
Decentralized Anonymous IoT Data Sharing
with Key-Private Proxy Re-Encryption

Esra Günsay1[0000−0001−6672−4253] and Oğuz Yayla1[0000−0001−8945−2780]

Institute of Applied Mathematics,
Middle East Technical University, Ankara, Turkey

{gunsay,oguz}@metu.edu.tr

Abstract. Secure and scalable data sharing is one of the main concerns
of the Internet of Things (IoT) ecosystem. In this paper, we introduce
a novel blockchain-based data-sharing construction designed to ensure
full anonymity for both the users and the data. To share the encrypted
IoT data stored on the cloud, users generate tokens, prove their owner-
ship using zk-SNARKs, and anonymously target the destination address.
To tackle the privacy concerns arising from uploading the data to the
cloud, we use key-private re-encryption and share as little information as
possible with the proxy. Furthermore, we provide security proof of our
construction.

Keywords: Proxy re-encryption · Blockchain · IoT data sharing · Zero-
knowledge proofs.

1 Introduction

In the past few years, IoT technology has become essential in many construc-
tions such as smart home [5], smart grid [14], autonomous vehicles [8], and smart
healthcare [3] systems. With the development of 5G, the importance of this tech-
nology will greatly improve and be more common. According to Global System
for Mobile Communications Foundation (GSMA), 5G connections are expected
to grow to 1.8 billion, and the number of total IoT connections is expected to
touch 25.2 billion by 2025 [1]. In such systems, a massive amount of data is
collected and shared among stakeholders according to need or request. Manage-
ment of the IoT data, i.e, storing and sharing it, while preserving privacy and
confidentiality emerges as an important problem. So that these systems have to
supply some crucial requirements such as user identification and authentication,
permission authorization, permission to access data, scaling data integrity, and
similar.

As an example, smart health systems are used to securely record, store and
share clinical data without allowing any malicious changes. These systems are
of great importance for regular follow-up of the conditions of the patients. Since
the data will be used for future clinical studies, keeping these data unchanged is
essential for ensuring that these studies are reliable and trustworthy. Therewith,
while the sensitive personal information of the patients is stored, it is of great

2 Günsay et al.

importance that the necessary access control can be provided to the relevant
parties in terms of providing a solution to the user’s needs of the system. Con-
sidering the technical requirements of such data storage and sharing systems,
the use of distributed ledger technologies (DLT) for healthcare systems emerges
as a solution [6].

Besides privacy concerns, dealing with large-scale IoT data has essential is-
sues such as limited computing and storage capacity. Storing the encrypted data
itself on the blockchain will require extremely high resources. A common ap-
proach to deal with these restrictions is to keep the sensitive data on the cloud
servers. However, one of the drawbacks of this approach is that the cloud servers
are highly prone to malicious usage. So that it is substantial to trust the cloud
servers as little as possible.

1.1 Related Works

In the literature, there are many recent studies focusing on the privacy con-
cern of data storing and sharing. Some of them use blockchain together with a
proxy re-encryption (PRE) [4,10,12]. The main drawback of these studies is that
in many PRE schemes, the proxy can easily determine the participants of the
communication from the re-encryption key.

Manzoor et. al [7] proposed a blockchain-based IoT data sharing scheme that
uses proxy re-encryption. Their system uses dynamic smart contracts to elimi-
nate untrusted third party. To protect data privacy they use proxy re-encryption
so that the data is only visible to the participants in the smart contract.

In 2021, Yang et al. [12] presented a blockchain-based data sharing scheme
that uses a proxy re-encryption technique based on identity together with cer-
tificateless encryption for medical institutions. Their construction is resistant to
identity disguise and replay attacks.

Recently, Song et al. [10] adopted blockchain-based data traceability and
sharing mechanism for the power material supply chain. They use proxy re-
encryption to ensure security and privacy.

Zonda and Meddeb [15] focused on sharing data among organizations, partic-
ularly a use case of carpooling. Their scheme is integrated within smart contracts
together with a proxy re-encryption technique. They kept the encrypted data
on-chain.

Feng et al. [4] proposed a blockchain privacy protection scheme based on the
zero-knowledge proof for secure data sharing using smart contracts for Industrial
IoT. Similar to our approach, they keep the encrypted sensitive data in the
cloud and share the hash and the digital signature. Using zk-SNARKs with
a combination of a smart contract they aim the data availability between the
owner and requester. For their use case, complete traceability of the data has
importance. On the other hand, for a fully-anonymous data sharing scheme, data
needs to be untraceable.

To protect the large-scale IoT health data, Healtchain is introduced by Xu et
al. [11]. They used two different blockchains for fine-grained access control; one

Title Suppressed Due to Excessive Length 3

chain is for users while the other is for doctor’s diagnoses. They used a content-
addressable distributed file system to store the data, and stored only the hash
of the data on the blockchain.

FHIRChain [13] is another blockchain-based architecture to solve the data
sharing problem for clinical decision-making. They used digital signatures for
tamper-proofing and public key encryption to prevent unauthorized access and
spoofing. They also proposed a DApp to analyze the benefits and limitations of
their designed scheme.

In 2004, Ben-Sasson et al. [9] proposed Zerocash decentralized anonymous
payment (DAP) scheme using zk-SNARKs. It enables users to pay each other
privately, e.g hiding the origin and destination of the payment, and transferred
amount. That is why we take this study as a cornerstone.

1.2 Our Contribution

In order to solve the problem of data privacy, security, availability, and consis-
tency, we propose a token-based system that allows the anonymous sharing of
secret information. The contributions of our scheme are as follows:

– We propose our method on blockchain technology due to its wide range of
usage areas using DLT to deploy the trusted central party. Instead of smart
contracts, we design a token-based structure to provide both scalability and
anonymity concerns. We use the DAP scheme of the Zerocash [9] and revise
it as a data-sharing construction.

– We use key private proxy re-encryption to encrypt the data securely before
storing it on the cloud. Since this method allows two types of encryption,
i.e, the first level (non-re-encryptable) and the second level (re-encryptable),
we use the second level encryption to store data while using the first level
for other required system information on transactions. For this encryption
method, it is impossible to derive the identities of the participants from the
re-encryption key.

– We analyze the security of our proposed scheme, confirm its correctness and
do its anonymity proof.

The remainder of the paper is organized as follows: Section 2 provides an
overview of the preliminaries to the subject together with the underlying key-
private proxy re-encryption scheme; Section 3 describes our proposed architec-
ture by illustrating the pseudocode of the transactions; Section 4 analysis the
security, i.e. gives the proof of correctness and anonymity; Section 5 presents
concluding remarks and future work.

2 Preliminaries

We propose a token-based system that allows the anonymous sharing of secret
information. Our data sharing scheme comprises of 4 entities: Data owner, Re-
quester, Secure Cloud, and Blockchain network. These entities can be identified
as follows:

4 Günsay et al.

1. Data Owner is the party who owns IoT devices. After the IoT data is en-
crypted and stored by the data owner, he/she also needs to generate a mint
transaction to generate the corresponding token. Moreover, the data owner
generates the re-encryption key and publishes share transaction.

2. Requester is the user who searches for a token by checking the public ledger
using his secret encryption key.

3. Cloud Server (Proxy) is the place we store our encrypted IoT data. Proxy
scans all the share transactions published by the users and executes the re-
encryption process It also publishes a new type of share transaction which
is scannable and readable by the users.

4. Blockchain Network is where we have the public ledger, and share transac-
tions by users and proxy. A snapshot of the ledger is available to all users
whenever they want to access it.

Because of scalability and sensitivity problems of the many data sharing
e.g. clinical data, we only add the access pointer of the encrypted data to the
blockchain system and keep the sensitive information off-chain, i.e on a secure
cloud. An address access pointer is a reference that denotes the exact location
of the encrypted data on the cloud which also can be considered as the address
of the encrypted data. In order to get a cost-effective designed system in terms
of storage and transaction fees, access pointers related to a data set are used
instead of adding encrypted data to a block.

The data addresses can be added to the blockchain by exposing secure access
tokens to data. These secure tokens are published on the public ledger for decen-
tralized access. For non-traceability, the data in the tokens also hold the hiding
and binding properties. In addition to those tokens, an immutable transaction
log of all events related to exchanging and actually consuming these tokens is
maintained on the public ledger.

2.1 Cryptographic Primitives

We apply a revised approach of Zerocash to our problem and use similar cryp-
tographic techniques to build our proposed scheme with anonymity.

We use a collision-resistant hash function (CRH) to compress the input
string; and a pseudorandom function (PRF) to securely generate public address
keys from a given secret address key as a seed. We use a trapdoored commit-
ment function commr(x) for a given trapdoor r and an input x to statistically
hide and computationally bind the input to the committed value. Digital signa-
tures are used in this study to verify digital messages’ authenticity. For a given
security parameter λ, KeyGenSign generates signature key pairs pksig,sksig . The
message m is signed as σ = Sign(sksig;m), and verified by checking the accuracy
of m = (pksig;m,σ).

2.2 Key-private proxy re-encryption

Our aim is to reveal as little information as possible to the proxy. So that the
address keys, encryption keys, and the content of the message are kept hidden

Title Suppressed Due to Excessive Length 5

from the proxy. To encrypt the measured data, we use key-private proxy re-
encryption, which is a unidirectional, single-hop, CPA-secure PRE method with
key-privacy. The detailed explanation of the system is given in [2]. For conve-
nience, we first give the underlying key-private PRE scheme and then explain
the overall architecture.

There are five polynomial-time algorithms in the key-private PRE scheme:
SetUp, KeyGen, Encrypt, ReEncrypt, and Decrypt. The scheme is based on
pairing-based cryptography. Let q be a prime number and e : G×G→ GT be a
bilinear map, where G is an additive cyclic group of order q generated by g and
GT is another group of order q.

Setup(1k): For a randomly chosen h ∈ G, Z = e(g, h) is computed so that
the public parameters of the system are (g, h, Z).

KeyGen: Choose u1, u2
$←− Zq. For each user in the system public encryption

keys are (Zu1 , gu2), with the corresponding secret key (u1, u2).
Encryption: User A with the secret key (a1, a2) encrypts his data m with

the corresponding public key (Za1 , ga2) by first selecting a random k ∈ Zq, and
computing

E = (gk, hk,mZa1k) = (α, β, γ). (1)

We refer to the result of this encryption as the first-level ciphertext.
ReKeyGen: A re-encryption key is generated by selecting random elements

r, w ∈ Zq and computing

rkA→B = ((gb2)a1+r, hr, e(gb2 , h)w, e(g, h)w),

= (gb2(a1+r), hr, Zb2w, Zw),

= (R1, R2, R3, R4).

(2)

Re-Encryption: Using rkA→B , the re-encrypt operation on the encrypted
data (α, β, γ) is done as in the following steps.

1. Check that e(α, h) = e(g, β). If it holds, then there exist some k ∈ Zq and
m ∈ GT such that α = gk, β = hk and γ = mZa1k.

2. Compute:

t1 = e(R1, β) = e(gb2(a1+r), hk) = Zb2k(a1+r).

t2 = γe(α,R2) = mZa1ke(gk, hk) = mZk(a1+r).
(3)

3. Choose a random w′ ∈ Zq.
4. Re-randomize t1 and t2 into θ and δ respectively as:

θ = t1.R
w′

3 = Zb2k(a1+r).(Zwb2)w
′
= Zb2(k(a1+r)+ww′).

δ = t2.R
w′

4 = mZk(a1+r).(Zw)w
′
= mZk(a1+r)+ww′

.
(4)

5. Publish the ciphertext E′ = (θ, δ), which is called as the second-level cipher-
text.

6 Günsay et al.

Decryption: User B can decrypt the second-level ciphertext E′ with his
secret key (b1, b2) as follows:

m = δ/θ1/b2 . (5)

He can also decrypt the second-level ciphertext E′ as:

m = γ/e(α, h)b1 . (6)

3 Proposed Architecture

Fig. 1 shows the overall architecture we devise to secure storing and anonymous
sharing of the measured IoT data.

IoT Data
Owner

Requester

Cloud Server
(Proxy)

BlockChain
Network

(1) Sends the encrypted IoT data

(2)-(3)
Tokenizes
the data

(2) Mint tx(4) Share tx for the Proxy

(5) Checks the proof, goes to AP

re-encrypts

(6) Share tx for Users

(7) Scans the ledger,
gets the AP using

her secret key

(8) Goes to the AP, de
cr

yp
ts

 it
 w

ith
 h

er
 s

ec
re

t e
nc

 k
ey

Fig. 1: Workflow of our proposed scheme.

1. The data owner, user A, encrypts his measured IoT data using his key-
private public key and stores it on the cloud server. Note that the result of
this encryption is a second-level (i.e., re-encryptable) ciphertext.

2. User A generates a token including his public address key and information to
reach out data. He publishes a mint transaction to the ledger. At the same
time, he sends the commitment of the token to the commitment list namely
CMList. This token will be used to prove his ownership in a secret way.

Title Suppressed Due to Excessive Length 7

3. When he wants to share his data with some other user B, he generates a new
token including the address public key of the B. Note that he also shares a
mint transaction for the new token, and sends the commitment of the token
to the CMList.

4. He publishes a share transaction including:
- Merkle root of commitment list,
- commitment of the token related to requester,
- re-encryption key,
- digital signatures,
- a zk-SNARK proof that proves his ownership without revealing his ad-
dress,

- encryption of trapdoors and access pointer as first level ciphertext using
the public encryption key of user B,

- encryption of trapdoors and access pointer as first level ciphertext using
the public encryption key of the proxy.

5. As soon as the transaction is added to the ledger, the proxy reads the trans-
action. Checks the accuracy of the zero-knowledge proof. If the proof is valid,
it decrypts the related area with its secret encryption key and gets the AP .
Later re-encrypts the value in AP with the corresponding re-encryption key.

6. Proxy publishes a new share transaction, which is quite similar to the share
transaction the user A generates; it just eliminates the parts that do not
interest user B, so that the transaction includes:
- Merkle root of commitment list,
- commitment of the token related to requester,
- digital signatures,
- a zk-SNARK proof that proves his ownership without revealing his ad-
dress,

- encryption of trapdoors and access pointer as first level ciphertext using
the public encryption key of user B.

7. User B scans the share transactions on the ledger, using her secret encryption
key, she finds the related transaction and decrypts it.

8. After learning the address access pointer AP shared with her, she decrypts
the ciphertext on the cloud using her secret encryption key.

Note that the system has two types of share transactions. One type is gen-
erated by the users, and such transactions are only scanned by the proxy. The
other type is generated by the Proxy and published to all the users in the system.

3.1 Architecture Description

We give the pseudocode of the system beginning from minting at Fig. 3. In our
construction, pp denotes the public parameters. defined by the trusted setup.
Note that this setup only occurs at the very beginning of the system, afterwise
there will be no need for any type of trusted party.

Each user has a pair of keys address keys (apk, ask), which will be used for
hiding the origin of the transactions, and a pair of encryption keys (pkenc, skenc)

8 Günsay et al.

Data Owner BlockchainRequesterProxy

Register

RegisterStores the encrypted data
on AP

Generate
the tokens

Generate ZKP, compute re-encryption key, send a share transaction for proxy

Scan the public ledger, get the AP

Re-encrypt
the data on AP

send a share transaction for users

Scan the public ledger,
find AP

Decrypt the data
on AP

Generate a mint transaction for each token

Fig. 2: Timing diagram of our data sharing scheme.

to encrypt the secret information. We will represent these keys as addrpk :=
(apk, pkenc),addrsk := (ask, skenc). To be able to give users the flexibility to
change their addresses; we use a pseudo-random function PRFask

() for address
keys. After choosing a random secret address key ask, a user generates the cor-
responding address public key as apk := PRFask

(0). Remember that encryption
keys are pkenc = (Za1 , ga2), skenc = (a1, a2) as defined previously.

Storing the data on the cloud Assume that (pkAenc, sk
A
enc) denotes the key-

private encryption keys of the data owner. The data owner encrypts the mea-
sured data m with his public encryption key pkAenc = (Za1 , ga2), and gets the
second-level ciphertext E = Enc(pkAenc;m).

He stores the encrypted data on a cloud storage server, where the access
pointer AP denotes the exact location of the data on the server.

Tokenizing the data After storing the measured data m as encrypted in the
cloud, the data owner knows the exact location of the data. However, to send
the data anonymously, he somehow needs to prove that he owns the data in a
zero-knowledge way. To this end, for each encrypted data on the cloud, users
generate a token t including the information of the ownership, i.e., the address
key of the owner.

The tokens are generated to be able to exchange data. When a user wants to
share his measured data, he sends the corresponding token to the other party,

Title Suppressed Due to Excessive Length 9

which is a certain way of sending the decryption rights of the data. We also need
to keep the sensitive information in the tokens hidden to maintain anonymity.
For this aim, we use a statistically hiding non-interactive commitment scheme.
User A generates a token for the access pointer AP as follows:

k : = commr(a
A
pk),

cmA : = comms(k||AP),
(7)

The data owner chooses random trapdoors r and s, then commits his address
public key to hide the origin of the token together with the access pointer. To
do so, he would prove that given the access pointer, he owns the data on the
location of AP indicates without revealing his address key. Similar to DAP
scheme of Zerocash, he sends cmA to the CMList.

To reduce the time and space complexity, we compress the CMList as an
efficiently updatable append-only CRH-based Merkle-tree structure whose root
is denoted by rt.

He sets his token as tA := (aApk, AP, r, s, cmA). The token commitments are
appended to the ledger after they are minted. Subsequently, he generates a mint
transaction as:

txMint = (k, s, cmA) (8)

Mint transactions indicate that for a given location AP , there exists a token
whose commitment cmA is at the CMList.

Sending a transaction for proxy If the data owner wants to share his data
anonymously with some other user B, he needs to generate a share transaction.
Using the address public key committed in tA, he is able to prove the origin in
a zero-knowledge way. On the other hand, to prove the direction of the transac-
tion anonymously he generates another token that commits the address of the
recipient.

First, the data owner generates a new token to indicate the direction of
sharing; to this end includes the address public key of user B to the new token
as follows:

k′ : = commr′(a
B
pk),

cmB : = comms′ = (k′||AP),

txBMint = (AP, k′, s′, cmB).

(9)

The new token is set as tB := (aBpk, AP, r′, s′, cmB). User A mints this new token

and sends the corresponding commitment cmB to the CMList.
Second, user A computes a re-encryption key rkA→B by using his own secret

encryption key skAenc and the public encryption key of the requester pkBenc as
described in Eq.(2).

Third, to tackle the trace problems that might arise from sending AP dis-
closed, the user A sends it encrypted to the proxy. Aside from our little trust in

10 Günsay et al.

the proxy, the reason for this encryption is to hide AP from other users scanning
the ledger. Even if the proxy acts maliciously, the leaked information about AP ,
does no harm to anonymity. For an outside user, the leaked information is just
random access pointers. So that the user A encrypts the AP with the public
encryption key of the proxy:

PC : = Enc(pkProxy
enc ;AP ||nonce). (10)

He also needs to send trapdoors r′ and s′ in a secret way to let the user B
open up the commitments. So that he encrypts the trapdoors using the public
encryption key of user B. Since there is no need to re-encrypt these ciphertexts
he uses first-level encryption in this step. Let UC denotes the encryption of
{r′, s′} under pkBenc:

UC : = Enc(pkBenc;AP, r′, s′). (11)

Third, to prove his ownership of the data located on AP , he generates a
zk-SNARK proof πshare containing:

Given Merkle root rt, access pointer AP, and commitment cmB, I know tA

and tB s.t.:

– The tokens tA and tB are well-formed.

– Address secret key matches with the address public key: aApk = PRFaA
sk
(0).

– The token commitment cmA appears as a leaf of a Merkle tree with root rt.

Lastly, the data owner samples a signature key (pksig, sksig) to prevent the
malleability attacks on the transaction he will share. He computes;

hsig : = CRH(pksig),

h1 : = CRH(hsig).
(12)

Later, generates two signatures; σ1 for the proxy, and the σ2 for the requester.

σ1 : = Sign(sksig, (rt, cm
B , hsig, h1, πshare, PC)).

σ2 : = Sign(sksig, (rt, cm
B , hsig, h1, πshare, UC)).

(13)

Then adds the πshare to prove that these two signatures are well formed, i.e.,
computed correctly, and appends these signatures to the share transactions. Re-
member that in the overall system, we have two types of share transactions: one
is generated by the users while the proxy generates the other. Now he publishes
the share transaction for the proxy:

txUshare := (rt, cmB , rkA→B , pksig, h1, πshare, PC,UC, σ1, σ2) (14)

Title Suppressed Due to Excessive Length 11

Fig. 3: Algorithm description of our proposed data sharing scheme.

12 Günsay et al.

Proxy cloud operations As soon as a user publishes a transaction proxy is
notified and operates on it. The proxy first checks the accuracy of the πshare, and
σ1. Later, decrypts the PC using its secret encryption key and gets the access
pointer AP . After that, using rkA→B , he re-encrypts the data on the AP . At
the end of this re-encryption, it generates a new share transaction for the users:

txPshare := (rt, cmB , pksign, h1, πshare, UC, σ2). (15)

Note that Proxy does not compute any instances; it simply copies the related
information from the share transaction generated by user A and appends it to
the ledger, which is public to all users.

Decrypting the message Using his secret encryption key skBenc, the user B
can find and decrypt the message by scanning the pour transactions. To be able
to find txPshare = (rt, cmB , πshare, RP, UC), he computes:

(AP, r′, s′)
?
= Dec(skBenc;UC) (16)

If the output of the decryption is not ⊥, he verifies:

cmB ?
= comms′(AP ||commr′(a

B
pk)) (17)

If these equations hold, this is a valid transaction for sending data to the user
B.

4 Security Analysis

4.1 Correctness Analysis

For the correctness of our proposed scheme, we need to consider the transaction
shared by the Proxy. It is easy to see that the requester, user B, can decrypt the
UC using his secret encryption key (b1, b2), as follows:

(AP, r′, s′) = δ/θ1/b2 . (18)

Re-encrypted ciphertext on the AP can be decrypted as:

m = γ/e(α, h)b1 . (19)

Thus, the correctness holds as the correct execution of each previous step.

4.2 Security Analysis

Immutability and integrity. Since the encrypted measured data is stored on a
cloud server; the data owner could decrypt it using his secret encryption key
to check integrity. At the same time, the requester could verify the equations
above, and the integrity was ensured.

Title Suppressed Due to Excessive Length 13

Privacy and Anonymity. The protocol uses key-private proxy re-encryption.
This encryption method is CPA-secure under EDBDH assumption in G. For
further information about the key privacy and the related proof, we refer to
the original paper [2]. The sensitive data is stored in the cloud in the form
of ciphertext. Only the access pointer of the encrypted data is transmitted as
tokens. Since address public keys are kept hidden using a statistically hiding
commitment scheme, the tokens leak no information about the transaction’s
origin or direction. So that user anonymity is achieved. The data owner proves
his ownership of the stored data in a zero-knowledge way.

Note that the system leaks no information about:

– For which access pointer the tokens are generated.
– Which commitment in the CMList corresponds to the tA.
– For whom the tA is shared for, i.e., the address public key of the new token

is targetted.
– With which participants’ keys the re-encryption key is generated.

So that we achieved full anonymity.
Authentication. Each user has a unique secret address key. Using a pseudo-

random function, users can get as many addresses as they want. Since we have
fixed the address secret keys, we guarantee the link between the identity and the
public key.

Access control. Transactions for related tokens are published on the public
ledger for decentralized access. At the very beginning, we create the tokens
with the address public keys of the relevant persons, i.e., the data owner or the
requester. In case of an attempt of malicious access, it will fail, as it is impossible
to decrypt the ciphertext without a corresponding secret encryption key.

Non-traceability. For non-traceability, the data in the tokens hold the hiding
and binding properties. We use a commitment scheme and key-private encryption
to hide data in the tokens. Although an immutable transaction log of all events
related to exchanging and consuming these tokens is maintained on the public
ledger, these logs reveal nothing to trace access tokens or the data itself.

5 Concluding Remarks

In this paper, we have proposed a decentralized data sharing architecture with
the combination of a key-private proxy re-encryption scheme to ensure anonymity
for both the data owner and the requester. The underlying encryption method
we used is CPA-secure under EDBDH assumption in G. To recapitulate, our
scheme stores the encrypted IoT data in the cloud to ensure the most efficient
way. For each data, a token including the address public key is generated. When
a user wants to share his/her data, he simply generates another token including
the requester’s address public key and generates a transaction with the related
zero-knowledge proof of the ownership. Proxy re-encrypts the corresponding data
without knowing the owner or the requester. The proxy publishes a new trans-
action by simply eliminating some parts that are not necessary for the requester.

14 Günsay et al.

References

1. The internet of things by 2025. GSMA (2018), https://www.gsma.com/iot/

wp-content/uploads/2018/08/GSMA-IoT-Infographic-2019.pdf

2. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
Fischlin, M. (ed.) Topics in Cryptology – CT-RSA 2009. pp. 279–294. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

3. Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare:
Technologies, challenges, and opportunities. IEEE Access 5, 26521–26544 (2017).
https://doi.org/10.1109/ACCESS.2017.2775180

4. Feng, T., Yang, P., Liu, C., Junli, F., Ma, R.: Blockchain data privacy protection
and sharing scheme based on zero-knowledge proof. Wireless Communications and
Mobile Computing 2022, 1–11 (02 2022). https://doi.org/10.1155/2022/1040662

5. Fogli, D., Lanzilotti, R., Piccinno, A.: End-user development tools for the smart
home: A systematic literature review. In: Streitz, N., Markopoulos, P. (eds.) Dis-
tributed, Ambient and Pervasive Interactions. pp. 69–79. Springer International
Publishing, Cham (2016)

6. Leeming, G., Cunningham, J., Ainsworth, J.: A ledger of me: personalizing health-
care using blockchain technology. Frontiers in medicine 6, 171 (2019)

7. Manzoor, A., Braeken, A., Kanhere, S.S., Ylianttila, M., Liyanage, M.: Proxy
re-encryption enabled secure and anonymous iot data sharing platform based
on blockchain. Journal of Network and Computer Applications 176, 102917
(2021). https://doi.org/https://doi.org/10.1016/j.jnca.2020.102917, https://www.
sciencedirect.com/science/article/pii/S1084804520303763

8. Philip, B.V., Alpcan, T., Jin, J., Palaniswami, M.: Distributed real-time iot for
autonomous vehicles. IEEE Transactions on Industrial Informatics 15(2), 1131–
1140 (2019). https://doi.org/10.1109/TII.2018.2877217

9. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
symposium on security and privacy. pp. 459–474. IEEE (2014)

10. Song, J., Yang, Y., Mei, J., Zhou, G., Qiu, W., Wang, Y., Xu, L., Liu, Y., Jiang,
J., Chu, Z., Tan, W., Lin, Z.: Proxy re-encryption-based traceability and sharing
mechanism of the power material data in blockchain environment. Energies 15(7)
(2022). https://doi.org/10.3390/en15072570, https://www.mdpi.com/1996-1073/
15/7/2570

11. Xu, J., Xue, K., Li, S., Tian, H., Jianan, H., Hong, P., Yu, N.:
Healthchain: A blockchain-based privacy preserving scheme for large-scale
health data. IEEE Internet of Things Journal PP, 1–1 (06 2019).
https://doi.org/10.1109/JIOT.2019.2923525

12. Yang, X., Li, X., Chen, A., Xi, W.: Blockchain-based searchable proxy re-
encryption scheme for ehr security storage and sharing. Journal of Physics:
Conference Series 1828, 012120 (02 2021). https://doi.org/10.1088/1742-
6596/1828/1/012120

13. Zhang, P., White, J., Schmidt, D.C., Lenz, G., Rosenbloom, S.T.: Fhirchain: ap-
plying blockchain to securely and scalably share clinical data. Computational and
structural biotechnology journal 16, 267–278 (2018)

14. Zheng, D., Deng, K., Zhang, Y., Zhao, J., Zheng, X., Ma, X.: Smart grid power
trading based on consortium blockchain in internet of things. In: Vaidya, J., Li, J.
(eds.) Algorithms and Architectures for Parallel Processing. pp. 453–459. Springer
International Publishing, Cham (2018)

https://www.gsma.com/iot/wp-content/uploads/2018/08/GSMA-IoT-Infographic-2019.pdf
https://www.gsma.com/iot/wp-content/uploads/2018/08/GSMA-IoT-Infographic-2019.pdf
https://doi.org/10.1109/ACCESS.2017.2775180
https://doi.org/10.1155/2022/1040662
https://doi.org/https://doi.org/10.1016/j.jnca.2020.102917
https://www.sciencedirect.com/science/article/pii/S1084804520303763
https://www.sciencedirect.com/science/article/pii/S1084804520303763
https://doi.org/10.1109/TII.2018.2877217
https://doi.org/10.3390/en15072570
https://www.mdpi.com/1996-1073/15/7/2570
https://www.mdpi.com/1996-1073/15/7/2570
https://doi.org/10.1109/JIOT.2019.2923525
https://doi.org/10.1088/1742-6596/1828/1/012120
https://doi.org/10.1088/1742-6596/1828/1/012120

Title Suppressed Due to Excessive Length 15

15. Zonda, D., Meddeb, M.: Proxy re-encryption for privacy enhance-
ment in blockchain: Carpooling use case. In: 2020 IEEE Interna-
tional Conference on Blockchain (Blockchain). pp. 482–489 (2020).
https://doi.org/10.1109/Blockchain50366.2020.00070

https://doi.org/10.1109/Blockchain50366.2020.00070

	Decentralized Anonymous IoT Data Sharing with Key-Private Proxy Re-Encryption

