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Abstract. Predicate encryption (PE) is a type of public-key encryption
that captures many useful primitives such as attribute-based encryption
(ABE). Although much progress has been made to generically achieve
security against chosen-plaintext attacks (CPA) efficiently, in practice,
we also require security against chosen-ciphertext attacks (CCA). Be-
cause achieving CCA-security on a case-by-case basis is a complicated
task, several generic conversion methods have been proposed. However,
these conversion methods may incur a significant efficiency trade-off. No-
tably, for ciphertext-policy ABE, all generic conversion methods provide
a significant overhead in the key generation, encryption or decryption al-
gorithm. Additionally, many generic conversion techniques use one-time
signatures to achieve authenticity, which are also known to significantly
impact the efficiency.
In this work, we present a new approach to achieving CCA-security as
generically and efficiently as possible, by splitting the CCA-conversion
in two steps. The predicate of the scheme is first extended in a cer-
tain way, which is then used to achieve CCA-security generically e.g.,
by combining it with a hash function. To facilitate the first step effi-
ciently, we also propose a novel predicate-extension transformation for a
large class of pairing-based PE—covered by the pair and the predicate
encodings frameworks—which incurs only a small constant overhead for
all algorithms. In particular, this yields the most efficient generic CCA-
conversion for ciphertext-policy ABE.

Keywords: predicate encryption · chosen-ciphertext security · generic
transformation · identity-based encryption · attribute-based encryption

1 Introduction

Predicate encryption (PE) [36] is a paradigm that generalizes multiple powerful
cryptographic primitives1, such as identity-based encryption (IBE) [45,18] and
attribute-based encryption (ABE) [44]. In contrast to traditional public-key en-
cryption, PE allows for the fine-grained access control on data [33,13]. In PE, the

1 Our definition of predicate encryption is in line with [4], which is more general than
in some other works [39,10]. In those works, predicate encryption requires x to be
hidden. We will use the notion of attribute hiding (e.g., in Appendix E) to refer to
this additional property.
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ciphertexts and secret keys are associated with “entities” x and y, respectively,
for which a predicate P determines the ability of the secret key to decrypt the
ciphertext. In particular, a secret key for y can decrypt a ciphertext for x if and
only if P (x, y) = 1 (i.e., “the predicate is true”). For example, in ciphertext-
policy ABE [13], x constitutes an access policy and y a set of attributes, and
P (x, y) = 1 holds if the set of attributes satisfies the policy2.

Over the years, many works have systematized and improved the techniques
to achieve full3 security of pairing-based PE against chosen-plaintext attacks
(CPA) [48,8,26,9,3,4]. By formalizing the notions of pair encodings [8] and pred-
icate encodings [48], a PE scheme can be abstracted to analyze only “what hap-
pens in the exponent”. This simplifies the effort of proving security to information-
theoretic and computational notions of security for vectors of polynomials. These
frameworks are incredibly powerful: many PE schemes can be captured in them,
and hence, these schemes are fully CPA-secure.

While these frameworks support CPA-security, in practice, it is often rec-
ommended or required that the scheme also provides security against chosen-
ciphertext attacks (CCA) [41,46]. To this end, many works have proposed CCA-
secure PE schemes, e.g., [18,37,30,38,47]. Moreover, to achieve CCA-security
generically, any of the proposed transformations can be used, e.g.,

– using non-interactive zero-knowledge (NIZK) proofs of well-formedness [15];
– Fujisaki-Okamoto (FO) [29,35];
– Canetti-Halevi-Katz (CHK) [25];
– Boneh-Katz (BK) [19];
– Abe et al. (ACIK) [1];
– Yamada et al. (YA(SS)HK) [49,50], which consists of two transformations:

one for delegatable ABE and one for verifiable ABE;
– Blömer-Liske (BL) [14];
– Koppula-Waters (KW) [39].

However, each of these generic transformations has a drawback. First, the
transformation may be restricted to e.g., hierarchical IBE (HIBE) [25,19,1] or
ABE [49,50]. Second, the FO-transform, the NIZK approach, and the transforma-
tions for verifiable schemes [49,50,14] incur an additional cost during decryption
that is linear in the sizes of x and y, which is a significant cost for many ABE or
inner-product encryption [36] schemes. Alternatively, these additional costs may
be linear in the security parameter4, such as in KW [39] and the transformations

2 In this example, x could be called a predicate. However, in its dual variant, key-policy
ABE, the keys are associated with policies and the ciphertexts with sets of attributes,
and thus, the predicate is then associated with the keys, and not the ciphertexts.
Similarly, dual-policy ABE [11] may specify policies for the keys and ciphertexts.
Hence, we refer to both x and y as predicates (or attributes) throughout this work.

3 As opposed to “selective” security, which restricts the security model in that the
attacker needs to commit to the challenge x before the setup is run [24,25].

4 Typically, the security parameter is fixed, e.g., equal to 128. Nevertheless, the addi-
tional costs are large.
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Table 1: Comparison of the properties of the several CCA-transformations and
our new transformations. For our CCA-transformations, we also consider alter-
native pathways based on the existing transformations to perform the two steps.

Variant Primitives used Applicable to Requirements

FO [29,35] hash All PE -
CHK [25] OTS (H)IBE -
BK [19] encapsulation, MAC, PRG (H)IBE -

ACIK [1, §7.2] RPC (H)IBE partitioned KEM
YA(SS)HK [49,50] OTS ABE delegatable or verifiable ABE

BL [14] hash All PE verifiable pair encodings
KW [39] PRG, OTS All PE -

Step 1 with CHK/BK - (H)IBE -
Step 1 with YA(SS)HK - ABE delegatable ABE

Step 2 with BK encapsulation, MAC, PRG All PE -

Step 1 (new) - All PE pair and predicate encodings
Step 2 (new) RPC All PE decomposable ciphertexts

Note: PRG = pseudo-random generator, RPC = random-prefix collision-resistant
hash

for delegatable CP-ABE [49]. Notably, for CP-ABE, no CCA-transformations
yield a small and constant overhead.

In addition, most of these transformations—except for the NIZK, FO, BK
and ACIK-transformations—use one-time signatures (OTS) to achieve authen-
ticity of the ciphertexts. OTSs incur a considerable trade-off in storage and
computational efficiency: either signing is efficient but the keys and signatures
are large, or the keys and signatures are short but signing is inefficient. The BK-
transformation improves on the CHK-transformation by replacing the OTS by
a message authentication code (MAC) and a primitive called “encapsulation”,
which can be constructed from a hash and yields no such efficiency trade-off [19].
Encapsulation allows the encrypting user to commit to a secret value, which is
later used to compute a MAC on the ciphertext to attain ciphertext authenticity.
Subsequently, the ACIK-transformation improves on the BK-transformation by
applying a primitive called a “random-prefix collision-resistant” hash directly
to the ciphertext. The encrypting user is therefore not required to commit to a
secret value (which also needs to be encrypted), and thus, minimizes the storage
overhead.

1.1 Our contribution

In this work, we focus on generically achieving CCA-security for any PE as ef-
ficiently as possible. To this end, we propose a new high-level approach in the
design of CCA-security transformations, by splitting any such transformations
in two explicit steps. In the first step, the predicate of the scheme is extended. In
the second step, the predicate-extended scheme is used to achieve CCA-security.
Although several existing transformations take these steps implicitly, explicitly
considering them as two steps may lead to more efficient (yet generic) construc-
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tions than previous methods allowed. To illustrate that, we propose two novel
transformations that perform these two steps efficiently.

Warm-up: existing transformations. Apart from the NIZK, FO and KW
transformations, all aforementioned generic transformations exploit the structure
of the predicate to efficiently achieve CCA-security. Roughly, they all follow a
similar approach: during encryption, the encrypting user commits to some value,
which is then embedded in the predicate in addition to the original predicate. For
example, for (H)IBE [25,19,1], this value is embedded in the (additional “layer” of
the) identity, and for delegatable CP-ABE, the bit-representation of the value is
encoded as an AND-policy (and is taken in conjunction with the original policy).
Because these transformations exploit the specific structures of the predicates,
they are therefore only applicable to those predicates. Furthermore, depending on
the technique, the value to which is commited is either generated independently
of the ciphertext [25,19,49] or by applying a hash with a specific property to
the ciphertext [1,14]. Although the latter requires that the ciphertext is of a
specific structure (which many pairing-based schemes satisfy), it relies on fewer
primitives and yields less storage overhead in the ciphertext.

Our transformations. On a high level, our approach consists of two steps
with varying “levels of genericness” (of which an overview is shown in Figure 1).
First, we transform a CPA-secure PE ΓPE,IND-CPA,P for predicate P into a CPA-
secure PE ΓPE,IND-CPA,P ′ for extended predicate P ′. For this step, we propose
novel generic constructions in the pair and predicate encodings frameworks. (We
also show that our predicate-encoding transformation preserves the attribute-
hiding property in [26].) As a result, many pairing-based PE schemes can be
transformed using this construction. Second, we transform any CPA-secure PE
ΓPE,IND-CPA,P ′ for extended predicate P ′ into a CCA-secure PE ΓPE,IND-CCA,P

for the original predicate P . This step can be done by using similar approaches as
CHK and BK. We also give a new transformation based on the ACIK-approach.
This new transformation applies to any PE scheme for which the ciphertexts are
“decomposable” (which is a similar notion to that of partitioned in [1]).

Although our transformation is less generic than fully generic transformations
such as FO and KW, ours is more generic than most of the other transformations
(Table 1). In fact, our approach can be seen as an efficient generalization of the
transformations that exploit the specific structures of the predicate, i.e., CHK,
BK, ACIK, and YA(SS)HK. However, by performing the transformation in two
steps, we also allow for more efficient (yet generic) constructions. We show that
this is especially beneficial for CP-ABE, for which existing such transformations
always induce a linear computational overhead in at least one of the algorithms.

Step one: securely extending the predicate. We first extend the predicate
P to some predicate P ′ = CCA[P ]. The idea behind this is similar to the ap-
proach for hierarchical IBE [25,19,17] and delegatable KP-ABE by Yamada et
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Fig. 1: A high-level overview of the transformations and our associated definitions
and theorems that prove security of the given transformations. The double-edged
arrows indicate that we give a novel provably secure generic transformation in
this work, while the normal-edged arrows provide transformations that have been
given in other works.

PE
IND-CPA

P

PE
IND-CPA
CCA[P ]

PE
IND-CCA

P

Section 4

[17,49]

Definition 9
Theorem 1

[25,19]

al. (YAHK) [49], and is later also applied using wildcards by Tomida et al. [47].
Roughly, the secret key predicate y is extended to y ∧ y′, where y′ is either an
attribute or a wildcard ∗, and the ciphertext predicate x is extended to (x, x′),
where x′ is an attribute. The predicate is satisfied if P (x, y) and either y′ = ∗
or y′ = x′ holds. We provide a new transformation in the pair and predicate
encodings framework that extends the predicate in this way. The computational
overhead incurred by our transformation is a low constant, and unlike YAHK,
we do not require the PE scheme to be a delegatable KP-ABE for the transfor-
mation to work. Because we generically transform any PE into a scheme with
this specific extended predicate, we can also efficiently support CCA-security in
e.g., CP-ABE. Roughly, we take an AND-composition over the original PE and
an “all-or-one-identity” IBE, by using the ideas from Ambrona et al. [7] and
Attrapadung [10]. For the “all-or-one-identity” IBE, we use the first scheme of
Kiltz and Vahlis [38] as inspiration, which is essentially implied by a composition
of the Boneh-Boyen (BB) IBE [16] with a wildcard variant of the same scheme.

Step two: achieving CCA-security. We first consider on a high level what
the CCA-transformation looks like. Let Γ = (Setup,KeyGen,Encaps,Decaps)
be a predicate key-encapsulation scheme (possibly derived from a PE) for the
extended predicate, such that that ciphertext is of the form

Encaps(MPK, (x, x′)) = (K,CT1,CT2,(x,x′)),

where MPK is the master public key generated in the Setup, K is the en-
capsulated key to be used to symmetrically encrypt, CT1 is some randomized
part of the ciphertext that is independent of extended predicate (x, x′), and
CT2,(x,x′) denotes the rest of the ciphertext. Following the approach by Kiltz
and Vahlis [38] and Abe et al. (ACIK) [1], we first split the key-encapsulation
algorithm in two parts, and then introduce an authenticated encryption scheme
SE = (EncK,DecK) and a random-prefix collision-resistant hash function RPC
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(which takes as input a random prefix k and another input to be hashed), i.e.,

Encaps(MPK, (x, x′)) = (K,CT1︸ ︷︷ ︸
Encaps1

,CT2,(x,x′)︸ ︷︷ ︸
Encaps2

).

Then, we obtain the CCA-transformed encryption as follows

Encrypt′(MPK, x ,M) = ( CTsym = EncK(M∥CT2,(x,x′)) ,CT1,CT2,(x,x′), k),

where (K,CT1) ← Encaps1(MPK), k ∈R {0, 1}λ, x′ ← RPC(k,CT1), and then
CT2,(x,x′) ← Encaps2(MPK, (x, x′)).

Proving CCA-security. We prove CCA-security of the proposed generic con-
struction similarly as other transformations [25,19,38,1,49]. Specifically, the de-
cryption queries are answered as follows. Suppose that CTx = (CTsym,CT1,
CT2,(x,x′)) is some ciphertext and y is some predicate such that P (x, y) = 1,
queried by the attacker. Then, the challenger can generate a secret key for
(y, y′ = x′), and decrypt the ciphertext. The challenger rejects a decryption
query if it is similar to the challenge ciphertext CT∗

x∗ = (CT∗
sym,CT

∗
1,CT2,(x∗,x′∗)),

i.e., if CT1 ̸= CT∗
1 and x′ = x′∗, or if K = K∗ and CTsym ̸= CT∗

sym or
CT2,(x,x′) ̸= CT∗

2,(x∗,x′∗). Intuitively, the probability that a valid ciphertext
is rejected—i.e., the probability that a valid ciphertext satisfies any of these
conditions—is negligible due to the random-prefix collision resistance of the
hash RPC and the authenticity of the symmetric encryption scheme SE =
(EncK,DecK).

Alternative pathways. As mentioned, we focus on achieving CCA-security as
efficiently and as generically as possible. Although the two proposed transforma-
tions for the two steps are applicable to large classes of existing PE schemes, they
do not apply to all PE schemes. For example, post-quantum schemes [5,2,22,32]
are not covered by our predicate-extension transformation, and not all schemes
may be decomposable and therefore qualify for our second-step transformation.
To make our second step more generic, one could also use the BK-approach [19],
which does not require the extended-predicate scheme to have ciphertexts with a
certain structure5. However, it does provide more storage overhead and relies on
more primitives (i.e., two independent hash functions, a MAC and a PRG). The
latter may be undesirable in practice, e.g., because no suitable implementations
are available of all primitives. In this regard, our second-step transformation
could provide an effective solution, as it requires only one hash function. Im-
portantly, because the second step can be done entirely generically, the effort
of achieving CCA-security is reduced to finding an efficient predicate extension.
Note that several such predicate-extension techniques have been described im-
plicitly, e.g., the CHK- and YAHK-approaches extend the (H)IBE with another

5 The security proof of the generalized variant of the BK-transformation is analogous
to that of the BK-transformation itself.
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level in the hierarchy and extend the ABE ciphertext predicate with a conjunc-
tion or disjunction, respectively. Furthermore, for schemes for which there is no
such predicate-extension technique available (that is sufficiently efficient), we
only need to devise an efficient predicate-extension transformation, instead of
performing a full-fledged CCA-security conversion.

1.2 Performance analysis and comparison

We compare the efficiency of our CCA-transformation with the others. From a
theoretical standpoint, ours is the most efficient. It incurs only a small constant
overhead in all algorithms and the key and ciphertext sizes in the first step,
regardless of the size of the predicate. For all other transformations, this is not
the case. Especially for schemes with linear-sized predicates, such as ABE, this
provides a significant efficiency improvement. In contrast, the other approaches
applicable to ABE incur the following efficiency trade-offs:

– FO [29,35]: in general, this approach incurs little to no overhead to most
algorithms, except for the decryption algorithm, which requires an invocation
of the encryption algorithm, whose costs are often linear;

– YAKK-del [49]: depending on the type of ABE, this transformation for del-
egatable schemes might either be very efficient or very costly. For KP-ABE,
the transformation incurs only a small constant overhead in all algorithms
and the key and ciphertext sizes. For CP-ABE, the transformation incurs an
additional overhead that is linear in the security parameter in the encryption
and decryption algorithms;

– YAHK-ver [49], BL [14]: these transformations for verifiable schemes incur
little to no overhead in most of the algorithms and the key and ciphertext
sizes, except for the decryption algorithm, which also verifies whether the
ciphertexts are well-formed. The costs incurred by the verification step are
similar to the decryption costs of the CPA-secure PE scheme, and therefore
roughly double the decryption costs of the CCA-secure PE scheme (which
are often linear in the predicate size);

– KW [39]: this fully-generic transformation is very costly and incurs an over-
head in all algorithms and sizes that is linear in the security parameter.

In Section 5, we analyze the performance of two schemes to show the advan-
tage of our transformation compared to existing transformations. In particular,
we analyze the costs of CGW-IBE [26], an anonymous IBE scheme that is fully
secure in the predicate encodings framework. For this scheme, only the FO-
transformation readily yields CCA-security6. Our implementations show that
our CCA-secure variant outperforms the FO-variant in the decryption. We also
analyze the costs of the CCA-secure variants of the fully secure version of RW13
[43] in the pair encodings framework, i.e., RWAC [4,10], which is a large-universe

6 Possibly, by modifying the scheme, one could obtain an attribute-hiding hierarchical
IBE with two levels, which can then be used to obtain a CCA-secure IBE for one
level with CHK, BK and ACIK, although we did not do that in this work.
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CP-ABE scheme. We compare our CCA-variant with those that follow from ap-
plying FO and the transformations for delegatable and verifiable CP-ABE. Our
analysis shows that our transformation has a much faster decryption than all
existing transformations, while incurring a marginal overhead in the other algo-
rithms compared to the fastest variants.

1.3 Organization

This paper is structured as follows. We first provide some notations and def-
initions in Section 2. Then, in Section 3, we give the generic transformations
from any CPA-secure PE ΓPE,IND-CPA,P ′ for extended predicate P ′ into a CCA-
secure PE ΓPE,IND-CCA,P for original predicate P , i.e., step 2. After this, in
Section 4, we propose novel generic constructions for transforming any CPA-
secure PE ΓPE,IND-CPA,P for predicate P into a CPA-secure PE ΓPE,IND-CPA,P ′

for extended predicate P ′, i.e., step 1. We first give the more general steps of
the transformation and then the less generic step, both due to the “level of
genericness” and the more complicated nature of the security proofs in the pair
and predicate encodings frameworks. Finally, we compare the performance of
our transformation in Section 5, and conclude the paper in Sections 6 and 7 by
discussing future directions.

2 Preliminaries

2.1 Notation

We use λ to denote the security parameter. We denote a negligible function
parametrized by λ by negl(λ). If an element is chosen uniformly at random from
a finite set S, then we denote this as x ∈R S. For integers a < b, we denote
[a, b] = {a, a + 1, ..., b − 1, b}, [b] = [1, b] and [b] = [0, b]. We use boldfaced
variables A and v for matrices and vectors, respectively. We use a∥b to indicate
that two strings a and b are concatenated.

2.2 Pairings (or bilinear maps)

We define a pairing to be an efficiently computable map e on three groups G,H
and GT of prime order p, so that e : G×H→ GT , with generators g ∈ G, h ∈ H
is such that for all a, b ∈ Zp, it holds that e(g

a, hb) = e(g, h)ab (bilinearity), and
for ga ̸= 1G, h

b ̸= 1H, it holds that e(g
a, hb) ̸= 1GT

, where 1G′ denotes the unique
identity element of the associated group G′ (non-degeneracy). We refer to G and
H as the two source groups, and GT as the target group.

2.3 Predicate encryption

Predicate family. A predicate family [8] is a set P = {Pκ}κ∈Nc for some
constant c, where Pκ : Xκ×Yκ → {0, 1}. For κ, it holds that κ = (p,par), where
p is a natural number and par denote the rest of the entries.
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Definition 1 (Predicate encryption (PE) [4]). A predicate encryption scheme
for a predicate family P = {Pκ}κ∈Nc over a message space M = {Mλ}λ∈N con-
sists of four algorithms:

– Setup(λ, par): On input the security parameter λ and parameters par, this
probabilistic algorithm generates the domain parameters, the master public
key MPK and the master secret key MSK. In addition, κ is set to κ =
(p, par), where p denotes a natural number.

– KeyGen(MSK, y): On input the master secret key MSK and some y ∈ Yκ,
this probabilistic algorithm generates a secret key SKy.

– Encrypt(MPK, x,M): On input the master public key MPK, some x ∈ Xκ

and message M , this probabilistic algorithm generates a ciphertext CTx.
– Decrypt(MPK,SKy,CTx): On input the master public key MPK, the secret

key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it returns M . Other-
wise, it returns an error message ⊥.

Correctness. For all par, M ∈Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK,MSK)← Setup(1λ);

Decrypt(MPK,KeyGen(MSK, y),Encrypt(MPK, x,M)) ̸= M ] ≤ negl(λ).

Key-encapsulation mechanism (KEM). In the key-encapsulation variant
(Appendix A), which we call predicate KEM (P-KEM), we replace Encrypt by
Encaps and Decrypt by Decaps, where Encaps also outputs a symmetric key,
and Decaps outputs a symmetric key instead of a plaintext message.

2.4 Full security against chosen-plaintext attacks

Definition 2 (Full security against chosen-plaintext attacks (CPA) [4]).
We define the security game IND-CPA(λ,par) between challenger and attacker
as follows:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

– Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all y
in the first key query phase, we have Pκ(x

∗, y) = 0, and generates two mes-
sages M0 and M1 of equal length inMλ, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e.,
CTx∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting ciphertext CTx∗ to
the attacker.

– Second query phase: This phase is identical to the first query phase, with
the additional restriction that the attacker can only query y ∈ Yκ such that
Pκ(x

∗, y) = 0.
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– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CPA = |Pr[β′ = β]− 1
2 |.

A scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvPE,IND-CPA ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ Xκ

before the Setup phase.

2.5 Full security against chosen-ciphertext attacks

Definition 3 (Full security against chosen-ciphertext attacks (CCA)).
We define the security game IND-CCA(λ, par) between challenger and attacker
as follows:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker can make two types of queries:
• Key query: the attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

• Decryption query: the attacker sends a ciphertext CTx for x ∈ Xκ and
y ∈ Yκ, with Pκ(x, y) = 1, to the challenger, who returns the message
M ← Decrypt(MPK,SKy,CTx), where SKy ← KeyGen(MSK, y).

– Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all y
in the first key query phase, we have Pκ(x

∗, y) = 0, and generates two mes-
sages M0 and M1 of equal length inMλ, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e.,
CT∗

x∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting ciphertext CT∗
x∗ to

the attacker.
– Second query phase: This phase is identical to the first query phase, with

the additional restriction that the attacker can only query keys for y ∈ Yκ
such that Pκ(x

∗, y) = 0, and it cannot make a decryption query for CT∗
x∗.

– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CCA = |Pr[β′ = β]− 1
2 |.

A scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvPE,IND-CCA ≤ negl(λ).

2.6 Authenticated symmetric encryption

Definition 4 (Symmetric encryption). Let λ be the security parameter. A
symmetric encryption scheme SE = (EncK,DecK), with symmetric key K ∈
K(λ), where K(λ) is some key space of size λ, is defined by

– EncK(M): On input message M ∈ {0, 1}∗, encryption returns a ciphertext
CTsym.

– DecK(CTsym): On input ciphertext CTsym, decryption returns a message M
or an error message ⊥.
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The scheme is correct if for all keys K ∈ K(λ) and all messages M ∈ {0, 1}∗,
we have DecK(EncK(M)) = M .

For symmetric encryption, we use the same security notions as in [38], i.e.,
ciphertext indistinguishability and ciphertext authenticity.

Definition 5 (Ciphertext indistinguishability of symmetric encryption).
Let λ be a security parameter and let SE = (EncK,DecK) be an (authenticated)
symmetric encryption scheme. Consider the following game between challenger
C and attacker A. The challenger first picks a key K ∈ K(λ). Then, the attacker
specifies two messages M0,M1 and gives these to the challenger, who flips a
coin β ∈R {0, 1} and returns CTsym ← EncK(Mβ) to the attacker. The attacker
A outputs a guess β′ for β. Then, SE = (EncK,DecK) has indistinguishable
ciphertexts if for all polynomial-time attackers A in the game above holds:

AdvSE,CIND =

∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣ ≤ negl(λ).

In this work, we will often assume that K(λ) is the target group GT . Because
most encryption schemes take a key that is a bit string of λ or 2λ bits as input,
we use a secure key derivation function KDF: K(λ) → {0, 1}λ (or {0, 1}2λ) to
map the target group elements to strings [28].

Definition 6 (Ciphertext authenticity of authenticated encryption).
Let λ be a security parameter and let SE = (EncK,DecK) be an (authenti-
cated) symmetric encryption scheme. Consider the following game between chal-
lenger C and attacker A. The challenger first picks a key K ∈ K(λ). Then, the
attacker specifies one message M and gives it to the challenger, who returns
CTsym ← EncK(M) to the attacker. The attacker outputs a ciphertext CT′

sym.
Then, the encryption scheme has ciphertext authenticity if for all such attackers
holds that AdvSE,CAUT = Pr[DecK(CT

′
sym) ̸= ⊥ ∧ CT′

sym ̸= CTsym] ≤ negl(λ).

We define a random-prefix collision-resistant hash function (RPC) as follows.

Definition 7 (Random-prefix collision-resistant hash function (RPC)
[1]). Let λ be a security parameter, and let RPC: {0, 1}λ × G → Z be a hash
function that takes two inputs, one in {0, 1}λ and one in G, and maps it to an
element in Z. Consider the following game between challenger C and attacker
A. The attacker gives the challenger some g ∈ G. The challenger then picks k ∈
{0, 1}λ, and gives k and RPC(k, g) to the attacker. Then, the RPC is random-
prefix collision resistant if for all such attackers, it holds that the advantage
AdvRPC = Pr[(k′, g′) ∈ {0, 1}λ×G∧(k′, g′) ̸= (k, g)∧RPC(k′, g′) = RPC(k, g)] ≤
negl(λ).

In this work, we use the concrete instantiation given by Abe et al. [1]. In
particular, their instantiation of the RPC hash is a second pre-image resistant
hash that takes as input a 128-bit string k and the element in G.
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3 Our generic CCA-transformation

We introduce our generic transformation for CCA-secure PE.

3.1 Step one: extending the predicate

Let ΓPE,IND-CPA,P = (Setup,KeyGen,Encrypt,Decrypt) be a predicate encryp-
tion scheme for the predicate family P = {Pκ}κ with Pκ : Xκ × Yκ → {0, 1}. In
the first step of our approach, we transform it into a scheme ΓPE,IND-CPA,P ′ for
predicate P ′ = CCA[P ], where CCA[P ] denotes the predicate extension required
by the CCA-transformation on predicate P , i.e., P ′

κ : X ′
κ × Y ′

κ → {0, 1}, where
– X ′

κ = (Xκ,Z) and Y ′
κ = (Yκ,Z ∪ {∗}), where |Z| ≥ 22λ;

– P ′
κ((x, x

′), (y, y′)) = 1 if and only if
• Pκ(x, y) = 1 and y′ = ∗;
• or Pκ(x, y) = 1 and x′ = y′.

In Section 4, we give several predicate-extension transformations that gener-
ically transform a CPA-secure PE scheme for the predicate P in a CPA-secure
PE scheme for predicate CCA[P ]. Conceptually, we do this by making an AND-
composition of the original PE scheme for predicate P with an “all-or-one-
identity” IBE. In an “all-or-one-identity” IBE, a user is given either a key for one
particular identity y′ ∈ Z or all identities y′ = ∗. These transformations are not
fully generic, because they only apply to pairing-based ABE. In particular, they
are given in the pair encodings [8,4] and predicate encodings [48,26] frameworks,
since it is relatively simple to generically prove security of such transformations
[7], and many PE schemes can be instantiated in these frameworks [4,10,6].

We note that a scheme with an extended predicate can also be obtained in
other ways. For instance, the approaches used for (H)IBE [25,19,17] also apply.
Additionally, the generic transformations using delegation by Yamada et al. [49]
yield suitable candidates as well, but only for KP-ABE and CP-ABE. Further-
more, the transformation by Tomida et al. [47] using delegation is similar to
our proposed constructions in Section 4, but these only work for their specific
KP-ABE and CP-ABE schemes, and are not generic in the sense that they can
be applied to any PE. Additionally, while our transformations in Section 4 are
specific to pairing-based PE, they may also work for PE based on other cryp-
tographic assumptions, for instance, by creating an “all-or-one-identity” IBE
from a suitable IBE from post-quantum assumptions [31], and taking an AND-
composition with any post-quantum PE [5,2,22,32].

3.2 Step two: generic CCA-secure construction

Much like in [38] and [1], the predicate extension is generated from part of the
ciphertext. To this end, we introduce the notion of “decomposable extended-
predicate encryption (EPE)”, which we use as input to the CCA-security trans-
formation. In decomposable EPE, we decompose the ciphertext in three parts,
such that one of the parts is used to generate the predicate extension with the
hash.
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Definition 8 (Decomposable EPE). An EPE scheme with encryption algo-
rithm Encrypt is called decomposable if the ciphertexts are decomposable. The
ciphertexts CT(x,x′) ← Encrypt(MPK, (x, x′),M) are decomposable if they can
be decomposed:

CT(x,x′) = (CTM,CT1,CT2,(x,x′)), such that

– only CT2,(x,x′) depends on (x, x′);
– only CTM contains the message;
– CTM is uniquely determined by M , MPK and CT1, and conversely, CT1 is

uniquely determined by M , MPK and CTM;
– CT1 ∈ G is generated independently of CT2,(x,x′);
– for any (x̂, x̂′) ∈ X ′

κ with x̂′ ̸= x′, we have that any CT2,(x̂,x̂′) that is valid
for CT1 is such that CT2,(x̂,x̂′) ̸= CT2,(x,x′);

– CT1 is generated uniformly at random over G, such that Pr[CT1 = CT′
1 |

CT′
1 ∈R G] ≤ negl(λ).

In this case, we also define two algorithms for encryption, i.e.,

– Encrypt1(MPK,M)→ (CTM,CT1);
– Encrypt2(MPK, (x, x′))→ CT2,(x,x′),

such that

Encrypt(MPK, (x, x′),M) = (Encrypt1(MPK,M),Encrypt2(MPK, (x, x′))).

Decomposable EP-KEM. This definition naturally extends to the key-encapsulation
variants of EPE, i.e., by replacing CTM by the encapsulated symmetric key K.
In this case, K is required to be uniquely determined by MPK and CT1. We can
generically obtain a EP-KEM from an EPE by encrypting a randomly-generated
symmetric key K. For PE schemes with a certain algebraic structure, we can also
generically obtain a more efficient KEM (Appendix B).

Generic construction. We use a CPA-secure decomposable EP-KEM with
an extended predicate to generically construct a CCA-secure hybrid PE for the
original predicate.

Definition 9 (Generic CCA-secure construction). Let ΓPE = (Setup,
KeyGen,Encaps,Decaps) be a predicate key-encapsulation mechanism for the
predicate family P = {Pκ}κ with Pκ : Xκ×Yκ → {0, 1}, and suppose ΓEP-KEM =
(SetupEP-KEM,KeyGenEP-KEM,EncapsEP-KEM,DecapsEP-KEM) is a decompos-
able extended-predicate KEM for predicate P ′ = CCA[P ] (e.g., obtained with a
predicate-extension transformation (Section 4)). Let SE = (EncK,DecK) be an
authenticated symmetric encryption scheme with key space Kλ equal to the space
in which CTM lives, and RPC: {0, 1}λ × G → Z be a random-prefix collision-
resistant hash function. Then, we define Γ ′

PE = (Setup′,KeyGen′,Encrypt′,
Decrypt′) to be the CCA-secure hybrid encryption version of scheme ΓPE for
predicate P as
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– Setup′PE(λ, par): On input λ and par, the setup generates (MPK,MSK) ←
SetupEP-KEM(λ, par), and sets MPK′ = MPK and MSK′ = MSK.

– KeyGen′PE(MSK′, y): On input the master secret key MSK′ and some y ∈
Yκ, it returns SK′

y ← KeyGenEP-KEM(MSK, (y, ∗)).
– Encrypt′PE(MPK′, x,M): On input the master public key MPK′, x ∈ Xκ

and message M ∈ {0, 1}∗, the encrypting user computes (K,CT1) ←
Encaps1,EP-KEM(MPK), picks k ∈R {0, 1}λ and sets x′ = RPC(k,CT1),
then generates CT2,(x,x′) ← Encaps2,EP-KEM(MPK, (x, x′)), and computes7

CTsym ← EncK(M∥CT2,(x,x′)), and returns

CT′
x = (CTsym,CT1,CT2,(x,x′), k).

– Decrypt′PE(MPK′,SK′
y,CT

′
x): On input the master public key MPK′, the

secret key SK′
y, and the ciphertext CT′

x = (CTsym,CT1,CT2,(x,x′), k), if
Pκ(x, y) = 1, then the decrypting user computes x′ = RPC(k,CT1) and

K′ ← DecapsEP-KEM(MPK,SK(y,∗), (CT1,CT2,(x,x′))).

The user computes (M ′∥CT′
2,(x,x′)) ← DecK′(CTsym), and if CT′

2,(x,x′) =
CT2,(x,x′), returns M ′.

Correctness. The scheme is correct, i.e., if Pκ(x, y) = 1, thenM ′ = M , because
the correctness of the P-KEM ensures that K = K′, and thus, (M ′∥CT′

2,(x,x′)) =
DecK′(CTsym) = DecK(CTsym) = DecK(EncK(M∥CT2,(x,x′))) = (M∥CT2,(x,x′)).

Security. We prove the following theorem.

Theorem 1. In Definition 9, if ΓEP-KEM is a decomposable CPA-secure P-KEM
for the extended predicate CCA[P ], RPC is a random-prefix collision-resistant
hash function and SE = (EncK,DecK) is an authenticated encryption scheme,
such that the RPC is independent of ΓEP-KEM and SE, then Γ ′

PE is CCA-secure.

Proof. We prove this theorem in a series of games in which we start with the real
CCA-security game: Game 0. Let CT∗

x∗ = (CT∗
sym,CT

∗
1,CT

∗
2,(x∗,x′∗), k

∗) denote
the challenge ciphertext (with K∗ being the decryption key) for the challenge
predicate x∗ and message Mβ . Let q be the number of decryption queries, and
let Xi denote the event that attacker ACCA is successful in Game i.

Game 1: In this game, everything is the same as in Game 0, except that, in the
first query phase, all decryption queries with CT1 = CT∗

1 are rejected. Addi-
tionally, in both query phases, the decryption queries with (CT1, k) ̸= (CT∗

1, k
∗)

and x′ = x′∗ are rejected. The probability that CT1 = CT∗
1 holds for any hon-

estly generated ciphertext is 1
G . Furthermore, the probability that any x′ for

(CT1, k) ̸= (CT∗
1, k

∗) is such that RPC(k,CT1) = x′ = x′∗ = RPC(k∗,CT∗
1) is

7 If one uses an authenticated encryption scheme with associated data [42], one can
also treat CT2,(x,x′) as associated data, as it does not need to be secret.
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equal to Pr[(CT1, k) ̸= (CT∗
1, k

∗) ∧ RPC(k,CT1) = RPC(k∗,CT∗
1)] = AdvRPC.

Hence, we have

|Pr[X0]− Pr[X1]| ≤
q

G
+ AdvRPC.

Game 2: In this game, everything is the same as in Game 1, except that, in the
second query phase, all decryption queries are rejected where CTsym ̸= CT∗

sym

holds, and the key K← DecapsEP-KEM(MPK,SK(y,∗),CTx) is such that K = K∗.
Because this property can only hold if the ciphertext authenticity of the SE is
broken, we have

|Pr[X1]− Pr[X2]| ≤ AdvSE,CAUT.

Game 3: In this game, everything is the same as in Game 2, except that, in the
second query phase, all valid decryption queries are rejected where CT2,(x,x′) ̸=
CT∗

2,(x∗,x′∗) holds, and K = K∗ (and thus, CT1 = CT∗
1). Note that this can

happen only if the ciphertext authenticity of SE is broken, because the attacker
has to generate a valid ciphertext for the same key K∗ and another message.
Hence, we have

|Pr[X2]− Pr[X3]| ≤ AdvSE,CAUT.

Game 4: At this point, all ciphertexts that are queried in the second phase and
that are not rejected are such that, for the keys, it holds that K ̸= K∗. This
follows from the fact that K is uniquely determined by MPK and CT1 (and
vice versa), and thus, if K = K∗, then CT1 = CT∗

1. By extension, we have
(CTsym,CT2,(x,x′), k) ̸= (CT∗

sym,CT
∗
2,(x∗,x′∗), k

∗). (Note that, if k ̸= k∗, we also
have CT2,(x,x′) ̸= CT∗

2,(x∗,x′∗), which follows from rejecting all ciphertexts with
x′ = x′∗ in Game 1. From the fact that the EP-KEM is decomposable, it follows
that x′ ̸= x′∗ implies CT2,(x,x′) ̸= CT∗

2,(x∗,x′∗).) For these cases, we had rejected
the decryption queries (in Games 2 and 3). Because this game is the same as
Game 3, we have

|Pr[X3]− Pr[X4]| = 0.

Game 5: In this game, everything is the same as in Game 4, except that we
generate the challenge ciphertext as follows. Let ORPC denote the oracle that
finds k ∈ {0, 1}λ such that RPC(k, g) = z for any given (g, z) ∈ G × Z. Be-
cause RPC is independent of the P-KEM and symmetric encryption scheme,
this does not give the attacker any advantage. Then, the challenger generates
(K∗,CT1,CT2,(x∗,x′∗))← EncapsEP-KEM(MPK, (x∗, x′∗)) for the challenge pred-
icate x∗ and randomly chosen x′∗, and queries the oracle ORPC with (CT1, x

′∗),
which returns k∗ if it exists. (Otherwise, it repeats the process of generating
new ciphertexts until the oracle provides some output k∗. This likely succeeds
because of the random-prefix collision resistance of the RPC. Intuitively, if many
such inputs exist for which the oracle does not return a output, we can also find
many g such that there exist at least two k, k′ with RPC(k, g) = RPC(k′, g),
which breaks the random-prefix collision resistance of the RPC.) The challenger
then outputs the challenge ciphertext as (K̂∗,CT1,CT2,(x∗,x′∗), k

∗), where K̂∗



16 M. Venema, L. Botros

is a randomly chosen key that replaces K∗. Because the attacker cannot make
decryption queries for K∗, it can only distinguish this game from Game 4 by
breaking the CPA-security of the EP-KEM. Therefore, we have

|Pr[X4]− Pr[X5]| ≤ AdvEP-KEM,IND-CPA.

Game 6: In this game, everything is the same as in Game 5, except we replace
the challenge message by a randomly generated message of the same length as
Mβ . By the ciphertext indistinguishability of the symmetric encryption scheme,
no attacker can distinguish Game 5 from Game 6, i.e.,

|Pr[X5]− Pr[X6]| ≤ AdvSE,CIND.

Summary: In this final game, because the ciphertext is for a random message,
the success probability of the attacker is 1

2 , i.e., Pr[X6] =
1
2 . This gives us the

following upper bound on the advantage of the attacker in the real security game:

AdvPE,IND-CCA =

∣∣∣∣Pr[X0]−
1

2

∣∣∣∣
≤ q

G
+ AdvRPC + 2AdvSE,CAUT

+ AdvEP-KEM,IND-CPA + AdvSE,CIND.

Since all advantages on the right-hand side are negligible in λ, it also holds that
AdvPE,IND-CCA is negligible in λ. ⊓⊔

Remark 1. The predicate extension x′∗ associated with the ciphertext is deter-
mined during encryption by the challenger, and not by the attacker. Possibly, to
obtain a fully CCA-secure hybrid PE scheme, one can make an AND-composition
of a selectively secure “all-or-one-identity” IB-KEM and a fully secure P-KEM.
In this case, a selectively secure IB-KEM is sufficient, because the challenger can
generate the predicate extension x′∗ before generating the challenge ciphertext.
Formalizing such a composition is however not trivial, for instance, because the
master public keys of fully secure and selectively secure schemes have a differ-
ent structure and are thus difficult to split (to build the AND-composition). We
therefore believe that such a generic transformation is not as simple to prove
generically secure as the proposed transformations in this work. Additionally, it
may require a combination of various (complex) proof techniques.

Remark 2. Our proof techniques are similar to but also slightly different from
the ACIK techniques. In fact, by feeding CT2,(x,x′) through the authenticated
symmetric encryption scheme, a part of the proof is more similar to the BK-
approach. However, unlike BK, we use the same key K to encrypt and authen-
ticate the message M , and to authenticate CT2,(x,x′). To ensure that this can
be done securely, we require MPK, M , CTM and CT1 to be highly dependent
on one another. This property is arguably easier to verify than ACIK’s rejec-
tion property. Furthermore, we explicitly require CT1 to be sufficiently random
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(which is a requirement that is inspired by the KV scheme [38]). Lastly, note
that our property that, for any (x̂, x̂′) ∈ X ′

κ with x̂′ ̸= x′, we have that any
CT2,(x̂,x̂′) that is valid for CT1 is such that CT2,(x̂,x̂′) ̸= CT2,(x,x′), is similar to
ACIK’s unique-split property.

3.3 Variation on the construction: special decomposable EP-KEM

One of the differences between our transformation and the transformation by
Abe et al. [1] is that we do not require the CT2,(x,x′) part to be uniquely de-
fined from CT1. Instead, we require the encapsulated key K to be uniquely
determined by CT1. We do this, because many PE schemes do not uniquely de-
termine CT2,(x,x′) and do uniquely determine K from CT1, e.g., the unbounded
ABE schemes in [43,4]. Furthermore, such a deterministic property should also
assume that the second ciphertext part CT2,(x,x′) is not delegatable in some
way. For example, in many ABE schemes, one can simply drop certain cipher-
text components such that this yields a valid ciphertext for a smaller set (in
KP-ABE) or a more restricted policy (in CP-ABE).

In many cases, however, we can decompose the ciphertext in such a way
that one part is dedicated to the predicate extension x′ only. In this case, the
ciphertext is of the form

CT(x,x′) = (K,CT1,CT2,x,CT3,x′),

such that only CT3,x′ depends on x′ and it is uniquely determined by x′, CT1 and
MPK. In this case, we can make two different variants of the generic CCA-secure
construction. Instead of including CT2,(x,x′) in the payload of the symmetric
encryption scheme, include only CT2,x. Alternatively, we can include CT2,x in
the input to the RPC hash, such that the indistinguishability between Game 2
and 3 follows from the target-collision resistance of the RPC hash. Furthermore,
because CT3,x′ is uniquely determined by x′, CT1, and MPK, CT3,x′ cannot
differ from the challenge ciphertext if x′ and CT1 are equal to the challenge
ciphertext, which is the case if K = K∗. With this latter approach, the key-
encapsulation and data-encapsulation mechanisms are also strictly separated,
which can be advantageous in the implementation of the schemes. In the case
that CT2,x is also uniquely determined by x and CT1, we can also include x in
the hash and leave out CT2,x. (In the case that x is some fixed-length predicate
such as an identity, we can leave out x altogether. For variable-length predicates
such as policies, we have to include the predicate x to ensure that CT2,x is not
altered, e.g., by delegating the ciphertext to a more restricted policy.)

3.4 Variation on the construction: non-decomposable EP-KEM

To convert extended-predicate schemes that do not have decomposable cipher-
texts, we can also base our second step of the transformation on a more generic
conversion technique than ACIK [1], such as CHK [25] or BK [19]. To apply
those techniques, we can treat the extended predicate (x′, y′) similarly as the
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identity in those transformations. For example, as in the CHK-transformation,
we can embed the verification key in the ciphertext’s extended predicate x′, and
sign the resulting ciphertext with the associated signing key of the one-time sig-
nature scheme. Recall, however, that both these methods provide trade-offs in
various practical aspects. That is, OTSs provide a significant efficiency trade-
off, and the BK-approach induces a higher storage overhead and relies on more
primitives.

4 New predicate-extension transformations

We give a high-level description of a concrete predicate-extension transformation
(for which we provide a formal description in the appendix) for pairing-based
ABE. Roughly, this transformation and its security proof follow a similar ap-
proach as Attrapadung [10]. In particular, we take as input a secure PE scheme
(satisfying some properties) and perform a predicate transformation on it, i.e.,
an AND-composition (on the key) of the original scheme and an “all-or-one-
identity” IBE scheme. To this end, we adapt the key-policy augmentation trans-
formation of Attrapadung [10]. Our adaptation differs from the original in two
ways. First, we ensure that, for the extended key predicate (y, ∗), we can gen-
erate a key for all identities (y, y′). Second, we re-use the randomness used in
the keys of the original scheme to randomize the partial “all-or-one-identity”
key. In this way, we minimize the amount of randomness, and ultimately, the
computational costs. For schemes with an admissible pair encoding8, we use the
key randomness r that is used in the polynomial that masks the master-key α,
i.e., α+ rb.

4.1 “All-or-one-identity” IBE

For the predicate extension, we use an “all-or-one-identity” IBE scheme. On a
high level, we define the “all-or-one-identity” IBE scheme with identities x′, y′ ∈
Zp = Z as follows:

MPK′ = (g, h, e(g, h)αs, gb
′
0 , gb

′
1),

SK′
y′ = (hα+r(b′0+y′b′1), hr),SK′

∗ = (hα+rb′0 , hrb′1 , hr),

CT′
x′ = (M · e(g, h)αs, gs(b

′
0+x′b′1), gs).

With SK′
∗, we can generate SK′

y′ for any y′ ∈ Zp, by computing:

hα+rb′0 ·
(
hrb′1

)y′

= hα+r(b′0+y′b′1).

Note that this scheme is similar to the Boneh-Boyen IBE1 scheme [16], which
is selectively secure, with the modification that it allows for the generation of a
secret key that can be used for all identities.

8 This is a pair encoding with some additional properties, used in [10]. Note that any
secure pair encoding can be converted into an admissible pair encoding by applying
the Layer-Trans transformation in [10].
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4.2 AND-composition with a PE

The transformation of a PE for predicate P to the PE with extended predicate
CCA[P ] consists of an AND-composition with the “all-or-one-identity” IBE. For
example, consider the following scheme:

MPK = (g, h, e(g, h)αs, gb),

SKy = (hr, hk(α,r,b,y)),

CTx = (M · e(g, h)αs, gs, gc(s,b,x)),

where r, k, s, and c denote the vectors that describe the secret key and cipher-
text, respectively. Then, the transformed scheme is of the form:

MPK = (g, h, e(g, h)αs, gb, gb
′
0 , gb

′
1),

SK(y,y′) =

{
(hr, hk(α1,r,b,y), hα−α1+rb′0 , hrb′1) if y′ = ∗,
(hr, hk(α1,r,b,y), hα−α1+r(b′0+y′b′1)) if y′ ∈ Zp

CT(x,x′) = (M · e(g, h)αs, gs, gc(s,b,x), gs(b
′
0+x′b′1)),

where α1 ∈R Zp. We formulate this transformation in the pair encodings and
the predicate encodings frameworks in Appendices C and D. We prove security
of the transformation in several ways. We show that the transformation for pair
encodings preserves the symbolic security9 and perfectly master-key hiding prop-
erties. Because we re-use the randomness of the key and ciphertext encodings of
the original scheme, the transformation can also be formulated in the predicate
encodings framework [48,26], and its security follows from the similarity between
the perfectly master-key hiding and α-privacy—the security notion for predicate
encodings [7].

4.3 Decomposability of the ciphertexts

The resulting extended-predicate encryption scheme is decomposable (and even
special decomposable):

CT(x,x′) = (M · e(g, h)αs︸ ︷︷ ︸
CTM

, gs︸︷︷︸
CT1

, gc(s,b,x)︸ ︷︷ ︸
CT2,x

, gs(b
′
0+x′b′1)︸ ︷︷ ︸

CT3,x′

),

and can be easily transformed in a KEM by removing CTM and setting K =
e(g, h)αs. For a fixed master public key MPK, the key K is then uniquely defined
by CT1 and vice versa, and CT1 is generated uniformly at random. For x̂′ ̸=
x′, we have that gs(b

′
0+x̂′b′1) ̸= gs(b

′
0+x′b′1). We can also define a different split,

e.g., CT1 = gs and push the rest of gs in CT2,x. Note that, if one chooses to
encapsulate some randomly generated symmetric key K = M , then M ·e(g, h)αs
should be included in CT1 to ensure that K is uniquely defined by CT1 and
MPK.
9 Due to the strong relationship between the selective symbolic property and selective
security [8,10], it may follow from the selective symbolic property that the AND-
composition of a selectively secure PE and the selectively secure “all-or-one-identity”
IBE is selectively secure.
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Table 2: Comparison of the storage and computational costs of the P-KEM
part of several CCA-secure variants of CGW-IBE and the fully secure variant of
RW13. The storage costs are expressed in bytes and the timings are expressed
in milliseconds. The lowest costs are typeset in bold, and for 100 attributes, we
also include the increase in costs compared to the CPA-secure P-KEM version.
For RWAC, we consider inputs of 1, 10 and 100 attributes. (Note that we use
compressed point representation to minimize the storage costs.)

Variant |MPK| |SKS | |CTA| KeyGen Encrypt Decrypt

CPA 576 448 192 4.10 4.50 1.56

FO 576 1024 480 4.10 4.50 6.06
Ours 672 576 208 6.13 4.50 4.46

(a) CGW-IBE [26], the fully secure and anonymous variant of BB-IBE1 [16]

Variant |MPK| |SKS | |CTA|
1 10 100 Increase 1 10 100 Increase

CPA 768 768 4,224 38,784 - 384 2,976 28,896 -

FO 768 1,536 4,992 39,552 2% 672 3,264 29,184 1%
Del. 768 99,072 102,528 137,088 253% 37,248 39,840 65,760 128%
Ver. 768 768 4,224 38,784 0% 672 3,264 29,184 1%
Ours 960 1,152 4,608 39,168 1% 480 3,072 29,008 0.4%

(b) RWAC, the fully secure variant of RW13 [43] in AC17 [4,10] (storage costs)

Variant
KeyGen Encrypt Decrypt

1 10 100 Increase 1 10 100 Increase 1 10 100 Increase

CPA 8.40 46.2 424 - 6.73 46.6 445 - 3.84 16.6 145 -

FO 8.40 46.2 424 0.4% 6.73 46.6 445 0% 10.6 63.1 590 307%
Del. 1082 1121 1499 255% 573 614 1013 127% 186 200 329 127%
Ver. 8.37 46.0 422 0% 11.1 51.0 449 0.9% 10.5 35.8 292 101%
Ours 12.5 50.1 427 1% 8.21 48.2 448 0.7% 6.0 18.7 148 2%

(c) RWAC, the fully secure variant of RW13 [43] in AC17 [4,10] (computational costs)

5 Performance analysis of concrete constructions

To illustrate the benefits of our transformation with respect to the efficiency
compared to other generic transformation techniques, we analyze the storage
and computational costs of two concrete constructions. On a high level, the
efficiency of the transformation depends on the P-KEM part that encapsulates
the symmetric key, and the other primitives used. For simplicity, we assume that
all transformations considered in the introduction can support KEM variants,
which encapsulate a symmetric key in the P-KEM part and use this key to
symmetrically encrypt the plaintext.
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We analyze the efficiency of the P-KEM part by implementing and bench-
marking the available CCA-transformed versions of two schemes. (We leave out
the KW [39] transformation due to its evident blowup in costs as shown in Sec-
tion 1.2.) The first scheme is CGW-IBE, the anonymous IBE scheme by Chen,
Gay and Wee [26]. The second scheme is RWAC, the fully secure variant [4,10] of
the CP-ABE scheme by Rouselakis and Waters [43]. We provide full descriptions
of the schemes and their CCA-secure variants in Appendices F and G. For CGW-
IBE, we provide a more optimized variant implied by our CCA-secure variant,
which, interestingly, resembles the first Kiltz-Vahlis scheme [38]. For RWAC, we
approximate the efficiency of the FO, delegation and verifiability-based trans-
formations. For FO, we add the encryption costs to the decryption costs (for
same-length inputs). Note that this also includes the public-key storage cost in
the secret key size as this is required for re-encryption. For verifiability-based
transformations, we add one attribute in the ciphertext-policy input, and mul-
tiply the decryption costs by a factor 2. For delegation-based transformations,
we assume that the length of the verification key of the used OTS is at least 128
bits (at the 128-bit security level), and thus, that the key set is extended with
2 · 128 = 256 attributes, and the ciphertext policy with 128 attributes. We have
implemented the schemes in Rust10 using the BLS12-381 crate provided by the
zkCrypto group [51].

Table 2 summarizes the benchmarks obtained by running the code on an
AMD Ryzen 7 3700X CPU, with a frequency of 4.1 GHz. For CGW-IBE, our
keys and ciphertexts are both the smallest. For RWAC, we observe that our ci-
phertexts are generally the smallest, while the keys are only a little larger than
the smallest. For CGW-IBE, we observe that FO key generation is significantly
faster than ours, while our decryption is in turn faster than FO. For RWAC, we
observe that our decryption is by far the most efficient, i.e., at least a factor 2
than all other variants. Furthermore, the key generation and encryption costs
are only milliseconds slower than the most efficient variants. In conclusion, all
transformations except for ours incur a significant trade-off: either attaining a
large overhead in the key or ciphertext sizes, or incurring a very large overhead
in at least one of the algorithms. In contrast, with respect to the decryption algo-
rithm, our transformation outperforms all other transformations, with incredibly
little sacrifice in key generation and encryption efficiency.

6 Future work

Throughout this work, we have mentioned several interesting directions for fu-
ture work. First, because the second step of the transformation can be done
fully generically, it may be used to convert (decomposable) post-quantum PE
as well, e.g., by making an AND-composition of a post-quantum PE and “all-
or-one-identity” IBE. Second, we might be able to obtain even more efficient
transformations by using a selectively secure “all-or-one-identity” IBE (Remark

10 The code is available at https://github.com/leonbotros/pe cca.

https://github.com/leonbotros/pe_cca
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1). Finally, while this work focuses on predicate encryption, it might be appli-
cable to an even larger class of encryption schemes, e.g., functional encryption
[20], which contains PE.

7 Conclusion

We have presented a new two-step approach to achieving CCA-security generi-
cally in PE schemes, which aims to convert PE schemes as efficiently as possible.
Additionally, for each of these steps, we have proposed a new transformation.
For the second-step transformation, we have generalized the ACIK-transform [1],
which can now be applied to any PE scheme that is decomposable and for which
the predicate can be securely extended. Compared to the more generic CHK-
and BK-approaches, ACIK provides less storage overhead and relies on fewer
primitives. For the first-step transformation, we have proposed a new predicate-
extension transformation that can be applied to any pairing-based schemes that
can be captured in the pair and predicate encodings frameworks. Compared to
existing (implicitly-described) predicate-extension techniques, ours is more ef-
ficient. Notably, for CP-ABE, existing such techniques are very inefficient. To
show that our predicate-extension transformation indeed yields interesting im-
provements on existing ones, we have implemented two schemes: CGW-IBE and
RWAC. Especially for RWAC, the results are convincing. For all algorithms, our
transformation incurs only a small constant overhead compared to the CPA-
secure variant. In contrast, all other transformations incur a sizable overhead in
at least one of the algorithms. In fact, our transformation is at least twice as
fast in the decryption algorithm compared to all other transformations.
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A Predicate key encapsulation

In the key-encapsulation variant of predicate encryption (Definition 27), which
we call predicate KEM (P-KEM), we replace Encrypt by Encaps and Decrypt
by Decaps, where Encaps also outputs a symmetric key, and Decaps outputs a
symmetric key instead of a plaintext message. This symmetric key is used to
symmetrically encrypt the data.

Definition 10 (Predicate key-encapsulation mechanism (P-KEM)). A
predicate key-encapsulation mechanism for a predicate family P = {Pκ}κ∈Nc over
a message spaceM = {Mλ}λ∈N consists of four algorithms:

– Setup(λ, par) → (MPK,MSK): On input the security parameter λ and pa-
rameters par, this probabilistic algorithm generates the domain parameters,
the master public key MPK and the master secret key MSK. In addition, κ
is set to κ = (p,par), where p denotes a natural number.

– KeyGen(MSK, y) → SKy: On input the master secret key MSK and some
y ∈ Yκ, this probabilistic algorithm generates a secret key SKy.

– Encaps(MPK, x) → (K,CTx): On input the master public key MPK and
some x ∈ Xκ, this probabilistic algorithm generates an encapsulated sym-
metric key K and a ciphertext CTx.

– Decaps(MPK,SKy,CTx) → K: On input the master public key MPK, the
secret key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it returns the
encapsulated symmetric key K. Otherwise, it returns an error message ⊥.

Correctness. For all par, M ∈Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK,MSK)← Setup(1λ); (K,CTx)← Encaps(MPK, x);

Decaps(MPK,KeyGen(MSK, y)),CTx) ̸= K] ≤ negl(λ).

Full security against chosen-plaintext attacks. The full security model for
P-KEM is defined similarly as that for PE (Definition 2). The crucial difference
between the two is that the goal of the attacker is to distinguish a symmetric
key produced by the encapsulation algorithm from a randomly generated key.

Definition 11 (CPA-security for P-KEM). We define the security game
IND-CPA(λ) between challenger and attacker as follows:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker queries secret keys for y ∈ Y, and obtains
SKy ← KeyGen(MSK, y) in response.

– Challenge phase: The attacker specifies some x∗ ∈ X such that for all
y in the first key query phase, we have P (x∗, y) = 0, and sends these
to the challenger. The challenger first encapsulates a key under x∗, i.e.,
(K∗,CTx∗)← Encaps(MPK, x∗), and then flips a coin β ∈R {0, 1}. If β = 0,
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the key K∗ is replaced by a value that is selected uniformly at random from
the key space. The challenger then sends the resulting encapsulation key K∗

and ciphertext CTx∗ to the attacker.
– Second query phase: This phase is identical to the first query phase, with

the additional restriction that the attacker can only query y ∈ Y such that
P (x∗, y) = 0.

– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvP-KEM,IND-CPA = |Pr[β′ =
β]− 1

2 |. A scheme is fully secure if all polynomial-time attackers have at most a
negligible advantage in this security game, i.e., AdvP-KEM,IND-CPA ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ X
before the Setup phase.

B More efficient transformation from PE to P-KEM

Let ΓPE = (Setup,KeyGen,Encaps,Decaps) be a decomposable predicate en-
cryption scheme for the predicate family P = {Pκ}κ with Pκ : Xκ×Yκ → {0, 1}.
Suppose that the operation on the group in which CTM lives is multiplicative11

and its operator is ·, and in particular, that CTM = M ·rand, where rand is some
random element in the group in which CTM lives. Let id denote the identity in
this group. Then, we can generically define Encaps and Decaps from Encrypt
and Decrypt as follows.

– Encaps(MPK, x): Let (CTM,CT1,CT2,x) ← Encrypt(MPK, x, id). Then,
this algorithm outputs K = CTM as the symmetric key and (CT1,CT2,x) as
the rest of the ciphertext.

– Decaps(MPK,SKy,CTx): This algorithm outputs the decapsulated symmet-
ric key as K′ ← Decrypt(MPK,SKy, (id,CT1,CT2,x))

−1.

The correctness of the P-KEM follows from the correctness of the PE:

Decaps(MPK,SKy,CTx) = Decrypt(MPK,SKy, (id,CT1,CT2,x))
−1

= K ·Decrypt(MPK,SKy, (id ·K,CT1,CT2,x))
−1

= K ·Decrypt(MPK,SKy,Encrypt(MPK, x, id))−1

= K · id−1 = K.

The CPA-security of the P-KEM also follows readily from the PE. LetAP-KEM

be an attacker on the P-KEM, i.e., which can distinguish for a given (K,CT1,
CT2,x) whether K is a symmetric key or K is random. Then, it can be used
to construct an attacker APE for the PE scheme. Suppose (CTM,CT1,CT2,x)
is the challenge ciphertext for M0 or M1. Then, pick β ∈R {0, 1} and send
(K = CTM/Mβ ,CT1,CT2,x) to attacker AP-KEM. If it outputs that K is a sym-
metric key, then attacker APE outputs β as the guess, and otherwise, it outputs
1− β as the guess. The advantage of AP-KEM is equal to the advantage of APE.

11 Something similar works for other algebraic groups such as additive groups as well.
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C Pair encodings

Notation. We denote a : A to substitute variable a by a matrix or vector A.
We define 1i,j ∈ Zd1×d2

p as the matrix with 1 in the i-th row and j-th column,

and 0 everywhere else, and similarly 1i and 1
⊺
i as the row and column vectors

with 1 in the i-th entry and 0 everywhere else.

C.1 Pair encoding schemes

We give the definitions of pair encoding schemes, and their associated security
notions: selective and co-selective symbolic properties.

Definition 12 (Pair encoding schemes (PES) [4]). A pair encoding scheme
for a predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ = (p,par), where
par specifies some parameters, is given by four deterministic polynomial-time
algorithms as described below.

– Param(par) → n: On input par, the algorithm outputs n ∈ N that specifies
the number of common variables, which are denoted as b = (b1, ..., bn).

– EncKey(y, p) → (m1,m2,k(r, r̂,b)): On input p ∈ N and y ∈ Yκ, this algo-
rithm outputs a vector of polynomials k = (k1, ..., km3

) defined over non-lone
variables r = (r1, ..., rm1

) and lone variables r̂ = (r̂1, ..., r̂m2
). Specifically,

the polynomial ki is expressed as

ki = δiα+
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.
– EncCt(x, p) → (w1, w2, c(s, ŝ,b)): On input p ∈ N and x ∈ Xκ, this algo-

rithm outputs a vector of polynomials c = (c1, ..., cw3
) defined over non-lone

variables s = (s, s2, ..., sw1
) and lone variables ŝ = (ŝ1, ..., ŝw2

). Specifically,
the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.
– Pair(x, y, p) → (E,E): On input p, x, and y, this algorithm outputs two

matrices E and E of sizes (w1 + 1)×m3 and w3 ×m1, respectively.

A PES is correct for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, it holds that

sEk⊺ + cEr⊺ = αs.

The symbolic property is a powerful security notion for PESs that applies to
a large class of predicate encryption schemes.
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Definition 13 (Symbolic property (Sym-Prop+) [4,10]). A pair encoding
scheme Γ = (Param, EncKey, EncCt, Pair) for a predicate family Pκ : Xκ ×
Yκ → {0, 1} satisfies the (d1, d2)-selective symbolic property for positive integers
d1 and d2 if there exist deterministic polynomial-time algorithms EncB, EncS,
and EncR such that for all κ = (p,par), x ∈ Xκ and y ∈ Yκ with Pκ(x, y) = 0,
we have

– EncB(x)→ B1, ...,Bn ∈ Zd1×d2
p ;

– EncR(x, y)→ r1, ..., rm1 ∈ Zd1
p ,a, r̂1, ..., r̂m2 ∈ Zd2

p ;

– EncS(x)→ s0, ..., sw1
∈ Zd2

p , ŝ1, ..., ŝw2
∈ Zd1

p ;

such that ⟨s0,a⟩ ≠ 0 and a = (1,0d2−1), and if we substitute

ŝi′ : ŝ
⊺
i′ sibj : Bjs

⊺
i α : a r̂k′ : r̂k′ rkbj : rkBj ,

for i ∈ [w1], i
′ ∈ [w2], j ∈ [n], k ∈ [m1], k

′ ∈ [m2] in all the polynomials of k and
c (output by EncKey and EncCt, respectively), they evaluate to 0.

Similarly, a pair encoding scheme satisfies the (d1, d2)-co-selective symbolic
security property if there exist EncB,EncR,EncS that satisfy the above properties
but where EncB and EncR only take y as input, and EncS takes x and y as input.

A scheme satisfies the (d1, d2)-symbolic property if it satisfies the (d′1, d
′
2)-

selective and (d′′1 , d
′′
2)-co-selective properties for d′1, d

′′
1 ≤ d1 and d′2, d

′′
2 ≤ d2.

Agrawal and Chase [4] prove that any PES satisfying the (d1, d2)-symbolic
property can be transformed in a fully secure predicate encryption scheme. The
resulting schemes are proven secure under a q-type assumption, which is a secu-
rity assumption that becomes stronger as some parameter q grows.

In some works [8,9], the information-theoretic security notion of perfectly
master-key hiding is used to achieve security under non-parametrized assump-
tions such as the symmetric external Diffie-Hellman (SXDH).

Definition 14 (Perfectly master-key hiding (PMH) [9]). A pair encoding
scheme Γ = (Param, EncKey, EncCt, Pair) for a predicate family Pκ : Xκ ×
Yκ → {0, 1} is perfectly master-key hiding if, for all κ = (p,par), x ∈ Xκ and
y ∈ Yκ with Pκ(x, y) = 0, we have that the following distributions are identical:

{k(α, r, r̂,b, y), c(s, ŝ,b, x)} and {k(0, r, r̂,b, y), c(s, ŝ,b, x)},

where all variables α, r, r̂, s, ŝ,b are taken uniformly at random from Zp.

Attrapadung [9] proves that any pair encoding scheme that is perfectly
master-key hiding can be converted to a fully secure predicate encryption scheme.
The resulting scheme is then secure under a static assumption such as SXDH.

C.2 Transformation for pair encodings

We define the transformation in Section 4 for pair encodings as follows.
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Definition 15 (PredEx-Trans for PES). Let Γ be a PES for predicate P .
Then, we construct a PES for CCA[P ] as follows:

– Param′(par) = Param(par) + 2. The common variables are b′ = (b, b′0, b
′
1),

where b are the common variables of Γ .
– EncKey′((y, y′), p). Let y ∈ Yκ and y′ ∈ Zp ∪ {∗}, and generate α1 ∈R Zp,

and set α2 = α− α1. Then, compute k(1)(α, r(1), r̂(1),b, y)← EncKey(y, p),
and replace each occurrence of α by α1, yielding k(2)(α1, r

(1), r̂(1),b, y). Ad-
ditionally, compute

k(3)(α2, r
(1), r̂(1),b′, y′) =

{
(α2 + r1(b

′
0 + y′b′1)), for y′ ∈ Zp

(α2 + r1b
′
0, r1b

′
1)), for y′ = ∗.

Output k(α, r, r̂,b′, (y, y′)) = (k(2),k(3)), where r = r(1), and r̂ = (α1, r̂
(1)).

– EncCt′((x, x′), p). Let x ∈ Xκ and x′ ∈ Zp. Compute c′ = c′(s, ŝ,b, x) ←
EncCt(x, p). Output c(s, ŝ,b′, (x, x′))← (c′, s(b′0 + x′b′1)).

Pair/Correctness. Let (x, x′) ∈ X ′
κ and (y, y′) ∈ Y ′

κ be such that P ′((x, x′),
(y, y′)) = 1. In particular, we have P (x, y) = 1 and either y′ = ∗ or x′ = y′. Let
(E′, Ē′)← Pair(x, y, p), such that sE′(k′

1)
⊺+c′Ē′r⊺ = α1s. If y

′ = ∗, we recover

α2s = s

(
1 x′

0⊺ 0⊺

)
k⊺
2 + (s(b′0 + x′b′1))

(
1 0
)
r⊺.

If y′ ∈ Zp, we recover

α2s = s

(
1
0⊺

)
k⊺
2 + (s(b′0 + x′b′1))

(
1 0
)
r⊺.

Finally, we recover αs = α1s+α2s. Note that the output of Pair′((x, x′), (y, y′))
is (E, Ē), where

E =


(
E′,

(
1 x′

0⊺ 0⊺

))
for y′ = ∗,(

E′,

(
1
0⊺

))
for y′ ∈ Zp,

Ē =

(
Ē′(
1 0
)) .

C.3 The PES-transformation preserves symbolic security

Theorem 2. Suppose that Γ satisfies (d1, d2)-Sym-Prop+. Then, Γ ′ = PredEx-
Trans(Γ ) for CCA[P ] satisfies (d1 + 1, 2d2)-Sym-Prop+.

Proof. We show that the PES satisfies both the selective and co-selective sym-
bolic properties. We define the partial predicate P̄κ such that P̄κ(x

′, y′) = 1 if and
only if x′ = y′ or y′ = ∗. Suppose that (x, x′) ∈ X ′

κ and (y, y′) ∈ Y ′
κ are such that

P ′
κ((x, x

′), (y, y′)) = 0. This means that Pκ(x, y) = 0 or x′ ̸= y′ (with y′ ∈ Zp)
holds (or both). (Note that, if y′ = ∗, then we necessarily have Pκ(x, y) = 0.)
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In particular, EncB, EncR, and EncS output matrix/vector substitutions for
the variables α, b, r, r̂, s = (s, s1, ...) and ŝ, i.e., a,B(1), r(1), r̂(1), s(1), and ŝ(1)

(which are vectors of matrices/vectors). For these substitutions, it holds that, if
Pκ(x, y) = 0, then the polynomials in the encodings evaluate to 0.

– The selective symbolic property: First, we show that the selective sym-
bolic property holds. We use the substitutions of Γ for the selective symbolic
property to substitute the variables and polynomials of Γ ′ as follows:

bi :

(
B

(1)
i

0

)
, b′0 : − x′1d1+1,1, b′1 : 1d1+1,1,

r1 :

(
βr

(1)
1 ,

β′(1− β)

x′ − y′

)
if y′ ∈ Zp, r1 :

(
βr

(1)
1 , 0

)
if y = ∗,

ri′ : (βr
(1)
i′ , 0), r̂i(2) : βr̂

(1)

i(2)
,

α : a, α1 : (β,0)

s : s
(1)
0 , sj : s

(1)
j , ŝj′ : (s

(1)
j′ , 0),

for all i ∈ [n], i′ ∈ [2,m1], i
(2) ∈ [m2], j ∈ [0, w1], j

′ ∈ [w2], where β =

1−Pκ(x, y) and β′ = 1−P̄κ(x
′, y′). Note that β′(1−β)

x′−y′ is well-defined, because

if y′ = x′, then β′ = 0. Note that we indeed have a · s0(1) ̸= 0, because Γ
satisfies Sym-Prop+.
We show that, for these substitutions, the polynomials evaluate to 0. We have
k = (k(2),k(3)) and c = (c′, s(b′0 + x′b′1)), where the polynomials in c′ and
k(2) in which α1 does not occur evaluate to 0 due to the selective symbolic
property of Γ . The polynomials k′ in which α1 does occur can be written as
k′(α1) = δ′α1 + k′′, where δ′ ∈ Zp and k′′ is a polynomial in which α1 does
not occur. If Pκ(x, y) = 1, then β = 0 and P̄κ(x

′, y′) = 0, and thus, r and r̂
are all-zero, except possibly the last entry of r1, which may be 1

x′−y′ . Since

the only common variables that occur in k′′ are bi, which are substituted by
matrices in which the last rows are all-zero, all combinations ribj evaluate
to 0. Furthermore, α1 = 0, and therefore k′(α1) = 0. On the other hand, if
Pκ(x, y) = 0, then β = 1, and all combinations of ribj are substituted as in

Γ itself: ribj = (r
(1)
i , rd1+1)

(
B

(1)
j

0

)
= r

(1)
i B

(1)
j . And, because in this case,

the substitutions for α and α1 are equal, we have k′(α1) = k′(α) = 0.
For the “new” polynomials in k(3) and s(b′0 + x′b′1), we may need to con-
sider whether y′ ∈ Zp or y′ = ∗. In general, we have s(b′0 + x′b′1) =

s
(1)
1 (−x′1d1+1,1 + x′E1d1+1,1) = 0. For k(3), and y′ ∈ Zp, we have:

α2 + r1(b
′
0 + y′b′1)

= (a, 0)− (β,0) +

(
βr

(1)
1 ,

β′(1− β)

x′ − y′

)
((−x′1d1+1,1 + y′1d1+1,1))

= (1− β,0) +
β′(1− β)

x′ − y′
(−x′ + y′,0).
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If P̄κ(x
′, y′) = 1, then Pκ(x, y) = 0, and thus β = 1. Also, β′ = 0, and

therefore we have α2+ r1(b
′
0+ y′b′1) = 0. Otherwise, P̄κ(x

′, y′) = 0, and thus
β′ = 1. Then, we have α2 + r1(b

′
0 + y′b′1) = (1 − β,0) − (1 − β,0) = 0. For

k(3) and y = ∗, we necessarily have Pκ(x, y) = 0 and thus, β = 1. Then,

α2 + r1b
′
0 = (a, 0)− (β,0) +

(
βr

(1)
1 , 0

)
− x′1d1+1,1 = 0,

and r1b
′
1 =

(
βr

(1)
1 , 0

)
1d1+1,1 = 0.

– The co-selective property: We also show that the co-selective property
holds. We use the substitutions of Γ for the co-selective symbolic property
to substitute the variables and polynomials of Γ ′ as follows:

bi :

(
0d1×d2 B

(1)
i

01×d2 01×d2

)
,

b′0 :

(
0 0 0d2−1 0 0 0d2−1

−1 −y′ 0d2−2 1 y′ 0d2−2

)
, b′1 :

(
0 0 0d2−1 0 0 0d2−1

0 1 0d2−2 0 −1 0d2−2

)
, if y′ ∈ Zp

b′0 : 1
(d1+1)×2d2

d1+1,d2+1 − 1
(d1+1)×2d2

d1+1,1 , and b′1 : 0(d1+1)×2d2 , if y′ = ∗

r1 : (r
(1)
1 , 1), ri′ : (r

(1)
i′ , 0), r̂i(2) :

(
0d2×1

r̂
(1)

i(2)

)
,

α : a⊺, α1 : 12d2

d2+1

s : β

(
s
(1)
0

s
(1)
0

)
+ β′

 1
1

x′−y′

02d2−2

 sj :

(
s
(1)
j

0d2

)
, ŝj′ : (s

(1)
j′ , 0),

for all i ∈ [n], i′ ∈ [2,m1], i
(2) ∈ [m2], j ∈ [0, w1], j

′ ∈ [w2], where β =
1 − Pκ(x, y), and β′ = 1 − P̄κ(x

′, y′). Here, we assume that d2 ≥ 2. Note
that αs ̸= 0, because the first entry of s is non-zero, which holds because not
both β and β′ can be 0 (which would hold only if P ′

κ((x, x
′), (y′, y′)) = 1).

We show that, for these substitutions, the polynomials evaluate to 0. Like in
the selective case, for the polynomials in c′ and k(2), in which α1 does not
occur, it follows readily that the polynomials evaluate to 0. Similarly, for the
polynomials k′ in k(2) in which α1 does occur, we can write these polynomials
as k′(α1) = δ′α1 + k′′, where k′′ =

∑
j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n] δi,j,krjbk.
For the original substitutions in Γ , we have

k′′ = δ′a+
∑

j∈[m2]

δ′′j r̂
(1)
j +

∑
j∈[m1],k∈[n]

δ′′j,kr
(1)
j B

(1)
k = 0

For the “new” substitutions, we have

k′′ = δ′12d2

d2+1 +
∑

j∈[m2]

δi,j

(
0d2×1

r̂
(1)

i(2)

)

+
∑

j∈[m1],k∈[n]

(
δi,j,k(r

(1)
j , (r1)1)

(
0d1×d2 B

(1)
i

01×d2 01×d2

))⊺
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= (0d2 , δ′,0d2−1)⊺ +
∑

j∈[m2]

δi,j

(
0d2×1

r̂
(1)

i(2)

)
+

∑
j∈[m1],k∈[n]

δi,j,k(0
d2 , r

(1)
j B

(1)
k )⊺

=

0d2 ,

δ′a+
∑

j∈[m2]

δi,j r̂
(1)
j +

∑
j∈[m1],k∈[n]

δi,j,kr
(1)
j B

(1)
k

 = 0.

Now, we show for the “new” polynomials k(3) and s(b′0 + x′b′1) evaluate to
0. If y′ ∈ Zp, then we have

s(b′0 + x′b′1) =

β

(
s
(1)
0

s
(1)
0

)
+ β′

 1
1

x′−y′

02d2−2

 (b′0 + x′b1)

=
(
0d1 , β(s

(1)
0 )1(−1 + 1) + (−y′ + y′ + x′ − x′)(s

(1)
0 )2

)
+ (0d1 , β′(−1− y′

x′ − y′
+

x′

x′ − y′
))

= 0d1+1 + (0d1 , β′(−1 + x′ − y′

x′ − y′
)) = 0d1+1,

because either we have x′ = y′ and then, β′ = 0, or we have (−1+ x′−y′

x′−y′ ) = 0.

If y′ = ∗, then we have P̄κ(x
′, y′) = 1 and thus, β′ = 0, and

s(b′0 + x′b′1) = β

(
s
(1)
0

s
(1)
0

)
(1

(d1+1)×2d2

d1+1,d2+1 − 1
(d1+1)×2d2

d1+1,1 + x′0(d1+1)×2d2)

= (0d1 , β(s
(1)
0 )1 − β(s

(1)
0 )1) = 0d1+1.

For k(3) and y′ ∈ Zp, we have

α2 + r1(b
′
0 + y′b′1) = 12d2

1 − 12d2

d2+1 + (r
(1)
1 , 1)(b′0 + y′b′1)

= 12d2
1 − 12d2

d2+1 + (−1,−y′ + y′,0d2−2, 1, y′ − y′,0d2−2)

= 12d2
1 − 12d2

d2+1 − 12d2
1 + 12d2

d2+1 = 02d2 .

For k(3) and y′ = ∗, we have

α2 + r1b
′
0 = 12d2

1 − 12d2

d2+1 + (r
(1)
1 , 1)

(
1
(d1+1)×2d2

d1+1,d2+1 − 1
(d1+1)×2d2

d1+1,1

)
= 12d2

1 − 12d2

d2+1 + 12d2

d2+1 − 12d2
1 = 02d2 ,

and r1b
′
1 = 02d2 .

Thus, Sym-Prop+ holds for Γ ′. ⊓⊔

C.4 The transformation preserves perfectly master-key hiding

Theorem 3. Suppose Γ is perfectly master-key hiding. Then, Γ ′ = PredEx-
Trans(Γ ) for CCA[P ] is also perfectly master-key hiding.
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Proof. Let (x, x′) ∈ X ′
κ and (y, y′) ∈ Y ′

κ be such that P ′
κ((x, x

′), (y, y′)) = 0.
First, we show that, if x′ ̸= y′ and y′ ̸= ∗, we have that α2 is perfectly hidden,
i.e., the distributions

{α2 + r1(b
′
0 + y′b′1), r̂

(1), s(b′0 + x′b′1)} and {r1(b′0 + y′b′1), s(b
′
0 + x′b′1)}

are equal. This follows from the fact that, if x′ ̸= y′, then b′0+ y′b′1 and b′0+x′b′1
are pairwise independent [26]. Furthermore, if P (x, y) = 0, then α1 is perfectly
hidden by the assumption that Γ is perfectly master-key hidden.

Suppose that x′ = y′ or y′ = ∗. Then, α2 = α− α1 is not hidden. To ensure
that α is hidden, we sample some random ᾱ ∈R Zp, which we subtract from α
and α1, i.e., replace α with α′ ← α − ᾱ and α1 with α′

1 ← α1 − ᾱ. Note that
we still have α2 = α′ − α′

1, and thus, this does not change the encodings for x′

and y′. Because P (x, y) = 0, we can switch out α1 for α′
1 in k(2), because α1 is

hidden. Therefore, α is hidden.
Suppose now that P (x, y) = 1. In this case, α1 is not hidden. Then, we

similarly hide α by subtracting randomly generated ᾱ ∈R Zp, i.e., replace α by
α′ ← α−ᾱ. Because x′ ̸= y′ and y′ ̸= ∗, we have that α′

2 = α′−α1 = α−ᾱ−α1 ̸=
α2 is hidden. Thus, α is hidden. ⊓⊔

C.5 Transformation for predicate encodings

Because our transformation for pair encodings re-uses the randomness r and
s in the extension, it can also be applied to predicate encodings [48,26]. In
particular, if r and s are of length 1, then our transformation does not increase
the number of key and ciphertext variables, and thus, the transformation yields
a (new) predicate encoding. By Theorem 3, the predicate encoding satisfies the
α-privacy property, which is similar to the perfectly master-key hiding property
[7]. In fact, the encoding for equality given in [26] is the same as our “all-or-
one-identity” IBE for y′ ∈ Zp. It can be simply adjusted to also include the
encodings for y′ = ∗. We give a proof in Appendix D.2.

D Predicate encodings

D.1 Definition of predicate encodings

Definition 16 (Predicate encodings [48,26]). A Zp-bilinear predicate en-
coding scheme for a predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ =
(p,par), where par specifies some parameters, is given by five deterministic
polynomial-time algorithms (sE, rE, kE, sD, rD), such that, for all κ, the following
properties are satisfied:

– Linearity: For all s(x, y) ∈ Xκ×Yκ, the functions sE(x, ·), rE(y, ·), kE(y, ·),
sD(x, y, ·) and rD(x, y, ·) are Zp-linear.

– Restricted α-reconstruction: For all (x, y) ∈ Xκ×Yκ such that Pκ(x, y) =
1, and for all w ∈ Zn

p :

sD(x, y, sE(x,w)) = rD(x, y, rE(y,w)) and rD(x, y, kE(y, α)) = α.
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– α-privacy: For all (x, y) ∈ Xκ × Yκ such that Pκ(x, y) = 0, and for all
α ∈ Zp, the following distributions are identically distributed:

{x, y, α, sE(x,w), kE(y, α) + rE(y,w)} and {x, y, α, sE(x,w), rE(y,w)},

where w ∈R Zn
p .

D.2 Transformation for predicate encodings

We define the transformation in Section 4 for predicate encodings as follows.

Definition 17 (PredEx-Trans for predicate encodings). Let Γ = (sE, rE, kE,
sD, rD) be a predicate encoding for predicate P . Then, we construct a predicate
encoding for the extended predicate CCA[P ] as follows:

– The length of w′ is increased by three compared to w of Γ : w′ = (w, w′
0, w

′
1, u).

– sE′((x, x′),w′) = (c = sE(x,w), c′ = w′
0 + x′w′

1).
– sD′((x, x′), (y, y′), (c, c′)) = sD(x, y, c) + c′.
– rE′((y, y′),w′) = (k = rE(y,w) + kE(y, u),k′ = rE′′(y′,w′)), where

rE′′(y′,w′) =

{
(−u+ w′

0 + y′w′
1), for y′ ∈ Zp

(−u+ w′
0, w

′
1), for y′ = ∗.

– kE′((y, y′), α) = (0|kE(y,α)|, kE′′(y′, α)), where

kE′′(y′, α)) =

{
(α), for y′ ∈ Zp

(α, 0), for y′ = ∗.

– rD′((x, x′), (y, y′), (k,k′)) = rD(x, y,k) + rD′′(x′, y′,k′), where

rD′′(x′, y′,k′) =

{
1, for y′ ∈ Zp

k′
1 + x′k′

2, for y′ = ∗.

– Restricted α-reconstruction: We have

sD′((x, x′), (y, y), sE′((x, x′),w′)) = sD′((x, x′), (y, y), (sE(x,w)), w′
0 + x′w′

1))

= sD(x, y, sE(x,w))) + w′
0 + x′w′

1,

which is equal to

rD′((x, x′), (y, y), rE′((y, y′),w′)) = rD′((x, x′), (y, y′), (rE(y,w) + kE(y, u),k′))

= rD(x, y, rE(y,w) + kE(y, u)) + rD′′(x′, y′,k′)

= rD(x, y, rE(y,w)) + rD(x, y, kE(y, u))

+

{
−u+ w′

0 + y′w′
1, for y′ ∈ Zp

−u+ w′
0 + x′w′

1, for y′ = ∗.
= sD(x, y, sE(y,w)) + u− u+ w′

0 + x′w′
1.

– α-privacy: The argument is similar as in the case of information-theoretic
pair encoding (Section 3).
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E The transformations preserve attribute-hiding

We show that our transformations preserve the attribute-hiding property [21,36]
(which includes anonymous IBE [23] as a special case). In anonymous/attribute-
hiding PE, the attribute x of the ciphertext is hidden, and cannot be inferred
from the ciphertext either. Intuitively, the reasoning behind why our transforma-
tions preserve this property is simple. Because the extended-predicate function-
ality is independent of the original predicate functionality and does not reveal
any additional information about the original predicate, the transformed scheme
is also anonymous or attribute-hiding. More formally, we prove this by reducing
the anonymity/attribute-hiding security of the resulting scheme to the original
scheme. To this end, we first give a definition of weakly attribute-hiding PE.
Then, we show how a scheme is created from a predicate encoding, and what
the original and resulting scheme looks like.

E.1 Attribute-hiding PE

Definition 18 (Attribute-hiding and fully CPA-secure PE [26]). Let
Γ = (Setup,KeyGen,Encrypt,Decrypt) be a PE scheme for predicate P . We
define the security game IND-CPA-AH(λ,par) between challenger and attacker
as follows:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

– Challenge phase: The attacker specifies some x∗
0, x

∗
1 ∈ Xκ such that for

all y in the first key query phase, we have P (x∗
0, y) = P (x∗

1, y) = 0, and
generates two messages M0 and M1 of equal length inMλ, and sends these
to the challenger. The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts
Mβ under x∗

β, i.e., CTx∗
β
← Encrypt(MPK, x∗

β ,Mβ), and sends the resulting
ciphertext CTx∗

β
to the attacker.

– Second query phase: This phase is identical to the first query phase, with
the additional restriction that the attacker can only query y ∈ Yκ such that
P (x∗

0, y) = P (x∗
1, y) = 0.

– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CPA-AH = |Pr[β′ =
β] − 1

2 |. A scheme is fully secure and attribute-hiding if all polynomial-time
attackers have at most a negligible advantage in this security game, i.e., we have
AdvPE,IND-CPA-AH ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ Xκ

before the Setup phase.

E.2 Generic compiler from dual system groups

Chen, Gay andWee [26] devised a generic compiler that transforms any predicate
encoding into a fully secure PE using dual system groups (DSG) [27] from k-Lin.
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We will consider their specific instantiation for k = 1, i.e., SXDH, which is the
most efficient.

Notation. Given a ∈ Zp, we use [a]1 to denote ga, [a]2 to denote ha and [a]T
to denote e(g, h)a. This extends to vectors and matrices in an obvious way, e.g.,
[(a1, a2, ...)]1 denotes (ga1 , ga2 , ...). We define e([A]1, [B]2) = [A⊺B]T . Let D1

denote the distribution over matrices A =

(
a1
1

)
, where a1 ∈R Zp.

Definition 19 (Generic compiler for DSGs from SXDH [26]). Let Γ =
(sE, rE, kE, sD, rD) be a predicate encoding as in Definition 16.

– Setup(λ): On input the security parameter λ, the PKG first generates domain
parameters (p,G,H,GT , g, h, e). Then, it generates k1, k2 ∈ Zp, A,B ∈ D1,
and for each entry wi in vector w ∈ Zn

p , it generates W ∈R Z2×2
p . It sets

MSK = (k =

(
k1
k2

)
,A,B,W), and outputs the master public key

MPK = (A = e(g, h)k1a1+k2 , [A]1, [B]2, {[W⊺
i A]1, [WiB]2}i∈[n]).

– KeyGen(MSK, y): On input the master secret key MSK and some y ∈ Yκ,
the PKG generates r ∈R Zp, and output

SKy = (K = [Br]2,K
′ = kE(y, [k]2) · rE(y, [W1Br, ...,WnBr]2))

– Encrypt(MPK, x,M): On input the master public key MPK, some x ∈ Xκ

and message M , it generates s ∈R Zp, and outputs

CTx = (C = M ·As,C′ = [As]1,C
′′ = sE(x, [W⊺

1As, ...,W⊺
nAs]1))

– Decrypt(MPK,SKy,CTx): On input the master public key MPK, the secret
key SKy, and the ciphertext CTx, if P (x, y) = 1, then the message can be
obtained as

M ′ = C/ (e(C′, rD(x, y,K′))/e(sD(x, y,C′′),K)) .

E.3 The security proof

Proposition 1. Let Γ = (sE, rE, kE, sD, rD) be a predicate encoding such that
the associated PE scheme Ψ = (Setup,KeyGen,Encrypt,Decrypt) is attribute-
hiding. Then, the PE scheme Ψ ′ associated with the predicate encoding Γ ′ =
(sE′, rE′, kE′, sD′, rD′) that follows with the transformations in Definitions 17
and 9 is also attribute-hiding.

Proof. Let AΨ ′ denote the attacker that can break the attribute-hiding prop-
erty of scheme Ψ ′ with advantage Adv′PE,IND-CPA-AH. We use it to construct an
attacker AΨ that can break the attribute-hiding property of scheme Ψ . Let CΨ ′

and CΨ denote the respective challengers of attackers AΨ ′ and AΨ .
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– Setup phase: Challenger CΨ runs the setup algorithm, returning

MPK = (A = e(g, h)k1a1+k2 , [A]1, [B]2, {[W⊺
i A]1, [WiB]2}i∈[n])

to attacker AΨ . Challenger then selects target-collision resistant hash TCR
and authenticated encryption scheme SE = (EncK,DecK), generatesWn+1,Wn+2,
Wn+3 ∈R Z2×2

p , computes [W⊺
i A]1 and [WiB]2 from [A]1 and [B]2, i.e.

[W⊺
i A]1 =

(
[a1]

w11
1 · [1]w21

1

[a1]
w12
1 · [1]w22

1

)
and [WiB]2 =

(
[b1]

w11
2 · [1]w12

2

[b1]
w21
2 · [1]w22

2

)
,

and returns to attacker AΨ ′ :

MPK′ = (A, [A]1, [B]2, {[W⊺
i A]1, [WiB]2}i∈[n+3]).

– First query phase: For each y ∈ Yκ for which attacker AΨ ′ queries a secret
key, attacker AΨ queries challenger CΨ for a secret key:

SKy = (K = [Br]2,K
′ = kE(y, [k]2) · rE(y, [W1Br, ...,WnBr]2)),

which is used to construct

SK′
y = (K = [Br]2,K

′′ = kE′((y, ∗), [k]2) · rE′((y, ∗), [W1Br, ...,Wn+3Br]2)).

In particular, note that kE′′(∗, [k]2) can be computed trivially from SKy,
and rE′′(∗, [W1Br, ...,Wn+3Br]2) can be computed by using that

[WiBr] =

(
[b1r]

w11
2 · [r]w12

2

[b1r]
w21
2 · [r]w22

2

)
.

– Challenge phase: At some point, attackerAΨ ′ sends a messageM ∈ {0, 1}∗
and two predicates x∗

0, x
∗
1 ∈ Xκ. Attacker AΨ sends x∗

0, x
∗
1 and M ′ ∈R GT to

CΨ , who flips a coin β ∈R {0, 1} and returns

CT∗
x∗
β
= (C = M ′ ·As,C′ = [As]1,C

′′ = sE(x, [W⊺
1As, ...,W⊺

nAs]1)).

This is used to construct

C̄T
∗
x∗
β
= (CT∗

sym,C
′, C̄′′ = sE′((x∗

β , x
′), [W⊺

1As, ...,W⊺
nAs]1),

where CT∗
sym ← EncC/M ′(M), x′ ← TCR([a1s]1), and sE′′(x′, [W⊺

1As, ...,
W⊺

nAs]1) is generated from CT∗
x∗
β
in a similar way as in the key generation:

[W⊺
i As]1 =

(
[a1s]

w11
1 · [s]w21

1

[a1s]
w12
1 · [s]w22

1 .

)
– Second query phase: This phase is identical to the first query phase.
– Decision phase: Attacker AΨ ′ outputs a guess β′ for β, which attacker AΨ

also outputs as its guess.

The advantage AdvPE,IND-CPA-AH of attacker AΨ is equal to the advantage of
attacker AΨ ′ : AdvPE,IND-CPA-AH = Adv′PE,IND-CPA-AH. ⊓⊔
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F An anonymous IBE scheme

F.1 Identity-based encryption

A special case of predicate encryption is identity-based encryption.

Definition 20 (Identity-based encryption (IBE) [45,18]). An identity-
based encryption scheme consists of four algorithms:

– Setup(λ): On input the security parameter λ, this probabilistic algorithm,
performed by the Private Key Generator (PKG), generates the domain pa-
rameters, the master public key MPK and the master secret key MSK. The
master public key and domain parameters are published, while the master
secret key is kept secret by the PKG.

– KeyGen(MSK, ID): On input the master secret key and some identifier ID ∈
{0, 1}∗, this probabilistic algorithm, performed by the PKG, generates a secret
key SKID for identifier ID.

– Encrypt(MPK, ID,M): On input the master public key, identifier ID ∈ {0, 1}∗
and message M , this probabilistic algorithm generates a ciphertext CTID.

– Decrypt(MPK,CTID,SKID′): On input the ciphertext CTID for identifier ID
and secret key SKID′ for identifier ID′, if ID = ID′, then it returns M . Oth-
erwise, it returns an error message ⊥.

F.2 The CGW anonymous IBE scheme

Definition 21 (CGW-IBE [26]). The anonymous identity-based encryption
scheme proposed by Chen, Gay and Wee is defined as follows.

– Setup(λ): On input the security parameter λ, the algorithm generates three
groups G,H,GT of prime order p with generators g ∈ G and h ∈ H, and
chooses a pairing e : G×H→ GT . It also specifies a collision-resistant hash
function H : {0, 1}∗ → Zp. It then generates random ki, ai, bi, w0ij , w1ij ∈R
Zp for all i, j ∈ {1, 2}. It outputs MSK = ({ki, ai, bi, w0ij , w1ij}i,j∈{1,2}) as
the master secret key and publishes the domain parameters (p,G,H,GT ,H)
and the master public key as

MPK = (g, h,A = e(g, h)a1k1+a2k2 ,

A1 = ga1 , A2 = ga2 , {Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}).

– KeyGen(MSK, ID): On input identifier ID ∈ {0, 1}∗, the PKG first hashes
x = H(ID), and then generates random integer r ∈R Zp and computes the
secret key as

SKID = ({Ki = hrbi ,K ′
i = h−ki−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2))}i∈{1,2}).

– Encrypt(MPK, ID,M): Message M ∈ GT is encrypted under identifier ID
by first hashing x = H(ID), then picking random integer s ∈R Zp, and
computing the ciphertext as

CTID =
(
C = M ·As, {Ci = As

i , C
′
i = (W0iW

x
1i)

s}i∈{1,2}
)
.
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– Decrypt(MPK,SKID′ ,CTID): Suppose that ID = ID′, then the ciphertext can
decrypted by computing

M ′ = C · e(C1,K
′
1) · e(C2,K

′
2) · e(C ′

1,K1) · e(C ′
2,K2).

The scheme is correct, i.e., we have

e(C1,K
′
1) · e(C2,K

′
2) =

∏
i∈{1,2}

e(As
i , h

−ki−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2)))

= e(g, h)−s(a1k1+a2k2) · e(g, h)−sr(a1b1w011+a1b2w012+x(a1b1w111+a1b2w112)

·e(g, h)−sr(a2b1w021+a2b2w022+x(a2b1w121+a2b2w122))

= A−s · e(g, h)−srb1(a1w011+a2w021+x(a1w111+a2w121)

·e(g, h)−srb2(a1w012+xa1w112+a2w022+xa2w122)

= A−s · e(C ′
1,K1)

−1 · e(C ′
2,K2)

−1.

Hence, computing

C · e(C1,K
′
1) · e(C2,K

′
2) · e(C ′

1,K1) · e(C ′
2,K2)

= M ·A−s ·A−s · e(C ′
1,K1)

−1 · e(C ′
2,K2)

−1 · e(C ′
1,K1) · e(C ′

2,K2) = M

yields the original plaintext message.

They prove the following:

Proposition 2. The identity-based encryption scheme in Definition 21 is fully
CPA-secure and anonymous.

F.3 Our CCA-transformation for predicate encodings

Definition 22 (CCA-secure CGW15-IBE). The CCA-secure version of the
anonymous identity-based encryption scheme proposed by Chen, Gay and Wee,
obtained by applying our CCA-transformations in Sections 3 and 4 is defined as
follows. (Note that, because the KEM in Definition 21 is special decomposable
and both CT2,x and CT3,x′ are uniquely determined by CT1, we use the variation
in Section 3.3. In this way, we obtain a strict separation between the KEM and
DEM.)

– Setup(λ): On input the security parameter λ, the algorithm generates three
groups G,H,GT of prime order p with generators g ∈ G and h ∈ H, and
chooses a pairing e : G×H→ GT . It also specifies a collision-resistant hash
function H : {0, 1}∗ → Zp, an authenticated symmetric encryption scheme
SE = (EncK,DecK) with K(λ) = GT , and a random-prefix collision-resistant
hash function RPC: {0, 1}λ×G→ Zp. It then generates random ki, ai, bi, w0ij ,
w1ij , w

′
0ij , w

′
1ij , uij ∈R Zp for all i, j ∈ {1, 2}. It outputs MSK = ({ki, ai, bi,
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w0ij , w1ij , w
′
0ij , w

′
1ij , uij}i,j∈{1,2}) as the master secret key and publishes the

domain parameters (p,G,H,GT ,H) and the master public key as

MPK = (g, h,A = e(g, h)a1k1+a2k2 , A1 = ga1 , A2 = ga2 ,

{Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}, {W ′
l,j = ga1w

′
l1j+a2w

′
l2j}j∈{1,2},l∈{0,1}).

– KeyGen(MSK, ID): On input identifier ID ∈ {0, 1}∗, the PKG first hashes
x = H(ID), and then generates random integers r ∈R Zp, sets ki,1 ← b1ui1+
b2ui2 and ki,2 ← ki − b1ui1 − b2ui2, and computes the secret key as

SKID = ({Ki = hrbi ,K ′
i,1 = hki,1−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2)),

K ′
i,2 = hki,2−r(b1w

′
0i1+b2w

′
0i2),K ′′

i,2 = h−r(b1w
′
1i1+b2w

′
1i2)}i∈{1,2}).

– Encrypt(MPK, ID,M): Message M ∈ {0, 1}∗ is encrypted under identifier
ID by first hashing x = H(ID), then picking random integer s ∈R Zp, and
computing the ciphertext as

CTID =
(
CTsym = EncK(M), {Ci = As

i ,

C ′
i,1 = (W0iW

x
1i)

s, C ′
i,2 = (W ′

0iW
′x′

1i )s}i∈{1,2}, k
)
,

where k ∈R {0, 1}λ, x′ ← RPC(k,C1∥C2), and K← As.

– Decrypt(MPK,SKID′ ,CTID): Suppose that ID = ID′, then the ciphertext can
decrypted by computing y′ ← RPC(k,C1∥C2),

K′ = e(C1,K
′
1,1K

′
1,2K

′′y′

1,2 ) · e(C2,K
′
2,1K

′
2,2K

′′y′

2,2 ) · e(C ′
1,1C

′
1,2,K1) · e(C ′

2,1C
′
2,2,K2),

and retrieving M ′ ← DecK′(CTsym).

Corollary 1. The scheme in Definition 22 is CCA-secure and anonymous.

Proof. This follows directly from Theorem 1 and Proposition 1. Note that we
use that the ciphertext part {C ′

i,1 = (W0iW
x
1i)

s, C ′
i,2 = (W ′

0iW
′x′

1i )s}i∈{1,2} is
uniquely defined by C1 and C2. ⊓⊔

This scheme can be further optimized. In particular, for its correctness, we
do not require that Ki,1 and Ki,2, and C ′

i,1 and C ′
i,2 (for i ∈ {1, 2}) are given

separately during key generation and encryption, respectively, for decryption to
work. We also show that we do not need these to be separate for its security
either. First, we define the optimized version of this scheme:

Definition 23 (Optimized CCA-secure CGW-IBE). The optimized CCA-
secure version of the anonymous identity-based encryption scheme proposed by
Chen, Gay and Wee, obtained by applying our CCA-transformations in Sections
3 and 4 is defined as follows.
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– Setup(λ): On input the security parameter λ, the algorithm generates three
groups G,H,GT of prime order p with generators g ∈ G and h ∈ H, and
chooses a pairing e : G×H→ GT . It also specifies a collision-resistant hash
function H : {0, 1}∗ → Zp, an authenticated symmetric encryption scheme
SE = (EncK,DecK) with K(λ) = GT , and a random-prefix collision-resistant
hash function RPC: {0, 1}λ × G → Zp. It then generates random ki, ai, bi,
w0ij , w1ij , w

′
ij ∈R Zp for all i, j ∈ {1, 2}. It outputs MSK = ({ki, ai, bi,

w0ij , w1ij , w
′
ij}i,j∈{1,2}) as the master secret key and publishes the domain

parameters (p,G,H,GT ,H) and the master public key as

MPK = (g, h,A = e(g, h)a1k1+a2k2 , A1 = ga1 , A2 = ga2 ,

{Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}, {W ′
j = ga1w

′
1j+a2w

′
2j}j∈{1,2}).

– KeyGen(MSK, ID): On input identifier ID ∈ {0, 1}∗, the PKG first hashes
x = H(ID), and then generates random integers r ∈R Zp, and computes the
secret key as

SKID = ({Ki = hrbi ,K ′
i,1 = hki−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2)),

K ′
i,2 = h−r(b1w

′
i1+b2w

′
i2)}i∈{1,2}).

– Encrypt(MPK, ID,M): Message M ∈ {0, 1}∗ is encrypted under identifier
ID by first hashing x = H(ID), then picking random integer s ∈R Zp, and
computing the ciphertext as

CTID =
(
CTsym = EncK(M), {Ci = As

i , C
′
i = (W0iW

x
1iW

′x′

i )s}i∈{1,2}, k
)
,

where k ∈R {0, 1}λ, x′ ← RPC(k,C1∥C2), and K← As.
– Decrypt(MPK,SKID′ ,CTID): Suppose that ID = ID′, then the ciphertext can

decrypted by computing y′ ← RPC(k,C1∥C2),

K′ = e(C1,K
′
1,1K

′y′

1,2) · e(C2,K
′
2,1K

′y′

2,2) · e(C ′
1,K1) · e(C ′

2,K2),

and retrieving M ′ ← DecK′(CTsym).

Proposition 3. The scheme in Definition 23 is fully CCA-secure.

Proof. We show this by reducing the CPA-security of the associated EPE variant
of the optimized scheme to the CPA-security of the associated EPE variant of
the basic scheme (which essentially remove the symmetric encryption scheme
from the CCA-secure variants of these schemes).

Let A1 be an attacker that can break the SEPE scheme associated with
the scheme in Definition 23. We construct an attacker A2 that can break the
EPE scheme associated with the scheme in Definition 22. Let C1 and C2 be the
challengers in the games with A1 and A2, respectively.

– Setup phase: In the setup, challenger C2 generates a master public key as
MPK← (g, h,A = e(g, h)a1k1+a2k2 , A1 = ga1 , A2 = ga2 , {Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1},
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{W ′
l,j = ga1w

′
l1j+a2w

′
l2j}j∈{1,2},l∈{0,1}), and sends it to attacker A2. Chal-

lenger C1 sets

MPK← (g, h,A,A1, A2, {W̄0,j = W0,j ·W ′
0,j , W̄1,j = W1,j , W̄

′
j = W ′

1,j}j∈{1,2}),

and sends it to attacker A1.
– First query phase: For each identity ID for which attacker A1 requests a

secret key, we relay the request to challenger C2, who generates

SKID = ({Ki = hrbi ,K ′
i,1 = h−ki,1−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2)),

K ′
i,2 = h−ki,2−r(b1w

′
0i1+b2w

′
0i2),K ′′

i,2 = h−r(b1w
′
1i1+b2w

′
1i2)}i∈{1,2}).

Challenger C1 then sets

SKID = ({Ki, K̄
′
i,1 = K ′

i,1 ·K ′
i,2, K̄

′
i,2 = K ′′

i,2}i∈{1,2}).

– Challenge phase: Attacker A1 sends a challenge identity ID∗ and two mes-
sages M0,M1 to challenger C1, who relays these to challenger C2. The chal-
lenger flips a coin β ∈R {0, 1} and sends back ciphertext

CT∗
ID∗ =

(
C = Mβ ·As, {Ci = As

i ,

C ′
i,1 = (W0iW

x
1i)

s, C ′
i,2 = (W ′

0iW
′x′

1i )s}i∈{1,2}
)
.

Challenger C1 then sends the ciphertext

CT
∗
ID∗ =

(
C, {Ci, C̄

′
i = C ′

i,1 · C ′
i,2}i∈{1,2}

)
to attacker A1.

– Second query phase: This phase is identical to the first query phase.
– Guessing phase: Attacker A1 outputs a guess β′ for β, which attacker A2

also outputs as its guess. ⊓⊔

It also follows quickly (by slightly adjusting the proof of Proposition 1) that
the scheme is anonymous.

Corollary 2. The scheme in Definition 23 is anonymous.

F.4 CCA-security with the FO-transformation

We compare our CCA-transformed variants of CGW-IBE with a CCA-variant
obtained by applying the Fujisaki-Okamoto transform [29,35]. In particular, we
apply the transformation yielding an explicit rejection during the decapsulation
that does not take the ciphertext of the KEM as input to the hash that is used
to derive a symmetric key.

Definition 24 (CCA-secure CGW-IBE with FO (CCA-CGW-IBE-FO)).
The CCA-secure variant of the anonymous identity-based encryption scheme pro-
posed by Chen, Gay and Wee obtained from the FO-transform [35] is defined as
follows.
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– Setup(λ): On input the security parameter λ, the algorithm generates three
groups G,H,GT of prime order p with generators g ∈ G and h ∈ H, and
chooses a pairing e : G×H→ GT . It also specifies a collision-resistant hash
function H : {0, 1}∗ → Zp, a cryptographic hash function G : GT → Zp, a
key derivation function KDF: GT → {0, 1}2λ, and an authenticated en-
cryption scheme SE = (EncK,DecK) with K(λ) = {0, 1}2λ. It then gen-
erates random ki, ai, bi, w0ij , w1ij ∈R Zp for all i, j ∈ {1, 2}. It outputs
MSK = ({ki, ai, bi, w0ij , w1ij}i,j∈{1,2}) as the master secret key and publishes
the domain parameters (p,G,H,GT ,H) and the master public key as

MPK = (g, h,A = e(g, h)a1k1+a2k2 ,

A1 = ga1 , A2 = ga2 , {Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}).

– KeyGen(MSK, ID): On input identifier ID ∈ {0, 1}∗, the PKG first hashes
x = H(ID), and then generates random integer r ∈R Zp and computes the
secret key as

SKID = ({Ki = hrbi ,K ′
i = h−ki−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2))}i∈{1,2}).

– Encrypt(MPK, ID,M): Message M ∈ {0, 1}∗ is encrypted under identifier
ID by first hashing x = H(ID), then picking random M ′ ∈R GT , setting
s← G(M ′), and computing the ciphertext as

CTID ← (CTsym = EncK(M),Encrypt′(MPK, ID,M ′; s)),

where K← KDF(M ′), and

Encrypt′(MPK, ID,M ′; s) =
(
C = M ′ ·As, {Ci = As

i , C
′
i = (W0iW

x
1i)

s}i∈{1,2}
)
.

– Decrypt(MPK,SKID′ ,CTID): Suppose that ID = ID′, then the ciphertext can
decrypted by computing

M ′′ = C · e(C1,K
′
1) · e(C2,K

′
2) · e(C ′

1,K1) · e(C ′
2,K2),

then verifying whether

(C,C1, C2, C
′
1, C

′
2)

?
= Encrypt′(MPK, ID,M ′′;G(M ′′))

holds and, if so, return M ← DecKDF(M ′′)(CTsym).

G A large-universe CP-ABE scheme

G.1 Access structures

Definition 25 (Monotone access structures [12]). Let {a1, ..., an} be a
set of attributes. An access structure is a collection A of non-empty subsets of
{a1, ..., an}. The sets in A are called the authorized sets, and the sets that are
not in A are called the unauthorized sets. An access structure A ⊆ 2{a1,...,an} is
monotone if for all B,C holds: B ∈ A and B ⊆ C, then also C ∈ A.
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We represent access policies A by linear secret sharing scheme (LSSS) ma-
trices, which support monotone span programs [12,34].

Definition 26 (Access structures represented by LSSS matrices [34]).
An access structure can be represented as a pair A = (A, ρ) such that A ∈ Zn1×n2

p

is an LSSS matrix, where n1, n2 ∈ N, and ρ is a function that maps its rows to
attributes in the universe. Then, for some vector with randomly generated entries
v = (s, v2, ..., vn2) ∈ Zn2

p , the i-th secret generated by this matrix is λi = Aiv
⊺,

where Ai denotes the i-th row of A. In particular, if S satisfies A, then there
exist a set of rows Υ = {i ∈ [n1] | ρ(i) ∈ S} and coefficients εi ∈ Zp for all i ∈ Υ
such that

∑
i∈Υ εiAi = (1, 0, ..., 0), and by extension

∑
i∈Υ εiλi = s, holds.

In [40], Lewko and Waters devise a way to convert Boolean formulas into
LSSS matrices. For our implementations, we use strictly ANDs in our policies,
which ensures that the matrix A is a square matrix in which the number of
rows and columns is equal to the length n of the policy, the first row consists
of 1s in the first two entries (and the rest is 0), the last row has −1 in the last
column and the rest all-zero, and the rest of the rows i ∈ [2, n− 1] is of the form
1n
i+1 − 1n

i :

A1 = 1n
1 + 1n

2 Ai = 1n
i+1 − 1n

i An = −1n
n,

for all i ∈ [2, n− 1].

G.2 Ciphertext-policy ABE

Definition 27 (Ciphertext-policy ABE [13]). A ciphertext-policy ABE (CP-
ABE) scheme consists of four algorithms:

– Setup(λ)→ (MPK,MSK): The setup takes as input a security parameter λ,
it outputs the master public-secret key pair (MPK,MSK).

– KeyGen(S,MSK) → SKS : The key generation takes as input a set of at-
tributes S and the master secret key MSK, and outputs a secret key SKS .

– Encrypt(M,A,MPK) → CTA: The encryption takes as input a plaintext
message M , an access policy A and the master public keys MPK. It outputs
a ciphertext CTA.

– Decrypt(CTA,SKS) → M ′: The decryption takes as input the ciphertext
CTA that was encrypted under an access policy A, and a secret key SKS
associated with a set of attributes S. It succeeds and outputs the plaintext
message M ′ if S satisfies A. Otherwise, it aborts.

A scheme is called correct if decryption of a ciphertext with secret key yields the
original plaintext message.

Large-universe ABE. We consider a scheme to be large-universe if it does not
impose bounds on the size of the universe.



46 M. Venema, L. Botros

G.3 The selectively secure variant of RW13

Definition 28 (The RW13 CP-ABE scheme [43]). The ciphertext-policy
attribute-based encryption scheme by Rouselakis and Waters (RW13) [43] is de-
fined as follows.

– Setup(λ): Taking as input the security parameter λ, the setup generates three
groups G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses
a pairing e : G×H → GT . The setup also defines the universe of attributes
U = Zp. It then generates random α, b, b0, b1, b

′ ∈R Zp. It outputs MSK =
(α, b, b0, b1, b

′) as its master secret key and publishes the master public key
as

MPK = (g, h,A = e(g, h)α, B = gb, B0 = gb0 , B1 = gb1 , B′ = gb
′
).

– KeyGen(MSK,S): On input a set of attributes S, the algorithm generates
random integers r, ratt ∈R Zp for each att ∈ S, letting xatt ∈ Zp denote the
representation of att in Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = hr, {K1,att = h−ratt(b1xatt+b0)−rb′ ,K2,att = hratt}att∈S).

– Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ)
with A ∈ Zn1×n2

p and ρ : [n1]→ U by generating random integers s,si,vj ∈R
Zp for all i ∈ [n1] and j ∈ [2, n2], and computes the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = Bλj (B′)sj ,

C2,j =
(
B

ρ(j)
1 B0

)sj
, C3,j = gsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2
)⊺.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈
[1, n1] | ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0).

Then the plaintext M is retrieved by computing

C/

e(C ′,K) · e(
∏
j∈Υ

C
εj
1,j ,K

′)
∏
j∈Υ

(
e(C

εj
2,j ,K2,ρ(j)) · e(C

εj
3,j ,K1,ρ(j))

) .

Note that, in the case of AND-gates, εj ∈ {0, 1}.

G.4 A fully secure variant of RW13

We present a fully secure variant of this scheme, given in the Agrawal-Chase
framework (AC17) [4].

Definition 29 (The fully secure RW13 CP-ABE scheme (RWAC) [4]).
The ciphertext-policy attribute-based encryption scheme by Rouselakis and Wa-
ters (RW13) [43] is defined in the Agrawal-Chase framework, using the prime-
order dual system groups for SXDH in [27], as follows.
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– Setup(λ): Taking as input the security parameter λ, the setup generates three
groups G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses
a pairing e : G×H → GT . The setup also defines the universe of attributes
U = Zp. It then generates random α1, α2, d1, d2, d3, d4, d5, bi, b0,i, b1,i, b

′
i ∈R

Zp for all i ∈ {1, 2, 3}, such that d1d4 ̸= d2d3. It outputs MSK = (α1, α2, d1,
d2, d3, d4, d5, bi, b0,i, b1,i, b

′
i) as its master secret key and publishes the master

public key as

MPK = (g, h,A = e(g, h)α1d1+α2d2 , {gi = gdi , Bi = gb1di+b3di+2 ,

{Bl,i = gbl,1di+bl,3di+2}l∈{0,1}, B
′
i = gb

′
1di+b′3di+2}i∈{1,2}).

– KeyGen(MSK,S): On input a set of attributes S, the algorithm generates
random integers r, ratt ∈R Zp for each att ∈ S, letting xatt ∈ Zp denote the
representation of att in Zp and computes the secret key as

SKS = ({Ki = hαi−rb̄i ,K ′
1 = hrd4d6 ,K ′

2 = h−rd3d6 ,

K1,att,i = h−ratt(b̄1,ixatt+b̄0,i)−rb̄′i ,

K2,att,1 = hrattd4d6 ,K2,att,2 = h−rattd3d6}i∈{1,2},att∈S),

where for l ∈ {0, 1}, we have

d6 =
d5

d1d4 − d2d3
b̄1 = d6(b1d4 − b2d2), b̄2 = d6(−b1d3 + b2d1),

b̄l,1 = d6(bl,1d4 − bl,2d2), b̄l,2 = d6(−bl,1d3 + bl,2d1),

b̄′1 = d6(b
′
1d4 − b′2d2), b̄

′
2 = d6(−b′1d3 + b′2d1).

– Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ)
with A ∈ Zn1×n2

p and ρ : [n1]→ U by generating random integers s,si,vj ∈R
Zp for all i ∈ [n1] and j ∈ [2, n2], and computes the ciphertext as

CTA = (C = M ·As, {C ′
i = gsi , C1,i,j = B

Aj,1s
i g

λj

i (B′
i)

sj ,

C2,i,j =
(
B

ρ(j)
1,i B0,i

)sj
, C3,i,j = g

sj
i }i∈{1,2},j∈[1,n1]),

such that λj denotes the j-th entry of A · (0, v2, ..., vn2
)⊺.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈
[1, n1] | ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0).

Then the plaintext M is retrieved by computing

C/
∏

i∈{1,2}

(
e(C ′

i,Ki) · e(
∏

j∈Υ C
εj
1,i,j ,K

′
i)
∏

j∈Υ

(
e(C

εj
2,i,j ,K2,ρ(j),i) · e(C

εj
3,i,j ,K1,ρ(j),i)

))
.

G.5 Our CCA-transformation for PES

We transform the fully CPA-secure scheme in Definition 29 to a fully CCA-secure
scheme with the transformation for PES in Section 4. Like for the CGW-IBE,
because RWAC is special decomposable, we use the variation in Section 3.3,
which hashes the partial ciphertext CT2,x with the RPC hash.
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Definition 30 (The fully CCA-secure RWAC scheme). The CCA-secure
version obtained with our transformation in Section 4 of RWAC [43,4,10] is
defined as follows.

– Setup(λ): Taking as input the security parameter λ, the setup generates three
groups G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses
a pairing e : G × H → GT . It also specifies a collision-resistant hash func-
tion H : {0, 1}∗ → Zp, an authenticated symmetric encryption scheme SE =
(EncK,DecK) with K(λ) = GT , and a random-prefix collision-resistant hash
function RPC: {0, 1}λ ×G→ Zp. The setup also defines the universe of at-
tributes U = Zp. It then generates random α1, α2, d1, d2, d3, d4, d5, bi, b0,i, b1,i,
b′0,i, b

′
1,i, b

′
i ∈R Zp for all i ∈ {1, 2, 3}, such that d1d4 ̸= d2d3. It outputs

MSK = (α1, α2, d1, d2, d3, d4, d5, bi, b0,i, b1,i, b
′
1,i, b

′
i) as its master secret key

and publishes the master public key as

MPK = (g, h,A = e(g, h)α1d1+α2d2 , {gi = gdi , Bi = gb1di+b3di+2 ,

{Bl,i = gbl,1di+bl,3di+2 , B′
l,i = gb

′
l,1di+b′l,3di+2}l∈{0,1}, B

′
i = gb

′
1di+b′3di+2}i∈{1,2}).

– KeyGen(MSK,S): On input a set of attributes S, the algorithm generates
random integers r, α1,1, α2,1, ratt ∈R Zp for each att ∈ S, sets α1,2 ← α1 −
α1,1 and α2,2 ← α2 − α2,1, letting xatt = H(att) denote the representation
of att in Zp, and computes the secret key as

SKS = ({Ki = hαi,1−rb̄i ,K ′
1 = hrd4d6 ,K ′

2 = h−rd3d6 ,

K
(2)
i = hαi,2−rb̄′0,i ,K

(3)
i = h−rb̄′1,i ,K1,att,i = h−ratt(b̄1,ixatt+b̄0,i)−rb̄′i ,

K2,att,1 = hrattd4d6 ,K2,att,2 = h−rattd3d6}i∈{1,2},att∈S),

where for l ∈ {0, 1}, we have

d6 =
d5

d1d4 − d2d3
b̄1 = d6(b1d4 − b2d2), b̄2 = d6(−b1d3 + b2d1),

b̄l,1 = d6(bl,1d4 − bl,2d2), b̄l,2 = d6(−bl,1d3 + bl,2d1),

b̄′l,1 = d6(b
′
l,1d4 − b′l,2d2), b̄

′
l,2 = d6(−b′l,1d3 + b′l,2d1),

b̄′1 = d6(b
′
1d4 − b′2d2), b̄

′
2 = d6(−b′1d3 + b′2d1).

– Encrypt(M,MPK,A): A message M ∈ {0, 1}∗ is encrypted under A = (A, ρ)
with A ∈ Zn1×n2

p and ρ : [n1]→ U by generating random integers s,sj,vj′ ∈R
Zp for all j ∈ [n1] and j′ ∈ [2, n2], and computes the ciphertext as

CTA = (CTsym = EncK(M), {C ′
i = gsi , C1,i,j = B

Aj,1s
i g

λj

i (B′
i)

sj ,

C2,i,j =
(
B

ρ(j)
1,i B0,i

)sj
, C3,i,j = g

sj
i , C4,i =

(
B′x′

1,iB
′
0,i

)s
}i∈{1,2},j∈[1,n1], k),

such that k ∈ {0, 1}λ,

x′ ← RPC(k, {C ′
i, C1,i,j , C2,i,j , C3,i,j}i∈{1,2},j∈[1,n1]),
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K ← As, and λj denotes the j-th entry of A · (0, v2, ..., vn2
)⊺. Note that,

although we use set notation in the input to the hash, the ciphertext compo-
nents should be concatenated deterministically (in a domain-separated fash-
ion), such that encryption and decryption yield the same output.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈
[1, n1] | ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0).

Then the plaintext M is retrieved by computing

K′ ←
∏

i∈{1,2}

e(C ′
i,KiK

(2)
i (K

(3)
i )y

′
) · e

∏
j∈Υ

C
εj
1,i,j

 · C4,i,K
′
i


·
∏
j∈Υ

(
e(C

εj
2,i,j ,K2,ρ(j),i) · e(C

εj
3,i,j ,K1,ρ(j),i)

) ,

where
y′ ← RPC(k, {C ′

i, C1,i,j , C2,i,j , C3,i,j}i∈{1,2},j∈[1,n1]),

and then obtaining M ′ ← DecK′(CTsym).

G.6 CCA-security with other transformations

We compare the efficiency of the CCA-secure scheme using our transformations
with several other CCA-secure variants of RWAC. In particular, we consider the

– FO-transformation [29] using the techniques in [35];
– YAHK-transformation [49] using the delegatability property;
– YAHK-transformation [49] using the verifiability property.

More generic transformations exist, as mentioned in the introduction, but
these incur similar computational trade-offs. Rather than implementing fully
functional variants of these schemes, we estimate the storage and computational
costs based on the operations required in the algorithms of the transformed
variants. For instance, the FO-transformed variant calls the encryption algo-
rithm during decryption, and the efficiency of the variants using the YAHK-
transformations depends on the efficiency of the chosen OTS. Table 3 estimates
the overhead of all variants, and shows that our transformation yields the fastest
decryption algorithm. In particular, the additional costs are a small constant.
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Table 3: Comparison of the additional storage and computational costs incurred
by the CCA-transformation among several CCA-secure variants of RWAC. We
do not list the symmetric operations, such as hashes, encryptions and MACs.

Variant |MPK| |SKS | |CTA| KeyGen Encrypt Decrypt

FO - sGT + 10sG - - - 10|Υ |cexp,G
Delegatability - 8|vk|sH 6|vk|sG 8|vk|cexp,H 6|vk|cexp,G 2|vk|p
Verifiability - - 6sG - 10cexp,G 2|Υ |p

Ours 4sG 4sH 2sG 4cexp,H 4cexp,G 2cexp,H
Note: cexp,G′ = costs of an exponentiation in G′, sG′ = the size of an element in G′,

p = the costs of a pairing operation, vk = verification key used in YAHK
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