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Abstract. As the prevalence of quantum computing is growing in leaps and bounds over the past few
years, there is an ever-growing need to analyze the symmetric-key ciphers against the upcoming threat.
Indeed, we have seen a number of research works dedicated to this. Our work delves into this aspect of
block ciphers, with respect to the SPECK family and LowMC family.
The SPECK family received two quantum analysis till date (Jang et al., Applied Sciences, 2020; Anand
et al., Indocrypt, 2020). We revisit these two works, and present improved benchmarks SPECK (all 10
variants). Our implementations incur lower full depth compared to the previous works.
On the other hand, the quantum circuit of LowMC was explored earlier in Jaques et al.’s Eurocrypt 2020
paper. However, there is an already known bug in their paper, which we patch. On top of that, we present
two versions of LowMC (on L1, L3 and L5 variants) in quantum, both of which incur significantly less
full depth than the bug-fixed implementation.
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1 Introduction

Among the major progress in the computational science in recent times, the quantum computing is certainly
included in the topmost contenders. While a massive race of research is underway to build a functional quantum
computer, it stands to reason that we should investigate how such a device can undermine the current security
notions. As a matter of fact, it is well-known that certain public-key systems would face major problem
[37,10,33,19,20,16] against an adversary equipped with a quantum computer. Going further, one may also
notice that the symmetric-key counterpart would also be affected, mostly due to the so-called Grover’s search
algorithm [18].

Due to the power of the quantum properties of matter (namely, superposition and entanglement), quantum
algorithms can find (with a high probability) the solution to certain types of problems faster than the best-
known classical algorithms. In this case, the Grover’s search algorithm can find the secret key of a symmetric-key
cipher with about square-root search of what would be required for a classical computer, roughly speaking.

Therefore, it is not surprising that the research community in the symmetric-key cryptography as well would
take interest in figuring out the possible impact a functional quantum computer can have — see Section 2.2
for a collection of related works. This work, too, makes a humble attempt to evaluate the quantum security of
the block cipher families, SPECK [12] and LowMC [1].
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1. SPECK Family (10 variants; Section 4). We improve the quantum implementations of the SPECK family
from the Indocrypt 2020 paper by Anand, Maitra and Mukhopadhyay, [6]; and the same from the Applied
Sciences paper by Jang, Choi, Kwon, Kim, Park and Seo [23] in terms lower depth (though the X gate
count is higher in our case). By improving the quantum adders and parallelization in the architecture, we
show noticeable reduction of depth3.

2. LowMC Family (L1, L3 and L5; Section 5). We observe that the implementation (LowMC) by [30]
contains some programming related issue, which probably resulted in underestimating the resources for
non-linear components (similar issue with respect to AES was reported by the Asiacrypt’20 authors [42];
and later in [22,25]); although the linear components (Sections 5.2, 5.3) were not affected. We patch the
issues (❅, such as impossible parallelism and omitting initialization of ancilla qubits) and estimate the
correct quantum gates and depth from the number of qubits they reported in Section 5.5.
Independent to that, we present two versions of three LowMC variants, which we refer to as, the regular
(◊) and the shallow (▷◁) versions. Both the regular and the shallow versions provide high parallelism as the
linear layer and key schedule work simultaneously. The regular (respectively, shallow) version uses the S-box
implementation that has the Toffoli depth of 3 (respectively, 1), as described in Figure 5. Further, we show
some improvement in the implementation of the linear layer, key schedule, and also in the parallelization
of both.

Table 1 shows the benchmarks for the SPECK cipher family, including the results from [6,23]. The proposed
SPECK quantum circuits require a higher number of X gates than previous works. This is due to the nature of
the quantum adder used in our implementation (detailed in Section 4.1). Similarly, a summary of results of on
LowMC can be found in Table 2, where we consolidate results from the bug-fixed implementation of [30]. The
T-depth of the shallow version of LowMC is higher than the bug-fixed implementation of [30], but actually,
this is derived from the difference in the decomposition method of the Toffoli gate although the Toffoli depth
is the same (see Section 2.3 for details).

When the basic implementation of the ciphers is available, in Section 6, we elaborate the estimated cost of
running the Grover’s search algorithm. We estimate only the cost of oracle in the Grover’s search algorithm
with the proposed quantum circuits. There is a module called diffusion operator that amplifies the amplitude
of the solution returned by oracle, but the overhead is negligible, so it is excluded from the cost estimation.
Lastly, the parallel operation of the Grover’s search algorithm required according to the block and key size of
the cipher is reflected in the cost estimation. We also comment on the quantum security level proposed in [32].

Our source codes are written in ProjectQ4. Developed by the researchers from ETH Zurich, it is a Python-
based open-source framework for quantum computing, and offers a support for IBM’s quantum chips. The
variable resource check is set to 0 in ClassicalSimulator to check the test vectors and set to 1 in
ResourceCounter to decompose Toffoli gates in our codes. All relevant codes, along with a toy version of
SPECK (where it is possible to simulate the Grover’s search), are released in public5.

2 Prerequisite

2.1 Backdrop and Motivation

The Grover’s search algorithm is a quantum algorithm that can find a solution in an n-qubit search space
with ⌊π4

√
2n⌋ (about

√
2n) serial application. Theoretically, this algorithm can reduce symmetric-key ciphers

(having an n-bit key) with n-bit security on a classical computer to n/2-bit security on a quantum computer.
An abridged description of the algorithm is given as follows. The Grover’s search algorithm operates on

n-qubits in the superposition state and finds a solution by iterating the set of oracle and diffusion operators
about n times. First, n Hadamard gates are used to prepare n-qubits in superposition state. This causes 2n

queries to coexist as probabilities in n-qubit. In the oracle, the logic to find a solution is implemented as
quantum gates. For the quantum key search, quantum encryption of the target cipher must be implemented
as logic in the oracle. The oracle finds a solution (i.e., the secret key), but the measurement probabilities with
non-solutions are still the same. So, the diffusion operator amplifies the amplitude of the solution returned

3However the reduction of full depth is less prominent (ranging from 10 percent to 12 percent depending on the
variant of SPECK), still our implementation takes less quantum resource. See Table 4 for the benchmark.

4Homepage: https://projectq.ch/. Code: https://github.com/ProjectQ-Framework/ProjectQ. Documentation:
https://projectq.readthedocs.io/en/latest/.

5https://github.com/starj1023/SPECK LowMC QC.

https://projectq.ch/
https://github.com/ProjectQ-Framework/ProjectQ
https://projectq.readthedocs.io/en/latest/
https://github.com/starj1023/SPECK_LowMC_QC
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Table 1: Comparison of quantum resources required for variants of SPECK.

SPECK
#Toffoli #CNOT #NOT #qubits Depth Full depth

✩ ✲ ✱ ❂ ❈

32/64
JCKKPS [23] 1,290 3,706 42 97 3,313 N/A
AMM [6] 1,290 4,222 42 96 1,694 5,873
This work 1,247 4,179 1,160 98 814 5,258

48/72
JCKKPS [23] 1,982 5,606 42 121 4,969 N/A
AMM [6] 1,978 6,462 42 120 2,574 9,153
This work 1,935 6,419 1,848 122 1,166 8,075

48/96
JCKKPS [23] 2,074 5,866 45 145 5,203 N/A
AMM [6] 2,070 6,762 45 144 2,691 9,541
This work 2,025 6,717 1,935 146 1,219 8,441

64/96
JCKKPS [23] 3,162 8,890 54 161 8,009 N/A
AMM [6] 3,162 10,318 54 160 4,082 14,563
This work 3,111 10,267 3,012 162 1,794 12,870

64/128
JCKKPS [23] 3,286 9,238 57 193 8,323 N/A
AMM [6] 3,286 10,722 57 192 4,239 15,181
This work 3,233 10,669 3,131 194 1,863 13,365

96/96
JCKKPS [23] 5,172 14,436 60 193 12,923 N/A
AMM [6] 5,170 16,854 60 192 6,636 23,657
This work 5,115 16,799 5,010 194 2,828 21,028

96/144
JCKKPS [23] 5,360 14,960 64 241 13,397 N/A
AMM [6] 5,358 17,466 64 240 6,873 23,657
This work 5,301 17,409 5,194 242 2,929 21,779

128/128
JCKKPS [23] 7,942 22,086 75 257 19,797 N/A
AMM [6] 7,938 25,862 75 256 10,144 36,358
This work 7,875 25,799 7,761 256 4,256 32,224

128/192
JCKKPS [23] 8,192 22,784 80 321 20,427 N/A
AMM [6] 8,190 26,682 80 320 10,461 37,381
This work 8,125 26,617 8,010 322 4,389 33,231

128/256
JCKKPS [23] 8,444 23,484 81 385 21,061 N/A
AMM [6] 8,442 27,502 81 384 10,778 38,431
This work 8,375 27,435 8,255 386 4,522 34,238

by the oracle. After increasing the amplitude of the solution sufficiently by repeating the oracle and diffusion
operators, n-qubits are finally measured.

However, the catch is that the quantum attack using the Grover’s algorithm on the symmetric-key cipher
requires a lot of quantum resources. Despite much progress though, the state-of-the-art quantum computers
have only very limited resources, and consequently cannot afford to run the Grover’s algorithm.

If the quantum cost required to attack the cipher is high, it can be expected to provide the desired security
(i.e., n-bit security) even in the post-quantum era (without increasing the key size). Thus, it is important to
estimate and analyze the cost of quantum attacks on various ciphers.

2.2 Related Works

Estimating the quantum resources required for key recovery using the Grover search algorithm was probably
first presented for AES by Grassl, Langenberg, Roetteler, and Steinwand [17]. This work has been followed
up by the research community with various implementations of AES [30,42,22,25,2,31]. These papers all focus
on the efficient implementation of quantum circuits, thereby reducing the cost for running the Grover’s search
algorithm with increasingly low resource. Apart from AES, a large number of other ciphers have also received
the quantum analysis, SIMON [7], SPECK [6,23], SKINNY [13], PRESENT and GIFT [27], SHA-2 and SHA-3
[3], FSR-based ciphers [5], ChaCha [11], SM3 [38,41], RECTANGLE and KNOT [9], KATAN [34], DEFAULT
[24], GIFT–SKINNY–SATURNIN [13], PIPO [29], to name some of those.

2.3 Quantum Gates

There are several commonly used quantum gates to implement ciphers into quantum circuits, such as X (NOT),
CNOT, and Toffoli (CCNOT) gates. The X gate inverts the value of a qubit, which can replace the classical
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Table 2: Comparison of quantum resources required for variants of LowMC.

LowMC
#CNOT #1qCliff #T T-depth #qubits Full depth

✲ ❁ ✢ ✤ ❂ ❈

L1

❅ 344,972 2,466 4,200 20 1,006 49,350

◊ 498,208 2,466 4,200 240 3,200 4,708

▷◁ 500,208 2,466 4,200 80 3,830 4,708

L3

❅ 1,135,935 4,699 6,300 30 1,434 159,659

◊ 1,669,456 4,699 6,300 360 6,720 10,571

▷◁ 1,672,456 4,699 6,300 120 7,650 10,571

L5

❅ 2,535,162 7,137 7,980 38 1,802 346,736

◊ 3,754,484 7,137 7,980 456 11,008 17,789

▷◁ 3,758,284 7,137 7,980 152 12,178 17,789

❅: Bug-fixed JNRV [30]

◊: Regular version.

▷◁: Shallow version.

NOT operation (i.e., X (a) = ∼ a). The CNOT gate operates on two qubits, and the value of the target qubit
is determined according to the value of the control qubit. If the value of the control qubit is 1, the target qubit
is inverted, and if the value of the control qubit is 0, it is maintained (i.e., CNOT (a, b) = (a, a ⊕ b). Since
this is equivalent to XORing the value of the control qubit to the target qubit, the CNOT gate can replace
the classic XOR operation. Toffoli gates operate on three qubits, with two control qubits and one target qubit.
The value of the target qubit is reversed only when the values of both control qubits are 1 (i.e., Toffoli (a, b, c)
= (a, b, c ⊕ ab)). Since this is equivalent to XORing the ANDed value of control qubits to the target qubit,
Toffoli gate can replace the classic AND operation. We can implement cipher encryption in quantum using
these quantum gates, which can replace the classic NOT, XOR, and AND operations.

Among these gates, it is important from an optimization point of view that we need to reduce the number
of Toffoli gates. Because the Toffoli gate is implemented as a combination of T gates (determine the T-depth)
and Clifford gates (i.e., CNOT, H, or X gate), the cost is relatively high. There are several ways to decompose
the Toffoli gate [4,35,21], and the full depth means the depth when the Toffoli gates are decomposed. In our
work, when estimating decomposed resources, we adopt the decomposition method of 7 T gates + 8 Clifford
gates, T-depth of 4, and full depth of 8 for one Toffoli gate [4].

2.4 NIST Security Levels

In order to describe the security of cipher against a quantum adversary, NIST stated the following security
margins for a cipher [32]:

Level 1: Cipher is at least as hard to break as AES-128.
Level 2: Cipher is at least as hard to break as SHA-256.
Level 3: Cipher is at least as hard to break as AES-192.
Level 4: Cipher is at least as hard to break as SHA-384.
Level 5: Cipher is at least as hard to break as AES-256.

NIST recommended that ciphers should achieve at least Levels 1, 2 and/or 3, to provide sufficient security
in the post-quantum era. The estimates used in [32] were based on the results of AES circuits were taken
from that of [17], and are as listed as follows: Level 1: 2170, Level 3: 2233, Level 5: 2298. These figures were
calculated as total number of gates × full depth of the quantum key search (as estimated in [17]) respectively
for AES-128, 192, and 256 under the Grover’s algorithm.

3 Target Ciphers

3.1 SPECK Family (32/64, 48/72, 48/96, 64/96, 64/128, 96/96, 96/144, 128/128, 128/192,
128/256)

SPECK [12] is a family of lightweight block ciphers that was developed by the National Security Agency (NSA)
in 2013. The SPECK family adopts a Feistel-like structure and contains 10 variants. The parameters for each
variant are specified in Table 3.



5 / 20 [§/§1 §2 §3 §4 §5 §6 §7 §A/§]

Table 3: Parameters for SPECK variants.
Word size Key words Block size Key size

α β
Rounds

(n) (m) (2n) (nm) (T )

16 4 32 64 7 2 22

24
3

48
72

8 3
22

4 96 23

32
3

64
96

8 3
26

4 128 27

48
2

96
96

8 3
28

3 144 29

64
2

128
128

8 3
32

3 192 33
4 256 34

x2i+1 x2i

≫ α

≪ β

x2i+3 x2i+2

Round Key

Fig. 1: Round function of SPECK.

Round Function The round function of SPECK consists of modular addition, bit-wise rotation and exclusive-
OR (XOR) as shown in Figure 1. Let (x2i+1, x2i) be the 2n-bit input of the ith round, where x2i+1 and x2i

are both n-bit words. In each round, the state is updated as follows:

1. Updating x2i+1 by cyclically shifting its bits to the right by α bits, and then performing the addition
modulo 2n on x2i+1 and x2i via x2i+1 = x2i+1 + x2i.

2. XORing the n-bit round key to x2i+1, and cyclically shifting the bits in x2i to the left by β bits, simulta-
neously.

3. XORing x2i+1 to x2i and finishing the update of round function.

Key Schedule The sub-keys of SPECK are expanded in a similar way as the state in each round. Denote
l0, l1, · · · , lm−2 the variables for producing the sub-keys of SPECK family. In order to generate the (i+ 1)th-
round sub-key, where i ∈ {0, T}, take (li, ki) as the input of round function as shown in Figure 1 with the
number i served as round key in key addition step. Denote the output (li+m−1, ki+1), ki+1 is the generated
sub-key.

3.2 LowMC Family (L1, L3, L5)

LowMC [1] is a family of SPN-based block ciphers. Motivated by the fact that non-linear gates are costly
compared to the linear gates in applications such as Multi-party Computation (MPC), Fully Homomorphic
Encryption (FHE) and Zero Knowledge (ZK), the ciphers specific to these niches are designed to have a
low small AND gate/depth count. LowMC is flexible in design (some components of it can be determined
randomly), the recommended instance of [1] can be characterized by the block size n, the key size k, the
number of S-boxes m in the non-linear layer, the allowed data complexity d of attacks and the round r,
where (n, k,m, d, r) ∈ {(256, 80, 49, 64, 11), (256, 128, 63, 128, 12)}. Note that in the post-quantum digital sig-
nature Picnic6 [40], the adopted variants of LowMC can be characterized by (n, k,m, r) ∈ {(128, 128, 10, 20),
(192, 192, 10, 30), (256, 256, 10, 38)}. LowMC round consists of SboxLayer, LinearLayer, ConstantAddition and
KeyAddition; and in the Key Schedule, round keys are generated through LinearLayer7.

Round Function The encryption of LowMC starts with a whitening key addition over F2, followed by
r iterations of the round function which is composed as KeyAddition ◦ ConstantAddition ◦ LinearLayer ◦
SboxLayer. Schematic diagrams of LowMC round function and key schedule can be found in Figure 2.

6Apart from LowMC, Picnic also uses SHA-3 in some form.
7As the exact specification is generated at random, it is suggested in [8] to call LowMC as a ‘meta-cipher’ (instead

of a ‘cipher’).
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SboxLayer. LowMC adopts a 3-bit S-box (in the look-up form, it is given by 01367452) with the coordinate
function representation (in ANF) as (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab) in its substitution layer, where a, b, c are
the input bits. For a specific instance of LowMC, only the first 3m bits of the state will go through the S-box.

LinearLayer. The linear layer of LowMC is matrix multiplication in F2.

ConstantAddition. Round constants are XORed to the sate by the operation of addition in F2.

KeyAddition. The n-bit round keys generated by key schedule are XORed to the state after each round. Also,
the encryption with LowMC starts with a key whitening.

←− KeyAddition

S-box S-box S-box · · · S-box · · ·

LinearLayer

Fig. 2: Round function of LowMC.

Key Schedule LowMC uses a simple method to generate the sub-key for each round. The round keys are
derived from the master key via multiplication with a random matrix with full rank.

4 SPECK in Quantum

For implementation of SPECK in quantum, we present a parallel addition implementation for a quantum
circuit. We design a parallel addition structure by allocating one more carry qubit. We take an on-the-fly
approach to perform round functions and key schedules together. Then the additions of the round function
and key schedule are performed in parallel. As a result, compared to the implementation in [6], we save one
Toffoli gate per addition and provide a 56% performance improvement in terms of depth.

4.1 Quantum Adder for SPECK

A quantum adder is implemented as a combination of quantum gates. Previous implementations of SPECK [26]
used a ripple carry-based quantum adder [15]. The quantum adder in the previous work uses one ancilla
qubit, (2n − 2) Tofffoli gates, (4n − 2) CNOT gates, with a depth of (5n − 3). Later, Anand et al. improved
performance in terms of depth and saved one ancilla qubit by adopting a different quantum adder (from [39])
in their SPECK quantum circuit implementation [6]. The quantum adder used in their work uses a (2n − 2)
Tofffoli gate, (5n− 6) CNOT gates, with a depth of (5n− 5) where no ancilla qubits are used. For this reason,
it saves 1 qubit compared to the quantum adder used in [26].

We use an improved quantum adder based on the ripple-carry approach, which is referred to as the improved
Cuccaro–Draper–Kutin–Moulton (CDKM) adder [15]. This quantum adder uses one ancilla and more X gates,
but reduce the Toffoli gates and circuit depth, significantly. When the condition is n ≥ 4 for n-bit addition, an
improved quantum adder is available. Since the 16-bit addition operator is the smallest unit in SPECK, the
improved quantum adder can be applied to all variants of SPECK. In modular addition, one ancilla qubit can
be saved (generic addition uses two ancilla), and the quantum gates and circuit depth can also be reduced.
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Finally, the quantum adder we used requires one ancilla qubit, (2n − 3) Toffoli gates, (5n − 7) CNOT gates,
(2n− 6) X gates, and the circuit depth is (2n+3). We do not know exactly why, but when we implemented in
ProjectQ, a depth of (2n+ 3) was estimated. Details of the implementation can be found in [15]. Algorithm 1
describes the improved CDKM adder used in our implementation of SPECK.

Algorithm 1: Quantum circuit for improved n-bit CDKM adder (n ≥ 6).

Input: n-qubit operands a, b, carry qubit c (= 0).
Output: a = a, b = a+ b, c = 0.

1: for i = 0 to n− 3 do
2: b[i+ 1]← CNOT(a[i+ 1], b[i+ 1])
3: end for

4: c← CNOT(a[1], c)
5: c← Toffoli(a[0], b[0], c)
6: a[1]← CNOT(a[2], a[1])
7: a[1]← Toffoli(c, b[1], a[1])
8: a[2]← CNOT(a[3], a[2])

9: for i = 0 to n− 6 do
10: a[i+ 2]← Toffoli(a[i+ 1], b[i+ 2], a[i+ 2])
11: a[i+ 3]← CNOT(a[i+ 4], a[i+ 3])
12: end for

13: a[n− 3]← Toffoli(a[n− 4], b[n− 3], a[n− 3])
14: b[n− 1]← CNOT(a[n− 2], b[n− 1])
15: b[n− 1]← CNOT(a[n− 1], b[n− 1])
16: b[n− 1]← Toffoli(a[n− 3], b[n− 2], b[n− 1])

17: for i = 0 to n− 4 do
18: b[i+ 1]← X(b[i+ 1])
19: end for

20: b[1]← CNOT(c, b[1])

21: for i = 0 to n− 4 do
22: b[i+ 2]← CNOT(a[i+ 1], b[i+ 2])
23: end for

24: a[n− 3]← Toffoli(a[n− 4], b[n− 3], a[n− 3])

25: for i = 0 to n− 6 do
26: a[n− 4− i]← Toffoli(a[n− 5− i], b[n− 4− i], a[n−

4− i])
27: a[n− 3− i]← CNOT(a[n− 2− i], a[n− 3− i])
28: b[n− 3− i]← X(b[n− 3− i])
29: end for

30: a[1]← Toffoli(c, b[1], a[1])
31: a[2]← CNOT(a[3], a[2])
32: b[2]← X(b[2])
33: c← Toffoli(a[0], b[0], c)
34: a[1]← CNOT(a[2], a[1])
35: b[1]← X(b[1])
36: c← CNOT(a[1], c)

37: for i = 0 to n− 2 do
38: b[i]← CNOT(a[i], b[i])
39: end for

40: return a, b, c

4.2 Quantum Circuit for SPECK using Parallel Addition

We briefly reiterate the round function of SPECK and the key schedule process (refer to Section 3.1) for better
clarity. The round function of SPECK uses an n-bit round key (k) for a 2n-bit (x, y) block, and the process is
shown in Equation (1). Notations ≪ and ≫ mean left and right rotation, respectively.

Rk(x, y) = ((x ≪ α) + y)⊕ k, (y ≫ β)⊕ ((x ≪ α) + y)⊕ k) (1)

The initial key is K = k0, l0, . . . , lm−2, and the generated RKi = k0, k1, . . . , kr−1 are used as the ith round
key (0 ≤ i ≤ r − 1, r being the total number of rounds). The key schedule process is given in Equation (2).

li+m−1 = (ki + (li ≪ α))⊕ i, ki+1 = (ki ≫ β)⊕ li+m−1. (2)

In this part, we explore where the parallel addition is available in the implementation of SPECK as a
quantum circuit. We use the initial k0 in the first round, then update k0 to ki to use it as the round key in the
ith round (0 ≤ i ≤ r − 1). By taking this on-the-fly approach, there is no need to allocate qubits for the key
schedule. For each round, the round function and key schedule are executed together. Due to this, addition
(x ≪ α)+y in the round function and addition ki+(li ≪ α) in the key schedule can be performed in parallel.
In the previous implementation, the key schedule is performed after the round function in the i-th round by
adopting the same on-the-fly approach. And only one carry qubit c0 for addition is allocated. We take two
different approaches for parallel addition.
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First, k should not be updated in the key schedule until the round key k is used in the round func-
tion. In general, parallel addition is impossible because the round function and the key schedule are per-
formed sequentially. We present the procedure for each round as round function (1/2)→ key schedule (1/2)→
round function (2/2)→ key schedule (2/2) instead of round function (1/1)→ key schedule (1/1).

Then, Round function (1/2) is x = (x ≪ α) + y and key schedule (1/2) is li = ki + (li ≪ α), which
are parallel addition targets. Since ki should not be updated (required in round function (2/2)), the result
of addition in key schedule (1/2) is stored in li. Round function (2/2) is x = x ⊕ ki, y = (y ≫ β) ⊕ x and
key schedule (2/2) is ki = (ki ≫ β)⊕ (li ⊕ i).

Algorithm 2: Quantum circuit implementation of SPECK-32/64.

Input: 32-qubit block (x, y), 64-qubit keywords
(k0, l0, l1, l2),

carry qubits c0 (= 0), c1 (= 0).
Output: 32-qubit ciphertext (x, y).

1: for i = 0 to r − 2 do
2: Round function (1/2) :

3: x← x ≪ 7
4: x← ADD(y, x, c0)

5: Key schedule (1/2) :

6: li%3 ← li%3 ≪ 7
7: li%3 ← ADD(k0, li%3, c1)

8: Round function (2/2) :

9: x← CNOT16(k0, x)
10: y ← y ≫ 2
11: y ← CNOT16(x, y)

12: Key schedule (2/2) :

13: for j = 0 to 5 do ▷ Constant XOR
14: if (i≫ j)&1 then
15: li%3[j]← X(li%3[j])
16: end if
17: end for
18: k0 ← k0 ≫ 2
19: k0 ← CNOT16(li%3, k0)

20: end for

21: Round function (1/2) : ▷ Last round

22: x← x ≪ 7
23: x← ADD(y, x, c0)

24: Round function (2/2) :

25: x← CNOT16(k0, x)
26: y ← y ≫ 2
27: y ← CNOT16(x, y)

28: return (x, y)

Second, now that parallel addition is possible, we need one more carry qubit for this. A ripple-carry quantum
adder requires a carry qubit with an initial value of 0, and when the addition is completed, the carry qubit
is reset to 0 again. The previous implementation takes advantage of this to allocate only one carry qubit c0
and reuse it in all additions. However, in order to reuse c0, the next addition cannot be performed until the
addition is finished. Therefore, since we will perform two additions in parallel, we allocate two carry qubits c0
and c1 and use them in each addition.

Finally, the proposed quantum circuit implementation provides a 56% performance improvement in terms
of depth. Algorithm 2 describes the quantum circuit implementation for SPECK-32/64.

This technique is applied to all SPECK versions, only the parameters are changed. Implementations for
other versions can be found in our code. Rotations (i.e., ≪,≫) can be implemented with the swap gates,
but we do not use quantum resources by implementing a logical swap that changes the index of the qubits.
CNOT16 means CNOT gate operation of a 16-qubit array. Figure 3 shows the quantum circuit of SPECK-32/64
operating for 3 rounds.

4.3 Architecture and Resource Requirement

As shown in Table 1, the quantum resources required to implement our SPECK quantum circuits are much
cheaper compared to the previous SPECK quantum circuits. In [26,23], Jang et al. used a ripple carry-based
quantum adder and did not take into account the room for parallel addition. In [6], Anand et al. improved the
performance by using a different quantum adder than that of the previous implementation. The quantum circuit
they implemented does not use additional qubits and offers performance improvements in terms of depth. We
use two more carry qubits and X gates, but parallel addition using an improved ripple carry quantum adder
provides performance improvement in terms of circuit depth and a reduction in the number of Toffoli gates.

In the case of SPECK, which is based on an ARX structure, it is important which quantum adder is used.
In this work, a quantum circuit is designed so that the additions of the round function of SPECK and the key
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li = ki + (li n ↵), which are parallel addition targets. Since ki should not be
updated (required in round function (2/2)), the result of addition in key schedule
(1/2) is stored in li. Round function (2/2) is x = x� ki, y = (y o �)� x and
key schedule (2/2) is ki = (ki o �)� (li � i).

Second, now that parallel addition is possible, we need one more carry qubit
for this. A ripple-carry quantum adder requires a carry qubit with an initial
value of 0, and when the addition is completed, the carry qubit is reset to 0
again. The previous implementation takes advantage of this to allocate only
one carry qubit c0 and reuse it in all additions. However, in order to reuse c0,
the next addition cannot be performed until the addition is finished. Therefore,
since we will perform two additions in parallel, we allocate two carry qubits c0

and c1 and use them in each addition.
Finally, the proposed quantum circuit implementation provides a 56% per-

formance improvement in terms of depth. Algorithm 1 describes the quantum
circuit implementation for SPECK-32/64.

This technique is applied to all SPECK versions, only the parameters are
changed. Implementations for other versions can be found in our code. Rota-
tions (i.e., n,o) can be implemented with the swap gates, but we do not use
quantum resources by implementing a logical swap that changes the index of
the qubits. CNOT16 means CNOT gate operation of a 16-qubit array. Figure
1 shows the quantum circuit of SPECK-32/64 operating for 3 rounds.

x n 7

Add

• n 7

Add

• n 7

Add

• x

y o 2 o 2 o 2 y

c0 c0

c1

Add

Add Add c1

k0 • o 2 Add • o 2 Add • o 2 k0

l0 n 7 X(i) • l0

l1 n 7 Add X(i) • l1

l2 n 7 Add X(i) • l2

Figure 1: Quantum circuit for SPECK-32/64 (3 rounds only).

4 Performance

5 Conclusion

4

Fig. 3: Quantum circuit for SPECK-32/64 (3 rounds only).

schedule are performed in parallel, and a few ancilla qubits are allocated accordingly. Also, this approach is
expandable because it works even if it is changed to another quantum adder.

In Table 1, quantum resources are reported when the Toffoli gates are not decomposed for simplicity
of comparison. However, the Toffoli gate is decomposed into several quantum gates. For detailed resource
estimation in this paper, we follow the Toffoli gate decomposition in [4]. One Toffoli gate is decomposed into
7 T gates + 8 Clifford gates (T-depth is 4 and full depth is 8). Table 4 shows the detailed quantum resources
required for our SPECK quantum circuits. A birds-eye-view of the relative performance of the relevant works
can be seen from Figure 4.

Table 4: Quantum resources (decomposed gates) required for variants of SPECK (this work).

SPECK
#CNOT #1qCliff #T T-depth #qubits Full depth

✲ ❁ ✢ ✤ ❂ ❈

32/64 11,661 3,654 8,729 2,552 98 5,258
48/72 18,029 5,718 13,545 3,960 122 8,074
48/96 18,867 5,985 14,175 4,140 146 8,441
64/96 28,933 9,234 21,777 6,344 162 12,870
64/128 30,067 9,597 22,631 6,588 194 13,365
96/96 47,489 15,240 35,805 10,416 194 21,028
96/144 49,215 15,796 37,107 10,788 242 21,779
128/128 73,049 23,511 55,125 16,000 258 32,224
128/192 75,367 24,260 56,875 16,500 322 33,231
128/256 77,685 25,005 58,625 17,000 386 34,238

5 LowMC in Quantum

Regular and Shallow Versions

As mentioned earlier, our quantum circuits of LowMC are divided into regular (◊) and shallow (▷◁) versions.
The regular version offers high parallelism while taking into account the trade-off of qubit-depth. Both the
regular and the shallow versions provide high parallelism as the linear layer and key schedule work simultane-
ously. The difference is that the regular version of the S-box has a Toffoli depth of 3 and the shallow version
of the S-box has a Toffoli depth of 1, as detailed in Section 5.1.

5.1 Implementation of S-box

In [30], two quantum circuit implementation for the 3-bit S-box of LowMC were described as shown in Figure
5. The in-place S-box (Figure 5(a)) stores the output value in the input, and the shallow S-box (Figure 5(b))
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Fig. 4: Comparison of qubit requirement for SPECK variants.

additionally uses 3 output qubits and 3 ancilla qubits, but the Toffoli depth can be reduced and the shallow
S-box is adopted in their implementation. Notice that the 3 garbage lines are reset, this is because those are
reused in the next S-box (save for the last one). When the Toffoli gate is decomposed in the case of the in-
place S-box, the full depth is 23, and the shallow S-box is lower at 12. Table 5(a) shows the quantum resources
required for the two implementations of the 3-bit S-box.

|a⟩ • • • |a⊕ bc⟩

|b⟩ • • • |a⊕ b⊕ ac⟩

|c⟩ • • |a⊕ b⊕ c⊕ ab⟩
(a) Regular (in-place).

|a⟩ • • • • |a⟩
|b⟩ • • • • |b⟩
|c⟩ • • • |c⟩
|0⟩ • • • |0⟩
|0⟩ • • |0⟩
|0⟩ • • |0⟩
|0⟩ |a⊕ bc⟩
|0⟩ |a⊕ b⊕ ac⟩
|0⟩ |a⊕ b⊕ c⊕ ab⟩

(b) Shallow (out-of-place).

Fig. 5: Quantum circuit for LowMC S-box.

Several trade-offs are to be considered when choosing the quantum S-box implementation. The Toffoli depth
of the in-place S-box is 3 and that of the shallow S-box is 1. This is definitely an advantage for the shallow S-
box. However, we found that the full depth of the S-box does not affect the full depth of the LowMC when using
10 S-boxes. This is because the depth for S-box is covered by the key schedule and the linear layer. One thing
to note is that in-place S-box can be operated in parallel without additional cost, but shallow S-box requires
additional ancilla qubits for parallel operation, and qubits for output are allocated every round. Considering
these trade-offs, we adopt and compare both S-boxes in our implementations. The regular version of LowMC
(◊) uses the regular/in-place S-box implementation and the shallow version (▷◁) uses the shallow/out-of-place
S-box implementation.



11 / 20 [§/§1 §2 §3 §4 §5 §6 §7 §A/§]

5.2 Implementation of Linear Layer and Key Schedule

In the linear layer, the pseudo-randomly generated matrix over GF(2) of dimension n×n in LowMC instanti-
ation is multiplied by an n-bit block. In [30], it is possible to implement an in-place implementation in which
CNOT gates are used only in an n-qubit block due to PLU factorization (i.e., internal mixing). In contrast, in
our quantum circuit implementation, CNOT gate is performed depending on where the bit value of the matrix
is 1. In the CNOT gate, the n-qubit block acts as a control, and a newly allocated n-qubit acts as a target. Fi-
nally, the matrix product is stored in the newly allocated n-qubit. Although n-qubit to store the output of the
linear layer is newly allocated every round, our approach can obtain a compact quantum circuit. Because we
allocate new n-qubits for matrix multiplication, it frees up space and allows for parallelism. Table 5(b) shows
the quantum resources required to implement quantum circuits for the linear layer. Since the CNOT gates and
depths required for a round are slightly different according to the pseudo-randomly generated matrices, our
results in Table 5(b) show the average for all rounds.

In the key schedule, round keys are generated by multiplying the k-bit input key with the matrix of
dimension k × k of each round in the same way. Unlike the linear layer, we can save qubits by using the
reverse operation in the key schedule. Only in the first key schedule, a new k-qubit for storing the round key
is allocated. After KeyAddition, the reverse operation of the key schedule is performed to return the round
key (k-qubit) to a clean state, and it is reused in the next key schedule. Due to the reverse operation, the
CNOT gates are doubled. However, in terms of depth, we perform the reverse operation of the key schedule
in parallel with the linear layers for the n-qubit block by using two input keys and round key qubits. Figure 6
shows our LowMC quantum circuit operating fully in parallel by operating two input keys (reverse operation
of Key Schedule is denoted as Key schedule†8). We initially allocate additional 2 · k qubits (k1 and rk1) and
use them alternately in rounds. Although it is omitted in Figure 6, the input key k0 is copied to k1 through
the CNOT gates and then the circuit is executed. Through this, the key schedule and the reverse operation of
the key schedule can be executed simultaneously with the linear layer. Table 5(c) shows the quantum resources
required to implement quantum circuits for the key schedule. It should be pointed out that in Table 5(c), our
result excludes the initially allocated 3 · k-qubit (rk0, k1 and rk1 in Figure 6). The regular version of Figure
6(a) and the shallow version of Figure 6(b) differ in whether the output qubits for the S-boxes are allocated
or not, and the Toffoli depth.

5.3 Implementation of KeyAddition and ConstantAddition

KeyAddition and ConstantAddition are implemented the same as in SPECK. KeyAddition is simply imple-
mented using k CNOT gates. In ConstantAddition, since the constants are already known, the X gates are
performed where the bit value of the constant is 1.

5.4 Architecture and Resource Requirement

As already presented in Table 2, one may find the quantum resources required to implement our LowMC
quantum circuits. In LowMC quantum circuits, the most quantum resources are used for matrix multiplica-
tion in the key schedule and linear layer. In [30], an in-place implementation was presented through matrix
multiplication using the PLU factorization. On the other hand, we design with a general structure, using more
qubits, but more compact quantum circuits are obtained. Lastly, our quantum circuit design using two input
keys simultaneously executes the linear layer, key schedule, and reverse operation of the key schedule.

5.5 Corrected LowMC implementation from Eurocrypt’20 (JNRV)

For a clearer context, here we give a brief description of the situations where Q#’s ResourcesEstimator

issues arise and how those issues affect the quantum benchmarks given in the Eurocrypt’20 paper [30]. This
was discovered when we tried to cross-check their publicly available source codes9. Indeed, this was also noted
in [42] as a bug; and this apparently led to underestimation of gate count, qubit count and depth reported in
[30] for the non-linear components (and also the S-box of LowMC).

8Key Schedule in quantum (of LowMC) denotes the product of the matrix of the round and the input key, and the
product is stored in qubits for the round key. The reverse operation (i.e., uncompute) of Key Schedule is defined as
Key Schedule†, and cleans the qubits for the round key.

9https://github.com/microsoft/grover-blocks.

https://github.com/microsoft/grover-blocks
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Table 5: Comparison of quantum resources (decomposed gates) required for LowMC.
(a) S-box.

Method
#CNOT #1qCliff #T Toffoli depth #qubits Full depth

✲ ❁ ✢ ✦ ❂ ❈

◊ S-box [30] 20 6 21 3 3 26
▷◁ S-box [30] 30 6 21 1 9 12

◊: Regular version.
▷◁: Shallow version.

(b) Linear layer.

Method
#CNOT #1qCliff #qubits Full depth

✲ ❁ ❂ ❈

Linear layer L1 [30] 8,093 60 128 2,365
Linear layer L3 [30] 18,080 90 192 5,301
Linear layer L5 [30] 32,714 137 256 8,603
Linear layer L1 8,205 0 256 225
Linear layer L3 18,418 0 384 339
Linear layer L5 32,793 0 512 455

(c) Key schedule.

Method
#CNOT #1qCliff #qubits Full depth

✲ ❁ ❂ ❈

Key schedule L1 [30] 8,104 0 128 2,438
Key schedule L3 [30] 18,242 0 192 4,896
Key schedule L5 [30] 32,525 0 256 9,358
Key schedule L1 8,183 0 128 224
Key schedule L3 18,418 0 192 340
Key schedule L5 32,772 0 256 456

To our understanding, some problems arise if the qubits are allocated by the using command in Q# (and it
affects the non-linear components). However more experiments are to be carried out in order to be completely
certain about it. The using command automatically disposes when the function ends. If ancilla qubits to
implement LowMC S-box are allocated with the using command, the consistency between depth and qubits
is lost. When 10 S-boxes are executed in SubBytes, the ancilla qubits allocated by the using are counted only
for the first S-box and not after. Also counts the depth for executing 10 S-boxes simultaneously. In order to
derive the correct result, the number of qubits or depth must be increased. To be modified, the number of
qubits must be increased or the depth must be increased. Q#’s ResourcesEstimator tries to find its own
lower bound for depth and qubit. That is, to achieve the qubits of the lower bound, the depth may have to be
increased, and to achieve the depth of the lower bound, the qubits may have to be increased.

For LowMC quantum circuits in [30], the key schedule and the linear layer are in-place implementations,
so only the shallow S-box is reported as lower-bound. We correct the number of qubits so that 10 × S-boxes
can be operated in parallel. In LowMC, CCNOT implementation with T -depth of one in [36] is adopted rather
than AND gate. This CCNOT implementation requires 4 ancilla qubits (see [36] for details). We correct the
number of qubits while keeping the CCNOT implementation they adopted.

They count the qubits for (10 × S-boxes × number of rounds) as follows: (10 × 3 × number of rounds)
ancilla qubits for the output of S-boxes, 3 ancilla qubits for all shallow S-boxes, and 4 ancilla qubits for all
CCNOT implementations. As a result, 607, 907 and 1,147 ancilla qubits are counted for LowMC L1, L3, and
L5, respectively10.

Now, we correct the number of ancilla qubits estimated as lower-bound. To operate 10 shallow S-boxes
in parallel, 10 × 3 ancilla qubits are required (rather than 3 ancilla qubits). For parallel operation of three
CCNOT gates in a shallow S-box, 3× 4 ancilla qubits are required. Furthermore, for parallel operation of all
CCNOT gates in 10×S-boxes, 10× 3× 4 ancilla qubits are required (rather than 4 ancilla qubits). Since these
ancilla qubits are initialized to zero after the operation, there is no need to clean the ancilla qubits (i.e., no

10https://github.com/microsoft/grover-blocks/blob/master/numbers/lowmc.csv.

https://github.com/microsoft/grover-blocks/blob/master/numbers/lowmc.csv
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|k0Í Key schedule Key schedule† Key schedule Key schedule†

|rk0Í • •
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(a) Regular version.
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Figure 7: LowMC temp

27

(b) Shallow version.

Fig. 6: Architecture of LowMC quantum circuit.

need to reverse). So the count for ancilla qubits for S-boxes is correct as follows: (10× 3× number of rounds)
ancilla qubits for the output of S-boxes, 10 × 3 ancilla qubits for parallel shallow S-boxes, and 10 × 3 × 4
ancilla qubits for parallel CCNOT implementation. As a result, corrected 750, 1,050, and 1,290 ancilla qubits
are counted for LowMC L1, L3, and L5, respectively.

For the linear layer and key schedule, there is no need for ancilla qubits as they are in-place implementations.
So only (block size+key size) qubits are initially set. However, 384, 576, and 768 qubits are reported for LowMC
L1, L3, and L5 respectively. We believe that only 256, 384 and 512 qubits need be set for LowMC L1, L3 and
L5 respectively.

Finally, the corrected 1,056, 1,434 and 1,802 qubits are counted for LowMC L1, L3 and L5, respectively.
We correct the number of qubits while maintaining their gates and circuit depth.

6 Estimating Cost of Grover’s Key Search

In this part, we evaluate the performance (quantum resources required) of the proposed quantum circuits (i.e.,
SPECK and LowMC). Our quantum implementation results from a quantum simulator on a classical computer,
not on a real quantum computer. Due to the difficulty in accessing real quantum computers (and there is also no
large-scale quantum computer), most studies report quantum implementations and resource analysis on quan-
tum simulators [7,25,6,34,28,30]. In our work, we use the quantum programming tool ProjectQ to implement
and simulate quantum circuits. We use two internal libraries (ClassicalSimulator and ResourceCounter)
of ProjectQ to verify the test vector and then estimate the required quantum resources. ClassicalSimulator
can simulate large-scale quantum circuits by limiting only quantum gates with Boolean functions (i.e., that
have analogy with classical gates) such as X, CNOT, and CCNOT gates. We use ResourceCounter to check
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the number of qubits, the number of quantum gates, and the depth of our quantum circuits. Tables 2 and 4
show the quantum resources required to implement our SPECK and LowMC quantum circuits.

We estimate the cost of the Grover’s key search for SPECK and LowMC based on the proposed quantum
circuits. The Grover’s search algorithm operates by iteration of oracle and diffusion operator. Commonly, the
cost of the diffusion operator is ignored in the estimation [17,25,24,30]. The diffusion operator operates on key
qubits, and has very little overhead compared to oracle. For this reason, in most studies, the cost of iterating
the oracle is estimated as the final cost of the Grover’s key search.

In the Grover’s oracle, the quantum circuit for the target cipher is operated twice. The first operation
encrypts the known plaintext using the key in superposition. Then, we need to check that the (n-bit) ciphertext
in the superposition state matches the ciphertext we know. An n-Controlled X gate is used for this. This single
gate (i.e., n-Controlled X gate) is also excluded from resource estimation for simplicity because it is a negligible
overhead in oracle. Therefore, the cost of the oracle is calculated as the quantum resources required for the
encryption circuit (Table 2 or 4) to operate twice sequentially.

As mentioned earlier, the Grover’s search algorithm operates as an iteration of oracle and diffusion operator,
and we exclude the cost of diffusion operator from resource estimation. Then, the final cost of the Grover’s
key search is calculated as (oracle × number of iterations). The number of times the Grover’s oracle is applied
is in turn determined by the key size. For a k-bit key (i.e., k-bit search space), the number of iterations to get

the solution key is ⌊π4
√
2k⌋ [14] (about

√
2k). That is, the Grover’s search algorithm reduces the security (by

the square root) of symmetric key ciphers. Lastly, the Grover’s key search on r (plaintext, ciphertext) pairs
must be performed (which can be done in parallel) to exclude spurious keys. In [31,30], r = ⌈k/n⌉ (plaintext,
ciphertext) pairs are used for Grover’s key search for ciphers using n-bit blocks and k-bit keys, and we also
follow this structure.

Table 6 shows the Grover’s key search cost for SPECK variants. According to the block and key size of
SPECK variants, r (plaintext, ciphertext) pairs are required. However, since r (plaintext, ciphertext) pairs are
operated in parallel, the depth is not affected. Table 6 and 7 show the Grover’s key search cost for SPECK and
LowMC variants, respectively. Table 6 and 7 are calculated as (Table 4 and 2, respectively) × 2 × ⌊π4

√
2k⌋× r

(the number of qubits is not needed in the calculation, owing to the sequential nature of the quantum circuits).

Table 6: Quantum resources required for key search for SPECK (this work).

SPECK r
#qubits Total gates Full depth Cost Level of security

❂ ❋ ❈ ❋ × ❈ NIST [32] G+ [17] J+ [25]

32/64 2 133 1.749 · 247 1.008 · 245 1.747 · 292


Not

achieved

(< 2170)



Not

achieved

(< 2169)


Not

achieved

(< 2157)

48/72 2 173 1.357 · 252 1.548 · 249 1.05 · 2102

48/96 2 197 1.419 · 264 1.619 · 261 1.149 · 2126

64/96 2 229 1.089 · 265 1.234 · 262 1.344 · 2127

96/96 1 195 1.181 · 265 1.008 · 263 1.19 · 2128

64/128 2 261 1.132 · 281 1.281 · 278 1.45 · 2159
Level 1

(> 2157)

96/144 2 341 1.854 · 289 1.044 · 287 1.936 · 2176
Level 1 Level 1 Level 1

(< 2233)) (< 2233)) (< 2222)

128/128 1 259 1.818 · 281 1.545 · 279 1.404 · 2161
Not achieved Not achieved Level 1

(< 2170)) (< 2169)) (> 2157))

128/192 2 453 1.42 · 2114 1.593 · 2111 1.131 · 2226
Level 1 Level 1 Level 3

(< 2233)) (< 2233)) (> 2222))

128/256 2 517 1.463 · 2146 1.641 · 2143 1.201 · 2290
Level 3 Level 3 Level 5

(< 2298)) (< 2298)) (> 2286)

Now, we evaluate the post-quantum security levels of SPECK and LowMC based on NIST’s post-quantum
security requirements [32]. NIST defined the post-quantum security level as the Grover’s’s key search cost of
AES variants calculated in [17], as stated already in Section 2.4. For instance, if the complexity to mount a
quantum attack for a given cipher is comparable to or more difficult to that of AES-128 (i.e., 2170), then Level
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Table 7: Quantum resources required for key search for LowMC (this work).

LowMC r
#qubits Total gates Full depth Cost Level of security

❂ ❋ ❈ ❋ × ❈ NIST [32] G+ [17] J+ [25]

L1
◊

1
3,201 1.513 · 283 1.806 · 276 1.366 · 2160 Not achieved Not achieved Level 1

▷◁ 3,831 1.519 · 283 1.806 · 276 1.371 · 2160 (< 2170) (< 2169) (> 2157)

L3
◊

1
6,721 1.259 · 2117 1.013 · 2110 1.276 · 2227 Level 1 Level 1 Level 3

▷◁ 7,651 1.261 · 2117 1.013 · 2110 1.278 · 2227 (< 2233) (< 2233) (> 2222)

L5
◊

1
11,009 1.412 · 2150 1.706 · 2142 1.204 · 2293 Level 3 Level 3 Level 5

▷◁ 12,179 1.413 · 2150 1.706 · 2142 1.205 · 2293 (< 2298) (< 2298) (> 2286)

◊: Regular version.

▷◁: Shallow version.

1 is said to be achieved; since the estimate of Level 1 was taken as 2170 in [32]. It may be stated that, the
count of qubit was not directly included in computing the security levels (i.e., high full depth was allowed).

Following the security levels stated in [32], the cost of running the Grover’s’s key search on SPECK and
LowMC, for the variants of ≤ 128-bit sized keys, none achieves Level 1 security. When the key size is increased,
SPECK using 144-bit key achieves Level 1 security; similarly the variants with 192-bit and 256-bit sized keys
respectively achieve Level 1 and Level 3 security. On the other hand, the bounds that were actually computed
based on the circuits presented in [17] are quite close, but not exactly the same as that of [32] for Level 1
(< 2169 from [17], but 2170 in [32]).

That said, one may note that the bounds stated in [32] or [17], in some sense overestimated the cost for
the respective levels. With each newer implementation, the quantum costs is reduced. In other words, as the
quantum costs for the AES variants are reduced, the security levels are to be adjusted accordingly. As far
as we know, the best-known implementation (i.e., with the least cost) of AES-128, 192 and 256 as quantum
circuits were presented in [25]; were calculated as Level 1: ≈ 2157, Level 3: ≈ 2222, Level 5: ≈ 2286. When
adjusted with these newly computed figures, we observe that SPECK and LowMC achieve Level 1 for 128-bit
keys, Level 3 for 192-bit keys, and Level 5 (highest) for 256-bit keys.

Apart from the cost itself, there is another requirement from NIST in terms of full depth. The quan-
tum circuits should have less full depth than the so-called “MAXDEPTH” limit [32]. No clear boundary for
MAXDEPTH was specified; instead 240, 264 and 296 are to be considered as landmarks. However, as discussed
in [25, Section 2.3], this limit is not always respected in the literature. Looking at Tables 6 and 7 that, one
may notice that, our implementations overtook the MAXDEPTH boundaries, particularly those with larger
key size. As a follow-up work, one may be interested in adopting a proper procedure (see [25, Section 2.3] for
three possible options), as those are out-of-scope for this work.

7 Conclusion

In this work, we follow the previous works [6,23,30] where the quantum analysis of the SPECK and LowMC
cipher families was conducted. As a synopsis of our work, it can be mentioned that, we manage to find a reduced
depth implementation of the 10 SPECK variants (thereby improving from [6,23]) and 3 LowMC variants, on
top of bug-fixing the LowMC implementation from [30] (and benchmark those). All in all, our implementations
achieve these security bounds (which are defined in terms of the quantum cost of the AES family [32]):

Variants of SPECK that use ≤ 96-bit key: Not achieved (< 2157), SPECK-64/128: 2159 (Level 1), SPECK-
96/144: 2176 (Level 1), SPECK-128/128: 2161 (Level 1), SPECK-128/192: 2226 (Level 3), SPECK-128/256:
2290 (Level 5);
LowMC L1: 2160 (Level 1), LowMC L3: 2227 (Level 3), LowMC L5: 2293 (Level 5);

when the results from [25] are taken into account. We anticipate our work would be useful to the broader
community when analyzing the quantum security of ciphers in the coming future. In particular, we anticipate
future researcher will take interest in implementing other ARX ciphers (for instance, by utilizing the quantum
adder, see Section 4.1) as well as SHA-256 and SHA-384 (those are important milestones to figure out the
quantum security levels, see Section 2.4).
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A Additional Results

Similar to [42, Table 6], we show the per-round benchmark for our implementations of the target ciphers. Table
8 shows the same for the ten variants of SPECK. Since the number of rounds is higher (and there are a total
of 10 variants), we only show the benchmark for a typical (non-last round) in this case. The same for LowMC
L1, L3 and L5 are shown in Table 9(a), 9(b) and 9(c), respectively. In the last round, the CNOT, NOT, and
Toffoli gate costs are less since the key schedule is not performed.

Table 8: Quantum resources required for a typical round for SPECK (this work).

SPECK
#CNOT #NOT #Toffoli Toffoli depth

✲ ✱ ✩ ✦

32/64 194 52 58 29

48/72 298 84 90 45

48/96 298 84 90 45

64/96 402 116 122 61

64/128 402 116 122 61

96/96 610 180 186 93

96/144 610 180 186 93

128/128 818 244 250 125

128/192 818 244 250 125

128/256 818 244 250 125
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(c) L5

Round

#CNOT #NOT #Toffoli Toffoli depth

✲ ✱ ✩ ✦

◊ ▷◁ ◊ ▷◁ ◊ ▷◁ ◊ ▷◁
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16 98,841 98,941 122 30 3 1

17 98,619 98,719 120 30 3 1

18 97,781 97,881 132 30 3 1
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35 98,494 98,594 130 30 3 1
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