power of y modulo (y2 + y + x3
ℓ
, x2·3

ℓ
+ x3

ℓ
+ 1),

• Group terms by power of y (either y0 or y1), and

• Reduce each yj coefficient modulo x2·3
ℓ
+ x3

ℓ
+ 1.

This completes the proof that large fan-in multiplication over L is in TC0.
Finally, we consider exponentiation (α, T) 7→ αT ∈ L. T is given as input in binary; by invoking

a large fan-in multiplication solver, we can reduce to the case where T = 2i is a power of 2. Now,
note that in L, we have

α(x, y)2
i
= α

(
x2

i
, y2

i
)
= α

(
x2

i
, y +

i−1∑
j=0

ω2j
)
,

where the first equality follows from the fact that our field has characteristic 2, and the second
equality uses the defining equation y2 + y + ω = 0. The field element g(ω) =

∑i−1
j=0 ω

2j ∈ K can be
computed in AC0[⊕] (e.g. invoking [HV06]), and α(·, ·) is linear in its second argument, so we can
compute α2i ∈ L by computing each expression x2

i·k for k ≤ n, which by [HV06] can be done in
AC0[⊕], and invoking pairwise field element multiplication and large fan-in addition circuits.

15

3.2 Finding roots of K-quadratics in L

In this section, we give a TC0 circuit family for solving the following computational problem:

Definition 3.5 ((K,L) Quadratic Root Finding). Given a quadratic polynomial az2+bz+c ∈ K[z],
find all zeroes of this polynomial in L.

Theorem 3.6. (K,L) quadratic root finding admits a TC0 circuit family.

Proof. We break into cases.

• If a = 0, then this amounts to computing b−1 ∈ K, which can be done because b−1 = b2
n−2

and exponentiation is in TC0 (Theorem 3.2).

• If a ̸= 0 and b = 0, then this amounts to inverting a and computing a square root in K, which
can be done because

√
α = α2n−1

for α ∈ K.

• If a ̸= 0 and b ̸= 0, then (by invoking standard field operations) this reduces to the case where
a = 1 and b = 1, as

az2 + bz + c = 0 ⇐⇒ (a/b · z)2 + (a/b · z) + a/b2 · c = 0.

Thus, for the rest of the proof, we assume that a = 1 and b = 1. Moreover, it suffices to find a
single solution z∗ in L, as the other solution will be z∗ + 1 (since L has characteristic 2).

Given z2 + z + c = 0, since n = 2 · 3ℓ is 2 mod 4, solving the equation turns out (via standard
theory of finite fields, see e.g. [BSS99] Chapter II) to be related to the F4-trace map

TrK/F4
(α) =

n/2−1∑
i=0

α22i

as follows. First, we note that for any α ∈ K, TrK/F4
(α) ∈ F2[ω], as TrK/F4

(α) is invariant under
the map z 7→ z2

i
for all even i. Additionally, the formula above is computable via a TC0 (in fact,

AC0[⊕]) circuit family.
Next, we give a TC0 (in fact, AC0[⊕]) circuit that on input α ∈ K, outputs β ∈ K such that

β2 + β = α+TrK/F4
(α). The circuit simply computes the expression

β =
∑

0≤i≤n/2−1
i odd

α22i + α22i+1
.

Observe that
β2 + β =

∑
0≤i≤n/2−1

i odd

α22i + α22i+2
= α+TrK/F4

(α),

where the last equation uses the fact that n/2− 1 is even.
Finally, in order to solve the equation z2 + z + α = 0, given that we can compute β above, it

suffices by additivity to be able to solve the equation z2 + z + c = 0 for c = TrK/F4
(α) ∈ F2[ω]. But

this can be done by lookup table: for c = 0 a solution is 0, for c = 1 a solution is ω, for c = ω a
solution is y, and for c = 1 + ω a solution is ω + y. This completes the proof of Theorem 3.6.

16

3.3 Finding roots of cubics in K

In this section, we give a TC0 circuit family for solving the following computational problem:

Definition 3.7 ((K,K) Cubic Root Finding). Given a cubic polynomial az3+ bz2+ cz+d ∈ K[z],
find all zeroes of this polynomial that lie in K.

Theorem 3.8. (K,K)-cubic root finding admits a TC0 circuit family.

Proof. If a = 0, then by Theorem 3.6, we know that (K,L)-quadratic root finding can be solved
in TC0, and it is easy to check membership in K (on an input α ∈ L), so this suffices to solve
(K,K)-quadratic root finding as well.

Thus, we now assume that a = 1. Note that we only want to find all roots in K, so we may
assume without loss of generality that there is at least one root in K (or else the problem is
vacuous). Under this promise, it follows that all three roots will lie in L (since the polynomial
factors into linear and quadratic terms over K). Our algorithm will find all three of these roots
(and then check membership in K).

We find these roots by invoking (a special case of) a standard characteristic 2 variant of the
cubic formula (following e.g. [Lag70]). Namely, letting α0, α1, α2 denote the three roots in L, we
will find α0, α1, α2 by first solving a related quadratic equation with coefficients in K, then taking
cube roots (in L), and then solving a linear system over L.

By Vieta’s identities, we know that α̂0 := α0+α1+α2 = b. Letting ω = x3
ℓ ∈ K so that ω3 = 1,

we will eventually also compute the linear combinations

α̂1 = α0 + ωα1 + ω2α2,

α̂2 = α0 + ω2α1 + ωα2

The map (α0, α1, α2) 7→ (α̂0, α̂1, α̂2) is always (efficiently) invertible over L, so it suffices to compute
α̂1, α̂2. This is sometimes referred to as the “Lagrange resolvent method.”

The field elements α̂1 and α̂2 have been carefully chosen to satisfy useful symmetries when
α0, α1, α2 are permuted as formal variables:

• Under the cyclic permutation (α0, α1, α2) 7→ (αi, αi+1, αi+2), we have that α̂1 7→ ωiα̂1 and
α̂2 7→ ω2iα̂2.

• Under the swap permutation αi ↔ αj , we have that α̂1 7→ ωi+jα̂2 and α̂2 7→ ω2i+2jα̂1.

The symmetries simplify even further if you consider α̂3
1 and α̂3

2 (since ω3 = 1): under cyclic
permutation, these expressions are invariant, while under a swap permutation, they swap!

Thus, α̂3
1 + α̂3

2 and α̂3
1α̂

3
2 are symmetric under all permutations of (α0, α1, α2). The theory of

symmetric polynomials therefore tells us that α̂3
1 + α̂3

2 and α̂3
1α̂

3
2 can be expressed in terms of the

elementary symmetric polynomials in α0, α1, α2, which in our case evaluate to none other than b, c,
and d by Vieta’s identities. Indeed, one can explicitly check that

(α̂1α̂2)
3 = (b2 + c)3

17

and
α̂3
1 + α̂3

2 = bc+ d,

and thus (α̂3
1, α̂

3
2) are solutions to the quadratic equation

z2 + (bc+ d)z + (b2 + c)3 = 0.

By Theorem 3.6, we can hence compute α̂3
1, α̂

3
2 ∈ L with a TC0 circuit. Finally, since α̂1, α̂2 ∈ L, we

can find three candidate values for each of α̂1, α̂2, by computing cube roots over L; this leads to
nine possible root sets for our original problem, which can then be individually checked to find the
correct roots.

Thus, we have reduced the problem to computing cube roots over L. For this problem, we
use a special case of the Adleman-Manders-Miller algorithm [AMM77]. Specifically, we note that
|L|−1 = 24·3

ℓ − 1 is congruent to 3ℓ+1 modulo 3ℓ+2. Then, invoking exponentiation13 in L, on any
input α ∈ L we can compute

β = α
|L|−1−3ℓ+1

3ℓ+2 ∈ L.

Note that
β3

ℓ+2
= α3ℓ+1

,

and thus β3/α is a 3ℓ+1th root of unity, the set of which is precisely S = {1, x, . . . , x3ℓ}. We can
then enumerate (in parallel) over this ≤ n-size set to determine (the x-exponent of) β3/α and thus
compute a cube root of α provided that a cube root of β3/α exists (necessarily within S).

Putting everything together, we obtain the desired TC0 circuit family for (K,K)-cubic root
finding.

4 PPAD-Hardness from Subexponential DDH

In this section, we prove Theorem 1.2, that PPAD is hard under the sub-exponential DDH assumption.
We do this by instantiating the Fiat-Shamir heuristic for the sumcheck protocol executed on
polynomials of individual degree 2 over the Healy-Viola field ensemble. We prove that Fiat-Shamir
for this protocol is sound under DDH by using a lossy CI hash family for TC0 (Theorem 2.8) and
appealing to TC0 algorithms for quadratic root finding (Theorem 3.6).

Definition 4.1 (⊕3SAT). A 3CNF formula ϕ is in the language ⊕3SAT if the number of
satisfying assignments to ϕ is odd.

Fact 4.2. If NP is hard (on average), then ⊕3SAT is hard (on average).

In particular, if one-way functions exist, then ⊕3SAT is hard on average.

Definition 4.3 (Sumcheck Language). An instance of the sumcheck language consists of an
arithmetic circuit f over some field F, along with a target value y. The pair (f, y) is a
YES-instance if ∑

x∈{0,1}n
f(x1, . . . , xn) = y.

13The (large) exponent can also be computed in TC0 [HAB02], or can be nonuniformly hard-wired for simplicity.

18

In this work, we observe that if ⊕3SAT is hard on average, then there is a hard sumcheck
problem over F2 where the individual degree of f is at most two.

Lemma 4.4. If ⊕3SAT is hard-on-average, then sumcheck over F2 is hard-on-average with
respect to a distribution of (f, y) such that the individual degree of f is at most two.

Proof. We describe a one-to-one reduction mapping ⊕3SAT formulas ϕ to sumcheck polynomials f ,
so that deciding whether ϕ ∈ ⊕3SAT maps to checking whether (f, 1) is a valid sumcheck instance.

Suppose that ϕ is an n-variable, m-clause 3CNF:

ϕ(x1, . . . , xn) =

m∧
j=1

ϕj(xj1 , xj2 , xj3)

where each ϕj is an OR of three variables (xj1 , xj2 , xj3) with some negation pattern (contained in
the description of ϕj). Then, consider the following formula in 3m variables:

f(z = (zj,k)j∈[m],k∈{1,2,3}) =
m∏
j=1

ϕj(zj,1, zj,2, zj,3)
n∏

i=1

 ∏
j,k:jk=i

zj,k +
∏

j,k:jk=i

(1− zj,k)

 ,

where ϕj can be interpreted as a multilinear polynomial in three variables over F2. We observe that:

• f has individual degree at most 2. This is because the two products are individually multilinear.

• For z ∈ {0, 1}3m, f(z) = 1 if and only if for some x ∈ {0, 1}n, ϕ(x) = 1 and zj,k = xjk for all
(j, k). Otherwise, f(z) = 0.

Thus, we see that ∑
x∈{0,1}n

ϕ(x1, . . . , xn) =
∑

y∈{0,1}3m
f(y) (mod 2).

This completes the reduction.

To conclude that PPAD is hard-on-average, we combine Lemma 4.4 with the unambiguous
non-interactive argument system for sumcheck from [JKKZ21]. [JKKZ21] implies the following
result:

Theorem 4.5 ([JKKZ21], translated). Let K be a field (ensemble) of size 2λ. Then, there exists
an updatable, unambiguous non-interactive argument system for SumcheckK for individual
degree d polynomials assuming the existence of a hash family H that is lossy CI Definition 2.7
for a class of functions that enumerate over all roots of a given univariate degree d polynomial
over K.

By Theorem 2.6, Theorem 2.8, and Theorem 2.3, we know that there exists a lossy CI hash family
for TC0 circuits. Moreover, letting {Kλ} denote the field ensemble defined in Definition 3.1, we
showed that roots of degree 2 polynomials over K can be enumerated in TC0; moreover, assuming
the hardness of DDH, there exists a lossy trapdoor function such that Invert can be computed via a
TC0 circuit. Thus, the argument system specified by Theorem 4.5 exists assuming the hardness of

19

DDH along with the existence of a CI hash family for TC0 circuits. The latter exists under the
subexponential hardness of DDH [JJ21], so such an argument system exists assuming subexponential
DDH.

Finally, it is known that an argument system satisfying the conditions of Theorem 4.5 (along
with the hardness of the underlying sumcheck problem) implies the hardness of PPAD [CHK+19a],
so this completes the proof of Theorem 1.2.

5 Delegation for Bounded Depth Computations from Subexponen-
tial DDH

In this section, we apply and extend our techniques to prove our main theorem on SNARGs for
bounded-depth computation.

Theorem 5.1. Assuming the sub-exponential hardness of the DDH assumption, there exists a
SNARG for any logspace uniform depth d and size s computation, where the size of the SNARG

and the crs is bounded by d · poly(λ, log s) and the verification time is (n + d) · poly(λ, log s),
where n is the length of the input.

Our SNARG is obtained by applying the Fiat-Shamir heuristic to a variant of the GKR protocol,
considered in [KPY18, JKKZ21] (building on a simplification of the original GKR protocol due
to [Gol18]).

5.1 Variable-Extended Formulations for Boolean Functions

In this section we show how to reduce the degree of any boolean formula down to individual degree
at most 2, by adding auxiliary variables. Loosely speaking, this is done by adding a variable
corresponding to each wire in the original formula, and computing the original formula by making a
series of consistency checks.

Definition 5.2. Let f(x1, . . . , xm) be a boolean function on m variables. We say that g(x1, . . . , xm,
z1, . . . , zt) is a variable-extended formulation of f if for every x ∈ {0, 1}m, there exists a unique
z(x) ∈ {0, 1}t such that g(x, z(x)) = f(x), and g(x, z) = 0 for all z ̸= z(x).

Lemma 5.3. Let f(x1, . . . , xm) be a NAND-boolean formula of size s. Then, there exists a
variable-extended formulation g of f such that (1) t = s, and (2) g can be computed by a
F2-arithmetic circuit of size O(s) that defines a (formal) polynomial of individual degree at
most 2.

Also, the above arithmetic circuit can be constructed in time poly(s) given the description
of f .

Proof. We use a similar strategy as in Lemma 4.4. That is, we introduce s new variables z1, . . . , zs,
one for each wire of the formula computing f . We then define

g(x, z) = zs

s∏
i=1

gi(z)

m∏
j=1

g′j(x, z),

20

where for every gate (i, j, k) we have gi(z) = zi + zjzk and for every input index j we have
g′j(x, z) = xj

∏
i∈Sj

zi+(1−xj)
∏

i∈Sj
(1− zi), where Sj denotes the set of leaf indices corresponding

to xj . Note that g(x, z) has individual degree 2, since (1) zs appears only twice, (2) each intermediate
(non-output, non-leaf) variable only appears twice because they have fan-in 1 and fan-out 1, and (3)
the variables {xj , zi}j∈[m],i∈Sj

have degree at most 2 (they occur at most once in the first product,
while the second product is multilinear).

5.2 A GKR protocol with degree 3 sumcheck polynomials

In this section, we construct a special variant of the [GKR08] interactive proof system for logspace-
uniform depth d computation. Our starting point is the GKR protocol variant described in
[KPY18, JKKZ21], which makes use of observations from [Gol18] to simplify the protocol. In
[JKKZ21], it was shown that the Fiat-Shamir heuristic can be instantiated for this protocol using a
hash function that is “lossy correlation-intractable” for circuits that (modulo basic field operations)
compute roots of univarite polynomials (of polylogarithmic degree). They show how to construct
such a lossy correlation-intractable hash functions from

By using an appropriate variable-extended formulation (Lemma 5.3), we will modify the
protocol so that every sumcheck sub-protocol uses a polynomial of individual degree at most 3.
Finally, working over the field ensemble from Definition 3.1 and using the correlation-intractable
hash family of [JJ21] (and lossy trapdoor functions from DDH [PW08]), we will deduce Theorem 5.1.

The Protocol. Let C = {Cn}n denote a family of logspace-uniform circuits of depth d and
width w. We assume without loss of generality that C has fan-in 2 and consists of addition
(mod 2) and multiplication (mod 2) gates. The key objects of interest are the gate-indicator
functions χ(i)

add, χ
(i)
mult for each layer (i) of the circuit. χ(i)

add and χ
(i)
mult take as input three strings

(a, b, c) ∈ {0, 1}logw and output whether (a, b, c) is an addition (respectively, multiplication) gate in
C.

The protocol is typically defined with respect to particular low-degree extensions χ̃(i)
add, χ̃

(i)
mult of

χadd, χmult. For our variant, we make use of the following fact shown implicitly in [Gol18]:

Fact 5.4. Let C ′ be any family of logspace-uniform circuits of depth d and size s. Then, there
exists a family C of logspace-uniform circuits of depth d · poly log(s) and size poly(s) such that:

• C computes the same function as C ′, and

• For all i, χ(i)
add, χ

(i)
mult (for C) are computable by boolean formulas of size O(logw) (i.e.,

the size is linear in the χadd, χmult input length). These formulas can be constructed (by
a uniform Turing machine) in time poly(log s).

[Gol18] only explicitly claims that the formulas have size poly log s, but the construction in [Gol18]
Section 3.4.2 actually (specializing to H = {0, 1}) implies Fact 5.4.

Thus, we assume without loss of generality that C satisfies the conclusion of Fact 5.4. Invok-
ing Lemma 5.3, we conclude that χ(i)

add, χ
(i)
mult have variable-extended formulations ψ(i)

add, ψ
(i)
mult :

{0, 1}3 logw+O(log s) → {0, 1} that are computable by F2-arithmetic circuits of size O(log s) that

21

define polynomials of individual degree at most 2. We let ψ̃(i)
add, ψ̃

(i)
mult denote the corresponding

individual degree 2 polynomials.
We are finally ready to describe the protocol, which will use arithmetic over an extension K of

F2. Our instantiation will use the field ensemble from Definition 3.1.

• The prover and verifier, given the logspace-uniform Turing machine that constructs C, both
compute arithmetic circuit descriptions of each ψ̃(i)

add, ψ̃
(i)
mult.

• The prover, given the input x and circuit C, computes the following quantities:

– For every layer i of the circuit, compute the string Li = Li(C, x) ∈ {0, 1}w consisting of
all wire values in the evaluation C(x) in the ith layer of C.

– For each such i, define the function ℓi : {0, 1}logw → {0, 1} such that ℓi(a) = (Li)a, where
a is interpreted as an integer between 0 and w− 1. Implicitly, this defines a multi-linear
extension ℓ̂i : K

logw → K of ℓi.

• The prover and verifier recursively agree on a pair of claims of the form “ ℓ̂i(u1) = v1,”
“ ℓ̂i(u2) = v2” for u1, u2 ∈ K logw and v1, v2 ∈ K. They do so as follows:

– The base case is i = d, the top (output) layer of C; the claims are (both) that ℓ̂d(0logw) = y

(where allegedly C(x) = y).

– Inductively, suppose that we have two claims “ ℓ̂i(u1) = v1,” “ ℓ̂i(u2) = v2” about layer i.
The recursion uses the fact that

ℓ̂i(u) =
∑

a∈{0,1}logw

ÊQ(u, a)ℓi(a)

=
∑

a,b,c∈{0,1}logw

ÊQ(u, a)
(
χ
(i)
add(a, b, c) · (ℓi−1(b) + ℓi−1(c)) + χ

(i)
mult(a, b, c)ℓi−1(b) · ℓi−1(c)

)
.

=
∑

a,b,c∈{0,1}logw

z∈{0,1}O(log s)

ÊQ(u, a)
(
ψ
(i)
add(a, b, c, z) · (ℓi−1(b) + ℓi−1(c)) + ψ

(i)
mult(a, b, c, z)ℓi−1(b) · ℓi−1(c)

)
.

where ÊQ(u, a) :=
∏

j(1 + uj + aj).

– The prover and verifier then run two simultaneous sumcheck protocols using the polyno-
mials gu1 , gu2 , where

gu(a, b, c, z) = ÊQ(u, a)
(
ψ̃
(i)
add(a, b, c, z)·(ℓ̂i−1(b)+ℓ̂i−1(c))+ψ̃

(i)
mult(a, b, c, z)ℓ̂i−1(b)·ℓ̂i−1(c)

)
and the claimed outputs v1, v2. Importantly, the same verifier randomness is used for
these two sumcheck protocols.

– At the end of the interactive phase of this protocol, the verifier has a tuple of field
elements β ∈ K3 logw+O(log s) and outputs γ1, γ2 such that (allegedly) gu1(β) = γ1 and
gu2(β) = γ2. Let u′1, u

′
2 denote the part of β corresponding to b and c.

22

– Finally, the prover sends v′1 = ℓ̂i1(u
′
1), v

′
2 = ℓ̂i−1(u

′
2) to the verifier. Since ÊQ, ψ̃(i)

add, ψ̃
(i)
mult

are all computable in time poly(log s), the verifier can check that v′1 and v′2 are consistent
with the claims output by the sumcheck protocol. This completes the recursive step,
which has produced two new claims (u′1, v

′
1), (u

′
2, v
′
2).

• After this recursive process, the verifier has obtained two final claims “ ℓ̂0(u1) = v1,” “ ℓ̂0(u2) =
v2” about the multilinear extension ℓ̂0. Since ℓ̂0 is nothing more than the multilinear extension
of the input x (thought of as a function mapping {0, 1}logn → {0, 1}), the verifier can check
these two claims (given x) using O(n) field operations.

Crucially, ψ̃add and ψ̃mult have individual degree 2, which implies that every polynomial gu has in-
dividual degree at most 3. This is because ÊQ(u, a)(ℓ̂i−1(b)+ ℓ̂i−1(c)) and ÊQ(u, a)(ℓ̂i−1(b)ℓ̂i−1(c))

are both multilinear polynomials.
This completes our description of our variant of the [GKR08] protocol. By combining Theo-

rems 2.3, 2.6 and 2.9, the fact that this [GKR08] variant runs (pairs of) degree 3 sumchecks, and
Theorem 3.8, we conclude Theorem 5.1.

References

[AMM77] Leonard Adleman, Kenneth Manders, and Gary Miller. On taking roots in finite fields.
In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977),
pages 175–178. IEEE Computer Society, 1977. 18

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS,
pages 106–115. IEEE Computer Society Press, October 2001. 1

[BBH+19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Rothblum.
On the (in)security of kilian-based SNARGs. In Dennis Hofheinz and Alon Rosen, edi-
tors, TCC 2019, Part II, volume 11892 of LNCS, pages 522–551. Springer, Heidelberg,
December 2019. 1

[BCH+22] Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath, Alex Lombardi,
Omer Paneth, and Ron D Rothblum. Ppad is as hard as iterated squaring and lwe. In
TCC 2022, 2022. https://eprint.iacr.org/2022/1272. 8

[Ber70] Elwyn R Berlekamp. Factoring polynomials over large finite fields. Mathematics of
computation, 24(111):713–735, 1970. 3, 6

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor
hash via correlation intractability for approximable relations. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 738–767. Springer, Heidelberg, August 2020. 3, 7

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages 1480–1498.
IEEE Computer Society Press, October 2015. 8

23

https://eprint.iacr.org/2022/1272

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press,
November 1993. 1, 3

[BSS99] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryptography, volume
265. Cambridge university press, 1999. 16

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.
1, 2, 3, 7, 8

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of
obfuscated pseudorandom functions. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 389–415. Springer, Heidelberg,
January 2016. 7

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and
correlation intractability from strong KDM-secure encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 91–122. Springer, Heidelberg, April / May 2018. 7

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player nash equilibria. Journal of the ACM (JACM), 56(3):1–57, 2009. 2

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May
1998. 1, 3, 11

[CHK+19a] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. Finding a nash equilibrium is no easier than breaking
Fiat-Shamir. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages
1103–1114. ACM Press, June 2019. 1, 2, 4, 8, 20

[CHK+19b] Arka Rai Choudhuri, Pavel Hubacek, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen,
and Guy N. Rothblum. PPAD-hardness via iterated squaring modulo a composite.
Cryptology ePrint Archive, Report 2019/667, 2019. https://eprint.iacr.org/2019/
667. 8

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch
arguments for NP from standard assumptions. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 394–423, Virtual Event,
August 2021. Springer, Heidelberg. 7, 8

[CJJ22] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for p from lwe.
In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 68–79. IEEE, 2022. 1, 7, 8

24

https://eprint.iacr.org/2019/667
https://eprint.iacr.org/2019/667

[CZ81] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, pages 587–592, 1981. 3, 6

[DGP09] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The
complexity of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–
259, 2009. 2

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous
verifiable delay functions. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 125–154. Springer, 2020. 8

[FGK+10] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev. More
constructions of lossy and correlation-secure trapdoor functions. In Phong Q. Nguyen
and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 279–295.
Springer, Heidelberg, May 2010. 3, 10

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987. 1, 3

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In 44th FOCS, pages 102–115. IEEE Computer Society Press, October
2003. 1

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 113–122. ACM Press, May 2008. 1, 2, 5, 8, 12, 13, 21, 23

[Gol18] Oded Goldreich. On doubly-efficient interactive proof systems. Foundations and
Trends® in Theoretical Computer Science, 13(3):158–246, 2018. 6, 20, 21

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,
Heidelberg, August 2016. 8

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 99–108. ACM Press, June 2011. 1

[GZ21] Alonso González and Alexandros Zacharakis. Fully-succinct publicly verifiable dele-
gation from constant-size assumptions. In Kobbi Nissim and Brent Waters, editors,
TCC 2021, Part I, volume 13042 of LNCS, pages 529–557. Springer, Heidelberg,
November 2021. 8

[HAB02] William Hesse, Eric Allender, and David A Mix Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. Journal of Computer and
System Sciences, 65(4):695–716, 2002. 15, 18

25

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs
for P from sub-exponential DDH and QR. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 520–549. Springer,
Heidelberg, May / June 2022. 1, 7, 8

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In Mikkel Thorup,
editor, 59th FOCS, pages 850–858. IEEE Computer Society Press, October 2018. 7

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D Rothblum. Fiat–shamir via list-recoverable
codes (or: parallel repetition of gmw is not zero-knowledge). In Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 750–760,
2021. 3, 7

[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in
finite fields of characteristic two. In Annual Symposium on Theoretical Aspects of
Computer Science, pages 672–683. Springer, 2006. 4, 6, 7, 13, 14, 15

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-
exponential DDH. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part I, volume 12696 of LNCS, pages 3–32. Springer, Heidelberg,
October 2021. 1, 3, 4, 7, 8, 9, 11, 20, 21

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. Snargs for
bounded depth computations and ppad hardness from sub-exponential lwe. In Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 708–721, 2021. 1, 2, 3, 5, 8, 10, 12, 13, 19, 20, 21

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 60–73, 2021. 8

[KLVW22] Yael Tauman Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting
batch arguments and ram delegation. 2022. https://eprint.iacr.org/2022/1320. 1,
8

[KPY18] Yael Kalai, Omer Paneth, and Lisa Yang. On publicly verifiable delegation from
standard assumptions. Cryptology ePrint Archive, Report 2018/776, 2018. https:
//eprint.iacr.org/2018/776. 20, 21

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages
1115–1124. ACM Press, June 2019. 1, 8

[KPY20] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. Delegation with updatable unam-
biguous proofs and PPAD-hardness. In Daniele Micciancio and Thomas Ristenpart,

26

https://eprint.iacr.org/2022/1320
https://eprint.iacr.org/2018/776
https://eprint.iacr.org/2018/776

editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 652–673. Springer,
Heidelberg, August 2020. 1, 8

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 224–251. Springer, Heidelberg,
August 2017. 7

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere
statistical soundness, post-quantum security, and SNARGs. In Kobbi Nissim and Brent
Waters, editors, TCC 2021, Part I, volume 13042 of LNCS, pages 330–368. Springer,
Heidelberg, November 2021. 8

[Lag70] Joseph-Louis Lagrange. Reflexions sur la resolution algebrique des equations, nouveaux
memoires de l’acade. Royale des sciences et belles-letteres, avec l’histire pour la
meme annee, 1:134–215, 1770. 7, 17

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. In 31st FOCS, pages 2–10. IEEE Computer Society
Press, October 1990. 2

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring with
applications to PPAD-hardness and VDFs. In Daniele Micciancio and Thomas Ris-
tenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 632–651.
Springer, Heidelberg, August 2020. 8

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE
Computer Society Press, November 1994. 1

[Pap94] Christos H Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. Journal of Computer and system Sciences, 48(3):498–
532, 1994. 2

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89–114. Springer, Heidel-
berg, August 2019. 3, 7, 8

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196.
ACM Press, May 2008. 3, 9, 10, 21

[Rab80] Michael O Rabin. Probabilistic algorithms in finite fields. SIAM Journal on computing,
9(2):273–280, 1980. 3, 6

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 49–62. ACM Press, June 2016. 1

27

[Tov84] Craig A Tovey. A simplified np-complete satisfiability problem. Discrete applied
mathematics, 8(1):85–89, 1984. 4

[WW22] Brent Waters and David J Wu. Batch arguments for np and more from standard
bilinear group assumptions. In Proceedings of CRYPTO 2022, 2022. 1, 8

28

	Introduction
	Technical Overview
	The Circuit Complexity of Root-Finding
	PPAD hardness with degree 2 sumchecks
	SNARGs via degree 3 sumchecks
	Cubic root finding: proving thm:cubic-root-intro

	Related Work

	Preliminaries
	Cryptographic Groups
	Lossy Trapdoor Functions
	Correlation-Intractable Hash Families
	Lossy CI Hash Functions
	SNARGs for Bounded Depth Computations

	Root-Finding in TC0
	Basic Finite Field Operations
	Finding roots of K-quadratics in L
	Finding roots of cubics in K

	PPAD-Hardness from Subexponential DDH
	Delegation for Bounded Depth Computations from Subexponential DDH
	Variable-Extended Formulations for Boolean Functions
	A GKR protocol with degree 3 sumcheck polynomials

