
DeFi That Defies: Imported Off-Chain Metrics
and Pseudonymous On-Chain Activity⋆

David W. Kravitz[0000−0001−8237−4425]

Mollie Z. Halverson[0000−0003−3990−2805]

Spring Labs, Marina Del Rey CA 90292, USA research@springlabs.com

http://www.springlabs.com

Abstract. Traditional finance quantifies risk by collecting and vetting
reputation information for an individual, such as credit scores or payment
history. While decentralized finance (DeFi) is an exceptionally well-suited
application of permissionless blockchains, it is severely constrained in its
ability to reconcile identities and quantify associated transaction risk di-
rectly on-chain. Opening the ecosystem to a broad range of use cases
requires consistent pseudonymity and quantifiable reputation. This pa-
per defies the status quo: exploring methods of assessing risk on-chain
by efficiently integrating off-chain identity- and attribute- verification
and on-chain transaction activity. We achieve this while preserving indi-
vidual privacy within a competitive and fair environment and retaining
compatibility with existing platforms such as Ethereum. Even though
blockchains are inherently public, our solution gives users control over
release of information that pertains to them. Consequently, our contribu-
tion focuses on customized methods that balance the degree of disclosure
of provably-sourced user information against the likelihood of the user
successfully gaining access to a desired resource, such as a loan under
suitable terms. Our solution is consistent with the zero-trust model in
that it imports explicit trust from recognized sources through relevant
metrics that are subject to continuous update.

Keywords: DeFi · Zero Trust · Data Encryption · Authorization · Smart
Contract · KYC · AML · Wallet · Digital Signature · Ethereum

1 Background

1.1 Centralized vs. Decentralized Finance

Decentralized finance (DeFi) differs in several major ways from centralized fi-
nance: There is transparency in the operation of financial assets and products;
users exert control over their assets, including the degree to which they release
information about them; the capability to create and deploy DeFi products is
widely accessible, leveraging the infrastructure of a blockchain and its distributed
network of consensus management [17]. The architecture is non-custodial, thus

⋆ Supported by Spring Labs.

http://www.springlabs.com

2 D. Kravitz et al.

streamlining the cost structure. The permissionless nature eliminates blocking
and censorship. Open auditability ensures checks on collateralization and overall
system health. The “Lego”-like structure allows for composability of protocols
constructed from a modest number of basic well-understood building blocks.
This enables rules-compliant handling of capital while providing rich feature
sets for rehypothecation, i.e., the reuse of assets posted as collateral [21]. The
FLAX system [10] extends ERC-20, the Ethereum standard for fungible tokens,
to enable composable usage of anonymous funds by other smart contracts, as in-
stantiated using existing anonymous payment schemes. [15] proposes a model for
disentangling DeFi protocols into their component building blocks, motivated,
in part, by a perceived ultimate need to utilize the understanding of frequently
used substructures to develop solutions for cross-chain composability.

1.2 Filling a Gap: Consolidate Off-Chain and On-Chain Reputation

Smart contract- enabled blockchain platforms, such as Ethereum, offer the power
to bring financial services applications online within a more socially conscious,
equitable environment that can balance maintained public visibility and the pro-
tection of individual privacy. However, mirroring the decision processes of tra-
ditional lending practices requires importing off-chain-established reputational
aspects on-chain without violating aspects of users’ choices regarding the ex-
tent to which they disclose their personal information and under what circum-
stances. If multiple users have personal information of a given type of data, i.e.,
dataType, in common, in traditional systems the secure communications over-
lay hides correlation even under identical representation of such raw attribute
values. That does not apply when addressing conveyance of sensitive informa-
tion on a blockchain, since smart contract execution cannot use privately held
cryptographic keys without calling out to off-chain oracles. This would under-
mine the desired assurance of availability and auditability of transactions that
decentralized ledger technology (DLT) can offer. We opt instead to post attesta-
tions to the blockchain that each carry a personalized version of a raw attribute
value or of a collection of intervals containing such value. Only the specific user
can unlock the information during a user-initiated query designed to provide
evidence of meeting requirements set as preconditions to automatically access a
resource. Within decentralized finance, an example of such a resource is a loan
offered under stated terms upon a successful user transaction as determined by a
Money Services Business (MSB) smart contract. MSB smart contracts invoke a
Know Your Customer (KYC) smart contract which coordinator-generated trans-
actions call to post attestations to the blockchain. KYC regulations and Anti-
Money Laundering (AML) directives constitute essential elements of business
conducted by an MSB. KYC is the process used to verify identity given specific
information and credentials as part of a more extensive AML process in which
several safeguards prevent and/or detect financial crimes.

Considerable time and effort have gone into establishing an international
framework of monetary policies that the migration to blockchain should take
advantage of. This paper focuses on handling migration in a cryptographically

DeFi That Defies 3

sound manner by offering a suite of customized solutions that do not suffer from
the complexity and computational burdens of generic solutions. We achieve com-
putational efficiency of users’ proof role in query. We do not consider it practical
enough to efficiently manage only the size of proofs and their verification for
succinctness. This theme is consistent with [8].

Assigning user-unique pseudonyms via multiparty computation of tokenized
user-identifying data and associating updateable secrets that only the intended
users can reproduce together establish a foundation upon which we build out our
solutions. We predicate our approach on the realization that there is inefficiency
in backtracking from anonymity-based methods to offer consistent pseudonymity
that deters reputation laundering. Applying decentralization only to specific sub-
processes can result in overall inconsistency since there is an inherent degree
of centralization in off-chain verification of user credentials and import onto
the blockchain of metrics such as user credit scores. Only a limited number of
services deserve broad recognition as trusted to access the raw information tied
directly to users and to make such assessments. Note that in the zero-knowledge
context, there are potential vulnerabilities of an untrusted setup of common
reference strings (CRS) [6]. GDPR [1] defines “pseudonymisation.” We avoid
dependency on awareness by the system infrastructure, which includes KYC
processors (as issuers) and an attesting coordinator, of MSB-specific application-
level considerations. We also separate attestation and re-attestation based on
updated user-related data from user-involved query. Once a user has registered
a blockchain wallet into the system, preparation and posting of attestations
bearing on such a wallet occur without user involvement. It is only at the point
of query that the user retrieves relevant attestation components.

1.3 High-Level Workflow

A KYC provider verifies a user’s identity during off-chain user registration, con-
ducts off-chain user data retrieval, and provides an attestation that the KYC
provider has stored the material used to perform verification. This attestation is
associated with the user’s wallet on-chain but made inaccessible without inter-
action from the user via the wallet. Auditors can determine from KYC provider
logs whether verification had indeed occurred as a prerequisite to attestation.
An MSB that wants to verify that the user has gone through KYC acquires per-
mission from the user via its MSB smart contract to access the on-chain data to
verify and assess this attestation via a KYC smart contract. One way to address
user registration and access to code used to execute user-initiated query is via
an MSB. A client-side provisioned root of trust, such as a KYC provider public
key can assure against undetected MSB-perpetrated malfeasance. Fig. 1 depicts
the user onboarding, attestation, and query workflow.

2 System Overview

Section 2.1 lists the italicized terms that are hyperlinked to their definitions or
salient characteristics. Registration of a user includes verification of user iden-

4 D. Kravitz et al.

Fig. 1. High-level overview

tity through one or more identity verification services. If verification is successful,
gathering of information such as KYC/AML status, credit scores and/or other
user data follows, for use in attesting to the blockchain. Such an attestation
ties to a KYC processor - and wallet- invariant pseudonym, i.e., KYCid, ex-
plicitly generated for that user. The coordinator is an entity delegated by the
KYC processors to form and submit attestations to the blockchain on their be-
half. KYC processors utilize nonces to isolate meaningful information exposure
through user-initiated query of attestations, as well as to ensure replay detec-
tion against unauthorized reuse without relying on compliance by downstream
processes. Upfront and later-repeatable deterministic signing by the user’s wallet
of attestation-associated nonces enables controlled information exposure during
query without undesirable statefulness. nonces discussed in this context emanate
from KYC processors and thus are not to be confused with native blockchain
nonces used to detect user wallet address-/account- specific transaction sub-
mission order and replay attempts. The KYC processor, acting in combination
with the tokenization processors, performs a tokenization process described
in further detail in Appendix 1 to generate the KYCid, as well as attributeValue-
Tokens in the method introduced in Section 3.2. The off-chain- vetted user data
becomes available to an MSB smart contract in some form as attributeValues via
user-initiated query. We define three distinct combinable or stand-alone meth-
ods to incorporate a representation of such user data into KYC smart contract-
held queryable attestations as hash commitments. hash() refers to application
of a cryptographic hash function to the parenthetical argument. Due to the
blockchain’s sequence-preserving nature and signature-enforced immutability of
transaction ownership, the most recent attestation of the given type of data, i.e.,
dataType, with embedded attributeValue that corresponds to the querying
user is unambiguously accessible. This remains true even if a user prefers to
query against an earlier attestation and/or an attestation of a different user that
includes a more favorable embedded attributeValue.

DeFi That Defies 5

2.1 Glossary of Terminology

attestation; attestationNotFound ; attestationPointer; attestDn; attestUp;
attributeValue; attributeValueToken; blindedPersonalizationInfo;
blindedPersonalizedAttributeValueToken; coordinator ; dataType; fill;
hash(); intervalLength; KYCid; KYC processor ; method 1 ; method 2 ;
method 3 ; nonce; nonceSig; nonceSigKD; nonceSig*; personalizationInfo;
personalizedAttributeValueToken; preimg ; preimgDn; preimgUp; preKYCid;
proxy ; proxySig; query ; sandwich; tokenization processor ; uberProxy ; uberSig;
unterProxy ; unterSig; updateIndex; userTxnNonce; walletAddress; walletSig;
windowDn; windowing ; windowUp.

2.2 Detailed Workflow

walletSig is the user wallet- applied signature of walletAddress, as an address
derived from the user’s wallet public key. nonceSig is the user wallet- applied
signature of nonce. updateIndex is a counter that tracks the updates on the
same KYCid, nonce and dataType. The coordinator -submitted collection com-
prised of dataType, attestation, nonce, and KYCid is retrievable from KYC smart
contract stateful storage by using as lookup, where || denotes concatenation:

attestationPointer = hash(hash(walletSig) || walletAddress) (1)

The KYC smart contract code includes the coordinator ’s whitelisted wallet
address used to verify coordinator -submitted transactions that each include
attestationPointer, dataType, attestation, nonce, and KYCid. The outer hash
in (1) hides walletAddress until the first query against the attestationPointer.
hash(walletSig) is a condensed form of walletSig used during query transmission
without sacrificing the relationship to its antecedent, walletSig, as verified along
with nonceSig upon user registration.

nonceSigKD = hash(dataType || updateIndex || hash(nonceSig)) (2)

nonceSigKD, as a key derived from nonceSig, is computable by the user during
query along with hash(walletSig) used to rederive attestationPointer. (1) is rele-
vant to all three methods presented below, while (2) is relevant only to the first
two. Further clarifying Section 1.3: a KYC provider is a composite of a KYC
processor, identity verification service, third-party data service, tokenization pro-
cessors and coordinator. attestations include hash commitments of (potentially
personalized) attributeValues. To mirror attestations, personalization occurs live
during query by a proxy with access to (non-personalized) attributeValueTokens
or directly by the user’s client. attestations are retrievable from the blockchain
via rederivation of attestationPointers as part of query. Fig. 2, 3 and 4 collec-
tively depict a workflow in greater detail than that of Fig. 1.

6 D. Kravitz et al.

Fig. 2. User registration; tokenization; attestation

Fig. 3. User registration details Fig. 4. On-chain query of attested-to at-
tributes

3 Introduction to Suite of Solutions

We now introduce our attestation & query suite comprised of three customized
methods. These all blind access to users’ raw attribute values until user-initiated
query. query results in full disclosure, proxy-assisted blinded matching of query
against attestation, or user-selectable level of disclosure, respectively.

3.1 Method 1: Release of Raw Attribute Value

In method 1 and method 2, attributeValue, as received by the coordinator via
a KYC processor, is an argument of the resultant hash commitment:

attestation = hash(nonceSigKD || attributeValue) (3)

A query discloses a raw attribute value as an attributeValue under method 1.

3.2 Method 2: Release of Personalized Attribute Value Token

In method 2 , information underlying the attributeValue becomes available only
to the degree that the outcome of a query transaction via an MSB smart contract
leaks information. Here the attributeValue is a personalizedAttributeValueToken
that the coordinator initially generates via access to an attributeValueToken, and
that a proxy acting as middleware between the user and appropriate MSB smart

DeFi That Defies 7

contract regenerates during query. The attributeValueToken corresponds to
a raw attribute interval that contains the user-associated raw attribute value.
The proxy assigns a raw attribute interval based on input by the user and the
proxy ’s knowledge of MSB-specific policy governing success criteria. To reduce
the probability of a spurious unsuccessful outcome, a user may take advantage
of the same third-party monitoring service(s) that supply user data at the time
of onboarding and/or during subsequent user-independent updating. Appendix
2 includes details of method 2. A need to enable enforcement of dynamic and/or
private MSB-specific requirements levied on users for a successful outcome would
warrant the relative communication complexity of method 2. The corresponding
MSB smart contract does not include coding of such requirements.

3.3 Method 3: Windows Around User’s Raw Attribute Interval

method 3 aims to balance resource-access success against public disclosure. If
armed with awareness of MSB-specific transaction success criteria, the user can
selectively release via query the maximally-sized window compatible with a suc-
cessful outcome if such a window that includes the user’s raw attribute value
exists. For example, the MSB may require credit scores at or above a specified
threshold, or an MSB may require the number of past loan application rejec-
tions to be at or below a specified threshold. As another example, the MSB may
provide service only to users who reside within a specified range of zip codes. Re-
lease of one or more consecutive interval labels occurs, where users may or may
not be aware of the mapping of interval labels to raw attribute values bounded
by interval endpoints. A user can determine from their blockchain-posted attes-
tations what specific single interval label of m possibilities was associated with
the user for that dataType. We consider this interval label, denoted by k, to be
an attributeValue although the user releases only a disguised form of k.

4 Query: User-to-MSB smart contract Communications

The user accesses their wallet of interest via a client to generate walletSig
as the signature of the walletAddress, which when hashed and combined
with walletAddress produces attestationPointer as in (1). This, along with
List(dataType) serves as a reference to attestations on the blockchain. The
body of the transaction includes, in part, hash(walletSig) and List(dataType).
walletAddress is derivable from the wallet public key, which, in turn, is derivable
from the message, signature and a recovery identifier used to disambiguate. In the
case of method 1 and method 2, the transaction also includes List(nonceSigKD),
where nonceSigKD is expressed in (2) for nonceSig values generated over nonce
by the user’s wallet private key for each nonce retrieved from the blockchain
as corresponding to an attestation of interest. In method 3, the transaction in-
cludes preimgUp and/or preimgDn as subsequently defined in (6) and (8), and
(7) and (9), respectively. The user generates these based on recomputation of
nonceSig from retrieved nonces, and solving for k of the retrieved attestations.

8 D. Kravitz et al.

The user may already be otherwise aware of the expected value of k, such as via
a third-party source that monitors the user data.

5 Query: KYC Smart Contract Code Execution

The KYC smart contract spans across invocation by all MSB smart contracts.
The KYC smart contract attempts retrieval of KYCid and dataType by us-
ing the rederived attestationPointer in (1) based on the MSB smart contract-
supplied hash(walletSig) and walletAddress. If the attestationPointer is absent,
the KYC smart contract returns an attestationNotFound error. The KYC
smart contract chooses the most recently blockchain-posted attestation of each
dataType within List(dataType) for recomputation of the attestation to check for
a match. If there is no match on a dataType, the KYC smart contract returns an
error for that dataType. If an MSB smart contract includes attributeValues or
preimgUp/preimgDn values within its invocation of the KYC smart contract, the
KYC smart contract forms the attestation using the given values and checks for
a match. In method 1, if the MSB smart contract does not supply attributeValues
for the given dataType, the KYC smart contract performs exhaustive search over
possible attributeValues of dataType until it finds a first match, if any.

6 Method 3 Constructions

We utilize one-way hash function chains, wherein anyone can iteratively apply
a one-way hash function but cannot feasibly reverse the process to find hash
preimages of values they were not involved in generating in the forward direc-
tion. We denote applying hash() a total of t times by hasht(bitstring), where
hash0(bitstring) = bitstring. An attestation authorizes the user to initiate a
query by creating an open or closed “sandwich” to selectively reveal a window
around their current raw attribute value of a given dataType. An open sandwich
involves the user introducing a single bound (either lower or upper), while a
closed sandwich involves the user including both bounds. In the open-on-top
sandwich type, the user chooses the disclosed lower bound interval label i ≤ k,
where k is the potentially hidden interval label corresponding to the interval in
which the user’s raw attribute value lies. The dataType-specific value m denotes
the number of raw attribute intervals labeled consecutively from 1 to m. In the
open-on-bottom sandwich type, the user chooses the disclosed upper bound in-
terval label m+1− j ≥ k. A closed sandwich is comprised of the conjunction of
open sandwiches of both types. The minimal disclosure open-on-top sandwich
sets i = 1, and the maximal disclosure open-on-top sandwich sets i = k. Analo-
gously, the minimal disclosure open-on-bottom sandwich sets m+1−j = m, i.e.,
j = 1, and the maximal disclosure open-on-bottom sandwich sets m+1− j = k,
i.e., j = m+ 1− k. Regarding minimal disclosure, proving that k ≥ 1 or k ≤ m
might appear to be vacuous. But this will not be the case when we subsequently
introduce the concept of raw attribute sub-intervals. Fig. 5 depicts both attes-
tation and query method 3 - processing that we now explain in mathematical

DeFi That Defies 9

detail. An attestation is comprised of an attestUp and attestDn pair:

attestUp = hashk(windowUp) (4)

attestDn = hashm+1−k(windowDn) (5)

where

windowUp = hash(0|| dataType || updateIndex || KYCid || hash(nonceSig)) (6)

windowDn = hash(1|| dataType || updateIndex ||KYCid || hash(nonceSig)) (7)

Fig. 5. Sandwich value selection

Unlike the similar-looking expression for nonceSigKD in (2), we include KYCid
here because, unlike method 2 detailed in Appendix 2, method 3 uses a con-
solidated attestation generation method that does not deploy two-phase tok-
enization. For certain dataTypes, the system configuration may issue only either
attestUp or attestDn. Additional granularity of dataTypes is possible, such as
subdivision of the credit score dataType corresponding to credit bureau- specific
credit scores. Neither the tokenization processors nor the coordinator accesses
information pertaining to k (to the extent that users do not divulge later via
selective disclosure) if KYC processors generate attestUp and attestDn values.

Let:
preimgUp = hashk−i(windowUp) (8)

and
preimgDn = hashm+1−k−j(windowDn) (9)

To provably narrow the window around k, during query the user transacts via
the appropriate MSB smart contract by computing and submitting preimgs,

10 D. Kravitz et al.

i.e., a preimgUp and/or a preimgDn, for each targeted attestation. The decision
of which or both to submit and the choice of the values of i and/or j depend on
the intended level of windowing . The outer-applied hash function within (6)
and (7) avoids disclosure of hash(nonceSig), by the user legitimately setting i
to k or j to m + 1 − k, which would jeopardize its future use. An MSB smart
contract provides List(preimg) when invoking the KYC smart contract. Note
that if we replaced k by k − 1 in (4) and (8), or m + 1 − k by m − k in (5)
and (9), there would be no way to prove that k is bounded below by 1 or
bounded above by m, respectively, since setting i = 0 in (8) or j = 0 in (9)
would not prove anything. Heuristically, attestUp and attestDn provide only the
“haystack,” whereas preimg values narrow the window where one should look
to find the “needle.” Users can set their values of i and/or j based on their
tolerance for the level of exposure surrounding the value of their k for the given
dataType rather than prioritizing a successful outcome when transacting with
an MSB smart contract. Fig. 6 depicts query using a closed sandwich. Fig. 7
exemplifies the attestation “widening” extension of the basic sandwich method,
as explained below.

Fig. 6. Sandwich closed example
Fig. 7. Closed example of sandwich
method using attestation widening

The MSB smart contract provides the i and/or j values to the KYC smart
contract, or: The KYC smart contract hashes a received preimgUp as in (8) until
the result equals attestUp as in (4) or the number of hashes performed would
exceed an available upper bound. If the result equals attestUp, the KYC smart
contract determines i such that the user’s raw attribute value occurs within raw
attribute interval i or greater:

hashi(preimgUp) = hashi(hashk−i(windowUp)) = hashk(windowUp) = attestUp

It is important to note that, in general, there is exposure of only i and not k.
Similarly, the KYC smart contract hashes a received preimgDn as in (9) until
the result equals attestDn as in (5) or the number of hashes performed would
exceed an available upper bound. If the result equals attestDn, the KYC smart
contract determines j such that the user’s raw attribute value is located within

DeFi That Defies 11

raw attribute interval m+ 1− j or lesser:

hashj(preimgDn) = hashj(hashm+1−k−j(windowDn)) = attestDn

It is important to note that, in general, there is exposure of only j and not k.
Regarding an available upper bound, attestation transactions can incorporate

dataType-specific m values, thus making these values available to the KYC smart
contract as well as users without MSB smart contract involvement.

The MSB smart contract or the KYC smart contract should check that the
user-generated received values are of hash-word length (or truncate them to hash-
word length) to prevent a cheating user from successfully using their knowledge
of a hash preimage of windowUp to “prove” their raw attribute value is located
within raw attribute interval k + 1. Such a check also ensures that the user’s
knowledge of a hash preimage of windowDn is insufficient to “prove” their raw
attribute value is located within raw attribute interval k−1. The system assures
that an MSB smart contract that invokes the KYC smart contract is authorized
to do so if the KYC smart contract includes code that processes an originator
signature. The user, as originator of a transaction that results in an MSB smart
contract invoking the KYC smart contract, includes within that signed transac-
tion the identifier of the MSB smart contract and the intended epoch. The KYC
Smart contract verifies the signature using the wallet public key that matches
the walletAddress of the attestationPointer, and checks that msg.sender matches
the address of the invoking MSB smart contract. It also checks that the signed
“epoch” value is consistent with the current blockchain epoch.

We now extend the capabilities of the sandwich method to give the user
increased flexibility in their choice of user-selectable windowing via query. win-
dowing can manage arbitrary dataTypes with or without implied order of raw
attribute values across labeled intervals. However, users cannot prove their raw
attribute values lie within intervals more finely granulated than those set up
through KYC processor - administered assignment of interval labels on an MSB-
agnostic basis. There are two ways to divide raw attribute intervals. Suppose
we want to divide the intervals into four equal pieces each. The first way es-
tablishes the attestUp and/or attestDn using a k value between 1 and 4m. As
an example, the first interval originally labeled k = 1 is attestable using (4)
by hashing between one and four times depending on the specific sub-interval
the raw attribute value lies in. We can call this a “deepening” solution, as the
size of that attestUp remains unchanged at the expense of additional consecutive
hashing. Under an attestation-“widening” solution, m stays constant through-
out the potentially iterative subdividing of intervals. We can thus maintain the
original amount of hashing, at least during a query. This second way to divide
raw attribute intervals establishes the attestation, i.e., attestUp and attestDn,
by distinguishing four types of raw attribute sub-intervals. If we do not wish to
reveal via the attestation which sub-interval type the user’s raw attribute value
lies in, then we must widen the attestation to cover all four types.

The inclusion of dummy values as attestUp and attestDn placeholders cor-
responding to those quarter-interval types (among 1st, 2nd, 3rd, and 4th) that

12 D. Kravitz et al.

do not include the user’s raw attribute value would serve the purpose of hid-
ing within the attestation identification of the populated quarter-interval type
without sacrificing provable conveyance during query of the non-dummy quarter-
interval type. Under this dummy value paradigm, the user necessarily discloses
their populated raw attribute sub-interval type during a successful query, and
there is a limitation in the user releasing bounded windows using only the non-
dummy raw attribute quarter-interval type. We explore next an attestation-
widening solution that distinguishes raw attribute sub-interval types without
causing this unnecessary degree of information leakage. The goal is to ascertain
a security profile that is identical to that of the deepening solution. We exemplify
the refined attestation-widening method by using raw attribute quarter-intervals:

Using “fill” to denote dataType || updateIndex || KYCid || hash(nonceSig):

windowUp0 = hash(000 || fill); windowUp1 = hash(001 || fill);

windowUp2 = hash(010 || fill); windowUp3 = hash(011 || fill);

windowDn0 = hash(100 || fill); windowDn1 = hash(101 || fill);

windowDn2 = hash(110 || fill); windowDn3 = hash(111 || fill)

Suppose a user’s raw attribute value occurs in the 2nd of four raw attribute
quarter-intervals of the kth raw attribute interval:

attestUp2 = hashk−1(windowUp2); attestUp3 = hashk−1(windowUp3);

attestUp0 = hashk(windowUp0); attestUp1 = hashk(windowUp1);

attestDn1 = hashm+1−k(windowDn1); attestDn2 = hashm+1−k(windowDn2);

attestDn3 = hashm+1−k(windowDn3); attestDn0 = hashm+1−(k+1)(windowDn0)

Note that these values can be computed in parallel. The user performs a query
by computing one of attestUp0, attestUp1, attestUp2 and attestUp3 and/or one
of attestDn0, attestDn1, attestDn2 and attestDn3.

Using credit score as an example dataType, suppose that a user’s actual credit
score is 735, thus within the second (i.e., 725-749) raw attribute quarter-interval
of the previously configured 700-799 raw attribute interval. For credit scores
beginning at 300 and raw attribute intervals of length 100, we would have k = 5.
Further suppose a particular MSB requires a credit score that exceeds 570 to
qualify for a loan: The user reveals their credit score is at least as high as in
the 575-599 raw attribute quarter-interval by utilizing attestUp3 that (blindly)
corresponds to the 675-699 raw attribute quarter-interval. The user sets i = 3,
so that preimgUp3 = hashk−i(windowUp3) = hash2(windowUp3), which the user
computes as hash3(011 || fill). There would be greater information leakage in
the presence of dummy values for attestUp0, attestUp2 and attestUp3, since,
to qualify for a successful outcome, the user would have to reveal their credit
score is at least as high as 625 by setting i = 4 and utilizing attestUp1 blindly
corresponding to the 725-749 raw attribute quarter-interval.

DeFi That Defies 13

If the user chooses to provably reveal their credit score is in the 725-749 raw
attribute quarter-interval, they will use both attestUp1 and attestDn1, setting
i = 5 = k and m + 1 − j = 5 = k (i.e., j = 2 where m = 6 to accommodate
credit scores from 300 through 850). This would expose both windowUp1 and
windowDn1, but not hash(nonceSig).

A natural question to address now is whether windowing is configurable to
enable the user to provably narrow within the actual raw attribute interval in
which their raw attribute value occurs without the attestation process enduring
the communications or computational cost of quantizing to that level through-
out. The answer is affirmative: exploiting a fractal viewpoint for the specific raw
attribute interval that contains the user’s raw attribute value, we specify gener-
ation of an attestation that is comprised of specialized values attestUpFinal and
attestDnFinal. In this case, we replace m in (5) and (9) by intervalLength that
conveys the number of discrete subdivisions of the kth raw attribute interval
(or of the raw attribute sub-interval within the kth raw attribute interval). The
granularity of subdivision can be down to the level of all possible raw attribute
values within the kth raw attribute interval (or the appropriate raw attribute
sub-interval) for discretely populated dataTypes. In our example, we would have
(for intervalLength = 25): attestUpFinal = hash11(windowUpFinal) (since 735 =
725 + 10) and attestDnFinal = hash25+1−11(windowDnFinal) for, say differenti-
ated windowUpFinal = hash(0111 || fill) and windowDnFinal = hash(1111 || fill).
Then the user can provably further narrow within the raw attribute quarter-
interval 725-749, potentially down to 735. intervalLength is not necessarily the
same for all raw attribute intervals/sub-intervals of a given dataType. Logically,
each MSB smart contract is coded to ignore output of KYC smart contract exe-
cution of inputs purported to be specialized preimgs (i.e., preimgUpFinal and/or
preimgDnFinal) unless the necessary conditions are met. Namely: the query suc-
cessfully results in narrowing to a single raw attribute interval (or single raw
attribute sub-interval), i.e., i = m + 1 − j; the raw attribute sub-interval type,
if any, of the matched attestUp is the same as that of the matched attestDn.

7 Related Work

In this section, we examine related work as alternatives to our contributions that
are less private or more generic in their approach to the blockchain-compatible
release of user information relevant to successful access to a resource. Unlike our
methods, there is no customized splitting of functionality and of access to secrets
across components per the least privilege principle.

7.1 NFT-Based Import of KYC/AML Status

ERC-1155 [18] enables a scaled-back version of KYC import [2] with the limi-
tation that direct on-chain attestations of user attributes are immediately vis-
ible without a user-initiated query. Without a coordinator, each issuer’s public

14 D. Kravitz et al.

key is whitelisted within the KYC smart contract that the issuer calls to reg-
ister/update user KYC/AML status as associated with a user-specific KYCid.
Across issuers, there is uniform generation of KYCid values without outsourc-
ing to tokenization processors. Irrespective of the reliance on (non-transferable)
NFTs as representative of users’ status, only authorized issuers can generate
function parameters. Relative to the pseudonymous but visible form of query,
when a user interacts with an MSB smart contract such transaction results in a
user status check via the wallet address associated with the signed transaction.
Although an off-chain issuer-invariant database is lacking in this coordinator -less
model, legitimate updates to a user’s KYCid, as warranted, e.g., via a verifiable
change of address, is accommodatable by an on-chain association of a previ-
ous KYCid to the replacement KYCid. Without reliance on a cross-issuer trust
paradigm, the issuance of the replacement KYCid depends on off-chain proof by
the user of ownership of the information underlying the replaced KYCid. As an
alternative to the outsourced tokenization and attestation processing deployed
by our contribution, the key management could potentially use Shamir secret
sharing and on-premise or cloud-based enclaves hosted by the issuers.

7.2 Zero Knowledge Meets Smart Contract

Semaphore [12,13] is “a zero-knowledge signaling framework highly inspired by
Zcash, providing a method for users who are part of a group to broadcast an ar-
bitrary string without exposing their identity.” It is a generic privacy-preserving
base layer on top of which Ethereum applications are buildable. It uses zk Suc-
cinct Non-Interactive Arguments of Knowledge (zk-SNARKs) to prove that the
user registered via the Semaphore smart contract an identity commitment within
a Merkle tree as a hash of their public key and randomly generated secrets. It also
assures that the signal was only broadcasted once, and by the user who generated
the proof. Our reputation visibility and pseudonym consistency requirements are
inconsistent with Semaphore’s “anonymous authentication, where members of a
group can login to a service without revealing which member of the group they
are and in the process hide their transaction history.”

As [9] points out, “Intuitively, one can imagine a naive implementation of
Zcash that copies Bitcoin’s unspent transaction output (UTXO) model, but
where each UTXO’s data is kept off-chain. In its place, a hash is kept on-chain,
and a zero-knowledge proof is used to prove that some address has the right to
consume the UTXO.” Cryptocurrency-only transactions benefit from zk-based
anonymity, such as that offered by Zcash. However, for the De-Fi applications on
which we focus, we want the user to establish a pseudonymous (KYCid- linked)
on-chain reputation. Such reputation should not be subject to disavowal except
under certain stipulated authorized circumstances. This should remain true even
if a user changes their wallet and/or issuer (such as a KYC processor) through
which they onboard or re-onboard.

DeFi That Defies 15

7.3 On-Chain Attestations via Decentralized Identity Management

[5] is predicated on a premise that centralized ID federation and management
along with services that utilize traditional verification systems for identity au-
thorization do not provide sufficient trust for applications dependent on KYC.
Their platform is based on merchants and e-commerce service providers attest-
ing their users and storing the reusable-verification records of the attestations on
a blockchain network. Although the trust assumptions of this work differ from
ours, elements in common include deployment on a permissionless blockchain
and the avoidance of storage of user ID information on the blockchain and thus
the inherent complexities of regulatory compliance such storage would imply. A
major distinction from our work is that [5] does not operate within an existing
blockchain such as Ethereum. For example, its Delegated Proof of Stake (DPOS)
consensus mechanism distributes time slots randomly to active participants to
assure against monopolization of block creation. Their blockchain executes two
types of non-utility transactions for consensus management (i.e., seed-part and
evidence) and three types of utility transactions that result in gain or loss of
tokens (i.e., payments, identity verification requests and attestations).

8 Conclusions and Future Work

Our contribution to DeFi provides lenders with the capability to make automated
decisions on prospective borrower requests that account for user choice regarding
the degree to which users are willing to disclose provably-sourced relevant data.
Users can compare publicly advertised terms across lenders, while lenders benefit
from visibility into transactions that a given user initiates with other lenders
and into such lenders’ responses. We achieve these goals using three methods
that we customize for maximal efficiency and privacy preservation specific to
their operational setting. During query, the user signs using a wallet that earlier
submission of the attestation now identified by the query had specified. Our
sandwich method enables the desired pseudonymous control by the user over
the selective release of aspects of their attribute value without the encumbrance
of a zero-knowledge-based setup procedure.

In contrast to stateless reproducibility of deterministic signatures generated
by a single user wallet, one area of future work would extend our model to
accommodate: multiple wallets corresponding to a single user pseudonym in
a k-out-of-n quorum environment; a business for which different members or
groups have (potentially hierarchical) signing authority to ensure resilient and
secure operation. This should be achievable through a judiciously chosen com-
bination of multisignature, threshold signature and ring signature techniques.
However, the requirement for stateless generation by wallets of a per-message
uncorrelated random/pseudorandom component within elliptic curve-/discrete
log- based signatures presents other security and performance challenges war-
ranting additional research [11].

Ideally, there should be a low probability of false negatives in extracting data
from user-presented forms of identification corresponding to the same user as uti-

16 D. Kravitz et al.

lized to populate fields used as precursors for identity tokenization. Conversely,
identity tokenization should be set up to gather sufficient information to avoid
false positives across different users. A construct such as pairwise-pseudonymous
decentralized identifiers (DIDs) [20] can run counter to the goals of a reputation-
based system, as it would allow an individual to have multiple context-dependent
identities. Techniques such as locality-sensitive/fuzzy hashing [3] are applicable,
with the caveat that there are constraints in practice based on privacy con-
cerns around retention for secondary screening of raw data/images collected
by identity verification services. Preferably, irreversible feature-extraction (deep
learning) representations of such raw data are potentially usable instead [19].

1 Appendix: Tokenization Schema

In this section, we present our multi-party token generation methodology that
is designed to address the pseudonymous presence of the user on the blockchain,
sanitization of raw attribute intervals and personalization of sanitized raw at-
tribute intervals, respectively.

As mentioned in Section 7.1, issuers as KYC processors could directly tok-
enize such that the requirement of uniform results across them is met. However,
outsourcing to independently operated tokenization processors that act sequen-
tially or in parallel renders the process decentralizable and proactively refre-
shable without compromising the inputs. Sensitive information is mapped to
an elliptic curve point that is transiently blinded via scalar multiplication by a
random value. The secret scalars held uniquely by each tokenization processor
multiply or add together to a constant, although each scalar can be updated as
an element of a resplitting operation to thwart successful overall compromise.
This remains true unless compromise is so tightly orchestrated across all par-
ticipating tokenization processors as to succeed. Because of the commutativity
of scalar multiplication, sequential or parallel multiplication by secret scalars
does not impair the ability to unblind final or intermediate results via multipli-
cation by the inverse of the random value previously applied as blinding factor.
Combinations of the parallel additive and sequential multiplicative application
of secret scalars comprehensively retain the resplit capability that safely en-
ables business continuity of tokenized values. This is especially relevant in an
immutable blockchain deployment. Following up with the application of HMAC
keys that can be differentiated based on token type renders the resultant to-
kens non-invertible even if these (non-resplittable) keys are later compromised.
Beyond the use of multiple tokenization processors, each tokenization processor
can be partitioned, as can its partitions (reminiscent of the fractal makeup of
Merkle trees). In the case of tokenization of the user’s identifying information,
the resultant preKYCid can be used as the ultimate KYCid, or the coordina-
tor can maintain in its database an associated randomly generated value to be
used as the on-chain KYCid. The latter approach enables authorized severing
of the association of the user to a past-utilized KYCid, where such association
can potentially be reestablished via the user’s redeployment of a wallet that was

DeFi That Defies 17

associated with such previously utilized KYCid. Provided that the wallet has
not been compromised, signing by such wallet private key of a freshly generated
nonce proves the user’s association.

Table 1 shows the elliptic curve computations used within Appendix 2 and
demonstrates flexibility in varied circumstances, such as tokenization as re-
quested of tokenization processors by a KYC processor vs. personalization over-
lay by an uberProxy of an unterProxy -held attributeValueToken. The com-
mutative Pohlig-Hellman encryption/decryption operations [16] use the same
math as elliptic curve Diffie-Hellman ephemeral key agreement for communica-
tions security such as provided by the ECDHE-ECDSA TLS cipher. The Pohlig-
Hellman cipher has also resurfaced because of its general applicability to private
set intersection [14], and to COVID-19 contact tracing in particular [7].

Table 1. Pohlig-Hellman- and HMAC- based tokenization and personalization

Requestor Processor A1 Processor A1 Processor B

(1) Derives P
and blinds

P with e ⇒ eP

(2(a)) Applies a1 to (2(b)) Applies a2

eP ⇒ a1eP to eP ⇒ a2eP

(3) Computes
a1eP + a2eP
and applies

e−1 ⇒ (a1 + a2)P

(4) Applies b ⇒
b(a1 + a2)P

(5) Applies HMAC key
appropriate
to token type

The process outlined in Table 1 shows the requestor deriving an elliptic curve
point P from data, blinding P , and communicating the blinded P to Processor
A1 and Processor A2 simultaneously to allow them to apply their respective
secrets (i.e., a1 held by Processor A1 and a2 held by Processor A2). These two
processors may be consolidated into a single processor, Processor A, in which case
that processor would apply its single secret a. Upon receiving both processors’
results, the requestor adds them together and unblinds it (where if there is a
single processor, there is no addition as only one result is received). The requestor
then communicates with Processor B, enabling Processor B to apply its secret b.
If there is only a Processor A, then the result of step 4 is baP . Finally, Processor
B applies an HMAC key, the value of which is dependent on the token type. This
processing can be utilized to generate preKYCids and attributeValueTokens. In

18 D. Kravitz et al.

the case of preKYCids, the input P can be derived from the user’s identifying
information. In the case of attributeValueTokens, the input P can be derived from
the raw attribute interval. The input to derive P for attributeValueTokens may
also include the dataType. The requestor is the KYC processor, and the secrets
a1, a2 and b are the static secrets securely held by Processors A1, A2 and B,
respectively (i.e., the tokenization processors). The KYC processor should have
no knowledge of the finalized preKYCid or the attributeValueToken. Therefore,
all five steps should be used, necessitating the use of Processor B.

2 Appendix: Details of Method 2

The goal of method 2, as introduced in Section 3.2, is to utilize a 3rd-party proxy
to minimize the amount of information about the raw attribute value that is pub-
licly disclosed via query. While method 3 gives the user more control, method 2
makes the system less dependent on user involvement. In other words, there may
be circumstances in which the user does not wish to pursue the option of partici-
pating in windowing It may also be essential to allow for dynamic and/or private
enforcement of MSB-specific requirements levied on users for a successful out-
come where the MSB smart contract code does not reflect such details. However,
method 2 does not allow the same degree of flexibility in the granularity of user
control as does method 3. In addition, the use of a proxy introduces additional
complexity that may not be considered a universally worthwhile tradeoff.

Bulk Generation of Attribute Value Tokens and Setup of Proxies

The dataType-specific attributeValueTokens (prior to personalization) may be
precomputed in bulk by the KYC processor in conjunction with the tokenization
processors, stored at the coordinator, and distributed on-demand to authorized
proxies during a setup procedure described in this section.

Efficient operation requires precomputation of sets of [dataType, raw at-
tribute interval, attributeValueToken] tuples for proxies to receive upon setup,
for those dataTypes they are authorized to address. An example of such a set
is a collection of contiguous non-overlapping credit score intervals that span the
set of credit score values. unterProxies that gain such access constitute part of
the core infrastructure in that, unlike uberProxies that are denied such access,
they are not MSB-specific. In addition to blinding all raw attribute intervals
for a given dataType to request tokenization processing of these raw attribute
intervals, the KYC processor applies a permutation that is randomly or pseudo-
randomly generated for each dataType (and locally stored if not otherwise repro-
ducible) to deny the coordinator the capability to map raw attribute intervals
to tokens. These attributeValueTokens are independent of any data/metadata
ancillary to the raw attribute intervals (other than dataType, if appended to
the raw attribute interval when submitted for tokenization to avoid potential
collisions of attributeValueTokens across multiple dataTypes). In particular, the
attributeValueTokens are not yet personalized.

DeFi That Defies 19

To set up an authorized proxy, it receives the [dataType, raw attribute in-
terval, attributeValueToken] tuples required to convert raw attribute values or
raw attribute intervals received from users to attributeValues that take the form
of personalizedAttributeValueTokens. The KYC processor sends to a proxy the
dataType-specific permutation for each dataType that the proxy is authorized to
process. The coordinator, in turn, sends to the proxy the set(s) of locally stored
attributeValueTokens of the indicated dataTypes, where the proxy restores these
permuted attributeValueTokens to their proper order of associated raw attribute
intervals.

Roles and Access: uberProxy vs. unterProxy

proxy deployment can be adjusted to meet distributed access control require-
ments consistently with specified roles of each of the components, to achieve the
intended overall level of security.

Deployment of proxies (whether of distinguished uberProxy vs. unterProxy
nature or as one monolithic proxy) enables a user-specific tokenized form of a
raw attribute interval as a personalizedAttributeValueToken, as was introduced
in Section 3.2. This validates that one or more user-associated raw attribute
values satisfy MSB-specific requirements (e.g., pertaining to credit scores or zip
codes) without exposing the granular data to the publicly accessible immutable
blockchain. It is preferable that the KYC processors, tokenization processors, co-
ordinator, MSB smart contracts and KYC smart contract each be able to operate
under the following constraints: no awareness of MSB-specific application-level
policies, which can change dynamically; no sacrifice of the capability to validate
(or reject) attestations through query usefully; no need to update the code of
the KYC smart contract (or even that of the MSB smart contract); no need
to modify the construction of raw attribute intervals. It is the responsibility
of the proxy (or, more specifically, the uberProxy) to be aware of and enforce
aspects of MSB-specific policy. While some such aspects may become publicly
discernible based on outcomes, others may remain proprietary to the relationship
between MSBs and their delegated uberProxies. Dependent on implementation
and regulatory constraints, users may be able to opt-in or out of such a granu-
lar data-suppression system without affecting their ability to meet MSB-specific
KYC requirements for service fulfillment at the application level.

Users communicate directly with an uberProxy designated by the MSB of
interest, such as via whitelisting of the uberProxy public key within the cor-
responding MSB smart contract. The unterProxies have the attributeValueTo-
kens used to compute the personalizedAttributeValueTokens, but are at least
transiently blinded by the uberProxy from access to user-specific information
that could otherwise aid in targeting specific users as victims of false-negative
matching results during KYC smart contract execution of queries. Typically,
each unterProxy possesses the set of attributeValueTokens for a given dataType,
although dataTypes may be divisible into granular dataTypes with access by un-
terProxies potentially refined accordingly. For example, a dataType comprised
of zip code information is divisible into subordinate dataTypes corresponding

20 D. Kravitz et al.

to geographical regions. There may be multiple unterProxies in charge of the
same dataType for reasons such as load-balancing. In this case, an MSB might
be able to provide a preference for which unterProxies it would like a designated
uberProxy to utilize in processing. A user may remain oblivious as to the extent
that a proxy exists as a whole or in parts. As an example, an uberProxy can
be split (and remain compatible with Ethereum) by utilizing ECDSA threshold
signatures that are verifiable using an associated public key that is invariant of
the split-control specifics [4].

Proxy-Based Personalization of Attribute Value Tokens

This subsection of the Appendix details how a proxy system involving an
uberProxy and unterProxy (possibly more than one of each type) derives a
personalizedAttributeValueToken to be leveraged by the user. Expounding upon
Fig. 3, this process is depicted in Fig. 8 below.

Fig. 8. Personalization of attributeValueTokens

To begin utilizing a proxy, a user communicates privately, via a client, with
an uberProxy to perform a query against attestations. The user accesses
their wallet to generate walletSig (via application of the wallet private key),
which in combination with walletAddress produces attestationPointer as in
(1). The attestationPointer and the dataTypes in the selected List(dataType)
serve as a pointer to the attestations on the blockchain, which the MSB
smart contract is instructed to query against. Using attestationPointer, the
user retrieves List(nonce) and List(updateIndex), and signs each nonce to form
List(nonceSigKD) as in (2).

DeFi That Defies 21

The user provides the uberProxy with their wallet public key, List(dataType),
List(nonceSigKD), walletSig, MSB smart contract ID and raw attribute value or
raw attribute interval for those attributes that (based on dataType) are expressed
in tokenized form.

The uberProxy begins processing by recomputing attestationPointer. The
uberProxy uses the result to retrieve from the KYC smart contract the KYCid,
List(nonce), List(updateIndex) and the latest userTxnNonce for each dataType
in List(dataType). The userTxnNonce is a native blockchain nonce used
within the blockchain infrastructure and incremented with each successive native
blockchain signature generated by the user wallet. The uberProxy incorporates
the derived value, userTxnNonce+1, as an argument of its signature to enable the
MSB smart contract to check the freshness of the proxy signature as measured
against the natively signed transaction received from the user. In a cryptographic
context, checking freshness can guard against unwitting acceptance of a received
transmission that should be rejected, e.g., because the received transmission
contains replayed and/or delayed data (where delay may be measured, e.g., as
elapsed time and/or degree of intervening transaction activity). The uberProxy
checks the MSB policy for the acceptable threshold(s) for the dataTypes sent
and any instructions concerning routing to specific unterProxies.

The uberProxy must decide which raw attribute interval to turn into
an attributeValueToken and therefore use in the process of creating the
personalizedAttributeValueToken. For clarity in explanation, the description here
shows only the decision process for the dataType of credit score. However, the
process will be similar for other dataTypes amenable to partial or total order-
ing. In the description here, x represents the MSB-specific policy threshold for
acceptable credit scores, where the MSB sets the credit score threshold as the
highest value within a raw attribute interval. Upon the input by the user of the
credit score (or a raw attribute interval of scores), the uberProxy determines if
the credit score is greater than the necessary threshold x as determined by the
MSB-specific policy. If the credit score does not exceed x, then the first raw
attribute interval that would exceed x is used, i.e., [x + 1, x + nint] where nint

is the size of the raw attribute interval in question. If the credit score is higher
than x, then the raw attribute interval of the submitted credit score is used. This
description focuses on why the choice of attributeValueToken results in a match
or not during query execution by the KYC smart contract and therefore why
the credit score would or would not be approved by the MSB smart contract.
Approval of the credit score may be for one of two reasons: the user-provided
credit score or raw attribute interval matched the attested raw attribute interval
and exceeded the threshold of x; or the attested raw attribute interval exceeded
the threshold of x, and this raw attribute interval matched the raw attribute
interval selected by the uberProxy as higher than that provided by the user.
If the credit score was not approved, then it may be for one of three reasons:
the incoming raw attribute interval did not match the attested raw attribute
interval, although they both exceeded the threshold of x; or the attested raw
attribute interval was too low for the MSB policy and therefore did not match

22 D. Kravitz et al.

the higher raw attribute interval submitted by the uberProxy ; or the attested
score was higher than x+nint, although the incoming raw attribute interval was
lower than x and the raw attribute interval of [x + 1, x + nint] was submitted
by the uberProxy. It is acceptable for the conveyance of false information by a
user (due to user misrepresentation or an uninformed user) to have the effect of
a false negative match but preferably not a false positive match relative to the
computation of attestations during query as compared to their original coun-
terparts attested to the KYC smart contract by the coordinator. To reduce the
possibility of false negatives, a proxy could send multiple personalizedAttribute-
ValueTokens for a single queried attestation, where dummy values are added by
the proxy to provide uniformity as a leakage resistance measure. Note that non-
uniformity in the number of personalizedAttributeValueTokens corresponding to
a single attestation that are sent during query by a user targeting an MSB smart
contract could be a potential source of leakage of information, dependent on the
rationale (such as a disparity in credit scores across credit reporting agencies
and/or a credit score that is at or near the edge of a raw attribute interval). In
lieu of or in addition to a query resulting in a proxy sending multiple person-
alizedAttributeValueTokens per attestation, the coordinator could send multiple
attestations to the KYC smart contract. These choices may have bearing on
the lengths and number of raw attribute intervals set by the system for each
dataType supported by the proxy method.

To prepare transmission to the unterProxy, the uberProxy first blinds the

personalizationInfo = hash(KYCid || nonce) (10)

The uberProxy converts personalizationInfo into an elliptic curve point repre-
sentation P and applies a random scalar value, e, to form

blindedPersonalizationInfo = eP (11)

The uberProxy transmits to an unterProxy equipped for the relevant dataType:
(a) blindedPersonalizationInfo; (b) designation of the submitted raw attribute
interval(s); (c) uberSig (where (c) is the uberProxy ’s signature computed over
(a) and (b)). Upon receiving a request from an uberProxy, the chosen unterProxy
of the several unterProxies utilizes its previously provisioned accessible database
of [raw attribute interval, attributeValueToken] tuples for retrieval of the appro-
priate attributeValueTokens as based on the raw attribute interval(s) designated
within the request. The unterProxy determines which stored attributeValueTo-
kens to use, applies a scalar representation, p, of each such attributeValueToken
to a provided eP to form a

blindedPersonalizedAttributeValueToken = peP (12)

and transmits to the uberProxy : blindedPersonalizedAttributeValueTokens;
unterSig = signed blindedPersonalizedAttributeValueTokens. Upon receiving
the response from the unterProxy, after verifying unterSig, the uberProxy un-
blinds the blindedPersonalizedAttributeValueToken by applying the inverse of

DeFi That Defies 23

the previously applied blinding factor, e, to form the

personalizedAttributeValueToken = hash(pP) (13)

The uberProxy now signs the MSB smart contract ID, hash(walletSig),
userTxnNonce + 1, List(dataType), List(nonceSigKD), and
List(personalizedAttributeValueToken) to produce proxySig. The uberProxy
transmits to the user: List(personalizedAttributeValueToken); proxySig.

Partitioning of unterProxy

Attainment of additional security may warrant the additional off-chain commu-
nications to split access to attributeValueTokens and render tokenized attribute-
Values persistently opaque in the absence of collusion. In this case parallelized
secure multiparty computation is utilized. This subsection describes the process
by which this is done. The uberProxy, unterProxy1 for a given dataType, and
unterProxy2 for the same dataType make up the proxy. For example, provision
unterProxy1 for a given dataType with

p1 = (HMAC(HMAC key, y) || HMAC(HMAC key, y + 1)) (mod n) (14)

and provision unterProxy2 for the same dataType with

p2 = (HMAC(HMAC key, y + 2) || HMAC(HMAC key, y + 3)) (mod n) (15)

where y is the result of step (4) in Table 1 during the tokenization of raw at-
tribute values, n is the order of the elliptic curve, and the HMAC key was chosen
specifically for this purpose. The coordinator forms the p1 and p2 where (p1+p2)
(mod n) is the attributeValueToken as subsequently personalized by the coordi-
nator. unterProxy1 applies p1 to the blindedPersonalizationInfo computed by
the uberProxy, as in (11), and sent to unterProxy1. Similarly, unterProxy2 ap-
plies p2 to the blindedPersonalizationInfo computed by the uberProxy and sent
to unterProxy2. unterProxy1 sends back

blindedPersonalizedAttributeValueToken1 = p1eP (16)

and unterProxy2 sends back

blindedPersonalizedAttributeValueToken2 = p2eP (17)

The uberProxy then sums the elliptic curve points com-
prised of blindedPersonalizedAttributeValueToken1 and
blindedPersonalizedAttributeValueToken2, removes the blinding factor e,
and hashes to produce

personalizedAttributeValueToken1,2 = hash((p1 + p2)P) (18)

24 D. Kravitz et al.

Security Considerations

This subsection outlines the proxy method considerations that arise when re-
lating the material included earlier in Appendix 2 to Sections 3, 4 and 5 and
Appendix 1.

Beyond the user’s wallet public key, hash(walletSig), List(dataType) and
List(nonceSigKD), also included in the user’s transaction is proxySig and
List(attributeValue) = List(personalizedAttributeValueToken), where the proxy
computed each personalizedAttributeValueToken.

The token computation processing as presented in Table 1 is utilized during
the personalizedAttributeValueToken generation as completed in (13) and (18).
Only the first three steps should be used here, as the uberProxy (as requestor) is
the one that should be in possession of the final value. In the scenario described
in Appendix 1, Processor A1 and A2 are either combined as a single unterProxy
that holds a secret p as used in (12), or the split is retained as unterProxy1 and
unterProxy2. The secret that unterProxy1 holds is p1 as in (14) and similarly,
the secret that unterProxy2 holds is p2 as in (15). The input to derive P is the
personalizationInfo as (10). If the unterProxy is split, the uberProxy completes
step (3) as in Table 1, followed by a hash to form (18). If the unterProxy is
acting as a single processor, then the uberProxy does the computation resulting
in (13) without the need for the addition portion of step (3) as there is only one
received value.

The exhaustion process discussed in Section 5 does not apply to attribute-
Values that are in the form of personalizedAttributeValueTokens. If the KYC
smart contract has attributeValueTokens available to construct personalizedAt-
tributeValueTokens, it would defeat the purpose of otherwise carefully limiting
access. Knowledge of attributeValueTokens (even without their associated raw
attribute intervals) would enable correlation of attributeValues across users if
the information required to complete the computation of attributeValues were
publicly available via the blockchain.

Yet greater user privacy is achievable by replacing the nonce argument of
(10) by a value that is not derivable from data/metadata that surfaces on the
blockchain. Such replacement defies potential after-the-fact reconstruction of
(13) or (18) by an errant unterProxy or errant partitioned unterProxy under
collusive attack. Such reconstruction would reveal which attributeValueToken
was used for a queried attestation. This would be possible without necessarily
tracking, and even without having been involved in original construction because
of load-balancing use of multiple copies of the unterProxy. As an example, we
could replace nonce here by

nonceSig* = hash(hash(nonceSig) || updateIndex) (19)

where the user’s client would provide nonceSig* only to an uberProxy that the
client trusts to represent the intended MSB. Such substitution does not im-
pede the generation of attestations because nonceSig* is not MSB-specific and
is available to the coordinator via its knowledge of the elements in (19).

DeFi That Defies 25

References

1. Article 4 GDPR: Definitions (2016), general data protection regulation

2. Getting started (2022), https://docs.quadrata.com/integration/

introduction/introduction-to-quadrata-web3-passport

3. Andoni, A., Indyk, P., Nguyen, H.L., Razenshteyn, I.P.: Be-
yond locality-sensitive hashing. CoRR abs/1306.1547 (2013).
https://doi.org/10.48550/arXiv.1306.1547

4. Aumasson, J.P., Hamelink, A., Shlomovits, O.: A survey of ECDSA threshold
signing. IACR Cryptol. ePrint Arch. 2020(1390) (2020)

5. Balahontsev, V., Tsikhilov, A., Norta, A., Udokwu, C.: A blockchain system for
the attestation and authorization of digital assets. Tech. rep., Tallinn University
of Technology (07 2019). https://doi.org/10.13140/RG.2.2.25027.96807/1

6. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security
in the face of parameter subversion. IACR Cryptol. ePrint Arch. p. 372 (2016).
https://doi.org/10.1007/978-3-662-53890-6 26

7. Berke, A., Bakker, M.A., Vepakomma, P., Raskar, R., Larson, K., Pentland, A.S.:
Assessing disease exposure risk with location histories and protecting privacy: A
cryptographic approach in response to a global pandemic. CoRR abs/2003.14412
(2020). https://doi.org/10.48550/arXiv.2003.14412

8. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology
– CRYPTO 2021. pp. 681–710. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-84242-0 24

9. Chen, T., Lu, H., Kunpittaya, T., Luo, A.: A review of zk-SNARKs
(2022). https://doi.org/10.48550/ARXIV.2202.06877, https://arxiv.org/abs/

2202.06877

10. Dai, W.: Flexible anonymous transactions (FLAX): Towards privacy-preserving
and composable decentralized finance. IACR Cryptol. ePrint Arch. 2021, 1249
(2021)

11. Garillot, F., Kondi, Y., Mohassel, P., Nikolaenko, V.: Threshold schnorr with state-
less deterministic signing from standard assumptions. In: Malkin, T., Peikert, C.
(eds.) Advances in Cryptology – CRYPTO 2021. pp. 127–156. Springer Interna-
tional Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 6

12. Gurkan, K.: Semaphore (2022), https://github.com/appliedzkp/semaphore

13. Gurkan, K., Jie, K.W., Whitehat, B.: Community proposal: Semaphore: Zero-
knowledge signaling on Ethereum. White Paper (2020), https://docs.zkproof.
org/pages/standards/accepted-workshop3/proposal-semaphore.pdf

14. Ion, M., Kreuter, B., Nergiz, A.E., Patel, S., Saxena, S., Seth, K.,
Raykova, M., Shanahan, D., Yung, M.: On deploying secure comput-
ing: Private intersection-sum-with-cardinality. In: 2020 IEEE European
Symposium on Security and Privacy (EuroS&P). pp. 370–389 (2020).
https://doi.org/10.1109/EuroSP48549.2020.00031

15. Kitzler, S., Victor, F., Saggese, P., Haslhofer, B.: Disentangling de-
centralized finance (DeFi) compositions. CoRR abs/2111.11933 (2021).
https://doi.org/10.48550/arXiv.2111.11933

16. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance (corresp.). IEEE Transactions on Infor-
mation Theory 24(1), 106–110 (1978). https://doi.org/10.1109/TIT.1978.1055817

https://docs.quadrata.com/integration/introduction/introduction-to-quadrata-web3-passport
https://docs.quadrata.com/integration/introduction/introduction-to-quadrata-web3-passport
https://doi.org/10.48550/arXiv.1306.1547
https://doi.org/10.13140/RG.2.2.25027.96807/1
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.48550/arXiv.2003.14412
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.48550/ARXIV.2202.06877
https://arxiv.org/abs/2202.06877
https://arxiv.org/abs/2202.06877
https://doi.org/10.1007/978-3-030-84242-0_6
https://github.com/appliedzkp/semaphore
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-semaphore.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-semaphore.pdf
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.48550/arXiv.2111.11933
https://doi.org/10.1109/TIT.1978.1055817

26 D. Kravitz et al.

17. Qin, K., Zhou, L., Afonin, Y., Lazzaretti, L., Gervais, A.: CeFi vs. DeFi -
comparing centralized to decentralized finance. arXiv abs/2106.08157 (2021).
https://doi.org/10.48550/arXiv.2106.08157

18. Radomski, W., Cooke, A., Castonguay, P., Therien, J., Binet, E., Sandford, R.:
Eip-1155: Multi token standard (2018), Ethereum Improvement Proposals

19. Sudharsanan, R., Gopirajan, P., Kumar, K.S.: Efficient feature extraction from
multispectral images for face recognition applications: A deep learning ap-
proach. Journal of Physics: Conference Series 1767(1), 012061 (feb 2021).
https://doi.org/10.1088/1742-6596/1767/1/012061

20. (W3C), C.C.G.: A primer for decentralized identifiers (Nov 2021), https://

w3c-ccg.github.io/did-primer/, draft
21. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knotten-

belt, W.J.: Sok: Decentralized finance (DeFi). CoRR abs/2101.08778 (2021).
https://doi.org/10.48550/arXiv.2101.08778

https://doi.org/10.48550/arXiv.2106.08157
https://doi.org/10.1088/1742-6596/1767/1/012061
https://w3c-ccg.github.io/did-primer/
https://w3c-ccg.github.io/did-primer/
https://doi.org/10.48550/arXiv.2101.08778

	DeFi That Defies: Imported Off-Chain Metrics and Pseudonymous On-Chain Activity

