
Breaking and Protecting the Crystal:
Side-Channel Analysis of Dilithium in Hardware

Hauke Steffen1 , Georg Land2,3 , Lucie Kogelheide1 , and Tim Güneysu2,3

1 TÜV Informationstechnik GmbH, Essen, Germany
2 Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany

3 DFKI GmbH, Cyber-Physical Systems, Bremen, Germany
{h.steffen,l.kogelheide}@tuvit.de, {georg.land,tim.gueneysu}@rub.de

Keywords: Dilithium · Side-Channel Analysis · FPGA · SPA · CPA · PQC

Abstract. The lattice-based CRYSTALS-Dilithium signature schemes
has been selected for standardization by the NIST. As part of the selec-
tion process, a large number of implementations for platforms like x86,
ARM Cortex-M4, or – on the hardware side – Xilinx Artix-7 have been
presented and discussed by experts. Moreover, the software implemen-
tations have been subject to side-channel analysis with several attacks
being published. Until now, however, an analysis of Dilithium hardware
implementations and their pecularaties have not taken place. With this
work, we aim to fill this gap, presenting an analysis of vulnerable opera-
tions and practically showing a successful profiled Simple Power Analy-
sis (SPA) and a Correlation Power Analysis (CPA) on a recent hardware
implementation by Beckwith et al. Our SPA attack requires 700 000 pro-
filing traces and targets the first Number-Theoretic Transform (NTT)
stage. After profiling, we can find pairs of coefficients with 1 101 traces.
The CPA attack finds secret coefficients with as low as 66 000 traces. Our
attack emphasizes that noise-generation in hardware is not sufficient as
mitigation measure for SCA. As a consequence, we present countermea-
sures and show that they effectively prevent both attacks.

1 Introduction

Quantum computers pose a real threat to communication security. Currently
deployed symmetric schemes can be adapted easily to withstand attacks even
from large-scale quantum computers. In contrast, asymmetric schemes like RSA
and ECC-based schemes can be broken without great efforts by means of Shor’s
algorithms [22]. Although it is not yet clear whether this threat becomes reality
in the near future, it is undisputed that action needs to be taken early to prevent
prospective damage. For that reason, the United States National Institute for
Standards and Technology (NIST) has launched standardization efforts for post-
quantum secure schemes for Key Encapsulation Mechanism (KEM) and digital
signatures in 2017.

https://orcid.org/0000-0002-7065-5980
https://orcid.org/0000-0002-1533-3583
https://orcid.org/0000-0002-6849-7434
https://orcid.org/0000-0002-3293-4989

After three rounds, each with several schemes being dropped due to cryptan-
alytic attacks, lacking efficiency or missing confidence in their security assump-
tions, NIST has announced the schemes to be standardized in July 2022. As
KEM, Kyber has been selected, while four other schemes proceed to a fourth
round and are considered for standardization in future. For signature schemes,
Dilithium, Falcon, and SPHINCS+ are being standardized, with Dilithium being
the primary choice.

Dilithium has undergone a thorough cryptanalytic process and guarantees se-
curity against Strong Existential Unforgeability under Chosen Message Attacks
(SUF-CMA). Besides, concrete implementations can be attacked by means of
side-channel analysis, exploiting dependencies of physical characteristics on se-
cret values during computation. In this context, several side-channel analyses
have been published on Dilithium software implementations. In [19], Ravi et al.
show a signature forgery attack that is enabled by finding a partial secret key
using a power analysis. This work is extended to fault attacks on pqm4 imple-
mentations of Dilithium and qTesla [20], also presenting a mitigation approach.
Migliore et al. carry out a side-channel evaluation targeting the ARM Cortex-
M4 platform [18]. They are also the first and to date only to present concrete
masking countermeasures. Following this, Chen et al. present an efficient Cor-
relation Power Analysis (CPA) attack on the Dilithium pqm4 software imple-
mentation [7], succeeding with only 157 power measurements. Karabulut et al.
show that sampling of fixed-weight polynomials as done in Dilithium, NTRU, and
NTRU Prime is vulnerable to side-channel analysis [14]. Finally, Marzougui et al.
present a novel side-channel attack that exploits a vulnerability in a sampling
procedure. However, their attack requires many measurements and a complex
post-processing.

All these works have in common that they target software platforms, while
there is no dedicated side-channel analysis targeting hardware implementations,
which is a glaring lack in the light of Dilithium already being chosen for stan-
dardization. With our work, we aim to close this gap by analyzing a recent
Field-Programmable Gate Array (FPGA) implementation, presenting a profiled
Simple Power Analysis (SPA) and a CPA attack. Additionally, we investigate
and implement countermeasures, evaluating their efficacy against the before pro-
posed attacks.

Contribution. Hence, our contribution can be summarized as follows:

– We present first power side-channel results of a Dilithium implementation in
reconfigurable hardware.

– We show several profiled SPA attacks on Dilithium-2 and -5, including:

• an evaluation of single-trace attacks on decoding and first Number-
Theoretic Transform (NTT) stage, with up to 94.2% success probability
to recover the correct coefficient.

• multi-trace attacks on decoding with 50 000 profiling traces, capable of
recovering the target coefficient with 130 traces during attack phase.

2

• multi-trace attacks on first NTT stage with 350 000 profiling traces
that enables full key recovery with a pair of target coefficients using
1 101 traces.

– We also show a CPA on the polynomial multiplication, recovering secret
coefficients with 66 000 traces, agnostic to the parameter set, enabling full
key recovery.

– We present an analysis how to apply masking as countermeasure, by propos-
ing arithmetic masking effectively prohibiting the presented attacks.

2 Preliminaries

2.1 Notation

Throughout this work, we will use and assume the following notation. Let n and
q be two integers, such that n = 256 and q = 223 − 213 + 1. Further, let Rq

be a polynomial ring with Rq = Zq[X]/(Xn + 1). The infinity norm ||x||∞ of a
polynomial x is defined as the maximum absolute value among all its coefficients.
For polynomial vectors, this norm is defined as the maximum infinity norm of all
polynomials in the vector. Then, Sb denotes the set of polynomials in Rq with

infinity norm b and S̃b denotes the same set but excluding coefficients with value
−b. Furthermore, the set of polynomials inRq with exactly τ non-zero coefficents
and infinity norm 1 is denoted as Bτ . In addition, let us denote vectors in bold
lower-case letters, e.g., v, while matrices are denoted in bold upper-case letters,
e.g., A. Polynomials in NTT domain are indicated by a hat, e.g., ĉ. This is also
used transitively, thus, Â denotes that each polynomial in A is transformed to
NTT domain individually. Finally, we denote the point-wise multiplication with
◦.

2.2 CRYSTALS-Dilithium

As usual for digital signature schemes, Dilithium provides the three core proce-
dures for key generation, signature generation, and signature verification. Since
verification is not relevant for side-channel attacks, we omit explaining it here
and instead refer to the official specification [9].

Key Generation. Algorithm 1 shows the key generation of Dilithium. As can be
seen there, finding the secret key from knowing the public key is basically the M-
LWE problem. Moreover, once an attacker obtains either s1 or s2, she can directly
obtain the other value, since A and t are public values. However, Dilithium makes
an interesting modification in moving the lower d bits of each coefficient in t to
the secret key in order to reduce the public key size, which is what the function
Power2Round does. Still, the polynomial vector t0, which contains these lower
bits, is considered public information. For the exact definition of the sampling
procedures and the Power2Round function, we refer to the specification [9].

3

Algorithm 1 Dilithium key generation

1: ζ ← {0, 1}256
2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := SHAKE-256(ζ)
3: sample A ∈ Rk×ℓ

q deterministically in NTT domain from the output stream of
SHAKE-128(ρ)

4: sample (s1, s2) ∈ Sℓ
η × Sk

η from the output stream of SHAKE-256(ρ′)
5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := SHAKE-256(ρ||t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Algorithm 2 Dilithium signature generation

Require: secret key sk, message M
1: κ := 0, sample A as in key generation
2: µ ∈ {0, 1}512 := SHAKE-256(tr||M)
3: ρ′ ∈ {0, 1}512 := SHAKE-256(K||µ) for deteministic signing

ρ′ ← {0, 1}512 for randomized signing
4: while true do
5: sample y ∈ S̃ℓ

γ1
deterministically based on ρ′, κ

6: w := Ay
7: w1 := HighBitsq(w, 2γ2)

8: c̃ ∈ {0, 1}256 := SHAKE-256(µ||w1)
9: c ∈ Bτ := SampleInBall(c̃)
10: z := y + cs1
11: r0 := LowBitsq(w − cs2, 2γ2)
12: if ||z||∞ < γ1 − β and ||r0||∞ < γ2 − β then
13: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
14: if ||ct0||∞ < γ2 and the # of 1’s in h is less than or equal to ω then
15: return (z,h, c̃)

16: κ := κ+ ℓ

Signature Generation. In Algorithm 2, the signature generation for a given mes-
sage and secret key is described. Most notably, there is a big rejection loop which
only terminates if the signature is approved to not leak any information on the
secret key, which is ensured by the checks starting in Line 13. Inside the loop, the
signing algorithm chooses a masking polynomial vector y with coefficients from
[−γ1, γ1), computes w = Ay and rounds each coefficient of the resulting poly-
nomial vector according to the HighBitsq function. From this and the message,
the challenge polynomial c is sampled, which has exactly τ non-zero coefficients,
which are either 1 or -1. Then, a signature candidate z is computed as y + cs1.
Following this, it is checked whether the broad “noise” generated by y actually
hides cs1. Finally, using the MakeHintq function, the signing algorithm generates
“hints” for the verifier to make up for the missing lower bits of t0.

Note that all polynomial multiplications are performed using the NTT for
efficiency. Further, for a detailed definition of the sampling procedures as well

4

as the rounding operations HighBitsq, LowBitsq and the MakeHintq, we refer to
the Dilithium specification [9].

Parameters. For Dilithium, three parameter sets are proposed, which aim at the
NIST security categories 2, 3, and 5. The security is scaled mostly via increasing
the matrix and vector dimensions (k, ℓ), which are (4, 4) for level 2, (6, 5) for
level 3, and (8, 7) for level 5. Another relevant parameter that changes over the
parameter sets is the secret key range η, which is 2 for the levels 2 and 5, and 4
for level 3. All other parameters are not of interest for this work, thus, we refer
to the specification [9] for a complete overview.

2.3 Side-Channel Analysis

The today wide field of side-channel analysis has been founded with Kocher’s
seminal work [15] on timing side-channels. In the following, we briefly explain
the two approaches that are relevant for our work.

Simple Power Analysis. This technique aims to analyze power traces directly
to learn operations that have been executed and processed secrets. In the best
case, a single measurement is sufficient to recover the key completely. The most
important extension of SPA is profiled, or template SPA. Here, the attack is
performed in two phases. In the Profiling Phase, the attacker measures the
target device performing several operations with known or chosen secret input,
obtaining information about the device’s behavior depending on the input. In the
Attack Phase she uses the knowledge from the first phase, aiming to recover
the secret by measuring the target device performing the operation with secret
input.

This obviously requires an extension of the attacker model. When introducing
profiling, the attacker now also is required to have extended access to the target
device, knowing or even being able to choose several inputs that are usually
secret. In the attack phase, then, she may use one or multiple traces, resulting
in single-trace or multi-trace attacks.

Finding Points of Interest. To determine the Points of Interest (POIs), which
correspond to differences between the observed classes, we use the sum of squared
pairwise t-differences (SOST) as metric, which has been introduced in [11]. The
idea here is to measure many traces for each class, then compute the t-test traces
between any possible pair of classes, square them point-wise, and accumulating
the results. We then take points into consideration if their SOST is greater than
an adaptively chosen threshold based on the overall noise level.

Matching Power Traces to a Template. To match new traces to the prepared
templates, we follow the approach first introduced in [6]. A template for a single
class consists of a mean trace and the pooled noise covariance matrix (for a
comprehensive definition, we refer to [8]). In the attack phase, when measureing
a power trace, we compute the probability of matching each template by means
of the probability density function of the multivariate normal distribution.

5

Updating the Ranking for Multi-Trace Attacks. Starting with one trace, we ob-
tain probabilities for matching each class as explained before. Subsequently, we
compute the probabilities for the next trace analogously and update the classi-
fication probabilities according to Bayes’ theorem.

Correlation Power Analysis. CPA has a very different concept, as the at-
tacker here always obtains many power measurements. The idea then is to test
all possible hypotheses for the part of a key (such as a single coefficient) by corre-
lating a power model of an intermediate value that depends on the targeted key
part with the power traces. For this, the attacker either must be able to choose
or at least to know the public input, which is in contrast to the profiled SPA,
where she also is required to know or choose secret inputs in the first phase. In
our case, for a digital signature scheme, the attacker model is either known or
chosen message for the CPA.

Finally, the hypothesis with the highest absolute correlation coefficient is
deemed the correct key part. As correlation coefficient, usually Pearson’s corre-
lation is used, which is the covariance of power model output and sample value
normed over the product of the standard deviations of each of the two. As signif-
icance bound, we use

√
28/N , where N is the number of processed traces [17].

Countermeasures. To mitigate side-channel attacks, many countermeasures
have been proposed. The straight-forward idea is to decrease the signal-to-noise
ratio (SNR) (where the signal is the leaking information) of targeted devices
purposefully. For instance, this can be achieved by noise generators that run in
parallel to the sensitive operations [13]. However, this usually aims to increase
the number of measurements required for an attack.

If the algorithm whose implementation is to be secured allows re-ordering
of operations, shuffling [23] can be an option to counter single-trace SPA. By
this, the attacker may be able to recover the secret value, but not its position
within the complete secret. For a CPA, shuffling instead only decreases the SNR
because a certain fraction of the measurements will have the operation that leaks
the secret aligned, with all other measurements being noise with respect to the
attack.

Thus, to counter this attack as well, masking has been introduced [5, 12],
which has its foundations in Shamir’s secret sharing. Here, a secret value x
is split into multiple uniform random shares. Regarding PQC, the two most
common masking schemes are Boolean and additive masking, splitting secrets
either in Boolean or additive shares. In order to process secret data, any function
that is linear in the masking domain can be performed share-wise. Non-linear
functions have a higher complexity growth and usually require refreshing the
mask(s) during intermediate steps.

As a consequence, the CPA attacker does not yield any information about the
secret as only uniform random values are processed. This of course is only true
if the attacker is restricted to only one probe. Once she can probe both shares,

6

she can perform the same attack again. It follows that the masking degree is
always chosen according to a given attacker model.

3 Conceptual Considerations

The first reported implementation of the current specification was presented by
Land et al. [16]. This implementation heavily depends on Digital Signal Pro-
cessors (DSPs), which speeds up the NTT significantly. Overall however, it is
rather slow and big compared to the newer implementations. Instead, we target
the state-of-the-art implementation by Beckwith et al. [3]. We are aware of the
more recent work by Zhao et al. [24], which was not available by the start of our
work. However, since the operations we exploit are rather algorithmic-specific,
we expect a broad applicability of our techniques. In the following, we explain
and analyze several operations within the target implementation.

3.1 Bit-Packing and Decoding of Secret Polynomials s1, s2

In general, the specification describes encoding as follows: An integer x ∈ [−η, η]
is packed as η − x such that the encoded value is non-negative. Particularly,
η = 2 for Dilithium security levels 2 and 5, and η = 4 for security level 3. For
all parameter sets, five consecutive resulting three-bit values are packed to three
bytes. In our target implementation, chunks of 64 bits are processed rather than
single coefficients, which is implemented with a FIFO, and then four coefficients
are decoded in parallel.

Since the implementation uses an unsigned representation, the decoding op-
eration (a subtraction) is performed modulo q. Thus, the decoded values are
either close to zero, or close to q. This results in vastly different HWs for the
different cases, which is depicted in Table 1. As can be seen there, the particu-
lar value q = 223 − 213 + 1 additionally enables a clear distinction between the

Table 1: Hamming weight (HW) differences of decoded coefficients in s1 and s2

(a) η = 2

in out HW(out)

0 0x000002 1
1 0x000001 1
2 0x000000 0
3 0x7fe000 10
4 0x7fdfff 22

(b) η = 4

in out HW(out)

0 0x000004 1
1 0x000003 2
2 0x000002 1
3 0x000001 1
4 0x000000 0
5 0x7fe000 10
6 0x7fdfff 22
7 0x7fdffe 21
8 0x7fdffd 21

7

a1

b1 ×

+

−

a2

b2 ×

+

−

×

+

−

â1

b̂1

×

+

−

â2

b̂2

Fig. 1: 2x2 BFU construction

low-HW outputs, q − 2, and the high-HW outputs. We expect that the great
differences in the HW lead to a distinguishable amount of power consumption,
enabling SPA attacks.

3.2 Number-Theoretic Transform

After unpacking the secret polynomials in s1 and s2, they are transformed into
NTT representation. The NTT as used in Dilithium, can be seen as a discrete
Fourier transform over polynomials in Rq, where the complex arithmetic is re-
placed by the modular arithmetic of the polynomial coefficients. Since the ring
structure enables negative wrapped convolution, we can use an n-point NTT for
fast polynomial multiplication. For this, we transform both factor polynomials
to the NTT domain, multiply coefficient-wise in NTT domain, and then apply
the inverse transform to the result to obtain the final product polynomial.

The core operation of the NTT is the so-called butterfly. Generally, the NTT
is easily parallelizable and thus, it is possible to make a design choice of how
many butterflies to instantiate. For the given n = 256, eight layers of the NTT
have to be processed. However, in the targeted implementation, a 2×2-Butterfly
Unit (BFU) is deployed, which means that four butterflies are instantiated in a
way that four input coefficients are processed first through two butterflies and
then through the two others in order to perform two layers of NTT consecutively.
This is depicted in Fig. 1. In the following, we refer to this as one stage of the
NTT.

Note that for the butterfly, each output depends on all input values. More-
over, a1 is spread without multiplication, b1 is processed through one multiplica-
tion, a2 through two multiplications, and b2 through three. As the multiplications
are with primitive roots of unity, which range over the whole Zq, intermediate
values seem to be distributed uniformly in Zq regardless of the input distribu-
tion. However, for s1 and s2 the input space to the first layer is bounded by
η, which implicitly bounds the set of possible intermediate results and outputs
of the BFU. We expect that this leaves more distinguishable power signatures,
facilitating more powerful SPA attacks.

8

3.3 Polynomial Multiplication

In Algorithm 2, we can see that the secrets s1 and s2 are multiplied with the
challenge polynomial c. If the signature candidate is not rejected, the hash c̃
that is used to generate the challenge deterministically is part of the signature
and thus publicly known. Besides, c̃ is the hash of µ, which directly depends
on the message M , and w1. Therefore, for the deterministic signing procedure,
c depends deterministically on the message. On the other hand, if randomized
signing is deployed – originally introduced to counter side-channel attacks –, c
is also randomized even for a fixed message M through the randomization of y,
which is used to compute w1.

Moreover, the polynomial multiplications are performed in NTT domain,
which is essentially a coefficient-wise modular multiplication between ĉ and the
vectors ŝ1 and ŝ2. This renders the aforementioned polynomial multiplications
a natural target for a CPA attack, since we can target the polynomial vector ŝ1
coefficient by coefficient.

The advantage of such an attack would be its weak attacker model. For
the deterministic case, messages must be known to be distinct, while for the
randomized case, no knowledge about the message is required. In both cases,
though, the attacker must be able to trigger enough signings under the same
secret key.

3.4 Measurement Setup

We perform all our attacks on a Xilinx Artix-7 100T FPGA – the hardware
platform recommended by NIST for comparison of hardware implementations –
running at 100MHz. We opt of measure the power consumption indirectly. Using
an electromagnetic (EM) near-field probe, we measure the electromagnetic field
of a capacitor on the board that has a particularly low capacity of 47 nF. Since
this capacitor is placed very close to the FPGA and in its power path, the ca-
pacitor’s electromagnetic emanation directly depends on the power consumption
of the FPGA. The advantage of this procedure is that no physical modifications
are required on the target board. All measurements have been performed with
20GS/s and a quantization of 12 bit.

4 Simple Power Analysis

In the following, we focus on the case η = 2 (Dilithium-2 and -5), which is more
promising. Still, we evaluate and discuss the case η = 4 at the end of this section.

4.1 Targeting Single Coefficients

As a first step towards a practical attack, we target single coefficients. We start
with applying an attacker model, in which out of the four secret coefficients that
are decoded simultaneously, three are known and the other one is attempted

9

to recover. This means in practice that during the profiling phase, the attacker
builds the templates knowing the three other secret coefficients. This results in
less noise compared to the more realistic scenario in which the attacker does not
know the other coefficients and thus would choose them randomly.

Interestingly, our countermeasures work also against this attacker. This re-
sults in an extended efficacy guarantee by deducting that the countermeasures
effectively hinder any weaker SPA attacker, i.e., also the attacker that does not
know the other three coefficients.

Attacking the Decoding Step. For this, we measure 55 000 traces, using
a secret key as input that is fixed for all coefficients but one, which is chosen
randomly. We divide this trace set into the profiling set consisting of 50 000 traces
and the attack set, consisting of 5 000 traces. Subsequently, we prepare templates
for three different attacks:

1. Five classes, aiming for classification of the exact coefficient value
2. Four classes, aiming to disthinguish between input classes

– 0, 1 (yielding output HW 1)
– 2 (yielding output HW 0)
– 3 (yielding output HW 10)
– 4 (yielding output HW 22)

3. Three classes, aiming to disthinguish between input classes

– 0, 1, 2 (yielding output HW 1 or 0)
– 3 (yielding output HW 10)
– 4 (yielding output HW 22)

Finally, we perform the three attacks on each subset of the attack set with the
same key, obtaining the single-trace success probabilities.

As can be seen in Table 2, the results match the expectations and classifi-
cation works best for the case where three classes each internally have a very
similar HW, recovering with high probability whether the targeted output is 4
or 3 or a member of the set {0, 1, 2}. Nevertheless, the classification model with
worst results which is finding the exact coefficient value, also classifies each class
correctly with a significantly higher probability than guessing, which would be
20%.

When extending this attack to the multi-trace setup, the picture changes
completely. After at most 130 traces only, we are able to recover the correct
coefficient for all classes.

Attacking the First NTT Layer. As explained before in Section 3.2, the four
input coefficients to the BFU propagate differently as a1 is added or subtracted,
while the others are also multiplied. For attacking this first NTT stage, we expect
to be able to classify coefficients better than for targeting the decoding.

The results in the left part of Table 3 show that the expectations again are
met. Overall, this attack yields better results for all classes, as now, we are able

10

� � � � �
������
�	����

�

�

�

�

�

�
��
��
	�
�	
��
��

(a) a1

� � � � �
������
�	����

�

�

�

�

�

�
��
��
	�
�	
��
��

(b) b1

� � � � �
������
�	����

�

�

�

�

�

�
��
��
	�
�	
��
��

(c) a2

� � � � �
������
�	����

�

�

�

�

�

�
��
��
	�
�	
��
��

(d) b2

Fig. 2: Single-trace SPA confusion matrices for attacks on first NTT stage with η = 2

to recover single coefficients that are processed as b1, a2, b2 with probability over
90%, while a1 can be recovered with a lower probability, as expected.

Furthermore, Fig. 2 visualizes the results of the single-trace attacks. The
confusion matrices depict the probabilities of assigning each class during attack
phase given each (known) correct class. There, the darkness of a square quantifies
the probability that, given the correct class for a trace (y axis), a certain class
(x axis) has been assigned by the attack. As can be seen in Fig. 2a, the attack
on a1 mainly confuses class 1 for class 0 with low probability while correctly

Table 2: Success rates of single-trace SPA on the decoder

Class
Avg.

0 1 2 3 4

48.8% 34.7% 49.5% 80.4% 99.4% 64.1%
64.6% 57.7% 86.0% 99.3% 74.4%

92.9% 88.1% 99.4% 93.2%

11

Table 3: Success rates for attacking the first NTT stage in the single- and multi-trace
setting for η = 2 and η = 4

Target
η = 2 η = 4

Class
Avg.

Multi-t.:
Avg.

Multi-t.:

0 1 2 3 4 # Traces # Traces

a1 60.1% 59.1% 92.2% 89.6% 97.8% 79.8% 34 57.3% 87
b1 89.1% 88.4% 100.0% 89.3% 92.4% 91.8% 4 74.5% 10
a2 83.5% 88.1% 93.8% 96.6% 100.0% 92.5% 4 84.0% 45
b2 88.0% 90.2% 99.8% 94.6% 97.7% 94.2% 3 76.2% 23

Avg. 80.2% 81.5% 96.5% 92.5% 97.0% 89.6% 73.0%

Table 4: Success probabilites for single-trace SPA on the combined a1, b1.

b1
0 1 2 3 4

a1

0 37.1% 25.8% 34.1% 35.6% 48.8%
1 30.9% 27.2% 36.1% 40.2% 42.8%
2 34.4% 39.4% 46.1% 46.9% 48.2%
3 46.6% 60.2% 55.7% 73.3% 75.5%
4 64.1% 66.9% 76.3% 78.5% 83.2%

classifying all other classes with high probability. Note that the diagonals in
Fig. 2 are another representation of the single rows in Table 3.

For the multi-trace setting, Table 3 also shows how many traces are required
to recover the correct coefficient definitely. This demonstrates the power of this
attack, which requires at most 34 traces to recover any secret coefficient.

4.2 Extension to Multiple Coefficients

We extend our approach of targeting a single secret coefficient on the first NTT
stage to attacking two coefficients simultaneously. A straight-forward approach
here would be to target all possible 54 combinations of (a1, b1, a2, b2). However,
this would be a computationally very complex approach. Instead, we only target
the first half of the BFU. Note that there, the same operation is applied to the
input tuples (a1, b1) and (a2, b2) independently. Thus, by targeting 5 × 5 = 25
classes instead of 54, we can classify each possible input tuple. This comes at
the cost of more profiling. Here, we require a profiling trace set with chosen
secret coefficients, where (a2, b2) are kept steady for attacking (a1, b1), and vice
versa. We increase the number of traces to 375 000 and divide them into 350 000
profiling traces and 25 000 attack traces to ensure the same number of traces per
class for both phases.

Fig. 3b shows the confusion matrix of this attack. As can be seen there, this
attack succeeds with high probability to assign the correct class (the diagonale),

12

but also shows some symmetry for assigning wrong classes, mostly due to con-
fusing (a1, b1) with (b1, a1). In average, the attack succeeds to classify the correct
tuple with a probability of 51.5%, vastly better than guessing, which would have
probability 1/25. Moreover, in Fig. 3a we see that the correct guess is within the
top 5 with overwhelming probability of 94.8%.

Ultimately, we have also perform this attack in the multi-trace setting. Here,
we are able to recover the correct combination of both secret coefficients after
1 101 traces. Using this approach, an attacker in the profiled SPA setting is able
to recover the full secret polynomials s1 and s2 with 700 000 profiling traces (half
for (a1, b1), the other half for (a2, b2).

4.3 Attack on η = 4

For security level 3, where η = 4, the amount of classes increases from 5 to 9. The
possible output HWs are shown in Table 1b. Similar to the results in Table 2,
we are able to clearly distinguish between all groups with similar output HW
when targeting the decoding. A multi-trace attack on the decoding finds the
correct coefficient after 2 267 traces, compared to 130 for η = 2. This already
demonstrates that the increased number of possible coefficient values with similar
HW downgrades the attack.

Targeting the BFU, we have performed experiments using 90 000 traces for
profiling (i.e., 10 000 per class as for η = 2). The results are shown in the right
part of Table 3. As expected and as it is the case for η = 2, the attack works
better than on the decoding, being capable of recovering the correct coefficient
after one trace with significantly higher probability than guessing, which would
be 1/9. In the multi-trace setting, classifying the correct coefficient is possible
after at most 87 traces. Overall, the SPA on Dilithium-3 is less feasible compared
to the other parameter sets.

��������
�

��

��

��

��

��

��

	�

�

��

���

�
��
��
��
��
��
��

��
��
��

��
���

��
��
�

�

(a) Ranking distribution

���
����	�

�
��
��
��
��
	�

(b) Confusion matrix

Fig. 3: Single-trace SPA results for NTT inputs a1 and b1.

13

5 Correlation Power Analysis on the Polynomial
Multiplication

In addition to our SPA, we also perform a CPA on the polynomial multiplication
module, employing a weaker attacker model, as explained in Section 3.3.

For this attack, we trigger many signature generations under the same secret
key and then, given the public challenge polynomial c, we target the pointwise
multiplication ĉ ◦ ŝ1. In this attack, we cannot exploit the fact that each coef-
ficient of s1 has a bounded norm, since during multiplication, the polynomial
is processed in NTT domain. Therefore, we have q hypotheses per coefficient in
general.

5.1 Power Model

We choose targeting the least signification bit (LSB) of the product between the
challenge polynomial coefficient and the hypotheses. Then, following an idea from
[7, Sec. III.B], for each hypothesis h ∈ Zq \ {0} and each challenge polynomial
coefficient ĉi ∈ Zq \ {0} of the challenge ĉ, the following equation holds:

lsb(ĉi · h mod q) = 1⊕ lsb(ĉi · (−h) mod q) (1)

It follows, that for this power model, the hypotheses h and −h mod q yield
inverted correlations. We can use this to halve the amount of possible hypotheses
to the range [0, ⌊q/2⌋] by the following procedure. Fig. 4a shows the correlation
of the LSB of the public coefficient ĉi for a 0 ≤ i < n and the correlation with
the LSB of the inverse value. Note how there is first a positive peak and then
a negative peak. At this point, we observed that different coefficients ĉi might
also behave inversely (i.e., first negative, then positive, like the gray plot in
Fig. 4a). In any case, this is based on public information and does not depend
on a hypothesis, thus can simply be computed by the attacker.

Fig. 4b then shows a very similar behavior for the correlation of the LSB of
ĉi · h mod q and ĉi · (−h) mod q, where for this particular figure we know that
either h or −h mod q is the correct hypothesis. Our observation now is that if
the behavior for both figures matches, h is the correct hypothesis. Otherwise,
q − h is the correct hypothesis.

Thus, the attacker only needs to compute the correlations for half the hy-
potheses and then, after finding a hypothesis h with maximum absolute corre-
lation coefficient, decides between h and q − h based on whether the respective
ĉi yields

1. a positive, then a negative correlation peak. Then if h yields
(a) a positive, then a negative correlation peak, h is the sought coefficient.
(b) a negative, then a positive correlation peak, q−h is the sought coefficient.

2. a negative, then a positive correlation peak. Then if h yields
(a) a positive, then a negative correlation peak, q−h is the sought coefficient.
(b) a negative, then a positive correlation peak, h is the sought coefficient.

14

0 500 1000 1500 2000 2500 3000 3500 4000
Samples

-0.028

-0.021

-0.014

-0.007

0.000

0.007

0.014

0.021

0.028

Co
rre

la
tio

n
co

ef
fic

ie
nt

(a) Correlation of LSB of ĉi (black) and q −
ĉi (gray)

0 500 1000 1500 2000 2500 3000 3500 4000
Samples

-0.028

-0.021

-0.014

-0.007

0.000

0.007

0.014

0.021

0.028

Co
rre

la
tio

n
co

ef
fic

ie
nt

(b) Correlation of LSB of ĉi · h mod q (black)
and ĉi · (−h) mod q (gray)

Fig. 4: Correlation for 100 000 traces of the LSB of ĉi and ĉi · h mod q. For the high-
lighted (black) case, h is the correct hypothesis since both have a positive peak first,
then a negative one.

5.2 Noise

In the targeted implementation, the Keccak core works during all multiplications
including s1 or s2. This core generates the majority of the design’s power con-
sumption, which results in two practical problems: First, a lower quantization
precision is left for the targeted value, and second, the Keccak power consump-
tion is noise to our targeted value. Both issues lead to requiring an increased
number of traces for an attack.

Thus, we investigate the attack in two different scenarios:

1. Evaluate ĉ ◦ t̂0, where no Keccak runs in parallel, and
2. Evaluate ĉ ◦ ŝ1.

Compared to the first scenario, the concurrently operating Keccak module re-
duces the SNR by factor 25.

Therefore, the first scenario is a low-noise setting, and the second one is a
high-noise setting, enabling a clear comparison between both. We expect that
opening the FPGA packaging and probing the polynomial multiplication module
locally using an EM near-field electromagnetic probe would result in a similar
low-noise setting as for the first scenario.

5.3 Attacks

When targeting ĉ ◦ t̂0 we are able to recover the correct coefficients of t̂0 after
66 000 traces, as can be seen in Fig. 5a. Moreover, after 22 000 traces, the correct
hypothesis is within the top 2048 candidates, and after 57 000 traces, it is within
the top 32 candidates.

In Fig. 5b, it can be seen that the very same approach becoming more diffi-
cult for attacking s1 for the aforementioned reasons of an decreased SNR. Still,
after 1 million traces, we can recover the correct coefficient. For this attack, the

15

0 20000 40000 60000 80000 100000
Traces

0.000

0.009

0.018

0.027

0.036

Co
rre

la
tio

n
co

ef
fic

ie
nt

(a) Targeting ĉ ◦ t̂0

0.0 0.2 0.4 0.6 0.8 1.0
Traces 1e6

0.000

0.003

0.006

0.009

0.012

Co
rre

la
tio

n
co

ef
fic

ie
nt

(b) Targeting ĉ ◦ ŝ1

Fig. 5: CPA results, 1 000 most promising hypotheses shown, correct hypothesis in
black

correct hypothesis is in the top 2048 after 240 000 traces, and in the top 32 after
850 000 traces.

In summary, it is possible to recover the secret in any case even assuming
a high-noise setup. Moreover, no invasive methods such as opening the FPGA
packaging are required, which would be a much more specialized attack measur-
ing the direct near-field EM emanation of the polynomial multiplication module.
Finally, we want to stress that, contrary to the SPA, this attack works indepen-
dent of η and thus is applicable to all security level equally.

6 Countermeasures

6.1 Integration of Decoding into First NTT Stage

Decoding the secrets s1, s2 is an affine operation and thus, can also be processed
easily in a later phase of signature generation. Thus, our first approach aims to
remove the parts of the decoder unit that process the targeted secret coefficients
and integrate the decoding step into the first level of the NTT.

As explained before, we assume that the leakage of the decoding mainly
depends on the differences of the HWs of the decoded values. Therefore, it would
be advantageous to keep all processed coefficients at a similar level of HW. We
integrate the decoding into the BFU by feeding q + η − x into each BFU input,
where x is an encoded coefficient.

6.2 Masking

To counter both attacks by means of a comprehensive countermeasure, masking
must be deployed. A comprehensive masking approach, where secret data is
never processed nor transferred unmasked, includes that the secret key is already

16

masked at the first place. Applying arithmetic masking on s1, s2, however, is
not possible efficiently as it would require an unnecessary high overhead factor
for storing the masked key, since the coefficients are uniform bounded by η
rather than uniform in Zq. Thus, only Boolean masking is feasible, which in turn
raises the necessity of converting efficiently from the encoded, Boolean masked
representation of s1, s2, to a decoded, arithmetically masked representation.

Algorithm 3 First-order secure combined masking conversion and decoding,
adapted from [10, Alg. 12]

Require: b0, b1 such that b = b0 ⊕ b1
Ensure: a0, a1 such that a = a0 + a1 = η − b mod q
1: X,R← Zq × Z223

2: Y0 := ((X − η) + (223 − q))⊕R
3: Y1 := R
4: Z0, Z1 ← SecAddq((b0, b1), (Y0, Y1)) ▷ instantiate with SecAddq from [10, Alg. 8]
5: return a0 = X, a1 = q − (Z0 ⊕ Z1)

As already introduced in [2] and further developed in [10], an efficient con-
version from Boolean to arithmetic masking modulo q can be performed using a
secure adder over Boolean shares, which have been studied extensively in [1,21].
It is possible to adapt this procedure to integrate the decoding step into the
masking conversion.

The original idea from [10] is to sample a uniform random A ∈ Zq, then
generate a fresh Boolean sharing of (q−A)+(223−q) and add this with a secure
adder as described in [10, Alg. 8] to the masked input. Note that in order to
enable an easy reduction modulo q, this secure adder has special property to
subtract an additional constant of 223−q, which explains the special form of the
input. The unmasked result of this operation then is one arithmetic share and
A is the other one.

Instead, to include the decoding into the masking conversion, we adapt this
procedure as shown in Algorithm 3:

1. For the conversion, we need two statistically random integers as shown in
Line 1.

2. Using R and X, we generate a fresh Boolean sharing of (X − η) + (223 − q)
in Lines 2 and 3. Note that this operation can also be done offline or in
hardware in parallel.

3. In Line 4, the Boolean masked input coefficient is added to the constructed
Boolean sharing using the aforementioned special adder [10, Alg. 8], yielding
a Boolean sharing of X − η + 223 − q + b− (223 − q) = X − η + b. Since X
is uniform random, it serves as an arithmetic mask and we can unmask the
Boolean sharing without revealing the secret b.

4. In order to obtain a valid arithmetic sharing of η−x, we need to subtract the
unmasked result from q, resulting in η−b−X mod q. Setting X as the other
arithmetic share, we have completed the conversion with implicit decoding.

17

Table 5: SPA results on BFU with integrated decoding given as percent points with
the η = 2 part of Table 3 as reference

Target
Class

Average
0 1 2 3 4

a1 -3.4% -3.8% +2.9% -18.0% -8.4% -5.7%
b1 -23.0% -5.6% -17.7% -14.7% -14.1% -15.1%

Following this, we can perform all operations that are linear in the masking
domain simply by applying the function to each share. This includes both the
NTT and multiplication with non-secret values like c.

An implementation of this approach requires two different secure adders over
Boolean shares:

1. For Step 1 in [10, Alg. 8], a 3 plus 23 bit adder is required.
2. For Step 4 in [10, Alg. 8], a 23 plus 23 bit adder with 12 of the input bits

being hard coded to zero, which enables substantial improvements compared
to a generic secure adder

Note that this approach is not only restricted to hardware implementations,
but could very well also be done efficiently in a software implementation. For
this, a secure bit-sliced adder as proposed by [4] could be utilized, enabling
parallelized processing of 32 or more coefficients.

6.3 Evaluation

Decoding in the First NTT Stage. Integration of the decoding into the first
NTT stage obviously eliminates the possibility to attack the decoding as a lone
step. Nonetheless, we evaluate the effect of this countermeasure on the leakage of
the BFU by performing the same single-coefficient attacks as explained before.
Table 5 shows the results of the attack compared to Table 3. Notably, even
though the countermeasure is not intended to prevent this attack, it mitigates
the SPA on the BFU. Additionally, the number of traces that are required to
recover the coefficients are doubled. We suppose that Table 5 actually quantifies
the impact of the diverse HWs of the first NTT stage, while obviously not altering
the diversification of the power signature after the arithmetic operations.

Arithmetic Masking. We also evaluate the efficacy of arithmetic masking
both against the SPA and the CPA. First, we test whether the exact same CPA
works as before. Fig. 6 shows the results for the low-noise setup that targets
ĉ◦ t̂0. As can be seen there, even through 1 million traces, the correct hypothesis
stays at about the same rank. Also, the absolute correlation does not come close
to the higher-ranked hypotheses or even the significance threshold. Since the
attack does not work in the low-noise setup, we deduct that it does also not
work when the Keccak module produces noise in parallel.

18

0.0 0.2 0.4 0.6 0.8 1.0
Traces 1e6

22

25

28

211

214

217

220

Hy
po

th
es
is
ra
nk

in
g

(a) Correct hypothesis ranking progression

0.0 0.2 0.4 0.6 0.8 1.0
Traces 1e6

0.000

0.003

0.006

0.009

0.012

Co
rre

la
tio

n
co

ef
fic

ie
nt

(b) Absolute correlation progression for the 1 000
most promising hypotheses (gray) and the correct
hypothesis (black)

Fig. 6: CPA results for multiplication of ĉ with masked t̂0 for 1 000 000 traces

0 10000 20000 30000 40000 50000 60000 70000
sample points

−150

−100

−50

0

50

100

150

200

t v
al
ue

(a) Masking deactivated, 100 000 traces

0 10000 20000 30000 40000 50000 60000 70000
sample points

−4

−2

0

2

4
t v

al
ue

(b) Masking activated, 1 000 000 traces

Fig. 7: Fixed-vs-random t-test for NTT

� � � � �
��������

�

��

��

��

��

��

��

	�

�

��

���

�
��

��
��

��
��

��
��

��
��

��
���

��
��

�
�

(a) Ranking distribution (b) Confusion matrix

Fig. 8: SPA on NTT with masking, cf. Fig. 2

19

Then, to evaluate to effect of the masking on the SPA, we perform a standard
test-vector based leakage assessment by means of a fixed-vs-random t-test on the
NTT. As can be seen in Fig. 7, the masking effectively hinders any distinction
between fixed and random input even after 1 000 000 traces.

Finally, we also attempt the SPA on whole BFU for single coefficients. For
the evaluation, we increase the number of traces to 450 000 instead of 50 000
during profiling phase and employ the same overly powerful attacker as before.
The confusion matrix and ranking distribution in Fig. 8 show that no distinction
between the classes is possible anymore. From this, we deduce that also no weaker
SPA attacker can learn anything about the secret, e.g., also the one we present
in Section 4.2. Finally, we were not able to recover any coefficient using a multi-
trace attack with up to 10 000 traces per class.

7 Discussion and Future Work

In our work, we present a first side-channel analysis of Dilithium in hardware.
We demonstrate attack surfaces and feasibility for single- and multi-trace pro-
filed SPA attacks, targeting the decoding of the secret polynomials and the first
NTT stage. Beyond this strong attacker model of profiled SPA, we show a prac-
tical CPA attack on the polynomial multiplication using power measurements.
Regarding the applicability of these attacks on other implementations, we can
summarize our findings as follow:

1. The SPA on the decoding exploits the specified range of the secret coefficients
and their HW, which does not depend on our targeted implementation. Thus,
we expect that the very same attack surface exists for any implementation.

2. The SPA on the NTT similarly exploits the secret key range, benefitting from
the more unique power signatures generated by the BFU. Following this,
we expect that the attack similarly works for the implementations [16, 24],
which also contain BFUs (as necessary for computing an NTT). The co-
processor [16], however, detaches a “pre-computation” step from the signing
procedure, which performs the NTT of the secrets once and then stores the
transformed polynomial vectors for all subsequent signings under the same
secret key. This could mitigate the SPA attack by potentially preventing
collecting multiple traces of transforming s1 and s2 with the NTT.

3. The CPA on the polynomial multiplication is rather generic, as all imple-
mentations will perform the polynomial multiplication using the NTT, even
though it is not strictly required by the specification.

Moreover, in our work, we exhibit that random noise generated by a Kec-
cak module running in parallel to multiplication does not hinder neither of the
attacks effectively. Finally, we also present countermeasures and evaluate that
arithmetic masking effectively prohibits all presented attacks.

For future work, we leave open both higher-order attacks and efficient higher-
order masking conversions with integrated decoding. On a higher level, a com-
plete masked hardware implementation of Dilithium is desirable.

20

Acknowledgments

This work was supported by the German Research Foundation under Germany’s
Excellence Strategy – EXC 2092 CASA – 390781972, through the H2020 project
PROMETHEUS (grant agreement ID 780701), and by the Federal Ministry of
Education and Research of Germany through the QuantumRISC (16KIS1038),
PQC4Med (16KIS1044), and 6GEM (16KISK038) projects.

References

1. Florian Bache and Tim Güneysu. Boolean masking for arithmetic additions at
arbitrary order in hardware. Applied Sciences, 12(5):2274, 2022.

2. Gilles Barthe, Sonia Beläıd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based sig-
nature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part II, volume 10821 of Lecture
Notes in Computer Science, pages 354–384, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany.

3. Luke Beckwith, Duc Tri Nguyen, and Kris Gaj. High-performance hardware
implementation of crystals-dilithium. In International Conference on Field-
Programmable Technology, (IC)FPT 2021, Auckland, New Zealand, December 6-
10, 2021, pages 1–10. IEEE, 2021.

4. Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based KEMs. Cryptology
ePrint Archive, Report 2022/158, 2022. https://eprint.iacr.org/2022/158.

5. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 398–412, Santa Barbara, CA, USA, August 15–19, 1999.
Springer, Heidelberg, Germany.

6. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.
Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2002, volume 2523 of Lecture Notes in Computer
Science, pages 13–28, Redwood Shores, CA, USA, August 13–15, 2003. Springer,
Heidelberg, Germany.

7. Zhaohui Chen, Emre Karabulut, Aydin Aysu, Yuan Ma, and Jiwu Jing. An efficient
non-profiled side-channel attack on the crystals-dilithium post-quantum signature.
In 39th IEEE International Conference on Computer Design, ICCD 2021, Storrs,
CT, USA, October 24-27, 2021, pages 583–590. IEEE, 2021.

8. Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Aurélien
Francillon and Pankaj Rohatgi, editors, Smart Card Research and Advanced Appli-
cations - 12th International Conference, CARDIS 2013, Berlin, Germany, Novem-
ber 27-29, 2013. Revised Selected Papers, volume 8419 of Lecture Notes in Com-
puter Science, pages 253–270. Springer, 2013.

9. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium –
Algorithm Specifications and Supporting Documentation (Version 3.1).
Technical report, 2021. https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf.

21

https://eprint.iacr.org/2022/158
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf

10. Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick Karl,
Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked accelera-
tors and instruction set extensions for post-quantum cryptography. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(1):414–460, 2022.

11. Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. stochas-
tic methods. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware
and Embedded Systems – CHES 2006, volume 4249 of Lecture Notes in Computer
Science, pages 15–29, Yokohama, Japan, October 10–13, 2006. Springer, Heidel-
berg, Germany.

12. Louis Goubin and Jacques Patarin. DES and differential power analysis (the “du-
plication” method). In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES’99, volume 1717 of Lecture Notes in
Computer Science, pages 158–172, Worcester, Massachusetts, USA, August 12–13,
1999. Springer, Heidelberg, Germany.

13. Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for recon-
figurable devices. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems – CHES 2011, volume 6917 of Lecture Notes in
Computer Science, pages 33–48, Nara, Japan, September 28 – October 1, 2011.
Springer, Heidelberg, Germany.

14. Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-trace side-channel at-
tacks on ω-small polynomial sampling: With applications to ntru, NTRU prime,
and CRYSTALS-DILITHIUM. In IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2021, Tysons Corner, VA, USA, December
12-15, 2021, pages 35–45. IEEE, 2021.

15. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 104–113, Santa Barbara,
CA, USA, August 18–22, 1996. Springer, Heidelberg, Germany.

16. Georg Land, Pascal Sasdrich, and Tim Güneysu. A hard crystal - implementing
dilithium on reconfigurable hardware. In Vincent Grosso and Thomas Pöppelmann,
editors, Smart Card Research and Advanced Applications - 20th International Con-
ference, CARDIS 2021, Lübeck, Germany, November 11-12, 2021, Revised Se-
lected Papers, volume 13173 of Lecture Notes in Computer Science, pages 210–230.
Springer, 2021.

17. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

18. Vincent Migliore, Benôıt Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. Mask-
ing Dilithium - efficient implementation and side-channel evaluation. In Robert H.
Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS
19: 17th International Conference on Applied Cryptography and Network Secu-
rity, volume 11464 of Lecture Notes in Computer Science, pages 344–362, Bogota,
Colombia, June 5–7, 2019. Springer, Heidelberg, Germany.

19. Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin. Side-channel assisted existential forgery attack on Dilithium
- A NIST PQC candidate. Cryptology ePrint Archive, Report 2018/821, 2018.
https://eprint.iacr.org/2018/821.

20. Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin. Exploiting determinism in lattice-based signatures: Practi-
cal fault attacks on pqm4 implementations of NIST candidates. In Steven D.
Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin Kirda, and

22

https://eprint.iacr.org/2018/821

Zhenkai Liang, editors, ASIACCS 19: 14th ACM Symposium on Information,
Computer and Communications Security, pages 427–440, Auckland, New Zealand,
July 9–12, 2019. ACM Press.

21. Tobias Schneider, Amir Moradi, and Tim Güneysu. Arithmetic addition over
Boolean masking - towards first- and second-order resistance in hardware. In
Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychron-
akis, editors, ACNS 15: 13th International Conference on Applied Cryptography
and Network Security, volume 9092 of Lecture Notes in Computer Science, pages
559–578, New York, NY, USA, June 2–5, 2015. Springer, Heidelberg, Germany.

22. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science, pages
124–134, Santa Fe, NM, USA, November 20–22, 1994. IEEE Computer Society
Press.

23. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive study
with cautionary note. In Xiaoyun Wang and Kazue Sako, editors, Advances in
Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Sci-
ence, pages 740–757, Beijing, China, December 2–6, 2012. Springer, Heidelberg,
Germany.

24. Cankun Zhao, Neng Zhang, HanningWang, Bohan Yang, Wenping Zhu, Zhengdong
Li, Min Zhu, Shouyi Yin, Shaojun Wei, and Leibo Liu. A compact and high-
performance hardware architecture for crystals-dilithium. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2022(1):270–295, 2022.

23

	Breaking and Protecting the Crystal: Side-Channel Analysis of Dilithium in Hardware

