Efficient Dynamic Proof of Retrievability
for Cold Storage”

Tung Le Pengzhi Huang Attila A. Yavuz Elaine Shi Thang Hoang
Virginia Tech Cornell University University of South Florida CMU Virginia Tech
tungle@vt.edu ph448 @cornell.edu attilaayavuz @usf.edu runting @ gmail.com thanghoang @vt.edu

Abstract—Storage-as-a-service (STaaS) permits the client to
outsource her data to the cloud, thereby reducing data man-
agement and maintenance costs. However, STaaS also brings
significant data integrity and soundness concerns since the storage
provider might not keep the client data intact and retrievable all
the time (e.g., cost saving via deletions). Proof of Retrievability
(PoR) can validate the integrity and retrievability of remote data
effectively. This technique can be useful for regular audits to
monitor data compromises, as well as to comply with standard
data regulations. In particular, cold storage applications (e.g., MS
Azure, Amazon Glacier) require regular and frequent audits with
less frequent data modification. Yet, despite their merits, existing
PoR techniques generally focus on other metrics (e.g., low storage,
fast update, metadata privacy) but not audit efficiency (e.g., low
audit time, small proof size). Hence, there is a need to develop new
PoR techniques that achieve efficient data audit while preserving
update and retrieval performance.

In this paper, we propose Porla, a new PoR framework that
permits efficient data audit, update, and retrieval functionali-
ties simultaneously. Porla permits data audit in both private
and public settings, each of which features asymptotically (and
concretely) smaller audit-proof size and lower audit time than
all the prior works while retaining the same asymptotic data
update overhead. Porla achieves all these properties by composing
erasure codes with verifiable computation techniques which, to
our knowledge, is a new approach to PoR design. We address
several challenges that arise in such a composition by creating
a new homomorphic authenticated commitment scheme, which
can be of independent interest. We fully implemented Porla and
evaluated its performance on commodity cloud (i.e., Amazon
EC2) under various settings. Experimental results demonstrated
that Porla achieves two to four orders of magnitude smaller
audit proof size with 4x-18000x lower audit time than all prior
schemes in both private and public audit settings at the cost of
only 2x-3x slower update.

I. INTRODUCTION

Storage-as-a-Service (STaaS) provides a sophisticated data
storage facility and infrastructure for clients to outsource
their data to the cloud, thereby reducing expensive data man-
agement, maintenance, and archival costs [30]. Despite its
merits, STaaS has posed significant concerns regarding the data
soundness to the client. When a client outsources her data to a
remote storage provider, it is not clear whether all data will be

“This is the full version of our NDSS’23 paper [35].

kept intact and retrievable over time. Data loss can happen due
to unwanted accidents (e.g., hardware failure) or adversarial
behaviors. For instance, the adversary may strategically omit
some important data update, or delete certain parts of the
data that are rarely accessed to reduce storage overhead and
monetary maintenance costs.

Under a standard Service Level Agreement (SLA), a reli-
able and trustworthy storage provider is expected to comply
with standard data regulations (e.g., [36], [46], [40]) by per-
forming a regular audit to ensure persistent data integrity and
freshness. Audit-proof archiving [2] is one of the best practices
for secure digital data storage that generally maintains sensi-
tive information (e.g., personal, health). A fine-grained audit
on a regular basis is necessary to continuously monitor the
system activities against potential threats [33]. In particular,
cold storage and archival applications (e.g., Amazon Glacier
[1], MS Azure Archive [3], or Blob [13]) maintain a large
amount of archival data that is for long-term maintenance [14],
[10]. In such applications, the archives are rarely updated but
must be periodically audited to ensure their availability and
trustworthiness. Both the size of the data and the number of
audit logs grow significantly over time. Hence, it is critical that
the size of cryptographic audit tags is small to avoid storage
bottlenecks in cold storage and digital archival systems.

Several cryptographic techniques have been developed
[11], [31] to permit effective data integrity audit. Provable Data
Possession (PDP) [11] allows a client to check whether her
data is kept intact by the storage server. Despite its merits,
PDP only ensures the integrity of most of the data, but not all.
By deleting a small portion of the data, the adversarial server
can still bypass the audit with a high probability. Proof of
Retrievability (PoR) [31] achieves a stronger security notion
in the sense that the audit can provably tell whether all the
data is intact and retrievable or not. While preliminary PoR
schemes are static (e.g., [41], [17], [31]), recent Dynamic
PoR (DPoR) constructions (e.g., [7], [15], [20], [42], [44])
have enabled data updatability and auditability simultaneously.
Most proposed DPoR schemes rely on coding theory and
cryptographic techniques as the main building blocks such as
error correction code (ECC) [20], [42], [44], Oblivious RAM
(ORAM) [20], and verifiable computation [7], [15].

Each of the proposed DPoR schemes to date features
unique properties with special characteristics (e.g., strong
privacy, update efficiency, low storage). However, most of
them are not ideal for audit-intensive use cases. Specifically,
apart from the auditability, ORAM-based DPoR [20] can
also hide data access patterns (e.g., read/write); however, it



TABLE I: Comparison of our Porla framework over state-of-the-art.

Scheme Write Audit Storage
Bandwidth Client cost Server cost Proof size Client cost Server cost Server Client
B+ || 1Uye + O(NB)F 11Uy + 2 O(BNF +
SSPI3I421 11 L 0(\log N) | + O(log N)E | OBlog N)F || OB+ X loaN) | X150 N)E O(Brlog N)F || O(NB) | O(B+A)
CKW17 [20] O(BX%1log? N) | O(BN\?1ogZ N)E | O(BAlog? N) O(BA?log? N) O(BA2log? N)E O(BN?log? N) O(Np) O(N)
ADJ+21 [7] B+ |y 1Uyc 1Uyc O(AVBN) O\VBN)F O(NB)F O(NB) | O(VBN)
Our Porlajcg L + 3ICI Olos DPRE O(BMlog N)F +
6+ ‘chl H/{VC +O(B)G O(ﬁlogN)]F O(/\logN)PRF O()\logN-i-B)G O(NB) O(A)
Our Porlajp, + O(log N)G || 2log, B|G| + 2|F| +O(B)G

This table presents the cost of private audit. For public audit setting, we refer to Table II. NV = # data blocks, 8 = block size, A = security parameter.

Client/server cost includes client/server computation and disk I/O access. F means finite field arithmetic operations; G means group operations, E means
symmetric operations (i.e., encryption/decryption); PRF means PRF operations; e means pairing operations. |m| is the membership proof size and U is
the cost to update the vector commitment with a new element of the underlying VC scheme, respectively. See §V-D for detailed analysis of our schemes.

incurs significantly high communication overhead during an
audit. Shi et al. proposed a DPoR scheme based on a locally
updatable ECC that departs from ORAM to reduce the audit
bandwidth cost [42]. However, its audit proof size grows
linearly to the block size and logarithmically to the data size,
and is significantly large in the public audit setting. This may
not be desirable for applications that require auditing on large
databases with large block sizes (e.g., image/video storage)
and maintaining the audit logs for digital forensics. Finally,
verifiable computation-based techniques [7], [15] offer efficient
data updates with small server storage. However, their audit
cost is expensive, since the entire data needs to be processed.
This may not be ideal for situations where periodic audits over
large-scale databases are needed.

Given that there is a lack of a DPoR design focusing on
optimizing the audit overhead, we ask the following question:

Can we design a new DPoR scheme that minimizes the
audit cost (ie., proof size, end-to-end latency) for audit-
critical applications such as cold-storage, while maintaining
a reasonable data update performance over state-of-the-art?

A. Our Results and Contributions

We answer this question with a new DPoR framework
called Porla that achieves low audit processing with minimal
audit log size while retaining asymptotically efficient data
update. Our construction makes use of both coding theory and
verifiable computation techniques which, to our knowledge,
is the first that considers such an integrated approach in
DPoR design. We introduce two instantiations from our generic
scheme via succinct polynomial commitment schemes (e.g.,
KZG [32]) and via an Inner-Product Argument (IPA) [18].

e Minimal audit proof size. Porla offers a minimal audit
proof size regardless of the database size. The proof size of
our KZG-based Porla only costs three group elements, while
that of the IPA-based Porla only grows logarithmically with
the data block size plus two field elements. This results in
two to four orders of magnitude smaller proof size than all
prior DPoRs (§VII-C). To our knowledge, Porla is the first
to achieve a constant audit proof size.

e Low audit time. Our scheme causes a sub-linear au-
dit overhead at both client and server, thereby achieving
much lower processing latency than verifiable computation-
based techniques (e.g., [7]). Experimental results on a real

cloud platform demonstrated that our scheme achieves 4 x—
18000 x faster audit time than all prior approaches (§ VII-C).

e Low client storage. Our scheme only requires the client
to store a A-bit master key and a counter (where \ is the
security parameter). This is much more efficient than [7],
where the client storage cost is proportional to the square-
root of the database size.

o Efficient public audit. Our scheme can enable public audit
with a small extra overhead compared with prior schemes
(e.g., [42], [7]). Specifically, it incurs an extra of O(Alog N)
group elements to the audit proof size and O (A log N') group
operations to the client processing (where A is a security
parameter), compared with O(Alog N) data blocks in [42]
and O(y/Nf() group operations in [7], where N is the
number of data blocks and § is the block size (see Table II
and §VII-F). Concretely, our public audit proof size is one
to two orders of magnitude smaller and our audit delay is
45x-11700x faster than all prior works (e.g., [42], [7])
(see §VII-F), where it only costs around 1 second to audit
a 2 TB database. Due to the small proof size, Porla can be
a potential candidate to develop other useful applications
such as Proof of Space [24], [39] as an alternative consensus
mechanism, or digital fair exchange protocols [5], [19].

e Techniques: ‘“homomorphic authenticated commit-
ment”. To construct our DPoR scheme with low audit
overhead, we come up with a new authentication technique
that can be of independent interest and can lead to other
interesting applications. We construct a homomorphic Mes-
sage Authentication Code (MAC) for discrete log-based (ho-
momorphic) commitment. Our MAC offers homomorphic
property in the sense that the authentication tags can be
aggregated into a single tag according to some linear com-
bination. We prove that our MAC achieves the existential
unforgeability under chosen message attack (§1V).

o Efficient data update. We inherit all the asymptotic
overhead of data update in [42]. In fact, the client’s overhead
and bandwidth in our scheme are concretely lower than
[42] during the online update thanks to the pre-computation
properties of our MAC scheme, which permits the MAC
update token to be pre-computed and transmitted ahead of
time in the offline phase (see Remark 1).

Table I compares our DPoR with state-of-the-art schemes.
We analyzed the security of our proposed techniques and
formally proved that they satisfy the standard security notions



(i.e., unforgeability, authenticity, retrievability). We fully im-
plemented our schemes and evaluated their performance on
commodity Amazon EC2 clouds. Experimental results showed
that our technique outperforms prior works in all audit metrics
(e.g., proof size, delay, public audit setting) (see §VII). Our
implementation will be open-sourced for wide adaptation.

B. Technical Highlights

Our scheme relies on the blueprint design of a locally
updatable code called incrementally constructible code (ICC)
proposed in [42]. We start by presenting its high-level idea.

A brief overview of ICC code. All DPoR schemes with
sublinear audit cost (e.g., [42], [20]) that harness ECC to
encode the data is based on the elegant observation by Juels
et al. [31]: If only a small portion of the ECC codeword
is damaged, ECC can help to recover the original data.
Otherwise, if it exceeds the correction threshold, by checking
the authenticity of O(\) random codeword blocks, one of
them will likely be the corrupted block that cannot bypass the
authenticity check and therefore will fail the audit. Despite
its usefulness in audit, ECC poses difficulty in the update
because a small change in the original data will result in
rebuilding the entire codeword. To address this issue, ICC code
was proposed, which comprises multiple ECC codewords with
different sizes to support data updates over time, in which
smaller ECC codewords are rebuilt more frequently than large
codewords which are rebuilt only after a certain number of
updates. By taking amortization into account, the (amortized)
cost per data update will become small (i.e., logarithmic to the
total data size). To perform an audit on ICC, the client samples
O()\) random positions per ECC codeword and verifies their
authenticity as in any ECC-based DPoR. Shi et al. [42] showed
that the challenged codeword blocks can be aggregated into
a single block using a random linear combination to reduce
bandwidth overhead. However, it still requires transmitting the
aggregated block itself and the authentication tags of individual
blocks being aggregated for authenticity check. This may incur
a large audit proof size and bandwidth overhead given that the
block size and the database are large.

Idea 1: Transmit the block commitment, and prove the
knowledge of opening of commitment. Our first idea is
that instead of transmitting the aggregated block, the server
can commit to it using a succinct commitment scheme (e.g.,
polynomial commitment), and then prove the knowledge of the
opening of the commitment. This permits us to reduce the audit
proof size to the size of proving the opening of commitment,
which can be as small as just a few group elements. However,
there are some challenges to realizing this idea. Specifically,
how to verify if the codeword block the server commits to is
indeed the aggregation of the original blocks being challenged?
Although this can be done by applying the idea in [42] by
creating an authentication tag for the commitment of each
block, it still requires transmitting the authentication tags of
individual commitments, thereby increasing the audit-proof
size and bandwidth. Can we do it better?

Idea 2: Create homomorphic authenticated commitment
to further reduce audit proof size. We develop a new
MAC scheme for polynomial commitment, which permits to
verify the authenticity of the commitment of the aggregated
block without attaching multiple authentication tags to the

audit-proof. This is achieved by making the authenticated
commitment become homomorphic in the sense that not only
the commitment of individual codeword blocks can be linearly
combined but also their authentication tags can be aggregated
accordingly. This permits us to verify the authenticity of the
commitment of the aggregated block in Idea 1 with just a
single authentication tag, given that the aggregation is based on
a random linear combination. Note that several homomorphic
MACs were proposed in the literature (e.g., [6], [21], [42]).
However, they were designed for different message structures
(e.g., network coding, circuits). In our setting, the message
to be authenticated is a commitment and, therefore, it is not
suitable to directly use these techniques. Thus, we design a new
homomorphic MAC scheme for the commitment by exploiting
its algebraic structures (e.g., group elements).

Putting everything together. By combining two ideas, we
can see that the audit proof now only contains a commitment,
a proof of opening, and an authentication tag, and thus its
size is minimal. We present the high-level workflow of our
audit as follows. During the setup phase, the client encodes
the database with ICC code and creates the authenticated
commitment for each codeword block. During the audit, the
client first samples O(\) random challenged blocks per ECC
codeword. The server then aggregates all the challenged blocks
to a single block according to a random linear combination
indicated by the client, then commits to the aggregated block
and performs the same linear combination over the correspond-
ing authentication tags of the commitments of the challenged
blocks. The server sends the aggregated commitment and
the aggregated tag to the client, who in turn verifies the
authenticity of the commitment against its MAC tag. Finally,
the client attests to the server’s knowledge of the opening of the
aggregated commitment, which, thanks to the random linear
combination, can only be bypassed if the server maintains the
knowledge of individual challenged codeword blocks.

At the high-level idea, we can see that our DPoR designs
make use of both ECC and verifiable computation techniques
(i.e., verifiable polynomial delegation). It is worth noting
that we are the first to consider such a combination, which
has never been explored in the literature. Specifically, all
prior DPoR schemes rely solely on either ECC [20], [42]
or verifiable computation [7] (but not both), which results
in either large audit proof size or linear computation cost,
respectively. We overcome these limitations with a new DPoR
design that inherits desirable properties of both ECC and
verifiable computation techniques to achieve a highly efficient
audit (i.e., small proof size, sublinear computation) while
maintaining a reasonable data update overhead. We solve
several technical challenges that arise when bridging both
ECC and VC techniques together by creating a novel efficient
authentication mechanism for homomorphic commitments.

C. Related Work

PDP and PoR are highly related to each other, both permit
the client to attest that whether her outsourced data is kept
intact by the server without retrieving it. The main difference
between PDP and PoR is that PDP only ensures the integrity of
most data, while PoR ensures all data achieves integrity. Both
PoR and PDP were first suggested at almost the same time in
two independent works by Ateniese et al. [11] and Juels et al.



[31]. We review PoR/PDP schemes that are the most relevant
to our constructions with unique properties.

Static data. Early PDP/PoR constructions permit integrity
verification over static data (i.e., no update) [31], [11], [23],
[50], [34]. Most of these schemes focus on improving com-
munication complexity and achieving precise security.

Dynamic data. Several constructions attempt to enable data
updatability while retaining integrity auditability efficiently. It
is challenging to permit both data updatability and auditabil-
ity in PDP and PoR schemes. For example, Dynamic PDP
schemes in [25], [48], [12] permit updates, but their audit
protocol does not achieve the same security notion as PoR.
On the other hand, since most audit-efficient PoR schemes
(e.g., [31]) encode original data with ECC, updating a small
piece of data requires rebuilding the entire codeword, which is
costly. Therefore, Cash et al. [20] suggested encoding original
data with multiple small codewords and using ORAM to
obliviously update the codeword. Shi et al. in [42] proposed
a locally updatable ECC that permits an update over a data
block to rebuild only some small codewords. There are some
constructions (e.g., [15], [7]) that depart from ECC and rely
solely on verifiable computation techniques; however, they
require processing the entire database for integrity check.

Public audit. Some constructions permit public audit, in
which the data integrity can be verified by a public auditor
without the data owner’s intervention. Some constructions [9],
[8] are designed for public audit only, while there are some
works that offer both private and public audit capabilities (e.g.,
[42], [7]) (including our work).

Trusted proxy / distributed settings. Several constructions
designed for special settings are different from the standard
client-server model. The schemes in [44], [47] harness a
trusted proxy to perform audit operations on behalf of the
client, and/or to enable efficient updates. There are a few
PDP/PoR designs that verify the integrity of the data replicated
in distributed storage servers [50], [23].

Other application use cases. While PDP/PoR was originally
proposed for integrity checks of remote data storage, they have
been found useful in many other applications and settings.
For example, proof-of-space [24], [39] uses PoR to develop
an alternative to the traditional hash-based proof of work in
blockchain. “Proof of data reliability” (or proof-of-replication)
also harnesses PoR to verify not only data integrity but also
redundancy for recovery in case of data corruption [27], [45].
PoR has also been used for digital fair exchange [5], [19].

II. PRELIMINARIES

Notation. Let I be a finite field. Let G denote a cyclic group
of prime order p and Z, denote the ring of integers modulo
p. (x,y) denotes the inner product between two vectors of
the same length x and y. We denote [N] = {1,...,N}. Let
a=(ay,...,ap) € Zy, be a vector and g = (91,---,9n) € G"
be generators of G, we denote g =[]}~ ¢7". In expressions
involving both polynomials and scalars, we write f(X) instead
of f to distinguish between the two; however, in contexts
where it is clear that f is a polynomial, we simply write f
for brevity. We denote F' as the keyed pseudorandom function,
where k < F.Gen(1?) generates a PRF key k given security

parameter A\ and y <« F(k,z) outputs an m-bit “random-
looking” string y given PRF key k& and input z.

A. Commitment Scheme

1) Polynomial Commitment: Polynomial commitment [32]
permits a committer to commit to a polynomial in such a
way that he can later reveal the evaluations of the polynomial
at some evaluation points and prove that they correspond to
the committed polynomial. Let F be a finite field and f be a
polynomial on F with degree D. A polynomial commitment
for f € FP[X] and @ € F is a tuple of PPT algorithms
PC = (Setup, Com, Eval, Verify) as follows.

e pp < PC.Setup(1*, D): Given a security parameter \ and
a bound on the polynomial degree D, it generates public
parameters pp.

e cm « PC.Com(f,pp): Given a polynomial f € FP+1[X],
it computes a commitment cm with public parameter pp.

e (y,m) « PC.Eval(f, «, pp): Given an evaluation point o €
I, it computes y = f(«) and the proof .

e {0,1} + PC.Verify(cm, a,y, 7, pp): Given a commitment
cm, an evaluation point «, an answer y, and a proof T, it
outputs 1 if the evaluation is correct; otherwise it outputs 0.

Definition 1. PC satisfies the following properties.

e Binding. For any PPT adversary 4 such that pp <
PC.Setup(1*, D) and (fo, f1) < A(pp), it holds that
Pr[PC.Com(fo,pp) = PC.Com(f1,pp) A fo # f1] < negl(})

e Completeness. For any polynomial f € FP*1[X]and o € F
such that pp + PC.Setup(1*, D), cm «+ PC.Com(f, pp),
and (y, ) « PC.Eval(f, «, pp), it holds that

Pr [PC.Verify(cm, a,y,m,pp) =1 =1

e Knowledge soundness. For any PPT A, pp <+
PC.Setup(1*, D), there exists a PPT extractor £ such
that, given any tuple (pp,cm™*) and the execution process
of A, € can extract f € FP+1[X] such that

(m*,y*, a*) < A(1*, pp)

f* 4 &4(cm*, pp)
PC.Verify(cm™*, a*, y*, 7%, pp) = 1
fr@) #y

e Homomorphism. A PC scheme is homomorphic if

PC.Com(f) H PC.Com(g) = PC.Com(f + g) 1

PC.Com(f) K ¢ = PC.Com, (¢ - f) M
where H,X denotes addition and multiplication on the
commitment space C, ¢ € [F is a scalar.

Pr < negl(X)

DLP-based PC. We recall PC schemes, in which the (D —
1)-degree polynomial is committed using a set of generators
(91,---,9p) € G. Given a polynomial f(X) = Zfilai .
X1, we denote a = (ay,...,ap) as the vector containing
all coefficients of f(X).

o KZG Scheme [32]: Kate et al. proposed an efficient
PC scheme using bilinear mapping. Let G,Gp be two
groups of prime order p and ¢ € G be the genera-
tor. Let ¢ : G x G — Gp be the bilinear map and
bp = (p,G,Gr,e,g) < BilGen(1*) denote the parameters
generated for the bilinear map e.



o pp « PC.Setup(1*, D): Given a security parameter \,
and a bound on the polynomial degree D, it executes
bp = (p,G,Gr,e,g) < BilGen(1*) and outputs pp =

Tl TDfl
(pagaG7€7GT7g)’ Whereg:(g7g yeor g )

o cm < PC.Com(f, pp): It outputs g2.

o (y,m) < PC.Eval(f,«,pp): It outputs y = f(«) and
7 = g97), where ¢(X) = 10—y,

X—«
o {0,1} <+  PCVerify(cm,a,y, 7, pp): It

e(cm/g¥, g) = e(m, g7 /9%).

e Inner Product Argument: PC can also be derived from an
inner product argument. We recall Bulletproofs [18] that
proposes an efficient inner product proof system for the
relation {(g7h€G”,PEG,CGZp;a,bEZZ) P =
g®hPAc = (a,b)} where g, h € G™ are public independent
generators. To construct PC from the inner product argu-
ment, the polynomial coefficients can be treated as a while
the evaluation point is treated as b in the above relation.
The polynomial f(X) = Zio a; - X' is committed as g2,
where g = (go,...,gp) are public independent generators
and a = (ag,...,ap). We present in detail an efficient
PC scheme based on the inner product argument in §V-B.

outputs

2) Vector Commitment: Vector commitment (VC) [22] per-
mits a committer to commit to a vector in a way that some
elements of the committed vector can be revealed and proven
to belong to the original commitment (proof of membership).
A VC for a message space M is a tuple of PPT algorithms
VC = (Setup, Com, UpdCom, Open, Verify) as follows.

® pp VC.Setup(l’\7 N): Given a security parameter A\ and
a bounded vector size N, it outputs public parameters pp.

e cm < VC.Com(x, pp): Given a vector x € M, it outputs
a commitment cm.

e cm’ «+ VC.UpdCom(cm, i, x[i], x'[¢], pp): Given a commit-
ment cm, an index ¢ € [N], an old element x[i] and a new
element x'[i], it outputs an updated commitment cm’.

e (y,m) + VC.Open(x,i,pp): Given a vector x, an index
i € [N], it outputs y = x[i] and a proof 7.

e {0,1} + VC.Verify(cm,y,i,7,pp): Given a vector com-
mitment cm’, an index ¢ € [N], and a value y, a proof , it
outputs 1 if 7 is valid proof for which y is the ¢-th element
of the vector committed to cm, and O otherwise.

Similar to PC, VC satisfies properties including binding, com-
pleteness, and soundness. Due to space constraints, we refer
to [22] for their formal definition.

B. Error Correcting Code

Our construction uses the erasure code defined as follows.

Definition 2 (Erasure Codes). Denote A as a finite alphabet.
An (m,n,d)s erasure code is a pair of PPT algorithms:
encode: A" — A™ and decode: A™~4*t1 5 A™ where
m > n > d, such that as long as the number of erasures is
bounded by d — 1, decode can always recover the original data
with probability 1. A code is the maximum distance separable
MDS), if n+d=m+ 1.

Parameters: Let p = a2™ + 1 denote a prime for some integer o € N. Let
Zy, denote Zp \ {0} and G be a generator of Z;. Let w = g® mod pbe a
2n-th primitive root of unity mod p.

HAddB(b, ¢, H):

/* Suppose each Hy is of the form Hy = (X4, Yy), where X, and Y,
each stores 2° codeword blocks.*/

1. If Hop is empty:

2. Xo <+ band Yo < wt-b

3. Else:

4. Let O,. .., ¢ be successively full levels, and £+ 1 be first empty level
5. Call HRebuildBX(¢, b) and HRebuildBY (¢, w! - b)
HRebuildBX (¢, b):

/* HRebuildBY is analogue to HRebuildBX by replacing X’s with Y’s */
1. X1 « miXB(){o,b7 0)

2. Fori=1to /¢ —1: B

3. Xi+1 < mi~xB(X¢, Xi, Z)

4. Output X, := X, and empty all X, ...
H + mixB(H°,H', ¢):

1. Let v = w™/2" be 2+1 th primitive root of unity
2. Fori=0to2¢—1:

3. HJi] + H°[i] +v* - H'[4] (mod p)

4, H[i + 2% « H°[)] — v - H'[3] (mod p)

5. Output H

y Xe—1

Fig. 1: ICC code [42].

ICC Encoding. We recall a (2n, n, n)-linear encoding scheme
[42], which encodes n data blocks into 2n codeword blocks,
in which any knowledge of n codeword blocks can be able
to recover n original data blocks. To reduce the cost of
recomputing the entire codeword for each time a data block
is updated, Shi et al. proposed an Incrementally Constructible
Code (ICC) [42], which permits updating only a small portion
of the erasure code when a data block is updated. The idea is
to build a hierarchical codeword H with L = [log, n] levels,
where each level H, contains 2¢1! erasure blocks of 2¢ most
recently updated data blocks. Thus, the codeword H; only
needs to be computed every 2¢ updates. Figure 1 presents
the algorithm to update the hierarchical codeword H when
updating a data block b using the FFT algorithm.

Let ¢t be an incremental value indicating the time when
updating a block and x, contains 2¢ blocks being updated
recently, i.e., x, contains blocks updated at time ¢, t+1,...,{+
2¢ — 1. Let 1.(n) be a partial bit-reversal function, which
reverses the least significant c bits of value n. For example,
assume 3-bit representation, 13(1) = 4 and 2(1) = 2. Let
m.(x) be a partial bit-reversal permutation function, where the
element in x at index ¢ is permuted to the index (). Each
H, constructed in Figure 1 is of the following form

H@ = Wg(V[) X [Fg | DgﬂgF[]

2n 90 2n 9l
where Fy = vand(w?2?"" Jw2r" [ w2t )

is a 2¢ x 2¢ FFT Vandermonde matrix and
Det = diag(wd)z‘Fl(t)’wwﬁ+1(t+l)’ .. 7w'¢€+1(t+n—1)) IS

a 2% x 2¢ diagonal matrix.

2n of—1

Lemma 1. Any 2¢x 2¢ submatrix of the generator matrix G :=
[Fy | D¢ +Fy] is non-singular.

III. OUR MODELS
A. System Model

Our system model consists of a client and a server. The
server provides data storage and access service to the client
with integrity and retrievability guarantees, meaning that any



portion of the client data is kept intact and retrievable (i.e.,
no deletion or corruption). A DPoR scheme is a tuple of PPT
algorithms (PSetup, PRead, PWrite, PAudit) as follows.

e (st, M) + PSetup(1*, M, N, 3): Given a security param-
eter A and a database M with N -bit entries, it initializes
the client state st and the server state M.

e b « PRead(): Given an index ¢ € [N], it reads the
database block as b < M[i]. It outputs b or reject.

e PWrite(i, b’): Given an index ¢ € [N], a data block b/, it
writes to the index i of the database as M[i] <— b’.

e b < PAudit(): It verifies if the server is maintaining M
correctly so that all the blocks in M remain retrievable. It
outputs a decision b € {accept, reject}.

B. Threat and Security Models

In our system, the client is trusted. The server is untrusted
and can behave maliciously. The server can deviate from
the protocol to compromise the client’s data authenticity and
retrievability, for example, by discarding the latest updates
from the user, modifying data content without being authorized
to compromise data integrity, and/or deleting a portion of the
user data to save storage space. Our security definition captures
the authenticity and retrievability for an honest client in the
presence of a malicious server as follows.

Definition 3 (Authenticity [20], [42]). Consider the following
game AuthGameg-(\) between a malicious server S* and a
challenger as follows.

e The challenger initializes a copy of the honest client C
and the honest server S. S* specifies an initial database M.
The challenger executes (st, M) + PSetup(1*,M, N, 3)
on behalf of C and outputs M to both §* and S.

e At each time step ¢ € [g], S* adaptively specifies an
operation op; € {PRead(j), PWrite(j, b’), PAudit} for some
j € [N]. The challenger executes the corresponding protocol
indicated by op; between C and S*, and passes every
message from C to S.

e If, at any execution time, the message given by S* differs
from that of S, and C does not output reject, the adversary
wins and the game outputs 1. Otherwise, it outputs 0.

We say that a DPoR scheme achieves authenticity, if for any
PPT adversary S*, Pr[AuthGameg« ()] < negl()).

Definition 4 (Retrievability [20], [42]). Consider the follow-
ing game ExtGameg- ¢(\) between the malicious server S*,
the extractor £, and the challenger.

e Initialize. The challenger initializes a copy of the hon-
est client C. &* specifies an initial database M with
N [(-bit blocks. The challenger executes (st, M) <+
PSetup(1*, M, N, 3) on behalf of C and outputs M to S*.

e Query. For each time step ¢ € [g], S* adaptively specifies

an operation op, € {PRead(j), PWrite(j,b’), PAudit} for
some j € [N]. The challenger executes the corresponding
protocol indicated by op, between C and S*.

e Challenge. Let Succ(S;,) & Pr [PAudits- ¢, = accept]

be the probability of executing a subsequent audit protocol

between Sg, and Cg, over the random coins chosen by Cp,
that outputs accept.

1) Run M/ « ESin(Cgin, 1V, 1), where the extractor £ gets
blackbox rewinding access to the latest configuration of
the malicious server at the end of query phase S¢,, and
repeatedly executes PAudit protocol with S in poly())
times in attempt to extract database content M.

2) If M # M’ and Succ(S;

s ) > 1/poly(A), it outputs 1.
Otherwise, it outputs 0.

We say that a DPoR scheme achieves retrievability, if there
exists a PPT extractor £ such that for any PPT adversary S*,
Pr [ExtGameg~ g(A) = 1] < negl(\).

At an intuitive level, authenticity ensures that the client
can always detect if the server deviates from the protocol
description (e.g., by tampering with the protocol messages
or input/output). On the other hand, retrievability ensures that
the client data remains retrievable, in which if the adversarial
server is in a state of passing an audit with a high probability,
they must know the entire content of the client data. These two
security properties are mandatory for any PoR construction
with provable security against the malicious server.

IV. HOMOMORPHIC AUTHENTICATED COMMITMENT

In this section, we construct a new homomorphic MAC for
a homomorphic commitment. Recall that the audit process in
most (D)PoR schemes (e.g., [20], [42], [31]) incurs checking
the integrity of several data blocks for security against a
malicious server. In this paper, we opt to use a MAC in
our scheme to verify the integrity of the data being audited.
Meanwhile, optimizing the audit overhead is one of our main
goals. Therefore, given that random data blocks are checked
per audit operation, it is mandatory for the MAC to be
homomorphic so that the integrity of all audited blocks can be
checked at once by a single MAC, thereby reducing the audit
proof size and bandwidth cost. Therefore, towards enabling
an efficient DPoR construction, our first step is to design
a homomorphic MAC for a special message structure (i.e.,
commitment). We start with the formal definitions as follows.

A. Definitions

Definition 5 (Homomorphic MAC). A homomorphic
MAC for homomorphic commitment over space
C consists of a tuple of PPT algorithms » =

(Setup, Sign, Combine, UpdState, UpdTag, Verify) as follows.

e Kk + X.Setup(1*): Given a security parameter ), it gener-
ates a secret key s € K.

e 0 « X.Sign. (cm,st): Given a secret key « € K, a
commitment cm € C and a state st € F, it computes a
tag o € T for cm under state st.

e ¢/ + X.Combine((oy,cmy), ..., (0m,cmy)): Given m
constants (c1,...,¢m,) € F, and m tags (o1,...,0m) € T
of commitments (cmy,...,cm,,) € C, it computes a tag

m

o' € T for cm’, where cm’ = H4;” ; ¢; M cm.

e 7 < X.UpdState, ((st1,c1), ..., (Stm,cm),st'): Given a
key k € K, m states (sty,...,st,,) € F and m constants



(c1,...,¢m) €T, and a state st’ € T, it computes an update
token 7 € T to update the tag of the aggregated commitment
to state st’.

o' < 3.UpdTag(r,0): Given an update token 7 € T and a
tag o, it computes an updated tag o’ € T.

e {0,1} + X.Verify, (cm7 o, (st1,c1), ... (Stm, cm)): Given
a secret key £ € K, a commitment cm € C, a tag
o €GeT, mstates (sty,...,st,) € F and m constants
(c1y...,¢m) €T, it outputs accept (1) or reject (0).

Definition 6 (Unforgeability). Consider the following game
EUGame 4 () between the challenger C and the adversary .A.

Setup. The challenger C samples a random key « & K, and
initializes an empty list L.

Query. A adaptively submits two types of the query to C as

o Signing Query. A adaptively submits to C a signing query
(cm, st), where cm is a commitment, st is a state. C rejects
if st € L. Otherwise, C computes o < X.Sign,.(cm, st) and
sends o to A. C adds (st;cm) to L.

e Update Query. A adaptively submits to C an update query
((st1,c1), ..., (Stm,cm), st’). C rejects if st’ € L or if
st; ¢ L for some j € [m]. Otherwise, C computes
T < X.UpdState, ((st1,¢1), ..., (Stm,cm), st’) and sends
7 to A C computes cm’ = [[L,(c; ® cm;), where
cmj < L(st;) and adds (st’;cm’) to L.

Output. A outputs a commitment cm*, a tag

o*, m states (st},...,str), and m  constants

(cf,...,c). A wins and the game outputs 1 if (i)

¥.Verify, (cm*, 0%, (st},cl), ..., (sth,ch))) = 1, (i)

*

(ci,...,ct,) are not all zeros (trivial forgery), and (iii) either

1) Jstr ¢ L for some i € [m], or

2) stf € L,Vi € [m] and cm* # H", (¢; X cm;), where
cm; < L(st})

We say that ¥ achieves unforgeability if Pr[EUGame 4()\)] <
negl(A).

Intuitively, unforgeability ensures that an adversary (e.g.,
server) cannot generate a valid authenticated tag of a new com-
mitment that is not in the form of a linear combination of some
commitments, whose tags can be known by the adversary. This
security is later needed in our DPoR construction to achieve
authenticity in Definition 3 against a malicious server that may
generate fake client data to bypass the audit.

B. Our MAC Scheme for DLP-based Commitment

We construct a new homomorphic MAC for the homomor-
phic polynomial commitment of the form gV € G that achieves
unforgeability. Let T, C = G, and h be a generator, we present
the detailed algorithm in Figure 2.

Correctness. We prove the correctness of our scheme in §A.

Theorem 1 (Unforgeability of >). Assuming F is a secure
keyed PRF, our . scheme in Figure 2 is a secure homomorphic
MAC by Definition 6. Specifically, let Adv be the advantage

K < X.Setup(1*):

L adz;

2. k< F.Gen(1%)
3. Output & := (o, k)

o + X.Sign, (g, st):
1. 7+ F(k,st)

2. o<+ (gYV)*h"

3. Output o

o < X.Combine((o1,¢c1), ... (Om,cm)):
1. o « 2,05

2. Output o’

T < X.UpdState, ((st1,c1),. .. (stm,cm), st'):
Lor« > ¢ - F(k,st)

2. v’ + F(k,st")

3. 7 R

4. Output 7

o’ + X.UpdTag(r,0):
. o' «—o-71
2. Output o’

{0,1} < X.Verify,, (g", o,(st1,c1),...(stm, cm)):
Lo« >0 e Fk, sty)]

2. a+ (g¥)% and b+ A"

3. If a - b = o then output 1; else output 0

Fig. 2: Homomorphic MAC for DL-based commitment.

of A winning the above EUGame. For all homomorphic MAC
adversaries A, there exists a PRF adversary A’ such that
AdVEUGame[Av E} < AdeRF[.A/, F] + (1/]9).

Proof: See Appendix §B. [ |

V. OUR PROPOSED DYNAMIC POR
A. Generic Construction

We first present the generic construction of our scheme.
We then instantiate it with two popular PC schemes including
KZG [32] and inner product argument [18]. We first present
the data structures of our scheme as follows.

Data structures. Our scheme follows the same data structures
in [42], which includes a raw buffer, a hierarchical log and an
erasure-coded copy of the raw buffer.

e Raw buffer. To enable efficient read operations, we store
N original data blocks in a raw buffer U.

e Erasure-coded copy of the raw buffer. To ensure all the
data blocks in U are retrievable and recoverable, we create
the erasure code (denoted as C) for the raw buffer U .

e Hierarchical log. To support efficient update, we use a
hierarchical structure H to instantiate the ICC codes. In H,
there are L+ 1 levels denoted as (Hy, ..., Hy ), where L =
[log, N. Each Hy is an erasure code of 2 blocks being
written most recently. Hy contains the erasure codeword
for the most recently written block and the “age” of written
blocks in H; increases with /.

Authenticated data structures. It is necessary to ensure
the authenticity and freshness of all the blocks stored in



(st, M) + PSetup(1*,DB, N, 3):
1. Initialize ¢ < 0, Hy < {0} and Hy « {0} for £ € {0,...,L}
2. Let DB := (by,...,by)

3. k= (a,k) < X.Setup(1*)

4. pp < PC.Setup(1*, |3/|F| — 1))

5. pp’ + VC.Setup(1*, N)
6
7
8
9

. U+ (by,...,byn)
. cm’ + VC.Com(U, pp’)
. C:=(e1,...,can) < encode(U)
. Fori=1to 2N do
10. cm; < PC.Com(c;, pp)
11. sti + (L + 1]]4]|0)
12. o <+ X.Sign,. (cm;, st;)
13. C(—(O’l,...,a'gN) N R
14. st < (t,x,cm’, pp,pp’), M < (U,H,H, C, C, pp, pp’)
15. Output (st, M)

b <+ PRead(%):

16. S executes (b, ) < VC.Open(U, i, pp’)

17. § = C: (b,m)

18. C executes: If VC.Verify(cm’, b, i, 7, pp’) = 1, output b. Else reject.

PWrite(i, b):

19. C updates cm’ < VC.UpdCom(cm’, 4, U[i], b, pp’)
20. C—S: b

21. S computes:

22. Uli] + b

3. Call HAddB(b, t, H)

24. C and S jointly compute: A

25. Execute HAddM (st, g®, ¢, H)
26. t—t+1

27. Every 28 steps, call CRebuild()

> Increment global timestamp

{0,1} < PAudit():

28. C computes ¢ij & (20— 1], pi; & 25 for0< i < L4+1,1<j <A
29. C— S: {Ci,japi,j}f:_ol’;\:o

30. S computes:

L. b S Y0 pi - Hiled )
32. Let ;5 :=H;fc; ] for 0<i<L+1,1<j<A
33. o' « ¥.Combine((00,1,00,1); -+ (04,5, Pij)s- - -+ (OL41,0, PL+1,0))

34. S —C: o', gP
35. C computes:

36. sti g (—(i”ci,jnti) for0<i<L+1,1<5;<A

37. b+ X.Verify, (g°, 07, (st0,1,00,1); s (Sti s Pij)s s (SEL41,0, PL+1,0))
38. If b = 0 then output reject

.zl

40. C—>S:x

41. S computes (y, ) < PC.Eval(b, z, pp)
42. S—C:y,m
43. C computes b < PC.Verify(gP, z,y, 7, pp) and outputs b

HAddM(st, gP, ¢, H):
Let each Hy be of form H; = (XZ,YE), where each Xy, Y, stores 2¢
corresponding MAC of codeword blocks in H,.
1. If Hp is empty then
2 st + (0]|0]]2)
3 Xy < %.Sign, (gP, st||0)
A t
4 Yo « Z.Sign, ((gP)* ,st||1)
5. Else
6. Let 0, ..., be successively full lelvels, and £+1 be first empty level
7
8
9
0

> If Hy is empty, use the latest timestamp

st < (0]|1]]t — 1) >t — 1 is the time Ho was last rebuilt
ox + X.Sign, (g, st[|0)

P (t)
oy < X.Sign, ((g”)" 7, st|[1)

10.  Call HRebuildMX(¢+ 1,0x) and HRebuildMY (¢ + 1, 0y)

HRebuildMX (4, o):

/* HRebuildMY is analogue to HRebuildMX by replacing X’s with Y’s %/
11. X} « mixM(Xo, o,0)

12. Fori=1to ¢ — 1 do

13. Let t;,t;4+1 be the timestamp level ¢ and ¢ 4 1 were last rebuilt.
14. If level i + 1 is empty then ¢;41 « t

15. X;+A1 «— miXM(Xi,Xg,i,ti,ti_‘_l)

16. Output X, < X,

H « mixM(H®, H', £, tg, tg41):

17. Let v = w™2" be 20+1-th primitive root of unity
18. For i =0to 2 — 1 do

19. sto < (2]]i|te)

20. st1 < (€]]3 + 2¢|te)

21. If level £ 4 1 is empty then

2. st (£+ 1|\;\|t,z+£1)

23. st) — (€ +1][i 4+ 2¢|tes1)

24. Else

25. sth + (0 + 1]12° +i|[te41)

26. st (0+ 1|28 + 4+ 2°)|tes1)

27. 0 + X.UpdState((sto, 1), (st1,v%), st()
28.  H[i] « H[i] - (H'[i])*"

29.  H[i] + .UpdTag(H][i], 7o) _

30. 71 < X.UpdState((sto, 1), (st1, —v*), st})
3. H[i+2¢ « H[i] - (H i)~

32.  H[i+ 2] « S.UpdTag(H[i + 2¢],71)
33. Output H

CRebuild():

34. For : =1to N do

35. b+« U] A
36. Execute HAddB(b, t, C) and HAddM(st, gP, ¢, C)

Fig. 3: Our proposed Porla scheme.

the aforementioned data structures. In our scheme, we apply
authentication techniques to each data structure. For the raw
buffer U, we use a VC technique to commit all the data blocks
in U so that once a block is read from U, its authenticity
and freshness can be shown via a membership proof. For the
hierarchical log H and erasure code C, we use our MAC
scheme in §1V to create the MAC tag for every codeword block
(see below). We denote C and H as the MAC components of
C, and the hierarchical log H, respectively.

We now present our generic DPOR construction. The
detailed algorithms are given in Figure 3 and Figure 4.

Setup. The client first generates MAC key ~ and public
parameters pp, pp’ of the underlying PC and VC schemes,
respectively (Figure 3, lines 2-5). Given a database DB with

Fig. 4: Porla subroutines.

N [-bit blocks, the client stores all the blocks in the raw
buffer U with N slots (line 6). The client then commits to
U using a VC scheme (e.g., Merkle tree [37]) resulting in a
commitment cm’ (i.e., Merkle root), which is stored for later
use to verify the authenticity of the retrieved block (line 7).
Finally, the client builds the FFT-based erasure code of U as
well as the authentication tag (lines 8—13). Specifically, for
each codeword block in C, the client commits to it using a PC
scheme (line 10) and creates a MAC tag for the commitment
(line 12).

Remark that our homomorphic MAC scheme requires a
unique state (st) to compute the authentication tag for each
commitment. This can be achieved by setting st = (id||i|[¢)
(line 11), where id is the identifier of the data structure
that the block belongs to, i is the block index, and ¢ is a
unique timestamp when the structure is (re)built (see below
for details).

Read. Given an index ¢ € [N], the server computes and



returns b < U[i] along with a proof of membership (lines
16-17). The client verifies the proof against the commitment
cm’ and outputs b if the proof is valid (line 18).

Write. To write a block b to index ¢, the client updates the
vector commitment cm to reflect the updated vector, where the
old block at ¢ is replaced by b (line 19). The client then sends
the block to the server to update the raw buffer as U[i] «+ b
(lines 20-22). Next, the client also sends the erasure code of
b as well as its authentication tag to the server, which, in turn,
will be placed at the top level of the hierarchical log, i.e., Ho
and Hy (lines 23, 25 in Figure 3 and lines 1-4 in Figure 4).

Remark that if the first L' levels (Hy, ..., Hy/_1) are full,
the server will execute a rebuilding process (Figure 4, line 10)
to merge and mix all the blocks in these levels and the updated
block into the next empty level Hy/ as follows.

o Rebuild H: We rebuild H using the FFT encoding scheme in
§II-B. In our scheme, the block components are processed the
same as in [42], while the MAC components will be computed
differently and need further processing. Specifically, once a
new codeword block is computed by FFT, we also need to
compute its tag accordingly. Recall that Hg[l] contains the
MAC of (the commitment of) HZ[ /], which is of the form:
Hz[] (gHe[ ) . E (R stes)

where st, ; denotes the state from which Hg[ ] is created. Since
the MAC is homomorphic, we can thus apply the FFT linear
combination on the MAC tags in the next level /+1 (Figure 4,
lines 27, 30) as

Hy o [i] = HY[i] - (g [a)”
= (gH) . pF sty | (gHINTT | pF sty )"
_ IR ) g POest ) v Fikst] )
_ (ngrl[i])o‘ . hF(k,sthi)+ui~F(k,st;i)
Foy[i+ N] = HY[i) - Fj[i)

= (gl . pF(ksty ) | (gHLD)
_ g(Hg[i] viHp[i])-a | hF(k',stZ’i)—ui~F(k,st}‘i)

BlealihNY® | g (st ) =0 F (st )

= (g
(@)
It is easy to see that ﬂg+1[i} in (2) is the valid MAC of
Hy1[d] for any i € [2N]. However, there is an issue: the state
of Hy1[i] depends on the state of other tags at level . To
verify Hg+1[ ], we need to know st(Z i stZ Given that H¢+1
will be later used to compute level ¢ +2, the linear combination
will be further expanded, where the state of blocks at deeper
levels depends on all upper levels. This significantly increases
the computation overhead to verify the MAC of an arbitrary
block in the hierarchical log.

To address this issue, we update fIgH[i] such that it
can be verified by its own state (sty41;). Specifically, after
computing (2), we convert H 1 [i] to the form of (gHe+111)".
RF(F:sterii)  This can be done with algorithms X..UpdState
and ».UpdTag in Figure 2, given that sty;;; is unique and
has never been used previously. There are two cases for I:Ig+1:

o If level /41 is currently empty, Hy; will be the new FFT-
erasure code of this level. In this case, we set styy1,; =
(€ + 1]Jz||t) for ¢ € [2N], where t is the current timestamp
(Figure 4, lines 21-23).

—vha . hfuﬁF(k,stjqi)

e Otherwise, level £+ 1 is full, meaning thgre currently exists
an erasure code at this level (denoted as H}? 1)- In this case,

I:Ig+1 will be treated as fll} 41 in (2) to rebuild the next

level I:I£+2. To avoid state duplication, we set stypy1; =
(¢ + 1||i + 2N||tes+1), where tp4q is the timestamp when
the level ¢ + 1 was last rebuilt/empty (i.e., the index of
codewords in Hy; starts after H2 1) (lines 24-26).

Remark 1. One can observe that the state st to update the
MAC component in our scheme is data-independent. Therefore,
it can be pre-computed in the setup phase or with a background
process. Pre-computation permits the client to further save the
computation cost of O(2°) group operations and O(2%)|G|
network bandwidth overhead when rebuilding level £.

Audit. Our audit is similar to other ECC-based PoR schemes,
in which the client checks the authenticity and freshness
of O(A) random codeword blocks of each erasure code. To
reduce the audit proof size, we make use of the random linear
combination and verifiable polynomial evaluation techniques.
Specifically, the server first aggregates all the random code-
word blocks requested by the client (Figure 3, line 31) as

b= ZZM Hy[i] 3)

(=0 i€

where p; ; € Z,, are the random scalars and ¢ € 7 are random

block indices indicated by the client (line 28).

The server computes the commitment of the aggregated

codeword block as gP as well as its MAC (line 33) as
L+1

o= [T [TH.LD" )

£=0 ieT
The client verifies the authenticity of gP based on its tag
o (line 37), and then attests to the server’s knowledge of
b by challenging the server to evaluate the polynomial that
represents b (lines 39-43). Specifically, the client challenges

*

a random point a & Zy, and the server computes f(a) =
Sy bi-a't, where b = (by,...,by), as well as a proof of
evaluatlon . The client is convinced with the server knowl-
edge if 7 is a valid proof of the polynomial evaluation f(a).
Due to the random linear combination, knowing b implies the
server knowledge of all individual H,[i] being challenged.

B. Instantiations

We instantiate our generic construction with two polyno-
mial commitment schemes including KZG [32] and Bullet-
proofs [18]. For KZG, we use the original KZG scheme for
commitment, evaluation, and verification. We denote our KZG-
based DPoR scheme as Porlay,e. For Bulletproofs, we present a
more simplified version of the Inner Product Argument (IPA)
for verifiable polynomial commitment. We denote our IPA-
based DPoR scheme as Porlajp,. We note that our instantia-
tions offer different security assumptions and efficiency trade-
offs. Specifically, in the Porlay,; scheme, we can assume that
the trusted client can have access to the trapdoor 7 that is used
to generate a common reference string in the KZG setup phase.
This trapdoor permits the client to compute the commitment
during data update faster with multi-multiplication group oper-
ations instead of multi-exponentiation. This advantage requires
the trapdoor to be kept secret and never leaked out as a trade-



Input: (g7 P = g37 a, )

P’s input: (g, a)

V’s input: (g, P, x)
Output: {c = (a, x), where x = (z
. V=aPix
2. P computes:
3 x=(20,...,x
4. ¢+ (a,x)
5. P=V:c
6. Vialzy
7
8
9

0 ..., zP)if V accepts, or L if rejects}

P)
V> Pa

P« P.oyoe
. Execute protocol below on Input (g, u®, P/, x; a)

Input: (g € G",u,P € G,x € le,j"'l;a c Z£+1)
P’s input: (g, a, X, c)
V’s input: (g, u, P, x)

1. If n =1 then

2. P—=ViacZy

3. V computes ¢ = a - x and check if P L g®uc. If yes, V accepts;
otherwise V rejects.

4. Else

5. P computes:

6. D'=D/2

7. cr = (aip/},X(pry)

8 cr = {(ap], X[:p/])

9 L= *[:D'] ) cp, R = AD":, cp
. _gD,I% u =8.p U

10. P—=V:L,

1. vz

12. V+P:z
13. Both P and Vl compute:

A z
]4. g, - g[ZD/] @ gl:DI:] 71
15. X :X[D’:] ~Z+X[:D/] -z
16. P computes: a’ = af.p/) -z +ajpry 27"
17. V computes: P’ = L?*.p. R’
18. Recursively repeat this protocol on Input(g’,u, P’,x’;a’)

Fig. 5: IPA-based Verifiable Polynomial Evaluation.

off. We discuss the cost difference between two instantiations
in more detail in §VII-C.

Polynomial Commitment via Inner Product Argument. We
present a verifiable polynomial evaluation based on the original
inner product argument proposed by Bulletproofs [18] (see
Appendix §E and Figure 14 for the original). Let x be an
evaluation point and a = (ag,...,ap) be a vector containing
the coefficients of polynomial f(X) = Zio a;- X'. Letg =
(90,---,9p+1) be public independent generators. The verifi-
able polynomial evaluation is a proof system for the following

relation {(g € GP*', P e G,y € Zy,x € Ly;ac L))

P =g*Ay = (a,x)} where x = (2% 2!,...,2P). For

simplicity, we present the interactive version of the proof for
the above relation in Figure 5. It is straightforward to make the
proof non-interactive using Fiat-Shamir transformation [26].
C. Security Analysis

Theorem 2. Porla satisfies authenticity by Definition 3.

Theorem 3. Porla satisfies retrievability by Definition 4.
We present the proofs in Appendices §C and §D.

D. Efficiency

We analyze the efficiency of our proposed scheme. Let
A, B, N be the security parameter, the data block size, and the
number of data blocks in the database, respectively.

The read operation incurs transmitting a data block and a
membership proof, which incurs a bandwidth cost of 5 + |my|-
The client and server computation depends on the complexity
of membership proof and verification of the underlying VC
scheme. For example, with the Merkle tree [37], |my| =
O(Xlog N), and the client incurs O(log N) hash invocations.

For the write operation, the client receives a membership
proof to update the vector commitment with the new data
block. In total, the client bandwidth incurs 3+ || bandwidth
overhead. The client incurs the cost to update the vector
commitment to capturing the new data block in the raw
buffer, and the cost of O(f3) group operations to compute
a polynomial commitment for the new block. On the other
hand, the server rebuilds some level of the hierarchical code.
At each level /, the server computes FFT codeword for 2t
data blocks and 2° MAC, which incurs O(2¢ - 3) field and
O(2%) group operations. Since each level ¢ is rebuilt every
2¢ write operations, the amortized rebuilding cost per write is
O(Blog N) field and O(log N) group operations.

For audit operation, the client generates O(Alog N) ran-
dom indices and random scalars, which can be sent with O(\)
bandwidth cost via a PRF seed. The client receives a MAC
tag, a commitment of aggregated block, and a proof of the
polynomial evaluation, which incurs a total of O(\ + |r|)
bandwidth cost, where 7 is the proof size of the underlying
PC scheme. Specifically, for the KZG scheme, |7| = 1|G| and
the client incurs O(1) group operations and 1 pairing, while
the server incurs O(f) group operations. For IPA-based PC,
|| = O(log ) and the client/server overhead is O(3) group
operations. The client incurs O(1) group operations to verify
the MAC. Before proving the polynomial evaluation, the server
performs a random linear combination on the data blocks
and MAC components, and commits to the aggregated block,
which incurs O(3 - Alog N) field operations and O(Alog N +
B) group operations, respectively. In total, the audit proof size
is 3|G| for Porlay,, scheme (one commitment, one MAC tag,
and one proof), and O(log 8)|G| for Porlaip, scheme.

For the storage, the client only needs to store an O(\)-bit
master key and the timestamp as the global counter. The server
stores FFT codewords, which incurs O(Nj3) overhead, while
the authentication component costs O(AN) overhead.

VI. PUBLIC AUDITABILITY

In this section, we show how to enable public audit in
Porla. The high-level idea is to somehow permit a public
auditor to obtain the correct polynomial commitments of the
challenged codeword blocks so that the server’s knowledge of
codeword blocks can be attested via a verifiable polynomial
evaluation and a random linear combination. We achieve this
by using VC technique at the server side, in which the server
commits to a vector containing the polynomial commitments
of codeword blocks, and then later proves the membership
of polynomial commitments (challenged by a public auditor)
corresponding to the committed vector.

For each level in H (or C), suppose vi,..., Vv, are the
codeword blocks, and gV',..., gV~ are their corresponding
commitments. Let x := (gV',...,g"Y~"), the server commits
to x as cm’ < VC.Com(x, pp’), where pp’ < VC.Setup(1*).
The public audit protocol happens as follows.



TABLE II: Comparison of our Porla framework over state-of-the-art (public audit setting).

Scheme Write Public Audit
Bandwidth (Private) client cost Server cost Proof size Verification cost Proving cost
(1 + 6)(6 + |7Tvc|) (1 + E)Z/{vc"!‘ 1Cvc + (1 + G)uvc
SSP13 [42] + O(Xlog N) OMBYF + O(log N)E + O(Blog N)F O((B + |mvc|)Alog N) O(BAlog N) Ve O(BAlog N)Puyc
ADJ+21 [7] B+ |mve| 11Uy Uy O(AVBN) O(V/BN)G O(NB)F
Our Porlay,g B+ 1Cvc + (1 4 €)Usc —(i?((f))\(i\oié;vl)\fl;‘-\‘&‘\ +(I§9(g\>\lcl)zg]\]f\g(){}v$ le O(Xlog N)Pyc+
(1+6)|77vc| (1+€)Z/{vc+o(ﬁ)G + O(BIOgN)]F O()\lo N)\‘n' ‘ +2|]F| O(/\Io N)V O(ﬁ)\IOgN)]F*'
Our Porlajp, +(1+¢)|G| + O(log N)G & A Tve 8 %) Ve O(\log N + B)G
P +O(Alog N + log B)|G]| +O(Alog N + 8)G

CKW17 [20] does not support public audit. Py, Vi denote the cost of proving and verifying a membership of the underlying VC scheme, respectively.
Cyc denotes the cost to create a commitment for a vector with O(log V) elements, and U, denotes the cost to update the vector commitment.

1) For each level in H (or C), the auditor samples ¢ =
poly()\) random indices. Let (iy,...,%,) be the selected
indices, where n = ¢ - (1 + log V). The auditor sends
(i1,...,in) to the server!.

2) For each j € [n], the server executes (g%, 7] ) <

VC.Open(cm’, i, pp’) and sends (gvij,ﬂgj) to the audi-

tor.

For each j € [n], the auditor verifies b <+

VC.Verify(cm’,i;, g% ,ng,pp’). If all are valid, the au-

ditor samples a random scalar p and computes gV

gZ?ﬂ Vi P .

The server executes (y, ) < PC.Eval(f, «, pp), where «

is auditor’s random challenge, and f(X) = ZZD:I v[i] -

X1 and returns (y,7) to the auditor. The auditor

executes b + PC.Verify(g¥, «,y,m, pp) and outputs b.

3)

4)

In this public audit scheme, the server sends O(Alog N)
commitments and a membership proof for each of them
in the vector commitment. Thus, the total proof size is
O(Alog N(A + |myc|) + |mpc|), where |my| is the size for
membership proof, |mpc| is the proof size of the polynomial
evaluation. The auditor cost is O(Alog N)Vye+O(Alog N)G+
Vpc and the server time is O(Alog N)Ppc + O(BAlog N)F +
O(Alog N)G + Py, where Ppc, Ve (tesp. Py, Vie) are the
overhead of proving and verifying a polynomial evaluation
(resp. a membership), respectively. Note that the proof size can
be reduced to O(A?log N + |mpc|) using an aggregatable VC
(e.g., [28]) that permits membership proof of multiple elements
via a single proof at the cost of a linear proving time.

Updated rebuilding process. Since the vector commitment is
computed by the server, we need to ensure that all the elements
in the committed vector are correct and consistent with the
codeword blocks after each data update. This is achieved by
having the private client (i.e., data owner) check the authen-
ticity and consistency of O(\) random elements in the vector
committed by the server. Note that the vector commitment
is computed only during the rebuilding process. Thus, when
rebuilding level Hy (or C), the following procedure happens:

1) The server performs rebuilding on the codeword blocks
and their MAC components as usual, and computes the

commitment of the new codeword blocks. Let vy,...,v,
be the new codeword blocks and g¥*,...,g"¥»" be their
corresponding commitments. Let x := (gV*,...,g"»'),

the server commits to x as cm’ < VC.Com(x, pp’).

The private client challenges ¢ poly(\) random
elements in the committed vector. Let (iy,...,1)
be the challenged indices. For each j € [t], the

2)

ITo reduce bandwidth, the auditor can simply send a PRF seed s.

11

server computes (g¥7,m;) < VC.Open(cm’,ij, pp’)
and sends (g"%,7;;) to the client. The server
also performs a random linear combination on the
MAC of the challenged commitments as o <
.Combine(a;,, p), ..., (04,, p™*)), where o;, is the
MAC of g"% and p is a random scalar challenged by
the client. The server sends o to the client.

3) The client computes by, —
VC.Verify(cm,ij,g""i,m;,,pp’) for each j € [t].
If b;;, = 1 for all j € [t], the client next checks

b EVerlfyH(g o, (stiy, p), ..., (sti,, p')), where

gV = ]_L 187”7 The former Verlﬁes the membership
of individual g% in the committed vector, while the
latter verifies their authenticity against the MAC.

Updated write cost. For each level /, the client downloads
A polynomial commitments and verifies their membership
against the committed vector. Since level £ is rebuilt after every
2¢ writes, it incurs a small amount € = )‘R’TgN of extra VC
processing overhead to the private audit scheme in terms of
bandwidth and client/server time. Specifically, the amortized
client bandwidth per write is O(5 + (1 + €)|myc| + €|G|). The
client time is (1 + €)lyc + O(S)G and the server time is
1Cve + (1 + €)Uye + O(Blog N)F 4+ O(log N)G, where Cy. is
the complexity to create a VC commitment for a vector of size
O(log N) (for the membership proof per hierarchical level).

Theorem 4. Our public audit variant satisfies authenticity by
Definition 3 and retrievability by Definition 4.

Proof: Due to the security of VC, the public auditor ob-
tains correct commitments of the challenged codeword blocks.
The rest follows the proof of private audit in Appendix §D. B

VII. EXPERIMENTAL EVALUATION

A. Implementation

We fully implemented all our proposed techniques in C++
consisting of approximately 4,000 lines of code. In our imple-
mentation, we used standard cryptographic libraries, including
1ibNTL [43] for modulo arithmetic, 1ibsecp256k1 [49]
for elliptic curve operations in Porlaj,, scheme. We imple-
mented the verifiable polynomial evaluation based on the
Bulletproofs’ IPA from scratch. For Porlay,, scheme, we used
libgnark-crypto library [16] for BN254 curve to imple-
ment KZG polynomial commitment. We used libzeromg
library [4] to implement network communication between
the client and the server. Our implementation is available at
https://github.com/vt-asaplab/porla.


https://github.com/vt-asaplab/porla

Handling FFT Modulo over the Exponent. In our schemes,
we implemented standard curves (i.e., secp256kl and
BN254) for group operations. Since the order of these groups
is not in the form of Proth prime p required by the FFT erasure
code, our implementation handles the modulo p over the
exponent when updating the MAC of polynomial commitment
of new FFT codeword blocks during the rebuilding process
as follows. Let ¢ be the group order and I = lcm(p,q) be
the least common multiple of p and ¢q. For each intermediate
level that is not the last level in the rebuilding process, the
server computes the FFT codeword blocks modulo [ (rather
than modulo p). At the final level, for each modulo-/ codeword
block c, the server computes the final modulo-p codeword
block v ¢ (mod p) and its corresponding alignment
gV—c (mod @) (where the multi-exponentiation is implemented
with Pippenger’s algorithm [38]). The alignment is needed for
the client to correctly check the MAC of commitment of the
FFT codeword blocks in the audit phase. During the audit,
the server aggregates the alignment components of requested
blocks and sends the aggregation to the client, which incurs
an extra 33-byte bandwidth overhead.

B. Experimental Configuration

Hardware and network setting. For the client, we used
a laptop with an Intel i7-6820HQ CPU @ 2.7 GHz and 16
GB RAM. We used an Amazon EC2 c6i.8x1arge instance
as the server, which is equipped with a 16-core Intel Xeon
Platinum 8375C CPU @ 2.90GHz, 64 GB RAM, and 16 TB
SSD in all experiments. The network bandwidth between the
client and server is 217 Mbps with 7 ms round-trip latency.

Dataset. We used synthetic datasets of sizes ranging
from 1GB to 2TB containing N = 22 to N = 2%
dummy data blocks with different block sizes (i.e., 8 €
{4KB, 32KB, 256 KB}).

Counterpart comparison and parameter choice. In this
experiment, we compared the performance of our proposed
technique with state-of-the-art DPoR schemes including SSP13
[42], CKW17 [20] , and ADJ+21 [7]. We also compared with
a (standard) static PoR scheme (i.e., [31]) to demonstrate the
cost difference between dynamic and static POR constructions.
Finally, we compared with a baseline (or trivial) proof of
retrievability approach that transmits the entire database and
verifies the checksum of each data block to demonstrate the
effectiveness of (D)PoR schemes proposed in the literature
(including ours). We selected the parameters for all the
schemes to achieve 128-bit security as follows.

e Our schemes (Porla): We used secp256k1 and BN254
curves with 256-bit group order for Porlajp, and Porlay,g,
respectively. We selected a Proth prime p = 207 - 2248 -1
for the FFT codeword in both schemes.

e SSP13 scheme [42]: We used standard parameters sug-
gested in [42]. Specifically, we used AES-GCM as the
authenticated encryption scheme with a 128-bit key. We
selected a Proth prime p = 3-23° + 1 for FFT codeword
for fast modulo arithmetic. Note that the size of the FFT
parameter does not affect the security of the system. We
selected A = 128 for the size of the secret matrix checksum.

o ADJ+21 scheme [7]: We ran their open-sourced implemen-
tation [29] and used standard parameters suggested in [7]

12

for the performance benchmark. Specifically, we selected
the 56-bit data chunk with p = 144115188075855859 (57-
bit prime), matrix dimensions m = n = y/N’/56, where
N’ = N-3/56 is the total number of data chunks and SHA-
512/224 for the Merkle hash algorithm. For the public audit
setting, we used ristretto255, a 253-bit prime order subgroup
of Curve25519, and m =n = \/N’/252.

e Static PoR [31]: We embedded 10° 128-bit sentinels into
the database at random positions. We used (255,223, 32)-
Reed-Solomon Code as the erasure codes. We used AES to
encrypt each 128-bit codeword. For each audit, the client
verifies 1,000 random sentinels to detect if at least 1/2% of
the database is corrupted as suggested in [31].

e CKW17 scheme [20]: We used (255,223,32)-Reed-
Solomon code. For the underlying ORAM, we selected
the expansion factor ¢ = 2 so level ¢ of the hierarchical
ORAM has 3 - 2! slots to store 2 blocks. The number of
levels ranges from 26 to 37 for 1 GB to 2 TB database.
We selected the stash size |S| = 80. For each audit, the
client reads A = 128 random data blocks with ORAM.

e Baseline: We used HMAC with SHA-256 to compute the
checksum for each data block in the database.

C. Overall Results

Audit overhead. Figure 6 presents the proof size of our
schemes compared with other schemes under different block
sizes. We can see that our schemes incur minimal bandwidth
overhead, in which our Porlay,; scheme only requires a
constant bandwidth of 0.31 KB regardless of block size and
database size, while Porla;,, requires only 0.64-1.03 KB
for block sizes from 4 to 256 KB. Similar to Porlai,g, the
audit bandwidth overhead of Porlaj,, is also independent of
database size. Therefore, our schemes achieve an 87x-1058 x
smaller proof size than SSP13 scheme [42] which incurs
55.94-327.94 KB audit proof size. Note that the proof size
of SSP13 scheme grows linearly with the block size and log-
arithmically with the database size, while our technique either
incurs a constant size (i.e., Porlay,; scheme) or only grows
logarithmically with the block size (i.e., Porlaj,, scheme). We
achieve three to four orders of magnitude smaller proof size
than ADJ+21, which requires 91-4344 KB because its size is
proportional to the square-root of the data size. Static PoR
[31] has a constant proof size (16 KB) for all cases because the
number of sentinels to check for each audit is fixed. Although
CKW17 [20] reads a constant number of data blocks for each
audit, it induces a much larger proof size (4264-6068 KB) than
other schemes because it uses ORAM to access the blocks,
which incurs a polylogarithmic bandwidth overhead. Since the
baseline transmits the entire database, it incurs the largest proof
size and bandwidth cost.

Figure 7 presents the (worst-case) end-to-end audit latency
of our schemes compared with other works. Porla,z achieves
the lowest delay among all the schemes, where it is around
4x-5x faster than SSP13 scheme in all test cases, and up
to 18000x—-180000x faster than ADJ+21 scheme with 2TB
database, depending on the chosen block size. Another reason
why Porla is much faster than ADJ+21 is that it incurs
low disk I/O access (i.e., logarithmic to the database size).
Specifically, Porla and SSP13 only read 7-13MB (for 4 KB
blocks), 43-52 MB (32 KB blocks), and 255-607 MB (256 KB



&+ SSPI13 [42] Porlaj;a — O Porla,g —4A— ADI+21 [7] =—@— CKWI7 [20] — -@ . — static PoR [31] - Baseline

r T T T T 3 r T T T T 3 r T T T T 3
109 o X 109 " % 109 N %
@107 e R U R U 8
i) 3 &
= 10° |- 4 X 10° - 4 X 10° - 8
/m ° o o DY P as] ° ° * > > as] ° ° * > -
< 103 ] 1 2 103] 1 2 03] o
= 0 o 0 o = 0 o 0 o =
_101 - ***&**O**ﬂ***&% _101 R e~ e~ R = e~ _101 R e~ e~ R = e~
T O F R A = SN 1)t o S A SN SN T et B O A N M \
218 220 222 224 226 228229 215 217 219 221 223 225 226 212 214 216 218 220 222223
# blocks # blocks # blocks
(a) 8 =4KB (b) 8 =32KB (c) B = 256 KB
Fig. 6: Audit proof size of Porla and its counterparts.
l o SSP13 [42] Porlaipa —— Por\akzg —A— ADJ+21 [7] =—@— CKWI17 [20] — -@ . — static PoR [31] X Baseline
108 | 108
@107 s @107 s
=106 =108
2 10° b 210° £
g = g =
=10% =10t |
Q Q
E £10°
= = 102 -
10!
218 220 222 224 226 228 229 215 217 219 221 223 225 226 212 214 216 218 220 222 223
# blocks # blocks # blocks
(a) B = 4KB (b) B =32KB (¢) B = 256 KB

Fig. 7: End-to-end audit delay of Porla and its counterparts.

103 F —  10% T 3 105 g
g“ B o SSPI3 [42] Porlaip 1 5 i : _10* ;* é
= B —A— ADI21 [7] —0— Porlay,g N g 10 § é E ; ;
g 102 ; —@— CKWI17 [20] X Baseline 75 é E E é’ 103 ? é
g s £10% 5B Lo .
= f ﬂ_a& ' 10 m

101 X X X X X 101 T )\( >\< >\< T 101 >\< )\< T T T

218 220 222 224 226 228 229 215 217 219 221 223 225 226 212 214 216 218 220 222 223
# blocks # blocks # blocks
(a) |B| = 4KB (b) |B] = 32KB (¢) |B| = 256 KB

Fig. 8: End-to-end update delay of Porla and its counterparts.

blocks) of data from disk, while ADJ+21 requires reading the also the erasure codewords and the MAC components. For
entire database, which incurs 1 GB-2TB disk I/O access. The 4 KB block size, our schemes are slightly faster than SSP13,
difference between Porlay,, and Porlaj,, mainly stems from where they take 36—44ms to update the erasure codes and
proving and verifying the polynomial evaluation. Static PoOR ~ the MACs, while SSP13 takes 43—47ms. For larger block
[31] achieves the fastest audit time (= 23 ms) because the client sizes (i.e., 32 or 256 KB), our schemes are around 1.15x—
only verifies a constant number of sentinels. However, we 3x slower than SSPI13 since they incur group operations
notice that this scheme does not support data update and only on the MACSs, while SSP13 incurs symmetric operations.
permits a limited number of audits. Other schemes (including CKW17 supports dynamic update; however, it incurs a high
ours) can perform an unlimited number of audits. CKW17 is update overhead (0.5-42.6 seconds) since it relies on ORAM
slower than our schemes and static PoR since it uses ORAM to perform data write, which incurs polylogarithmic overhead
to read the blocks, which costs 1.8-2.6 seconds. The baseline as in the audit. The baseline scheme provides the most efficient
approach incurs the longest audit delay because it requires the update because the client simply sends the updated data block
entire database to be transmitted over the network. enclosed with its corresponding HMAC. By contrast, static
PoR does not support the dynamic update feature.

Update overhead. We present the update latency of our

schemes and their counterparts in Figure 8. As expected, We note that our schemes are more client-efficient than
our schemes incur a higher update delay than SSP13 and SSP13. Specifically, since the update token to update the
ADJ+21 schemes due to group operations. ADJ+21 scheme MACs in our schemes can be precomputed, the client only
offers remarkable update performance since it only needs to needs to send the updated block and the updated Merkle
update a Merkle path as well as the client secret vectors. Our ~ path, and delegate all the computation to the server. In
schemes and SSP13 scheme update not only a Merkle path but SSP13 scheme, the client has to (i) download the encrypted

13



MACs from the server, (if) decrypt them, (iii) compute the
FFT erasure codes on the MACs, (iv) re-encrypt, and finally
(v) upload them to the server along with the updated block and
the Merkle path. We discuss the client cost of our schemes in
more detail in §VII-D.

D. Detailed Cost Analysis

Figure 9 and Figure 10 present the detailed cost of data
audit and update operations by our schemes, respectively, for
1GB to 2TB database with 32-KB block size. There are
three factors that contribute to the total delay including client
processing, communication latency, and server processing. We
can see that our schemes incur a low processing cost at the
client side in both audit and update operations, in which it only
attributes 0.8%—11.6% to the total delay in audit, and 1.3%-
11.9% in update. The client cost in Porlaj,, scheme is higher
than in Porlay,, for both data audit and update operations. This
is mostly because the verification cost of polynomial evaluation
via the inner product argument is higher than KZG during
audit. Specifically, the verification time in Porlay, is O(1),
which takes less than 1 ms. In Porlajp,, its cost is O(|B]),
which takes 7.2-58.9ms to verify for block sizes from 4 to
256 KB. In data update, since the client in Porlay,; scheme has
access to the trapdoor 7 that generates the common reference
string, the cost to compute the commitment for the updated
block is faster than that of Porlaj,, scheme (i.e., curve multi-
addition vs. multi-multiplication).

The network communication overhead during audit in our
schemes is also minimal, which attributes 7.6%—-17.7% to the
total audit delay. This is due to the small audit proof size that
our schemes offer as shown in Figure 6. In update, the network
latency accounts for a large amount of the total delay due to
the time to transmit the updated data block itself, as well as
updated MAC hiding components for the rebuilt layer in H.
Specifically, it takes 21.4-32.9ms (33.1%—45.0% of the total
network delay) to update a 32-KB data block.

As shown in Figure 9 and Figure 10, a majority of
overhead in our schemes stems from server processing, which
attributes 53.5%-90.4% to the total delay. During an audit, the
server incurs three main processing phases including (i) ag-
gregating data blocks, (if) aggregating corresponding MACs,
and (iii) proving a polynomial evaluation at a random point.
Aggregating data blocks and the MACs takes around 34 to 93
ms for 32- KB block size with the database of size from 1 GB
to 2TB. Since Porlay,z uses an efficient PC scheme, it only
takes 0.8-13.9 ms to prove a block of sizes from 4 to 256 KB,
compared with 4.2-134.9ms in Porlaj,, which accounts for
6.3%-43.4% of the total delay.

During a data update, most of the delay in server processing
stems from the alignment computation discussed in §VII-A
due to the unavailability of efficient standard curves that have a
group order of a Proth prime. As shown in Figure 10 (the gray
bar with dotted patterns), we can see that alignment processing
costs 14.8-29.5ms, which contributes 51.1%-63.8% to the
total server cost and 28.9%-34.6% to the total delay. We
expect that if such curves are found and implemented, the
update overhead of our schemes can be further reduced by
up to 34.6%, thereby significantly reducing the update gap in
comparison with SSP13 and ADJ+21 schemes.

14

l Client cost []Comm. cost Server cosl‘
B0 17T 150 — T T T
2120 | 2120 - |

E 90| E 90|

2 60 E i 2 60|,

[5) 5

- 2 w|f] ]
i S s N s (N o N s S (R

915 917 919 921 523 525 526 915 917 919 521 923 525 926
# blocks

(b) Porlay,g

# blocks
(a) Porlajy,

Fig. 9: Detail audit cost in our schemes.

’ Client cost[__] Comm. cost Server cost Server cost (alignment)‘
100 77771 100 777

2 80 ! 2 80 |- |
g g
S 60 EHHEE E 60| HEHRE
£ 40 sREiERERH %‘40 Emﬂﬂ
A 20 [ I I I I 2 20

0 215 217 219 221 223 225 226 0 215 217 219 221 223 225 226

# blocks # blocks
(a) Porlajp, (b) Porla;g

Fig. 10: Detail update cost in our schemes.

E. Storage

We present the storage overhead of our schemes at the
client and server. Our schemes only require the client to
maintain a 128-bit master key and a 128-bit counter, resulting
in a total overhead of 32 bytes. This is far more efficient
than other works. For instance, SSP13 scheme requires the
client to store a 128-bit master key, a 128-bit counter, and an
authentication matrix of size IE‘;‘/ PoxB/Bo  where Bo = logy p
(i.e., 64 KB (resp. 512 KB) for 32 KB (resp. 256 KB) block

size and 128-bit security).

With a database of size N bits, the extra server storage
of our schemes is 5N5 + N|H| + 5N|G]| bits due to the
erasure codes, the Merkle tree for the read buffer, and the
MAC components, respectively. SSP13 incurs similar server
storage overhead as our schemes, except that the size of its
MAC components is two times smaller than ours because
they are symmetric block ciphers rather than group elements.
ADJ+21 scheme achieves more lightweight server storage,
which incurs extra storage of (2N — 1)|H| bits because it does
not require erasure codes. The storage overhead of the static
PoR [31] is 14.4%-16.1% since it encodes the database with
erasure codes and embeds the sentinels at random positions.
The baseline brings the lowest price regarding extra storage
overhead because it stores the original data blocks in which
each data block is enclosed with a 256-bit HMAC. Finally,
CKW17 requires approximately 2(1 + €)yNj3 + 803 bits
of server storage, where e 2 and v = 255/223 are
the expansion factors of the hierarchical ORAM and Reed-
Solomon codes, respectively.

Figure 11 presents the extra server storage overhead of our
schemes and their counterparts when storing different sizes of
the database (from 1GB to 2TB) under a 32 KB block size.
Note that both Porlay,; and Porlaj,, instantiations incur the
same extra server storage overhead and their cost is nearly
similar to SSP13 scheme (i.e., only 0.1% difference between
them). Compared with CKW17, our schemes incur 20% less
server storage blowup.



I
o SSPI3 [42]

—
;50 105 —o— Porla
~ 104 —A— ADJ+21 [7] —a— CKWI17 [20]
m 3| F®- static PoR [31] ... Baseline
G} 102
=) 10
g 10!
s 100
) 1 &
%ﬂ 10_2
E,g) 10
1073 3 1 10 911
20 2 2 26 28 210 9

Database size (GB)
Fig. 11: Server storage blowup of (D)PoR schemes.

=
(=)
o

106
PSR SR SR S

g‘) 10° O SSPI3 [42] —{}— Porlay,, 103
é Porlajp, —~A— ADI+2I [7]

4
) 10 104
5103

103
912 gld  9l6 918 920 922923 22 923 94 95 96 97 98
# blocks B (KB)
(a) B = 256KB (b) IDB| =1TB

Fig. 12: Proof size of public audit of Porla and its counterparts.

FE. Public Audit Experiments

We assess the performance of Porla in the public audit
setting. Figure 12 presents the proof size of the public audit
of Porla compared with other works. As shown in Figure 12a,
the proof size of Porla is two orders of magnitude smaller
than SSP13 scheme, where it only costs 391-1384 KB, com-
pared with 246120-472302KB. Our proof size also grows
more slowly than ADJ+21 since it is only logarithmically
proportional to the database size, compared with square-root
in ADJ+21. Concretely, our proof size is 12x smaller than
ADJ+21 for a 2TB database.

Figure 12b presents the impact of data block size on the
public audit proof size. Unlike SSP13 scheme, our audit proof
size is independent of block sizes. In fact, we can see that
our proof size decreases when the block size increases (with
fixed database size). This is because when the database size
is fixed, increasing the block size reduces the number of
hierarchical levels in the erasure codes, thereby reducing the
number of random positions being checked. Since the proof
size in ADJ+21 only grows square-root to the database, we
can see that it is constant regardless of block size. However,
its public variant uses group operations, and thus the proof
size in that case is 8x larger than its private audit setting.

Figure 13 presents the public audit latency of Porla com-
pared with its counterparts under 256- KB block size. We
can see that the public audit of Porla only incurs a small
extra overhead over its private audit version (i.e., 140-215 ms),
while SSP13 observes a significant increase (i.e., 20x) due
to its increased proof size. For ADJ+21 scheme, its public
audit incurs an extra delay of 0.6-763.4 seconds due to group
operations performed by the client. In general, our public audit
is 20x—45x faster than SSP13, and three orders of magnitude
faster than ADJ+21.

15

Porla; pa

—/— ADJ+21 [7]

T
&+ SSP13 [42]

—_
[e=]
<]

—0— P°’|akzg

Time (ms) (log)

[ e S
o o o
[ o [=2]

[
w

102 ; | | | | |
212 214 216 218 220 222 223

# blocks
Fig. 13: Delay of public audit of Porla and its counterparts.

ACKNOWLEDGMENT

Attila A. Yavuz is supported by an unrestricted gift from
Cisco Research Award and the NSF CAREER Award (CNS-
1917627). Elaine Shi is supported by NSF grants 2128519 and
2044679, a DARPA SIEVE grant, and a Packard Fellowship.
Thang Hoang is supported by an unrestricted gift from Robert
Bosch, and the Commonwealth Cyber Initiative (CCI), an
investment in the advancement of cyber R&D, innovation, and
workforce development. For more information about CCI, visit
www.cyberinitiative.org.

REFERENCES
(1

Amazon s3 glacier storage classes. https://aws.amazon.com/s3/

storage-classes/glacier/.

[2] Audit compliance: Definition and what it means for the cloud.
https://www.ionos.com/digitalguide/online- marketing/online-sales/
audit-compliance/.

(31

Azure archive storage.
storage/archive/#overview.

https://azure.microsoft.com/en-us/services/

(4]
(31

Zeromq: An open-source universal messaging library.

Aydin Abadi, Steven J Murdoch, and Thomas Zacharias. Recurring
contingent payment for proofs of retrievability. Cryptology ePrint
Archive, 2021.

Shweta Agrawal and Dan Boneh. Homomorphic macs: Mac-based
integrity for network coding. In International conference on applied
cryptography and network security, pages 292-305. Springer, 2009.

(6]

[71 Gaspard Anthoine, Jean-Guillaume Dumas, Mélanie de Jonghe, Aude
Maignan, Clément Pernet, Michael Hanling, and Daniel S Roche.
Dynamic proofs of retrievability with low server storage. In 30th

USENIX Security Symposium, pages 537-554, 2021.

Frederik Armknecht, Jens-Matthias Bohli, Ghassan Karame, and Went-
ing Li. Outsourcing proofs of retrievability. IEEE Transactions on
Cloud Computing, 9(1):286-301, 2018.

Frederik Armknecht, Jens-Matthias Bohli, Ghassan O Karame, Zongren
Liu, and Christian A Reuter. Outsourced proofs of retrievability. In ACM
SIGSAC CCS’2014, pages 831-843, 2014.

Amit Ashbel. The complete guide to cold data storage. https://cloud.
netapp.com/blog/cvo-blg-the-complete- guide-to-cold-data-storage.

(8]

(9]

[10]

[11] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea
Kissner, Zachary Peterson, and Dawn Song. Provable data possession
at untrusted stores. In Proceedings of the 14th ACM conference on

Computer and communications security, pages 598-609, 2007.

[12] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene
Tsudik. Scalable and efficient provable data possession. In Proceedings
of the 4th international conference on Security and privacy in commu-

nication netowrks, pages 1-10, 2008.
[13] Microsoft Azure. Azure blob storage documentation.

microsoft.com/en-us/azure/storage/blobs/.

https://docs.

[14] Microsoft Azure. Hot, cool, and archive access tiers for blob data. https:
//docs.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview.

[15] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable
delegation of computation over large datasets. In Annual Cryptology

Conference, pages 111-131. Springer, 2011.


www.cyberinitiative.org
https://aws.amazon.com/s3/storage-classes/glacier/
https://aws.amazon.com/s3/storage-classes/glacier/
https://www.ionos.com/digitalguide/online-marketing/online-sales/audit-compliance/
https://www.ionos.com/digitalguide/online-marketing/online-sales/audit-compliance/
https://azure.microsoft.com/en-us/services/storage/archive/#overview
https://azure.microsoft.com/en-us/services/storage/archive/#overview
https://cloud.netapp.com/blog/cvo-blg-the-complete-guide-to-cold-data-storage
https://cloud.netapp.com/blog/cvo-blg-the-complete-guide-to-cold-data-storage
https://docs.microsoft.com/en-us/azure/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview
https://docs.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

Gautam Botrel, Thomas Piellard, Youssef El Housni, Arya Tabaie, and
Ivo Kubjas. Consensys/gnark-crypto: v0.6.1, February 2022.

Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability:
Theory and implementation. In Proceedings of the 2009 ACM workshop
on Cloud computing security, pages 43-54, 2009.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wauille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 315-334. IEEE, 2018.

Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca
Nizzardo. Zero-knowledge contingent payments revisited: Attacks and
payments for services. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 229—
243, 2017.

David Cash, Alptekin Kiip¢ii, and Daniel Wichs. Dynamic proofs of
retrievability via oblivious ram. Journal of Cryptology, 2017.

Dario Catalano and Dario Fiore. Practical homomorphic macs for
arithmetic circuits. In EUROCRYPT’13, pages 336-352. Springer, 2013.

Dario Catalano and Dario Fiore. Vector commitments and their
applications. In International Workshop on Public Key Cryptography,
pages 55-72. Springer, 2013.

Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese.
Mr-pdp: Multiple-replica provable data possession. In ICDCS’08, pages
411-420. IEEE, 2008.

Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and
Krzysztof Pietrzak. Proofs of space. In Annual Cryptology Conference,
pages 585-605. Springer, 2015.

C Chris Erway, Alptekin Kiip¢ii, Charalampos Papamanthou, and
Roberto Tamassia. Dynamic provable data possession. ACM Transac-
tions on Information and System Security (TISSEC), 17(4):1-29, 2015.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO’86, pages 186—
194. Springer, 1986.

Ben Fisch. Poreps: Proofs of space on useful data. Cryptology ePrint
Archive, 2018.

Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang.
Pointproofs: Aggregating proofs for multiple vector commitments. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 2007-2023, 2020.

Michael Hanling and Daniel Roche. Linear algebra-based proof of
retrievability protocol for ensuring data integrity. https:/github.com/
dsroche/la-por.

Intel. What is storage as a service? https://www.intel.com/content/www/
us/en/cloud-computing/storage-as-a-service.html.

Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for
large files. In Proceedings of the 14th ACM conference on Computer
and communications security, pages 584-597, 2007.

Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In International
conference on the theory and application of cryptology and information
security, pages 177-194. Springer, 2010.

Karen Ann Kent and Murugiah Souppaya. Guide to computer security
log management:. 2006.

Julien Lavauzelle and Francoise Levy-dit Vehel. New proofs of
retrievability using locally decodable codes. In 2016 IEEE International
Symposium on Information Theory (ISIT). 1IEEE, 2016.

Tung Le, Pengzhi Huang, Attila Yavuz, Elaine Shi, and Thang Hoang.
Efficient dynamic proof of retrievability for cold storage. Annual
Network and Distributed System Security Symposium (NDSS), 2023.

RD McDowall. Data integrity and data governance: practical imple-
mentation in regulated laboratories. Royal Society of Chemistry, 2018.
Ralph C Merkle. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic
techniques, pages 369-378. Springer, 1987.

Nicholas Pippenger. On the evaluation of powers and monomials. SIAM
Journal on Computing, 9(2):230-250, 1980.

Ling Ren and Srinivas Devadas. Proof of space from stacked expanders.
In Theory of Cryptography Conference, pages 262—285. Springer, 2016.

[40] Ron Ross, Victoria Pillitteri, Kelley Dempsey, Mark Riddle, and Gary
Guissanie. Protecting controlled unclassified information in nonfederal
systems and organizations. Technical report, National Institute of
Standards and Technology, 2019.

[41] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In
International conference on the theory and application of cryptology
and information security, pages 90-107. Springer, 2008.

[42] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical
dynamic proofs of retrievability. In ACM CCS’13, pages 325-336, 2013.

[43] Victor Shoup et al. Ntl: A library for doing number theory, 2001.

[44] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: A
scalable cloud file system with efficient integrity checks. In ACSAC’12,
pages 229-238, 2012.

[45] Dimitrios Vasilopoulos, Kaoutar Elkhiyaoui, Refik Molva, and Melek
Onen. Poros: proof of data reliability for outsourced storage. In
Proceedings of the 6th International Workshop on Security in Cloud
Computing, pages 27-37, 2018.

[46] Paul Voigt and Axel Von dem Bussche. The eu general data protec-
tion regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer
International Publishing, 10(3152676):10-5555, 2017.

[47] Huaqun Wang. Proxy provable data possession in public clouds. /IEEE
Transactions on Services Computing, 6(4):551-559, 2012.

[48] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling
public verifiability and data dynamics for storage security in cloud
computing. In European symposium on research in computer security,
pages 355-370. Springer, 2009.

[49] Pieter Wuille. libsecp256k1. https://github.com/bitcoin-core/secp256k1.

[50] Yan Zhu, Huaixi Wang, Zexing Hu, Gail-Joon Ahn, Hongxin Hu,
and Stephen S Yau. Efficient provable data possession for hybrid
clouds. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 756758, 2010.

APPENDIX
A. Correctness of our proposed MAC scheme

We first present the correctness of a homomorphic MAC
scheme . Let x € K. Without loss of generality, assume there
are m homomorphic commitments (cmy,...,cm,,) € C and
(01,...,0m) € T are their corresponding tags created under
states (st1, ..., stm) € F, respectively. Let st’ € F be a new
state and (cy,...,¢y) € F are constants. X is correct if

. Sign, é(ci = em,), st') =

i=1
3.UpdTag (Z.UpdState,,C {(stl, c1), .- (Stm,cm), st’] , )

E.Combine{(ol, 1),y (Om, cm)}>

and
m

Y. Verify,, ( HH(CZ X cm;), X.Combine [(01, €1);--.
i=1 (6

...,(gm,cm)},(stl,cl), L (stm,cm)) —1

Now we show how our proposed MAC in Figure 2
achieves correctness. Let (gV?,...,gY™) be commitments and

(01,-..,0m) are their corresponding tags created under states
(st1,...,stm), respectively. By our X.Sign algorithm, we have
that

o = (g¥i)* - B (ksst) @)

Let g¥’ =[[;Z, 8", where (ci, ...

the tag of g¥ .

,Cm) € Fp and o’ is


https://github.com/dsroche/la-por
https://github.com/dsroche/la-por
https://www.intel.com/content/www/us/en/cloud-computing/storage-as-a-service.html
https://www.intel.com/content/www/us/en/cloud-computing/storage-as-a-service.html
https://github.com/bitcoin-core/secp256k1

Game Gj.
Definition 6 applied to our X scheme in Figure 2. So,

Game G;.
PRF function F' in our scheme with a truly random function.

Due to our X..Combine algorithm

m m
O'/ _ Ho_ic, _ |:Hga.vi.c7¢:| Chita ci-F(k,st;) (8)
i=1 i=1
The update token by our ¥.UpdState algorithm is
T = hF(k,St/)f ;n:l ci-F(k,st;) (9)
Finally, the updated tag by 3.UpdTag algorithm is
&= _ [Hgvi.ci.a} . hF(k,st')
=t (10)

—ZSign( Hg‘“ ci st)

Additionally, the a - b computed in our 3. Verify algorithm
satisfies

a- b V/'llh’l‘/

m
=g _ H gvi»ci-ahci-F(hsti)

=1
m

(gvi-(th(k,sti)) €

(1)

jamE

i=1

which is the output of our ¥.Combine algorlthm

B. Proof of Theorem 1

We show that our MAC construction achieves unforgeabil-

ity property via a sequence of indistinguishable hybrid games
Go, G1. Let Wy and Wy be the events that A wins at G and
GG, respectively.

This game is the attack game presented in
Pr[Wy] = Adv[A, X].

(1 is identical to Gy, except that we replace the

Specifically, r <— F(k, st) is replaced with & Zy. Let Ay

be the PRF adversary against F'. We have that

| Pr[Wo] — Pr[Wh]| = Adv] Ay, F

We now give the detail of how the challenger C in G

proceeds as follows.

Init. o & 7, £:= {0},

Query. At each time step, A submits to C either a signing
query or an update query as follows.

e Signing Query. A submits a signing query containing
(g¥,st).

1. If st € L, reject

2. r & Ly,

3. o gV *h"

4. L+ LU (st;gY,7)

5. Send o to A
e Update Query. A submits an update query
((sth,c1)y ..., (sth,,cm), st).

1. If (st € £) A 3st); ¢ L for some j € [m], reject
2. (g"? i) L(st ) for j € [m]

3. r<—Zp

17

fer—zgnzlcjr;-
T b

Send 7 to A
g' < IIjL.8"
L+ LU(st;gY,7)

Vj-Cj

® Nk

Output. A outputs (g¥ 0", (st},c}),..., (st cf)). To
determine if .4 wins the game, we first analyze A’s transcript

T when querying signing and update oracles.

Transcript. 7 contains a list of tags and update tokens,
each of which corresponds to a unique state. Specifically,
T = {(Stl,h), (Stg,t2)7 ey (Stn,tn)} where t; € {0‘,‘, Ti}.
As can be seen in step 2 and step 3 above, each ¢; contains
an independent random 7; € Z,. Thus, the tags and tokens
from A’s view are independent and indistinguishable. Thus,
the probability that A can determine « and randoms being
used to create the tags and tokens from the protocol transcript

is 1/p.

We continue to analyze the A’s output to determine if A
can win the game. So, we next compute

o If sty ¢ L for some ¢ € [m], set r} r & Zyp. Set 1% < 1;
for all other sty € L, where 1 < £(st7) (type-1 forgery).

e Else, set r¥ < r;, where r; < L(st}) for all i € [m]

A wins (i.e., event W7 happens) if
f— (

g' # Hg“""i,
i=1
ci #£0 Vi € [m]. (14)

Let 7" and —7T be the event that A outputs a type-1 forgery
and a type-2 forgery, respectively.

VI)AREZ T and (12)

where g¥i < L(st])Vi € [m], and (13)

Type-1 forgery Recall that g = (gl,...,gn) are public
generators. Let § be a subgroup generator g such that g% = g;
for i € [n] with some arbitrary a;, and g” = h for some x.

Let v* = (v],...,v}) be some vector committed to g¥ . (12)
can be rewritten as
gH = gi= e w(eir]) (15)
For (15) to hold, A needs to find 1 € Z, such that
B = Z av +Z(E(C:‘T:() (16)

—ocA—i—xB
where A =377 | a;vf and B = 3 "

Assuming that even DLP is solved, i.e., A knows all a; for
i € [n], = and thus, can determine v* from g¥" and compute
A. However, we can see that there always exists at least an
unknown random 7} in B. Thus, the right-hand side of (16) is
independent of A’s view and indistinguishable from a random
value in Z, due to o and B. Therefore, when T' happens,
the probability that (16) holds is 1/p. Thus Pr[Wy A T =

(1/p) - Pr[T].

Type-2 forgery. A outputs (st7,..., stk ), all of which were
previously queried in the query phase. Let (gVi,r;) < L(st})

zlzz



for i € [m]. A wins if g¥ # [[/", g¥*"% and (12) holds.

Let 01,...,0,, be the tags of g¥',...,g¥" under state
sty ..., sth, respectively, ie., o, = g¥v*h™ for i € [m].
Define

m m
= Hng-CI and o’ := Haicf
i=1 i=1

It is easy to see that ¢’ is a valid tag for g¥’. So, the

following two relations hold:

m

gv*-aHhc:-r: -0
=1
m

v« clrg ’

i=1
Since r; = rVi € [m)], it is equivalent to

ga-(v*fv') (17)

To produce a valid type-2 forgery, A needs to find a pair
(g¥ , o) satisfying (17). We have that g¥° # [[/~, g¥/"% (by
(13)), v* # 377, ¢f - vj, and thus v* # V.

Since « # 0 is indistinguishable from a random in Z, in
the A’s view (as proven in the protocol transcrlpt analy51s
above), the probability that A can find v* resulting in g¥
and o satisfying (17) is 1/p.

=o/o’

So we have that Pr[Wy A =T =
all together, we have that

(1/p) - Pr[=T]. Putting it

PI‘[WQ] = PI‘[WQ/\T]—FPI‘[WQ/\—\T] =

1
;(Pr[T]—FPr[—\T]) =

C. Proof of Theorem 2

In the data read protocol, the authenticity is straightfor-
ward due to soundness and completeness of the underlying
VC scheme. In audit protocol, suppose (vi,...,v;) are data
blocks being audited. Let (g¥?,...,g"*) be the commitments
of (vi,...,v¢). In the first step, the client requests a pair
(1", gv? TI™, of, where (o1,...,0:) are the tags of
(g¥t,...,gv*) created under specific states (sti,...,st:),
respectively, and p is a random scalar. Due to the unforgeabil-
ity of our MAC scheme, each (st;,gv¢,0;) is well-formed,
ie, o = gviohf'®st) for each i € [t]. That means
(T, gv"", TI)_, 0:"") is well-defined by (sty, ..., st;) and
p indicated by the client. By Theorem 1, the probability
that the malicious server can cheat the client to accept
(I 1 8% HZ”IU”)) where g¥i # gV¥i or o] # oy for
some 1 is negl()\) In other words, the adversarial server must
correctly output (T, gV, [T._, 0:*"), otherwise the client
will reject with overwhelmmg probability.

In the final step of the audit, the client requests the server to
evaluate the polynomial f(X) = ZdDzl aq- X1, where ag =
2321 p’ -v;[d], at a random point v and verify the evaluation.
As we make use of PC schemes (i.e., KZG and IP-based) with
completeness and soundness properties, the probability that the

18

malicious server can deviate from the protocol and fool the
client to accept a wrong proof/evaluation is negl(\).

All the above arguments indicate that the malicious server
must always follow the protocol faithfully as the honest server,
otherwise, the client will reject with overwhelming probability,
and this completes the authenticity proof of our schemes.

D. Proof of Theorem 3

Let P (opy,...,0p,), Where op, €
{PRead(j), PWrite(j, b’), PAudit} for some j € [N] be
the sequence of interaction between the client C and malicious
server S*. Let Csin, S5, be their final state at the end of the
interaction P.

We start by proving the following lemma.

Lemma 2. There exists an extractor & that, given the access
to the malicious server execution during PAudit protocol,
it can extract requested audited blocks with overwhelming
probability.

Proof: Remark that each of our PAudit protocol execution
invokes four main steps as follows.

1) The client specifies ¢ random blocks (v;,,...,v;,) with
corresponding indices (i1, ...,#) to be audited.

2) The client sends a random scalar p and requests the server
to perform a random linear combination of ¢ audit blocks
based on p as Z Vi, Pl

3) The server returns the commitment of polynomial repre-
senting the aggregated block by random linear combina-
tion as g¥, where v = Z;Zl Vi, pY

4) The client sends random evaluation point o and requests
the server to evaluate the committed polynomial at «, and
verifies the proof.

Let C and S* be the client state and the server state after step
1. Let C and S* be the client state and the server state after
step 3. Let v + £5”(C, 1*) be the extractor of the underlying
PC scheme with knowledge soundness that can extract the
polynomial f(X) = ZdD:O v[d+1]- X4

The Extractor. We define an extractor £ (C,1%,1*) that can
extract all individual v;, for j € [t] using the extractor of
polynomial commitment as the subroutine as follows.

1) Initialize an empty key-value table F := {(}.
2) Keep rewinding and executing the following step in n =
max(2t, A) - m = poly()) times:

a) Pick a random scalar p € IF),, and continue the remain-
ing steps of the audit with S*. If step 3 is accepted,
invoke £’9(C,1%) in step 4 to extract f(X) and set

F(p) := f(X). Rewind C and S* to the state prior

to this execution (i.e., C and &) and continue the next
iteration round.
If the number of entries in F is |F| < ¢, output fail.
Otherwise, pick ¢ distinct pairs in F as (p;, fi(X))
for i € [t]. Let V. = vand[p1,...,p;] and V™! be
a Vandermonde matrix and its inverse, respectively,
f= (fl(X)7 oo aft(X)) ComPUte Vi, = V_lijv *] -f
for j € [t].

b)



We argue that the extractor £ must either output all correctly
aggregated polynomials in F' or return fail. In other words, the
extractor will never put an incorrectly aggregated polynomial
into F and always detect failure. This is achieved by the
authenticity property of our scheme by Definition 3, specif-
ically the unforgeability of our MAC scheme for polynomial
(homomorphic) commitment and the knowledge soundness of
underlying PC scheme, both of which guarantee that £ never
extracts and outputs incorrectly aggregated polynomial into F.
Specifically, let p be the probability of the bad event, where
one of the executions by £ output some incorrectly aggregated
polynomial into F without being rejected by the client. In
other words, the bad event happens if the malicious server
can break either the unforgeability of our MAC scheme or
the knowledge soundness of underlying PC scheme. Since the
extractor executes steps 2-4 in PAudit protocol with rewinding
in n = poly(\) times, there is at least )/n probability that the
bad event can happen in a single random execution with S*.
However, that also means S* can be used to break either the
unforgeability of our MAC scheme or the knowledge sound-
ness of PC scheme with advantage p/poly(\). By Definition 3,
we must have that p = negl(\).

We now show that £ will never return fail. Let E be the
event that fail is returned. For each round 7 € [n] executed
by the extractor in step 2, we introduce random variables as
follows.

1) Let X; € {0,1} be an indicator random variable, where
X; = 1 if the execution at round ¢ does not reject.

2) Let G; = {p € F} be a random variable indicating the
set of keys in F at the beginning of round .

3) Let Y; € {0,1} be an indicator random variable, where
Y; = 1if |G;] < t and the random scalar p that the
extractor chooses at round ¢ is already used in some
previous rounds, i.e., p € G;.

At the iteration round 4, if (X; = 1AY; = 0), there is a new
pair of (p, f(X)) being added to F, i.e., |G, 41| = |G;|+1 and,
therefore, after n = poly(\) iterations, |G| > t. That means
the event E only happens if > . ; X; < t or there exists a
round ¢ where Y; = 1. So we have that

Pr[E] < Pr lZXi <t|+Y Pr[v;=1]
=1 i=1
We have that ) . Pr[Y;
% >, X;, we have that

Pr [Zﬁ:X <t] <Pr [X <1/p — (1/p/_

< exp (—2n (1/p’ — t/n)2)

< exp(—n/p’)

<27
where the second and third inequalities are due to Chernoff-
Hoeffding bound and (p’ = poly()\; A1/p" < 1/2), respec-
tively. We have that Pr[E] < t(&‘fll + 27> = negl()\). This
means the extractor can always extract correct audited blocks
in each audit protocol execution. [ ]

)

19

We now prove that our PAudit protocol achieves retriev-
ability by constructing another extractor £ that can recover
the entire database content using the internal £* within the
PAudit protocol as the subroutine.

The Extractor. We define the extractor £ (Cqn, 17V, 1) that
works as follows.

1) Initialize an empty database M := (L)N', where N/ =
2N.
2) Keep rewinding and auditing the server by repeating the
following step for n = max(2N, A) - ¢ = poly(\) times:
a) Execute protocol Audit with §* by picking ¢ distinct
random indices (iy,...,4;) at step 1 of the protocol.
Invoke the extractor & at step 2 to extract audited blocks
as (Viy,...,vi,) < E%n(Cr,1%). If the protocol is
accepting, set M[i1] = vq,...,M[i;] = v;,. Rewind
C and S* to the state prior to this execution (i.e., Cfpn
and &) and continue the next iteration round.
If the number of “filled in” values in M is |{j € [N'] :
M[j] #L1}| < 6 - N’, where § = % then output fail.
Otherwise, by Lemma 1, apply corresponding erasure
decoding to M to recover and output (by,...,by).

We can now simply follow the proof in [20] to show
that the extractor can always recover the entire database. For
completeness, we present the main arguments here. We first
argue that the extractor must either output the correct database
content M or return fail. In other words, the extractor will
never output an incorrect database M and always detect failure.
This is achieved by the authenticity property in Definition 3 of
our PAudit protocol and specifically, the extractability property
by Lemma 2, which guarantees that £ never extracts and
outputs incorrect blocks into M per audit iteration.

b)

We now show that the extractor will never return fail. Let
E be the event, where fail is returned. For each round i € [n]
executed by £ at step 2, we introduce random variables as
follows.

1) Let X; € {0,1} be an indicator random variable, where
X,; = 1 if the audit at round ¢ does not reject.

2) Let G; = {j € [N'] : M[j] #L} be a random variable
indicating the subset of filled-in values in M at the
beginning of round .

3) Let Y; € {0,1} be an indicator random variable, where
Y; =1if |Gi| <6 N’ and all the positions (j1, ..., jt)
that £5" chooses to audit at round 7 are already checked
in previous rounds, i.e., (j1,...,j:) € G;.

At the iteration round i, if (X; = 1 AY; = 0), there exists
at least one new position of M being filled in, i.e., |G;11]| >
|G;| + 1 and, therefore, after n = max(2N’, ) - d = poly(A)
iterations, |G| > N’. That means the event E only happens
if >0, X; < 8- N’ or there exists at least a round ¢ where
Y; = 1. So we have that

+iPr[Y¢:1]

i=1

Pr[E] < Pr lz X;<d-N'

i=1

)

N/
(%

< §t. Let

j <

For each round 4, we bound Pr[Y; = 1] <
% >, X;, we have that



|

wher

n B . N,

ZXi<(5~N’] SF’r[X<1/p’—(l/p'—(S )]
n

i=1

< exp (—Zn (1/p'—§- N’/n)Q)

< exp(—n/p’)

<27

e the second and third inequalities are due to Chernoff-

Hoeffding bound and (p’ = poly(A) A 1/p" < 1/2), respec-
tively. Given ¢t = poly(\), we have that Pr[E] < né' +27* =

negl(A) and this completes the extractability proof.

E. Inner Product Argument by Bulletproofs

We present the original proof of the improved inner product

argument in Bulletproofs [18] in Figure 14.

(1) P’s input: (g, h, P,a,b,c)
(2) V’s input: (g, h, P, c)
3 vzl oz
4 V->Px
) P =P .y*c
(6) Execute protocol below on Input (g, h,u®, P’;a,b)
(1) Input: (g,h € G, u, P € G;a,b € Zp)
(2) P’s input: (g,h,a,b,c)
(3) V’s input: (g, h,u, P)
(4) I n =1 then
() P ViabeZ,
(6) V computes ¢ = a - b and check if P = ghbuc. If yes, V
accepts; otherwise V rejects.
(7) Else
®) P computes:
9) n' =n/2
(10) cL = <a[:r€’]’s[n’:]>’ CR = <a[n’:]/7 b[bn/]>
ar:n /. amm : m !
(an L=l e R= gl e
(120 P—->V:LR
(13) viedz
(14) Vo>P:x
(15) Both P and 11) compute:
(16) g =gl 0 g[”’n/q
(17) W =h?  OhT
(18) P computes:
(19) a = app) - T —+ app - 1
(20) b’ = b[:n’] '23_1 + b[n’:] - T
@y v:pP =r".p.R’
(22)  Recursively repeat this protocol on Input(g’, h’, u, P’;a’, b’)

Fig. 14: Inner Product Argument [18].

20



	Introduction
	Our Results and Contributions
	Technical Highlights
	Related Work

	Preliminaries
	Commitment Scheme
	Polynomial Commitment
	Vector Commitment

	Error Correcting Code

	Our Models
	System Model
	Threat and Security Models

	Homomorphic Authenticated Commitment
	Definitions
	Our MAC Scheme for DLP-based Commitment

	Our Proposed Dynamic PoR
	Generic Construction
	Instantiations
	Security Analysis
	Efficiency

	Public Auditability
	Experimental Evaluation
	Implementation
	Experimental Configuration
	Overall Results
	Detailed Cost Analysis
	Storage
	Public Audit Experiments

	References
	Appendix
	Correctness of our proposed MAC scheme
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Inner Product Argument by Bulletproofs


