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Abstract. This article gives improved algorithms to evaluate a multivariate Boolean
polynomial over all the possible values of its input variables. Such a procedure is
often used in cryptographic attacks against symmetric schemes. More precisely, we
provide improved and simplified versions of the Fast Exhaustive Search algorithm
presented at CHES’10 and of the space-efficient Moebius transform given by Dinur
at EUROCRYPT’21. The new algorithms require O (d2n) operations with a degree-
d polynomial and operate in-place. We provide the full C code of a complete
implementation under the form of a “user-friendly” library called BeanPolE, which
we hope could be helpful to other cryptographers. This paper actually contains all
the code, which is quite short.
Keywords: Boolean polynomials · exhaustive search · Moebius transform · software
implementation

When in doubt, use brute force.

Attributed to Ken Thompson [Ja22],
co-inventor of Unix

1 Introduction
We consider the natural problem of efficiently evaluating a Boolean polynomial (given by
its coefficients) on all possible inputs. This provides a way to build its truth table. Any
Boolean function f(x0, . . . , xn−1) on n variables can be completely described by providing
its complete truth table, namely the 2n bits that give its value on each of the possible
values of the input variables.

Low-degree Boolean polynomials are Boolean function that admit a much more compact
representation. For instance, a Boolean quadratic polynomial

f(x0, . . . , xn−1) =
n−1∑
i=0

n−1∑
j=i+1

aijxixj +
n−1∑
i=0

bixi + c

is entirely described by the values of its n(n + 1)/2 + 1 coefficients. In general, a degree-d
Boolean polynomial has O

(
nd

)
coefficients. As such, Boolean polynomial are easier to

manipulate than generic Boolean functions, even with a high number of variables.

We describe two procedures to visit all entries of the truth table of a degree-d polynomial f
in n variables given by its coefficients. This offers a way to iterate over pairs (x, f(x))
for all bit strings x ∈ {0, 1}n. These two procedures are in-place: they require only a
small number of words of extra memory in addition to the space needed to store the
polynomial f .
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The first procedure is a slight variation of the “Fast Exhaustive Search” (FES) algorithm
of Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir and Yang [BCC+10a]. The
second procedure is a slight variation of the “Space-Efficient Moebius Transform” given by
Dinur [Din21a].

In the sequel, we will often omit the word “Boolean” ; polynomials, monomials, variables,
etc. are all Boolean.

1.1 Solving Generic Polynomial Systems
A procedure that iterates over the truth table of a Boolean polynomial can be used to
solve systems of polynomial equations by exhaustive search. This is an NP-hard problem
even when restricted to quadratic polynomials (there is a straightforward reduction to
3SAT) [GJ79].

Besides the natural intellectual prospect that consists in inventing better algorithms for this
simple problem, the initial motivation for developing efficient exhaustive search algorithms
stems from cryptanalysis.

The so-called “Multivariate” public-key encryption and signatures schemes expose a public
key which is a collection of m quadratic polynomials in n variables over a finite field Fq.
Solving this polynomial system breaks the security properties offered by the scheme. Some
recent public-key signature schemes that fall in this category have been submitted to the
“post-quantum” competition organized by the NIST [CHR+16, DS05, CFMR+17, BP17].
The designers of these schemes are faced with the problem of choosing the parameters
(n, m, q) to make the scheme simultaneously secure and efficient. Developing and analyzing
algorithms to solve polynomial systems therefore helps getting a better understanding of
the hardness of the problem. To track practical progress, a collection of challenges has
been made available online [YDH+15].

When it was developed in 2010, the FES algorithm was undisputedly the best solution
to solve unstructured low-degree Boolean systems in practice. Existing asymptotically
better algorithms such as hybrid variants of Faugere’s F4 or F5 algorithms [Fau99, Fau02],
along with their cousins from the XL family [CKPS00, YC04], could simply not compete
in terms of speed. In addition, their exponential space complexity made them practically
unusable.

Efficient implementations of the FES algorithm claimed several speed records. This
culminated in 2015 with the resolution of a random 66-variable, 99-equation challenge1 by
Chou, Niederhagen and Yang using an FPGA implementation of the algorithm [BCC+13].

From a theoretical point of view, on the day it was published, the FES algorithm had
the best asymptotic complexity among algorithms capable to solve arbitrary polynomial
systems in a worst-case sense, without requiring the assumption that the polynomial
system is “generic” enough — algebraic techniques that claimed a better complexity need
this assumption. The FES algorithm lost the crown in 2017, when a better worst-case
algorithm was invented by Lokshtanov, Paturi, Tamaki, Williams and Yu [LPT+17], based
on the “polynomial method for algorithm design”. This new algorithm and its recent
derivatives [BKW19, Din21b, Din21a] are nevertheless highly impractical.

From a practical point of view, the situation also changed radically in 2017 with the advent
of the Crossbred algorithm of Joux and Vitse [JV17]. It solved a random system of 148
equations in 74 variables2, something that would not have been possible by exhaustive
search. This was a stunning demonstration that “beating brute force” in practice was

1https://www.mqchallenge.org/details/details_IV_20150713.html
2https://www.mqchallenge.org/details/details_I_20161217_2.html
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possible. In addition, Joux and Vitse estimated that their code (which is not public) was
faster than the available implementation of the FES algorithm on systems with 40 variables
or more, a very low and practical threshold.

This meant that developing or maintaining fast implementations of exhaustive search could
no longer lead to either the fastest possible theoretical algorithms or the fastest practical
software packages to solve Boolean polynomial systems.

1.2 Algebraic Cryptanalysis
Algorithms to solve polynomial systems constitute the workhorse of “algebraic cryptanaly-
sis”. Some cryptographic schemes can be broken by writing a clever system of polynomial
equations and solving it using off-the-shelf tools. This idea can be traced back to the work
of Shannon [Sha49]. Any algorithm capable of solving polynomial systems could be used;
exhaustive search can be a simple and reasonable solution.

In some cases, the polynomial systems can be solved in practice; this leads to practical
attacks. This has been the case for the LUOV [BP17] signature scheme submitted to
the recent “Post-quantum” public-key cryptography competition organized by the NIST.
Signatures could be forged in less than 4 hours by solving two systems with 59 variables
and 57 quadratic equations [DDVY21], using the aforementioned implementation of FES
on FPGAs [BCC+13].

The next two examples are not strictly speaking about Boolean systems, but the results
are nonetheless impressive.

The Rainbow signature scheme was also practically broken by Beulens [Beu22] during the
competition, this time using an implementation of the Block Wiedemann XL solver by
Cheng, Chou, Niederhagen, and Yang [CCNY12]. This solves a system of 63 quadratic
equations in 30 variables over F16 in 3 hours and a half on a laptop.

In the context of symmetric cryptography, Bariant, Bouvier, Leurent and Perrin recently
proposed algebraic attacks against “Arithmetization-Oriented” primitives [BBLP22]. They
build univariate or multivariate polynomials over a large finite field and either solve them
in practice or estimate the complexity of doing so to attack Feistel-MiMC, Poseidon,
Rescue-Prime and Ciminion.

Most of the time, however, the systems cannot be solved in practice, and the attacks
remain theoretical. In that case, the complexity of the solver has the greatest importance,
because it determines whether the attack breaks the cryptographic scheme or not.

In the realm of symmetric cryptography, examples are provided by the recent attacks
against the block-cipher LowMC due to Liu, Meier, Sarkar and Isobe [LMSI22] and also to
Dinur [Din21a]. The former uses the complexity of an easy-to-analyze special case of the
Crossbred algorithm [BDT22] to estimate the total time needed to complete the attack,
while the latter proposes a new algorithm with a precise complexity analysis. A bit earlier,
Duval, Lallemand and Rotella [DLR16] broke the FLIP stream cipher; their attack solves a
multivariate quadratic Boolean system by linearization.

1.3 Actually Building the Truth Table
Some cryptographic attacks have an “algebraic phase” where the full truth table of a
multivariate polynomial has to be computed.

For instance, Dinur and Shamir proposed an attack [DS11] against the hash function
Hamsi-256, which crucially requires a fast procedure to evaluate degree-6 polynomials on
all possible values of their 32 variables. More recently, the attack [BDL+21] of Beierle,
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Derbez, Leander, Leurent, Raddum, Rotella, Rupprecht, and Stennes against the GPRS
Encryption Algorithms GEA-1 and GEA-2 (in “2G cellphones”) repeatedly builds the
truth table of several degree-4 polynomials in 33 variables. The currently best known
key-recovery attack on Trivium is due to Hu, Sun, Todo, Wang and Wang [HST+21]. In
its last phase, it builds the truth table of several (sparse) Boolean polynomials of degree
about 20 in up to 75 variables. The attack against Pyjamask-96 proposed by Dobraunig,
Rotella and Schoone [DRS20] repeatedly evaluate (potentially sparse) degree-4 Boolean
polynomials on ≈ 128 variables.

In a very different context, the most computationally expensive phase of the Crossbred
algorithm does the following: evaluate several degree-d polynomials on the next value
of the (many) input variables, then solve a linear system. As such, it actually iterates
through the truth table of Boolean polynomials.

If a polynomial has n variables, then its truth table has 2n entries, and this is necessarily a
lower-bound on the time complexity of any algorithm that computes it. “Smart” algorithms
are thus excluded, and techniques similar to exhaustive search rule.

The simplest option is to evaluate the polynomial naively on each possible input. This
results in O

(
nd2n

)
bit operations and works memoryless (i.e., this does not require any

additional memory besides what is needed to store the coefficients of the polynomial). The
FES algorithm improves the time complexity to O (d2n) operations.

Any Boolean function can be represented as a multivariate polynomial. The array of its
coefficients is the Algebraic Normal Form of the function. A simple FFT-like algorithm,
which we call the Moebius Transform [Jou09, §9.2] in this article, converts the truth
table of a function to its algebraic normal form and vice-versa in O (n2n) operations (the
procedure is involutive). It works in-place, but it necessarily operates on an array of 2n

bits, because its output is the full truth table. As such, in practice it is restricted to fairly
small values of n. It must be noted that this algorithm is easy to implement. A complete
C implementation is given in [Jou09]; it fits in less than one page.

For high-degree polynomials (of degree greater than n/2), the Moebius transform is
not much worse than enumeration algorithm such as FES. Indeed, it is well known that(

n
n/2

)
∼ 2n/

√
πn/2; this implies that a degree-(n/2) polynomial has O (2n/

√
n) monomials

of degree n/2, and therefore storing it in memory almost requires as much space as storing
an arbitrary Boolean function. As a consequence, “low-degree” polynomials are those with
degree significantly less than n/2. For high-degree polynomials, the Moebius transform
offers comparable, if not better performance than competing solutions.

Two improved Moebius transforms have been described as by-products of cryptographic
attacks. Starting from the fact that the algebraic normal form of a degree-d polynomial
has O

(
nd

)
non-zero coefficients instead of 2n in the worst case, Dinur and Shamir [DS11]

designed an improved Moebius transform that skips useless operations with coefficients
that are known to be zero. It requires only O (d2n) operations but produces the full truth
table, and thus requires 2n bits of memory.

In [Din21a], Dinur described a space-efficient version which combines exhaustive search and
the classic Moebius transform. The idea consists in enumerating all the possible values of
k variables, then performing the Moebius transform on the resulting degree-d polynomial
in n− k variables. If k is chosen such that 2n−k is close to the number of monomials of
the input polynomial, then the algorithm only requires a linear amount of extra storage.

These two variants can in principle be combined.
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1.4 A Survey of Previous Implementations of the FES algorithm
The FES algorithm enumerates all possible inputs by only flipping one variable at a time,
using a Gray code. Updating the output of the polynomial function when a single variable
is flipped requires the evaluation if its “derivative”, which is a polynomial of degree-(d− 1).
The crucial observation is that this derivative is itself evaluated on related points that only
differ by two bits. The same idea can then be used recursively.

Previous implementations of the FES algorithm were developed with the objective of
maximum speed, in particular for quadratic polynomials. As a result, these programs were
complex and difficult to maintain.

When the article presenting the FES algorithm was published in 2010 [BCC+10a], only
a “research-quality” implementation was available. This means that it could barely run
on the authors own machines and was just good enough to produce (hard-to-reproduce)
timings for a research publication. Only degree 2,3 and 4 were supported, by different
programs. A GPU version3 and an FPGA version [BCC+13] have also been developed.
To the best of our knowledge, the original CPU code has never been published; this shows
how useful it was.

Between 2012 and 2014, Bouillaguet and Chou wrote a slightly better version dubbed
libFES4. It was more usable, was capable of dealing with systems of degree less than a given
compile-time bound, using a different function for each degree. It had bindings to the
SageMath [The13] computer algebra system for a period of time. It has been abandoned
because maintenance was too hard, and the SageMath bindings were therefore removed.

Starting from 2017, Bouillaguet wrote a simpler and smaller library called libfes-lite5, re-
stricted to quadratic Boolean systems. The underlying assumption was that this restriction
would make development more manageable. The algorithm was streamlined and simplified.
In terms of usability, libfes-lite provides a standalone multi-threaded program that reads
a system from a text file in a simple format and print its solutions. It has an extensive
test suite, which helps build confidence in its correctness. It is the fastest CPU-only
implementation of exhaustive search for Boolean quadratic polynomials at the time of this
writing. This comes at the expense of platform-specific bits of assembly code generated by
ad hoc python scripts.

Unfortunately, because this last version is restricted to quadratic polynomials only, it is
unusable in all the relevant cryptanalytic scenarios discussed in section 1.3.

1.5 Algorithmic Contributions
We describe two algorithms to iterate over the truth table of a Boolean polynomial of
arbitrary degree. They both improve over the state of the art.

Our version of the FES algorithm improves upon the original presentation given in the
extended version of [BCC+10a] as follows:

• It is much simpler and dispenses with the complex recursive and “object-oriented”
structure of the original algorithm.

• It is in-place. It alters the polynomial, but restores it to its original state once the full
truth table has been visited. It requires O (nd) extra words of storage (in addition
to the space needed for the polynomial).

3http://polycephaly.org/projects/forcemq/
4https://gitlab.lip6.fr/bouillaguet/old_fes
5https://gitlab.lip6.fr/almasty/libfes-lite

http://polycephaly.org/projects/forcemq/
https://gitlab.lip6.fr/bouillaguet/old_fes
https://gitlab.lip6.fr/almasty/libfes-lite
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• It visits the next entry of the truth table in O (d) operations in the worst case. The
original presentation does it in amortized constant-time only.

• The setup phase is simpler and comes with a better complexity analysis.

Obtaining the whole truth table of f by iterating the procedure 2n times requires O (d2n)
operations.

Our version of the Moebius transform improves upon the presentation given in [Din21a] as
follows:

• It is in-place, and in fact it does not require any other memory than what is needed
to store the polynomial and the current values of the input variables.

• It runs in time O (d2n) on usual computers, as opposed to the original version for
which it is unclear (see Subsection 1.7).

1.6 Literate Programs
Our algorithms are completely described in this article in the form of literate pro-
grams [Knu92] in the C programming language. The noweb [Ram94] system can be
used to extract the source code of (working) implementations from the source of this
document. The interested reader will find the complete working code online at

https://gitlab.lip6.fr/almasty/litFES

This unusual style of presentation has the following features:

• The algorithms are described in a rather formal and a non-ambiguous way (in the C
language).

• It leads to clean, understandable and well-documented code. This maximizes the
potential reuse by third parties.

• It emphasizes the practicality of the algorithm.

• There are no interesting “implementations details” left to the reader.

The running time of individual statements is the C language is rather straightforward
to analyze, except function calls. The size_t type essentially corresponds to the largest
unsigned integer type natively supported by the hardware. This allows a C program to
somehow emulate the standard and ubiquitous transdichotomous computational model in
which most algorithms are described [FW93, FW94, CLRS09].

If a very precise model of computational complexity had to be explicitly given, then the
number of instructions executed by a RISC-V processor running the compiled C code seems
relevant. The algorithms given in this paper do not need multiplications, so the RVxxxI
ISA is actually sufficient, where xxx denotes the width of registers.

In contrast to the previous versions of the FES algorithm that were speed demons, this
new implementation targets flexibility, portability, simplicity, conciseness and ease of use.
This design decision is motivated by the recent progress in algorithms for solving systems
of Boolean quadratic equations described in section Subsection 1.1. Exhaustive search
will no longer be the fastest available algorithm to solve polynomial systems. However it
can still be a useful tool in cryptographic attacks that need to build the truth table of
a polynomial, as discussed in section Subsection 1.3. The code presented here has been
written with this objective in mind.

To maximize potential reuse, the algorithms are presented as a C library called BeanPolE
(BoolEAN POLynomial Evaluation), with a simple and convenient user interface. We

https://gitlab.lip6.fr/almasty/litFES
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believe that providing a library, as opposed to a standalone “demonstration program”,
could make it easier for others to reuse the algorithms in their own software projects.

The BeanPolE library currently offers two dual components: litFES (a LITerate implemen-
tation of Fast Exhaustive Search) and litMOB (a LITerate in-place MOeBius transform),
which are fully described in Section 6 and Section 7, respectively.

In addition to the library itself, we provide a few demonstration programs which exemplify
its use. Separating the library from the demonstration programs allows this article to focus
on the main algorithmic points (covered by the library), while leaving aside irrelevant and
mundane details, such as parsing arbitrary degree polynomials from text files (covered by
the demonstration programs).

1.7 The Devil Lies in the Details
You are assuming that the algorithm is
implemented on a processor [...]

Itai Dinur, private communication

We advocate that providing a complete implementation of algorithms has benefits that
may not be completely obvious at first sight.

When it is not the case, it is up to the readers to implement the algorithm themselves. This
activity (turning the high-level description of an algorithm given in a research publication
into an actual program using a common programming language) is generally considered
to be a straightforward engineering task, as opposed to a research work that requires the
invention of new algorithmic ideas.

But sometimes the situation is a bit more complicated than it should be. The first reason
is that hidden and problematic “implementation details” may lie dormant in the high-level
descriptions of some algorithms, and this in turn may make it quite difficult to implement
them. Another potential reason, which may combine with the first, is that algorithms
may be described in abstract computational models that may be quite distant from the
representation that programmers have of the machines for which they write code.

Keeping with the theme of this article, we illustrate this phenomenon by taking a critical
look at the original presentations of the space-efficient version of the Moebius transform
described in [Din21a, §4.3], that we briefly described in Subsection 1.3.

The input is a polynomial of degree d in n variables, represented by a bit array containing
all its coefficients. The procedure also depends on a parameter k. The original informal
description of the algorithm corresponds to the following pseudo-code.

1: procedure Descent(A, B, C, n, d, k, b)
2: # A is a bit array containing the coefficient of f (degree d, n variables)
3: # B and C are large enough scratch arrays
4: if k = 0 then
5: Write in C the Algebraic Normal Form of f
6: Run the classic in-place Moebius transform on C
7: Do whatever is needed with the truth table of f ▷ it can be found in C
8: else
9: Write in B the coefficients of f with xn ← bk ▷ it has n− 1 variables

10: Descent(B, A, C, n− 1, k − 1, b)
11: end if
12: end procedure
13: procedure SpaceEfficientMoebius(A, n, d, k)
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14: # A is a bit array containing the coefficient of f (degree d, n variables)
15: Allocate a scratch array B of the same size as A
16: Allocate a scratch array C of size 2n−k

17: for all b ∈ {0, 1}k do
18: # Visit the truth table of f with the k last variable specialized to b
19: Descent(A, B, C, n, d, k, b)
20: end for
21: end procedure

With the right choice of k (that balances the sizes of A, B and C), this requires only about
3 times the space needed to store the input polynomial. The total number of operations in
the “classic” Moebius transform on line 6 is clearly (n− k)2n. It remains to estimate the
cost of lines 5 and 9. The analysis given in the original article relies on the assumption
that both these operations take time linear in the size of the manipulated polynomials. In
other terms, this means that each coefficient can be processed in constant time. Under
that assumption, the total running time is shown to be less than n2n bit operations.

Let us focus on the statement in line 9. We have the coefficients of f in the array A,
we need to fix the last variable xn to either zero or one and write the coefficients of the
resulting polynomial (let us write it g) in n− 1 variables into the array B. Let m denote a
monomial that does not contain xn. If xn is fixed to zero, then the coefficient of m in g is
the same as the coefficient of m in f . It is therefore sufficient to set B[j] = A[i], where i
(resp. j) denotes the location of the coefficient of the monomial m in the array A (resp. B).

If, on the other hand, xn is fixed to one, then the coefficient of m in g is the sum of the
coefficients of m and mxn in f . It is then sufficient to do B[j] = A[i] ^ A[k], where,
in addition to the preceding notations, k denotes the location of the coefficient of the
monomial mxn in the array A. In both case, it may seem that processing each input
coefficient requires a simple statement that takes constant time.

[Din21a] makes it very clear that the algorithm is described in the computational model of
straight-line programs, which originated in computational group theory [BS84], and can
be seen as an abstraction of a fixed circuit:

We estimate the complexity of a straight-line implementation of our algorithm
by counting the number of bit operations (e.g., AND, OR, XOR) on pairs
of bits. This ignores bookkeeping operations such as moving a bit from one
position to another [Din21a, §2.2].

As such, in this computational model, there is simply no need to compute the indices i, j
and k at “run-time”, because they are in fact “hard-coded” in a straight-line program that
implements the Moebius transform for a given input size. The statement B[j] = A[i] ^
A[k] costs one bit operation, and the statement B[j] = A[i] costs nothing.

However, when they are practical, cryptographic attacks are generally executed on general-
purpose computers that are programmed using usual programming languages. Anyone
trying implement this algorithm on currently available computing equipment would have
to deal with the following “implementation detail”: how do we compute the indices i, j
and k? What is the minimum overhead that this induces? How should the coefficients be
ordered in A and B? This makes several non-trivial algorithmic design decisions to take.
It is our belief that these questions are going to leave a decent fraction of the readers
scratching their heads for a while.

It is not straightforward at all to turn the description of the algorithm into a program for
a common model of computation such as the Random Access Machine, let alone the C
programming language. And once it will be done, it is also not obvious at all that the
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number of “elementary instructions” executed by this program will match the number of
“bit operations” announced in [Din21a].

The heart of the problem seems to be the original computational model, which is too
abstract and too distant from existing hardware. It may allow a simplified and cleaner
complexity analysis, but then what is the real-world significance the results? How dangerous
are the corresponding attacks? This debate is not new. In 1979 already, Thompson [Tho79]
wrote that

The theory of computation is valid over a synthetic domain: its formal models
have relevance only if they correspond to possible computational systems.

The model of straight-line programs is a non-uniform model of computation, where the
straight-line programs (that are of exponential size) are assumed to be given. They can
contain an exponential amount of precomputed information (in this case, the problematic
indices i, j and k). However, executing the algorithm on any kind of hardware seems to
require the ability to generate the straight-line programs, which have about n2n statements.
The generation procedure costs at least this much, if not more, and its actual complexity
is unknown.

In this case, the fact that the computational model is non-uniform gives the adversaries a
serious advantage. In his seminal textbook [Gol01, §1.3.3], Goldreich states that:

A stronger (and actually unrealistic) model of efficient computation is that of
non-uniform polynomial time. This model will only be used in the negative
way, namely, for saying that even such machines cannot do something.

Here a non-uniform model of computation has been used in the “positive way”, but it is
then difficult to draw conclusions on the “real-world” efficiency of the resulting algorithm.

The good news is that we provide an in-place Moebius transform algorithm, along with a
full C implementation as the litMOB component of the BeanPolE library, with an improved
time complexity of O (d2n), on real hardware.

2 Using the BeanPolE Library
This section is the official user guide of the BeanPolE library. It is sufficient to include the
BeanPolE.h header file to access the library functions, in addition to linking against the
library itself.

BeanPolE does not dynamically allocate any memory on the heap (it doesn’t call malloc()
or any other equivalent function), and it only uses the stack parsimoniously. This makes it
even more obvious that its algorithms work in-place. However, this requires a few global
arrays of modest size. Therefore, there are compile-time bounds on the number of variables
and the degree of polynomials that can be handled. These bounds are easy to change.

9 ⟨BeanPolE.h 9⟩≡
#ifndef __BeanPolE_H
#define __BeanPolE_H

#include <stdbool.h>
#include <stddef.h>

#define BeanPolE_MAXN 128 /* maximum #variables */
#define BeanPolE_MAXD 16 /* maximum degree */
⟨Global variables declaration 19b⟩
⟨Interface of the library 10a⟩
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⟨Interface of the litFES component 11a⟩
⟨Interface of the litMOB component 11b⟩
#endif

Invoking any library function with n > d, n > BeanPolE_MAXN or d > BeanPolE_MAXD
yields a fatal error.

Before being used, the library must be initialized (this populates its global arrays). Calling
any other BeanPolE function before invoking BeanPolE_init() is an error and leads to
undefined behavior.

10a ⟨Interface of the library 10a⟩≡ (9) 10b ▷

/*
* Initialize the library. This takes time O(BeanPolE_MAXN ** 2).
*/

void BeanPolE_init();

2.1 Data Structures
The first thing one needs to know to use the library is how Boolean polynomials are
represented in memory. BeanPolE uses a simple dense representation with one bit for
each possible monomial. A Boolean polynomial of degree at most d in n variables has at
most

(
n
↓d

)
=

∑d
k=0

(
n
k

)
terms — this convenient notation for the partial sum is borrowed

from [Din21a]. Indeed, there are
(

n
k

)
Boolean monomials of degree k: they are the product

of k distinct variables. The polynomial f is therefore stored in an array A containing
(

n
↓d

)
entries of type bool. Note that this requires a C99-capable compiler.

More sophisticated data structures to represent multivariate polynomials in memory are
described in the literature. In the Boolean case, the PolyBori [BD09] library uses a solution
based on Zero-suppressed binary Decision Diagrams (it is used in SageMath to manipulate
Boolean polynomials). Our simpler solution allows constant-time access to the coefficients
of a monomial (once the corresponding indices are known), and this turns out to be a
crucial advantage.

It is the user’s responsibility to allocate the array A. To facilitate this, BeanPolE offers a
convenience function that returns its size.

10b ⟨Interface of the library 10a⟩+≡ (9) ◁ 10a
/*

* Return the number of monomials of degree at most d in n variables.
*/

size_t BeanPolE_size(int n, int d);

The two components litFES and litMOB use two different monomial orders. Monomial are
naturally numbered according to their rank in the relevant order. The i-th entry of the
array A is the coefficient of the i-th monomial.

litFES uses the graded lexicographic order: monomials are ordered by increasing degree,
and ties are broken using the lexicographic order (on the exponent vector). This yields
1 < x0 < x1 < x7 < x0x1 < x4x5 < x0x7 < . . . . If f is represented by A, then A[0] is the
constant term of f . The coefficient of xi is in A[1 + i], etc.

litMOB uses the (plain) lexicographic order. This time we have 1 < x0 < x1 < x0x1 <
x4x5 < x7 < x0x7 < . . . .
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When monomials themselves have to be represented in memory, for instance as arguments
to the ranking functions described below, they are described by their degree and an
integer array containing the variables indices (sorted in ascending order). For example,
the monomial x0x6x9 is represented by the array [0, 6, 9]. Note that the numbering of
variables starts at zero.

It is the responsibility of the user to populate A correctly before invoking the library
functions. Convenience ranking functions are provided for this purpose. The demonstration
programs use them while parsing the text files containing the polynomials. Notice how n
and d play dual roles in these two monomial orders.

11a ⟨Interface of the litFES component 11a⟩≡ (9) 12a ▷

/*
* Return the rank (in the graded lexicographic order) of the degree-k
* monomial described by m[], among all monomials in n variables.
* The array m[] has dimension k and contains the indices of the
* variables that appear in the monomial, in increasing order.
* The indices start at zero. This function runs in time linear in k.
*/

size_t litFES_rank(int n, int k, const int m[]);

11b ⟨Interface of the litMOB component 11b⟩≡ (9) 13d ▷

/*
* Return the rank (in the lexicographic order) of the degree-k
* monomial described by m[], among all monomials of degree at most d.
* The array m[] has dimension d and contains the indices of the
* variables that appear in the monomial, in increasing order. The
* variable indices start at zero.
* This function runs in time linear in k.
*/

size_t litMOB_rank(int d, int k, const int m[]);

2.2 Iterators
In order to iterate over a sequence of objects (entries of the truth table, monomials, etc.),
we use iterators made of three functions:

• xxx_prepare: initializes the iteration.

• xxx_advance: move to the next element.

• xxx_finished: indicates whether there is a next element.

These functions can be used as follows:
11c ⟨Example iteration 11c⟩≡ 11d ▷

for (xxx_prepare(); !xxx_finished(); xxx_advance()) {
...

}

Or equivalently:
11d ⟨Example iteration 11c⟩+≡ ◁ 11c

xxx_prepare();
while (!xxx_finished()) {

...
xxx_advance();



12 Boolean Polynomial Evaluation for the Masses (Long Paper)

}

Detecting the end of the iteration may sometimes require some extra state to be carried
between the three functions.

2.3 The litFES Component
This is an implementation of the FES algorithm. This algorithm visits the entries of
the truth table one at a time, sequentially. It jumps from an entry to the next in O (d)
operations in the worst case.

The litFES component exposes a few functions that have a common set of arguments. They
are now described once and for all.

12a ⟨Interface of the litFES component 11a⟩+≡ (9) ◁ 11a 12b ▷

/*
* Functions of the litFES component take the following arguments:
* n : number of variables of the polynomial
* d : degree of the polynomial
* A[]: coefficients of the polynomial in graded lexicographic order
* x[]: variables on which f is evaluated. x[] has dimension n
* s : internal state of the enumeration procedure (opaque)
*/

This provides the semantics of the algorithm.
12b ⟨Interface of the litFES component 11a⟩+≡ (9) ◁ 12a 12c ▷

/*
* At all times, litFES maintains the following invariant:
* A[0] contains the result of the evaluation of the polynomial on x
*/

The litFES functions maintain an internal state, which is an (opaque) object containing
1 + 2× LITFES_MAXN integers.

12c ⟨Interface of the litFES component 11a⟩+≡ (9) ◁ 12b 12d ▷

struct litFES_state {
int h; /* height of the stack */
int stack[BeanPolE_MAXN + 1];
int f[BeanPolE_MAXN + 1]; /* focus pointers */

};

The four main functions offered to users of the library are the following:
12d ⟨Interface of the litFES component 11a⟩+≡ (9) ◁ 12c 13a ▷

/*
* Run the required preparations. Modify A[] and sets x[] to
* (0, 0, ..., 0). x[] must have size n + 1.
* The running time of this functions is at most d**2 * phi**d times the
* size of A, where phi == (1 + sqrt(5)) / 2 is the golden ratio.
*/

void litFES_prepare(int n, int d, bool A[], bool x[],
struct litFES_state *s);
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13a ⟨Interface of the litFES component 11a⟩+≡ (9) ◁ 12d 13b ▷

/*
* Advance x[] to the next n-bit string and update A[0] accordingly.
* This functions executes O(d) elementary instructions.
* It modifies A[]. litFES_prepare() must have been called beforehand.
*/

void litFES_advance(int n, int d, bool A[], bool x[],
struct litFES_state *s);

13b ⟨Interface of the litFES component 11a⟩+≡ (9) ◁ 13a 13c ▷

/*
* Return 1 if all entries of the truth table have been visited.
* This happens after 2**n calls to litFES_advance().
* This function runs in constant time.
*/

bool litFES_finished(int n, const bool x[]);

13c ⟨Interface of the litFES component 11a⟩+≡ (9) ◁ 13b
/*

* Restore A[] to its initial value –- before the call to
* litFES_prepare().
* This assumes that litFES_finished() has returned 1.
* Invoking this function is optional. Its running time is about the
* same as that of libFES_prepare().
*/

void litFES_restore(int n, int d, bool A[], struct litFES_state *s);

It must be noted that litFES is thread-safe: if two threads “own” two different polynomials
and two different litFES_state objects, they can invoke the library functions concurrently
on their own arguments.

2.4 The litMOB Component
This is an implementation of the in-place Moebius transform. litMOB produces the entries
of the truth table in chunks of size 2d (where d is the degree of the polynomial). The
algorithm visits the 2n−d chunks of the truth table one at a time, sequentially. It jumps
from a chunk to the next with an amortized cost of O

(
d2d

)
operations.

The semantics of the functions are given by:
13d ⟨Interface of the litMOB component 11b⟩+≡ (9) ◁ 11b 13e ▷

/*
* litMOB maintains the following invariant:
* The first 2**d entries of A contains the truth table of f where
* the last n-d variables are fixed to x.
*/

13e ⟨Interface of the litMOB component 11b⟩+≡ (9) ◁ 13d 14a ▷

/*
* Run the required preparations. Sets x[] to (0, 0, ..., 0).
* x[] must have size at least n + 1.
* The first chunk of the truth table is available in A[0:2**d] on exit.
* This functions runs in time O(d * 2**d).
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*/
void litMOB_prepare(int n, int d, bool A[], bool x[]);

14a ⟨Interface of the litMOB component 11b⟩+≡ (9) ◁ 13e 14b ▷

/*
* Advance x[d:n] to the next value in lexicographic order, and update
* A[0:2**d] accordingly. The rest of A[] may be modified. x[0:d] is
* not accessed.
* This functions runs in amortized time O(d * 2**d).
*/

void litMOB_advance(int n, int d, bool A[], bool x[]);

14b ⟨Interface of the litMOB component 11b⟩+≡ (9) ◁ 14a
/*

* Return 1 when the whole truth table has been visited.
* In this case, A[] has been returned to its original state.
* This happens after 2**(n - d) calls to litMOB() advance().
* This function runs in constant time.
*/

bool litMOB_finished(int n, const bool x[]);

2.5 Demonstration Programs
The companion demonstration programs load a Boolean polynomial f from a text file and
print out its full truth table. They are only partially described in this article; how the
polynomial is parsed is not relevant, and it actually requires much more code than the
actual algorithm to iterate through its truth table. We used these demonstration programs
to test the correctness of the library while preparing this work.

14c ⟨Main loop of the litFES demonstration program 14c⟩≡
bool x[n + 1];
struct litFES_state state;
litFES_prepare(n, d, A, x, &state);
while (!litFES_finished(n, x)) {

for (int i = 0; i < n; i++) /* print x */
printf("%01d", x[i]);

printf(": %d\n", A[0]); /* print f(x) */
litFES_advance(n, d, A, x, &state);

}
litFES_restore(n, d, A, x, &state);

The loop visits each entry of the truth table. For each x ∈ {0, 1}n, it prints x and f(x),
which is available in A[0] according to the invariant maintained by the library. As per the
specification of litFES_advance, the loop exits during the 2n-th iteration. The total time
spent in litFES_advance is O (d2n). The A array is returned into its original state.

The corresponding program for litMOB prints a chunk of size 2d of the truth table in each
iteration.

14d ⟨Main loop of the litMOB demonstration program 14d⟩≡
bool x[n + 1];
litMOB_prepare(n, d, A, x);
while (!litMOB_finished(n, x)) {

int k = 0; /* print current truth table chunk */
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for (;;) {
for (int i = 0; i < n; i++) /* print x */

printf("%01d", x[i]);
printf(": %d\n", A[k]); /* print f(x) */
int j = 0; /* advance x */
while (j < d && x[j] == 1) {

x[j] = 0;
j += 1;

}
if (j == d)

break;
x[j] = 1;
k += 1;

}
litMOB_advance(n, d, A, x);

}

This concludes the user guide of the BeanPolE library. The rest of this paper describes its
implementation.

3 Preliminaries
3.1 Bit strings and Integers
Bit strings are elements of {0, 1}∗. The i-th symbol of a bit string x is denoted as xi. We
simply denote by xy the concatenation of two bit strings x and y. Similarly, if a is a bit
string, we write ak = aaa . . . a where a is repeated k times. We write x ⊆ y and we say
that “x is contained in y” when xi = 1⇒ yi = 1 (this is equivalent to x&y = x).

Any non-negative integer can be written in base two as i = (. . . a3a2a1a0)2 =
∑

k ak2k,
where a is a bit string. The right shift operator is defined by i ≫ 1 = ⌊i/2⌋. Clearly, if
i = (. . . a2a1a0)2, then i≫ 1 = (. . . a2a1)2.

The bitwise AND and XOR operators that act naturally on bit strings are naturally
extended to the integers (applying them to their base-2 representation). They are denoted
by a&b and a⊕ b. The bitwise NOT operator is denoted as x.

Let ρ(i) denote the greatest integer k such that 2k divides i, with ρ(0) = +∞. This locates
the rightmost “1” bit in the binary representation of the integer i.

Define the function ρ∗ : (. . . a2a1a0)2 7→ {j ∈ N : aj = 1}. This tracks the location
of all “1” bits in the binary representation of i. It follows that ρ(i) = min ρ∗(i). For
instance, 42 = (101010)2, therefore ρ∗(42) = {1, 3, 5}. Also, 1337 = (10100111001)2, and
ρ∗(1337) = {0, 3, 4, 5, 8, 10}.

3.2 Boolean Monomials and Boolean Polynomials
The ring of (Boolean) polynomials in n variables x = (x0, . . . , xn−1), hereafter denoted
by B, is the quotient of the polynomial ring F2[x0, . . . , xn−1] by the ideal spanned by the
“field equations”

〈
x2

0 − x0, . . . , x2
n−1 − xn−1

〉
. Therefore, if f is a Boolean polynomial, then

the exponent of any variable in all monomials is either 0 or 1.

A Boolean monomial x0
e0x1

e1 . . . xn−1
en−1 is completely described by the bit string

e0 . . . en−1 (the exponent vector). It is also completely determined by the set {0 ≤
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i < n : ei = 1}. Therefore, we happily identify monomials with n-bit strings with subsets
of {0, . . . , n− 1}.

The degree of a monomial is the Hamming weight of the exponent bit string (or the
cardinality of the set of exponents). The degree of a Boolean polynomial is the largest
degree of its monomials.

3.3 Binomial Coefficients
Let H denote the binary entropy function, meaning that

H(x) = −x log2(x)− (1− x) log2(1− x),

for all 0 < x < 1. It can be continuously extended to H(0) = H(1) = 0. The following
standard bounds for the binomial coefficient can be derived from Stirling’s formula:

2nH(x)√
8nx(1− x)

≤
(

n

xn

)
≤ 2nH(x)√

2πnx(1− x)
, (0 < x < 1/2) (1)(

n

↓ xn

)
≤ 2nH(x), (0 < x < 1/2) (2)

In addition, when k ≤ n/2, we have the trivial upper-bound:(
n

k

)
≤

(
n

↓ k

)
≤ k

(
n

k

)
, (0 < x < 1/2) (3)

We will later need the following technical result.

Lemma 1. For any d ∈ N, we have
+∞∑
i=0

2−i

(
i

d

)
= 2.

Proof. To begin with, it is clear that the series converges, if only because
(

i
d

)
= O

(
id

)
.

We establish the result using the method of “creative telescoping”. Define F (d, i) = 2−i
(

i
d

)
and G(d, i) = 2 d−i

d+1 F (i, d). Then we have

F (d + 1, i)− F (d, i) = G(d, i + 1)−G(d, i).

Summing on 0 ≤ i ≤ n yields
n∑

i=0
F (d + 1, i)−

n∑
i=0

F (d, i) = G(d, n + 1)−G(d, 0).

In all cases, G(d, 0) = 0. Then passing to the limit with n→ +∞, we find that:
+∞∑
i=0

F (d + 1, i)−
+∞∑
i=0

F (d, i) = lim
n→+∞

G(d, n + 1) = 0.

This shows that the sum of the series is independent of d. Then with d = 0 we quickly
find that

+∞∑
i=0

F (0, i) =
+∞∑
i=0

2−i = 2
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3.4 Derivatives
By analogy with the corresponding notion from calculus, define the “differential operator”
Dk : B 7→ B that differentiates with respect to the k-th variable as

Dk : f(x) 7→ f(x0, . . . , xk−1, xk + 1, xk+1, . . . , xn−1) + f(x)

This is clearly a linear operator on B. If m denotes a monomial that is not a multiple
of xk, then it is easy to check that Dk(m) = 0 and Dk(mxk) = m. These rules make it
straightforward to evaluate the derivatives of any polynomial. In fact, this shows that
Dk(f) contains all the monomials of f that are divisible by xk, divided by xk. It follows
that Dk(f) does not depend on xk and that deg Dk(f) = max(0, deg f−1). More precisely,
we can write

f(x) = f (x0, . . . , xk−1, 0, xk+1, . . . , xn−1) + xk ·Dk(f)(x)

Higher-order derivatives are simply the derivatives of the derivatives. For instance

Dℓ ◦Dk : f 7→ (f(x + xk + xℓ) + f(x + xℓ)) + (f(x + xk) + f(x))

Looking at this definition, it is easy to conclude that the differentiation operators commute:
Dk ◦ Dℓ = Dℓ ◦ Dk. This implies that differentiating with respect to a subset of the
variables (i.e. a monomial) makes sense. We thus write Dm(f) for an arbitrary monomial
m. If f has degree d, then its d-th derivatives are constant. The Boolean polynomial
Dm(f) contains all monomials of f that are multiples of m, divided by m. It follows that
evaluating Dm(f) on zero yields the coefficient of the monomial m in f . And because
Dm(f) does not depend on the variables contained in m, then the same result is obtained
by evaluating Dm(f) on m.

3.5 Organization of the Library
The implementation of the library consists of a a few C files, where “private” internal
functions are clearly separated from “public” functions that are exposed in the interface.
Functions common to multiple components go in BeanPole.c.

17 ⟨BeanPolE.c 17⟩≡
#include <assert.h>
#include "BeanPolE.h"
⟨Global variables 19a⟩
⟨Public functions 20a⟩

4 Tracking Bits in a Counter
In this section, we describe a loopless (i.e. worst-case constant-time) algorithm to evaluate
ρ∗ on consecutive integers, starting from zero. In other terms, we track the positions of all
set bits in a counter i as it is incremented.

This can be done in a loopless way using a stack. This stack contains, from bottom to
top, the locations of all non-zero bits of the counter, from the leftmost (at the bottom of
the stack) to rightmost (at the top). If the counter is zero, the stack is empty (denoted
by []). If the counter is, say, (101010)2, then the stack is [5, 3, 1]. If the counter is
incremented to (101011)2, the stack becomes [5, 3, 1, 0].

Here is how to update the stack when the counter is incremented. The counter can
always be written i = (a01k)2 for some k ≥ 0 and some bit string a. The next value is
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i + 1 = (a10k)2. Note that k = ρ(i + 1) is in fact the position of the rightmost non-zero
bit of i + 1. To maintain the stack while i is incremented, we need to 1) pop the top k
entries and 2) push k.

The problem boils down to evaluate ρ on consecutive integers, starting from zero. Some
processors have a builtin instruction to evaluate ρ. For instance, the x86-compatible
CPUs have the bsf instruction that does just this. The Gnu C Compiler exposes the
__builtin_ffs() pseudo-function that invokes the corresponding instruction if the target
architecture has it. On the other hand, trying to evaluating ρ efficiently without relying
on ad hoc hardware instructions leads to a wealth of “bitwise tricks”, “hacker’s delight”
and whatnot.

A particularly elegant solution has been proposed by Ehrlich in 1973 [Ehr73, BER76] (see
also [Knu14, §7.2.1.1]). Using an array of (n+1) “focus pointers”, it enables the evaluation
of ρ on the next value of the counter in a constant number of operations.

The opaque litFES_state type described in the library interface in fact contains the
persistent state needed by this procedure. The value of the counter is not stored, because
it is represented implicitly by the stack and the focus pointers.

18a ⟨Prepare the litFES_state 18a⟩≡ (27a)
s->h = 0;
for (int i = 0; i < n + 1; i++)

s->f[i] = i;

The loopless procedure to maintain the state when i is incremented is:
18b ⟨Increment i; maintain ρ(i) in k; maintain ρ∗(i) in stack[0:h] 18b⟩≡ (27b)

int k = f[0]; /* k == rho(i) */
f[0] = 0; /* update focus pointers */
f[k] = f[k + 1];
f[k + 1] = k + 1;
h -= k; /* pop top k elements */
stack[h] = k; /* push k onto the stack */
h += 1;

Note that, as a by-product, what is described in this section can be seen as an algorithm
that increments an n-bit counter in worst-case constant time. In contrast, the classic
solution of propagating carries works in amortized constant time only. If w-bit registers
are available, then this works for counters values of up to 2w bits, using 2 + 2w+1 words
of storage. Of course, the binary representation of the counter is not maintained, but an
alternate (redundant) representation is.

5 Operations on Monomials
5.1 Ranking
It is not very difficult to compute the rank of a given degree-k monomial among all
monomials of degree at most d in n variables, in the orders that matter to us. All this
is well-known (see for instance [Rus03]). The rank of m is the number of strictly smaller
monomials. A ranking function assigns a distinct positive integer to each monomial.

Let µ≤d denote the ranking function for monomials of degree at most d in the plain
lexicographic order. Monomials are compared by looking at their greatest variable first:
mxn is greater than all monomials that only contain x1, . . . , xn−1.
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Let us begin with the plain lexicographic order restricted to degree-k monomials. Let µk

denote the corresponding ranking function, which assigns an integer less than
(

n
k

)
to each

monomial of degree k in n variables. If m = {i0, . . . , ik−1}, then m is greater than all
degree-k monomials only containing variables strictly smaller than ik−1. There are

(
ik−1

k

)
such monomials (recall that variable numbering starts at zero). Then, the rank of m among
all degree-k monomials whose greatest variable is ik−1 is precisely µk−1(i0, . . . , ik−2). This
leads to the recursive definition:

µ0(∅) := 0

µk({i0, . . . , ik−1}) :=
(

ik−1

k

)
+ µk−1(i0, . . . , ik−2)

Let µ↓d denote the the ranking function for all monomials of degree at most d in n variables
in the plain lexicographic order. It assigns integer less than

(
n
↓d

)
to each of them. A similar

reasoning shows that:

µ↓0(∅) := 0

µ↓d({i0, . . . , ik−1}) :=
(

ik

↓ d

)
+ µ↓d−1(i0, . . . , ik−2)

Finally, let ν denote the ranking function for the graded lexicographic order. Because
monomial are ordered by degree, then ν(m) < ν(m′) if deg m < deg m′. If a monomial m
has degree k, there are

(
n

↓k−1
)

monomials of strictly smaller degree. This shows that:

ν(m) := let k = deg m in
(

n

↓ k − 1

)
+ µk(m).

Evaluating µk (and thus ν) or µ↓ requires k operations, assuming that the binomials
coefficients and their partial sums are precomputed. To make this work, we define
two global bi-dimensional arrays: BeanPolE_N[n][k] contains

(
n

↓k−1
)

(the number of
monomials of degree strictly less than k in n variables) and BeanPolE_binomial[n][k]
simply contains the binomial coefficient

(
n
k

)
.

19a ⟨Global variables 19a⟩≡ (17)
size_t BeanPolE_binomial[BeanPolE_MAXN + 1][BeanPolE_MAXD + 2];
size_t BeanPolE_N[BeanPolE_MAXN + 1][BeanPolE_MAXD + 2];

19b ⟨Global variables declaration 19b⟩≡ (9)
extern size_t BeanPolE_binomial[BeanPolE_MAXN + 1][BeanPolE_MAXD + 2];
extern size_t BeanPolE_N[BeanPolE_MAXN + 1][BeanPolE_MAXD + 2];

Unfolding both recursive definitions leads to the sums:

µd({i0, . . . , ik−1}) =
k−1∑
j=0

(
ij

j + 1

)

µ↓d({i0, . . . , ik−1}) =
k−1∑
j=0

(
ij

↓ d− k + j + 1

)
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This being said, writing the code of the convenience ranking functions is now completely
straightforward.

20a ⟨Public functions 20a⟩≡ (17) 20d ▷

size_t BeanPolE_size(int n, int d)
{

return BeanPolE_N[n + 1][d + 1];
}

20b ⟨litFES Public functions 20b⟩≡ (24b) 27a ▷

size_t litFES_rank(int n, int k, const int m[])
{

size_t rank = BeanPolE_N[n][k];
for (int j = 0; j < k; j++)

rank += BeanPolE_binomial[m[j]][j + 1];
return rank;

}

20c ⟨litMOB Public functions 20c⟩≡ (31) 33a ▷

size_t litMOB_rank(int d, int k, const int m[])
{

size_t rank = 0;
for (int j = 0; j < k; j++)

rank += BeanPolE_N[m[j]][d + 2 - k + j];
return rank;

}

Note that computing µk({i0, . . . , ik−1}) yields in passing the values of

µ1({i0}), µ2({i0, i1}), . . . , µk({i0, . . . , ik−1}).

This naturally extends to ν. In other terms, it is possible to compute the rank (in the
graded lexicographic order) of each prefix of the original monomial in O (k) operations.
This detail plays a crucial role in the implementation of litFES in section 6.2.

In a dual way, suppose that r = µ↓d′({i0, . . . , ik−1}). It is easy to update r if the smallest
variable is removed, or if another even smaller variable j < i0 is added:

µ↓d({i1, . . . , ik−1}) = r −
(

i0

↓ d− k + 1

)
(4)

µ↓d({j, i0, . . . , ik−1}) = r +
(

j

↓ d− k

)
(5)

The ability to update / downdate the rank of a monomial in constant time plays a crucial
role in the implementation of litMOB in section 7.

Lastly, the binomial coefficients need to be computed before being used. This is the
purpose of the initialization function.

20d ⟨Public functions 20a⟩+≡ (17) ◁ 20a
void BeanPolE_init()
{

size_t pascal[BeanPolE_MAXN + 1];
for (int n = 0; n <= BeanPolE_MAXN; n++)

pascal[n] = 0;
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pascal[0] = 1;
for (int n = 0; n <= BeanPolE_MAXN; n++) {

pascal[n] = 1;
for (int k = n-1; k > 0; k–)

pascal[k] += pascal[k - 1];
for (int k = 0; k <= BeanPolE_MAXD; k++)

BeanPolE_binomial[n][k] = pascal[k];
size_t acc = 0;
for (int k = 0; k <= BeanPolE_MAXD + 1; k++) {

BeanPolE_N[n][k] = acc;
acc += BeanPolE_binomial[n][k];

}
}

}

5.2 Iteration
This section describes two iterators over the set of monomials in lexicographic order. One
enumerates degree-d monomials, while the other lists monomials of degree at most d.

5.2.1 Degree-k Monomials

Enumerate all degree-k monomials in lexicographic order is strictly equivalent to the
lexicographic enumeration of all k-subsets of {0, 1, 2, . . . , n − 1}. For this, we use the
venerable algorithm first described by Mifsud [Mif63], along with the optimization described
by Dvořák in [Dvo90]. All of this is summarized in algorithm T from [Knu14, §7.2.1.3].

The iterator maintains an integer variable j across invocations. The initial value of j is
the return value of combination_setup. j is the smallest index such that m[j + 1] > j
+ 1.

21a ⟨litFES Internal functions 21a⟩≡ (24b) 21b ▷

/*
* Prepare the enumeration of all degree-k monomials in n variables.
* The (preallocated) array x must be of size at least k + 2.
* The indices of the variable in the first monomial can be read in x.
* This function runs in time O(k).
*/

static int litFES_combination_prepare(int n, int k, int x[])
{

for (int i = 0; i < k; i++)
x[i] = i;

x[k] = n;
x[k + 1] = 0;
return k - 1;

}

21b ⟨litFES Internal functions 21a⟩+≡ (24b) ◁ 21a 22 ▷

/*
* Advance to the next monomial. Return n if there is no next monomial.
* Otherwise, the next monomial can be read in m[] and the return value
* must be used as the j argument in the next invocation.
* This functions runs in constant amortized time.
*/
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static int litFES_combination_advance(int n, int k, int m[], int j)
{

if (n == k) /* Easy cases with O(1) cost */
return n;

if (j >= 0) {
m[j] = j + 1;
return j - 1;

}
if (m[0] + 1 < m[1]) {

m[0] += 1;
return j;

}
j = 0; /* Hard case. Must locate j again */
while (m[j] + 1 == m[j + 1]) {

m[j] = j;
j += 1;

}
if (j >= k)

return n;
m[j] = m[j] + 1;
return j - 1;

}

22 ⟨litFES Internal functions 21a⟩+≡ (24b) ◁ 21b 24a ▷

static bool litFES_combination_finished(int n, int j)
{

return j >= n;
}

We first note that if the j = 0 statement is executed, then there will be at least one
iteration of the while loop (otherwise the function would have exited in the third if
statement).

It is not difficult to check that litFES_combination_advance runs in constant amortized
time, for instance using the accounting method. Each time the function is invoked, two
credits must be deposited. Executing the first two if statements cost one credit. Executing
the rest of the function costs one more credit, plus one extra credit per iteration of the
while loop after the first one.

We claim that the sum of j and the balance of the account is always equal to k−1. Because
0 ≤ j ≤ k, then the account’s balance is lower-bounded by When litFES_combination_advance
returns, this is obvious. If j ≥ 0, then running litFES_combination_advance increases
the account’s balance by one credit and j is decremented. If the function terminates in
the third if statement, both the balance of the account and j are left unchanged. If there
are t iterations of the while loop, then t− 1 credits are withdrawn from the account and
j is increased by t− 1.

Because −1 ≤ j ≤ k, it follows that the balance of the account is lower-bounded by -1.
This establishes the constant amortized complexity.

5.2.2 Monomials of Degree at Most k

The next couple of functions constitute the main technical ingredient of litMOB. They
enumerate all monomials m of degree at most d in lexicographic order, which is fairly
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classic (we could not trace a precise reference). Moreover, they provide the value of µ↓d′(m)
for a given d′ ≥ d. In other terms, as the monomials are enumerated, their rank among all
monomials of a different degree d′ is computed.

23a ⟨litMOB Internal functions 23a⟩≡ (31) 23b ▷

/*
* Prepare the enumeration of all monomials of degree at most d.
* The (preallocated) array m[] must be of size at least d + 1.
* The return value of this function is the degree of the first monomial
* (zero). This function runs in constant time.
*/

static int litMOB_combination_prepare(int d, int m[])
{

m[d - 1] = 0;
m[d] = 1;
return 0;

}

23b ⟨litMOB Internal functions 23a⟩+≡ (31) ◁ 23a 32a ▷

/*
* Advance m[] to the next monomial of degree at most d in lexicographic
* order. Compute its rank in lexicographic order among monomials of
* degree <= dprime (with dprime >= d). This function runs in constant
* amortized time.
*
* On input:
* k and rank respectively describe the degree and the rank of the
* current monomial in lexicographic order among all monomials of
* degree at most dprime.
*
* At exit:
* The return value is the degree of the next monomial (the new value
* of k). The next monomial can be found in m[d-k:d]. rank is
* updated to reflect the change.
*/

static int litMOB_combination_advance(int d, int k, int m[], int dprime,
size_t *rank)

{
/* Can we add a zero to the left? */
if (k != d && m[d - k] != 0) {

k += 1;
m[d - k] = 0;
*rank += BeanPolE_N[0][dprime-k+2];
return k;

}
/* Erase leftmost digits that cannot be incremented */
while (k > 1 && m[d-k] + 1 == m[d-k+1]) {

*rank -= BeanPolE_N[m[d - k]][dprime-k+2];
k -= 1;

}
/* Increment leftmost digit */
*rank -=BeanPolE_N[m[d - k]][dprime-k+2];
m[d - k] += 1;
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*rank += BeanPolE_N[m[d - k]][dprime-k+2];
return k;

}

It is easy to show that this function runs in constant amortized time. By the accounting
method, assume that each call to litMOB_combination_advance requires a deposit of 2
credits. The first if statement costs one credit. Each iteration of the while loop costs one
credit. The final chunk of the function costs one additional credit. If a zero is added (the
condition in first if statement is true), then the function returns quickly and one extra
credit is left in the account. Otherwise, t iterations of the while loop take place, t items
are erased from the current tuple and t credits are withdrawn from the account. Thus,
the balance of the account is exactly the degree of the current monomial, and as such it
cannot become negative.

The fact that this function correctly maintains µ↓d′(m) follows easily from (4) and (5).

5.3 Multiplication
Multiplying two monomials comes down to merging the two sorted arrays that represent
them. A function similar to this one can be found in most implementations of the merge
sort algorithm; this one is particularly simple because the two arrays contain disjoint sets
of values.

24a ⟨litFES Internal functions 21a⟩+≡ (24b) ◁ 22 25a ▷

/*
* Compute the product of two **relatively prime** monomials.
* Input are in (alen, ax) and (blen, bx). The return value is the
* degree of the product. The output is written in cx (which must be
* preallocated). This function runs in time O(alen + blen).
*/

static int merge(int alen, const int ax[], int blen, const int bx[],
int cx[])

{
int i = 0, j = 0;
for (int k = 0; k < alen + blen; k++) {

if (j == blen || ax[i] < bx[j])
cx[k] = ax[i++];

else
cx[k] = bx[j++];

}
return alen + blen;

}

6 Implementation of the litFES component
This section implemented an unrolled (non-recursive) version of the Fast Exhaustive Search
algorithm, for any degree. It builds upon the recursive presentation given in [BCC+10a],
and more precisely in its extended version [BCC+10b]. The algorithm is given in an
unrolled version in [Bou11]. Here, its implementation is contained in litFES.c:

24b ⟨litFES.c 24b⟩≡
#include <assert.h>
#include "BeanPolE.h"
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⟨litFES Internal functions 21a⟩
⟨litFES Public functions 20b⟩

The fact that this algorithm is correct, namely, that it actually compute the truth table,
is not obvious. The fact that the version given here is correct directly follows from the
correctness proof of the original algorithm given in [Bou11], that we will not repeat.

6.1 Setup Phase
Before the main loop that walks through the truth table, some preparations are in order.
When the algorithm starts, the array A gives the coefficient of each monomial. By a
complete abuse of notation, we allow ourselves to write A[m] when m is a monomial to
denote A[i] where i is the rank of m. This being said, it follows from the discussion at
the end of Subsection 3.4 that for each monomial m of degree less than D, A[m] contains
the result of the evaluation of Dm(f) on m.

The setup phase consists in modifying A such that A[m] contains the result of the evaluation
of Dm(f) on m ⊕ (m ≫ 1). This is necessary because the bit strings x over which f is
evaluated are enumerated in Gray code order; the i-th bit string is i⊕ (i≫ 1).

Because Dm(f) does not depend on the variables in m, we can restrict ourselves to evaluate
each Dm(f) on (m ≫ 1)&m. Note that this monomial has degree less than or equal to
that of m. The following function compute this new monomial from m.

25a ⟨litFES Internal functions 21a⟩+≡ (24b) ◁ 24a 25b ▷

/*
* Given a monomial m of degree k, returns (m » 1) & ~m.
* Write it in mshift and return its degree.
*/

static int shift_monomial(int k, const int m[], int mshift[])
{

int j = 0;
for (int i = 0; i < k; i++) {

if ((m[i] == 0) || ((i > 0) && (m[i] - 1 == m[i - 1])))
continue;

mshift[j] = m[i] - 1;
j += 1;

}
return j;

}

To evaluate Dm(f) on an arbitrary monomial m′, we enumerate the monomials of Dm(f)
that evaluate to 1 on input m′. Such a monomial:

i) Is a multiple of m — appears in Dm(f).

ii) Divides mm′ — Dm(f) evaluate to 1 on m′.

We therefore enumerate all subsets of m′&m of degree less than d− deg m and multiply
them by m (as usual d is the degree of the polynomial f).

25b ⟨litFES Internal functions 21a⟩+≡ (24b) ◁ 25a
/*

* Evaluate D_m(f) on m ^ (m » 1) and store the result in A[i].
* The monomial m has degree k. The running time of this function is
* less than k times the number of monomials of degree at most min(d-k, k)
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* in k variables.
*/

static void tweak_derivative(int n, int d, bool A[], size_t i,
int k, const int m[])

{
/* compute the shifted monomial */
int mprime[n];
int l = shift_monomial(k, m, mprime);
int hi = d - k; /* maximum degree of subsets */
if (l < hi)

hi = l;
for (int t = 1; t <= hi; t++) {

/* Enumerate all degree-t subsets of m’ */
int c[l + 2];
int it = litFES_combination_prepare(l, t, c);
while (!litFES_combination_finished(l, it)) {

int uu[n];
int cc[n];
/* compute the product m*m’ */
for (int j = 0; j < t; j++)

cc[j] = mprime[c[j]];
merge(k, m, t, cc, uu);
/* add the coefficient of m*m’ to the result */
size_t j = litFES_rank(n, k + t, uu);
A[i] ^= A[j];
it = litFES_combination_advance(l, t, c, it);

}
}

}

It is not difficult to see that tweak_derivative is involutive. It XORs some A[j] into
A[i], with j > i. Doing it twice restores the initial value of A[i].

We now justify the given upper-bound on the running time of this function. First, it
is clear that hi = min(d − k, ℓ). And because ℓ ≤ k, we have hi ≤ min(d − k, k). A
single iteration of the inner while loop does O (k + t) operations. Since t ≤ ℓ ≤ k, this is
simply O (k). Up to a constant factor, the total number of operations is upper-bounded
by k

(
k

↓min(d−k,k)
)
.

We have to repeat this process on all the (non-constant) derivatives, in increasing degree
order.

26 ⟨Tweak all the derivatives 26⟩≡ (27a)
size_t i = 1;
int m[d + 2];
for (int k = 1; k < d; k++) {

int it = litFES_combination_prepare(n, k, m);
while (!litFES_combination_finished(n, it)) {

tweak_derivative(n, d, A, i, k, m);
i += 1;
it = litFES_combination_advance(n, k, m, it);

}
}



Charles Bouillaguet 27

With this, we can write down the public preparation function. It does a very limited error
checking on the parameters, and brutally terminates everything in case of an error.

27a ⟨litFES Public functions 20b⟩+≡ (24b) ◁ 20b 27b ▷

void litFES_prepare(int n, int d, bool A[], bool x[],
struct litFES_state *s)

{
assert(n <= BeanPolE_MAXN);
assert(d <= BeanPolE_MAXD);
assert(d <= n);
⟨Prepare the litFES_state 18a⟩
⟨Tweak all the derivatives 26⟩
for (int i = 0; i < n + 1; i++)

x[i] = 0;
}

6.2 The Iteration Algorithm
We now describe how the algorithm moves to the next entry of the truth table in O (d)
operations. This is an unrolled version of the original recursive presentation.

In the i-th iteration, d derivatives are updated, from degree d − 1 to degree 0 (each
derivative is updated using its own derivatives). Determine the location of the d rightmost
“1” bits of i + 1; for instance, write ρ∗(i + 1) = {. . . , bd, . . . , b2, b1}. These indices deter-
mine a sequence of d + 1 monomials m0, m1, . . . , md respectively containing the variables
∅, {b1}, {b1, b2}, . . . , {b1, . . . , bd}. For i = d − 1, . . . , 1, 0, do A[m[i]] ^= A[m[i + 1]].
Finally, flip x[b1].

27b ⟨litFES Public functions 20b⟩+≡ (24b) ◁ 27a 28c ▷

void litFES_advance(int n, int d, bool A[], bool x[], struct litFES_state *s)
{

int *f = s->f;
int h = s->h;
int *stack = s->stack;
⟨Increment i; maintain ρ(i) in k; maintain ρ∗(i) in stack[0:h] 18b⟩
⟨Update x; return now if it is over 27c⟩
⟨Compute update indices; store them in r[] 28a⟩
⟨Update A 28b⟩
s->h = h;

}

The values of x are enumerated using the reflected binary Gray code. Only one bit of x is
flipped at each iteration, and its index is the least significant set bit of the new value of
the iteration counter i. Therefore, we simply do:

27c ⟨Update x; return now if it is over 27c⟩≡ (27b)
x[k] ^= 1;
if (k == n)

return;

As explained above, we need to perform a sequence of updates to the derivatives, of
the form A[m[i]] ^= A[m[i + 1]], where mi+1 = mixbi+1 . The indices b1, . . . , bd are
available in stack[0:d], assuming that stack contains d items.
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The update indices are the ranks of the monomials m0 ⊆ m1 ⊆ · · · ⊆ md−1 defined
above. litFES uses the graded lexicographic order because it allows to compute all the
ranks of these nested monomials in O (d) operations, using the observation at the end
of Subsection 5.1. The following code chunk is therefore very similar to litFES_rank().

28a ⟨Compute update indices; store them in r[] 28a⟩≡ (27b)
size_t r[d + 1];
size_t acc = 0;
r[0] = 0;
int hh = h; /* hh == min(d, h) */
if (hh > d)

hh = d;
for (int i = 1; i <= hh; i++) { /* r[i] == rank of m[i] */

int j = stack[h - i];
acc += BeanPolE_binomial[j][i];
r[i] = BeanPolE_N[n][i] + acc;

}

Once the update indices for the derivatives have been computed, actually doing the update
is simple.

28b ⟨Update A 28b⟩≡ (27b)
for (int i = hh - 1; i >= 0; i–) {

A[r[i]] ^= A[r[i + 1]];
}

The iteration over all entries of the truth table is complete once 2n entries have been
visited, and when it is the case x represents the integer 2n.

28c ⟨litFES Public functions 20b⟩+≡ (24b) ◁ 27b 29b ▷

bool litFES_finished(int n, const bool x[]) {
return x[n];

}

6.3 Restoring the Initial State
The array A containing the coefficients of the polynomial can be modified in two places:
inside litFES_prepare and inside litFES_advance. In both cases, the modifications are
statements of the type A[i] ^= A[j], with i < j. In fact, in all cases j is the rank of
a monomial of strictly higher degree than that of i. Such an update can be undone by
repeating it.

In the preparations, the bulk of the work is done by tweak_derivative, and we have
seen that it is involutive. We can “un-tweak” all the derivatives by “re-tweaking” them in
reverse order.

28d ⟨Un-tweak all the derivatives 28d⟩≡ (29b)
for (int k = d - 1; k >= 1; k–) {

int m[d + 2];
size_t i = BeanPolE_size(n - 1, k - 1);
int it = litFES_combination_prepare(n, k, m);
while (!litFES_combination_finished(n, it)) {

tweak_derivative(n, d, A, i, k, m);
i += 1;
it = litFES_combination_advance(n, k, m, it);
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}
}

Moving on to litFES_advance, a moment’s reflection and toying with small examples
shows that if A denotes the array of original input values and B denote the end values after
the 2n iterations, then

B[m] = A[m] + A[m, n− 1] + A[m, n− 2, n− 1] + ... + A[m, n− k, ..., n− 2, n− 1]

Where n− k is greater than the largest variable in m and the total degree is less than or
equal to d.

29a ⟨Cancel updates done only once 29a⟩≡ (29b)
size_t i = 0;
for (int k = 0; k < d; k++) { /* correct all degree-k monomials */

int m[d + 2];
int it = litFES_combination_prepare(n, k, m);
while (!litFES_combination_finished(n, it)) {

/* largest variable of m */
int v = (k == 0) ? -1 : m[k - 1];
for (int l = 1; (k + l <= d) && (v + l < n); l++) {

/* compute the new monomial m, ..., n-2, n-1 */
int mx[d];
/* copy m */
for (int p = 0; p < k; p++)

mx[p] = m[p];
/* add n-1, n-2, ... */
for (int p = 0; p < l; p++)

mx[k + p] = n - l + p;
/* Update */
size_t j = litFES_rank(n, k + l, mx);
A[i] ^= A[j];

}
i += 1;
it = litFES_combination_advance(n, k, m, it);

}
}

Finally to cancel the effect of the main loop and of the preparations, we do both steps in
reverse order.

29b ⟨litFES Public functions 20b⟩+≡ (24b) ◁ 28c
void litFES_restore(int n, int d, bool A[], struct litFES_state *s)
{

⟨Cancel updates done only once 29a⟩
⟨Un-tweak all the derivatives 28d⟩

}

6.4 Complexity Analysis
That the litFES_advance function requires at most O (d) operations is completely ob-
vious from its code. The non-trivial part consists in estimating the running time of
litFES_prepare and litFES_restore.
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In both cases, tweak_derivative is invoked for each monomial m of degree k strictly
less than d, and its running time is dominated by k

(
k

↓min(d−k,k)
)
. The total number of

operations of litFES_prepare is thus dominated by T with

T :=
d−1∑
k=0

k

(
n

k

)(
k

↓ min(d− k, k)

)

It was stated in [BCC+10a], and it is rather obvious, that

T ≤
(

n

↓ d

)2
(6)

(indeed, all the derivatives must be evaluated and each evaluation costs as much as
evaluating the input polynomial naively).

A few things that can be said outright. For starters, assume that d is fixed. Then
T = O

(
nd−1)

, while the size of the input polynomial is Ω
(
nd

)
. It follows that for

fixed d and large enough n, T gets smaller than the size of the input. For small values
of d, corresponding to practical attack scenarios, T is therefore under control. This
corresponds to our practical experience with the algorithm and small-degree polynomials:
litFES_prepare is never a bottleneck.

However, this may not be the case for more theoretical use cases involving higher-degree
polynomials. For instance, quick numerical experiments suggest that T gets exponentially
larger than the size of the input polynomial when d = αn, for any α > 0, as n→ +∞.

What is really needed in theoretical scenarios is the assurance that the running time of
litFES_prepare does not exceed that of the full construction of the truth table by 2n

invocations of litFES_advance. Towards this goal, let us first quantify what we can get
from (7) using the standard bound (2):

T ≤ 22nH(d/n) (d ≤ n/2)

It follows that as long as H(d/n) ≤ 1/2, we are fine. H(x) is strictly increasing for 0 ≤
x ≤ 1/2, and numerical root finding reveals that the unique solution of H(x0) = 1/2 with
0 ≤ x0 ≤ 1/2 is x0 = 0.110.... It follows that as long as d ≤ n/10, then litFES_advance
costs less than 2n.

In the rest of this section, we improve upon this preliminary result. We can get a crude
upper-bound on T by taking one term out of the sum:

T ≤ d

(
max
k<d

(
k

↓ min(d− k, k)

)) (
n

↓ d

)

Upper-bounding the max requires distinguishing cases, at least to get rid of the min.

• If k ≤ d/2, then k ≤ d− k and
(

k
↓k

)
= 2k.

• If d/2 ≤ k ≤ 2d/3, then k/2 ≤ d − k ≤ k and 2k−1 ≤
(

k
↓d−k

)
≤ 2k. The trivial

upper-bound is relatively tight. Here, the lower bound comes from the fact that(
n
k

)
=

(
n

n−k

)
and the fact that the series contains the first half of the terms.

• If 2d/3 ≤ k, then d− k ≤ k/2 and we have the trivial bounds from (3).

The coefficients
(

k
d−k

)
, or in reverse order

(
d−k

k

)
, are the coefficients of the (d + 1)-th

Fibonacci polynomial. They also are the anti-diagonals of Pascal’s triangle. They have
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been studied by Tanny and Zucker in [TZ74], where it is shown that the sequence is
unimodular (increasing then decreasing) and that the maximum is reached when k is the
closest integer to d(1 +

√
5/5)/2.

This maximum is asymptotically equivalent to 51/4ϕd+1/
√

(2πd), where ϕ = (1 +
√

5/2)
is the golden ratio [oIS02]. It follows that:

T ≤ d1.5ϕd

(
n

↓ d

)
(7)

This bound is not very tight, but it is sufficient to make progress. We prove a loose result
starting from (7) and using the standard bound (2):

T ≤ d22n[ d
n log2 ϕ+H( d

n )]

Set f(x) = x log2 ϕ + H (x). f is strictly increasing between 0 and 1/2, because H is.
We have f(0) = 0 and f(1/2) = 1.347.... It follows that there is a unique 0 ≤ x0 ≤ 1/2
such that f(x0) = 1. Numerical root finding reveals that x0 = 0.2567.... This shows that
T ≤ d1.52n as long as d ≤ n/4.

We conjecture, on the basis on experimental observations, that this is in fact the case as
long as d ≤ n/3. At least, we can prove that this condition is necessary. Isolating the term
with k = ⌊2d/3⌋ in the expression of T yields the lower-bound:

T ≥ 2d

3 22d/3
(

n

⌊2d/3⌋

)
≥ 2d

3 2n[2d/3n+H(2d/(3n)]

From there, the same kind of reasoning establishes that 1 < 2d/3n + H(2d/(3n) when
d ≥ 0.341n. This shows that if d ≥ 0.341n, then T ≫ d2n, up to a very small constant
factor.

7 Implementation of the litMOB Component
The algorithm for the in-place Moebius transform is essentially the following:

1. If there are d variables, do the classic in-place Moebius transform and stop.

2. Fix the last variable to zero.

3. Proceed recursively.

4. Flip the last variable in-place.

5. Proceed recursively.

6. Flip the last variable in-place.

It is implemented in litMOB.c:
31 ⟨litMOB.c 31⟩≡

#include <assert.h>
#include "BeanPolE.h"
⟨litMOB Internal functions 23a⟩
⟨litMOB Public functions 20c⟩

litMOB uses the plain lexicographic for a variety of reasons. The main one is that it
allows to fix the last variable in-place, and to undo the operation. Indeed, if A is an array
that represents the coefficients of a degree-d polynomial in n variable, then A has size
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(
n
↓d

)
. Fixing the last variable to zero is a no-op, because all the coefficients of monomials

containing the last variable are located at the end of the array. It suffices to consider that
there is one less variable and that the size of the array is reduced to

(
n−1
↓d

)
. Fixing the last

variable to one require XORing the coefficient of the monomial mxn−1 to the coefficient of
the monomial m. This can be done in-place, and it is involutive.

Our in-place Moebius transform walks on two legs:

• The classic, in-place, Moebius transform that operates on arrays of size 2n.

• An in-place procedure to flip the last variable.

The classic Moebius transform is well-known. It is expected that this function is only
invoked on small input arrays (of size 2d), so we do not try to optimize its memory access
pattern.

32a ⟨litMOB Internal functions 23a⟩+≡ (31) ◁ 23b 32b ▷

/*
* Compute the Moebius transform of A[0:2**n]. This is involutive.
* This function runs in time O(n * 2**n).
*/

static void litMOB_moebius(int n, bool A[])
{

size_t S = 1;
size_t N = ((size_t) 1) « n;
for (size_t i = 0; i < (size_t) n; i++) {

for (size_t p = 0; p < N; p += 2 * S) {
for (size_t j = 0; j < S; j++)

A[p + S + j] ^= A[p + j];
}
S += S;

}
}

The amortized constant-time monomial enumeration routines given in Subsection 5.2
enable us to write the other pillar, a function that flips the last variable of a polynomial
in-place, in time linear in the number of potentially modified coefficients. This is how the
“implementation detail” discussed in Subsection 1.7 can be dealt with. Computing the
update indices i and k actually requires most of the work. Flipping the last variable xn−1
is done as follows: for each monomial m degree d− 1 in x0, . . . , xn−2; determine the ranks
of m and mxn−1; XOR the coefficient of mxn−1 to that of m.

32b ⟨litMOB Internal functions 23a⟩+≡ (31) ◁ 32a
/*

* On input A[] contains the coefficients of f(x0, ..., xn). On output,
* A[] is overwritten with coefficients of f(x0, ..., xn + 1).
* This function runs in time linear in the number of monomials in (n-1)
* variables of degree at most (d-1).
*/

static void litMOB_flip(int n, int d, bool A[])
{

int m[d + 1];
int k = litMOB_combination_prepare(d - 1, m);
size_t i = 0; /* i == rank of m */
size_t lo = BeanPolE_size(n - 1, d); /* rank of x_{n-1} */
size_t hi = BeanPolE_size(n, d); /* rank of x_n */
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for (size_t j = lo; j < hi; j++) { /* j == rank of mx_{n-1} */
A[i] ^= A[j];
k = litMOB_combination_advance(d - 1, k, m, d, &i);

}
}

The public function implement the recursive strategy described at the opening of this
section, but the explicit recursion is removed and replaced with the implicit maintenance
of a stack. The stack of recursive calls is in fact represented by the current value of x. The
recursion stops after fixing n− d variables. If x[i] == 0, then xi has been fixed to zero
(first recursive call, step 3 above), otherwise xi has been fixed to one (second recursive
call, step 5 above).

33a ⟨litMOB Public functions 20c⟩+≡ (31) ◁ 20c 33b ▷

void litMOB_prepare(int n, int d, bool A[], bool x[])
{

assert(n <= BeanPolE_MAXN); /* minimal error-checking */
assert(d <= BeanPolE_MAXD);
assert(d <= n);
for (int i = 0; i < n + 1; i++) /* fix x[] to zero */

x[i] = 0;
litMOB_moebius(d, A); /* switch to the truth table */

}

To advance to the next chunk of the truth table, we first re-run the Moebius transform;
this converts back A[0:2**d] to the coefficients of the polynomial. Then we flip the right
variables in x, reflecting the change in A. Finally, we re-run the Moebius transform to get
the truth table.

33b ⟨litMOB Public functions 20c⟩+≡ (31) ◁ 33a 33c ▷

void litMOB_advance(int n, int d, bool A[], bool x[])
{

litMOB_moebius(d, A); /* switch back to the coefficients */
int i = d; /* unwind the recursion stack */
while ((i < n) && (x[i] == 1)) {

x[i] ^= 1;
litMOB_flip(i, d, A);
i += 1;

}
x[i] ^= 1; /* flip the last variable */
if (i == n)

return;
litMOB_flip(i, d, A);
litMOB_moebius(d, A); /* switch to the truth table */

}

Detecting the end of the iteration is straightforward.
33c ⟨litMOB Public functions 20c⟩+≡ (31) ◁ 33b

bool litMOB_finished(int n, const bool x[])
{

return x[n];
}



34 Boolean Polynomial Evaluation for the Masses (Long Paper)

7.1 Complexity Analysis
It remains to determine the complexity of this procedure. The classic Moebius transform is
invoked 2n−d+1 times on arrays of size 2d, so the total number of operations this represents
is O (d2n). We now claim that the total time spent flipping variables is also O (d2n). This
implies the announced amortized complexity of litMOB_advance.

The (d + i)-th variable is flipped 2n−d−i−1 times. The total time spent in variable flipping
is then (up to a constant factor)

T =
n−1∑
i=d

2n−i−1
(

i− 1
↓ d− 1

)

Suppose that d ≤ n/2. Under this assumption, using the trivial bound (3) shows that the
time spent flipping variables is upper-bounded by

T ≤ d2n−1
n−1∑
i=d

2−i

(
i− 1
d− 1

)

Because
(

n
k

)
= n

k

(
n−1
k−1

)
, it follows that:

T ≤ d22n−1
n−1∑
i=d

2−i

i

(
i

d

)
(8)

It then follows from lemma 1 that
n−1∑
i=d

2−i

i

(
i

d

)
≤ 1

d

n−1∑
i=d

2−i

(
i

d

)
≤ 2

d

Combining this with (8) finally shows that the total time spent flipping variable is O (d2n).

8 Extensions and Future Work
This concluding section discusses how the code given in this article could be extended, and
pinpoints some research perspectives.

It is not difficult to use another type T for polynomials entries. For instance, an actual bit
field could be used in place of an array of bool (some C compiler, including gcc, use a full
byte to store a bool, which wastes 7 out of 8 bits). Another relevant modification would be
to replace the bool type by a w-bit wide integer type. This enables the algorithm to operate
in “Single Instruction Multiple Data” mode and process w polynomials simultaneously.

The only way in which the library accesses the coefficients of the polynomial is by doing
“update” operations of the form A[i] ^= A[j] where j is the rank of a monomial of strictly
higher degree. These updates are scattered all over the code, but they would be easy to
modify.

The in-place Moebius transform emits the truth table in chunks of size 2d. It would not
be difficult to modify the code to obtain it in chunks of size 2k, with k ≠ d. If k > d, then
it would need to be out-of-place, as in the original presentation. This could potentially be
more practical for some use cases. The runtime would increase to O (k2n).
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While the FES algorithm is intrinsically sequential, the Moebius transform offers a potential
for parallelization inside the litMOB_flip function, that flips the last variable in linear
time.

With Boolean polynomials, evaluation and interpolation are very similar, and sometimes
they coincide: the classic Moebius transform does both. Adapting our in-place Moebius
transform to interpolate a degree-d polynomial seems relatively straightforward. Turning
the FES algorithm into an interpolation algorithm seems interesting.

This also opens up an interesting algorithmic perspective: a degree-d polynomial can be
interpolated from

(
n
↓d

)
evaluations, for instance with its value on all monomials of degree at

most d. Designing a fast procedure to convert these
(

n
↓d

)
evaluations to the

(
n
↓d

)
coefficients

of the polynomial would be interesting.

In the reverse direction, evaluating a degree-d polynomial on all bit strings of Hamming
weight at most d would be relevant. In [Din21a], Dinur suggests to use the FES algorithm
for this purpose, on the basis that there exist “monotonic” Gray codes that enumerate all
bit strings by increasing Hamming weight, while flipping one variable at a time.

Lastly, improving the complexity analysis of the setup phase of the FES algorithm given
in Subsection 6.4 seems interesting.
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