
Collusion Resistant Copy-Protection for Watermarkable
Functionalities

Jiahui Liu* Qipeng Liu† Luowen Qian‡ Mark Zhandry§

Abstract

Copy-protection is the task of encoding a program into a quantum state to prevent illegal
duplications. A line of recent works studied copy-protection schemes under “1 → 2 attacks”:
the adversary receiving one program copy cannot produce two valid copies. However, under
most circumstances, vendors need to sell more than one copy of a program and still ensure
that no duplicates can be generated. In this work, we initiate the study of collusion resistant
copy-protection in the plain model. Our results are twofold:

• The feasibility of copy-protecting all watermarkable functionalities is an open question
raised by Aaronson et al. (CRYPTO’ 21) In the literature, watermarking decryption, digi-
tal signature schemes and PRFs have been extensively studied.
For the first time, we show that digital signature schemes can be copy-protected. To-
gether with the previous work on copy-protection of decryption and PRFs by Coladan-
gelo et al. (CRYPTO’ 21), it suggests that many watermarkable functionalities can be copy-
protected, partially answering the above open question by Aaronson et al.

• We make all the above schemes (copy-protection of decryption, digital signatures and
PRFs) 𝑘 bounded collusion resistant for any polynomial 𝑘, giving the first bounded col-
lusion resistant copy-protection for various functionalities in the plain model.

1 Introduction

The idea of exploiting the quantum no-cloning principle for building cryptography was pioneered
by Wiesner. In his seminal work [Wie83], he proposed the notion of quantum banknotes that can-
not be counterfeited due to the unclonability of quantum information. This idea has profoundly
influenced quantum cryptography, for example, inspiring the famous work on secure quantum
key exchange [BB84]. Since all classical information is inherently clonable, unclonable cryptogra-
phy is only achievable through the power of quantum information.

Aaronson [Aar09] further leveraged the capability of no-cloning to achieve copy-protection.
The idea of copy-protection is the following. A software vendor wants to sell a piece of software,
abstracted as a classical function 𝑓 . It prepares a quantum state 𝜌𝑓 so that anyone with a copy
of 𝜌𝑓 can evaluate 𝑓 on a polynomial number of inputs. However, no efficient pirate receiving a
single copy of 𝜌𝑓 , could produce two programs that compute 𝑓 correctly.

*University of Texas at Austin. Email: jiahui@cs.utexas.edu
†Simons Institute for the Theory of Computing. Email: qipengliu0@gmail.com
‡Boston University. Supported by DARPA under Agreement No. HR00112020023. Email: luowenq@bu.edu
§Princeton University & NTT Research. Email: mzhandry@gmail.com

1

mailto:jiahui@cs.utexas.edu
mailto:qipengliu0@gmail.com
mailto:luowenq@bu.edu
mailto:mzhandry@gmail.com

The notion above intuitively captures the security of a copy-protection scheme under what we
call an “1 → 2 attack”: the adversary receives 1 program copy, and attempts to produce 2 copies
with the correct functionality. A recent line of works [ALL+21, CLLZ21, CMP20, AKL+22] achieve
secure copy-protection for various functionalities under 1→ 2 attacks.

However, such a security notion is extremely limiting: in most circumstances, we cannot ex-
pect the software vendor to issue only one copy of the program. When the vendor gives out
multiple copies, all users can collude and generate pirate copies together. Therefore, a useful
copy-protection scheme should be secure against any “𝑘 → 𝑘 + 1 attack” for any polynomial 𝑘.
Such security is usually referred to as collusion resistance in the literature.

Prior Works on Copy-Protection We first recall on a high level how most existing copy-protection
schemes work: a copy-protection program consists of a quantum state as an “unclonable token”,
and a classical part containing an obfuscated program (either as an oracle or the output coming
out of some obfuscation functionality). The obfuscated program takes in a token and an input one
requests to evaluate on; it verifies the validity of the token and if the verification passes, it outputs
the evaluation on the requested input.1

Until now, collusion resistant copy-protection has essentially been wide open. The only work
that considers issuing more than a single program is Aaronson’s original work [Aar09], which is
proven to be secure in the 𝑘 → 𝑘 + 𝑟 setting for 𝑟 ≥ 𝑘 in some structured quantum oracle model.
This is undesirable in two ways: (a) it is unclear whether the scheme allows an adversary to double
the copies of programs (Aaronson leaves improving 𝑟 as a challenging open question), which is not
a complete break but still potentially devastating to applications; but more importantly, (b) unlike
a classical oracle which could be heuristically instantiated using indistinguishability obfuscation,
we do not even know how to heuristically instantiate a quantum oracle. Moreover, we believe that
any extension of Aaronson’s scheme would very likely still require some obfuscation of quantum
circuits, since we have evidence that Haar random states, which is the core of Aaronson’s scheme,
lack the structure that can be verified by a classical circuit [Kre21].

If we turn to the other works constructing copy-protection without using quantum oracles,
one naïve idea is to take any such scheme that is 1→ 2 secure, and simply generate and hand out
multiple copies of 𝜌𝑓 . It turns out that while this satisfies correctness, they are all trivially broken
once two copies are given. This is because they are all based on quantum states that are unclonable
for one copy, but trivially clonable as soon as two copies are given.

To get around this issue, another idea is to instead employ a quantum state that already bears
a “(𝑘 → 𝑘 + 1)-unclonable” property. However, the only known such states are Haar random
states and its computationally (or statistically) close neighbors, such as pseudorandom states (or
𝑡-designs), which leads us back to the verification issue without a quantum oracle from before.

Therefore, we raise the natural question: Is collusion resistant copy-protection feasible, either resist-
ing 𝑘 → 𝑘 + 1 attacks, or without using a quantum oracle? (Ideally both?)

Copy-Protection in the Plain Model In this work, we restrict our attention to investigate the
question above in the plain model, i.e. we want provably secure protocols without any oracle
or heuristics. Unfortunately, it has been known that copy-protection in the plain model even

1The general functionality copy protection schemes in [Aar09, ALL+21] and the schemes in [CLLZ21, AP21] all satisfy
this format. The copy-protection schemes for point/compute-and-compare functions in [Aar09, CMP20, AKL+22, BJL+21]
are not necessarily of such a format.

2

for unlearnable functions is impossible in general [AP21], and thus we have to further restrict
ourselves to construct copy-protection for specific classes of functions that evade the impossibility.

Secure software leasing (SSL) [AP21] is a weakened notion for copy-protection: in (infinite-
term) SSL, the malicious pirate may attempt to make pirate copies as it wants. However, the
freeloaders are restricted to running a fixed public quantum circuit on some quantum state pro-
duced by the pirate. On the other hand, in copy-protection, the freeloaders are free to execute
any quantum circuit that the pirate asks them to. Despite facing the same impossibility as copy-
protection, secure software leasing has also been built for various functionalities [AP21, CMP20,
BJL+21, ALL+21, KNY21]. 2

Especially, [ALL+21, KNY21] showed that secure software leasing for watermarkable functions
could be obtained from watermarking and public key quantum money in a black-box way. Water-
marking [BGI+01] is a primitive that embeds a watermark into a program so that any attempt to
remove the watermark would destroy the program’s functionality. Observing this, Aaronson et al.
[ALL+21] raised the following open question: Can all watermarkable functions also be copy-protected
in the plain model?

In this work, we will use the word “major watermarkable functions” to denote (decrypt-
ing) public key encryption, (signing) signatures, and (evaluating) PRFs and only focus on copy-
protecting those functionalities. Starting from the work by Cohen et al. [CHN+18], a line of works
[KW17, GKM+19, KW19, YAL+19, YAYX20] focuses on watermarking these three functionalities.
Copy-protecting these cryptographic functionalities also has a natural and strong motivation: the
ability to evaluate these functions is supposedly private in many circumstances. If owners of a
decryption key, signing key, or PRF key can share their key with others, it will trigger severe secu-
rity concerns. Furthermore, copy-protecting a cryptographic function can lead to copy-protecting
a software entity of which this cryptographic function is a component.

We observe that collusion resistant secure software leasing for watermarkable functions can be
achieved as long as the underlying watermarking scheme and quantum money scheme are both
collusion resistant, by looking into the construction in [ALL+21, KNY21]. (Bounded) collusion
resistant watermarking for PRFs, public-key encryptions, etc. are constructed in the plain model
[GKM+19, YAL+19, YAYX20, . . .] and quantum money can be made collusion resistant with a
digital signature on its serial number [AC13]. This observation seems to suggest that collusion
resistant copy-protection could be a much more challenging goal.

1.1 Our Results

In this work, we partially answer all of the questions above. In particular, we show how, in the
plain model, to construct collusion resistant copy-protection for (decrypting) public-key encryp-
tion, (signing) signatures, and (evaluating) PRFs. Our results, together with the prior work on
copy-protection of decryption and PRFs (Coladangelo et al. [CLLZ21]), show that major water-
markable cryptographic functionalities can be copy-protected against even colluding adversaries,
in the plain model. We now explain this in more detail.

Collusion Resistant Unclonable Decryption Our first result is collusion resistant copy-protection
for decryption keys in a public-key encryption scheme. We refer to such copy-protection scheme

2The formal security definitions for SSL in [AP21, CMP20, BJL+21, ALL+21, KNY21] vary slightly from one to an-
other. We will discuss them in 1.2.

3

as unclonable decryption by convention, as first proposed by Georgiou and Zhandry [GZ20].

Theorem 1.1. Assuming post-quantum subexponentially secure indistinguishability obfuscation and subex-
ponentially secure LWE, there exists 𝑘-bounded collusion resistant unclonable decryption for any polyno-
mial 𝑘.

Our collusion resistant unclonable decryption scheme is based on the construction from the
prior work of Coladangelo et al. [CLLZ21] that achieves the same except with only 1 → 2 se-
curity. Note that while we require subexponential security, these assumptions match those al-
ready required in the prior work. In particular, here, we invoke subexponential security only for a
compute-and-compare obfuscation scheme with certain properties as our building block. All the
reductions in this work are polynomial.

While we do achieve 𝑘 → 𝑘+1 security, a caveat is that we only achieve “𝑘-bounded collusion
resistance”, by which we mean that we need a preset number of users 𝑘 to generate the public
key. Still, we consider all users as potentially malicious and colluding. We note that this is similar
to watermarking decryption circuits of public-key encryption schemes, where to the best of our
knowledge, unbounded collusion resistance is also unknown [YAL+19, GKM+19]. Furthermore, it
is foreseeable that bounded collusion resistance suffices in certain enterprise use cases where the
number of (partially) authorized parties is a priori known and fixed; furthermore, such tokens can
be transferred to a new employee irrevocably.

The main challenges are in the anti-piracy security proof. The prior proof idea for 1 → 2 anti-
piracy does not translate to the 𝑘 → 𝑘+1 setting. We present a new view on security reductions to
handle a polynomial number of possibly entangled quantum adversaries, which we will elaborate
in the technical overview.

Copy-Protecting Watermarkable Functionalities We complement the previous theorem regard-
ing public-key encryption, with the following result on collusion resistant copy-protection for
signatures and PRFs:

Theorem 1.2. Assuming post-quantum subexponentially secure indistinguishability obfuscation and subex-
ponentially secure LWE, there exists 𝑘-bounded collusion resistant copy-protection for digital signatures
and PRFs, for any polynomial 𝑘.

We base our construction on the signature token scheme and unclonable PRF in the plain
model built in [CLLZ21] (with 1→ 2 anti-piracy). However, our signature scheme is significantly
different in two aspects: (a) the signing key in [CLLZ21] will be consumed after one use whereas
our scheme is reusable, and (b) unforgeability breaks down when multiple signature queries can
be issued, whereas ours satisfies standard existential unforgeability.

1.2 Related Works

[Aar09] first built copy-protection for all unlearnable functions based on a quantum oracle, with
weak collusion resistance. Besides [CLLZ21] which we have discussed, [ALL+21] showed a con-
struction for all unlearnable functions based on a classical oracle. [CMP20, AKL+22] constructed
copy-protection for point functions and compute-and-compare functions in QROM, the latter im-
proving the security of the former. 3

3All constructions discussed in this section are not proved under collusion resistant security unless otherwise spec-
ified.

4

Regarding the negative results: [AP21] demonstrated that it is impossible to have a copy-
protection scheme for all unlearnable circuits in the plain model, assuming LWE and quantum
FHE. [AK22] extended this impossibility result to the setting where we allow approximate correct-
ess of the copy-protection program and working in the classical-accessible random oracle model.

[AP21] put forward secure software leasing (SSL). In the finite-term case, a software vendor
would lease a quantum state as the software to a user; later, the user needs to return a part of a
bipartite state to the vendor, and the vendor will use its own secret key to verify if this returned
state is the one issued in the authentic program. The security guarantees that while passing the
above verification, the user should not be able to evaluate the functionality correctly using the
other part of its bipartite state executed under a public, fixed quantum circuit 𝖾𝗏𝖺𝗅 (specified by
the vendor). In the infinite-term case, the user does not need to return the state to the vendor;
the security guarantees that it should not produce two states that can both evaluate the function
correctly when executed under 𝖾𝗏𝖺𝗅. [AP21] also built an (infinite-term) SSL scheme for searchable
compute-and-compare circuits under iO and LWE.

[ALL+21] observed that under a definition essentially equivalent to infinite-term SSL, namely
copy-detection, one could obtain a black-box construction for infinite-term SSL from watermark-
ing and public-key quantum money. [KNY21] constructed finite-term SSL for PRFs and compute-
and-compare functions from (subexponential) LWE, with similar observations.

[BJL+21, CMP20] constructed secure software leasing for point functions and compute-and-
compare functions; [BJL+21] is information-theoretically secure and [CMP20] is secure under QROM.
They both used a stronger version of finite-term SSL security: while the vendor will honestly check
the returned state from the adversary, the adversary can execute the leftover half of its bipartite
state maliciously, i.e., not following the instructions in 𝖾𝗏𝖺𝗅. SSL security of this stronger finite-term
variant is only known for point/compute-and-compare functions up till now.

1.3 Technical Overview

We start by showing how to overcome the aforementioned barriers and construct Collusion Resis-
tant Unclonable Decryption (𝖢𝖱𝖴𝖣). As briefly discussed in the introduction, there are challenges
to constructing collusion resistant copy-protection based on the so-called “𝑘 → (𝑘+ 1) no-cloning
theorem”. Instead, we take a different approach by constructing collusion resistant unclonable
decryption 𝖢𝖱𝖴𝖣 from unclonable decryption 𝖴𝖣 whose security only holds for “1→ 2 attacks”.
The construction uses 𝖴𝖣 in a black-box manner:

• For every 𝑖 ∈ [𝑘], sample (|𝗌𝗄𝑖⟩ , 𝗉𝗄𝑖)← 𝖴𝖣.𝖪𝖾𝗒𝖦𝖾𝗇; |𝗌𝗄𝑖⟩will be the 𝑖-th copy of the quantum
unclonable decryption key; the public key will be 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄𝑘).

• The encryption algorithm takes a single bit message 𝑚 and outputs a classical ciphertext 𝖼𝗍
that consists of 𝑘 copies of ciphertext, among which the 𝑖-th copy 𝖼𝗍𝑖 is the ciphertext of 𝑚
under 𝗉𝗄𝑖.

• To decrypt 𝖼𝗍 = (𝖼𝗍1, · · · , 𝖼𝗍𝑘) with |𝗌𝗄𝑖⟩, one can decrypt the 𝑖-th ciphertext 𝖼𝗍𝑖.

Intuitively in the above encryption scheme, one can decrypt only if it knows the decryption key
for at least one of the public keys. Note that our 𝑘 decryption keys are sampled independently at
random and each state satisfies 1 → 2 unclonability. To establish anti-piracy, we want to prove a
security reduction from a 𝑘 → 𝑘 + 1 quantum pirate decryptors to the 1 → 2 unclonability of one
of the decryption keys.

5

Unfortunately, we do not know how to prove the security of this scheme generically. As we
will elaborate in Section 1.4, we need to open up the construction of the underlying unclonable
encryption in order to establish the security.

More importantly, in the following section, we demonstrate that even if we open up the con-
struction and the proof, the proof technique in [CLLZ21] seems not sufficient for CRUD and we
thereby work on a new technique that subsumes that in [CLLZ21] to complete the proof. We start
by recalling the definition of regular UD and the proof in [CLLZ21].

Regular Unclonable Decryption. Let 𝖴𝖣 be a regular (1 → 2) unclonable decryption scheme.
For the sake of convenience, we assume the message space is {0, 1}. A pair of a classical public
key 𝗉𝗄 and a quantum unclonable secret key |𝗌𝗄⟩ is generated by 𝖪𝖾𝗒𝖦𝖾𝗇.

The anti-piracy security guarantees that no efficient adversary with |𝗌𝗄⟩ can produce two
“working” keys by a CPA indistinguishability standard: if one estimates the success probabili-
ties of both decryption keys on distinguishing a ciphertext of 0 from a ciphertext of 1, their suc-
cess probabilities cannot be simultaneously significantly greater than 1/2, except with negligible
probability. This security notion has been previously studied by Aaronson et al. [ALL+21] and
Coladangelo et al. [CLLZ21]

Before we delve into the security proof, it is enlightening to see how this security guarantee is
efficiently “falsifiable”. Estimating the success probability of a classical decryptor is easy. One can
generate a ciphertext for a random message using the public key and check whether the classical
decryptor is correct on that ciphertext; then, a simple counting estimates its success probability
within any inverse polynomial error. Unfortunately, this method does not naturally work in the
quantum setting since a single execution of the decryption key (produced by the adversary) may
disturb the state and prevent further execution of the same key.

Nevertheless, Zhandry [Zha20] shows that such estimation can be done analogous to the clas-
sical setting, inspired by the famous work of Marriot and Watrous [MW05] for witness-preserving
error reduction for quantum Arthur–Merlin game. Informally, the work of Zhandry utilizes a
measurement procedure called “projective implementation” (abbreviated as 𝖯𝖨)4 to estimate the
success probability of a quantum adversary (see Figure 1).

1. Let 𝒟 be a ciphertext distribution we define the procedure with respect to.
2. For any quantum decryptor 𝜎 with success probability 𝑝 over𝒟, running 𝖯𝖨𝒟 on the decryp-

tor produces a probability 𝑝′ and 𝜎 collapses to 𝜎′;
3. 𝜎′ as a decryptor, has success probability 𝑝′ over 𝒟;
4. Applying 𝖯𝖨𝒟 on 𝜎′ always produces 𝑝′ and 𝜎′ remains intact;
5. The expectation of 𝑝′ is 𝑝.

(𝜎, 𝑝) 𝖯𝖨𝒟 (𝜎′, 𝑝′)

𝔼[𝑝′] = 𝑝

𝖯𝖨𝒟 (𝜎′, 𝑝′)

Figure 1: 𝖯𝖨: measure success probability of a decryptor.

4For simplicity, we only use the inefficient estimation procedure. The same argument in the technical overview
holds using an efficient and approximated version. Similarly for 𝖳𝖨.

6

Put shortly, this measurement procedure will output an estimation of the success probability
𝑝′ for a quantum decryptor 𝜎. After the measurement, the decryptor collapsed to another decryp-
tor 𝜎′, whose success probability is still 𝑝′. We will intuitively call 𝖯𝖨 as “probability estimation’
instead of its original name in the scope of the overview.

In the anti-piracy security definition, we care about whether both decryptors have the success
probability significantly greater than 1/2. [CLLZ21] defines the following “threshold measure-
ment” or “goodness measurement” 𝖳𝖨𝒟,𝜖 for deciding if a quantum decryptor 𝜎 is good, for some
inverse-polynomial 𝜖:

1. Let 𝒟 be a ciphertext distribution we define the procedure with respect to.
2. Run 𝖯𝖨𝒟 coherently on 𝜎 and measure if the outcome register (containing the resulting prob-

ability 𝑝′) is greater than 1/2 + 𝜖, which produces a single bit outcome 𝑏. The quantum
decryptor collapses to 𝜎′.

3. If 𝑏 = 1, 𝜎′ lies in the span of good decryptors, whose success probability is at least 1/2 + 𝜖;
otherwise, 𝜎′ is in the subspace with the basis being quantum decryptors whose winning
probability is strictly less than 1/2 + 𝜖.

𝜎 𝖳𝖨𝒟,𝜖 (𝜎′, 𝑏)

Figure 2: 𝖳𝖨: measure goodness of a decryptor.

We note that 𝖳𝖨𝒟,𝜖 is a projection, which says if 𝜎′ is the collapsed decryptor for outcome 𝑏, apply-
ing 𝖳𝖨𝒟,𝜖 will always produce 𝑏 and 𝜎′ does not change.

We are now ready to formally define the anti-piracy security in [CLLZ21]. Let 𝒟 be the cipher-
text distribution for honestly generated ciphertext, which encodes a uniformly random message.
No efficient adversary can turn |𝗌𝗄⟩ into a possibly entangled decryptors 𝜎 over two registers,
such that applying the threshold measurement 𝖳𝖨𝒟,𝜖 on both decryptors 𝜎[1], 𝜎[2] will produce
two outcomes 1s with non-negligible probability. To put it another way, no efficient adversary can
produce two decryptors such that they jointly have non-negligible weight on good decryptors.

Security Proof for “1 → 2 Attacks”. Before scoping the proof of our collusion resistant unclon-
able decryption, we recall the security proof in [CLLZ21] for “1→ 2 unclonability”. In this follow-
ing section, we will highlight the difficulties of applying the same ideas to CRUD and introduce a
new approach to resolve this issue.

The proof works as follows:

• A reduction applies 𝖳𝖨𝒟,𝜖 on both decryptors 𝜎[1], 𝜎[2]. With some non-negligible probabil-
ity, it will produce two outcomes 1s and the two decryptors become 𝜎′[1], 𝜎′[2].

• Extraction on the first register. Let 𝒟′ be the ciphertext distribution for “junk” ciphertext
which only encrypts an empty symbol ⊥. Applying 𝖳𝖨𝒟′,𝜖 on 𝜎′[1] always result in outcome
0, whereas the outcome of applying 𝖳𝖨𝒟,𝜖 on 𝜎′[1] is always 1.
We can thereby conclude that 𝜎′[1] must contain some secret information about the secret
key |𝗌𝗄⟩. In fact, we can use an extraction algorithm to extract the classical information about
the secret key. Note that the algorithm may be destructive that, for example, may measure
𝜎′[1] completely.

7

• Extraction on the second register. Conditioned on the successful extraction on 𝜎′[1], we
want to argue that a similar extraction on the second register works. If so, we can simulta-
neously extract secret information about |𝗌𝗄⟩ from two non-communicating parties. This will
violate the underlying quantum information guarantee5.

The remaining is to show such an extraction is feasible on the second decryptor, even conditioned
on the successful extraction on 𝜎′[1]. This is because 𝖳𝖨𝒟,𝜖 is a projection, conditioned on the
outcome being 1, 𝜎′[2] will be in the span of good decryptors (see bullet (3) of the description of
𝖳𝖨). Regardless of what event is conditioned on 𝜎′[1], the second decryptor is still in the span of
good decryptors. Thus, an extraction algorithm would extract the classical information about the
secret key from 𝜎′[2] with non-negligible probability. This concludes the proof idea in [CLLZ21].

To conclude, the core idea in the proof is that, a “1→ 2 attack” produces two quantum registers
that

1. they have a non-negligible probability 𝑤1 = 𝛾 on both registers being good decryptors on 𝒟
(with success probabilities at least 1/2 + 𝜖);

2. they have a negligible probability 𝑤2 on both being good decryptors on 𝒟′.

If both 1 and 2 are satisfied, a simultaneous extraction succeeds with a non-negligible probability.
In the next few paragraphs, we still denote 𝑤1 as the joint probability of both decryptors being

good on distribution 𝒟; 𝑤2 as the joint probability of both decryptors being good on distribution
𝒟′.

In the above proof for 1→ 2 attack, we crucially require 𝑤1 is non-negligible and 𝑤2 is negligi-
ble or zero, in order to argue that extraction would succeed even after conditioned on successful
extraction on one side.

We can also observe that for the 1 → 2 proof, 𝑤2 is automatically zero. As 𝒟′ does not
encode a real message, no quantum decryptor can achieve any advantage over random guess-
ing. But this is not always the case when it turns to our CRUD security proof: for which, 𝒟 =
(𝖼𝗍⊥, · · · , 𝖼𝗍𝑗 , 𝖼𝗍𝑗+1, · · ·) has the first (𝑗 − 1) ciphertexts being junk and the rest being real; whereas
𝒟′ = (𝖼𝗍⊥, · · · , 𝖼𝗍⊥, 𝖼𝗍𝑗+1, · · ·) has the first 𝑗 ciphertexts being junk.

As we will see in the following section, for CRUD, the condition “𝑤1 − 𝑤2 is non-negligible”
is the best we can hope for. Therefore, we attempted to see if a proof similar to the above exists,
when we can only condition on "𝑤1 − 𝑤2 is non-negligible". Unfortunately, the answer to this
attempt is negative, as we will provide some intuition in the immediate next paragraph. We
thereby conclude that the proof technique in [CLLZ21] cannot extend to collusion resistant anti-
piracy security proof in a generic way.

To see why the condition “𝑤1−𝑤2 is non-negligible” does not necessarily give a simultaneous
extraction, we consider the time when a successful extraction has already been done on the first
decryptor 𝜎′[1]. If 𝑤2 is negligible, the leftover state of the second decryptor 𝜎′[2] has at most 𝑤2/𝜁
weight lying in the span of bad decryptors. Here 𝜁 is the probability of a successful extraction
on the first decryptor and conditioned on this extraction, the weight 𝑤2 will be amplied by at
most 1/𝜁. Since 𝑤2/𝜁 is still negligible, this allows an extraction from 𝜎′[2] happens with a non-
negligible chance. However, if 𝑤2 is not negligible but only satisfies 𝑤1−𝑤2 is non-negligible, 𝜎′[2]

5In the actual proof, two non-communicating parties will extract two vectors, one in the primal coset and the other
in the dual coset of a coset state. This will violate the strong computational monogamy-of-entanglement property of
coset states.

8

can lie in the span of bad decryptors: the extreme case will be the event of successful extraction
on 𝜎′[1] has “positive correlation” with 𝜎′[2] being bad; in this case, the weight can be as large as
𝑤2/𝜁 ≈ 1.

Obstacles for Extraction from Quantum Decryptors. The high-level intuition for why such a
construction would satisfy 𝑘 → 𝑘+1 is comprehensible. Assume an adversary uses |𝗌𝗄1⟩ , · · · , |𝗌𝗄𝑘⟩
to produce (𝑘 + 1) (possibly entangled) malicious decryptors 𝜎. Let 𝜎[𝑖] denote the 𝑖-th pirate de-
cryptor. Since each 𝜎[𝑖] is a “working” pirate decryptor, it should at least decrypt one of 𝖼𝗍1, · · · , 𝖼𝗍𝑘
(say 𝖼𝗍𝑗). Applying pigeonhole principle, there are two decryptors that decrypts the same cipher-
text slot, which would violate 1 → 2 unclonability. However, such an intuition is nontrivial to
formalize since a quantum adversary could distribute these secret keys in multiple ways in super-
position.

A straightforward idea is to extract secret information for the 𝑗-th private key |𝗌𝗄𝑗⟩ from 𝜎[𝑖].
Let𝒟′ be the ciphertext distribution (𝖼𝗍⊥, 𝖼𝗍⊥, · · · , 𝖼𝗍⊥) containing all junk ciphertext. Clearly, if we
apply 𝖳𝖨𝒟′,𝜖 on any quantum decryptor, the result is always 0 (meaning “bad”). If we can find an
index 𝑗 such that𝒟𝑗 is the distribution (𝖼𝗍⊥, 𝖼𝗍⊥, · · · , 𝖼𝗍𝑗 , · · · , 𝖼𝗍⊥) and applying 𝖳𝖨𝒟𝑗 ,𝜖 on 𝜎[𝑖] gives
1 with non-negligible chance, we can extract secrets for |𝗌𝗄𝑗⟩ from 𝜎[𝑖]. If one can extract from every
𝜎[𝑖], by the pigeonhole principle, it breaks the underlying quantum information guarantee for one
of the unclonable decryption keys. Unfortunately, this idea does not go through, considering the
following bad situation.

Even if 𝜎[𝑖] has success probability 1, such 𝑗 may not exist. Consider a quantum program that
knows all the decryption keys |𝗌𝗄1⟩, · · · , |𝗌𝗄𝑘⟩ but only decrypts 𝖼𝗍 if and only if every |𝗌𝗄𝑗⟩
can successfully decrypt 𝖼𝗍𝑗 ; if any decryption fails to decrypt, it outputs a random guess.
Feeding (· · · , 𝖼𝗍⊥, 𝖼𝗍𝑗 , 𝖼𝗍⊥, · · · ,) to the decryptor will always result in a random guessing.

Note that this is not only an issue for quantum decryptors but also presents if decryptors are
classical. A natural fix of the above idea is to consider the following hybrid distributions. We
define 𝒟𝑗 for every 𝑗 ∈ {0, 1, · · · , 𝑘}:

• 𝒟𝑗 : = (𝖼𝗍⊥, · · · , 𝖼𝗍⊥, 𝖼𝗍𝑗 , 𝖼𝗍𝑗+1 · · ·). In other words, only the last 𝑘 − 𝑗 ciphertexts encode the
same random message 𝑚 ∈ {0, 1}, the first 𝑗 ciphertexts are junk ciphertexts .

• 𝖳𝖨𝑗 := 𝖳𝖨𝒟𝑗 ,𝜖: the goodness estimation with respect to the ciphertext distribution 𝒟𝑗 and
threshold 1/2 + 𝜖.

That is, each 𝒟𝑗 will replace the first non-junk ciphertext from 𝒟𝑗−1 with a junk ciphertext. Note
that 𝒟 := 𝒟0. By the definition of 𝜎[𝑖] is a working decryptor, applying 𝖳𝖨0 on 𝜎[𝑖] will produce 1
with a non-negligible probability. On the flip side, applying 𝖳𝖨𝑘 on 𝜎[𝑖] will always produce 0.

We denote 𝑤𝑗 as the probability of applying 𝖳𝖨𝒟𝑗 ,𝜖 on the decryptor 𝜎[𝑖] and getting outcome
1. By a standard hybrid argument, we can conclude that there must exist an index 𝑗 ∈ [𝑘] such
that,

𝑤𝑗−1 − 𝑤𝑗 is non-negligible.

The gap allows extraction on 𝜎[𝑖]. However, as we discussed in the last section, it does not
satisfy the condition “𝑤𝑗−1 is non-negligible and 𝑤𝑗 is negligible”, which can not guarantee a
simultaneous extraction when we consider two decryptors.

9

A bad example looks like the following: 𝑤0 = 𝛾 for some inverse polynomial 𝛾 and 𝑤𝑗 = 𝛾/2𝑗

for all 𝑗 ̸= 𝑘 and 𝑤𝑘 = 0. There does not exists a 𝑗 such that 𝑤𝑗−1 is non-negligible but 𝑤𝑗 is
negligible.

We now elaborate on our approaches to resolve these obstacles. Our approach directly takes
advantage of the probability measure 𝖯𝖨 instead of 𝖳𝖨. This also gives an alternative security proof
for the construction in [CLLZ21].

Extract a Single Decryption Key: Detect a Large Jump in Success Probability Let us start with
attempts to extract from a single “working” decryptor 𝜎, using the probability estimation 𝖯𝖨. Re-
call that by the definition of “working”, we mean applying 𝖯𝖨𝒟 on 𝜎 yields some probability 𝑝
significantly larger than the trivial guessing probability 1/2.

We first recall the following ciphertext distributions 𝒟𝑗 and define probability estimation pro-
cedure 𝖯𝖨𝑗 for every 𝑗 ∈ {0, 1, · · · , 𝑘}:

• 𝒟𝑗 : = (𝖼𝗍⊥, · · · , 𝖼𝗍⊥, 𝖼𝗍𝑗 , 𝖼𝗍𝑗+1 · · ·).
• 𝖯𝖨𝑗 := 𝖯𝖨𝒟𝑗 : the probability estimation with respect to the ciphertext distribution 𝒟𝑗 .

Now we give the following attempted extraction, which almost works but has one caveat. We
call this extraction procedure a “repeated probability estimation/measurement”:

1. We first apply 𝖯𝖨0 to 𝜎 and obtain 𝑝0 and a collapsed decryption key 𝜎0.
2. We then apply 𝖯𝖨1 to the collapsed 𝜎0 to obtain 𝑝1 and 𝜎1.

Now if 𝑝1−𝑝0 is at least 𝑝0− 1
2

𝑘 , we perform an extraction procedure to extract secrets for |𝗌𝗄1⟩
from 𝜎0. Intuitively, since we observe a noticeable probability decrease when 𝖼𝗍1 is replaced
with junk ciphertext, there must be some part of 𝜎[𝑖] that uses 𝖼𝗍1 to recover the original
plaintext. We then abort the procedure.

3. Otherwise, 𝑝0 and 𝑝1 should be negligibly close. We again apply 𝖯𝖨2 on 𝜎1 and obtain 𝑝2, 𝜎2.

If 𝑝2 − 𝑝1 is at least 𝑝0− 1
2

𝑘 , we perform extraction on 𝜎1 and abort.
4. We continue this process for all 𝑗 = 3, ..., 𝑘.

We claim that the above repeated measurement procedure will always terminate at some
𝑗 ∈ [𝑘]. To see this, think of 𝑝1, ..., 𝑝𝑘 as a sequence of random variables, whose values are only ob-
served when the corresponding measurement is applied. Note that 𝑝𝑘 = 1/2 always, because the
underlying ciphertext distribution 𝒟𝑘 encodes all junk ciphertexts, so no adversary can achieve
better advantage than guessing. Therefore, the claim follows from triangle inequality.

(𝜎0, 𝑝0)
𝖯𝖨1−−→ (𝜎1, 𝑝1)

𝖯𝖨2−−→ (𝜎2, 𝑝2)
𝖯𝖨3−−→ · · · 𝖯𝖨𝑘−1−−−→ (𝜎𝑘, 𝑝𝑘)

The above extraction procedure almost works. But it is actually not physically executable:
we need 𝜎𝑗−1 in order to perform extraction as that is the state with a “working” component for
ciphertext 𝖼𝗍𝑗 , but by the time that we decide to extract, we already get to state 𝜎𝑗 because we
have to obtain measurement outcome 𝑝𝑗 to claim a jump in probability happens. It is generally
infeasible to rewind a quantum state, in this case from 𝜎𝑗 to 𝜎𝑗−1.6

6The probability estimation 𝖯𝖨𝑗 will preserve the success probability of the state but nothing else. Applying 𝖯𝖨𝑗 will
likely change 𝜎𝑗−1.

10

Fortunately, it is plausible for a single decryptor: we guess 𝑗 (denoting the first index having
a probability jump) and stop the procedure when we have done 𝖯𝖨0, · · · ,𝖯𝖨𝑗−1. With probability
at least 1/𝑘, we can extract for |𝗌𝗄𝑗⟩ from the current decryptor 𝜎𝑗−1. We will get to why this
procedure avoids the rewinding issue and preserves our success probability, when it comes to the
(𝑘 + 1) decryptors case in the next paragraph.

Extending to (𝑘+1) decryptors. Finally, we show how to generalize the above extraction strategy
to extracting secrets from the same key |𝗌𝗄𝑗⟩.

We apply the repeated measurement individually to every decryptor: that is, for the 𝑖-th de-
cryptor, we apply 𝖯𝖨0,𝖯𝖨1, · · · ,𝖯𝖨𝑘, one upon another. The procedure will yield 𝑝𝑖,0, 𝑝𝑖,1, · · · , 𝑝𝑖,𝑘.
Since 𝑝𝑖,0 is always greater than 1/2+ 𝛾 and 𝑝𝑖,𝑘 = 1/2, there must exist a large probability gap be-
tween 𝑝𝑖,𝑗𝑖−1 and 𝑝𝑖,𝑗𝑖 for some 𝑗𝑖 ∈ [𝑘]. By the pigeonhole principle, for some 𝑥 ̸= 𝑦, 𝑗 := 𝑗𝑥 = 𝑗𝑦.
We hope to stop at the 𝑥-th and 𝑦-th decryptors before applying 𝖯𝖨𝑗 and simultaneously turn them
into two keys for 𝖼𝗍𝑗 .

Since there will always be two decryptors having large probability gaps for the same index,
the chance of having such gaps for randomly guessed 𝑥, 𝑦 and 𝑗 is at least 1

(𝑘+1
2)𝑘

≥ 1/𝑘3. But the

success probability of this guess is not immediately guaranteed, because we need to stop before
the 𝑗-th probability estimation for states 𝜎[𝑥], 𝜎[𝑦] otherwise we can’t rewind to this state needed
for extraction. We are still two unpredictable measurements away from the event we guess for.
Fortunately, guessing and stopping before the 𝑗-th 𝖯𝖨 will indeed work with probability at least
1/(2𝑘3), through a trick for randomized algorithms.

Now we can apply repeated measurement and stop before applying 𝖯𝖨𝑗 on any of these two
decryptors. Let the leftover decryptors be 𝜎*[𝑥, 𝑦] and the last probability outcomes be 𝑝𝑥,𝑗−1 and
𝑝𝑦,𝑗−1. With probability at least 1/(2𝑘3), (𝜎*[𝑥, 𝑦], 𝑝𝑥,𝑗−1, 𝑝𝑦,𝑗−1) satisfy the following conditions (*)
and (**):

(*) Applying 𝖯𝖨𝑗−1 on both 𝜎*[𝑥] and 𝜎*[𝑦] always produces 𝑝𝑥,𝑗−1 and 𝑝𝑦,𝑗−1.
(**) Applying 𝖯𝖨𝑗 on both 𝜎*[𝑥] and 𝜎*[𝑦], with probability at least 1/(2𝑘3), produces large prob-

abilities gaps for both 𝑝𝑥,𝑗−1 and 𝑝𝑦,𝑗−1.

It seems that we have come to the right “spot” for extraction. However, we still face a chal-
lenge. How do we guarantee that we can simultaneously extract from two possibly entangled
states? A possible malicious behavior is that measuring one decryptor’s key will collapse the
other decryptor to a “not working” state.

We can clearly extract secrets for |𝗌𝗄𝑗⟩ from either 𝜎*[𝑥] or 𝜎*[𝑦]: since there is a probability
gap, it must mean 𝜎*[𝑥] (or 𝜎*[𝑦]) use 𝖼𝗍𝑗 for decryption at some point. From the probability point
of view, we then argue why simultaneous extraction is feasible.

Define 𝐄𝑥 (𝐄𝑦, here 𝐄 stands for “(E)xtraction”) be the event of a successful extraction on the
𝑥-th decryptor (or on the 𝑦-th decryptor respectively). Define 𝐆𝑥 (𝐆𝑦, here 𝐆 stands for “(G)ap”)
be the event that applying 𝖯𝖨𝑗 on the 𝑥-th decryptor (or on the 𝑦-th decryptor respectively) yields
a large probability gap. We will prove Pr[𝐄𝑥 ∧𝐄𝑦] is non-negligible by contradiction.

It is clear that Pr[𝐄𝑥] is non-negligible. To show Pr[𝐄𝑦|𝐄𝑥] is non-negligible, it is sufficient to
show that Pr[𝐆𝑦|𝐄𝑥] is non-negligible, since a large gap implies a large chance of extraction.

We can intuitively think of Pr[𝐄𝑥] = 0.1Pr[𝐆𝑥] and Pr[𝐄𝑦] = 0.1Pr[𝐆𝑦]
7. We may expect

7The choice of 0.1 is arbitrary here. Indeed, they are polynomially related. For the sake of simplicity, we assume
they are linearly related.

11

that Pr[𝐄𝑥 ∧ 𝐄𝑦] = 0.1Pr[𝐆𝑥 ∧ 𝐆𝑦], which would conclude the proof. However, this does not
follow immediately from above as it could be the case that 𝐆𝑥 ∧𝐆𝑦 occurs with non-negligible
probability, but 𝐄𝑥 ∧ 𝐄𝑦 never occurs. The main insight here is that we can instead show that
Pr[𝐄𝑥|𝐆𝑦] = 0.1Pr[𝐆𝑥|𝐆𝑦], as finding the gap for 𝑦 does not impact the extraction for 𝑥. Invoking
Bayes’ rule, this shows that Pr[𝐆𝑦|𝐄𝑥] = Pr[𝐄𝑥|𝐆𝑦] Pr[𝐆𝑦]/Pr[𝐄𝑥] is non-negligible as well. As a
consequence, Pr[𝐄𝑦|𝐄𝑥] and thus Pr[𝐄𝑥 ∧𝐄𝑦] (simultaneous extraction) are both large.

Collusion Resistant Copy-Protection for Signatures and PRFs Now with the building block of
collusion resistant unclonable decryption, we come to copy-protect more cryptographic functions.

As briefly discussed in the introduction, even though [CLLZ21] presented the first unclonable
signature scheme without oracles, its scheme is a signature token that will be consumed after one
use. One-time signature is a security notion interesting under many circumstances [BS16, GZ20],
but it’s crucial that we investigate the possibility of copy-protecting a standard digital signature.
Moreover, once achieved, this construction helps us get closer to the goal of copy-protecting all
watermarkable functionalities.

The [CLLZ21] signature token is one-time because when signing a message, the signer simply
measures the quantum key and the measurement outcome is a signature. It is not existentially un-
forgeable for the same reason: if an adversary gets a few random measurement results of quantum
keys, he is granted the power to sign, without the need of an intact quantum key.

To resolve the problem, we resort to the classic picture of generic copy-protection: the signing
program first verifies if a quantum key is a valid “token” and then outputs a signature (computed
independently of the quantum key) as well as the almost unharmed key. In particular, we observe
that the unclonable decryption scheme in [CLLZ21] will pave the way for such a construction.
Their scheme can be extended to a copy-protection for evaluating puncturable PRFs with the “
hidden trigger” technique from [SW21]. Meanwhile, such PRF evaluation functionality can be
used as a signing program after obfuscation.

We thereby give a copy-protection for existentially unforgeable, publicly-verifiable signature
scheme, based on the above ideas. Along the way, we deal with a few subtleties that emerge be-
cause we need public verification and generalization to collusion resistance. More specifically, we
present a 𝑘-party version of the [SW21] hidden trigger technique to obtain both collusion resistant
copy-protection for signatures and for PRFs.

1.4 Discussions and Open Problems

Comparisons to [CLLZ21]. An informed reader may claim that one main obstacle (namely si-
multaneous extraction) for proving anti-piracy security in this paper resembles the obstacle in
the 1 → 2 anti-piracy schemes of [ALL+21, CLLZ21]. We emphasize that while this issue may
be bumped into in all quantum copy-protection proofs, our approach of resolving the issue is
different from previous works, especially to identify gaps in a repeated probability estimation
procedure (see more details in the technical overview). In particular, our approach can be used
to prove security for the schemes in [ALL+21] and [CLLZ21], but as we have discussed in the
technical overview, their techniques will not work for the 𝑘 → 𝑘 + 1 setting 8

8The approach for simultaneous extraction when showing 1 → 2 anti-piracy in [ALL+21] bears a high-level similar-
ity with [CLLZ21]. We have discussed [CLLZ21] in the overview since we focus on unclonable decryption.

12

On Non-Black-Box Reduction. In the technical overview, we describe a black-box way of reduc-
ing “𝑘 → (𝑘 + 1) security” to “1 → 2 security”. As mentioned earlier, we cheat in the technical
overview and the approach is not entirely black-box.

A high-level summary for the reason is: a black-box reduction algorithm (i.e. an adversary
for a 1 → 2 unclonable decryption scheme) is not able to generate the correct distribution for the
ciphertext to feed to the 𝑘 collusion resistant adversary. Elaborated as follows:

First, recall that in a 𝑘 collusion resistant scheme, an encryption for a message𝑚 is an ensemble
of ciphertexts 𝖼𝗍 = (𝖼𝗍1, ..., 𝖼𝗍𝑘) where 𝖼𝗍𝑖 = 𝖤𝗇𝖼(𝗉𝗄𝑖,𝑚) for all 𝑖 ∈ [𝑘].

In the reduction, we want to apply 𝖯𝖨𝒟𝑗 on a malicious decryptor to extract secrets from |𝗌𝗄𝑗⟩
for some 𝑗 ∈ [𝑘]:

𝒟𝑗 : the first 𝑗 ciphertexts (that is, 𝖼𝗍1, · · · up to 𝖼𝗍𝑗) are simulated ciphertexts, the rest of them
encrypt the same message.

The problem is the following: the reduction only gets a single ciphertext 𝖼𝗍𝑗+1, whereas the
malicious decryptor takes input of the form in 𝒟𝑗 . The reduction needs to generate other cipher-
text on its own: including those simulated and those encrypting the same message as 𝑐𝑗+1. Since
the reduction does not know which message is encrypted in 𝖼𝗍𝑗+1 (otherwise, the reduction itself
already breaks the security of the underlying 1 → 2 unclonable decryption), it cannot generate a
valid ciphertext 𝖼𝗍 = (𝖼𝗍1, · · · , 𝖼𝗍𝑘) from the distribution 𝒟𝑗 .

Therefore, we need to open this proof up in a non-black-box way: it’s based on the security of
coset states. When we break the security of coset states, the message (encrypted in 𝖼𝗍𝑗+1) is known
by the reduction. In fact, it is even sampled by the reduction 𝑅.

Open Problems. The main limitation of our constructions is that the number of collusions is
bounded to a polynomial specified during setup, and the parameters grow with the collusion
bound. Because of this collusion bound, our results are technically incomparable to [Aar09],
which, despite having a much weaker copy-protection guarantee and using a strong oracle, re-
quired no prefixed user number. We leave achieving unbounded 𝑘 → 𝑘+1 collusion resistance as
an interesting open question.

1.5 Organization

The rest of the paper is organized as follows. In Section 2, we recall the definitions and properties
of coset states and how to measure success probabilities of quantum adversaries. In Section 3,
we present the definition, construction, and security proof of collusion resistant unclonable de-
cryption. We then present the construction and definitons for the copy-protection for signatures
in 4. The constructions and security proofs for (collusion resistant) copy-protection for signature
schemes and PRFs are covered in the appendix.

2 Preliminaries

In this paper, 𝜆 denotes the security parameter. 𝗉𝗈𝗅𝗒(·) denotes a polynomial function. We say
a function 𝑓(·) : ℕ → ℝ≥0 is negligible if for all constant 𝑐 > 0, 𝑓(𝑛) ≤ 1

𝑛𝑐 for all sufficiently
large 𝑛. 𝗇𝖾𝗀𝗅(·) denotes a negligible function. Similarly, we say a function 𝑓(·) : ℕ → ℝ≥0 is
sub-exponential if there exists a constant 𝑐 < 1, such that 𝑓(𝑛) ≤ 2𝑛

𝑐
for all sufficiently large 𝑛.

13

𝗌𝗎𝖻𝖾𝗑𝗉(·) denotes a sub-exponential function. For an integer 𝑘, We denote {1, 2, · · · , 𝑘} by [𝑘]. We
denote 𝔽2 to be the binary field.

We refer the reader to [NC10] for a reference of basic quantum information and computation
concepts.

2.1 Indistinguishability Obfuscation

Definition 2.1 (Indistinguishability Obfuscator (iO) [BGI+01, GGH+16, SW21]). A uniform PPT
machine 𝗂𝖮 is an indistinguishability obfuscator for 𝖯/𝗉𝗈𝗅𝗒 if the following conditions are satisfied:

• For all 𝜆, all |𝐶| ≤ 𝜆, all inputs 𝑥, we have

Pr
[︁ ̂︀𝐶(𝑥) = 𝐶(𝑥) : ̂︀𝐶 ← 𝗂𝖮(1𝜆, 𝐶)

]︁
= 1.

• (Post-quantum security): For all (not necessarily uniform) QPT adversaries (𝖲𝖺𝗆𝗉, 𝐷), the following
holds: if Pr[∀𝑥,𝐶0(𝑥) = 𝐶1(𝑥) ∧ |𝐶0| = |𝐶1| : (𝐶0, 𝐶1, 𝜎) ← 𝖲𝖺𝗆𝗉(1𝜆)] > 1 − 𝛼(𝜆) for some
negligible function 𝛼, then there exists a negligible function 𝛽 such that:⃒⃒⃒

Pr
[︁
𝐷(𝜎, 𝗂𝖮(1𝜆, 𝐶0)) = 1

]︁
− Pr

[︁
𝐷(𝜎, 𝗂𝖮(1𝜆, 𝐶1)) = 1

]︁⃒⃒⃒
≤ 𝛽(𝜆),

where (𝐶0, 𝐶1, 𝜎)← 𝖲𝖺𝗆𝗉(1𝜆).

The notion sub-exponentially secure 𝗂𝖮 denotes an indistinguishability obfuscator, for which no
QPT adversary can achieve advantage better than 1/𝗌𝗎𝖻𝖾𝗑𝗉 for some sub-exponential function
𝗌𝗎𝖻𝖾𝗑𝗉.

2.2 Coset States

We recall the notion of coset states, introduced by [VZ21] and later studied by [CLLZ21] in the
setting of quantum copy-protection. We then present a property of coset states: a strong computa-
tional monogamy-of-entanglement (MOE) property. This property is used to obtain an unclonable
decryption scheme and other copy-protection of watermarkable cryptographic primitives in this
work. Some part of this section is taken verbatim from [CLLZ21].

2.2.1 Definitions

For any subspace 𝐴, its complement is 𝐴⊥ = {𝑏 ∈ 𝔽𝑛
2 | ⟨𝑎, 𝑏⟩ = 0 , ∀𝑎 ∈ 𝐴}. It satisfies dim(𝐴) +

dim(𝐴⊥) = 𝑛. We also let |𝐴| = 2dim(𝐴) denote the number of elements in the subspace 𝐴.

Definition 2.2 (Coset States). For any subspace 𝐴 ⊆ 𝔽𝑛
2 and vectors 𝑠, 𝑠′ ∈ 𝔽𝑛

2 , the coset state |𝐴𝑠,𝑠′⟩ is
defined as:

|𝐴𝑠,𝑠′⟩ =
1√︀
|𝐴|

∑︁
𝑎∈𝐴

(−1)⟨𝑠′,𝑎⟩ |𝑎+ 𝑠⟩ .

By applying 𝐻⊗𝑛 (Hadamard on every qubit) on the state |𝐴𝑠,𝑠′⟩, one obtains exactly |𝐴⊥𝑠′,𝑠⟩.
Given 𝐴, 𝑠 and 𝑠′, there is an efficient quantum algorithm that generates |𝐴𝑠,𝑠′⟩, by [CLLZ21].

For a subspace 𝐴 and vectors 𝑠, 𝑠′, we define cosets 𝐴 + 𝑠 = {𝑣 + 𝑠 : 𝑣 ∈ 𝐴}, and 𝐴⊥ + 𝑠′ =
{𝑣 + 𝑠′ : 𝑣 ∈ 𝐴⊥}. It is also convenient for later sections to define a canonical representative, with
respect to subspace 𝐴, of the coset 𝐴+ 𝑠.

14

Definition 2.3 (Canonical Representative of a Coset). For a subspace𝐴, we define the function 𝖢𝖺𝗇𝐴(·)
such that 𝖢𝖺𝗇𝐴(𝑠) is the lexicographically smallest vector contained in 𝐴 + 𝑠 (we call this the canonical
representative of coset 𝐴+ 𝑠).

[CLLZ21] showed that, 𝖢𝖺𝗇𝐴 and 𝖢𝖺𝗇𝐴⊥ are efficiently computable given the classical descrip-
tion of 𝐴.

When it is clear from the context, we will write 𝐴 + 𝑠 to denote the program that checks mem-
bership in 𝐴+ 𝑠. The following equivalences, which follow straightforwardly from the security of
𝗂𝖮, will be useful in our security proofs later on.

Proposition 2.4. For any subspace𝐴 ⊆ 𝔽𝑛
2 , 𝗂𝖮(𝐴+𝑠) ≈𝑐 𝗂𝖮(𝖢𝖢[𝖢𝖺𝗇𝐴,𝖢𝖺𝗇𝐴(𝑠)]). Recall that 𝖢𝖢[𝖢𝖺𝗇𝐴,𝖢𝖺𝗇𝐴(𝑠)]

refers to the compute-and-compare program which on input 𝑥 outputs 1 if and only if 𝖢𝖺𝗇𝐴(𝑥) = 𝖢𝖺𝗇𝐴(𝑠).

This is due to the fact that 𝐴 + 𝑠 has the same functionality as 𝖢𝖢[𝖢𝖺𝗇𝐴,𝖢𝖺𝗇𝐴(𝑠)]. The lemma
then follows the security of 𝗂𝖮.

2.2.2 Strong Monogamy-of-Entanglement Property

Consider a game between a challenger and an adversary (𝒜0,𝒜1,𝒜2):

• The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 of dimension 𝑛

2 , and two uni-
formly random elements 𝑠, 𝑠′ ∈ 𝔽𝑛

2 . It sends |𝐴𝑠,𝑠′⟩, 𝗂𝖮(𝐴+ 𝑠), and 𝗂𝖮(𝐴⊥ + 𝑠′) to 𝒜0.
• 𝒜0 creates a bipartite state on registers 𝖡 and 𝖢. Then, 𝒜0 sends register 𝖡 to 𝒜1, and 𝖢 to
𝒜2.

• The classical description of 𝐴 is then sent to both 𝒜1,𝒜2.
• 𝒜1 and 𝒜2 return respectively 𝑠1 and 𝑠2.

(𝒜0,𝒜1,𝒜2) wins if and only if 𝑠1 ∈ 𝐴+ 𝑠 and 𝑠2 ∈ 𝐴⊥ + 𝑠′.

Let 𝖢𝗈𝗆𝗉𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes the value 1 if the
game above is won by adversary (𝒜0,𝒜1,𝒜2), and takes the value 0 otherwise.

Theorem 2.5. Assuming the existence of sub-exponentially secure post-quantum 𝗂𝖮 and one-way func-
tions, then for any QPT adversary (𝒜0,𝒜1,𝒜2),

Pr[𝖢𝗈𝗆𝗉𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) = 1] ≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝑛) .

[CV21] proved an information-theoretic version of the strong monogamy property (without
giving out the 𝗂𝖮 programs to the adversary). [CLLZ21] showed that one can obtain the computa-
tional statement by lifting the information-theoretic statement.

2.3 Measure Success Probabilities of Quantum Adversaries: Projective/Threshold Im-
plementation

In this section, we include several definitions and results about estimating success probabilities
or estimating whether the probability is above a threshold. Part of this section is taken verbatim
from [ALL+21, CLLZ21]. In this section, we will mainly talk about how to measure probability
in an inefficient way. The proofs in the main body of the proof use this inefficient measuring
procedure as subroutines. All these proofs can be translated easily using the efficient version of
such measuring procedures. We will cover those in the appendix.

15

Estimating success probabilities of adversaries is essential in many settings, especially for a
reduction to know whether the adversary is good or if an extraction on the adversary can succeed
with high probability. Classically it is easy. Let 𝒟 be a testing input distribution and 𝐶 be a
classical program for which we want to estimate probability. We can keep running𝐶 on uniformly
fresh inputs sampled from 𝒟 to estimate the probability up to any inverse polynomial error. Such
procedure is infeasible for quantum adversaries, since a single execution of a quantum program
may completely collapse the program, leading to failure for future executions.

Projective Implementation Zhandry [Zha20] formalizes the following probability measurement
procedure for a quantum program 𝜌 under some test distribution 𝒟.

Consider the following procedure as a binary POVM 𝒫𝒟 = (𝑃𝒟, 𝑄𝒟) acting on a quantum
program 𝜌 (whose success probability is equal to 𝑝): sample an input 𝑥 from 𝒟, evaluates the
quantum program 𝜌 on 𝑥, and checks if the output is correct. Let 𝑃𝒟 denote the operator for
output being correct and 𝑄𝒟 be the quantum operator for the output being incorrect.

Zhandry proposed a procedure that applies an appropriate projective measurement which
measures the success probability of 𝜌 on input 𝑥 ← 𝒟, and outputs the probability 𝑝′. Condi-
tioned on the outcome is some probability 𝑝′, the quantum program collapsed to 𝜌′ whose success
probability is exactly 𝑝′. Furthermore, the expectation of 𝑝′ equals to 𝑝.

Theorem 2.6 (Projective Implementation). Let 𝒟 be a distribution of inputs. Let 𝒫𝒟 = (𝑃𝒟, 𝑄𝒟)
be a binary outcome POVM described above with respect to the distribution 𝒟. There exists a projective
measurement 𝖯𝖨(𝒫𝒟) such that for any quantum program 𝜌 with success probability 𝑝 on 𝒟:

(i) Applying 𝖯𝖨(𝒫𝒟) on 𝜌 yields 𝜌′, 𝑝′.
(ii) 𝜌′ has success probability 𝑝′ with respect to 𝒟. Furthermore, applying 𝖯𝖨(𝒫𝒟) on 𝜌′ always produces

𝑝′.
(iii) The expectation of 𝑝′ equals to 𝑝.

We say the above measurement procedure is a projective implementation of 𝒫𝒟. When the distribution is
clear from the context, we sometimes ignore the subscript 𝒟 in both 𝒫𝒟 and 𝖯𝖨(𝒫𝒟).

Threshold Implementation The concept of threshold implementation [ALL+21] is similar to
projective implementation, except it now outputs a binary outcome indicating whether the prob-
ability is above or below some threshold.

Theorem 2.7 (Threshold Implementation). Let 𝒟 be a distribution of inputs. Let 𝒫𝒟 = (𝑃𝒟, 𝑄𝒟) be a
binary outcome POVM described above with respect to the distribution 𝒟. For any 0 ≤ 𝛾 ≤ 1, there exists
a projective measurement 𝖳𝖨𝛾(𝒫𝒟) such that for any quantum program 𝜌:

(i) Applying 𝖳𝖨𝛾(𝒫𝒟) on 𝜌 yields a binary outcome 𝑏′ and a collapsed program 𝜌′.
(ii) If 𝑏′ = 1, 𝜌′ has success probability at least 𝛾 with respect to 𝒟. Furthermore, applying 𝖳𝖨𝛾(𝒫𝒟) on

𝜌′ always produces 1.
(iii) If 𝑏′ = 0, 𝜌′ has success probability less than 𝛾 with respect to 𝒟. Furthermore, applying 𝖳𝖨𝛾(𝒫𝒟) on

𝜌′ always produces 0.

We say the above measurement procedure is a threshold implementation of 𝒫𝒟 with threshold 𝛾. When the
distribution is clear from the context, we sometimes ignore the subscript 𝒟 in 𝖳𝖨(𝒫𝒟).

Moreover, 𝖳𝖨(𝒫𝒟) can be implemented by first applying 𝖯𝖨(𝒫𝒟) to get a outcome 𝑝 and outputting 1 if
𝑝 ≥ 𝛾 or 0 otherwise.

16

For simplicity, we denote by Tr[𝖳𝖨𝛾(𝒫𝒟) 𝜌] the probability that the threshold implementation
applied to 𝜌 outputs 𝟏. Thus, whenever 𝖳𝖨𝛾(𝒫𝒟) appears inside a trace Tr, we treat 𝖳𝖨𝛾(𝒫𝒟) as a
projection onto the 1 outcome.

The approximate and efficient versions of both 𝖯𝖨 and 𝖳𝖨 will be covered in the Appendix A.2.

3 Collusion Resistant Unclonable Decryption

In this section, we give the formal definition of collusion resistant unclonable decryption. We will
then show the construction for achieving bounded collusion resistance for any 𝑘 — polynomial
number of parties. Finally, we prove the construction satisfies correctness, semantic security and
anti-piracy against colluding adversaries. Our scheme has security against bounded number of
parties. It requires to know the parameter 𝑘 in the setup phase and only 𝑘 copies of keys can be
generated later. Furthermore, the public key, secret key and ciphertext have length linear in the
number of parties 𝑘. Note that our scheme is secure even if an adversary takes control of all copies
of decryption keys; the adversary still can not produce any additional functioning key.

3.1 Definitions

Definition 3.1 (Bounded Collusion Resistant Unclonable Decryption Scheme). A bounded collusion
resistant unclonable decryption scheme 𝖢𝖱𝖴𝖣 for a message space ℳ consists of the following efficient
algorithms:

• 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘)→ (𝗌𝗄, 𝗉𝗄) : a (classical) probabilistic polynomial-time (in 𝜆, 𝑘) algorithm that takes as
input an upper bound 𝑘 on the number of users and a security parameter 𝜆 and outputs a classical
secret key 𝗌𝗄 and a classical public key 𝗉𝗄.

• 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄)→ 𝜌𝗌𝗄,1 ⊗ 𝜌𝗌𝗄,2 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘 : a quantum algorithm that takes as input a secret key 𝗌𝗄
and outputs 𝑘 copies of quantum secret keys.

• 𝖤𝗇𝖼(𝗉𝗄,𝑚)→ 𝖼𝗍 : a (classical) probabilistic algorithm that takes as input a public key 𝗉𝗄, a message
𝑚 and outputs a classical ciphertext 𝖼𝗍.

• 𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍) → 𝑚/⊥ : a quantum algorithm that takes as input a quantum secret key 𝜌𝗌𝗄 and a
classical ciphertext 𝖼𝗍, and outputs a message 𝑚 or a decryption failure symbol ⊥.

Here ‘bounded’ refers to the restriction that the 𝖲𝖾𝗍𝗎𝗉 procedure requires to know the maximal
number of keys distributed in the 𝖰𝖪𝖾𝗒𝖦𝖾𝗇.

A bounded collusion resistant unclonable decryption scheme should satisfy the following:

Correctness: For every polynomial 𝑘(·), there exists a negligible function 𝗇𝖾𝗀𝗅(·), for all 𝜆 ∈ ℕ, let
𝑘 := 𝑘(𝜆), for all 𝑚 ∈ℳ, all 𝑖 ∈ [𝑘],

Pr

⎡⎣𝖣𝖾𝖼(𝜌𝗌𝗄,𝑖, 𝖼𝗍) = 𝑚

⃒⃒⃒⃒
⃒⃒ (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘),

𝜌𝗌𝗄,1 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄),
𝖼𝗍← 𝖤𝗇𝖼(𝗉𝗄,𝑚)

⎤⎦ ≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

In other words, correctness says the 𝑖-th quantum decryption key will always decrypt cor-
rectly (except with negligible probability). By the gentle measurement lemma [Aar05], each
decryption key can function correctly polynomially many times for honestly generated en-
cryptions.

17

CPA Security: This is the regular semantic security for an encryption scheme. An adversary
without getting any decryption key (neither 𝗌𝗄 nor these quantum keys) can not distinguish
ciphertexts of chosen plaintexts.
Formally, for every (stateful) QPT adversary 𝒜, for every polynomial 𝑘(·), there exists a
negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, the following holds:

Pr

⎡⎣𝒜(𝖼𝗍) = 𝑏 :
(𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘)

((𝑚0,𝑚1) ∈ℳ2)← 𝒜(1𝜆, 𝗉𝗄)
𝑏← {0, 1}; 𝖼𝗍← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏)

⎤⎦ ≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆),

Anti-Piracy Security Finally, we define anti-piracy against colluding adversaries. Anti-piracy
intuitively says there is no adversary who gets all copies of the decryption keys can successfully
produce one additional “working” key.

We will follow the two different definitions of “working” proposed in [CLLZ21] and give two
definitions for anti-piracy. The first definition allows a pirate to announce two messages (𝑚0,𝑚1),
much like the semantic security. A decryption key is good if an adversary can distinguish encryp-
tions of 𝑚0 and 𝑚1 by using the decryption key. The second definition of a “working” decryption
key is basing on whether it decrypts correctly with high probability on uniformly random inputs.

Before describing the security games, we first recall the concept of a quantum decryptor (or
a quantum decryption key) [CLLZ21] with respect to a collusion resistant unclonable decryption
scheme.

Definition 3.2 (Quantum Decryptor). A quantum decryptor 𝜌 for ciphertexts of length 𝑚, is an ℓ-
qubit state for some polynomial ℓ. For a ciphertext 𝑐 of length𝑚, we say that we run the quantum decryptor
𝜌 on ciphertext 𝑐 to mean that we execute a universal quantum circuit 𝑈 on inputs |𝑐⟩ and 𝜌, and measure
the output registers.

We are now ready to describe the CPA-style anti-piracy game as well as the random challenge
anti-piracy game. We first introduce the notion of good decryptors with respect to two messages
(𝑚0,𝑚1).

Definition 3.3 ((12 + 𝛾)-good Test with respect to (𝑚0,𝑚1)). Let 𝛾 ∈ [0, 1/2]. Let 𝗉𝗄 be a public key,
and (𝑚0,𝑚1) be a pair of messages. We refer to the following procedure as a test for a 𝛾-good quantum
decryptor with respect to 𝗉𝗄 and (𝑚0,𝑚1):

• The procedure takes as input a quantum decryptor 𝜌.
• Let 𝒫 = (𝑃, 𝐼 − 𝑃) be the following POVM acting on some quantum state 𝜌′:

– Sample a uniform 𝑏← {0, 1} and random coins 𝑟. Compute 𝑐← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏; 𝑟).
– Run the quantum decryptor on input 𝑐. Check whether the outcome is 𝑚𝑏. If so, output 1;

otherwise output 0.

• Let (𝖳𝖨1/2+𝛾 , 𝐼−𝖳𝖨1/2+𝛾) be the threshold implementation of𝒫 with threshold value 1
2+𝛾, as defined

in Theorem 2.7. Run the threshold implementation on 𝜌, and output the outcome. If the output is 1,
we say that the test passed, otherwise the test failed.

Definition 3.4 (𝑘-Strong-Anti-Piracy Game, CPA-style). Let 𝜆, 𝑘 ∈ ℕ+. The CPA-style strong anti-
piracy game for a collusion resistant unclonable decryption scheme is the following game between a chal-
lenger and an adversary 𝒜.

18

1. Setup Phase: The challenger samples keys (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘).
2. Quantum Key Generation Phase: The challenger sends 𝒜 the classical public key 𝗉𝗄 and all 𝑘

copies of quantum decryption keys 𝜌 = 𝜌𝗌𝗄,1 ⊗ · · · 𝜌𝗌𝗄,𝑘 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄).
3. Output Phase: 𝒜 outputs a pair of distinct messages (𝑚0,𝑚1). It also outputs a (possibly mixed

and entangled) state 𝜎 over 𝑘 + 1 registers 𝑅1, 𝑅2, · · · , 𝑅𝑘+1. We interpret 𝜎 as 𝑘 + 1 (possibly
entangled) quantum decryptors 𝜎[𝑅1], · · · , 𝜎[𝑅𝑘+1].

4. Challenge Phase: Let 𝖳𝖨1/2+𝛾 be the (12 + 𝛾)-good test with respect to (𝑚0,𝑚1). The challenger ap-
plies 𝖳𝖨1/2+𝛾 to each of these decryptors. The challenger outputs 1 if and only if all the measurements
output 1.

We denote by 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖢𝖯𝖠(1𝜆, 1/2 + 𝛾, 𝑘,𝒜) a random variable for the output of the game.

Definition 3.5 (Strong Anti-Piracy-Security). Let 𝛾 : ℕ+ → [0, 1]. An unclonable decryption scheme
satisfies strong 𝛾-anti-piracy security, if for any polynomial 𝑘(·), for any QPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅(·) such that the following holds for all 𝜆 ∈ ℕ:

Pr
[︁
𝑏 = 1, 𝑏← 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖢𝖯𝖠(1𝜆, 1/2 + 𝛾(𝜆), 𝑘(𝜆),𝒜)

]︁
≤ 𝗇𝖾𝗀𝗅(𝜆) (1)

Note that the above strong anti-piracy security is defined by the threshold implementation 𝖳𝖨.
By [CLLZ21], this definition implies a weaker notion called regular CPA-style anti-piracy security,
which says the probability of all 𝑘+1 malicious parties simultaneously distinguish encryptions of
𝑚0 or 𝑚1 (𝑚0 and 𝑚1 are chosen independently for each malicious parties) is at most negligibly
greater than 1/2.

We can similarly define regular anti-piracy security with random message challenges: the prob-
ability of all 𝑘 + 1 malicious parties simultaneously recover ciphertext of independent random
messages is at most negligibly greater than 1/2𝑛, where 𝑛 is the message length.

3.2 Construction

We now give the construction of our collusion resistant unclonable decryption. Let 𝖴𝖣 be the
unclonable decryption scheme based on coset states [CLLZ21]. Our 𝖢𝖱𝖴𝖣 takes 𝑘 as input and
outputs 𝑘 pairs of freshly generated keys for 𝖴𝖣. A message is encrypted under each public key.
Decryption works if a decryptor can decrypt any ciphertext. The construction of 𝖢𝖱𝖴𝖣 follows
from the construction of 𝖴𝖣. The security of our 𝖢𝖱𝖴𝖣 requires a non-black-box analysis for the
last step.

We recall the unclonable decrytion scheme in [CLLZ21] (see Figure 4).
There is one additional function 𝖲𝗂𝗆 which takes a parameter 𝑛 (message length) and outputs

a junk ciphertext, which will be crucial for our anti-piracy proof. Intuitively, if one can distinguish
from a honestly generated ciphertext with a simulated ciphertext, they can extract secrets for the
underlying coset states.

The efficiency, correctness and CPA security of our 𝖢𝖱𝖴𝖣 scheme follows easily from those of
𝖴𝖣. We are focusing on the proof of its anti-piracy in the next section.

3.3 Proof of Anti-Piracy

In this section, we prove that our construction satisfies anti-piracy. Although the proof requires to
open up the structure of 𝖴𝖣, this only happens for the last step: for arguing we can extract secrets

19

𝖢𝖱𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) :

• For 𝑖 ∈ [𝑘], (𝗌𝗄𝑖, 𝗉𝗄𝑖)← 𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆).
• Let 𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄𝑘) and 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄𝑘). Output (𝗌𝗄, 𝗉𝗄).

𝖢𝖱𝖴𝖣.𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄) :

• Parse 𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄𝑘). Let 𝜌𝑖 ← 𝖴𝖣.𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄𝑖).
• Let 𝜌𝗌𝗄,𝑖 be 𝜌𝑖 padded with a classical index 𝑖, i.e., 𝜌𝗌𝗄,𝑖 = 𝜌𝑖 ⊗ |𝑖⟩ ⟨𝑖|.
• Output 𝜌𝗌𝗄,1 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘.

𝖢𝖱𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄,𝑚) :

• Parse 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄𝑘). Let 𝖼𝗍𝑖 ← 𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄𝑖,𝑚).
• Output 𝖼𝗍1, · · · , 𝖼𝗍𝑘.

𝖢𝖱𝖴𝖣.𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍) :

• Parse 𝖼𝗍 = (𝖼𝗍1, · · · , 𝖼𝗍𝑘). Parse 𝜌𝗌𝗄 as 𝜌 and 𝑖.
• Output 𝖴𝖣.𝖣𝖾𝖼(𝜌, 𝖼𝗍𝑖).

Figure 3: Collusion Resistant Unclonable Decryption.

for the underlying coset states using the properties of compute-and-compare obfuscation. There-
fore, we will present the main idea of the proof here, leaving the proof of successful extraction (see
Claim 3.11) in the appendix.

Theorem 3.6. The construction in Section 3.2 has strong 𝛾-anti-piracy for any inverse polynomial 𝛾 (as
defined in Definition 3.5).

Proof. We prove by contradiction. There exist inverse polynomials 𝛾(·), 𝜈(·), 𝑘(·) and an adversary
𝒜 such that for infinitely many 𝜆 ∈ ℕ+, 𝒜 outputs a pair of distinct messages (𝑚0,𝑚1) and a state
𝜎 over 𝑘 + 1 registers (which are 𝑘 + 1 decryptors) such that

Tr
[︀(︀
𝖳𝖨1/2+𝛾 ⊗ 𝖳𝖨1/2+𝛾 ⊗ · · · ⊗ 𝖳𝖨1/2+𝛾

)︀
𝜎
]︀
≥ 𝜈. (2)

Let 𝜎* be the leftover state (over the 𝑘+1 registers), conditioned on all 𝖳𝖨1/2+𝛾 outputting 1. With
Equation (2), we can get to 𝜎* with probability at least 𝜈.

Next we will prove the theorem assuming we have perfect projective implementation (see
below). Therefore, the resulting reduction is inefficient. At the end of the section, we will show the
proof translates easily when we replace every projective implementation with its approximated
and efficient version. This replacement will give us an efficient reduction and only incur a small
loss.

Defining Probability Measurement 𝖯𝖨. We start by defining the following measurements 𝖯𝖨𝑖
for each 𝑖 ∈ [𝑘]. 𝖯𝖨𝑖 stands for the projective implementation where the underlying ciphertext
distribution is: the first 𝑖 ciphertexts are “fake”, without encoding any information about the
plaintext; the rest are generated honestly. 𝗉𝗄 are (𝗉𝗄1, · · · , 𝗉𝗄𝑘) as defined in our construction
Section 3.2; similarly for 𝗌𝗄𝑖.

20

𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗌𝗄, 𝗉𝗄) :

• Sample ℓ random (𝜆/2)-dimensional subspaces 𝐴𝑖 ⊆ 𝔽𝜆
2 for 𝑖 = 1, 2, · · · , ℓ,

where ℓ := ℓ(𝜆) is a polynomial in 𝜆.
• For each 𝑖 ∈ [ℓ], choose two uniformly random vectors 𝑠𝑖, 𝑠′𝑖 ∈ 𝔽𝑛

2 .
• Prepare the programs 𝗂𝖮(𝐴𝑖+ 𝑠𝑖) and 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (where we assume that the

programs 𝐴𝑖 + 𝑠𝑖 and 𝐴⊥𝑖 + 𝑠′𝑖 are padded to some appropriate length).
• Output 𝗌𝗄 = {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ], 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴

⊥
𝑖 + 𝑠′𝑖)}𝑖∈[ℓ].

𝖴𝖣.𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄)→ 𝜌𝗌𝗄 : on input 𝗌𝗄 = {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ], output the “quantum secret key”

𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ].

𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄,𝑚) → 𝖼𝗍 : on input a public key 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴
⊥
𝑖 + 𝑠′𝑖)}𝑖∈[ℓ] and

message 𝑚:

• Sample a uniformly random string 𝑟 ← {0, 1}ℓ.
• Let 𝑟𝑖 be the 𝑖-th bit of 𝑟. Define 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖). Let

𝖯𝗆,𝗋 be the following program Figure 5.
• Let �̂�𝑚,𝑟 = 𝗂𝖮(𝖯𝗆,𝗋). Output ciphertext 𝖼𝗍 = (�̂�𝑚,𝑟, 𝑟).

𝖴𝖣.𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍)→ 𝑚/⊥ : on input 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ] and 𝖼𝗍 = (�̂�𝑚,𝑟, 𝑟):

• For each 𝑖 ∈ [ℓ], if 𝑟𝑖 = 1, apply 𝐻⊗𝑛 to the 𝑖-th state |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩; if 𝑟𝑖 = 0, leave

the 𝑖-th state |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩ unchanged. Denote the resulting state by 𝜌*𝗌𝗄.

• Evaluate the program �̂�𝑚,𝑟 on input 𝜌*𝗌𝗄 in superposition; measure the evalu-
ation register and denote the outcome by 𝑚′. Output 𝑚′.

• Rewind by applying the operations in the first step again.

𝖴𝖣.𝖲𝗂𝗆(𝑛) → 𝖼𝗍 : on input a message length 𝑛, 𝖼𝗍 ← 𝗂𝖮(𝖲𝗂𝗆(1𝜆, 𝑃.𝗉𝖺𝗋𝖺𝗆)) where 𝖲𝗂𝗆
denotes the simulator for compute-and-compare obfuscator, 𝑃.𝗉𝖺𝗋𝖺𝗆 consists of
all program parameters in 𝑃𝑚,𝑟 as in 𝖴𝖣.𝖤𝗇𝖼 for any 𝑚 of length 𝑛.

Figure 4: Unclonable Decryption in [CLLZ21].

• Let 𝒫𝑖 = (𝑃𝑖, 𝐼 − 𝑃𝑖) be the following POVM acting on a quantum decryptor:

– Sample a uniform 𝑏 ← {0, 1} and random coins (which will be used to generated ci-
phertexts 𝖼𝗍1, · · · , 𝖼𝗍𝑘).

– For each 𝑗 ∈ {1, · · · , 𝑖 − 1}, compute 𝖼𝗍𝑗 ← 𝖴𝖣.𝖲𝗂𝗆(𝑛) where 𝑛 is the length of 𝑚0 and
𝑚1.

– For each 𝑗 ∈ {𝑖, · · · , 𝑘}, compute 𝖼𝗍𝑗 ← 𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄𝑗 ,𝑚𝑏).
– Let 𝖼𝗍 = (𝖼𝗍1, · · · , 𝖼𝗍𝑘).
– Run the quantum decryptor on input 𝖼𝗍. Check whether the outcome is𝑚𝑏. If so, output
1; otherwise, output 0.

• Let 𝖯𝖨𝑖 be the projective implementation of 𝒫𝑖.

It is easy to see that when a quantum decryptor is in the subspace defined by 𝖳𝖨1/2+𝛾 , applying
𝖯𝖨0 on the state will always produce a real number 𝛽 ≥ 1/2 + 𝛾. This is a simple observation

21

On input 𝑢 = 𝑢1||𝑢2|| · · · ||𝑢ℓ (where each 𝑢𝑖 ∈ 𝔽𝑛
2):

1. If for all 𝑖 ∈ [ℓ], 𝑅𝑟𝑖
𝑖 (𝑢𝑖) = 1:

Output 𝑚
2. Else:

Output ⊥

Figure 5: Program 𝑃𝑚,𝑟

following Theorem 2.7: 𝖳𝖨1/2+𝛾 is implemented by first applying 𝖯𝖨0 and comparing the outcome
with 1/2 + 𝛾.

Let the outcome of applying 𝖯𝖨0 on the 𝑖-th quantum decryptor of 𝜎* be a random variable 𝑏𝑖,0.
We have:

Pr

[︂
∀𝑖 ∈ [𝑘 + 1], 𝑏𝑖,0 ≥

1

2
+ 𝛾

]︂
= 1. (3)

Repeated Probability Measure and Its Properties. We then define repeated projective imple-
mentation. For the first quantum decryptor 𝜎*[1], we apply 𝖯𝖨0 to obtain a outcome 𝑏1,0. Then we
apply the next projective implementation 𝖯𝖨1 on the leftover state to obtain a outcome 𝑏1,1. So on
and so forth, until we stop after applying 𝖯𝖨𝑘. The outcomes of all measurements are denoted by
random variables 𝑏1,0, · · · , 𝑏1,𝑘.

Claim 3.7. There always exists 𝑗 ∈ [𝑘] such that 𝑏1,𝑗−1 − 𝑏1,𝑗 ≥ 𝛾/𝑘.

Proof. For any quantum decryptor, if we apply 𝖯𝖨𝑘 on it, the outcome will always be 1/2. This
is because the ciphertext in 𝖯𝖨𝑘 is always generated without any information about 𝑚0 or 𝑚1.
Therefore, every decryptor’s behavior is random guessing: 𝑏1,𝑘 is always 1/2.

From Equation (3), we know that 𝑏1,0 ≥ 1/2 + 𝛾. By triangle inequality, the claim holds.

We use a random variable 𝑗1 for the first index such that 𝑏1,𝑗1−1 − 𝑏1,𝑗1 ≥ 𝛾/𝑘.

We similarly define the above repeated projective implementation for every quantum decryp-
tor 𝜎*[𝑖]. Since the repeated measurement on the 𝑖-th decryptor commutes with the repeated
measurement on the 𝑖′-th (𝑖′ ̸= 𝑖) decryptor, we can safely assume they are done in any order. Let
(𝑏𝑖,0, · · · , 𝑏𝑖,𝑗 , · · · , 𝑏𝑖,𝑘) be the outcome of the repeated projective implementation the 𝑖-th decryp-
tor. Similarly, Claim 3.7 holds for every decryptor:

Claim 3.8. For every 𝑖 ∈ [𝑘 + 1], there always exists 𝑗 ∈ [𝑘] such that 𝑏𝑖,𝑗−1 − 𝑏𝑖,𝑗 ≥ 𝛾/𝑘.

Let 𝑗𝑖 be the first index such that 𝑏𝑖,𝑗𝑖−1 − 𝑏𝑖,𝑗𝑖 ≥ 𝛾/𝑘. We next show that there always exist
𝑥 ̸= 𝑦 such that 𝑗𝑥 = 𝑗𝑦.

Claim 3.9. Pr [∃𝑥 ̸= 𝑦, 𝑗𝑥 = 𝑗𝑦] = 1.

Proof. This is simply because for every 𝑖 ∈ [𝑘 + 1], 𝑗𝑖 ∈ [𝑘]. The claim follows from the pigeonhole
principle.

22

Guessing 𝑥, 𝑦 and 𝑗𝑥. We describe the first half of our reduction algorithm. The algorithm takes
as input 𝜎* (postselecting on all 𝖳𝖨1/2+𝛾 output 1, and aborting if it fails). Below, we show the first
part of the algorithm. In the second part of the reduction algorithm, it will extract a pair of secrets

On input the 𝑘 + 1 quantum decryptors 𝜎*:

1. Randomly sample 1 ≤ 𝑥 < 𝑦 ≤ 𝑘 + 1 and 𝑗 ∈ [𝑘];
2. Apply repeated projective measurement 𝖯𝖨0 to 𝖯𝖨𝑗−1 to 𝜎*[𝑥]. Let 𝑏𝑥,𝑗−1 be the last

outcome.
3. Apply repeated projective measurement 𝖯𝖨0 to 𝖯𝖨𝑗−1 to 𝜎*[𝑦]. Let 𝑏𝑦,𝑗−1 be the last

outcome.
4. Output (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and both the 𝑥-th and 𝑦-th decryptors, denoted by
𝜎**[𝑥, 𝑦].

Figure 6: Reduction Algorithm Part 1

for the same coset states from 𝜎**[𝑥, 𝑦], which we will elaborate on shortly after.
We prove the following claim for the above algorithm.

Claim 3.10. With probability at least 1/(2𝑘3), the above procedure produces (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and
𝜎**[𝑥, 𝑦] satisfy:

1. Applying 𝖯𝖨⊗2𝑗−1 jointly on 𝜎*[𝑥, 𝑦] produces 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1 with probability 1.
2. Applying 𝖯𝖨⊗2𝑗 jointly on 𝜎*[𝑥, 𝑦] produces 𝑏𝑥,𝑗 , 𝑏𝑦,𝑗 , such that:

Pr
[︁
𝑏𝑥,𝑗−1 − 𝑏𝑥,𝑗 ≥

𝛾

𝑘
∧ 𝑏𝑦,𝑗−1 − 𝑏𝑦,𝑗 ≥

𝛾

𝑘

]︁
≥ 1

2𝑘3
.

Proof for Claim 3.10. By Claim 3.8, there is always a pair of indices 𝑥 < 𝑦 and an integer 𝑗 ∈ [𝑘]
such that 𝑏𝑥,𝑗−1 − 𝑏𝑥,𝑗 ≥ 𝛾

𝑘 and 𝑏𝑦,𝑗−1 − 𝑏𝑦,𝑗 ≥ 𝛾
𝑘 simultaneously. As a consequence, suppose that

we guess 𝑥, 𝑦 and 𝑗 uniformly at random after applying the repeated projective implementation
𝖯𝖨0, · · · ,𝖯𝖨𝑘 on every quantum decryptor, then

Pr
[︁
𝑏𝑥,𝑗−1 − 𝑏𝑥,𝑗 ≥

𝛾

𝑘
∧ 𝑏𝑦,𝑗−1 − 𝑏𝑦,𝑗 ≥

𝛾

𝑘

]︁
≥ 1(︀

𝑘+1
2

)︀
· 𝑘
≥ 1

𝑘3
, (4)

where the last inequality follows by 𝑘 ≥ 1.
Since the repeated projective implementations on disjoint quantum decryptors commute (with

themselves as well as the final test projection), the same probability can be achieved if we only
apply the repeated measurements on the 𝑥-th and 𝑦-th decryptors, skipping the other (𝑘− 1) ones
(see Figure 7).

We have

Pr
𝖱𝖺𝗇𝖽𝗈𝗆𝖬𝖾𝖺𝗌𝗎𝗋𝖾(𝜎*)

[︁
𝑏𝑥,𝑗−1 − 𝑏𝑥,𝑗 ≥

𝛾

𝑘
∧ 𝑏𝑦,𝑗−1 − 𝑏𝑦,𝑗 ≥

𝛾

𝑘

]︁
≥ 1

𝑘3
. (5)

Equation (4) and Equation (5) differ on how 𝑏𝑥,𝑗−1, 𝑏𝑥,𝑗 , 𝑏𝑦,𝑗−1, 𝑏𝑦,𝑗 is sampled.

23

On input the 𝑘 + 1 quantum decryptors 𝜎*:

1. Randomly sample 1 ≤ 𝑥 < 𝑦 ≤ 𝑘 + 1 and 𝑗 ∈ [𝑘];
2. Apply repeated projective measurement 𝖯𝖨0 to 𝖯𝖨𝑗 to 𝜎*[𝑥]. Let 𝑏𝑥,𝑗−1, 𝑏𝑥,𝑗 be

the last two outcomes.
3. Apply repeated projective measurement 𝖯𝖨0 to 𝖯𝖨𝑗 to 𝜎*[𝑦]. Let 𝑏𝑦,𝑗−1, 𝑏𝑦,𝑗 be

the last two outcomes.
4. Output (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑥,𝑗 , 𝑏𝑦,𝑗−1, 𝑏𝑦,𝑗).

Figure 7: Algorithm 𝖱𝖺𝗇𝖽𝗈𝗆𝖬𝖾𝖺𝗌𝗎𝗋𝖾(𝜎*)

We can view our reduction algorithm (Figure 6) as the first step of RandomMeasure (Figure 7).
More formally, RandomMeasure first runs the reduction algorithm to get (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and
𝜎**[𝑥, 𝑦]; it then applies 𝖯𝖨𝑗 on both registers to obtain 𝑏𝑥,𝑗 and 𝑏𝑦,𝑗 .

If the claim we want to prove does not hold, then with probability < 1/(2𝑘3), the outcome
(𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and 𝜎**[𝑥, 𝑦] satisfy condition (2) in Claim 3.10. Therefore, the probability in
Equation (5) is strictly smaller than 1/(2𝑘3) + 1/(2𝑘3). This is a contradiction, as again the test
projector commutes with the rest of 𝖱𝖺𝗇𝖽𝗈𝗆𝖬𝖾𝖺𝗌𝗎𝗋𝖾.

Extracting Secrets from 𝜎**[𝑥, 𝑦]. We describe the second half of our reduction algorithm. Given
(𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and 𝜎**[𝑥, 𝑦] that satisfy both conditions in Claim 3.10, we can extract secrets
for both coset states. This violates the strong computational monogamy-of-entanglement property
of coset states, thus finishes the proof.

Recall the underlying ciphertext distribution of 𝖯𝖨𝑗−1 and 𝖯𝖨𝑗 :

1. The first 𝑗 − 1 ciphertexts 𝖼𝗍1, · · · , 𝖼𝗍𝑗−1 are generated by 𝖲𝗂𝗆(𝑛).
2. The last 𝑘 − 𝑗 ciphertexts 𝖼𝗍𝑗+1, · · · , 𝖼𝗍𝑘 are generated honestly, using their corresponding

public key.
3. The 𝑗-th ciphertext is either generated honestly using the 𝑗-th public key 𝗉𝗄𝑗 (in 𝖯𝖨𝑗−1), or

by 𝖲𝗂𝗆(𝑛) (in 𝖯𝖨𝑗). 𝗉𝗄𝑗 , 𝗌𝗄𝑗 is generated by 𝖴𝖣.𝖲𝖾𝗍𝗎𝗉 in Figure 4. Let the underlying cosets be
{𝐴𝑙 + 𝑠𝑙, 𝐴

⊥
𝑙 + 𝑠′𝑙}ℓ𝑙=1:

𝗉𝗄𝑗 = {𝗂𝖮(𝐴𝑙 + 𝑠𝑙), 𝗂𝖮(𝐴
⊥
𝑙 + 𝑠′𝑙)}𝑙∈[ℓ],

𝗌𝗄𝑗 = {𝐴𝑙, 𝑠𝑙, 𝑠
′
𝑙}𝑙∈[ℓ].

The following claim says that if applying 𝑃𝑗−1 or 𝑃𝑗 on a quantum decryptor produce dif-
ferent values (with difference more than 𝛾/𝑘), then we can extract ℓ vectors 𝑣1, · · · , 𝑣ℓ: each 𝑣𝑙 is
uniformly in either 𝐴𝑙 + 𝑠𝑙 or 𝐴⊥𝑙 + 𝑠′𝑙.

Claim 3.11. For any 𝑘 = 𝗉𝗈𝗅𝗒(𝜆), let (𝗌𝗄, 𝗉𝗄) ← 𝖢𝖱𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) where 𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄𝑘) and
𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄𝑘). Let 𝜌𝗌𝗄 be the unclonable decryption key. For any 𝑗 ∈ [𝑘], let 𝖯𝖨𝑗−1 and 𝖯𝖨𝑗 be
defined at the beginning of the proof. Let 𝗉𝗄𝑗 = {𝗂𝖮(𝐴𝑙 + 𝑠𝑙), 𝗂𝖮(𝐴

⊥
𝑙 + 𝑠′𝑙)}𝑙∈[ℓ], 𝗌𝗄𝑗 = {𝐴𝑙, 𝑠𝑙, 𝑠

′
𝑙}𝑙∈[ℓ].

If there exist inverse polynomials 𝛼1(·), 𝛼2(·) and an quantum algorithm ℬ that takes (𝜌𝗌𝗄, 𝗉𝗄) outputs
𝜌 such that with probability at least 𝛼1, 𝜌 satisfies the following:

1. There exists 𝑏𝑗−1 ∈ (0, 1], applying 𝖯𝖨𝑗−1 on 𝜌 always produces 𝑏𝑗−1.

24

2. Let the outcome of applying 𝖯𝖨𝑗 on 𝜌 be 𝑏𝑗 . Then Pr[𝑏𝑗−1 − 𝑏𝑗 > 𝛾/𝑘] > 𝛼2.

Then there exists another inverse polynomial 𝛽(·) and an efficient quantum algorithm 𝒞 that takes all the
descriptions of {𝐴𝑙}ℓ𝑙=1 (denoted by 𝐀), 𝜌 and ℓ random coins 𝑟1, · · · , 𝑟ℓ ∈ {0, 1} such that:

Pr
𝗌𝗄,𝗉𝗄,𝜌𝗌𝗄,𝑟

𝜌←ℬ(𝜌𝗌𝗄,𝗉𝗄)

[︃
∀𝑙 ∈ [ℓ], 𝑣𝑙 ∈

{︃
𝐴𝑙 + 𝑠𝑙 if 𝑟𝑙 = 0

𝐴⊥𝑙 + 𝑠′𝑙 if 𝑟𝑙 = 1
, (𝑣1, · · · , 𝑣ℓ)← 𝒞(𝐀, 𝜌, 𝑟)

]︃
≥ 𝛽.

The proof of this is similar to the extraction technique in [CLLZ21] using compute-and-compare
obfuscation. We refer interested readers to Appendix B.

By setting 𝛼1 = 𝛼2 := 1/(2𝑘3), ℬ be the reduction algorithm in Figure 6 and 𝜌 := 𝜎**[𝑥], we
conclude that there exists another algorithm that takes 𝜎**[𝑥], random coins 𝑟1, · · · , 𝑟ℓ and outputs
(𝑣1, · · · , 𝑣ℓ) in the corresponding cosets (depending on each 𝑟𝑙).

Next, we show that after a successful extraction on the 𝜎**[𝑥], the other decryptor still satisfy
the conditions (1) (2) for Claim 3.11. Therefore, we can extract another random set of vectors from
the other decryptor, with non-negligible probability, even conditioned on a successful extraction
on 𝜎**[𝑥].

Assume conditioned on a successful extraction on the 𝜎**[𝑥], the other decryptor becomes 𝜎′[𝑦]
and it does not satisfy the conditions in Claim 3.11.

First, applying 𝖯𝖨𝑗−1 on 𝜎′[𝑦] always produces 𝑏𝑦,𝑗−1. This is because the extraction on the
𝜎**[𝑥] register does not change the support of 𝜎′[𝑦]. Thus, condition (2) in Claim 3.11 can not hold.
Let 𝐄1 denote a successful (E)xtraction on 𝜎**[𝑥] and 𝐆2 be a indicator that applying 𝖯𝖨𝑗 on 𝜎**[𝑦]
to get 𝑏𝑦,𝑗 and 𝑏𝑦,𝑗 < 𝑏𝑦,𝑗−1− 𝛾

𝑘3
(a big (G)ap). We know that in this case, Pr[𝐄1 ∧ 𝐆2] is negligibly

small.
However, this can not be true. We can imagine 𝖯𝖨𝑗 is implemented first. We know that Pr[𝐆2]

is non-negligible by the condition (2) in Claim 3.10. Conditioned on 𝐆2, let the 𝑥-th decryptor
become 𝜎′[𝑥]. We know that 𝜎′[𝑥] must satisfy both conditions in Claim 3.11. Otherwise, condition
(2) in Claim 3.10 can not hold. Thus, Pr[𝐆2|𝐄1] must be non-negligible. This contradicts with the
assumption that Pr[𝐄1 ∧ 𝐆2] is negligibly small.

Thus, the reduction algorithm, with non-negligible probability, can extract (𝑣1, · · · , 𝑣ℓ) and
(𝑣′1, · · · , 𝑣′ℓ) with respect to random 𝑟1, · · · , 𝑟ℓ and 𝑟′1, · · · , 𝑟′ℓ. With probability at least 1−2−ℓ, there
exist 𝑙 ∈ [ℓ] such that 𝑟𝑙 ̸= 𝑟′𝑙. Thus, 𝑣𝑙 and 𝑣′𝑙 will be two vectors in each of the cosets 𝐴𝑙 + 𝑠𝑙
and 𝐴′𝑙 + 𝑠′𝑙. By guessing this 𝑙, this breaks the computational strong monogamy-of-entanglement
game (Theorem 2.5).

4 Collusion Resistant Copy-Protection for Signature Schemes

In this section, we present security definiton and the construction for copy-protecting signatures
and PRFs.

4.1 Copy-Protection for Signatures: Definitions

Definition 4.1 (Bounded Collusion Resistant Copy-Protection Scheme of Signature Scheme). A
bounded collusion resistant copy-protection Scheme for a signature scheme consists of the following algo-
rithms:

25

𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘): takes in security parameter 1𝜆 and upper bound 𝑘; outputs classical secret key 𝗌𝗄 and
classical verification key 𝗏𝗄;

𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄): takes in a classical secret key 𝗌𝗄; outputs 𝑘 quantum signing keys 𝜌𝗌𝗄 = 𝜌𝗌𝗄,1 ⊗ 𝜌𝗌𝗄,2 ⊗
· · · ⊗ 𝜌𝗌𝗄,𝑘

𝖲𝗂𝗀𝗇(𝜌𝗌𝗄, 𝑥): takes a quantum signing key 𝜌𝐾 and an input 𝑥 ∈ [𝑁]; outputs a classical signature 𝗌𝗂𝗀 ∈
[𝑀].

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝑥, 𝗌𝗂𝗀): takes in verification key 𝗏𝗄, message 𝑥 and claimed signature 𝗌𝗂𝗀. It outputs 1 (accept)
or 0 (reject).

A copy-protection for signatures scheme should satisfy the following properties:

Correctness For every polynomial 𝑘(·), there exists a negligible function 𝗇𝖾𝗀𝗅(·), such that for all
𝜆, all messages 𝑥, all 𝑖 ∈ [𝑘]:

Pr

⎡⎣𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝑥, 𝗌𝗂𝗀) = 1

⃒⃒⃒⃒
⃒⃒ (𝗌𝗄, 𝗏𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘),

𝜌𝗌𝗄,1 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄),
𝗌𝗂𝗀← 𝖲𝗂𝗀𝗇(𝜌𝗌𝗄,𝑖, 𝑥)

⎤⎦ ≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Multi-time Correctness/Reusability To ensure that the quantum signing key is reusable (i.e.,
satisfying the above correctness condition) for polynomially many times, we require the following
property for our scheme:

• Pseudo-deterministic Signing Procedure: For all polynomial 𝑘(·), there is a negligible func-
tion 𝗇𝖾𝗀𝗅(·) for all 𝜆, for all messages 𝑥, for all (𝗌𝗄, 𝗏𝗄) in the support of 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) and all
𝑖 ∈ [𝑘], there exists a signature 𝗌𝗂𝗀* such that the following holds:

Pr

[︂
𝗌𝗂𝗀 = 𝗌𝗂𝗀*

⃒⃒⃒⃒
𝜌𝗌𝗄,1 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄),

𝗌𝗂𝗀← 𝖲𝗂𝗀𝗇(𝜌𝗌𝗄,𝑖, 𝑥)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Therefore, the quantum signing key can be used for polynomially many times, by the gentle
measurement lemma [Aar05].

Remark 4.2. The construction for the signature scheme in this work consists of a deterministic signing
procedure and hence satisfies reusability.

An alternative requirement for reusability is to allow non-deterministic signatures, but require correct-
ness for any polynomial length sequence of messages. We will not elaborate on this direction.

Existential Unforgeability This is the standard (selective) existential unforgeability under cho-
sen message attack game for signature schemes. The adversary is not given any copy of the signing
key, but only oracle access to the signing function.

1. The adversary gives the challenger the message 𝑥*.
2. The challenger samples (𝗌𝗄, 𝗏𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘). It gives 𝗏𝗄 to 𝒜;
3. The adversary queries the signing oracle for a polynomial number of times on messages
𝑥 ̸= 𝑥*.

26

4. The adversary provides a signature 𝗌𝗂𝗀* for message 𝑥*. The challenger accepts if and only
if 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝑥*, 𝗌𝗂𝗀*) = 1.

For any QPT adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆, 𝑥, the prob-
ability that 𝒜wins the above game is 𝗇𝖾𝗀𝗅(𝜆).

Remark 4.3. In the above game, we only allow the adversary to query the signing oracle classically. Classi-
cal query access is a more reasonable assumption in the security game for signatures since the signing oracle
is in the hands of the challenger, who can choose to interact with the adversary through a classical channel
(unlike other settings, for example in case of a random oracle, the hash function modeled as the oracle is in
the hands of the adversary and can then be queried in superposition).

Anti-Piracy Security for 𝑘-bounded collusion resistance Let 𝜆 ∈ ℕ+. Consider the following
game between a challenger and an adversary 𝒜:

1. The challenger samples (𝗌𝗄, 𝗏𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) and 𝜌𝗌𝗄 = 𝜌𝗌𝗄,1⊗𝜌𝗌𝗄,2⊗· · · 𝜌𝗌𝗄,𝑘 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄).
It gives 𝜌𝗌𝗄 and 𝗏𝗄 to 𝒜;

2. 𝒜 returns to the challenger a (possibly mixed and entangled) state 𝜎 on registers 𝑅1, 𝑅2,
· · · , 𝑅𝑘+1. We interpret 𝜎 as 𝑘+1 (possibly entangled) quantum programs 𝜎[𝑅1], · · · , 𝜎[𝑅𝑘+1].

3. The challenger samples uniformly random 𝑥1, · · · , 𝑥𝑘+1 ← [𝑁]. Then runs a universal circuit
on input (𝜎[𝑅𝑖], 𝑥𝑖) to obtain 𝗌𝗂𝗀′𝑖 for each 𝑖 ∈ [𝑘 + 1]. The outcome of the game is 1 if and
only if 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝑥𝑖, 𝗌𝗂𝗀′𝑖) = 1 for all 𝑖 ∈ [𝑘 + 1].

Denote by 𝖢𝖯𝖲𝗂𝗀𝗇𝖺𝗍𝗎𝗋𝖾𝖦𝖺𝗆𝖾(𝟣𝜆,𝒜) a random variable for the output of the game. We say the
scheme has anti-piracy security if for every polynomial-time quantum algorithm 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅(·), for all 𝜆 ∈ ℕ+,

Pr
[︁
𝖢𝖯𝖲𝗂𝗀𝗇𝖺𝗍𝗎𝗋𝖾𝖦𝖺𝗆𝖾(𝟣𝜆,𝒜) = 𝟣

]︁
= 𝗇𝖾𝗀𝗅(𝜆) .

4.2 Construction

In this section, we describe a construction of a copy-protection scheme for signatures. Our con-
struction is based on the copy-protection scheme for PRFs in [CLLZ21] and the short signature
scheme in [SW21].

Let 𝜆 be the security parameter. Our copy-protection construction for a signature will make
use of the following building blocks. We refer the readers to Appendix A.3 for details on the PRF
building blocks we use.

1. A puncturable 𝐹1 : [𝐾𝜆] × [𝑁𝜆] → [𝑀𝜆], where 𝑁 = 2𝑛(𝜆) and 𝑀 = 2𝑚(𝜆), for some polyno-
mials 𝑛(𝜆) and 𝑚(𝜆), satisfying 𝑛(𝜆) ≥ 𝑚(𝜆)+2𝜆+4. For convenience, we will omit writing
the dependence on 𝜆, when it is clear from the context.
𝐹1 is also an extracting PRF with error 2−𝜆−1 for min-entropy 𝑘(𝜆) = 𝑛(𝜆) (i.e., a uniform
distribution over all possible inputs). By Theorem A.14, such PRFs exist assuming post-
quantum one-way functions.

2. A puncturable statistically injective PRF 𝐹2 with failure probability 2−𝜆 that accepts inputs
of length ℓ2 and outputs strings of length ℓ1. By Theorem A.13, such a PRF exists assuming
one-way functions exist, and as long as ℓ1 ≥ 2ℓ2 + 𝜆.

27

3. A puncturable PRF 𝐹3 that accepts inputs of length ℓ1 and outputs strings of length ℓ2. By
Lemma C.4 in [SW21], assuming one-way functions exist, 𝐹3 is a puncturable PRF.

4. A one-way function 𝖮𝖶𝖥 : [𝑀𝜆]→ [𝑀𝜆].

In our construction, we will parse the input 𝑥 to PRF 𝐹1(𝐾1, ·) as three substrings 𝑥0||𝑥1||𝑥2,
where each 𝑥𝑖 is of length ℓ𝑖 for 𝑖 ∈ {0, 1, 2} and 𝑛 = ℓ0 + ℓ1 + ℓ2. ℓ2 − ℓ0 should also be large
enough (we will specify later how large).

Next, we describe a copy-protection scheme for a signing key, using the above building blocks.
The description is contained in Figures 8, 9 and 10.

𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗌𝗄, 𝗏𝗄):

• Sample PRF keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
• Let 𝖵𝖪 be the program in Figure 10. Prepare obfuscated program 𝗂𝖮(𝖵𝖪).
• Output 𝗌𝗄 = (𝐾1,𝐾2,𝐾3), 𝗏𝗄 = 𝗂𝖮(𝖵𝖪)

𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄)→ 𝜌𝗌𝗄:

• Sample {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ]: uniformly random subspaces 𝐴𝑖 of dimension 𝜆/2

and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0.
• Let 𝖢𝖯𝖲𝗂𝗀𝗇 be the program described in Figure 9. Prepare 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇).
• Output the quantum key 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)),
𝖲𝗂𝗀𝗇(𝜌𝗌𝗄, 𝑥)→ 𝗌𝗂𝗀:

• Let 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)). Parse 𝑥 as 𝑥 = 𝑥0||𝑥1||𝑥2 where 𝑥0 is

of length ℓ0.
• For all 𝑖 ∈ [ℓ0], if 𝑥0,𝑖 is 1, apply 𝐻⊗𝑛 to |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩. Otherwise, leave the state
unchanged.

• We obtain state 𝜎 from the above procedure (which can be seen as a super-
position over tuples of 𝑙0 vectors). Run 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇) coherently on input 𝑥 and
𝜎, and measure the final output register to obtain 𝗌𝗂𝗀.

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝑥, 𝗌𝗂𝗀)→ 0/1:

• Parse 𝗏𝗄 as program 𝗂𝖮(𝖵𝖪).
• Run 𝗂𝖮(𝖵𝖪) on input (𝑥, 𝗌𝗂𝗀) to obtain output 0/1.

Figure 8: Quantum copy-protection scheme for digital signature.

Signing Program The program 𝖢𝖯𝖲𝗂𝗀𝗇, described in Figure 9, takes as input 𝑥 and ℓ0 vectors
𝑣1, · · · , 𝑣ℓ0 , and has two modes. If 𝑥 is not in the sparse hidden trigger set (not passing the ‘if’
check in the first line), the program is in the normal mode: it outputs the PRF evaluation of 𝐹1(𝐾1, 𝑥)
if and only if every 𝑣𝑖 is in the appropriate coset. Otherwise, the program is in the hidden trigger
mode: in this mode, a classical circuit description 𝑄′ is computed from the input 𝑥; the program
then outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

On almost all inputs except a sparse set of hidden triggers, the program runs in its normal
mode. For 𝑖 ∈ [𝑙0], define the programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (where the inputs

28

to 𝗂𝖮 should be appropriately padded).
Note that in the normal mode, the signature for a message 𝑥 output by the program 𝖢𝖯𝖲𝗂𝗀𝗇 is

the PRF evaluation 𝐹1(𝐾1, 𝑥).

Hardcoded: Keys 𝐾1,𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Hidden Trigger Mode: Treat 𝑄′ as a (classical) circuit and output
𝑄′(𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0).

2. Otherwise, check if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅
𝑥0,𝑖

𝑖 (𝑣𝑖) = 1 (where 𝑥0,𝑖 is
the 𝑖-th bit of 𝑥0).

Normal Mode: If so, output 𝐹1(𝐾1, 𝑥). Otherwise, output ⊥.

Figure 9: Program 𝖢𝖯𝖲𝗂𝗀𝗇

Hardcoded: Keys 𝐾1,𝐾2,𝐾3.
On input 𝑥 = 𝑥0||𝑥1||𝑥2 and 𝗌𝗂𝗀:

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Hidden Trigger Mode: Treat 𝑄′ as a (classical) circuit and output 𝑄′(𝗆𝗈𝖽𝖾 =
𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚), where 𝗌𝗂𝗀 is padded with 0’s to the length of ℓ0 · 𝜆.

2. Otherwise:
Normal Mode: Check if 𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥)). If so, output 1. Other-

wise, output 0.

Figure 10: Program 𝖵𝖪

Verification Program The program used for verification of signatures, 𝖵𝖪, also has two modes
similar to 𝖢𝖯𝖲𝗂𝗀𝗇. 𝖵𝖪’s differences from 𝖢𝖯𝖲𝗂𝗀𝗇 are highlighted in blue. It takes a message 𝑥 and
a claimed signature 𝗌𝗂𝗀 as inputs.

In the Hidden Trigger Mode, we compute a circuit𝑄′ from the input 𝑥 same as we do in 𝖢𝖯𝖲𝗂𝗀𝗇,
but we input a mode indicator 𝖼𝗁𝖾𝖼𝗄 into circuit 𝑄′ as well as the claimed signature 𝗌𝗂𝗀 padded to
the same length as 𝑣1, · · · , 𝑣ℓ0 . In the normal mode, we check if the one-way function evaluation
𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥)). Both modes will eventually output a 0 or 1.

Note that the circuit 𝑄′ used in the hidden trigger mode also has two modes(𝖾𝗏𝖺𝗅 mode and
𝖼𝗁𝖾𝖼𝗄 mode) inside itself. We will specify what they are in the security proof (Appendix C.1 and
Figure 12).

Theorem 4.4. The construction in Figure 8 satisfies selective existential unforgeability and anti-piracy
security for 1-bounded collusion resistance as defined in Section 4.1.

We give a proof for the above theorem in Appendix C.

29

4.3 Collusion Resistant Copy-Protection for Signatures and PRFs

The 𝑘-bounded collusion resistant copy-protection for signatures can be generalized naturally
from the above 1-bounded collusion resistant one. However, the construction is not completely
a black-box one that simply runs the single-copy scheme for 𝑘 times. We will elaborate the algo-
rithms and proofs in Appendix E.

The collusion resistant copy-protection for PRFs bears a lot of similarity with the signature
construction. We will describe the construction and proofs in Appendix G.

References

[Aar05] Scott Aaronson. “Limitations of Quantum Advice and One-Way Communication”.
In: Theory of Computing 1.1 (2005), pp. 1–28. DOI: 10.4086/toc.2005.v001a001 (cit.
on pp. 17, 26, 57).

[Aar09] Scott Aaronson. “Quantum Copy-Protection and Quantum Money”. In: Proceedings
of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris,
France, 15-18 July 2009. 2009, pp. 229–242. DOI: 10.1109/CCC.2009.42 (cit. on pp. 1,
2, 4, 13).

[AC13] Scott Aaronson and Paul Christiano. “Quantum Money from Hidden Subspaces”.
In: Theory of Computing 9.9 (2013), pp. 349–401. DOI: 10.4086/toc.2013.v009a009
(cit. on p. 3).

[AK22] Prabhanjan Ananth and Fatih Kaleoglu. A Note on Copy-Protection from Random Ora-
cles. 2022. DOI: 10.48550/ARXIV.2208.12884. URL: https://arxiv.org/abs/2208.
12884 (cit. on p. 5).

[AKL+22] Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu, and Mark Zhandry.
“On the Feasibility of Unclonable Encryption, and More”. In: Advances in Cryptology
- CRYPTO 2022 - 42st Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15–18, 2022, Proceedings. Vol. 13507. 2022 (cit. on pp. 2, 4).

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. “New
Approaches for Quantum Copy-Protection”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part I. Vol. 12825. 2021, pp. 526–555. DOI: 10.1007/
978-3-030-84242-0_19 (cit. on pp. 2–6, 12, 15, 16, 35).

[AP21] Prabhanjan Ananth and Rolando L. La Placa. “Secure Software Leasing”. In: Ad-
vances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II. Vol. 12697. 2021, pp. 501–530. DOI: 10.1007/978-3-030-
77886-6_17 (cit. on pp. 2, 3, 5).

[BB84] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key dis-
tribution and coin tossing”. In: Proceedings of International Conference on Computers,
Systems & Signal Processing, Dec. 9-12, 1984, Bangalore, India. 1984, pp. 175–179. arXiv:
2003.06557 (cit. on p. 1).

30

https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.48550/ARXIV.2208.12884
https://arxiv.org/abs/2208.12884
https://arxiv.org/abs/2208.12884
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://arxiv.org/abs/2003.06557

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil
P. Vadhan, and Ke Yang. “On the (Im)possibility of Obfuscating Programs”. In: Ad-
vances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings. Vol. 2139. 2001, pp. 1–
18. DOI: 10.1007/3-540-44647-8_1 (cit. on pp. 3, 14).

[BJL+21] Anne Broadbent, Stacey Jeffery, Sébastien Lord, Supartha Podder, and Aarthi Sun-
daram. “Secure Software Leasing Without Assumptions”. In: Theory of Cryptography
- 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Pro-
ceedings, Part I. Vol. 13042. 2021, pp. 90–120. DOI: 10.1007/978-3-030-90459-3_4
(cit. on pp. 2, 3, 5).

[BS16] Shalev Ben-David and Or Sattath. Quantum Tokens for Digital Signatures. 2016. arXiv:
1609.09047 (cit. on p. 12).

[CGLQ20] Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. “Tight quantum time-
space tradeoffs for function inversion”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE. 2020, pp. 673–684 (cit. on p. 38).

[CHN+18] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. “Watermarking cryptographic capabilities”. In: SIAM Journal on Computing
47.6 (2018), pp. 2157–2202 (cit. on p. 3).

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. “Hidden Cosets
and Applications to Unclonable Cryptography”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part I. Vol. 12825. 2021, pp. 556–584. DOI: 10.1007/
978-3-030-84242-0_20 (cit. on pp. 2–4, 6–8, 10, 12, 14, 15, 18, 19, 21, 25, 27, 33, 34,
41, 43–45, 48, 58, 59).

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-
protection of compute-and-compare programs in the quantum random oracle model. 2020.
URL: https://arxiv.org/abs/2009.13865 (cit. on pp. 2–5).

[CV21] Eric Culf and Thomas Vidick. A monogamy-of-entanglement game for subspace coset
states. 2021. arXiv: 2107.13324 (cit. on p. 15).

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. “Candidate Indistinguishability Obfuscation and Functional Encryption for
All Circuits”. In: SIAM Journal on Computing 45.3 (2016), pp. 882–929. DOI: 10.1137/
14095772X (cit. on p. 14).

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random
Functions”. In: J. ACM 33.4 (1986), pp. 792–807. DOI: 10.1145/6490.6503 (cit. on
p. 36).

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J. Wu. “Water-
marking Public-Key Cryptographic Primitives”. In: Advances in Cryptology - CRYPTO
2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part III. Vol. 11694. 2019, pp. 367–398. DOI: 10.1007/978-3-
030-26954-8_12 (cit. on pp. 3, 4).

31

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-030-90459-3_4
https://arxiv.org/abs/1609.09047
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://arxiv.org/abs/2009.13865
https://arxiv.org/abs/2107.13324
https://doi.org/10.1137/14095772X
https://doi.org/10.1137/14095772X
https://doi.org/10.1145/6490.6503
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-26954-8_12

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. “Lockable Obfuscation”. In: 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017. 2017, pp. 612–621. DOI: 10.1109/FOCS.2017.62 (cit. on
p. 34).

[GKWW21] Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu. “Beyond Software Water-
marking: Traitor-Tracing for Pseudorandom Functions”. In: Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Application of Cryp-
tology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part III.
Vol. 13092. 2021, pp. 250–280. DOI: 10.1007/978-3-030-92078-4_9 (cit. on p. 58).

[GZ20] Marios Georgiou and Mark Zhandry. Unclonable Decryption Keys. 2020. Cryptology
ePrint Archive: 2020/877. URL: https://eprint.iacr.org/2020/877 (cit. on pp. 4,
12).

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. “Secure Software Leas-
ing from Standard Assumptions”. In: Theory of Cryptography - 19th International Con-
ference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part I. Vol. 13042.
2021, pp. 31–61. DOI: 10.1007/978-3-030-90459-3_2 (cit. on pp. 3, 5).

[Kre21] William Kretschmer. “Quantum Pseudorandomness and Classical Complexity”. In:
16th Conference on the Theory of Quantum Computation, Communication and Cryptog-
raphy, TQC 2021, July 5-8, 2021, Virtual Conference. Vol. 197. 2021, 2:1–2:20. DOI: 10.
4230/LIPIcs.TQC.2021.2 (cit. on p. 2).

[KW17] Sam Kim and David J Wu. “Watermarking cryptographic functionalities from stan-
dard lattice assumptions”. In: Annual International Cryptology Conference. Springer.
2017, pp. 503–536 (cit. on p. 3).

[KW19] Sam Kim and David J Wu. “Watermarking PRFs from lattices: stronger security
via extractable PRFs”. In: Annual International Cryptology Conference. Springer. 2019,
pp. 335–366 (cit. on p. 3).

[MW05] Chris Marriott and John Watrous. “Quantum Arthur–Merlin games”. In: computa-
tional complexity 14.2 (2005), pp. 122–152. DOI: 10.1007/s00037-005-0194-x (cit. on
pp. 6, 34).

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2010. DOI: 10.1017/
CBO9780511976667 (cit. on p. 14).

[SW21] Amit Sahai and Brent Waters. “How to Use Indistinguishability Obfuscation: Deni-
able Encryption, and More”. In: SIAM Journal on Computing 50.3 (2021), pp. 857–908.
DOI: 10.1137/15M1030108 (cit. on pp. 12, 14, 27, 28, 36, 39, 41, 52).

[VZ21] Thomas Vidick and Tina Zhang. “Classical Proofs of Quantum Knowledge”. In: Ad-
vances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II. Vol. 12697. 2021, pp. 630–660. DOI: 10.1007/978-3-030-
77886-6_22 (cit. on p. 14).

[Wie83] Stephen Wiesner. “Conjugate coding”. In: SIGACT News 15.1 (1983), pp. 78–88. DOI:
10.1145/1008908.1008920 (cit. on p. 1).

32

https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1007/978-3-030-92078-4_9
https://ia.cr/2020/877
https://eprint.iacr.org/2020/877
https://doi.org/10.1007/978-3-030-90459-3_2
https://doi.org/10.4230/LIPIcs.TQC.2021.2
https://doi.org/10.4230/LIPIcs.TQC.2021.2
https://doi.org/10.1007/s00037-005-0194-x
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1137/15M1030108
https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1145/1008908.1008920

[WZ17] Daniel Wichs and Giorgos Zirdelis. “Obfuscating Compute-and-Compare Programs
under LWE”. In: 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. 2017, pp. 600–611. DOI: 10.1109/
FOCS.2017.61 (cit. on p. 34).

[YAL+19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. “Collusion Re-
sistant Watermarking Schemes for Cryptographic Functionalities”. In: Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceed-
ings, Part I. Vol. 11921. 2019, pp. 371–398. DOI: 10.1007/978-3-030-34578-5_14
(cit. on pp. 3, 4).

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. “Collusion Resistant Water-
markable PRFs from Standard Assumptions”. In: Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17-21, 2020, Proceedings, Part I. Vol. 12170. 2020, pp. 590–620. DOI:
10.1007/978-3-030-56784-2_20 (cit. on p. 3).

[Zha19] Mark Zhandry. “The Magic of ELFs”. In: Journal of Cryptology 32.3 (2019), pp. 825–
866. DOI: 10.1007/s00145-018-9289-9 (cit. on p. 34).

[Zha20] Mark Zhandry. “Schrödinger’s Pirate: How to Trace a Quantum Decoder”. In: The-
ory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, Novem-
ber 16-19, 2020, Proceedings, Part III. Vol. 12552. 2020, pp. 61–91. DOI: 10.1007/978-
3-030-64381-2_3 (cit. on pp. 6, 16, 34, 35).

[Zha21] Mark Zhandry. “How to Construct Quantum Random Functions”. In: J. ACM 68.5
(2021). DOI: 10.1145/3450745 (cit. on p. 36).

A Additonal Prelimanaries

A.1 Compute-and-Compare Obfuscation with Quantum Auxiliary Input

In this section, we recall the definition of compute-and-compare obfuscation with quantum auxil-
iary input for unpredictable distributions, first discussed in [CLLZ21].

Definition A.1 (Compute-and-Compare Program). Given a function 𝑓 : {0, 1}ℓ𝗂𝗇 → {0, 1}ℓ𝗈𝗎𝗍 along
with a target value 𝑦 ∈ {0, 1}ℓ𝗈𝗎𝗍 and a message 𝑧 ∈ {0, 1}ℓ𝗆𝗌𝗀 , we define the compute-and-compare pro-
gram:

𝖢𝖢[𝑓, 𝑦, 𝑧](𝑥) =

{︃
𝑧 if 𝑓(𝑥) = 𝑦

⊥ otherwise
.

We define the following class of unpredictable distributions over pairs of the form (𝖢𝖢[𝑓, 𝑦, 𝑧], 𝖺𝗎𝗑),
where 𝖺𝗎𝗑 is auxiliary quantum information. These distributions are such that 𝑦 is computation-
ally unpredictable given 𝑓, 𝑧 and 𝖺𝗎𝗑.

Definition A.2 (Unpredictable Distributions). We say that a family of distributions 𝐷 = {𝐷𝜆} where
𝐷𝜆 is a distribution over pairs of the form (𝖢𝖢[𝑓, 𝑦, 𝑧], 𝖺𝗎𝗑) where 𝖺𝗎𝗑 is a quantum state, belongs to the

33

https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/s00145-018-9289-9
https://doi.org/10.1007/978-3-030-64381-2_3
https://doi.org/10.1007/978-3-030-64381-2_3
https://doi.org/10.1145/3450745

class of unpredictable distributions if the following holds. There exists a negligible function 𝗇𝖾𝗀𝗅 such
that, for all QPT algorithms 𝒜,

Pr
(𝖢𝖢[𝑓,𝑦,𝑧],𝖺𝗎𝗑)←𝐷𝜆

[︁
𝐴(1𝜆, 𝑓, 𝑧, 𝖺𝗎𝗑) = 𝑦

]︁
≤ 𝗇𝖾𝗀𝗅(𝜆).

We further define the class of sub-exponentially unpredictable distributions, where we require the
guessing probability to be inverse sub-exponential in the security parameter.

Definition A.3 (Sub-Exponentially Unpredictable Distributions). We say that a family of distribu-
tions𝐷 = {𝐷𝜆}where𝐷𝜆 is a distribution over pairs of the form (𝖢𝖢[𝑓, 𝑦, 𝑧], 𝖺𝗎𝗑) where 𝖺𝗎𝗑 is a quantum
state, belongs to the class of sub-exponentially unpredictable distributions if the following holds. There
exists a sub-exponential function 𝗌𝗎𝖻𝖾𝗑𝗉 such that, for all QPT algorithms 𝒜,

Pr
(𝖢𝖢[𝑓,𝑦,𝑧],𝖺𝗎𝗑)←𝐷𝜆

[︁
𝐴(1𝜆, 𝑓, 𝑧, 𝖺𝗎𝗑) = 𝑦

]︁
≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝜆).

Each program 𝑃 has an associated set of parameters 𝑃.𝗉𝖺𝗋𝖺𝗆 (e.g input size, output size, circuit
size), which is revealed to everyone.

Definition A.4 (Compute-and-Compare Obfuscation). A PPT algorithm 𝖢𝖢.𝖮𝖻𝖿 is an obfuscator for
the class of unpredictable distributions (or sub-exponentially unpredictable distributions) if for any family
of distributions 𝐷 = {𝐷𝜆} belonging to the class, the following holds:

• Functionality Preserving: there exists a negligible function 𝗇𝖾𝗀𝗅 such that for all 𝜆, every program 𝑃
in 𝐷𝜆,

Pr[∀𝑥, ̃︀𝑃 (𝑥) = 𝑃 (𝑥), ̃︀𝑃 ← 𝖢𝖢.𝖮𝖻𝖿(1𝜆, 𝑃)] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

• Distributional Virtual-Black-Box: there exists an efficient simulator 𝖲𝗂𝗆 such that:

(𝖢𝖢.𝖮𝖻𝖿(1𝜆, 𝑃), 𝖺𝗎𝗑) ≈𝑐 (𝖲𝗂𝗆(1𝜆, 𝑃.𝗉𝖺𝗋𝖺𝗆), 𝖺𝗎𝗑)

where (𝑃, 𝖺𝗎𝗑)← 𝐷𝜆.

Combining the results of [WZ17, GKW17] with those of [Zha19], Coladangelo et al. [CLLZ21]
showed the following theorem.

Theorem A.5. Assuming the existence of post-quantum 𝗂𝖮 and the sub-exponential quantum hardness of
LWE, there exist obfuscators for sub-exponentially unpredictable distributions, as in Definition A.4.

A.2 Measure Success Probabilities of Quantum Adversaries, Efficiently

Approximating Threshold Implementation Projective and threshold implementations of POVMs
are unfortunately not efficiently computable in general. Fortunately, they can be approximated, as
shown by Zhandry [Zha20], using a technique first introduced by Marriott and Watrous [MW05].

We start with an efficient version of 𝖯𝖨:

Theorem A.6 (Approximated Projective Implementation, Theorem 6.2 in [Zha20]). Let 𝒟 be a dis-
tribution of inputs. Let 𝒫𝒟 = (𝑃𝒟, 𝑄𝒟) be a binary outcome POVM described above with respect to the
distribution 𝒟. For any 𝛿, 𝜖 > 0, there exists an efficient procedure 𝖠𝖯𝖨𝜖,𝛿(𝒫𝒟) such that:

34

(i) If 𝖠𝖯𝖨𝜖,𝛿(𝒫𝒟) on some quantum program outputs (𝜌, 𝑝), applying 𝖯𝖨(𝒫𝒟) on 𝜌 yields (𝜌′, 𝑝′) satis-
fying 𝑝′ ≥ 𝑝− 𝜖 with probability at least 1− 𝛿.

(ii) If 𝖯𝖨(𝒫𝒟) on some quantum program outputs (𝜌, 𝑝), applying 𝖠𝖯𝖨𝜖,𝛿(𝒫𝒟) on 𝜌 yields (𝜌′, 𝑝′) satis-
fying 𝑝′ ≥ 𝑝− 𝜖 with probability at least 1− 𝛿.

(iii) The running time of 𝖠𝖯𝖨𝜖,𝛿(𝒫𝒟) is polynomial in the time complexity of sampling 𝒟, the time com-
plexity of running 𝜌, 1/𝜖 and log(1/𝛿).

When the distribution is clear from the context, we sometimes ignore the subscript 𝒟 in 𝖠𝖯𝖨𝜖,𝛿(𝒫𝒟).

We will make use of the following lemma from a subsequent work of Aaronson et al. [ALL+21].

Theorem A.7 (Approximated Threshold Implementation, Corollary 1 in [ALL+21]). Let 𝒟 be a
distribution of inputs. Let 𝒫𝒟 = (𝑃𝒟, 𝑄𝒟) be a binary outcome POVM described above with respect to the
distribution 𝒟. For any 𝛿, 𝜖 > 0 and 𝛾, there exists an efficient procedure 𝖠𝖳𝖨𝜖,𝛿𝛾 (𝒫𝒟) such that:

(i) If 𝖠𝖳𝖨𝜖,𝛿𝛾 (𝒫𝒟) on some quantum program outputs (𝜌, 𝑏 = 1), applying 𝖳𝖨𝛾−𝜖(𝒫𝒟) on 𝜌 yields (𝜌′, 𝑏′)
satisfying 𝑏′ = 1 with probability at least 1− 𝛿.

(ii) If 𝖳𝖨𝛾−𝜖(𝒫𝒟) on some quantum program outputs (𝜌, 𝑏 = 1), applying 𝖠𝖳𝖨𝜖,𝛿𝛾 (𝒫𝒟) on 𝜌 yields (𝜌′, 𝑏′)
satisfying 𝑏′ = 1 with probability at least 1− 𝛿.

(iii) The running time of 𝖠𝖳𝖨𝜖,𝛿𝛾 (𝒫𝒟) is polynomial in the time complexity of sampling 𝒟, the time com-
plexity of running 𝜌, 1/𝜖 and log(1/𝛿) (independent of 𝛾).

When the distribution is clear from the context, we sometimes ignore the subscript 𝒟 in 𝖠𝖳𝖨𝜖,𝛿𝛾 (𝒫𝒟).

The following lemma will be important in our proofs. Let 𝐷0 and 𝐷1 be two computationally
indistinguishable distributions. Let 𝛾, 𝛾′ > 0 be inverse-polynomially close. Then for any (effi-
ciently constructible) state 𝜌, the probabilities of obtaining outcome 1 upon measuring 𝖳𝖨𝛾(𝒫𝐷0)
and 𝖳𝖨𝛾′(𝒫𝐷1) respectively are negligibly close.

Theorem A.8 (Theorem 6.5 in [Zha20]). Let 𝛾 > 0. Let 𝜌 be an efficiently constructible mixed state,
and let 𝐷0, 𝐷1 be two efficiently sampleable and computationally indistinguishable distributions. For any
inverse polynomial 𝜖, there exists a negligible function 𝛿 such that

Tr[𝖳𝖨𝛾−𝜖(𝒫𝐷1)𝜌] ≥ Tr[𝖳𝖨𝛾(𝒫𝐷0)𝜌]− 𝛿 .

A.3 Preliminaries: Puncturable PRFs and related notions

A puncturable PRF is a PRF equipped with an additional algorithm that “punctures” a PRF key
𝐾 at a set of points 𝑆, so that the adversary with the punctured key can evaluate the PRF at all
points except the points in 𝑆. Even given the punctured key, an adversary cannot distinguish
between a uniformly random value and the evaluation of the PRF at a point 𝑆 using the original
unpunctured key. Formally:

Definition A.9 ((Post-quantum) Puncturable PRF). A PRF family 𝐹 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) with
key generation procedure 𝖪𝖾𝗒𝖦𝖾𝗇𝐹 is said to be puncturable if there exists an algorithm 𝖯𝗎𝗇𝖼𝗍𝗎𝗋𝖾𝐹 , satis-
fying the following conditions:

• Functionality preserved under puncturing: Let 𝑆 ⊆ {0, 1}𝑛(𝜆). For all 𝑥 ∈ {0, 1}𝑛(𝜆) where
𝑥 /∈ 𝑆, we have that:

Pr[𝐹 (𝐾,𝑥) = 𝐹 (𝐾𝑆 , 𝑥) : 𝐾 ← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆),𝐾𝑆 ← 𝖯𝗎𝗇𝖼𝗍𝗎𝗋𝖾𝐹 (𝐾,𝑆)] = 1.

35

• Pseudorandom at punctured points: For every 𝑄𝑃𝑇 adversary (𝐴1, 𝐴2), there exists a negligible
function 𝗇𝖾𝗀𝗅 such that the following holds. Consider an experiment where 𝐾 ← 𝖪𝖾𝗒𝖦𝖾𝗇𝐹 (1

𝜆),
(𝑆, 𝜎)← 𝐴1(1

𝜆), and 𝐾𝑆 ← 𝖯𝗎𝗇𝖼𝗍𝗎𝗋𝖾𝐹 (𝐾,𝑆). Then, for all 𝑥 ∈ 𝑆,⃒⃒⃒⃒
Pr[𝐴2(𝜎,𝐾𝑆 , 𝑆, 𝐹 (𝐾,𝑥)) = 1]− Pr

𝑟←{0,1}𝑚(𝜆)
[𝐴2(𝜎,𝐾𝑆 , 𝑆, 𝑟) = 1]

⃒⃒⃒⃒
≤ 𝗇𝖾𝗀𝗅(𝜆).

Definition A.10. A statistically injective (puncturable) PRF family with (negligible) failure probability
𝜖(·) is a (puncturable) PRF family 𝐹 such that with probability 1 − 𝜖(𝜆) over the random choice of key
𝐾 ← 𝖪𝖾𝗒𝖦𝖾𝗇𝐹 (1

𝜆), we have that 𝐹 (𝐾, ·) is injective.

We will also utilize extracting PRFs: these are PRFs that are strong extractors on their inputs.

Definition A.11 (Extracting PRF). An extracting (puncturable) PRF with error 𝜖(·) for min-entropy
𝑘(·) is a (puncturable) PRF 𝐹 mapping 𝑛(𝜆) bits to 𝑚(𝜆) bits such that for all 𝜆, if 𝑋 is any distribution
over 𝑛(𝜆) bits with min-entropy greater than 𝑘(𝜆), then the statistical distance between (𝐾,𝐹 (𝐾,𝑋)) and
(𝐾, 𝑟 ← {0, 1}𝑚(𝜆)) is at most 𝜖(·), where 𝐾 ← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆).

Puncturable PRFs can be obtained by modifying the famous [GGM86] construction, which
uses only one-way functions. [SW21] showed that puncturable statistically injective PRFs and
extracting puncturable PRFs with the required input-output size can be built from one-way func-
tions as well.

Note that these constructions above can all be made post-quantum [Zha21]. The following
theorems from [SW21] thereby hold also against bounded quantum adversaries.

Theorem A.12 ([SW21] Theorem 1, [GGM86]). If post-quantum one-way functions exist, then for all
efficiently computable functions 𝑛(𝜆) and 𝑚(𝜆), there exists a post-quantum puncturable PRF family that
maps 𝑛(𝜆) bits to 𝑚(𝜆) bits.

Theorem A.13 ([SW21] Theorem 2). If post-quantum one-way functions exist, then for all efficiently
computable functions 𝑛(𝜆), 𝑚(𝜆), and 𝑒(𝜆) such that 𝑚(𝜆) ≥ 2𝑛(𝜆) + 𝑒(𝜆), there exists a post-quantum
puncturable statistically injective PRF family with failure probability 2−𝑒(𝜆) that maps 𝑛(𝜆) bits to 𝑚(𝜆)
bits.

Theorem A.14 ([SW21] Theorem 3). If post-quantum one-way functions exist, then for all efficiently
computable functions 𝑛(𝜆), 𝑚(𝜆), 𝑘(𝜆), and 𝑒(𝜆) such that 𝑛(𝜆) ≥ 𝑘(𝜆) ≥ 𝑚(𝜆)+2𝑒(𝜆)+2, there exists
a post-quantum extracting puncturable PRF family that maps 𝑛(𝜆) bits to 𝑚(𝜆) bits with error 2−𝑒(𝜆) for
min-entropy 𝑘(𝜆).

B Missing Details for the Proof of Anti-Piracy

Here we first prove Claim 3.11, then explain that the proof still holds by replacing 𝖯𝖨 and 𝖳𝖨 with
𝖠𝖳𝖨𝜖,𝛿 and 𝖳𝖨𝜖,𝛿 for some 𝜖, 𝛿.

Proof for Claim 3.11. We consider the following distributions 𝒟𝜆 (as in Definition A.3):

• Let (𝗌𝗄, 𝗉𝗄) ← 𝖢𝖱𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) where 𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄𝑘) and 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄𝑘). Let 𝜌𝗌𝗄
be the unclonable decryption key. We specify 𝗉𝗄𝑗 = {𝗂𝖮(𝐴𝑙 + 𝑠𝑙), 𝗂𝖮(𝐴

⊥
𝑙 + 𝑠′𝑙)}𝑙∈[ℓ], 𝗌𝗄𝑗 =

{𝐴𝑙, 𝑠𝑙, 𝑠
′
𝑙}𝑙∈[ℓ].

36

• Let 𝜌 be the output of ℬ.
• Sample 𝑏← {0, 1} and 𝑟 ← {0, 1}ℓ.
• Let 𝖢𝖺𝗇𝑖,0(·) = 𝖢𝖺𝗇𝐴𝑖(·) and 𝖢𝖺𝗇𝑖,1(·) = 𝖢𝖺𝗇𝐴⊥

𝑖
(·) where 𝖢𝖺𝗇𝐴𝑖(·),𝖢𝖺𝗇𝐴⊥

𝑖
(·) are the functions

defined in Definition 2.3.
• Define function 𝑓 as follows:

𝑓(𝑢1, · · · , 𝑢ℓ) = 𝖢𝖺𝗇1,𝑟1(𝑢1)|| · · · ||𝖢𝖺𝗇ℓ,𝑟ℓ(𝑢ℓ).

Let 𝑠𝑖,0 = 𝑠𝑖 and 𝑠𝑖,1 = 𝑠′𝑖. Let the “lock value” 𝑦 be the following:

𝑦 = 𝖢𝖺𝗇1,𝑟1(𝑠1,𝑟1)|| · · · ||𝖢𝖺𝗇ℓ,𝑟ℓ(𝑠ℓ,𝑟ℓ).

Let 𝐶𝑚𝑏,𝑟 be the compute-and-compare program 𝖢𝖢[𝑓, 𝑦,𝑚𝑏].
• Run the obfuscation algorithm 𝖢𝖢.𝖮𝖻𝖿 on𝐶𝑚𝑏,𝑟 and obtain the obfuscated program 𝖢𝖢𝑚𝑏,𝑟 =

𝖢𝖢.𝖮𝖻𝖿(𝐶𝑚𝑏,𝑟). Let 𝖼𝗍𝑗 = 𝖢𝖢𝑚𝑏,𝑟 = 𝗂𝖮(𝖢𝖢𝑚𝑏,𝑟). Note this is the ciphertext by encrypting
using a public key 𝗉𝗄𝑗 on 𝑚𝑏.

• Generate other ciphertext 𝖼𝗍1, · · · , 𝖼𝗍𝑗−1, 𝖼𝗍𝑗+1, · · · , 𝖼𝗍𝑘 using other public keys.
• Let the distribution be

(𝖢𝖢[𝑓, 𝑦,𝑚𝑏], 𝖺𝗎𝗑),

where 𝖺𝗎𝗑 is 𝜌, 𝗉𝗄 and other ciphertext 𝖼𝗍1, · · · , 𝖼𝗍𝑗−1, 𝖼𝗍𝑗+1, · · · , 𝖼𝗍𝑘.

Consider another distribution𝒟′𝜆, where it is identical to the above distribution, except 𝖢𝖢[𝑓, 𝑦,𝑚𝑏]
is replaced with a simulated program.

By Theorem A.8 and condition (2), if one can notice probability gap with non-negligible prob-
ability, 𝒟𝜆 and 𝒟′𝜆 must be distinguishable. Thus, by the security of compute-and-compare obfus-
cation, there must exist an efficient quantum algorithm that given 𝑓, 𝑦, 𝖺𝗎𝗑 recovers every vector
in 𝖢𝖺𝗇𝑖,𝑟𝑖 with non-negligible probability.

Discussing on Using Efficient 𝖠𝖯𝖨 and 𝖠𝖳𝖨. We first notice that in the proof, to make the first
part of argument work, we need to show that with 𝖠𝖯𝖨 and 𝖠𝖳𝖨, Claim 3.9 still holds. By setting
𝜖 = 𝛾/4 and 𝛿 is an exponentially small function, Claim 3.9 still holds with probability at least
1 − 𝑂(𝑘𝛿): by applying 𝖠𝖯𝖨 (with all honest generated ciphertexts) on every decryptors, with
probability at least 1 − 𝑘𝛿, every outcome is greater than 1

2 + 3
4𝛾; for any quantum program, by

applying 𝖠𝖯𝖨 (with all junk ciphertexts) on every decryptors, with probability at least 1−𝑘𝛿, every
outcome is small than 1

2 +
1
4𝛾. Thus, we can simply try to identify if there is a probability gap more

than 𝛾/(2𝑘) instead of 𝛾/𝑘. The rest of the proof goes in a similar way.

C Security Proof for Signature Copy-Protection

C.0.1 Proof of Correctness

It is easy to see that all algorithms in the construction are efficient. We then show that our con-
struction satisfies correctness as defined in Section 4.1.

Lemma C.1. The above construction satisfies correctness.

37

Proof. If for an input 𝑥, keys 𝐾2,𝐾2, the step 1 check criterion in the program 𝑃 is not satisfied,
then the program 𝖢𝖯𝖲𝗂𝗀𝗇 outputs 𝐹1(𝐾1, ·) with certainty. The verification will thus pass with
certainty as well.

Let us show that for any fixed input 𝑥* = 𝑥*0||𝑥*1||𝑥*2, only negligible fraction of possible keys
𝐾2,𝐾3 will let the step 1 check pass.

Suppose there exists an input 𝑥* = 𝑥*0||𝑥*1||𝑥*2 such that for some inverse polynomial fraction
of possible keys 𝐾2,𝐾3, the step 1 check passes. Let us define �̂�*2 to be the first ℓ0 bits of 𝑥*2 and
𝐹3(𝐾3, ·) be the function that outputs the first ℓ0 bits of 𝐹3(𝐾3, ·). 𝐹3 is also a PRF because its
output is a truncation of another PRF 𝐹3’s output. To pass check the step 1, (𝑥*0, 𝑥

*
1, �̂�
*
2) should

satisfy the equation:

𝐹3(𝐾3, 𝑥
*
1)⊕ 𝑥*0 = �̂�*2.

By our assumption, for a non-negligible fraction of 𝐾3, the above equation holds. Then we
can build a non-uniform algorithm for breaking the security of 𝐹3 and consequentially, breaking
the security of 𝐹3: given oracle access to 𝐹3(𝐾3, ·) for a random 𝐾3, or a truly random function
𝑓(·), the algorithm simply queries on 𝑥*1 and checks if the output is 𝑥*0 ⊕ �̂�*2; if yes, it outputs
1 (indicating the function is 𝐹3(𝐾3, ·)); otherwise, it outputs 0 (indicating the function is a truly
random funtion). Since the above equation holds for some inverse polynomial fraction of 𝐾3, our
non-uniform algorithm succeeds with non-negligible probability.

Remark C.2. Non-uniform security of PRFs can be based on non-uniform security of OWFs, the correct-
ness of our construction relies on the existence of non-uniform secure post-quantum OWFs. Such security
is provably achievable in the quantum random oracle model[CGLQ20] or should be achieved from non-
uniform security of post-quantum candidate assumptions such as LWE.

C.0.2 Existential Unforgeability

We prove the following theorem:

Theorem C.3. Assuming the existence of post-quantum secure indistinguishability, one-way functions
and puncturable PRFs, the above construction satisfies existential unforgeability.

Proof. We describe a sequence of hybrids to prove the theorem above.

Hybrid 0 This hybrid corresponds to the original security game.

• The adversary gives the challenger the message 𝑥*.
• The challenger samples (𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)), 𝗏𝗄 = 𝗂𝖮(𝖵𝖪)) ← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘). It
gives 𝗏𝗄 to 𝒜;

• The adversary queries the signing oracle for a polynomial number of times on messages
𝑥 ̸= 𝑥*.

• The adversary provides a signature 𝗌𝗂𝗀* for message 𝑚*. The challenger accepts if and only
if 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝑥*, 𝗌𝗂𝗀*) = 1

Note that the message 𝑥* is sent in before the challenger samples 𝗌𝗄, 𝗏𝗄. First, 𝑥* hits the hidden
trigger with exponentially small probability; even if it does, the challenger can just re-sample the
keys.

38

Hybrid 1 In this hybrid, after the adversary sends in the message 𝑥*, the challenger computes
𝑧* = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥

)), and punctures the PRF key𝐾1 on 𝑥:: 𝐾1,𝑥* = 𝖯𝖱𝖥.𝖯𝗎𝗇𝖼𝗍𝗎𝗋𝖾(𝐾1, 𝑥
*). Then

it generates 𝗏𝗄 = 𝗂𝖮(𝖵𝖪′) as in Figure 11.

Hardcoded: Keys 𝐾1,𝑥* ,𝐾2,𝐾3

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and 𝗌𝗂𝗀:

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Hidden Trigger Mode: Treat 𝑄′ as a (classical) circuit and output 𝑄′(𝗆𝗈𝖽𝖾 =
𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚), where 𝗌𝗂𝗀 is padded with 0’s to the length of ℓ0 · 𝜆.

2. Normal Mode:

(a) If 𝑥 = 𝑥*: check if 𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝑧*. If so, output 1. Otherwise, output 0.
(b) Else check if 𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝖮𝖶𝖥(𝐹1(𝐾1,𝑥* , 𝑥)). If so, output 1. Otherwise,

output 0.

Figure 11: Program 𝖵𝖪′

Programs 𝖵𝖪 in Hybrid 0 and 𝖵𝖪′ in Hybrid 1 have the exactly same functionality, by the
functionality preserving property of punctured PRF. We can therefore invoke the 𝗂𝖮 security to
argue their indistinguishability.

Hybrid 2 In this hybrid, the challenger replaces 𝑧* = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥
)) with 𝑧 = 𝖮𝖶𝖥(𝑦), where

𝑦 ← {0, 1}𝑚.
Here we invoke puncturable PRF’s (selective) pseudorandomness at punctured points prop-

erty. The reduction gives the signature adversary’s 𝑥* to the challenger; receives the punctured
key 𝐾1,𝑥* , a value that is either 𝐹1(𝐾1, 𝑥

*) or uniformly random 𝑦 from the challenger; it then
prepares the verification program 𝗂𝖮(𝖵𝖪′). If the adversary successfully forges, then the reduction
outputs guess 0 (for real evaluation 𝐾1,𝑥*), otherwise it outputs 1(for uniform random 𝑦).

In the end, we show that the adversary’s advantage in Hybrid 2 is negligible. Suppose its
advantage is non-negligible, then we can build an algorithm that breaks the security of one-way
functions. The reduction algorithm receives 𝑥* from the adversary; it also receives the 𝖮𝖶𝖥 chal-
lenge 𝑡 from the challenger and sets 𝑧* in 𝖵𝖪′ to be 𝑡. If the adversary forges a signature 𝗌𝗂𝗀* on
𝑥* that passes verification, then the reduction algorithm can output 𝗌𝗂𝗀* as the answer to the 𝖮𝖶𝖥
challenge since 𝖮𝖶𝖥(𝗌𝗂𝗀*) = 𝑡.

C.1 Proof of Anti-Piracy Security

In this subsection, we prove the anti-piracy security, Theorem 4.4. As a first step, we give the
following lemma from [SW21].

Lemma C.4 (Lemma 1 in [SW21]). Except with negligible probability over the choice of the key 𝐾2, the
following two statements hold:

39

1. For any fixed 𝑥1, there exists at most one pair (𝑥0, 𝑥2) that will cause the step 1 check in Program 𝑃
to pass.

2. There are at most 2ℓ2 values of 𝑥 that can cause the step 1 check to pass.

Proof Overview One important component of the proof is leveraging the sparse hidden triggers
in the program 𝖢𝖯𝖲𝗂𝗀𝗇 and 𝖵𝖪. Intuitively, sampling a unifromly random input is indistinguish-
able from sampling an element from the sparse hidden trigger set. After we move to a hybrid
where the challenge messages are sampled from the hidden trigger set, we will be able to find cor-
respondence between the signature anti-piracy game and the unclonable decryption anti-piracy
game. We can then reduce to the security of our unclonable decryption scheme.

Definition C.5 (Hidden Trigger Inputs). An input 𝑥 is a hidden trigger input of the program 𝑃 (defined
in Figure 9) if it makes the step 1 check in the program be satisfied.

We will prove a lemma says that no efficient algorithm, given the quantum key, can distinguish
between the following two cases: (i) sample two uniformly random inputs, and (ii) sample two
inputs in the hidden trigger set.

Before describing the lemma, we describe an efficient procedure which takes as input an in-
put/output pair for 𝐹1, PRF keys 𝐾2,𝐾3, descriptions of cosets, and produces a hidden trigger
input.

Hardcoded: 𝑦; {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0];𝑥0.

On input 𝗆𝗈𝖽𝖾, 𝑣:

1. if 𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅:
Parse 𝑣 as 𝑣1, · · · , 𝑣ℓ0 . Output 𝑦 if and only if for every input 𝑣𝑖, if 𝑥0,𝑖 = 0, then

𝑣𝑖 is in 𝐴𝑖 + 𝑠𝑖 and otherwise it is in 𝐴⊥𝑖 + 𝑠′𝑖.
2. else if 𝗆𝗈𝖽𝖾 = 𝖼𝗁𝖾𝖼𝗄:

Parse 𝑣 as 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚 where the first 𝑚 bits form a string 𝗌𝗂𝗀. Check if 𝗌𝗂𝗀 = 𝑦.
If so, output 1. Otherwise, output 0.

Figure 12: Program 𝑄

Definition C.6. as in The procedure 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 takes as input 𝑥0 (of length ℓ0), 𝑦 (of length 𝑚, where 𝑚
is the length of the output of 𝐹1), two PRF keys 𝐾2,𝐾3 and hidden cosets {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]:

1. Let 𝑄 be the program (padded to length ℓ2 − ℓ0) in figure 12
2. 𝑥′1 ← 𝐹2(𝐾2, 𝑥0||𝑄);
3. 𝑥′2 ← 𝐹3(𝐾3, 𝑥

′
1)⊕ (𝑥0||𝑄).

4. Output 𝑥′ = 𝑥0||𝑥′1||𝑥′2.

Note that for any 𝑥0, 𝑦, 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 will produce an input 𝑥′ such that it starts with 𝑥0 and the
evaluation of 𝑃 on input 𝑥′ and valid vectors 𝑣1, · · · , 𝑣ℓ0 is 𝑦.

The following lemma says that any efficient algorithm cannot distinguish if it gets two inputs
sampled uniformly at random, or two hidden trigger inputs (sampled according to Definition
C.6):

40

Lemma C.7. Assuming post-quantum 𝗂𝖮 and one-way functions, any efficient QPT algorithm 𝒜 cannot
win the following game with non-negligible advantage:

• A challenger samples (𝗌𝗄 = (𝐾1,𝐾2,𝐾3), 𝗏𝗄 = 𝗂𝖮(𝖵𝖪))← 𝖲𝖾𝗍𝗎𝗉(1𝜆); then it prepares a quantum
program 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)).
• The challenger samples a random input 𝑢 ← [𝑁]. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢). Parse the input as 𝑢 =
𝑢0||𝑢1||𝑢2.
Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• Similarly, it samples a random input 𝑤 ← [𝑁]. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤). Parse the input as 𝑤 =
𝑤0||𝑤1||𝑤2.
Let 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• The challenger flips a coin 𝑏, and sends (𝜌𝐾 , 𝑢, 𝑤) or (𝜌𝐾 , 𝑢′, 𝑤′) to𝒜, depending on the outcome. 𝒜
wins if it guesses 𝑏.

Note that the valid signature output by the signing program for message 𝑥 is actually the PRF
evaluation 𝐹1(𝐾1, 𝑥). Therefore, for the simplicity of notations, we will let the challenger compute
the PRF evaluations on challenge messages 𝑢,𝑤 instead of running the copy-protected program.

The lemma above is similar to [CLLZ21] Lemma 7.17, but different in the sense that we addi-
tionally provide the adversary with a verification program 𝗂𝖮(𝖵𝖪). We will present the proof to
this lemma in Appendix F.

Next, we show that if Lemma C.7 holds, then our construction satisfies anti-piracy security Ap-
pendix G.1. After this, to finish the proof, we will only need to prove Lemma C.7. The core of the
latter proof is the “hidden trigger” technique used in [SW21], which we will prove in Appendix F.

Proof for Theorem 4.4. We mark the changes between hybrids in red.

Hybrid 0. Hybrid 0 is the original anti-piracy security game.

1. The challenger samples (𝗌𝗄 = (𝐾1,𝐾2,𝐾3), 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(1𝜆); then it prepares a quantum
program 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)).
2. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2].

3. The challenger also prepares two inputs 𝑢,𝑤 as follows:

• It samples 𝑢 uniformly at random. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢).
• It samples 𝑤 uniformly at random. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤).

4. The outcome of the game is 1 if and only if both quantum programs successfully produce 𝑦𝑢
and 𝑦𝑤 respectively.

Hybrid 1 The difference between Hybrids 0 and 1 corresponds exactly to the two cases that the
adversary needs to distinguish between in the game of Lemma C.7.

1. The challenger samples (𝗌𝗄 = (𝐾1,𝐾2,𝐾3), 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(1𝜆); then it prepares a quantum
program 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)).
2. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2].

41

3. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows:

• It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢).
Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤).
Let 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

4. The outcome of the game is 1 if and only if both quantum programs successfully produce 𝑦𝑢
and 𝑦𝑤 respectively.

Assume that there exists an adversary that distinguishes Hybrid 0 and 1 with non-negligible
probability 𝜖(𝜆), then these exists an adversary that breaks the game in Lemma C.7 with probabil-
ity 𝜖(𝜆)− 𝗇𝖾𝗀𝗅(𝜆).

The reduction algorithm receives 𝜌𝑘 and 𝑢,𝑤 or 𝑢′, 𝑤′ from the challenger in Lemma C.7; it
computes 𝑦𝑢, 𝑦𝑤 using 𝗂𝖮(𝑃) on the received inputs respectively and gives them to the quantum
decryptor states 𝜎[𝑅1], 𝜎[𝑅2]. If they both decrypt correctly, then the reduction outputs 0 (i.e. it
guess that sampling was uniform), otherwise it outputs 1 (i.e. it guesses that hidden trigger inputs
were sampled).

Hybrid 2. In this hybrid, the signatures for challenge messages, 𝐹1(𝐾1, 𝑢) and 𝐹1(𝐾1, 𝑤), are
replaced with truly random strings.

1. The challenger samples (𝗌𝗄 = ({𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0],𝐾1,𝐾2,𝐾3), 𝗏𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆); then it prepares

a quantum program 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)).

Note that here 𝖢𝖯𝖲𝗂𝗀𝗇 hardcodes 𝐾1,𝐾2,𝐾3.
2. 𝒜 upon receiving 𝜌𝗌𝗄, it runs and prepares a pair of quantum states 𝜎[𝑅1], 𝜎[𝑅2].
3. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows:

• It samples 𝑢0 uniformly at random. It then samples a uniformly random 𝑦𝑢.
Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• It samples 𝑤0 uniformly at random. It then samples a uniformly random 𝑦𝑤.
Let 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

4. The outcome of the game is 1 if and only if both quantum programs successfully produce 𝑦𝑢
and 𝑦𝑤 respectively.

Since 𝑢0 ̸= 𝑤0 with overwhelming probability and both 𝑢0, 𝑤0 have enough min-entropy ℓ1 +
ℓ2 ≥ 𝑚+2𝜆+4 (as 𝑢1||𝑢2 and 𝑤1||𝑤2 are completely uniform and not given to the adversary) and
𝐹1 is an extracting puncturable PRF, both outcomes 𝑦𝑢, 𝑦𝑤 are statistically close to independently
random outcomes. Therefore, Hybrid 1 and Hybrid 2 are statistically indistinguishable.

Hybrid 3. In this hybrid, we only change the order of sampling.

1. The challenger first samples {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0] and prepares the quantum states {|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0].
It treats the the quantum states {|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0] as the quantum decryption key 𝜌𝗌𝗄 for our
unclonable decryption scheme and the secret key 𝗌𝗄 is {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]. Similarly, let 𝗉𝗄 =

{𝑅0
𝑖 , 𝑅

1
𝑖 }𝑖∈[ℓ0] where 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖).

2. It samples 𝑦𝑢, 𝑦𝑤 uniformly at random. Let (𝑢0, 𝑄0) ← 𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄, 𝑦𝑢) and (𝑤0, 𝑄1) ←
𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄, 𝑦𝑤) where 𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄, ·) is the encryption algorithm of the unclonable decryp-
tion scheme.

42

3. The challenger sets 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)) as well as verification key 𝗂𝖮(𝖵𝖪).

4. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of quantum states 𝜎[𝑅1], 𝜎[𝑅2].
5. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows (as 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 does):

• Let 𝑢′1 ← 𝐹2(𝐾2, 𝑢0||𝑄0) and 𝑢′2 ← 𝐹3(𝐾3, 𝑢
′
1)⊕ (𝑢0||𝑄0). Let 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

• Let 𝑤′1 ← 𝐹2(𝐾2, 𝑤0||𝑄1) and 𝑤′2 ← 𝐹3(𝐾3, 𝑤
′
1)⊕ (𝑤0||𝑄1). Let 𝑤′ = 𝑤0||𝑤′1||𝑤′2.

6. The outcome of the game is 1 if and only if both quantum programs successfully produce 𝑦𝑢
and 𝑦𝑤 respectively.

Note that the only differences of Hybrids 2 and 3 are the orders of executions. Therefore, 𝒜 has
the same advantage as in Hybrid 2. We would like the highlighted components in the above game
to match the unclonable encryption scheme in Figure 4.

However, we would notice that the ciphertexts (𝑢0, 𝑄0) and (𝑢1, 𝑄1) prepared in Hybrid 3 are
in fact different from the ciphertexts in unclonable encryption scheme in the previous section’s
constructiion, Figure 4. What we need here is a ciphertext that has the same functionality of
program 𝑄 in Figure 12.

We therefore turn to an unclonable decryption scheme 𝖴𝖣′ with slightly stronger security: the
challenger provides the adversary with 𝗂𝖮 of the following program as an encryption of message
𝑦:

Plaintext: 𝑦.
Hardcoded: {𝑅0

𝑖 , 𝑅
1
𝑖 }𝑖∈[ℓ0];𝑥0.

On input 𝗆𝗈𝖽𝖾, 𝑣:

1. if 𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅:
Parse 𝑣 as 𝑣1, · · · , 𝑣ℓ0 . Output 𝑦 if and only if for every input 𝑣𝑖, 𝑅

𝑥0,𝑖

𝑖 (𝑣𝑖) = 1,
where 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖)

2. else if 𝗆𝗈𝖽𝖾 = 𝖼𝗁𝖾𝖼𝗄:
Parse 𝑣 as 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚 where the first 𝑚 bits form a string 𝗌𝗂𝗀. Check if 𝗌𝗂𝗀 = 𝑦.

If so, output 1. Otherwise, output 0.

Figure 13: Encryption of plaintext 𝑦 in 𝖴𝖣′, which is another form of program 𝑄 in fig. 12
.

Proposition C.8. The modified unclonable encryption scheme 𝖴𝖣′ satisfies the (1 collusion resistant) anti-
piracy security as defined in Definition 3.4.

The intuition behind the proposition is as follows: the ciphertext in fig. 13 can be seen as two
programs. The first one is the original ciphertext in the fig. 4 scheme; the second program is an
obfuscation for a point function that on input 𝗌𝗂𝗀, checks if it equals 𝑦. The second program can be
seen as an additional auxiliary information provided to the adversary 𝒜 in the anti-piracy game,
but can be eventually removed and be of no help to 𝒜.

The full proof is more involved, but naturally follows from the anti-piracy security proof in
[CLLZ21]. We will give a proof for the proposition above and point out its differences from
[CLLZ21] in Appendix D.

43

Reduction to Unclonable Decryption The next step is to show that if an algorithm 𝒜 that wins
the game in Hybrid 3 with non-negligible probability 𝛾(𝜆), we can build another algorithm ℬ that
breaks the (regular) 𝛾-anti-piracy security with random challenge plaintexts of the underlying
unclonable decryption scheme .

• ℬ plays as the challenger in the game of Hybrid 3.
• ℬ receives 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0] and 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴
⊥
𝑖 + 𝑠′𝑖)}𝑖∈[ℓ0] in the anti-piracy

game of unclonable decryption.
• ℬ samples PRF keys𝐾1,𝐾2,𝐾3 and a one-way function 𝖮𝖶𝖥. Let 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇))
as well as 𝗏𝗄 = 𝗂𝖮(𝖵𝖪). Here ℬ can prepare the program 𝖢𝖯𝖲𝗂𝗀𝗇 and 𝖵𝖪 using 𝑅0

𝑖 , 𝑅
1
𝑖 for

𝑖 ∈ [𝑘] provided by the unclonable decryption challenger.
• ℬ gives 𝜌𝗌𝗄 to 𝒜, and 𝒜 the produces a pair of quantum states 𝜎[𝑅1], 𝜎[𝑅2].
• ℬ outputs the decryptors (𝜎[𝑅1],𝖯𝟣) and (𝜎[𝑅2],𝖯𝟤) to the unclonable decryption challenger.

𝖯𝟣 and 𝖯𝟤 are programs that correspond to first running 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 procedures and then
evaluating the pirate programs on 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋’s output values:
On input (𝜌1, 𝖼𝗍1 = (𝑢0, 𝑄1)) and (𝜌2, 𝖼𝗍2 = (𝑤0, 𝑄2)) respectively (where 𝖼𝗍1 and 𝖼𝗍2 repre-
sent encryptions of random messages 𝑦𝑢 and 𝑦𝑤, chosen by the challenger), 𝖯𝟣 and 𝖯𝟤 behave
as follows:

– 𝖯𝟣: Let 𝑢′1 ← 𝐹2(𝐾2, 𝑢0||𝑄0) and 𝑢′2 ← 𝐹3(𝐾3, 𝑢
′
1) ⊕ (𝑢0||𝑄0). Let 𝑢′ = 𝑢0||𝑢′1||𝑢′2. Run

(𝜌1, 𝑈1) on 𝑢′.
– 𝖯𝟤: Let 𝑤′1 ← 𝐹2(𝐾2, 𝑤0||𝑄1) and 𝑤′2 ← 𝐹3(𝐾3, 𝑤

′
1)⊕(𝑤0||𝑄1). Let 𝑤′ = 𝑤0||𝑤′1||𝑤′2. Run

(𝜌2, 𝑈2) on 𝑤′ respectively.

If 𝒜 succeeds in the game of Hybrid 3, its pirate programs would output the "correct sig-
natures" 𝑦𝑢, 𝑦𝑤 for messages 𝑢′, 𝑤′. As we can see, they are also correct decryption outputs for
ciphertexts 𝖼𝗍1 and 𝖼𝗍2.

Therefore, the programs prepared by ℬ will successfully decrypt the encryptions of uniformly
random plaintexts. Thus, ℬ breaks 𝛾-anti-piracy security with random challenge plaintexts.

D Proof for Proposition C.8

Proof. The proof follows from the arguments of anti-piracy security for unclonable decryption in
[CLLZ21] section 6.4, except providing the adversary with some additional auxiliary information.
We thereby omit some repetitive details and refer the reader to the full proof in the above paper.

More specifically, we can view the ciphertext in Figure 13 as two separate programs:

1. The 𝖾𝗏𝖺𝗅 mode program is 𝗂𝖮 of a program that hardcodes {𝑅0
𝑖 , 𝑅

1
𝑖 }𝑖∈[ℓ0],𝗆𝗌𝗀, 𝑥. It does the

following: 9

On input 𝑣: Parse 𝑣 as 𝑣1, · · · , 𝑣ℓ0 . Output 𝗆𝗌𝗀 if and only if for every input 𝑣𝑖,𝑅
𝑥0,𝑖

𝑖 (𝑣𝑖) = 1,
where 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖).

2. The 𝖼𝗁𝖾𝖼𝗄 mode program is an 𝗂𝖮 of a point function:
on input 𝑣: Parse 𝑣 as 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚 where the first 𝑚 bits form a string 𝗌𝗂𝗀. Check if 𝗌𝗂𝗀 =

𝗆𝗌𝗀. If so, output 1. Otherwise, output 0.

9To avoid confusion of notations, we denote the message 𝑦 in the same programs in Section 4 as 𝗆𝗌𝗀 here.

44

The 𝖾𝗏𝖺𝗅 mode program is exactly the ciphertext generated in the original construction Figure 4.
The 𝖼𝗁𝖾𝖼𝗄 program is an auxiliary information given to the adversary.

By the security definition definition 3.4, a successful adversary produces pirate programs
𝜎[𝑅1], 𝜎[𝑅2] that satisfy Tr[(𝖳𝖨1/2+𝛾(𝒫𝒟) ⊗ 𝖳𝖨1/2+𝛾(𝒫𝒟))𝜎] ≥ non-negl(𝜆). The testing distribu-
tion 𝒟 is a distribution for sampling a challenge ciphertext by preparing the two programs above,
for some uniformly random 𝑥.

We know by theorem 2.7 that now if we apply the measurements 𝖳𝖨1/2+𝛾(𝒫𝒟) again to the
states after measurements respectively, the probability that their outcomes are both 1 is (1 −
𝗇𝖾𝗀𝗅(𝜆)) . Let us denote these states as 𝜎[𝑅1]

′, 𝜎[𝑅2]
′.

Next, we switch to a different testing distribution 𝒟′ of sampling challenge ciphertexts:

• The 𝖾𝗏𝖺𝗅 mode program is prepared as follows:

– Let 𝖢𝖺𝗇𝑖,0(·) = 𝖢𝖺𝗇𝐴𝑖(·) and 𝖢𝖺𝗇𝑖,1(·) = 𝖢𝖺𝗇𝐴⊥
𝑖
(·). 𝖢𝖺𝗇𝐴𝑖(·) denotes a function that com-

putes the lexicographically smallest vector contained in 𝐴𝑖 + 𝑠𝑗 . Likewise for 𝖢𝖺𝗇𝐴⊥
𝑖
(·).

– Define function 𝑓 as follows:

𝑓(𝑢1, · · · , 𝑢ℓ) = 𝖢𝖺𝗇1,𝑥1(𝑢1)|| · · · ||𝖢𝖺𝗇ℓ,𝑟ℓ(𝑢ℓ).

Let 𝑠𝑖,0 = 𝑠𝑖 and 𝑠𝑖,1 = 𝑠′𝑖. Let the “lock value” 𝗅𝗈𝖼𝗄 be the following:

𝗅𝗈𝖼𝗄 = 𝖢𝖺𝗇1,𝑥1(𝑠1,𝑟𝑥1)|| · · · ||𝖢𝖺𝗇ℓ,𝑟ℓ(𝑠ℓ,𝑟ℓ).

Let 𝐶𝗆𝗌𝗀,𝑥 be the compute-and-compare program 𝖢𝖢[𝑓, 𝗅𝗈𝖼𝗄,𝗆𝗌𝗀].
– Run the obfuscation algorithm 𝖢𝖢.𝖮𝖻𝖿 on 𝐶𝗆𝗌𝗀,𝑟 and obtain the obfuscated program
𝖢𝖢.𝖮𝖻𝖿𝑚,𝑥 = 𝖢𝖢.𝖮𝖻𝖿(𝐶𝗆𝗌𝗀,𝑥). Let 𝖢𝖢𝗆𝗌𝗀,𝑟 = 𝗂𝖮(𝖢𝖢.𝖮𝖻𝖿𝗆𝗌𝗀,𝑥).

– Let the ciphertext be (𝖢𝖢𝗆𝗌𝗀,𝑟, 𝑥).

• the 𝖼𝗁𝖾𝖼𝗄 mode program stays unchanged.

Since the 𝖾𝗏𝖺𝗅 mode programs prepared in𝒟 and𝒟′ have exactly the same functionality, we can
see that distribution𝒟′ is computationally indistinguishable from𝒟 by the post quantum security
of 𝗂𝖮. Therefore, by Theorem A.8, states 𝜎′ will still pass the test of 𝖳𝖨1/2+𝛾(𝒫𝒟′) ⊗ 𝖳𝖨1/2+𝛾(𝒫𝒟′)
with (1− 𝗇𝖾𝗀𝗅(𝜆)) probability.

Next, we switch the ciphertext from 𝗂𝖮(𝖢𝖢.𝖮𝖻𝖿𝗆𝗌𝗀,𝑥) to 𝗂𝖮(𝖲𝗂𝗆) where 𝖲𝗂𝗆 is a simulated pro-
gram that always output ⊥. Let us denote this distribution as 𝒟′′ and it is clear that no pirate
program can decrypt with success probability larger than 1/2 under distribution 𝒟′′.

We then invoke the security of compute-and-compare obfuscation. The lock value 𝗅𝗈𝖼𝗄 should
be unpredictable even if given description of 𝑓 and 𝗆𝗌𝗀, as long as 𝗅𝗈𝖼𝗄 is chosen independent of
𝗆𝗌𝗀 and 𝑓 . Our 𝑓,𝗆𝗌𝗀 and 𝗅𝗈𝖼𝗄 satisfy such a condition. In this case, the additional 𝖼𝗁𝖾𝖼𝗄 mode
program is of no use to the compute-and-compare adversary: even if the point function inside the
program is given in the plain to him, he should not be able to distinguish 𝒟′′ and 𝒟′.

However, the pirate programs have a non-negligible difference in success probabilities when
running under 𝒟′′ and 𝒟′. By the contrapositive of definition A.3, if there exists an adversary that
distinguishes between (𝒟′, 𝖺𝗎𝗑 = (𝑓,𝗆𝗌𝗀, 𝜎′)) and (𝒟′′, 𝖺𝗎𝗑 = (𝑓,𝗆𝗌𝗀, 𝜎′)), then there exists an
extractor that predicts the lock value 𝗅𝗈𝖼𝗄. The rest of the proof is a delicate argument on how to
extract the lock values, which should follow exactly from [CLLZ21] section 6.4.

45

E Bounded Collusion Resistant Copy-Protection for Signatures

Let us denote our underlying 1 collusion resistant signature scheme as 𝖲𝗂𝗀𝖢𝖯. We give the follow-
ing construction for bounded collusion resistant copy-protection for signatures 𝖢𝖱𝖲𝗂𝗀𝖢𝖯. Note
that the following construction is not a generic transformation from any signature copy-protection
scheme to a collusion resistant one, but takes use of certain structures specific to our scheme.

𝖢𝖱𝖲𝗂𝗀𝖢𝖯.𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) :

• Run (𝗌𝗄, 𝗏𝗄)← 𝖲𝗂𝗀𝖢𝖯.𝖲𝖾𝗍𝗎𝗉(1𝜆).
• Prepare a program 𝖢𝖱𝖵𝖪 that takes inputs (𝑥, 𝗌𝗂𝗀, 𝑖) and outputs 0/1 as in

fig. 16.
• Let 𝗏𝗄 = 𝗂𝖮(𝖢𝖱𝖵𝖪). Output (𝗌𝗄, 𝗏𝗄).

𝖢𝖱𝖲𝗂𝗀𝖢𝖯.𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄) : Let us first slightly revise the underlying algorithm
𝖲𝗂𝗀𝖢𝖯.𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄) such that the program 𝖢𝖯𝖲𝗂𝗀𝗇 is generated as in fig. 15

• For 𝑖 ∈ [𝑘], 𝜌𝑖 ← 𝖲𝗂𝗀𝖢𝖯.𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄).
• Let 𝜌𝗌𝗄,𝑖 be 𝜌𝑖 padded with a classical index 𝑖, i.e., 𝜌𝗌𝗄,𝑖 = 𝜌𝑖 ⊗ |𝑖⟩ ⟨𝑖|.
• The classical part of 𝜌𝑖 is 𝗂𝖮 of a program 𝖢𝖯𝖲𝗂𝗀𝗇𝑖.

Compile them into a program 𝖢𝖱𝖲𝗂𝗀𝗇: on input (𝜌𝑖, 𝑥, 𝑖), 𝖢𝖱𝖲𝗂𝗀𝗇 will run
𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇𝑖) on inputs (𝜌𝑖, 𝑥, 𝑖) according to index 𝑖.

• Output 𝜌𝗌𝗄,1 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘 and 𝗂𝖮(𝖢𝖱𝖲𝗂𝗀𝗇).

𝖢𝖱𝖲𝗂𝗀𝖢𝖯.𝖲𝗂𝗀𝗇(𝜌𝗌𝗄, 𝑥) :

• Parse 𝜌𝗌𝗄 as 𝜌𝑖, index 𝑖 as well as program 𝗂𝖮(𝖢𝖱𝖵𝖪).
• Output 𝗌𝗂𝗀 = (𝗌𝗂𝗀𝑖 ← 𝗂𝖮(𝖢𝖱𝖲𝗂𝗀𝗇)(𝜌𝑖, 𝑥, 𝑖), 𝑖).

𝖢𝖱𝖲𝗂𝗀𝖢𝖯.𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝑥, 𝗌𝗂𝗀) :

• Parse 𝗏𝗄 = 𝗂𝖮(𝖢𝖱𝖵𝖪) and parse 𝗌𝗂𝗀 as a signature 𝗌𝗂𝗀𝑖 and an index 𝑖.
• Output the result of running 𝗂𝖮(𝖢𝖱𝖵𝖪) on input (𝑥, 𝗌𝗂𝗀𝑖, 𝑖).

Figure 14: Collusion Resistant Copy-Protection for Signature Scheme.

Correctness Note that according to the underlying algorithm 𝖲𝗂𝗀𝖢𝖯.𝖲𝖾𝗍𝗎𝗉 and 𝖲𝗂𝗀𝖢𝖯.𝖰𝖪𝖾𝗒𝖦𝖾𝗇,
in each copy 𝖢𝖯𝖲𝗂𝗀𝗇𝑖 for 𝑖 ∈ [𝑘]: the keys 𝐾1,𝐾2,𝐾3 are identical; but the subspace membership
functions

{︀
{𝑅0

𝑗 , 𝑅
1
𝑗}𝑗∈[ℓ0]

}︀
𝑖∈[𝑘] correspond to ℓ0 · 𝑘 number of i.i.d. generated shifted subspaces.

The correctness easily follows from the correctness of the single-copy scheme: each copy of
the secret key and corresponding verification key are generated independently; the signing and
verification algorithm will use the 𝑖-th signing key/verification key as instructed in the input.

Remark E.1. The above construction is an almost black-box translation from the 1- bounded collusion
scheme. We therefore give up some efficiency for the sake of clarity. To provide more efficiency, we can simply
generate 𝖢𝖯𝖲𝗂𝗀𝗇𝑖 inside 𝖢𝖱𝖲𝗂𝗀𝖢𝖯.𝖰𝖪𝖾𝗒𝖦𝖾𝗇 on its own without running an underlying 𝖲𝗂𝗀𝖢𝖯.𝖰𝖪𝖾𝗒𝖦𝖾𝗇,
so that we have less nested obfuscation.

46

Hardcoded: Keys 𝐾1,𝐾2,𝐾3, 𝑅0
𝑗 , 𝑅

1
𝑗 for all 𝑗 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 and index 𝑖:

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Hidden Trigger Mode: Treat 𝑄′ as a (classical) circuit and output
𝑄′(𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0 , 𝑖).

2. Otherwise, check if the following holds: for all 𝑗 ∈ [ℓ0], 𝑅
𝑥0,𝑗

𝑗 (𝑣𝑗) = 1 (where 𝑥0,𝑗
is the 𝑗-th bit of 𝑥0).

Normal Mode: If so, output 𝐹1(𝐾1, 𝑥). Otherwise, output ⊥.

Figure 15: Program 𝖢𝖯𝖲𝗂𝗀𝗇 Revised: the circuit 𝑄′ now takes in additional input, index 𝑖. Note that we
change the indices for the subspaces to 𝑗 ∈ [ℓ0] in order to distinguish from the index 𝑖 ∈ [𝑘], which
specifies the 𝑖-th copy of program.

Hardcoded: Keys 𝐾1,𝐾2,𝐾3.
On input 𝑥 = 𝑥0||𝑥1||𝑥2, 𝗌𝗂𝗀 and 𝑖:

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Hidden Trigger Mode: Treat 𝑄′ as a (classical) circuit and output 𝑄′(𝗆𝗈𝖽𝖾 =
𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚, 𝑖), where 𝗌𝗂𝗀 is padded with 0’s to the length of ℓ0 ·𝜆 and 𝑖 is an
index in [𝑘].

2. Otherwise:
Normal Mode: Check if 𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥)). If so, output 1. Other-

wise, output 0.

Figure 16: Program 𝖢𝖱𝖵𝖪

47

Collusion Resistant Anti-Piracy Security Our security proof will follow the hybrids in the 1-
bounded collusion resistant setting: hybrid 0 is the original anti-piracy game; in hybrid 1, we
change the challenge messages 𝑥1, · · · , 𝑥𝑘 from uniformly random to outputs of a hidden trig-
ger algorithm; in hybrid 2, we change the PRF evaluations 𝑦𝑖 = 𝐹1(𝐾1, 𝑥1) to uniformly random
values 𝑦′𝑖 for each 𝑖 ∈ [𝑘]. In hybrid 3, we re-order the sampling procedures to match the secu-
rity game of unclonable decryption. Finally, we can formulate a reduction to the security of the
underlying 𝑘 collusion resistant unclonable decryption scheme 𝖴𝖣′.

One would observe that two things may prevent us from directly generalizing the 1-bounded
collusion proof: First, to argue indistinguishability of hybrid 0 and hybrid 1, we now rely on a
𝑘-hidden trigger inputs version of Lemma C.7. As we will state and prove in lemma F.3, we can
obtain such a generalized lemma by exploiting the construction of our collusion resistant signature
copy-protection scheme.

Second, we need to argue that the underlying modified unclonable decryption 𝖴𝖣′ satifies 𝑘
collusion resistance. As we have seen, in the 1 collusion resistance case, 𝖴𝖣′ has the same struc-
ture and security proof (by leveraging the property of compute-and-compare obfuscation) as the
construction in fig. 4. Therefore, 𝖴𝖣′ satisfies 𝑘 collusion resistance with the general translation
proved in the main body of this paper.

F Proof for Lemma C.7 and 𝑘-Hidden Trigger Lemma

This lemma states that a QPT adversary can not distinguish a pair of uniformly inputs from a pair
of hidden trigger inputs.

For the clarity of presentation, we show the following lemma about the indistinguishability of
a single random input or a single hidden trigger input. Afterwards, we will discuss how the proof
for Lemma F.1 can translate to a proof for Lemma C.7 as well as a proof for the 𝑘-Hiden Trigger
lemma.

However, we can not get Lemma C.7 by simply applying Lemma F.1 twice (or likewise, 𝑘
times), we will elaborate the generalization of the proof.

Lemma F.1. Assuming post-quantum 𝗂𝖮 and one-way functions, for every efficient QPT algorithm 𝒜, it
can not distinguish the following two cases with non-negligible advantage:

• A challenger samples (𝗌𝗄 = (𝐾1,𝐾2,𝐾3), 𝗏𝗄 = 𝗂𝖮(𝖵𝖪))← 𝖲𝖾𝗍𝗎𝗉(1𝜆); then it prepares a quantum
program 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖢𝖯𝖲𝗂𝗀𝗇)).
• It samples a random input 𝑢← [𝑁]. Let 𝑦 = 𝐹1(𝐾1, 𝑢). Parse the input as 𝑢 = 𝑢0||𝑢1||𝑢2.
• Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• It flips a coin 𝑏 and outputs (𝜌𝐾 , 𝑢) or (𝜌𝐾 , 𝑢′) depending on the coin.

Note that we will mark the changes between the current hybrid and the previous hybrid in
red.

Proof of Lemma F.1 . The proof mostly follows from the proof for 7.17 in [CLLZ21], with differ-
ences in the programs we apply puncturing on.

Note that the program 𝖢𝖯𝖲𝗂𝗀𝗇 (fig. 9) and program 𝖵𝖪(fig. 10) are highly similar in their struc-
tures and share all the hardcoded values. Therefore, for the simplicity of notations, we combine
these two programs into one in the following proof: in the 𝖾𝗏𝖺𝗅 mode, it functions as 𝖢𝖯𝖲𝗂𝗀𝗇; in the

48

𝖼𝗁𝖾𝖼𝗄 mode, it functions as 𝖵𝖪. It is easy to see that the overall functionalities will be exactly the
same as the original construction.

Hybrid 0. This is the original game where the input is sampled either uniformly at random or
sampled as a hidden triggers input.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖+ 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ =
⨂︀

𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 = 𝐹1(𝐾1, 𝑢).
4. It generates 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

5. Generate the program 𝑃 as in Figure 17. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃)) and then 𝑢 or
𝑢′ depending on a random coin 𝑏.

Hardcoded: Keys 𝐾1,𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2, vectors 𝑣1, · · · , 𝑣ℓ0 , and a string 𝗆𝗈𝖽𝖾:

• If 𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅 :

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Treat 𝑄′ as a circuit and outputs 𝑄′(𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0).
2. Otherwise, check if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, output 𝐹1(𝐾1, 𝑥). Otherwise, output ⊥.

• If 𝗆𝗈𝖽𝖾 = 𝖼𝗁𝖾𝖼𝗄 : Parse vectors 𝑣1, · · · , 𝑣ℓ0 as 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚).

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Treat 𝑄′ as a (classical) circuit and output 𝑄′(𝗆𝗈𝖽𝖾 = 𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚).
2. Otherwise: Check if 𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥)). If so, output 1. Otherwise,

output 0.

Figure 17: Program 𝖢𝖯𝖲𝗂𝗀𝗇 and 𝖵𝖪 combined

49

Hybrid 1 In this hybrid, the key 𝐾1 in the program 𝑃 is punctured at 𝑢, 𝑢′. The indistinguisha-
bility of Hybrid 0 and Hybrid 1 comes from the security of indistinguishability obfuscation.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ =
⨂︀

𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 = 𝐹1(𝐾1, 𝑢).
4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]). Let 𝑄 be the obfuscation program

during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.
5. Generate the program as in Figure 18. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃)) and then 𝑢 or 𝑢′

depending on a random coin.

Hardcoded: Constants 𝑢, 𝑢′; Keys 𝐾1 ∖ {𝑢, 𝑢′},𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 and a string 𝗆𝗈𝖽𝖾:

• If 𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅 :

1. If 𝑥 = 𝑢 or 𝑢′, output 𝑄(𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0).
2. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

Treat 𝑄′ as a circuit and outputs 𝑄′(𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0).
3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, output 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

• If 𝗆𝗈𝖽𝖾 = 𝖼𝗁𝖾𝖼𝗄 : Parse vectors 𝑣1, · · · , 𝑣ℓ0 as 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚.

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄′(𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚).
2. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

Treat 𝑄′ as a (classical) circuit and output 𝑄′(𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚).
3. Otherwise: Check if 𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥)). If so, output 1. Otherwise,

output 0.

Figure 18: Program 𝑉 𝐾 and 𝖢𝖯𝖲𝗂𝗀𝗇 combined for Hybrid 1

Note that starting from this hybrid, whenever we mention 𝐾1 inside a program 𝑃 , we mean
to use the punctured key 𝐾1 ∖ {𝑢, 𝑢′}. Similar notations of punctured keys 𝐾2,𝐾3 inside other
programs will appear in the upcoming hybrids.

50

Hybrid 2. In this hybrid, the value of 𝐹1(𝐾1, 𝑢) is replaced with a uniformly random output. The
indistinguishability of Hybrid 1 and Hybrid 2 comes from the pseudorandomness at punctured
points of a puncturable PRF.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ =
⨂︀

𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀].
4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]). Let 𝑄 be the obfuscation program

during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.
5. Generate the program 𝑃 as in Figure 18. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃)) and then 𝑢 or
𝑢′ depending on a random coin.

51

Hybrid 3. In this hybrid, the check on the second line will be skipped if 𝑥1 is equal to 𝑢1 or 𝑢′1.
By Lemma 2 of [SW21], adding this check does not affect its functionality, except with negligible
probability.

The lemma says, to skip the check on the second line, 𝑥1 will be equal to one of {𝑢1, 𝑢′1}. To see
why it does not change the functionality of the program, by Lemma C.4 and for all but negligible
fraction of all keys 𝐾2, if 𝑥1 = 𝑢′1, there is only one way to make the check satisfied and the input
is 𝑢0, 𝑢′2. This input 𝑢′ = 𝑢0||𝑢′1||𝑢′2 is already handled in the first line. Therefore, the functionality
does not change.

After this change, 𝐹3(𝐾3, ·) will never be executed on those inputs. We can then puncture the
key 𝐾3 on them. The indistinguishability comes from the security of iO.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ =
⨂︀

𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀].
4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]). Let 𝑄 be the obfuscation program

during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.
5. Generate the program as in Figure 19. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃)) and then 𝑢 or 𝑢′

depending on a random coin.

Hardcoded: Constants 𝑢, 𝑢′; Keys 𝐾1 ∖ {𝑢, 𝑢′},𝐾2,𝐾3 ∖ {𝑢1, 𝑢′1}, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 and a string 𝗆𝗈𝖽𝖾:

• If 𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅 :

1. If 𝑥 = 𝑢 or 𝑢′, output 𝑄(𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0).
2. If 𝑥1 = 𝑢1 or 𝑢′1, skip this check. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and
𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

Treat 𝑄′ as a circuit and outputs 𝑄′(𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0).
3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, output 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

• If 𝗆𝗈𝖽𝖾 = 𝖼𝗁𝖾𝖼𝗄 : Parse vectors 𝑣1, · · · , 𝑣ℓ0 as 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚.

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄′(𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚).
2. If 𝑥1 = 𝑢1 or 𝑢′1, skip this check. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and
𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

Treat 𝑄′ as a (classical) circuit and output 𝑄′(𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚).
3. Otherwise: Check if 𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥)). If so, output 1. Otherwise,

output 0.

Figure 19: Program 𝖢𝖯𝖲𝗂𝗀𝗇 and 𝖵𝖪 combined in Hybrid 3

52

Hybrid 4. In this hybrid, before checking 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′), it checks if 𝑥′0||𝑄′ ̸= 𝑢0||𝑄. Because

if 𝑥′0||𝑄′ = 𝑢0||𝑄 and the last check 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′) is also satisfied, we know that

𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′) = 𝐹2(𝐾2, 𝑢0||𝑄) = 𝑢′1 (by the definition of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋).

Therefore the step 2 will be skipped (by the first check). Thus, we can puncture 𝐾2 at 𝑢0||𝑄 The
indistinguishability also comes from the security of iO.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ =
⨂︀

𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀].
4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]). Let 𝑄 be the obfuscation program

during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.
5. Generate the program 𝑃 as in Figure 20. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃)) and then 𝑢 or
𝑢′ depending on a random coin.

Hardcoded: Constants 𝑢, 𝑢′; Keys𝐾1 ∖ {𝑢, 𝑢′},𝐾2 ∖ {𝑢0||𝑄},𝐾3 ∖ {𝑢1, 𝑢′1},𝑅0
𝑖 , 𝑅

1
𝑖 for all

𝑖 ∈ [ℓ0].
On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 and a string 𝗆𝗈𝖽𝖾:

• If 𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅 :

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄(𝑣1, · · · , 𝑣ℓ0).
2. If 𝑥1 = 𝑢1 or 𝑢′1, skip this check. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0, and
𝑥′0||𝑄′ ̸= 𝑢0||𝑄, and 𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

Treat 𝑄′ as a circuit and outputs 𝑄′(𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0).
3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

• If 𝗆𝗈𝖽𝖾 = 𝖼𝗁𝖾𝖼𝗄 : Parse vectors 𝑣1, · · · , 𝑣ℓ0 as 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚.

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄′(𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚).
2. If 𝑥1 = 𝑢1 or 𝑢′1, skip this check. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0, and
𝑥′0||𝑄′ ̸= 𝑢0||𝑄, and 𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

Treat 𝑄′ as a (classical) circuit and output 𝑄′(𝖼𝗁𝖾𝖼𝗄, 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚).
3. Otherwise: Check if 𝖮𝖶𝖥(𝗌𝗂𝗀) = 𝖮𝖶𝖥(𝐹1(𝐾1, 𝑥)). If so, output 1. Otherwise,

output 0.

Figure 20: Program 𝖢𝖯𝖲𝗂𝗀𝗇 and 𝖵𝖪 combined in Hybrid 4

53

Hybrid 5. In this hybrid, since the key 𝐾2 has been punctured at 𝑢0||𝑄, we can replace the eval-
uation of 𝐹2(𝐾2, ·) at the input with a uniformly random value. The indistinguishability comes
from the pseudorandomness at punctured points of PRF 𝐹2.

We expand the 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 procedure.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ =
⨂︀

𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀].
4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]) as follows:

(a) Let 𝑄 be the obfuscation of the program (padded to length ℓ2 − ℓ0) that takes inputs
𝑣1, · · · , 𝑣ℓ0 and outputs 𝑦 if and only if for every input 𝑣𝑖, if 𝑢0,𝑖 = 0, then 𝑣𝑖 is in 𝐴𝑖 + 𝑠𝑖
and otherwise it is in 𝐴⊥𝑖 + 𝑠′𝑖.

(b) 𝑢′1 ← [2ℓ1] (since 𝐹2(𝐾2, 𝑢0||𝑄) has been replaced with a uniformly random value).
(c) 𝑢′2 ← 𝐹3(𝐾3, 𝑢

′
1)⊕ (𝑢0||𝑄).

(d) It outputs 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

5. Generate the program as in Figure 20. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃)) and then 𝑢 or 𝑢′

depending on a random coin.

54

Hybrid 6. In this hybrid, since the key 𝐾3 has been punctured at 𝑢′1, we can replace the evalu-
ation of 𝐹3(𝐾3, ·) at 𝑢′1 with a uniformly random value. The indistinguishability comes from the
pseudorandomness at punctured points of PRF 𝐹3.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ =
⨂︀

𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀].
4. It samples 𝑢′ as follows:

(a) 𝑢′1 ← [2ℓ1];
(b) 𝑢′2 ← [2ℓ2].
(c) It outputs 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

5. Generate the program as in Figure 19. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃)) and then 𝑢 or 𝑢′

depending on a random coin.

In this hybrids, 𝑢, 𝑢′ are sampled independently, uniformly at random and they are symmetric
in the program. The distributions for 𝑏 = 0 and 𝑏 = 1 are identical and even unbounded adversary
can not distinguish these two cases. Therefore we finish the proof for Lemma F.1.

Remark F.2. The program 𝑃 depends on 𝑄𝑢. Although 𝑄𝑢 is indexed by 𝑢, it only depends on 𝑢0. Thus,
the distributions for 𝑏 = 0 and 𝑏 = 1 are identical

Proof for Lemma C.7. As we have briefly mentioned, one can not get Lemma C.7 by simply
applying Lemma F.1 twice, as one can not sample a random hidden trigger input by only given the
public information in the security game (𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 requires knowing𝐾2,𝐾3), which is essentially
required. But the translation is straightforward.

The only difference between Lemma C.7 and Lemma F.1 is the number of inputs sampled:
either a single input 𝑢 (or 𝑢′) or a pair of independent inputs 𝑢,𝑤 (or 𝑢′, 𝑤′).

All hybrids for Lemma C.7 are the same for the corresponding hybrids for Lemma F.1, except
two inputs are sampled. Thus every time 𝐾1,𝐾2 or 𝐾3 are punctured according to 𝑢 or 𝑢′ in the
proof of Lemma F.1,𝐾1,𝐾2 or𝐾3 are punctured twice according to both 𝑢, 𝑢′ and𝑤,𝑤′ in the proof
of Lemma C.7.

k-Hidden Trigger Lemma and 𝑘-Bounded Collusion Resistant Copy-Protection for Signatures
The following lemma says that any efficient algorithm cannot distinguish if it gets 𝑘 inputs sam-
pled uniformly at random, or 𝑘 hidden trigger inputs (sampled according to Definition C.6), but
with a modified program 𝑄 as in Figure 21.

This lemma would finish the proof for 𝑘-bounded collusion resistant copy-protection for sig-
natures in Appendix E.

Lemma F.3. Assuming post-quantum 𝗂𝖮 and one-way functions, any efficient QPT algorithm 𝒜 cannot
win the following game with non-negligible advantage:

55

• A challenger runs (𝗌𝗄 = (𝐾1,𝐾2,𝐾3), 𝗏𝗄 = 𝗂𝖮(𝖢𝖱𝖵𝖪))← 𝖢𝖱𝖲𝗂𝗀𝖢𝖯.𝖲𝖾𝗍𝗎𝗉(1𝜆); then it prepares a
quantum program 𝜌𝗌𝗄 = ({{|𝐴𝑗,𝑠𝑗 ,𝑠′𝑗

⟩}𝑗∈[ℓ0]}𝑖∈[𝑘], 𝗂𝖮(𝖢𝖱𝖲𝗂𝗀𝗇)).
• For 𝑖 ∈ [𝑘]:

the challenger samples a random input 𝑢𝑖 ← [𝑁]. Let 𝑦𝑖 = 𝐹1(𝐾1, 𝑢𝑖). Parse 𝑢𝑖 = 𝑢𝑖,0||𝑢𝑖,1||𝑢𝑖,2.
Let 𝑢′𝑖 ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢𝑖,0, 𝑦𝑖,𝐾2,𝐾3,

{︀
{𝐴𝑗 , 𝑠𝑗 , 𝑠

′
𝑗}𝑗∈[ℓ0]

}︀
𝑖∈[𝑘], 𝑖).

Note that the 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 algorithm is the same as the algorithm in Definition C.6) except taking in
the index 𝑖 and using the modified program 𝑄 in fig. 21.

• The challenger flips a coin 𝑏, and sends (𝜌𝗌𝗄, {𝑢𝑖}𝑖∈[𝑘]) or (𝜌𝗌𝗄, {𝑢′𝑖}𝑖∈[𝑘]) to 𝒜, depending on the
outcome. 𝒜 wins if it guesses 𝑏.

Hardcoded: 𝑦;
{︀
{𝐴𝑗 , 𝑠𝑗 , 𝑠

′
𝑗}𝑗∈[ℓ0]

}︀
𝑖∈[𝑘];𝑢0.

On input 𝗆𝗈𝖽𝖾, 𝑣, 𝑖:

1. if 𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅:

• Choose the 𝑖-th set of {𝐴𝑗 , 𝑠𝑗 , 𝑠
′
𝑗}𝑗∈[ℓ0].

• Parse 𝑣 as 𝑣1, · · · , 𝑣ℓ0 . Output 𝑦 if and only if for every input 𝑣𝑗 , if 𝑢0,𝑗 = 0,
then 𝑣𝑗 is in 𝐴𝑗 + 𝑠𝑗 and otherwise it is in 𝐴⊥𝑗 + 𝑠′𝑗 .

2. else if 𝗆𝗈𝖽𝖾 = 𝖼𝗁𝖾𝖼𝗄:
Parse 𝑣 as 𝗌𝗂𝗀||0ℓ0·𝜆−𝑚 where the first 𝑚 bits form a string 𝗌𝗂𝗀. Check if 𝗌𝗂𝗀 = 𝑦.

If so, output 1. Otherwise, output 0.

Figure 21: Program 𝑄 in 𝑘-Hidden Trigger

Proof for Lemma F.3. Similar to the two hidden trigger case of lemma C.7, we can translate the
proof for lemma F.1 to the 𝑘-wise case naturally. We will refer to each hybrid in the proof for
lemma F.1 and point out the differences we make.

We first combine the programs 𝖢𝖱𝖲𝗂𝗀𝗇 and 𝖢𝖱𝖵𝖪 the same way as we did in fig. 17. In hybrid
1, we puncture 𝐾1 on all 𝑢1, 𝑢′1, · · · , 𝑢𝑘, 𝑢′𝑘 and add the check in line 1 for all {𝑢𝑖, 𝑢′𝑖}𝑖∈[𝑘], similar
to fig. 18. In hybrid 2, we switch all 𝑦𝑢𝑖 from PRF evaluations 𝐹1(𝐾1, 𝑢𝑖) to uniform random
values. In hybrid 3, we puncture 𝐾3 on all {𝑢𝑖,1, 𝑢′𝑖,1}𝑖∈[𝑘] and add the skip of check for all 𝑢𝑖,1
or 𝑢′𝑖,1. In hybrid 4, we puncture 𝐾2 on all {𝑢𝑖,0||𝑄𝑢𝑖}𝑖∈[𝑘], where 𝑄𝑢𝑖 is an 𝗂𝖮 of the program 𝑄

generated in 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢𝑖,0, 𝑦𝑖,𝐾2,𝐾3,
{︀
{𝐴𝑗 , 𝑠𝑗 , 𝑠

′
𝑗}𝑗∈[ℓ0]

}︀
𝑖∈[𝑘], 𝑖). In hybrid 5, when running the

𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 algorithm for 𝑢′𝑖, we replace the evaluations at punctured points 𝑢𝑖,1 = 𝐹2(𝐾2, 𝑢𝑖,0||𝑄𝑢𝑖)
with uniformly random value 𝑢′𝑖,1, for all 𝑖 ∈ [𝑘]; then in hybrid 6, when running the 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋
algorithm for 𝑢′𝑖, we replace 𝑢𝑖,2 = 𝐹3(𝐾3, 𝑢𝑖,0) ⊕ (𝑢𝑖,0||𝑄𝑢𝑖) uniformly random value 𝑢′𝑖,2, for all
𝑖 ∈ [𝑘].

56

G Collusion Resistant Copy-Protection for PRFs

G.1 Definitions

Bounded Collusion Resistant Copy-Protection Scheme of PRF A bounded collusion resistant
copy-protection Scheme for a PRF family with evaluation algorithm 𝐹 , consists of the following
algorithms:

𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘): takes in security parameter 1𝜆 and upper bound 𝑘; outputs classical secret key 𝗌𝗄;
𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄): takes in a classical secret key 𝗌𝗄; outputs 𝑘 quantum keys 𝜌𝗌𝗄 = 𝜌𝗌𝗄,1 ⊗ 𝜌𝗌𝗄,2 ⊗ · · · ⊗

𝜌𝗌𝗄,𝑘
𝖤𝗏𝖺𝗅(𝜌𝗌𝗄, 𝑥): takes a quantum signing key 𝜌𝗌𝗄 and an input 𝑥 ∈ [𝑁]; outputs a classical result

𝑦 ∈ [𝑀].

A copy-protection for a PRF family with evaluation algorithm 𝐹 (·) should satisfy the following
properties:

Correctness For every polynomial 𝑘(·), there exists a negligible function 𝗇𝖾𝗀𝗅(·), such that for all
𝜆, all messages 𝑚, all 𝑖 ∈ [𝑘]:

Pr

[︂
𝐹 (𝗌𝗄, 𝑥) = 𝖤𝗏𝖺𝗅(𝜌𝗌𝗄,𝑖, 𝑥)

⃒⃒⃒⃒
𝗌𝗄← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘),

𝜌𝗌𝗄,1 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄),

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Note that the quantum key can be used for polynomially many times, by the gentle measure-
ment lemma [Aar05].

Anti-Piracy Security for 𝑘-bounded collusion resistance Let 𝜆 ∈ ℕ+ and 𝐹 be the evaluation
algorithm for a PRF family. Consider the following game between a challenger and an adversary
𝒜:

1. The challenger samples 𝗌𝗄 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) and 𝜌𝗌𝗄 = 𝜌𝗌𝗄,1 ⊗ 𝜌𝗌𝗄,2 ⊗ · · · 𝜌𝗌𝗄,𝑘 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄).
It gives 𝜌𝗌𝗄 to 𝒜;

2. 𝒜 returns to the challenger a (possibly mixed and entangled) state 𝜎 on registers 𝑅1, 𝑅2,
· · · , 𝑅𝑘. We interpret 𝜎 as 𝑘+ 1 (possibly entangled) quantum programs 𝜎[𝑅1], · · · , 𝜎[𝑅𝑘+1].

3. The challenger samples uniformly random 𝑥1, · · · , 𝑥𝑘+1 ← [𝑁]. Then runs a universal circuit
𝑈 on2 input (𝜎[𝑅𝑖], 𝑥𝑖) to obtain 𝑦′𝑖 for each 𝑖 ∈ [𝑘 + 1]. The outcome of the game is 1 if and
only if 𝐹 (𝗌𝗄, 𝑥𝑖) = 𝑦′𝑖 for all 𝑖 ∈ [𝑘 + 1].

Denote by 𝖢𝖯𝖯𝖱𝖥(𝟣𝜆,𝒜) a random variable for the output of the game.
We say the scheme has anti-piracy security if for every polynomial-time quantum algorithm

𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·), for all 𝜆 ∈ ℕ+,

Pr
[︁
𝑏 = 1, 𝑏← 𝖢𝖯𝖯𝖱𝖥(𝟣𝜆,𝒜)

]︁
= 𝗇𝖾𝗀𝗅(𝜆) .

57

Intisdinguishability Anti-Piracy Security for PRF The above security defintion is natural but
in fact not a meaningful security definition for copy-protecting PRFs considering its cryptographic
functionality. Similar definitional issues are discussed in [GKWW21]. We thus provide this stronger
definition:

In step 3 of the security game above, the challenger instead does the following:

• It samples uniformly random 𝑥1, · · · , 𝑥𝑘+1 ← [𝑁] as well as random coins 𝑏1, · · · 𝑏𝑘 ∈ [𝑘]. If
𝑏𝑖 = 0, then it sets 𝑦𝑖 = 𝐹 (𝗌𝗄, 𝑥𝑖), else it sets 𝑦𝑖 ← [𝑀] to be uniformly random. It then runs a
universal circuit 𝑈 on input (𝜎[𝑅𝑖], 𝑦𝑖) to obtain a guess 𝑏′𝑖 for each 𝑖 ∈ [𝑘 + 1]. The outcome
of the game is 1 if and only if 𝑏′𝑖 = 𝑏𝑖 for all 𝑖 ∈ [𝑘 + 1].

Other steps remain the same.

G.2 Construction

The construction for copy-protecting PRFs is the same as the one for signatures(after removing
the verification keys and verification programs), since our signing algorithm is essentially a PRF
evaluation algorithm.

We formally give the construction as follows. Note that this construction is the same as the one
in [CLLZ21], we present the scheme in order to show its extension to collusion resistance.

𝖲𝖾𝗍𝗎𝗉(1𝜆)→ 𝗌𝗄:

• Sample PRF keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.
• Output 𝗌𝗄 = (𝐾1,𝐾2,𝐾3)

𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄)→ 𝜌𝗌𝗄:

• Sample {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ]: uniformly random subspaces 𝐴𝑖 of dimension 𝜆/2

and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0.
• Let 𝖤𝖵𝖠𝖫 be the program described in Figure 23. Prepare 𝗂𝖮(𝖤𝖵𝖠𝖫).
• Output the quantum key 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖤𝖵𝖠𝖫)),
𝖤𝗏𝖺𝗅(𝜌𝗌𝗄, 𝑥)→ 𝑦:

• Let 𝜌𝗌𝗄 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝖤𝖵𝖠𝖫)). Parse 𝑥 as 𝑥 = 𝑥0||𝑥1||𝑥2 where 𝑥0 is of

length ℓ0.
• For all 𝑖 ∈ [ℓ0], if 𝑥0,𝑖 is 1, apply 𝐻⊗𝑛 to |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩. Otherwise, leave the state
unchanged.

• We obtain state 𝜎 from the above procedure (which can be seen as a super-
position over tuples of 𝑙0 vectors). Run 𝗂𝖮(𝖤𝖵𝖠𝖫) coherently on input 𝑥 and
𝜎, and measure the final output register to obtain 𝑦.

Figure 22: Quantum copy-protection scheme for PRF key 𝐾1, i.e. functionality 𝐹1(𝐾1, ·).

Correctness and Anti-Piracy Security The correctness and security proofs follow from the proofs
for signatures in Appendix C. More specifically, the security proof is simpler because we do not

58

Hardcoded: Keys 𝐾1,𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Hidden Trigger Mode: Treat 𝑄′ as a (classical) circuit and output
𝑄′(𝗆𝗈𝖽𝖾 = 𝖾𝗏𝖺𝗅, 𝑣1, · · · , 𝑣ℓ0).

2. Otherwise, check if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅
𝑥0,𝑖

𝑖 (𝑣𝑖) = 1 (where 𝑥0,𝑖 is
the 𝑖-th bit of 𝑥0).

Normal Mode: If so, output 𝐹1(𝐾1, 𝑥). Otherwise, output ⊥.

Figure 23: Program 𝖤𝖵𝖠𝖫

have a verification program anymore and can thus do reduction to a standard unclonable decryp-
tion scheme.

Moreover, the construction satisfies both anti-piracy security notions presented above(the nat-
ural definition and the indistinguishability definition), as proved in [CLLZ21] section 𝐸.

Remark G.1. One can observe from the functionality of 𝖤𝖵𝖠𝖫 that PRF key 𝐾1 is the function we copy-
protect. We merely use PRF keys 𝐾2,𝐾3 to assist with the security. However, we sample 𝐾2,𝐾3 together
with 𝐾1 in 𝖲𝖾𝗍𝗎𝗉, for the sake of simplicity. If they are sampled independently in each copy of the program,
we will result in more redundant notations in the proofs for signatures and hidden triggers, in the 𝑘 collusion
resistant version.

Therefore, the above construction is the same as the single-copy PRF copy-protection scheme in [CLLZ21]
except sampling the auxiliary keys 𝐾2,𝐾3 in 𝖲𝖾𝗍𝗎𝗉, not in 𝖰𝖪𝖾𝗒𝖦𝖾𝗇.

𝑘-Bounded Collusion Resistant Copy-Protection for PRFs The construction is the same as col-
lusion resistant copy-protection for signature scheme in Figure 14. We simply remove the genera-
tion of verification key 𝗏𝗄 and refer the collusion resistant signing program 𝖢𝖱𝖲𝗂𝗀𝗇 as 𝖤𝖵𝖠𝖫. The
correctness and security proofs are straightforward given the proof for the signature case, with
modifications to deal with the indistinguishability-based definition as shown in [CLLZ21] section
𝐸.

59

	Introduction
	Our Results
	Related Works
	Technical Overview
	Discussions and Open Problems
	Organization

	Preliminaries
	Indistinguishability Obfuscation
	Coset States
	Definitions
	Strong Monogamy-of-Entanglement Property

	Measure Success Probabilities of Quantum Adversaries: Projective/Threshold Implementation

	Collusion Resistant Unclonable Decryption
	Definitions
	Construction
	Proof of Anti-Piracy

	Collusion Resistant Copy-Protection for Signature Schemes
	Copy-Protection for Signatures: Definitions
	Construction
	Collusion Resistant Copy-Protection for Signatures and PRFs

	Additonal Prelimanaries
	Compute-and-Compare Obfuscation with Quantum Auxiliary Input
	Measure Success Probabilities of Quantum Adversaries, Efficiently
	Preliminaries: Puncturable PRFs and related notions

	Missing Details for the Proof of Anti-Piracy
	Security Proof for Signature Copy-Protection
	Proof of Correctness
	Existential Unforgeability

	Proof of Anti-Piracy Security

	Proof for prop:modifiedud
	Bounded Collusion Resistant Copy-Protection for Signatures
	Proof for lem:hiddentrigger and k-Hidden Trigger Lemma
	Collusion Resistant Copy-Protection for PRFs
	Definitions
	Construction

