
Da Yan Concentrator and Extender of Random Data (DYCE)

Anna M. Johnston Puru Kulkarni
Juniper Networks

October 18, 2022

Abstract

DYCE is a simple to analyze algorithm which converts raw entropy into usable
cryptographic entropy using the Da Yan (commonly known as the ‘Chinese Remainder
Theorem’). This paper describes and analyzes DYCE, giving its detailed algorithmic
description.

1 Entropy and Random Data

Random data and entropy are critical components for cryptographic systems. Exposed random
data compromises security. Getting, measuring, and insuring a steady stream of secure random
data, however, is difficult.

Before continuing, I’d like to clarify the difference between entropy and random data. En-
tropy is what is measured when we speak of randomness. For our purposes, data is a container
which stores entropy, with random data containing a measurable amount of entropy. The term
‘Shannon’1 is the unit for information/entropy within data used in this document. This is a
standard term[3] and avoids confusion between data and entropy. Data may be said to have
an entropy rate, such as Shannons-per-bit or Shannons-per-byte, or have a total entropy in
Shannons. The maximal entropy rate is one and the minimal is zero Shannons-per-bit.

Raw (or ‘true’) random often has low entropy rate, is time and computationally costly,
and by its nature, unpredictable. Oxymoronically named “Deterministic Random Number
Generators”, or RNG/DRNG2 for short, convert the raw entropy into a cheap, plentiful supply
of data which has maximal entropy under various statistical tests.

These ‘generator’ algorithms do not create entropy. To avoid the implication of generating
entropy, these algorithms will be called ‘Entropy Concentrator and Extender’, or simply ECE.

ECEs rely on having a random initial state with the output revealing little information
about the state. This leads to a two part generation process, and (essentially) two different

1Shannon is an entropy unit in base 2. ‘Nat’ and ‘hartley’ are the information unit measures base e and base
10 respectively.

2‘Number’ may be replaced by ‘Bit’, and ‘Cryptographic’ or ‘Pseudorandom’ may precede (ex: CRNG). The
terms ‘Generator’ and ‘Deterministic’ are misleading as no deterministic system generates entropy.

1



types of entropy:

1. Raw entropy is collected from one or more sources and collected until ‘enough’ entropy
has been gathered;

2. Cryptographic entropy is created by passing the raw entropy through a cryptographic-like
process. In particular, it must be computationally one-way: given a bounded amount of
output and complete knowledge of the algorithm, an attacker is unable to determine any
part of the secret state with a given amount of computational resources and time. This
produces a longer, more cryptographically robust random data stream.

As this paper describes a new cryptographic ECE, unless otherwise stated, ECE implies cryp-
tographic ECE.

Existing cryptographic algorithms – block ciphers (AES) and hash functions – are often used
in ECE design[1]. While these algorithms do a great job of statistically smoothing data and
giving the output some of their cryptographic properties, they tend to waste entropy (ex: hash
functions coalesce) and computation – overkill for the job at hand. Furthermore, it may be risky
to use the same cryptographic processes to generate their own cryptovariables or parameters.
For example, it may not be wise to use AES to generate the cryptographic keys for AES.

This paper describes DYCE (Da Yan cryptographic Concentrator and Extender), a different
approach to entropy concentration and extension. Instead of using cryptographic algorithms,
a mathematical approach to concentrating and extending entropy is proposed. Using very
simple, well understood techniques such as Galois registers and the Da Yan (a.k.a. the Chinese
remainder theorem), entropy is concentrated much more efficiently. Failure cases are easy to
spot and handle, and the theoretical nature of the design also makes it easier to analyze.

1.1 Entropy Flow

DYCE (and other ECEs) extend entropy, but no system can convert finite entropy to infinite.
For this reason, raw entropy entering and cryptographic entropy exiting the system should be
monitored. The flow of output cryptographic entropy should be balanced with the flow of input
raw entropy.

To manage this flow, DYCE uses an entropy ratio: Cryptographic Shannon-per-Raw Shan-
non (equation 1.1.1). This ratio estimates how many Shannons each raw bit contributes how
much is lost in each output bit. Raw entropy entering the system is easily monitored, as the
entropy rate of the incoming raw random data is assumed known. Cryptographic entropy leav-
ing the system is harder to estimate. This depends on the strength of the cryptographic wall
between the two types of entropy. In other words, what attacks are possible and how much
output does it need to gain information about the state of the system?

2



All known cryptographic attacks against secure ECEs are are impractical (hence why they
are considered secure), and allow for nearly infinite ratios. This may be why they are mistakenly
called ‘generators’. Even with no known practical attacks, entropy flow should be monitored to
account for unforeseen attacks. DYCE approximates the entropy flow, cryptographic random
output per Shannon of raw input, at either a conservative, moderate, or generous rate.

Cryptographic Shannon per Raw Shannon
Conservative Moderate Generous

210 216 220
(1.1.1)

Note that these numbers are somewhat arbitrary and may be modified if needed. In the design
proposed the moderate flow is used (figure 2.5).

2 Basic Design

This design, like most, consists of two different types of entropy: raw and cryptographic (sec-
tion B). Unlike many designs, DYCE does not use cryptographic techniques (block ciphers or
cryptographic hash functions) to process raw random. Simple, well understood mathematical
tools are used instead to accumulate, mix, and extend raw random input.

2.1 Design Overview

DYCE (figure 2.1) consists of two processes and storage areas:

1. An entropy reservoir (section 2.2) collects, concentrates, and mixes raw random en-
tropy. A simple Galois stepping mechanism (section 2.2.2) insures data is evenly mixed,
with no entropy lost in the process. This is not a cryptographic process. Its only purpose
is to evenly mix and concentrate entropy.

2. The extraction state (section 2.3) stores how data is extracted from the reservoir. The
Quotient Ring Transform (QRT) [4] extracts data from the entropy reservoir dependent
on the extraction state. Output words are stored in the extraction register. They can
be thought of as small hash values of the entire entropy reservoir.

3



du−1 du−2 · · · d2 d1 d0
Entropy
Reservoir

kv−1 kv−2 · · · k2 k1 k0
Extraction

State

ev−1 ev−2 · · · e2 e1 e0
Extraction
Register

dj are nr-bits long; kj , ej are n-bits long

Figure 2.1: DYCE Entropy Reservoir and Extraction State

Galois stepping and QRT create a system where output (extraction register) can be shown
to reveal nothing about the current data in the entropy reservoir (and thus the next state) or
the extraction state. Analysis in the case where an attacker knows or has control over various
portions (section 4) of the device is also simplified.

The computations and theoretical underpinnings of this design are based on finite extension
fields over F2.

n Smallest data unit is in F2n . Bytes (n = 8) are generally chosen for
efficiency.

u This is the number words in the entropy reservoir; u > 4.
r Each word in the entropy reservoir is rn-bits long.
v This is the number of words in the extraction state. Each itera-

tion will produce v words, each n-bits long; output at each iter-
ation should be no more than half the bits in entropy reservoir:
v < (u · r)/2.

Figure 2.2: Chosen Register Sizes (appendix A) for the DYCE

2.2 Entropy Reservoir

The entropy reservoir consists of a set of u words, each rn-bits long (figure 2.1). These words
are used and viewed in two ways. Let dj (figure 2.3) be the data in the j-th word, with

dj = dj,r−1∥dj,r−2∥. . . ∥dj,1∥dj,0,

4



di The data in the i-th entropy reservoir register (nr bits). This is
treated as a degree (r − 1) polynomial over F2n : di =

∑r−1
j=0 di,jx

j

with di,j ∈ F2n or an element in F2nr .
qi Constant, monic polynomials over F2n of degree r, with di ∈

F2n [x]/qi.
ej The data in the the j-th extraction register (n bits).
pj The monic degree one polynomial pj = (x− kj) over F2n , with ej ∈

F2n/pj . Note that kj varies over time and kj ̸= ki for all i ̸= j.
This data is related with the da yan: If D(x) ≡ dj mod qj and has degree less than ur, then

ej ≡ D(x) mod pj , or equivalently, ej ≡ D(kj).

Figure 2.3: DYCE Data

where dj,k is an n-bit value. Then:

1. dj is a polynomial of degree less than r over F2n : dj =
∑r−1

k=0 dj,kx
k, with dj,k ∈ F2n . Note

that
F2n

∼= F2[x]/b

where b (figure 2.6) is a constant, irreducible polynomial over F2 of degree n.

2. dj is an element of the extension field F2rn , with the field represented by

F2rn
∼= F2[x]/B

where B (figure 2.6) is a constant, irreducible polynomial over F2 of degree rn.

The first representation of dj (as a polynomial) is used to extract random, while the second
representation (as an element) is used to concentrate and extend the raw random.

2.2.1 Entropy Reservoir As A Polynomial

As a polynomial, each dj is considered modulo a degree r polynomial over F2n : qj (figure 2.6).
These u polynomials, {qj}u−1

j=0 , are distinct and irreducible (section A). The collection of u

data/moduli pairs represents a large polynomial D. If Q is the product of the moduli,

Q =
u−1∏
j=0

qj ,

then D(x) mod Q is the large polynomial such that:

D(x) ≡ dj mod qj (2.2.1)

for 0 ≤ j < u. This large polynomial is guaranteed to exist and be unique modulo Q due to
the da yan (Chinese remainder theorem).

5



2.2.2 Entropy Reservoir As An Element

As an element of F2rn , dj is a coefficient of a polynomial modulo f (figure 2.6), a fixed primitive
polynomial over F2rn . The full entropy reservoir is treated as a large Galois register, stepped
(figure 2.4) by multiplying by x and reducing modulo f.

If f is f = xu +
∑u−1

j=0 cjx
j mod B, a single step of the Galois register can also be described

with the following equations and in algorithmic form (algorithm 7):

d′i =

{
c0 · du−1 mod B i = 0

di + ci · du−1 mod B 0 < i < u
(2.2.2)

The updated entropy reservoir will be the result of stepping the register a t-times, where
u ≤ t < 2u (algorithm 6)

6

� du−1

?

×cu−1

� du−2

?

×cu−2

� · · · � d1
?

×c1

� d0

?
×c0

-

Entropy
Reservoir

where f(x) = xu +
∑u−1

i=0 cix
i, × is multiplication over F2nr .

Figure 2.4: Galois Step of Entropy Reservoir

Primitive polynomials have the property that a root has maximal order: (2urn − 1). This
means that the stepping process, for non-zero initial states, will step through every non-zero
possible state. For the variables chosen, this implies that the entropy reservoir will loop through
(2urn − 1) =

(
2280 − 1

)
. Note that this does not mean that the output data (extraction register)

will never repeat. One of the strengths of this system is that there are more combinations of
possible entropy reservoir and extraction state which produce the same output data than there
are possible output data states.

2.3 Extraction State and Extraction Register

The extraction state and register each consists of a set of v n-bit words (figure 2.1). The
extraction state contains the values kj which define the polynomials

pj = (x− kj) mod b. (2.3.1)

These polynomials determine how data from entropy reservoir is converted to the random
output in extraction register.

6



s This variable stores the number of Shannon’s currently in the entropy
reservoir.

sm = 260 This is the minimum number of Shannons (section 1.1) which must
be present in entropy reservoir in order for cryptographic random
data to be extracted.

Sr = 215 This is the ratio of output Shannons to input (cryptographic vs raw
Shannons). The value given here is the moderate rate (equation
1.1.1).

w This is the number of times cryptographic random has been extracted
from the system since the last update of the Shannon level.

wm = 585 This is the maximum number of times DYCE can be iterated before
a Shannon of raw random has been used (section 1.1). This number
corresponds to the moderate entropy flow measure – i.e., the flow
rate (Sr) divided by cryptographic entropy out (vn) at each step.
585 =

⌊
Sr
vn

⌋
=

⌊
215

56

⌋
Figure 2.5: DYCE Shannon Tracking Variables

Data in the extraction register will be the large entropy reservoir polynomial (equation
2.2.1), reduced modulo pj (equation 2.3.1).

ej ≡ D(x) mod pj or equivalently ej ≡ D(kj) mod b. (2.3.2)

Cryptographic random output is the data in extraction register: {ej}v−1
j=0 .

3 DYCE Algorithm

DYCE has three main, somewhat independent sections:

Initialization: The states of the DYCE must be initialized (algorithm 2) before they can be
used;

Add New Entropy: New entropy can be added (algorithm 3) at at any time except when
random data is being extracted. The number of Shannons in the entropy reservoir must
be tracked as entropy flows in and out of the DYCE. Entropy entering and exiting during
extraction can be very roughly estimated, but can never be greater than urn.

One restriction on the entropy reservoir is that they can never be all zero. This can only
happen during the addition of new raw random or during an internal update of entropy
reservoir (algorithm 9).

7

alg:InitializeDYCE
alg:addRawRandom


b This is an irreducible polynomial (equation A.0.1) of degree n
over F2. Arithmetic over F2n is performed modulo b (F2n

∼=
F2[x]/b).

qj Each entropy reservoir word j (0 ≤ j < u) has a correspond-
ing, fixed, degree r irreducible polynomial (figure A.2) over F2n

(modulo b). These polynomials are relatively prime to each
other. In other words, the greatest common denominator of
any two polynomials is 1: gcd(qi, qj) = 1 for all i ̸= j.

Q This is the product of all qj polynomials: Q =
∏u−1

j=0 qj .
B This is an irreducible polynomial (equation A.0.1) of degree nr

over F2. Arithmetic over F2nr is performed modulo B (F2nr ∼=
F2[x]/B).

f This is a fixed primitive polynomial (equation A.0.2) of degree
u over F(2nr) used to ‘Galois step’ the entropy reservoir, with

f = xu −
u−1∑
i=0

cix
i mod B, (2.2.3)

and ci ∈ F2[x]/B. A primitive polynomial is an irreducible
(prime) polynomial such that its root has maximal order:
(2urn − 1).

Figure 2.6: Fixed Polynomial Parameters (appendix A) for the DYCE

Extract cryptographic random: The Shannon level in entropy reservoir must be fully filled
before the first extraction of cryptographic random data. Once fully filled, DYCE extends
the raw Shannon’s entering the system to a larger number of cryptographic Shannons by

1. extracting random from entropy reservoir (algorithm 1);

2. stepping the entropy reservoir for the next extraction (algorithm 6).

Output leaving the system will be accounted for. Once in use, the Shannon level should
not get below a set threshold: s ≥ sm. Random is extracted at a rate of vn cryptographic
random per iteration. Using the chosen entropy flow Sr (figure 2.5),

⌊
Sr
vn

⌋
-iterations can

be performed before reducing the Shannon level (s) in entropy reservoir by one.

Besides Galois stepping the entropy reservoir after each random extraction, the extraction
state and entropy reservoir are internally updated. Every time a raw Shannon is used,
the extraction state will be updated (algorithm 8). If too many raw Shannon’s are used
without adding new random, old random from the extraction state is extracted and added

8

alg:extractRandom


to the entropy reservoir (algorithm 9), then stepped and new extraction state is computed.
This does not add new raw Shannons to the system, but the process is one-way which
reduces the ability of an attacker to compute old states from a compromised current state.
This update may never occur if raw random enters the entropy reservoir at a fast enough
pace.

3.1 Algorithm Summary

Algorithms for DYCE are contained in appendix D. The following tables summarize these
algorithms and their functions. Variables for the general size of the parameters (figure 2.2),
tracking Shannons (figure 2.5), data registers (figure 2.3), and constants (figure 2.6) are used
throughout the algorithms.

Main algorithms to initialize, add entropy, and extract cryptographic entropy for
use

Alg Name Description
2 Initialize Initializes an empty DYCE box, preparing the system for in-

coming entropy.
3 Add new raw

entropy
Adds incoming words of raw entropy into the DYCE box, mix-
ing the random and updating the Shannon level of the box.
Called before algorithm 4 if there is not enough random for
extraction, and at any time between random data extractions
when random is available.

1 DYCE Gener-
ate Random

Compute cryptographic random, updating the Shannons used
as needed.

9



Subroutines required either by the main algorithms or by other subroutines
Alg Name Description
4 Compute next

random state
Computes internal random in DYCE box, storing the new ran-
dom output in the extraction register. Called when random is
requested (algorithm 1) and during update procedures (algo-
rithms 9 and 8).

5 Adjust Entropy
Level After Ex-
traction

Adjusts the Shannon levels after an extraction of random
data and updates the extraction state and entropy reservoir
if needed. Called in algorithm 1.

7 Single Step of
Entropy Reser-
voir (Galois
Stepping)

This function performs a single Galois step on the entropy reser-
voir. Called in algorithm 6

6 Stepping the
Entropy Reser-
voir

Computes a random stepping number t between u ≤ t < 2u
and single steps the register t steps. Called in algorithms 8, 11,
3, and 4

9 Update En-
tropy Reservoir

Updates the entropy reservoir in states when enough random
has been extracted with out being replaced. Called in algorithm
4.

8 Update Extrac-
tion State

The extraction state values are updated every time a Shannon
of raw random is is used. Called from algorithms 11, 1, 4, and
9.

11 Handling All
Zeros

An all zero entropy reservoir results in a static state, which is
not allowed. This routine extracts random from the extraction
state and puts it back into the entropy reservoir, updating the
Shannon level of the system. Note that a zero state can only
occur when new random is being added or entropy reservoir is
updated. The probability of an all zero state occurring at any
point is close to zero: pr(zero entropy reservoir) = 1

2urn . Called
in algorithms 3 and 9.

16 Single QRT Ex-
traction, using
p(x) = (x− k)

Extracts the value from the woven version of D, modulo a monic
degree one polynomial (x − k). For a more theoretical, less
concrete version, see algorithm 15. Called in algorithms 10, 14.

10



Subroutines required either by the main algorithms or by other subroutines
Alg Name Description
13 Inward QRT Converts the data in the entropy reservoir to a form which can

be easily evaluated to obtain the random output in extraction
register. This is called from algorithms 8, 12. Output from this
algorithm is also needed as input to several other algorithms.

14 Outward QRT Converts the transformed values (algorithm 13) into reduced
(evaluated) output. This is called from algorithms 12.

12 QRT Performs the Quotient Ring Transform on the entropy reser-
voir, returning the transformed version which is used to extract
random or create a new extraction state. Called from algorithm
4.

15 Single QRT Ex-
traction

This is a more general, and less concrete, extraction algorithm.
For a more concrete version, see algorithm 16. Called in algo-
rithms 10, 14.

17 Polynomial
Evaluation over
F2h

Evaluates G(x) at a where the a and the coefficients of G are
considered modulo a degree h binary polynomial m

18 Modular Multi-
plication in F2h ,
for small h

Performs multiplication modulo m(x) over F2, where the degree
of h is less than a single computer word size. Polynomials are
stored in a single computer word. For example, the polynomial
x3 + x+ 1 is stored as the binary value 1011, or in hex as 0xb.
Note: for if h is sufficiently small (say h ≤ 8), multiplication is
much faster if done using look-up tables (algorithm 19).

19 Modular Multi-
plication in F2h ,
for small h us-
ing a primitive
degree h poly-
nomial.

Performs multiplication modulo m(x) (where m is a primitive
polynomial) over F2, where the degree h is less than a single
computer word size, using power and log table look ups.

20 Polynomial
Modular Mul-
tiplication over
F2h

Performs multiplication modulo q(x) over F2h . This algorithm
is similar to 18, except coefficients of the polynomials a, b are
h-bit values (elements in F2h) instead of bits, and algorithm 18
or 19 replaces some of the shifts.

4 Simple Analysis

The DYCE was designed to eliminate entropy loss in the collection mechanism and have an
extraction mechanism which can be easily analyzed. This is accomplished using well understood
mathematical processes: a very large Galois register to mix and retain entropy, and using the
da yan to extract entropy.

11



4.1 Entropy Collection, Mixing and Retention

The entropy reservoir uses Galois registers to collect and mix entropy. Galois registers effi-
ciently step through all possible (2urn − 1) =

(
2280 − 1

)
non-zero states. All entropy (up to

the maximum urn-Shannons) entering the system remains in the system, no matter how many
Galois steps are performed. In other words, stepping the entropy reservoir does not make it
any more predictable. This contrasts with random functions, such as a hash, where repeatedly
stepping the function does lose entropy (section 4.3).

It should be noted that Galois stepping is easily invertible. One argument against using
Galois registers might be that if an attacker compromises the randomizer, then all previous
states would be compromised. However, there are several actions in the system which prevents
an attacker with full knowledge of the entropy reservoir at a given time to back it up. First,
new random data is regularly added to the register. Without knowledge of the entropy added
at each state, it is impossible to back up the register beyond the most recent addition of new
entropy.

Second, entropy flow is monitored, and if cryptographic output above a given limit is pro-
duced without sufficient raw random input, the entropy reservoir will be updated using a
one-way function on the current entropy reservoir and extraction state. This internal update
prevents an inversion in such a catastrophic failure, but it does not create more entropy. As
mentioned earlier, deterministic generation of entropy is a fallacy.

4.2 Entropy Extraction

The following properties are guaranteed by using the da yan for the extraction process and
having the number of output bits (extraction register) at each round equaling only a small
fraction of the entropy reservoir bits:

• Each output byte output depends on every bit in the entropy reservoir.

• Identical output values can occur with completely different data in the entropy reservoir.

• No information about the entropy reservoir or extraction state is gained from the extrac-
tion register output alone.

The major concern with entropy extraction is: what information about the entropy reservoir
or the extraction state can be obtained from the output (extraction register)? The simplest
model of DYCE equates the entropy reservoir to a random polynomial D(x) (equation 2.2.1),
with degree bounded by ur = 7 · 5. Output in the extraction register (ej) is simply this
polynomial evaluated at points determined by extraction state:

D(x) ≡ ej mod (x− kj),

12



−30 −20 −10 0 10 20 30

−20

0

20

x

D
(x
)
=

m
x
+

b

Simplified D, over the rational numbers.
If the ur = 2, and the output is {5, 8,−8}, the D could be any line except one that is vertical.

This graph shows only four possible D polynomials out of an infinite set.

Figure 4.1: Simplified D, Extraction State, and Extraction Register

for 0 ≤ j < v = 7, with kj unknown. This is what the extraction register reveals if either the
extraction state or the entropy reservoir were compromised:

1. If the extraction state(kj) was compromised, then the polynomial E(x) mod P (degree
bounded by v) would be known and

D(x) = E(x) + P (x)H(x)

where H(x) is an unknown polynomial of degree bounded by ur − v. Using the values
given, there are still (7·5−7)8 different entropy reservoir states which give the same output.
Assuming the extraction state does not change over time and that no new entropy enters
the system, multiple iterations could be used to reduce the possible candidates for D.

2. If the entropy reservoir (D) was compromised and the extraction state did not change,
multiple iterations could be used to reduce the set of possible extraction states.

To illustrate how little information is exposed in the output, assume that instead of a high
degree, D was a degree 1 polynomial – i.e., a line (figure 4.1). Excluding horizontal or vertical
lines (and non-distinct extraction register), every line contains all possible distinct set of output
values. If all combinations are possible for any D, no information on D or the constants it was
evaluated at (kj) is revealed.

13



4.3 A Case Against Using Hash Functions

Hash functions are a commonly used tool for generating cryptographic random data. These
functions, which in theory resemble a random function, do loose entropy. Repeatedly applying
a hash function coalesces to a subset (cycle) of all possible values [2]. For example, if

x1 = SHA256(x0)

x2 = SHA256(SHA256(x0))

xn = SHAn
256(x0) = SHA256(SHA256(SHA256(. . . SHA256(x0))))

is SHA-256 repeated n times. This function will eventually repeat: xa = xb for some positive
integers b > a, giving a cycle length of len = (b− a). Different starting input may give different
cycle lengths. The size of the cycle varies, but is on average around the square root of all
possible values. For SHA-256, you’d expect a cycle length of about n = 2128. While 2128 is
still huge, it does indicate that hash functions may not be optimal in collecting and preserving
entropy.

While cryptographic hash functions do not preserve entropy, they do prevent attacks based
off compromise of internal data. These functions are designed to resist first and second pre-
image attacks as well as collision attacks. If a hash is used in a deterministic random number
generator, and the current state of that hash is revealed, it would be computationally infeasible
for an attacker to find previous values.

Galois registers do not have this characteristic. They are trivial to back up, so given
contents of the entropy reservoir at time t and assuming no new raw random has been added
after time (t − h), the contents at time t − j can be computed, for any j < h. However,
adding raw entropy and updating the entropy reservoir (algorithm 9) prevent the inversion
process. Furthermore, the state of the cryptographic randomizer should be treated similarly
to the sensitive cryptovariables. Compromise of these variables is catastrophic and indicates
problems beyond algorithmic fixes.

A Fixed Parameters

Table A.1 gives the suggested sizes for the fixed parameters in DYCE.
There are a few things to note before defining these parameters:

• Coefficients and polynomials over F2 are represented in short hand as hexadecimal values,
with bit j representing coefficient j. For example, b = 0x171 represents the polynomial
x8 + x6 + x5 + x4 + 1.

1 7 1

1 0 1 1 1 0 0 0 1

x8 − x6 x5 x4 − − − 1

14



• The base field polynomials b and B were generated using standard techniques [5]. The
7 polynomials of degree 5 over F28 were generated by first generating 7 irreducible poly-
nomials of degree 5 · 8 over F2. Each of these polynomials factors into 8 polynomials of
degree 5 over F2[x]/b. One of these factors is chosen for the entropy reservoir moduli,
with the remaining (8− 1) discarded. This produces 7 independent degree 5 irreducible
polynomials over F28 .

The entropy reservoir polynomial moduli needed for the QRT and random extraction are
in figure A.2. During the transform (algorithm 13), inverses of some of these polynomials are
required. These can be computed using the Euclidian algorithm (not given here) either as
needed or precomputed before the algorithm begins. For those not wishing to implement the
Euclidian algorithm for polynomials over F2n , the inverses of the necessary entropy reservoir
moduli are given (figure A.2).

These parameters and their description follows:

n : Size of lowest degree base field used in DYCE.
u : Number of elements in the entropy reservoir.
r : Degree of entropy reservoir elements over F2n .
v : Number of elements in extraction state/register.
b : A degree n polynomial over F2. This is the base polynomial for both the entropy

reservoir and extraction reservoir/states.
B : A degree nr polynomial over F2. This is the base polynomial for the Galois register

polynomial (equation A.0.2).
qj : Each entropy reservoir word is assigned a unique degree r polynomial over F2n . The

data in the reservoir word j is considered to be in the field F2n [x]/qj . Inverses of
qj mod qi for 0 ≤ i < j < u, needed in converting data from the entropy reservoir
to the extraction register, can be found in figure A.2.

f, ci: This is a fixed primitive polynomial (equation A.0.2) of degree u over F(2nr) used to
‘Galois step’ the entropy reservoir, with f = xu−

∑u−1
i=0 cix

i mod B and ci ∈ F2[x]/B.
A primitive polynomial is an irreducible (prime) polynomial such that its root has
maximal order: (2urn − 1).

15



n = 8 u = 7 r = 5 v = 7 B = 0x1a9fa84e079 b = 0x171 (A.0.1)

Coefficients for Galois Register Polynomial f(x) = xu +
∑u−1

i=0 cix
i

i 6 5 4 3 2 1 0

ci 0xa255a09801 0x2b364ac4d9 0x2ca010c6f3 0x228fdea59c 0xc6e97260ef 0x1dc49bff3e 0x72f6f5f1de

(A.0.2)
q0(x) ≡ x5+0x50x4+0x18x3+0x24x2+0x75x1+0x02
q1(x) ≡ x5+0xcdx4+0x1cx3+0x53x2+0x26x1+0xd8
q2(x) ≡ x5+0xe2x4+0xb7x3+0x9ax2+0xfax1+0x9a
q3(x) ≡ x5+0xd5x4+0x09x3+0xdex2+0x34x1+0xe6
q4(x) ≡ x5+0xd5x4+0x64x3+0xecx2+0xa0x1+0x25
q5(x) ≡ x5+0x9bx4+0xd9x3+0xc6x2+0x39x1+0x61
q6(x) ≡ x5+0xd7x4+0x81x3+0x25x2+0xadx1+0xea

(A.0.3)

Figure A.1: Suggested Parameter Values

16



q0(x) = x5+ 0x50x4+0x18x3+0x24x2+0x75x1+0x02
q−1
2 (x) ≡0x65x4+0x0fx3+0xe2x2+0x38x1+0x0f

q−1
2 (x) ≡0x24x4+0x24x3+0xb2x2+0xf2x1+0x6f

q−1
3 (x) ≡0x95x4+0xb1x3+0x08x2+0x82x1+0x0d

q−1
4 (x) ≡0x88x4+0x3ax3+0xcdx2+0x6fx1+0x8f

q−1
5 (x) ≡0x36x4+0xacx3+0x72x2+0x9cx1+0xe4

q−1
6 (x) ≡0xa9x4+0x1ax3+0x1ex2+0xb9x1+0x1f

q1(x) = x5+ 0xcdx4+0x1cx3+0x53x2+0x26x1+0xd8
q−1
2 (x) ≡0xf5x4+0x23x3+0x29x2+0x6bx1+0x3c

q−1
3 (x) ≡0x9cx4+0x4ax3+0x7dx2+0x74x1+0x76

q−1
4 (x) ≡0xc9x4+0xecx3+0xf1x2+0xb4x1+0xd6

q−1
5 (x) ≡0x1bx4+0xe3x3+0xadx2+0x4cx1+0x3f

q−1
6 (x) ≡0x3ex4+0x3ax3+0xaex2+0x2ax1+0x4a

q2(x) = x5+ 0xe2x4+0xb7x3+0x9ax2+0xfax1+0x9a
q−1
3 (x) ≡0xaax4+0x93x3+0x8fx2+0x56x1+0x37

q−1
4 (x) ≡0x72x4+0x8fx3+0x5ax2+0x51x1+0x50

q−1
5 (x) ≡0x4ex4+0x9ax3+0x05x2+0xdax1+0x18

q−1
6 (x) ≡0x2ex4+0xb3x3+0x3cx2+0x6ex1+0xd7

q3(x) = x5+ 0xd5x4+0x09x3+0xdex2+0x34x1+0xe6
q−1
4 (x) ≡0xeax4+0x74x3+0x26x2+0x10x1+0x5c

q−1
5 (x) ≡0x06x4+0x4dx3+0x59x2+0xe0x1+0xb0

q−1
6 (x) ≡0x47x4+0x2cx3+0x32x2+0x16x1+0x54

q4(x) = x5+ 0xd5x4+0x64x3+0xecx2+0xa0x1+0x25
q−1
5 (x) ≡0xfcx4+0x8fx3+0x5bx2+0xa0x1+0xdf

q−1
6 (x) ≡0xb2x4+0x0ex3+0x9ex2+0x7dx1+0x98

q5(x) = x5+ 0x9bx4+0xd9x3+0xc6x2+0x39x1+0x61
q−1
6 (x) ≡0xd2x4+0x08x3+0xe6x2+0x81x1+0x52

q6(x) = x5+ 0xd7x4+0x81x3+0x25x2+0xadx1+0xea

Figure A.2: Entropy Reservoir Polynomial Moduli and Required Inverses

B Entropy Basics

As mentioned earlier, cryptographic random data is generally created using raw, or ‘true’,
random data processed through a conditioner/extender. How do we reconcile the raw entropy

17



entering the system with the entropy leaving the system? To answer that question we need to
briefly examine what entropy is, how it is measured, and what we expect from our systems.

C What is Entropy and How do we measure it.

In information theory, entropy in data is defined by two equivalent definitions:

1. The measure of randomness in data;

2. The amount of information contained in data.

Note that entropy is relative. It is not a solid, physical entity. Entropy depends on perspective
or what is known and unknown about the data to a given entity. Once viewed, all information
in the data is known to the viewer (zero entropy in the viewers perspective), but the data still
contains entropy to non-viewers. The belief that entropy is something that has a classical, fixed
measure is false and causes many interpretation issues.

Knowledge of underlying entropy is represented in a probability distribution, P. Assume
that there are r possible states {xj | 0 < j ≤ r}, with state j having probability pr(xj) = pj of
occurring, with

P =

pj | 0 < j ≤ r; 0 ≤ pj ≤ 1;
r∑

j=1

pj = 1

 . (C.0.1)

Shannons3 are the most commonly used unit[3]. A Shannon (Sh) is the maximal entropy
which can be contained in a single bit. Alternatively, a Shannon is the entropy of a two state
system with equally probable states. One bit can store at most one Shannon, n-bits can store at
most n-Shannons, and in general, if there are k possible states, maximal entropy in the system
is

log2(k) = lg(k) .

Entropy of an individual event is inversely proportional to the probability of it occurring:
the more unlikely an event, the higher the entropy from its occurrence. For example, in English
we get more information about a hidden word if the letter Z is revealed than if the letter E is
revealed. The entropy of the event j (for the given probability distribution (equation C.0.1))
is given by:

ent(j) = −lg(pj) . (C.0.2)
3The term ‘bits’ is often used instead of Shannons. Multitasking the word ‘bit’ for both an element of the

set {0, 1} and an information measure can be misleading and confusing. While use of base 2 logarithms is most
common, there are other entropy measurement units based off varying bases: hartleys (bans or dits) use base 10
and nat (natural units, nit) use base e.

18



D Algorithms

DYCE has a number of variables (figure 2.3, 2.6), constants (figure 2.2), and computational
notation. Operations are performed over finite fields and integers. Both have operations such as
addition and multiplication and standard symbols for these operations are identical. To clarify,
the following symbols will be used:

a+ b Integer addition
a⊕ b

a+ b mod 2
Mod 2 addition, or an XOR of a and b

a⊙ b

ab mod 2
Mod 2 multiplication, or an AND of a and b

(f(x) mod p) When a modulus is present, this implies all operations are modulo p,
and the result is in reduced form. For a polynomial p this implies that
the degree of (f(x) mod p) is less than the degree of p. In DYCE, p
is a binary polynomial – i.e., addition is always XOR, multiplication
depends on the modulus (algorithm 20, 18).

a ≪ b This symbol represents a left shift of the binary value a by the number
of bits b. A left shift equates to multiplication by x (algorithm 20,
18) (the root) when working modulo polynomials over F2.

a ≫ b This symbol represents a right shift of the binary value a by the
number of bits b.

The upper level algorithms for DYCE are in section D.1, with the foundation algorithms for
quotient ring transform (QRT) and underlying finite field operations are in sections D.2 and
D.3 respectively.

19



D.1 DYCE

Algorithm 1: DYCE Generate Random

Description: Compute cryptographic random, updating the Shannons used as needed.

Input: DYCE box with variables s, w, {dj}u−1
j=0 , {kj , ej}v−1

j=0

Output: Updated DYCE box, with the output random: {ej}v−1
j=0 n-bit long words of cryp-

tographic random data

I : Initialize (algorithm 2) DYCE box;

II : While cryptographic random data is needed:

A: Until s < sm, add raw random (algorithm 3); Ensure there is enough entropy

B: If w = 0, update extraction state (algorithm 8);
Make sure extraction state is initialized/reset with random data

C : Compute internal random (algorithm 4) and return {ej}v−1
j=0

D: Account for random extracted: w = w + 1;
E: Update the Shannons used and the DYCE state as needed (algorithm 5).

End of Algorithm 1

20



Algorithm 2: Initialize

Description: Initializes an empty DYCE box, preparing the system for incoming entropy.

Input: Empty DYCE box

Output: Initialized DYCE box with a full random state

I : Initialize entropy reservoir to dj = 0xffffffffff for 0 ≤ j < u;

II : Initialize extraction state to kj = j for 0 ≤ j < v;

III : Initialize the Shannon level of entropy reservoir: s = 0;

IV : Set w = 0. set the number of times cryptographic random has been extracted to zero

End of Algorithm 2

21



Algorithm 3: Add new raw entropy

Description: Adds incoming words of raw entropy into the DYCE box, mixing the random and
updating the Shannon level of the box. Called before algorithm 4 if there is not
enough random for extraction, and at any time between random data extractions
when random is available.

Input: DYCE box
t-words (rn-bits each) of raw random, {ai}t−1

i=0, at p-Shannon’s per bit and t ≤ u

Output: DYCE box with updated entropy level s

I : for j=0 to t− 1:

• du−1−j = du−1−j ⊕ aj ;

II : Update the Shannons in entropy reservoir:

A: Set ns = ⌊trnp⌋, the number of new Shannons added;
B: Set the new level:

s =

{
urn s+ ns > urn

s+ ns otherwise

III : If entropy reservoir is all zero, reset entropy reservoir (algorithm 11);

IV : Step entropy reservoir (algorithm 6);

End of Algorithm 3

22



Algorithm 4: Compute next random state

Description: Computes internal random in DYCE box, storing the new random output in the
extraction register. Called when random is requested (algorithm 1) and during
update procedures (algorithms 9 and 8).

Input: DYCE box

Output: {ej}v−1
j=0 n-bit long words of cryptographic random data

I : Step entropy reservoir (algorithm 6);

II : Compute extraction register: {ej} (algorithm 12);

End of Algorithm 4

Algorithm 5: Adjust Entropy Level After Extraction

Description: Adjusts the Shannon levels after an extraction of random data and updates the
extraction state and entropy reservoir if needed. Called in algorithm 1.

Input: DYCE Box, just after random was extracted

Output: Updated DYCE parameters

I : if w ≥ wm: Update the count of raw Shannons used, and compute new extraction state

A: s = s− 1; One Shannon has been used.

B: w = 0; This triggers the computation of extraction state (algorithm 8) in algorithm 1

C : if (s mod r) = 0: Update the entropy reservoir periodically if Shannon level drops

• Update entropy reservoir (algorithm 9);

End of Algorithm 5

23



Algorithm 6: Stepping the Entropy Reservoir

Description: Computes a random stepping number t between u ≤ t < 2u and single steps the
register t steps. Called in algorithms 8, 11, 3, and 4

Input: DYCE box

Output: DYCE with stepped entropy reservoir

I : Set t = du−1; Add all extraction state values to get variable for stepping entropy reservoir

II : For j = 0 to v − 1:

• t = t ⊕ kj ;

III : Set t = u+ (t mod u); Stepping count should be between u ≤ t < 2u

IV : For j = 0 to t − 1:

• Step entropy reservoir (algorithm 7);

End of Algorithm 6

Algorithm 7: Single Step of Entropy Reservoir (Galois Stepping)

Description: This function performs a single Galois step on the entropy reservoir. Called in
algorithm 6

Input: DYCE box

Output: updated DYCE Box

I : Set d = du−1;

II : for j = u− 1 down to 1: Note: this can be parallelized

• dj = dj−1 ⊕ d · cj mod B;

III : Set d0 = d · c0;

End of Algorithm 7

24



Algorithm 8: Update Extraction State

Description: The extraction state values are updated every time a Shannon of raw random is
is used. Called from algorithms 11, 1, 4, and 9.

Input: DYCE box variables

Output: updated extraction state

I : Compute random data (algorithm 4): {ej}v−1
j=0

Note:
{
di

}(u−1)

i=0
is computed here and used later in this algorithm

II : Set t = 1; k0 = e0 t is the number of distinct ki found

III : For j = 1 to v − 1: Find distinct subset of {ei} to use as new {ki}

• If ej ̸∈ {ki}t−1
i=0 if the j-th random output data is not in the current set of extraction state

A: kt = ej

B: t = t + 1

IV : Expand the current extraction state (algorithm 10);

V : While t < v:

A: Step the entropy reservoir (algorithm 6);
B: Compute the inner QRT state (algorithm 13);
C : Expand the current extraction state (algorithm 10);

End of Algorithm 8

25



Algorithm 9: Update Entropy Reservoir

Description: Updates the entropy reservoir in states when enough random has been extracted
with out being replaced. Called in algorithm 4.

Input: DYCE box variables

Output: updated DYCE box variables

I : Compute (algorithm 4) random: {ei}vi=0

II : For i = 0 to v − 1:

A: du−1 = du−1 ⊕ ei; Infuse random from extraction state back into entropy reservoir

B: Single step the entropy reservoir (algorithm 7)
Spread the added value through out the full reservoir

III : If {di}u−1
i=0 = {0}:

• Reset entropy reservoir (algorithm 11)

IV : Compute new extraction state (algorithm 8)

End of Algorithm 9

26



Algorithm 10: Expand Extraction State

Description: This routine finds an elements of F2n , not equal to any elements in {dj}t−1
j=0, by

evaluating the current transformed. Called from algorithm 8.

Input:
{
dj
}u−1

j=0
: Inner QRT state (algorithm 13)

t : Number of Extraction State filled

Output: t : Updated number of extraction state filled
Updated extraction state

I : Set j = 0

II : While j < t and t < v; Grow the extraction state up to the maximal v values

A: Compute e = D(kj) mod b (algorithm 15, 16);
B: if e ̸∈ {ki}t−1

i=0 ; add computed value if it is not yet in extraction state

1: kt = e;
2: t = t + 1;

III : Return t.

End of Algorithm 10

27



Algorithm 11: Handling All Zeros

Description: An all zero entropy reservoir results in a static state, which is not allowed. This
routine extracts random from the extraction state and puts it back into the en-
tropy reservoir, updating the Shannon level of the system. Note that a zero
state can only occur when new random is being added or entropy reservoir is up-
dated. The probability of an all zero state occurring at any point is close to zero:
pr(zero entropy reservoir) = 1

2urn . Called in algorithms 3 and 9.

Input: Initialized DYCE box, with all zero entropy reservoir

Output: DYCE box with non-zero entropy reservoir and adjusted Shannon level

I : Set dj = kj for 0 ≤ j < min(u, v).

II : Step entropy reservoir (algorithm 6)

III : Compute new extraction register: {kj}v−1
j=0 (algorithm 8).

IV : Set the Shannon level of entropy reservoir:

s = min (u, v)n.

End of Algorithm 11

D.2 QRT algorithms

The following algorithms perform the QRT (Quotient Ring Transform)

28



Algorithm 12: QRT

Description: Performs the Quotient Ring Transform on the entropy reservoir, returning the
transformed version which is used to extract random or create a new extraction
state. Called from algorithm 4.

Input: {di mod qi}(u−1)
i=0 , {qj}(u−1)

j=0

Output: {ej}(u−1)
j=0

I : Compute
{
di
}

(algorithm 13)

II : Compute and return {ej} (algorithm 14)

End of Algorithm 12

29



Algorithm 13: Inward QRT

Description: Converts the data in the entropy reservoir to a form which can be easily eval-
uated to obtain the random output in extraction register. This is called from
algorithms 8, 12. Output from this algorithm is also needed as input to several
other algorithms.

Input: {di mod qi}(u−1)
i=0

Output:
{
di
}(u−1)

i=0

I : Set di = di for 0 ≤ i < u.

II : for i = 0 to (u− 2) do: Note: This can be done in parallel

A: for j = i+ 1 to (u− 1):
• dj = dj ⊕ di

• dj = dj · q−1
i mod qj (algorithm 20)

Note: Inverses in this equation (q−1
i ) can be computed using Euclid’s extended GCD algorithm [] or can be found in figure ??.

III : return
{
di
}u−1

i=0

End of Algorithm 13

30



Algorithm 14: Outward QRT

Description: Converts the transformed values (algorithm 13) into reduced (evaluated) output.
This is called from algorithms 12.

Input:
{
di
}(u−1)

i=0
, {qj}(u−1)

j=0

Output: {ej}(u−1)
j=0

I : for j = 0 to (u− 1):

• Compute ej (algorithm 15), or equivalently, use constant term version (al-
gorithm 16)

II : return {ej}

End of Algorithm 14

Algorithm 15: Single QRT Extraction

Description: This is a more general, and less concrete, extraction algorithm. For a more con-
crete version, see algorithm 16. Called in algorithms 10, 14.

Input:
{
di
}(u−1)

i=0
, {qi}(u−1)

i=0 : Derived from inner QRT (algorithm 13), represents large
polynomial D(x)
p(x): Reduction polynomial

Output: e : e = D(x) mod p(x)

I : Set e = du−1 mod p(x)

II : for i = u− 2 down to 0:

• e =
(
di + qie mod p(x)

)
III : Return e

End of Algorithm 15

31

eqn:entResLargePoly
eqn:entResLargePoly


Algorithm 16: Single QRT Extraction, using p(x) = (x− k)

Description: Extracts the value from the woven version of D, modulo a monic degree one
polynomial (x − k). For a more theoretical, less concrete version, see algorithm
15. Called in algorithms 10, 14.

Input:
{
di
}(u−1)

i=0
, {qi}(u−1)

j=0 : Woven version of D (equation 2.2.1), computed using inner
QRT (algorithm 13)
k : Reduction polynomial is p(x) = (x− k)

Output: e : e = D(x) mod p(x) or equivalently, D(k)

I : Use polynomial view of du−1 (figure 2.3):

du−1(x) =
r−1∑
j=0

d
(j)
u−1x

j

II : Set e = du−1(k) (algorithm 17)

III : for i = u− 2 down to 0 compute: e = di(k) ⊕ eqi(k) mod b

A: temp = qi(k) mod b (algorithm 17)
B: e = temp · e mod b (algorithm 18, 19)
C : temp = di(k) mod m (algorithm 17)
D: e = e⊕ temp.

IV : Return e

End of Algorithm 16

D.3 Finite Field Operations

Finite field arithmetic is required throughout the DYCE. This section details algorithms to
perform these operations.

32



Algorithm 17: Polynomial Evaluation over F2h

Description: Evaluates G(x) at a where the a and the coefficients of G are considered modulo
a degree h binary polynomial m

Input: h: Degree of polynomial m
m: m represents a degree h polynomial moduli m(x) = xh +

∑h−1
j=0 mjx

j mod 2,
where mj is the j-th bit of m
G = [Gz, Gz−1, . . . , G0]: A degree z polynomial over F2h with Gj ∈ F2h

a : An element of F2h

Output: c: c =
∑(z−1)

j=0 Bja
j mod m

I : c = Bz−1

II : For j = (z − 1) down to j = 0 do:

A: c = c · a mod m (algorithm 18, 19)
B: c = c⊕Bj

III : Return c.

End of Algorithm 17

Algorithm 18: Modular Multiplication in F2h, for small h

Description: Performs multiplication modulo m(x) over F2, where the degree of h is less than
a single computer word size. Polynomials are stored in a single computer word.
For example, the polynomial x3 + x + 1 is stored as the binary value 1011, or in
hex as 0xb. Note: for if h is sufficiently small (say h ≤ 8), multiplication is much
faster if done using look-up tables (algorithm 19).

Input: h: Degree of polynomial m
m: m represents a degree h polynomial moduli m(x) = xh +

∑h−1
j=0 mjx

j mod 2,
where mj is the j-th bit of m
a: a represents a polynomial in reduced form modulo m(x): a(x) =∑h−1

j=0 ajx
j mod m(x) where aj is the j-th bit of a

b: b represents a polynomial in reduced form modulo m(x): b(x) =
∑h−1

j=0 bjx
j mod

m(x) where bj is the j-th bit of b.

33



Output: c: c ≡ a · b mod m, with c(x) =
∑h−1

j=0 cjx
j mod m(x) where cj is the j-th bit of c.

I : if a = 0 or b = 0: Return 0.

II : Set hob = 1 ≪ (h− 1) This mask determines when a polynomial reduction is needed.

III : Set msk = 1 ≪ (h− 1) This mask determines when polynomial b should be added to c.

IV : Set t = (h− 1) Current bit of a to examine.

V : while a⊙ msk = 0 Find highest order, non-zero bit in a. Note: ⊙ is binary AND

• Adjust bit check variables: t = t − 1, and msk = msk ≫ 1

VI : Adjust bit check variables: t = t − 1, and msk = msk ≫ 1

High order bit is dealt with by setting c = b

VII : Set c = b.

VIII : While t ≥ 0:

A: if hob ⊙ c ̸= 0: Multiply by x and reduce mod m

1: c = c⊕ hob

2: c = (c ≪ 1)⊕m

B: else: Multiply by x, but no reduction is needed

• c = c ≪ 1

C : if a⊙ msk ̸= 0 If the current a coefficient is 1, add b to the result.

• c = c⊕ b.

D: Adjust bit check variables: t = t − 1, and msk = msk ≫ 1

IX: Return c.

End of Algorithm 18

34



Algorithm 19: Modular Multiplication in F2h, for small h using a primitive degree
h polynomial.

Description: Performs multiplication modulo m(x) (where m is a primitive polynomial) over
F2, where the degree h is less than a single computer word size, using power and
log table look ups.

Input: h: Degree of polynomial m
[powj ]

2h−2
j=0 : powj ≡ xj mod m(x)

[logj ]
2h−1
j=1 : logj = t such that xt ≡ j mod m(x) (i.e., inverse of power table) a: a

represents a polynomial in reduced form modulo m(x): a(x) =
∑h−1

j=0 ajx
j mod

m(x) where aj is the j-th bit of a
b: b represents a polynomial in reduced form modulo m(x): b(x) =

∑h−1
j=0 bjx

j mod
m(x) where bj is the j-th bit of b.

Output: c: c ≡ a · b mod m, with c(x) =
∑h−1

j=0 cjx
j mod m(x) where cj is the j-th bit of c.

I : if a or b is zero, return 0.

II : Compute j = (loga + logb) mod 2h − 1;

III : Return powj .

End of Algorithm 19

35



Algorithm 20: Polynomial Modular Multiplication over F2h

Description: Performs multiplication modulo q(x) over F2h . This algorithm is similar to 18,
except coefficients of the polynomials a, b are h-bit values (elements in F2h) instead
of bits, and algorithm 18 or 19 replaces some of the shifts.

Input: h: Degree of base polynomial moduls m
m: A degree h irreducible polynomial over F2

q : Represents a degree z polynomial over F2h (i.e., mod m) - q = xz +
∑z−1

j=0 qjx
j

where qj is an h-bit value.
a: Represents a polynomial of degree less than z over F2h – a(x) =

∑z−1
j=0 ajx

j

where aj is an h-bit value.
b: Represents a polynomial of degree less than z over F2h – b(x) =

∑z−1
j=0 bjx

j

where bj is an h-bit value.

Output: c: c ≡ a · b mod q, with c(x) =
∑z−1

j=0 cjx
j mod m(x) where cj is an h-bit value.

I : if a = 0 or b = 0: Return 0.

II : Set c = 0.

III : Set t = (z − 1) Current word of a to examine.

IV : While at = 0 and t ≥ 0 : t = t − 1 Find highest order, non-zero word in a.

V : While t ≥ 0: For each term at, multiply c by x and add at multiplied by b

A: temp = cz−1 Copy off high order term. After multiplication by x (left shift one) this term is cz−1x
z which must be reduced mod q

B: for j = (z − 1) down to 1 do: New cj is the old cj−1 plus the j-th component of cz−1x
z mod q

1: cj = temp · qj mod m (algorithm 18, 19) This is the j-term for cz−1x
z

2: cj = cj ⊕ cj−1. This is the old cj−1 after multiplication by x

C : c0 = temp · q0 mod m (algorithm 18, 19)
The 0-th term is just the constant term of cz−1x

z mod q

D: for j = 0 to (z − 1): Add on the at · b

1: temp = at · bj mod m (algorithm 18, 19);
2: cj = cj ⊕ temp

E: t = t − 1

VI : Return c.

End of Algorithm 20

36



References

[1] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno, Cryptography engineering: Design
principles and practical application, ch. 9, pp. 137–161, Wiley Publishing, Inc, 10475 Cross-
point Boulevard; Indianapolis, IN 46256, 2010.

[2] P. Flajolet and A. M. Odlyzko, Random mapping statistics (invited), Advances in Cryp-
tology - EuroCrypt ’89 (Berlin) (Jean-Jacques Quisquater and Joos Vandewalle, eds.),
Springer-Verlag, 1989, Lecture Notes in Computer Science Volume 434, pp. 329–354.

[3] ISO, IEC 80000-13:2008: Quantities and units – part 13: Information science and
technology, Standards document 13, International Organization for Standardization (ISO),
Geneva, Switzerland, March 2008.

[4] Anna Johnston, Dispersed cryptography and the quotient ring transform, IACR e-Print,
February 2017.

[5] Rudolf Lild and Harald Niederreiter, Finite fields, second ed., Cambridge University Press,
1997.

37


	Entropy and Random Data
	Entropy Flow

	Basic Design
	Design Overview
	Entropy Reservoir
	Entropy Reservoir As A Polynomial
	Entropy Reservoir As An Element

	Extraction State and Extraction Register

	DYCE Algorithm
	Algorithm Summary

	Simple Analysis
	Entropy Collection, Mixing and Retention
	Entropy Extraction
	A Case Against Using Hash Functions

	Fixed Parameters
	Entropy Basics
	What is Entropy and How do we measure it.
	Algorithms
	DYCE
	QRT algorithms
	Finite Field Operations


