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Abstract. We construct the first actively-secure threshold version of the cryptosystem
based on class groups from the so-called CL framework (Castagnos and Laguillaumie,
2015). We then show how to use our threshold scheme to achieve general secure multiparty
computation (MPC) with only transparent set-up, i.e., with no secret trapdoors involved.
To achieve this, we design a new zero-knowledge protocol for proving multiplicative relations
between encrypted values, so that the zero-knowledge proofs needed to get active security
add only a constant factor overhead. Finally, we explain how to adapt our protocol for the so
called “You-Only-Speak-Once” (YOSO) setting, which is a very promising recent approach
for performing MPC over a blockchain. This is possible because our key generation protocol
is simplified compared to standard approaches and so requires very little interaction. This
allows the adversary to bias the public key, but we show that the resulting cryptosystem is
still secure.

1 Introduction

In secure multiparty computation (MPC), a set of N parties jointly compute an agreed function
on inputs privately held by the parties. For security, we require that the result is correct and that
the only new information revealed is the intended output. This should be true even if up to t
parties are corrupted by an adversary, for some parameter 1 ≤ t < N .

1.1 The CDN Framework

In recent years, we have seen an explosion of results that improve the efficiency of general
MPC protocols. One tool that is featured prominently in many recent works is Threshold
Linearly Homomorphic Encryption (TLHE). In such a scheme there is a common public key pk,
while the secret decryption key is shared among the parties using an appropriate secret-sharing
scheme. It is assumed that we have a secure decryption protocol which on input a ciphertext
c = Enc(pk, m) returns the encrypted message m while revealing nothing else. Furthermore we
assume that messages come from a ring, typically Zn for some natural number n and that we
have corresponding multiplication and exponentiation operations on ciphertexts such that for any
messages a, b and public constant α in the ring, we have

Enc(pk, a) · Enc(pk, b)α = Enc(pk, a + αb).

This set-up, together with a set of appropriate zero-knowledge protocols, allows to implement
MPC for general functions. This idea was first introduced by Cramer et al. in [CDN01]. The
construction is known as the CDN framework because it works for any TLHE scheme, given the
right set of zero-knowledge protocols. These include, for instance, proof of plaintext knowledge for
a given ciphertext. While the required protocols can always be realized using generic techniques
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for zero-knowledge, some cryptosystems, such as Paillier encryption [Pai99], allow very efficient
Σ-protocols for this purpose, such that the overhead required for the proofs is only a constant
factor, compared to simply sending the required ciphertexts.

The CDN framework was defined for honest majority, but it is well-known in the folklore that
it can also easily be adapted to work for dishonest majority, although only security with abort
can then be obtained. In the years following the introduction of CDN, interest in the framework
declined somewhat, for several reasons. For honest majority, it was realized that more efficient
protocols can be obtained from techniques based on secret-sharing. For dishonest majority the
BeDOZa/SPDZ protocols [Ben+11; Dam+12] introduced the idea of pushing the use of the
expensive public key operations into a preprocessing phase where the inputs and function to
compute need not be known. The preprocessing produces correlated randomness (typically so-
called Beaver’s multiplication triples [Bea92]) that is used once the function and inputs are known,
and then, in the on-line phase, only very simple information-theoretic techniques are needed.
The most practical instantiations of SPDZ perform preprocessing using somewhat-homomorphic
Lattice-based encryption [KPR18; BCS19; GLM22]. This works well for relatively small plaintext
spaces, say Fq for a 128-bit prime q, but gets very cumbersome for large q. While the preprocessing
could also be done using the CDN approach based on Paillier encryption, this forces the plaintext
ring to be Zn for an RSA modulus n and this is not a good fit for all applications. In particular,
the modulus, and hence the plaintext domain is not even known before the key generation is done,
whereas other approaches can work for a predefined plaintext ring. Finally, one needs the modulus
to be generated in a trusted way, which either requires a trusted authority or a (notoriously
cumbersome) secure protocol for generating n. In summary, for large plaintext rings, there is a
lack of a satisfactory approach to perform general preprocessing.

1.2 YOSO MPC

Interest in the CDN framework was recently renewed by the introduction of the You Only Speak
Once (YOSO) model for MPC, by Gentry et al. in [Gen+21]. This model assumes a large universe
of M parties, here referred to as servers, that are all willing to help execute a secure computation.
The main idea is to have the secure computation be done by a committee of N servers where
N ≪M , and where the committee will change over time. The goal is to hide from the adversary
who is in the committee. If this can be done, we can hope to do MPC with communication
complexity that scales sublinearly with M , even if the adversary can corrupt, say, just under
M/2 of the servers – since then a randomly chosen but small committee will have honest majority
with large probability.

However, the adversary is most likely able to tell who is in the committee as soon as these
servers start sending messages and could then attack them. Hence the YOSO paradigm: a
committee should only send one round of messages, and then the committee changes. The new
committee will of course need to receive private information, so to realize this, one needs receiver
anonymous communication channels (RACC). One can think of this as a primitive that outputs
N public encryption keys such that the adversary does not know who they belong to (as long as
the owner is not corrupt), and such that the majority of the owners are honest. In [Gen+21] a
construction of RACC was proposed.

The bottleneck in a YOSO protocol is clearly the private communication between committees.
The secret state one needs to maintain should therefore be as small as possible. This means that
secret-sharing based protocols and protocols in the preprocessing model are not well suited for
YOSO, as parties need to remember a large number of shares. In contrast, a protocol following
the CDN paradigm works much better: the only secret state that must be maintained consists of
each party’s share of the secret key. The rest of the state consists of public ciphertexts. This was
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pointed out already in [Gen+21], where a concrete construction was done from the Paillier-based
instantiation of CDN. However, the construction assumed as set-up an honestly generated public
key and a sharing of the secret key for the first committee. Doing key generation for a TLHE
scheme in the YOSO model was left as an open problem.

1.3 Our Contribution

In this work, we consider the class-group based linearly homomorphic encryption scheme from
the so-called CL framework [CL15]. This is an interesting construction because the encryption
scheme can be set up such that it has plaintext space Fq where q can be (almost) any prime.

The main contribution of our work is constructing the first actively-secure threshold version
of the CL crytosystem, together with the relevant threshold key-generation protocol. We also show
how to use our TLHE scheme for general MPC. For this purpose, we design a new zero-knowledge
protocol for proving multiplicative relations between encrypted values, so that the zero-knowledge
proofs needed to get active security add only a constant factor overhead. Finally, we explain
how to adapt our protocol for the YOSO setting, exploiting the fact that our key generation
protocol is simplified compared to standard approaches and so requires very little interaction. The
simplification is of independent interest, as it applies to many El Gamal-style cryptosystems.

We prove security in UC model, and we require only transparent set-up, i.e., we do not need
to assume a trusted party that generates the set-up and must keep some trapdoor information
secret. Essentially, we just need to select the public parameters for the class group and a few
random group elements using public randomness e.g., using a random oracle.

Our protocol follows the CDN paradigm with some adjustments in order to get UC security.
We can then adapt the protocol to the YOSO setting, thus solving the open problem from
[Gen+21]: this can be done following the approach of [Gen+21] but replacing Pailler encryption
by class group-based encryption (which does not require any trusted set-up for key generation). To
implement the distributed key generation, we exploit the fact that encryption in the CL framework
is essentially ElGamal encryption adapted to the class group setting. We can therefore distribute
the key-generation protocol having each player perform a Feldman-style verifiable secret sharing
of their contribution to the key [Fel87]. In the YOSO setting, the shares are encrypted for the
next committee and, thanks to the linear property of the encryption scheme, all the correctly
formed contributions can be added up to form the final (public and secret) key.

However, two technical challenges need to be addressed to make this work: First, while Feldman-
style secret sharing over a group of unknown order has already been done by Rabin [Rab98], we
were not able to transfer the proof of that protocol to our setting1. We solve the problem by
designing a slightly more complicated protocol that we can prove secure under the assumption
that the group order is hard to compute. The second challenge comes from the fact, as pointed
out in [Gen+07], the approach based on Feldman-style secret-sharing allows the adversary to bias
the public key by selecting the contributions of the corrupt players after seeing what the honest
players send. It is then not clear that the resulting encryption scheme is secure. In [Gen+07] the
problem is solved by designing a different protocol that guarantees a uniform public key, but this
protocol is more complex, requires several rounds and is not suitable for the YOSO setting. We
show instead that our encryption scheme is still CPA secure, even if the public key is biased in
the way our protocol allows. The observation behind this result applies to several variants of
ElGamal encryption and may therefore be of independent interest. We note that in [Gen+07], it
was shown that a biased public key is good enough for some signature schemes, but the problem
for encryption schemes was left open.
1 We describe the issue in detail in Appendix C.

3



Our protocol can be generalized for the dishonest-majority setting, e.g., using the SPDZ
paradigm. This is not so interesting in a YOSO context, however, it allows using any Fq (where q
is a large prime) as plaintext ring, and as explained above, this can be an advantage over previous
approaches for large q.

1.4 Other Related Work

Class groups have been used as tool to achieve transparent setups for other cryptographic primitives
including: verifiable delay functions [Wes19; Pie19; BBF18], SNARKS [Aru+22], pseudorandom
correlation functions [Abr+22], and much more. Very recently, in work concurrent with ours
[KRY22], Kolby et al. also suggest to use homomorphic encryption based on class groups in
the YOSO context. The work in [KRY22] does not construct a TLHE scheme nor a YOSO key
generation protocol. Instead, they assign a key pair from the basic scheme to each committee
member and instruct committee members to send to the next committee by secret sharing their
data and encrypting the shares for the receivers. This does achieve general MPC in YOSO without
set-up, but this comes at a price: the amount of data that must be privately passed between
committees is proportional to the size of the circuit being computed. In contrast, in a solution
using a TLHE scheme, one can pass information by posting public ciphertexts encrypted under
the global public key, and the data will then be accessible to any committee that has shares of
the private key. Hence, these shares is the only data we need to maintain. In [EFR21], Erwig
et al. present a threshold cryptosystem for the YOSO setting based on the discrete logarithm
problem in prime order groups.

Recently, in concurrent and independent work, Castagnos et al. [CLT22] created a threshold
linearly homomorphic encryption scheme with Z2k as plaintext space using a new variant of the
CL framework. While this enables new applications where arithmetic modulo a 2-power is needed,
the construction requires a class group where the discriminant is an RSA modulus whose factors
must not be known to the adversary. So this scheme does not allow transparent set-up.

1.5 Technical Overview

As mentioned, we start from the CL cryptosystem as suggested in [CL15] and further investigated
in [CLT18; Cas+19; Cas+20]. The cryptosystem is based on (subgroup of) a class group G = F×H
where F has known order q and the order of H is hard to compute. Such a group is specified by
choosing initially a public number called the discriminant. This number is sampled transparently,
no hidden factorization is required.

A public key is a pair pk = (g, h) of elements in H, where the secret key is the discrete log of
h base g. An encryption of m ∈ Fq with randomness r is of the form Enc(pk, m; r) = (gr, fmhr),
where f ∈ F is a generator of F or order q, and where in addition discrete logs base f are easy to
compute. Decryption and the homomorphic properties follow almost immediately. CPA security
follows from an appropriate assumption on subgroup indistinguishability. For the application of
this system to MPC, there are a number of technical challenges to overcome:

Zero-Knowledge Protocols An efficient zero-knowledge protocol for proof of plaintext knowl-
edge was already suggested in [Cas+20]. In addition, we need a protocol for the following
setting: given ciphertext c = Enc(pk, a), a party P can choose b, compute d = Enc(pk, b) and
e = cb · Enc(pk, 0) = Enc(pk, a · b) and prove in zero-knowledge that d and e were correctly
computed. Since e = cb · Enc(pk, 0) and b also appears in the exponent in Enc(pk, b), it turns out
we can use a Schnorr-style Σ-protocol to prove this relation [CDS94].
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Usually, one would want these protocols to have standard knowledge soundness, and it is
well known that aiming for constant factor overhead protocols in groups of unknown order leads
to technical difficulties. We therefore take a close look at the soundness property we need for
our MPC protocol. It turns out to be sufficient that an adversarially generated ciphertext is
proved to be well formed, and that we can extract the plaintext from the proof. This is weaker
than full knowledge soundness that would also require us to extract the ciphertext’s randomness
from the proof. It then turns out that we can prove the soundness property we need under the
sole assumption that the order of the group we work in is “rough”, i.e., it has only large prime
factors in its order. This is not necessarily true for class groups in general, but we introduce a
new computational assumption stating that discriminants for class groups with rough order are
indistinguishable from discriminants in general. This is then the only assumption we need for
soundness, and it allows a much cleaner design and analysis of the zero-knowledge protocols.
We emphasize that this is a new and not yet well studied assumption. However, at the cost of
more complicated protocols and analysis, we could instead use the more well-known strong root
assumption.

Threshold CL Encryption For the threshold version of the scheme, and the key generation,
we use the natural approach of secret-sharing the private key using an integer version of Shamir
secret-sharing. We need the integer version since no one can reduce modulo the order of the group.
This allows us to do decryption by interpolation in the exponent. For key generation, the basic
idea is also natural: each player Pi chooses a random exponent si and does a verifiable secret
sharing of si. Based on this, the players can compute shares of the secret key s =

∑
i si, while

the public key becomes h =
∏

i gsi . Here, the sum is only over those players that did the VSS
correctly. However, as shown in [Gen+07], the adversary can bias the public key to some extent
and this may be a problem for security. We get around this by first showing that the adversary’s
influence is equivalent to a modified CPA game where the adversary is first shown a public key
pk, then they select a number δ, and the final public key is then pk′ = pk · gδ; the CPA game
now continues as usual with pk′ as the public key. Next, we show that for the cryptosystem in
question, if an adversary can win this modified CPA game, it can also win the standard CPA
game.

2 Preliminaries

2.1 Notation

The following shorthands are used to describe ranges of integers: [n] := {1, . . . , n}, [a, b] :=
{a, . . . , b}, and [a, b) := {a, . . . , b − 1}. We use a computational security parameter λ and a
statistical security parameter σ. Our protocols are defined for N parties P1, . . . , PN out of whom
up to t parties can be corrupted. We use C and H to denote the subsets of corrupted and honest
parties, respectively. We frequently use ∆ := N ! = 1 · 2 · · ·N .

2.2 The CL Framework for Unknown Order Groups

The framework was introduced by Castagnos et al. [CL15], and enhanced in [CLT18; Cas+19;
Cas+20]. The following description is based on [Cas+19, Def. 4] and [Tuc20].
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Group Structure The framework specifies two algorithms, CLGen and CLSolve. CLGen takes a
computational security parameter 1λ and a prime q > 2λ, and outputs a tuple (q, s̄, f, gq, Ĝ, F ; ρ)←
CLGen(1λ, q), where ρ denotes the randomness used by CLGen.2 Here, (Ĝ, ·) is a finite abelian

group of order n̂ := q · ŝ. The factor ŝ remains unknown, but we are given an upper bound s̄ ≥ ŝ.
Moreover gcd(q, ŝ) = 1, and the size of ŝ depends on the security parameter λ. Taking the qth
powers gives us the subgroup Ĝq ⊂ Ĝ, and F = ⟨f⟩ ⊂ Ĝ is the unique subgroup of order q.
Hence, Ĝ factors as Ĝ ≃ Ĝq × F . While Ĝ acts as base group, we are more interested in the
cyclic subgroup G ⊂ Ĝ of order n := q · s. Whereas elements of Ĝ are efficiently recognizable,
this does not hold for elements of G ⊂ Ĝ. Again, Gq = ⟨gq⟩ denotes the (cyclic) subgroup of
qth powers, and G factors as G ≃ Gq × F with g := gq · f being a generator of G. Given the
output of CLGen, the second algorithm CLSolve deterministically and efficiently solves the discrete
logarithm problem in the subgroup F .

Distributions Protocols in the CL framework make use of distributions D and Dq over the
integers, such that {gx | x← D} and {gx

q | x← Dq} induce almost uniform distributions over G
and Gq, respectively. E.g., D can be instantiated by sampling a uniform integer from the interval
{0, . . . , qs̄/(4δ)− 1}. Then {gx | x← D} is δ-close, i.e., has statistical distance at most δ, to the
uniform distribution over G [Tuc20, S. 3.1.3]. To get a statistical distance of at most 2−σ, we can
set the upper bound of the interval to qs̄ · 2σ−2 − 1.

Assumptions We make use of the well-known unknown order assumption (ORD) for class
groups stating that it is hard to find a multiple of ord(h) for any h ∈ (Ĝ \ F ).

Definition 1 (Unknown Order Assumption [Cou+21]). Let λ be a security parame-
ter, |q| ≥ λ prime, and A be a PPT algorithm. The experiment generates public parameters
ppcl := (q, s̄, f, gq, Ĝ, F ; ρ)← CLGen(1λ, q). It then runs A(ppcl, CLSolve(·)). We say A solves the
unknown order (ORD) problem if it outputs a group element h ∈ (Ĝ \ F )3 and an integer e ̸= 0
such that he = 1, and define its advantage AdvORD

A as its success probability. We say the ORD
assumption holds if AdvORD

A is negligible in λ for all PPT algorithms A.

We also use the hard subgroup membership assumption (HSM) by [CLT18] which says
random elements of G and Ĝq are indistinguishable.

Definition 2 (Hard Subgroup Membership Assumption [CLT18]). Let λ be a security
parameter, |q| ≥ λ prime, and A be a PPT algorithm. The experiment generates public parameters
ppcl := (q, s̄, f, gq, Ĝ, F ; ρ) ← CLGen(1λ, q), samples x ← D, x′ ← Dq, and b ∈R {0, 1}. It
sets Z0 := gx and Z1 := gx′

q , and runs b∗ ← A(ppcl, Zb, CLSolve(·)).We say A solves the hard
subgroup membership (HSM) problem if it outputs b∗ = b, and define its advantage AdvHSM

A as
its success probability. We say the HSM assumption holds if AdvHSM

A is negligible in λ for all
PPT algorithms A.

The next assumption says that class groups with no small prime factors in their order are
indistinguishable from class groups in general.

2 [Cas+20, Sec. 3.2] remarks that the randomness used in their instantiation of CLGen is not crucial for
security, but traditionally random discriminants are used for class-group-based crypto. Hence, we can
use publicly known randomness ρ ∈ {0, 1}λ.

3 This can by easily verified by checking hq ̸= 1.
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Definition 3 (Rough Order Assumption). Let λ be a security parameter, |q| ≥ λ prime,
C ∈ N, and A be a PPT algorithm. Define Drough

C to be the uniform distribution over the set {ρ ∈
{0, 1}λ | (q, s̄, f, gq, Ĝ, F ; ρ) ← CLGen(1λ, q; ρ) ∧ ∀ prime p < C : p ∤ ord(Ĝ)}, The experiment
samples ρ0 ∈R {0, 1}λ, ρ1 ← Drough

C , and b ∈R {0, 1}, and runs b∗ ← A(1λ, ρb, CLSolve(·)). We
say A solves the C-rough order (ROC) problem if it outputs b∗ = b. We define its advantage
AdvROC

A as its success probability. We say the ROC assumption holds if AdvROC

A is negligible in λ
for all PPT algorithms A.

This is a new assumption, and as such is not yet well studied. Our reasons for believing it is
plausible are as follows: except for 2-powers, we do not know how to compute any non-trivial
information on class group orders despite many years of research. Furthermore, Cohen and Lenstra
[CL84] give heuristic arguments indicating that the fraction of discriminants less than some bound
B for which a prime p divides the order of the corresponding class group is roughly the same as for
random integers, as long as p is much smaller than B. This can be taken as evidence that random
class group orders behave similarly to random integers w.r.t. the sizes of their prime factors. This
would mean that a significant (and certainly non-negligible) fraction of class groups have C-rough
order, as long as C is small compared to B, which is certainly the case for our parameters. Thus
we are not comparing class groups in general to a vanishingly small (or even empty) subset. This
also means that if our assumption would fail dramatically, so that a distinguisher with advantage
essentially 1 was found, this would actually be great news, as this would allow us to sample class
groups with rough order by trial and error.

Another thing to note is that the challenger in the security game corresponding to the
assumption is not efficient, as we do not know how to sample class groups with C-rough order
efficiently. This means the assumption has to be used with care, as indeed we do: the assumption is
only used in the proof and nothing that would need to be implemented depends on the challenger.
Incidentally, we are not the first to propose such an assumption: the gap-DDH assumption also
has an inefficient challenger [OP01].

Proofs and Arguments in the CL Framework [Cas+19] give a Σ-like protocol to prove
knowledge of plaintext and randomness corresponding to ciphertexts of the HSM-CL encryption
scheme of [CLT18] (see Section 3), that can be simplified to proofs for discrete logarithms. To
allow 2-special soundness in the unknown order setting, these protocols are restricted to binary
challenges and, thus, need to be repeated to obtain a negligible soundness error.

In [Cas+20], the authors overcome this efficiency issue by basing the soundness on computa-
tional assumptions. Even with a large challenge spaces they show how to either extract a witness
or to break either the strong root or the low order assumption. Since we only need limited or no
extraction, we base the soundness of our arguments on the ROC assumption instead.

2.3 UC Functionalities

In our protocols, we make use of the following basic UC functionalities. FRand is a functionality
that on input (Rand, M) samples x ∈R M and returns x to all parties. Since we consider the
honest-majority setting, we can instantiate FRand for many finite sets M without any further
assumptions [BGW88; CCD88]. We also define FCL (Figure 1) that generates and distributes
CL public parameters ppcl. It can be implemented by a call to FRand to generate randomness ρ
followed by locally running ppcl ← CLGen(1λ, q; ρ).
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CL Parameter Generation Functionality FCL

Gen On input (Gen, 1λ, q) from all parties, FCL runs the CL setup algorithm: ppcl ← CLGen(1λ, q).
It stores and outputs the public parameters ppcl = (q, s̄, f, gq, Ĝ, F ; ρ).

Fig. 1. CL Parameter Generation Functionality

3 The Linearly Homomorphic Encrytion Scheme

In [CLT18], Castagnos et al. presented the HSM-CL linearly homomorphic encryption scheme,
which we denote as Πhsm-cl (see Figure 17). It provides IND-CPA security under the HSM
assumption. A public key has the form gskcl

q , where the secret key is sampled as skcl ← Dq. A
message m ∈ Fq is encrypted with randomness r ← Dq as Enc(pkcl, m; r) = (gr

q , fm · pkr
cl).4

We use ct to denote a ciphertext and overload the · and + operators to denote homomorphic
operations: a · ctx + cty + b denotes a sequence of scalar multiplication, and addition of ciphertexts
and constants without randomization, and a ·r1

R ctx +r2
R cty +r3

R b is the same sequence randomized
with r1, r2, r3 (which we might omit if not explicitly needed).

We need to make some modification to the original HSM-CL encryption scheme Πhsm-cl to
make it work with our protocols and the proof strategy for our MPC protocol. The new procedures
are specified in Figure 2. Starting from the original scheme Πhsm-cl = (Setup, KeyGen, Enc, Dec),
we construct the new encryption scheme Π∗

hsm-cl in two steps:

1. The original KeyGen procedure samples key pairs that are distributed almost-uniformly in Gq.
Our distributed key generation protocol, however, allows the adversary to bias the distribution
of the generated keys, as we will discuss in Section 6. We show that despite this bias the
encryption scheme Π1

hsm-cl := (Setup, BiasedKeyGenA, Enc, Dec) is still secure.
2. The proof strategy for our MPC protocol (given in Section 7) follows [Dam+12] and requires

an encryption scheme with a particular property: There needs to be a second key generation
algorithm that produces lossy public keys. These need to be indistinguishable to normal
public keys, but encryptions under these keys should be statistically indistinguishable to
encryptions of zero. Hence, we define a special key generation algorithm BiasedSpecialKeyGenA

b

that outputs a public key p̃kcl which includes a ciphertext ctP which is an encryption of
b. In the real protocol b = 1 so encryption with SEnc uses the homomorphic property to
multiply the message with ctP . In the proof, when b = 0, a lossy public key is produced
instead. Therefore, encrypting an arbitrary message always results in an encryption of 0.
Moreover, during the generation of ctP the adversary can once more bias the distribution,
which also needs to be handled by the security proof. Our final encryption scheme is defined
as Π∗

hsm-cl := (Setup, BiasedSpecialKeyGenA
1 , SEnc, Dec).

The main result of this section is the following Theorem 1. In the following subsection, we prove
a series of lemmas that, when combined, yield the theorem as a corollary.

Theorem 1 (Security of Π∗
hsm-cl). Under the HSM assumption, Π∗

hsm-cl
1. provides indistinguishability under chosen-plaintext attacks (IND-CPA), and
2. has lossy public keys which are indistinguishable from real public keys.
4 The full specification of the original encryption scheme is given in Appendix A.1.
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BiasedKeyGenA(ppcl)

1. Sample α← Dq

2. Set pk∗
cl := gα

q

3. δ ← A(ppcl, pk∗
cl)

4. skcl := α + δ and pkcl := g
skcl
q = gα+δ

q

5. Output (pkcl, skcl)

SEnc(p̃kcl, m ∈ Fq; r)

1. Parse p̃kcl = (pkcl, ctP ).
2. Output ct := EvalScal(pkcl, ctP , m; r).

BiasedSpecialKeyGenA
b (ppcl) for b ∈ {0, 1}

1. (pkcl, skcl)← BiasedKeyGenA(ppcl)
2. Sample β ← Dq

3. Set ct∗
P := (gβ

q , fb · pkβ
cl)

4. ε← A(ppcl, pkcl, ct∗
P )

5. p̃kcl := (pkcl, (gβ+ε
q , fb · pkβ+ε

cl ))
6. Output (p̃kcl, skcl)

Fig. 2. Modified key generation, and encryption algorithms that allow an adversary A to influence the
distribution of public parameters and public keys in a limited way.

3.1 Handling Biased Keys

Our efficient distributed key generation protocol allows the adversary to bias the distribution
of the keys. We prove that the bias does not affect the security, and exploit the homomorphic
properties to reduce its security to that of Πhsm-cl.

Lemma 2 (IND-CPA Security of Π1
hsm-cl). If Πhsm-cl is indistinguishabile under chosen-

plaintext attacks (IND-CPA) then so is Π1
hsm-cl.

Proof. We prove the claim by showing that any adversary B that wins the IND-CPA game for
Π1

hsm-cl with advantage Advhsm-cl,1
B can be transformed into an adversary A for Πhsm-cl with the

same advantage Advhsm-cl
A = Advhsm-cl,1

B . The reduction is depicted in Figure 18 in Appendix A.2.
Given an adversary B, we create A as follows: Initially A receives public parameters ppcl and a
public key pkcl from the challenger. It gives pkcl to B, which responds with δ. Define the biased
public key pk′

cl := pkcl · gδ
q . This phase corresponds to the BiasedKeyGenB(ppcl) procedure. Then

B selects m0, m1 ∈ Fq, which A forwards to the challenger. The challenger samples b ∈R {0, 1},
encrypts mb and sends the resulting ct = (ct1, ct2) to A. A sends ct′ = (ct′

1, ct′
2) = (ct1, ct2 · ctδ

1)
to B. Finally, B outputs a bit b′ ∈ {0, 1}, and A forwards this output to the challenger.

The challenger creates the ciphertext ct = (gr
q , pkr

cl · fmb), where r denotes the randomness
used during the encryption. We have pk′

cl = pkcl · gδ
q and

ct′ =
(
gr

q , (pkr
cl · fmb) · (gr

q)δ
)

=
(
gr

q , (pkcl · gδ
q)r · fmb

)
=
(
gr

q , (pk′
cl)r · fmb

)
.

Therefore, ct′ is a valid encryption of mb under the biased public key pk′
cl with the same distribution

as it would normally have. Overall, A wins the game iff B answers correctly, which happens with
probability 1/2 + Advhsm-cl,1

B . Hence, the advantage in the case of biased keys is the same as in
the standard scheme.

3.2 Special Public Keys

In Figure 2 we specify the key generation algorithm BiasedSpecialKeyGenA
b parametrized by a bit

b ∈ {0, 1}, where BiasedSpecialKeyGenA
1 produces working public keys and BiasedSpecialKeyGenA

0
produces lossy public keys. Each special public key p̃kcl consists of a normal public key pkcl and a
ciphertext ctP that is an encryption of b ∈ {0, 1}. First we show that working public keys (b = 1)
and lossy public keys (b = 0) produced by BiasedSpecialKeyGenA

b are indistinguishable.
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Lemma 3 (Π∗
hsm-cl has Indistinguishable Lossy Keys). If Π1

hsm-cl is IND-CPA secure, then
Π∗

hsm-cl has lossy public keys which are indistinguishable from real public keys.

Since working and lossy public keys are encryptions of 1 and 0, an efficient distinguisher would
break IND-CPA security of Π1

hsm-cl. The complete proof is given in Appendix A.3. Now we show
that the final encryption scheme Π∗

hsm-cl is actually IND-CPA secure.

Lemma 4 (IND-CPA Security of Π∗
hsm-cl). If Π∗

hsm-cl has indistinguishable lossy public keys
as defined in Lemma 3, then Π∗

hsm-cl provides indistinguishability under chosen-plaintext attacks
(IND-CPA).

IND-CPA security of Π∗
hsm-cl follows from the fact that real keys are indistinguishable from

lossy keys (cf. Lemma A.3), and the fact that when lossy keys are used then the encryptions are
(statistically) independent of the encrypted message. The full proof is given in Appendix A.4.
Now Theorem 1 follows as a corollary of the lemmas in this section.

4 Secret Sharing over the Integers

For our threshold encryption scheme in Section 6, we need a threshold secret sharing scheme to
share a secret key of the Π∗

hsm-cl encryption scheme. Any majority of at least t + 1 > N/2 parties
needs to be able to (implicitly) reconstruct the secret key to decrypt ciphertexts.

Since we work in an unknown order setting, the secret key of Π∗
hsm-cl is an integer and not

a field element. Hence, the standard Shamir’s secret sharing scheme [Sha79] over a finite field
does not work for us: We need a secret sharing scheme that is suitable for sharing integers (from
a bounded interval). Moreover, Lagrange interpolation requires division, but we cannot simply
divide modulo the unknown group order to reconstruct the secret key in the exponent.

Similar problems have appeared in the construction of threshold RSA systems, where the
group order is also unknown unless the factorization of the modulus is revealed [DF92; Fra+97;
Rab98]. It is usually solved by multiplying the Lagrange coefficients with a suitable factor to
eliminate the denominator. We also use a Shamir-style secret sharing scheme over Z with a
polynomial of degree t.

The next challenge is to make sure that the dealer distributes consistent shares that allow
reconstruction of the secret, and that during reconstruction every party publishes the its correct
share. We use a variant of Feldman’s verifiable secret sharing scheme [Fel87] adapted to the our
class group setting in a similar way as [Rab98] for threshold RSA.

4.1 Shamir’s Secret Sharing over Z

Secret Sharing To share a secret from a bounded range α ∈ [0, 2ℓ) with (t + 1)-out-of-N
reconstruction, we could use a random degree-t polynomial f(X) such that f(X) = α and giving
Pi the share yi := f(i) for i ∈ [N ]. First, note that f(i) reveals α mod i. Hence, we share α̃ := α ·∆
instead, where ∆ := N !. Then, we also need to make sure that the random coefficients of f are
sampled from a large enough interval to hide α.

Protocol 1 (Shamir’s Secret Sharing over Z). Let N be the number of parties, t the corruption
threshold, ℓ a bound on the secret size, and σ a statistical security parameter. Moreover, let
ℓ0 ∈ N be a parameter. To share a secret α ∈ [0, 2ℓ) the dealer proceeds as follows:
1. Let α̃ := α ·∆ with ∆ := N !.
2. Sample r = (r1, . . . , rt) ∈R [0, 2ℓ0+σ)t

3. Set f(X) := α̃ + r1 ·X + · · ·+ rt ·Xt.

10



4. Send yi := f(i) over a private channel to party Pi for i ∈ [N ].
We denote this as Share(α, r) when α is shared using the random coins r, and use Sharei(α̃, r) to
denote the share of Pi.

Privacy Statistically no information about the shared secret should be revealed by any set of up
to t shares. We formally define and prove privacy for Protocol 1 in Appendix B.1, similarly to
linear integer secret sharing schemes [CF02; DT06]5.

Integer Reconstruction By Lagrange interpolation, any subset S of at least t + 1 parties can
combine their shares to reconstruct the secret. We have

f(X) =
∑
i∈S

yi · ℓS
i (X) with ℓS

i (X) =
∏

j∈S\{i}

xj −X

xj − xi
. (1)

We also write the Lagrange coefficients at 0 (jointly often referred to as reconstruction vector)
as ℓS

i := ℓS
i (0). Clearly reconstruction also works for integer polynomials f , but the Lagrange

coefficients are not necessarily integers. If we need to reconstruct without division, then we can
multiply Lagrange coefficients by ∆, since ∆ · ℓS

i (X) ∈ Z[X] for all i and S, although we are
reconstructing the value ∆ · f(X) instead of f(X). Hence, we can use Shamir’s secret sharing
over the integers to reconstruct a secret α ·∆2 in the exponent of a group element with unknown
order. Similarly, we can also recover the polynomial itself from a sufficient number of shares. In
Appendix B.2 we show that we can reconstruct ∆ · f by using Z linear combinations of the shares:

Lemma 5 (Reconstruction of Sharing Polynomial). Given t + 1 pairs (xi, yi) ∈ Z2 for
i ∈ [0, t] with x0, . . . , xt ∈ [0, N ] and x0 < x1 < · · · < xt, then we can efficiently compute a
polynomial f(X) =

∑t
i=0 ai ·Xi ∈ Z[X] of degree at most t so that f(xi) = ∆ · yi for i = 0, . . . , t.

Moreover, we can compute the coefficients ai as linear combinations of yi with integer coefficients.

4.2 Feldman VSS

Verifiable Secret Sharing We now adapt Feldman’s verifiable secret sharing scheme [Fel87] to
the class group setting. In [Rab98], Rabin has already provided a variant of this for threshold RSA,
but our techniques are slightly different.6 In the following, we assume that public parameters ppcl
are given together with a designated group element gF ∈ (Ĝ \ F ).

Protocol 2 (Feldman VSS). To share a secret α ∈ [0, 2ℓ), the dealer shares it as (y1, . . . , yN )←
Share(α, r) (see Protocol 1). It sends yi privately to Pi, and additionally, broadcasts values

C0 := gα
F and Ck := g∆·rk

F for k ∈ [t], where ∆ := N !. Party Pi verifies its share yi by checking
that

g∆·yi

F
?= C∆2

0 ·
t∏

k=1
(Ck)(ik) (2)

5 We can see Protocol 1 as a linear integer secret sharing (LISS) [CF02; DT06] variant, with the difference
that we reconstruct α ·∆2 The distribution matrix is a Vandermonde matrix, and the distribution
vector is the vector of coefficients of the polynomial.

6 [Rab98] uses generators g0, g := g∆2
0 of maximal order in Z∗

n and then g as base in the Feldman scheme.
Rabin does not prove the reconstruction property, but claims it follows directly from Feldman’s work.
We cannot reproduce this in our setting and, therefore, use a slightly different construction.
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holds, and broadcasts a complaint otherwise. Moreover, the dealer needs to prove in zero-knowledge
that C0, . . . , Ct ∈ ⟨gF⟩, e.g., by proving knowledge of a discrete logarithms of all Ci to base gF.
During reconstruction, Equation (2) can be used to verify that the parties publish the correct
shares. We use (y1, . . . , yN ; C0, . . . , Ct)← F-Share(α; r; gF) to denote the sharing procedure, and
{⊥,⊤} ← F-Check(i, yi; C0, . . . , Ct; gF) to denote the verification.

We prove that Protocol 2 has the desired reconstruction properties:
Lemma 6 (Feldman Reconstruction). If gcd(∆, ord(gF)) = 1, and under the (ORD) as-
sumption, we have
(i) Given C0, . . . , Ct ∈ ⟨gF⟩, a proof of knowledge of the discrete logarithm of C0, and t + 1 shares

yi1 , . . . , yit+1 such that Equation (2) holds. Then there exists an efficient algorithm which the
parties can use to find (except with negligible probability) a value α ∈ Z such that C0 = gα

F .
(ii) Moreover, any collection of t + 1 shares which pass the check in Equation (2) can be used to

recover the same value α (mod ord(gF)).

Proof. (i) Let h ∈ Q[X] be the unique polynomial of degree at most t such that h(ij) = yij for
j ∈ [t + 1]. Let Lj be the Langrange interpolation coefficients that can be used to reconstruct
h(0) from its values in i1, .., it+1, but multiplied by ∆, so the Lj ’s are integers. We can
efficiently compute the integer ∆h(0) =

∑t+1
j=1 Ljyij

. We will see that this number is divisible
by ∆2, so the reconstruction outputs α = ∆h(0)

∆2 .
To see why this works, note that, by Equation (2), we have

g
∆·h(ij)
F = C∆2

0 ·
t∏

k=1
(Ck)(ik

j ), j ∈ [t + 1]. (⋆)

Let C ′
0 := C∆

0 , but C ′
k := C∆−1

k for k ∈ [t]. Note that ∆−1 in the exponent refers to the inverse
of ∆ modulo the order of gF, which exists by our assumption. Then we get the following

(
g

h(ij)
F

)∆

= g
∆·h(ij)
F

(⋆)= C∆2

0 ·
t∏

k=1
(Ck)(ik

j ) = C ′∆
0 ·

t∏
k=1

(C ′∆
k )(ik

j ) =
(

t∏
k=0

(C ′
k)(ik

j )

)∆

.

By raising both sides to ∆−1 (mod ord(gF)) we obtain g
h(ij)
F =

∏t
k=0(C ′

k)(ik
j ). Now we can

write C ′
k = gγk

F for some γk ∈ Z and k ∈ [0, t], hence, we can write g
h(ij)
F = g

∑t

k=0
γk·(ik

j )
F .

If we define the polynomial h′(X) =
∑

k γkXk, we can rewrite this as g
h(ij)
F = g

h′(ij)
F . This

implies, by interpolation in the exponent using the Lj ’s as coefficients, that

g
∆h(0)
F = g

∆h′(0)
F = g∆γ0

F = (C ′
0)∆ = C∆2

0

From this follows immediately that if ∆h(0) is divisible by ∆2, then the reconstruction works
correctly and retuns α = ∆h(0)

∆2 where gα
F = C0. Assume for contradiction that with non-

negligible probability, it happens that the Dealer’s proofs are accepted, but the reconstruction
finds that ∆h(0) is not divisible by ∆2. Then, from the prover’s proof for C0, we can extract
s such that C0 = gs

F. It now follows that g
∆h(0)
F = C∆2

0 = gs∆2

F , hence ∆h(0) and s∆2 are
congruent modulo ord(gF) but are not the same integer since one is divisible by ∆2 and the
other one is not. Hence ∆h(0)− s∆2 is a solution to the ORD problem.

(ii) By the argument above, it must be α = γ0 (mod ord(gF)). Since γ0 is fixed modulo ord(gF)
given C0, the same goes for α. Suppose, we recover α ̸= α′ ∈ Z from different sets of shares
(note that still α = α′ (mod ord(gF))). Then we have found a solution M := α− α′ ̸= 0 to
the ORD problem.
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Remark 7. Why is the assumption gcd(∆, ord(gF)) sensible? To obtain such a gF, one can raise a
given element g′

F ∈ Ĝ \ F to large enough powers of all primes up to N . This eliminates all small
prime factors in the order of gF. Otherwise, if a base gF ∈ Gq is already given, one can rely on
the RON+1 assumption (Definition 3). This allows us to pretend that gcd(∆, ord(gF)) = 1 holds,
because the adversary cannot distinguish the two cases.

Simulating VSS with Fixed C0 In the simulation of higher level protocols (see Section 6), we
need to fake a Feldman VSS towards the adversary where the checking value C0 cannot be chosen
freely, but needs to be a prescribed value. First, we use Protocol 1 to share an arbitrary value α̃
such that the corrupted parties obtains shares (x1, y1), . . . , (xt, yt) ∈ Z2, We use the following
lemma to find values C1, . . . , Ct ∈ ⟨gF⟩ that matches the adversary’s view:

Lemma 8 (Feldman Simulation). Given C0 ∈ ⟨gF⟩ and (x1, y1), . . . , (xt, yt) ∈ Z2, 1 ≤ x1 <
· · · < xt ≤ N , we can efficiently find C1, . . . , Ct ∈ ⟨gF⟩ such that F-Check(xj , yj ; C0, . . . , Ct, gF) is
satisfied for all (xj , yj), j ∈ [t]. Moreover, the values C1, . . . , Ct ∈ ⟨gF⟩ have, conditioned on C0
and (xj , yj)j∈[t], the same distribution as produced by F-Share.

Proof. Set x0 := 0, and let y′
0 ∈ Z denote the unknown discrete logarithm of C0 such that

C0 := g
y′

0
F . Let y0 := y′

0 ·∆ and write y := (y0 . . . yt).
By Lemma 5 we can reconstruct a polynomial f(X) =

∑t
k=0 ak ·Xk ∈ Z[X] such that f(xi) =

∆ · yi for i ∈ [0, t]. Moreover, there exists an integer matrix W = (wi,j) ∈ Z(t+1)×(t+1) (namely
W = ∆ · V −1

X , where VX is the Vandermonde corresponding to X := {x0, x1, . . . , xt}) such that
a = W ·y. Hence, we can write aj =

∑t
i=0 wj,i ·yi. For k ∈ [t], define Ck := C

∆·wk,0
0 ·

∏t
i=1 g

wk,i·yi

F .
We show that these values satisfy the F-Check equation for all (xi, yi), i ∈ [t]:

C∆2

0 ·
t∏

k=1
(Ck)(xk

i ) = C∆2

0 ·
t∏

k=1

(
C

∆·wk,0
0 ·

t∏
i=1

g
wk,i·yi

F

)(xk
i )

= C∆2

0 ·
t∏

k=1

(
g

∑t

i=0
wk,i·yi

F

)(xk
i )

= g∆·y0
F ·

t∏
k=1

(gak

F )(xk
i ) = g

∆·y0+
∑t

k=1
ak·xk

i

F = g
f(xi)
F = g∆·yi

F .

Since f the unique interpolation polynomial, and we set the Ck according to its coefficients, the
Ck have the correct distribution.

5 Zero-Knowledge

For our protocols we need zero-knowledge arguments for several different relations. First, we need
arguments for the discrete logarithm and equal discrete logarithm relations, RDLog and REqDLog.
These relations are defined with respect to CL public parameters ppcl which we leave implicit in
the notation.

RDLog :=
{

(g, h); x
∣∣ g, h ∈ Ĝ ∧ x ∈ Z ∧ h = gx

}
(3)

REqDLog :=
{

(g1, g2, h1, h2); x
∣∣ ((gi, hi); x) ∈ RDLog for i = 1, 2

}
(4)

We use Πbin
DLog and Πbin

EqDLog to denote the standard Σ protocols for these relations with binary
challenges and parallel repetitions. Then, we also need proofs of plaintext knowledge (PoPK) for
Π∗

hsm-cl ciphertexts, that allow the extraction of the plaintext, as well as proofs of correct multipli-
cation (PoCM). We use Σ-like protocols [Cra97], which can be specified by three PPT algorithms
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(Commit, Respond, Verify) and a challenge space. In the following we consider zero-knowledge ar-
guments of the same shape that satisfy statistical special honest-verifier zero-knowledge (SHVZK)
and completeness for witnesses of a bounded size, as well as computational soundness for language
membership, since in most cases it is not necessary to extract the (full) witness. Formal definitions
are given in Section 5.1. In Section 5.2 we obtain arguments for general relations of class group
elements, and Section 5.3 covers the protocols for Π∗

hsm-cl ciphertexts.

5.1 Definitions

Σ-Protocols A Σ-protocol [Cra97] is a three-move protocol between a prover P and a verifier
V for a witness relation R. The common input are the relation R and a statement x, and P
additionally knows a witness w such that (x, w) ∈ R. We can specify a Σ-protocol by a tuple of
three PPT algorithms (Commit, Respond, Verify) and a challenge space.
1. P computes (stt, com)← Commit(x, w) and sends the “commitment” com.
2. V sends a uniformly sampled challenge chl ∈R [C] from a challenge set [C].
3. P sends a response res← Respond(x, w, stt, chl) to the challenge.
4. V accepts or rejects the proof depending on Verify(x, com, chl, res) ∈ {⊥,⊤}.

Moreover, a Σ-protocol satisfies completeness, 2-special soundness, and special honest-verifier
zero-knowledge. We will use zero-knowledge protocols of this shape, but we will relax the soundness
condition: In the most cases regular soundness for language membership is sufficient, in other
cases, we do not need to extract the full witness. Moreover, we are satisfied with computational
soundness and statistical SHVZK.

Definition 4 (Zero-Knowledge Arguments). A protocol Π = (P,V) that has the shape of a
Σ-protocol (Commit, Respond, Verify) for a witness relation R with witness domain D is
(i) computationally sound if no malicious P∗ can make V accept a false statement x (i.e., there

is no w such that (x, w) ∈ R) with probability non-negligible in λ,
(ii) statistically special honest-verifier zero-knowledge (SHVZK) for D if there exists an algorithm

Simulate that for a statement x and a given challenge chl produces matching (com, res), that
is distributed statistically close (in σ) to real protocol transcripts with chl of (P,V) on input
(x, w) ∈ R where w ∈ D.

(iii) complete for D if in an honest interaction between P and V for (x, w) ∈ R with w ∈ D, V
always accepts.

5.2 ZK Arguments for General Relations

Here we consider proofs for general relations R, which are conjunctions of n statements containing
m secrets:

R =
{

(Yi, Xi)i∈[n]; w
∣∣∣ n∧

i=1

[
Yi =

m∏
j=1

X
wj

i,j

]
∧ all X ∈ Ĝn(m+1) ∧w ∈ Zm

}
. (5)

The statement X := (Yi, Xi)i∈[n] consists of elements of Ĝ either defined by the context, or chosen
by P, and the witness w usually consists of integers from a bounded range wj ∈ [−S, +S]. The
protocols are sound with respect to R, but completeness and SHVZK are only guaranteed for
witnesses from this interval.7
7 For simplicity, we use the same bounds [−S, +S] for each secret, but we could also specify separate

bounds for each secret sj ∈ [−Sj , +Sj ] and sample the randomness rj ∈R [Aj ] s.t. SjC/Aj is negligible
for every j ∈ [m]. This makes the protocol description more complicated, but it would be more efficient
when we have secrets of different sizes.
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For such a relation, we can write the canonical Σ protocol CΣP(R) where A, C ∈ N are
parameters:

– Commit(X, w): Sample stt := (r1, . . . , rm) ∈R [A]m, compute ti :=
∏m

j=1 X
rj

i,j for i ∈ [n], and
output (stt, com := (ti)i∈[n]).

– The challenge is sampled chl ∈R [C].
– Respond(X, w, stt, chl): Compute uj := rj +chl ·wj for j ∈ [m], and output res := (u1, . . . , um).
– Verify(X, com, chl, res): If Yi, Xi,j ∈ Ĝ for i ∈ [n], j ∈ [m], uj ∈ [−SC, +SC + A] for j ∈ [m],

and ti · Y chl
i =

∏m
j=1 X

uj

i,j for i ∈ [n] output ⊤, otherwise ⊥.
– Simulate(X, chl): Sample res := (u1, . . . , um) ∈R [−SC, +SC + A]m, compute ti := Y −chl

i ·∏
j∈[m] X

uj

i,j for i ∈ [n], and output
(
com := (ti)i∈[n], res

)
.

For this class of protocols, we can show the following properties:

Theorem 9. If R be a relation as described in Equation 5, then:
(i) CΣP(R) is sound for R with soundness error 1/C + negl(λ) under the ROC assumption.8

(ii) CΣP(R) is complete for R if w ∈ [−S, +S]m.
(iii) CΣP(R) is statistical special honest-verifier zero-knowledge if w ∈ [−S, +S]m and SC/A is

negligible.

Proof. While the proofs of completeness and SHVZK are standard, the soundness proof (i) is
more involved and relies on our ROC assumption:

(i) Consider a malicious PPT prover P∗ that generates an instance X such that there is no
witness w such that (X, w) ∈ R. Now P∗ can guess V’s random challenge chl ∈R [C] with
probability 1/C and use the simulator (cf. (iii)) to obtain a transcript which makes V accept.
Assume towards contradiction that P∗ had a success probability that is strictly larger than
1/C, and suppose ord(Ĝ) was C-rough. Then, by averaging, there exists a first message com
such that there exist third messages res, res′ for two different challenges chl ̸= chl′ such that
V accepts both (com, chl, res) and (com, chl′, res′).
Note that all relevant group elements live in the subgroup ⟨Yi, Xi,j⟩i,j ⊆ Ĝ. Let ℓ :=
ord(⟨Yi, Xi,j⟩i,j) |

∏
i ord(Yi) ·

∏
i,j ord(Xi,j). Since ord(Ĝ) is C-rough, ℓ must also be C-

rough. Hence, as |chl− chl′| < C, (chl− chl′) is invertible modulo ℓ, i.e., we can find an integer
(chl− chl′)−1 ∈ Z such that (chl− chl) · (chl− chl)−1 = 1 (mod ℓ). Therefore we have[

ti · Y chl
i =

∏
i∈[m]

X
uj

i,j

]
∧
[
ti · Y chl′

i =
∏

i∈[m]

X
u′

j

i,j

]
=⇒

Y chl−chl′
i =

∏
i∈[m]

X
uj−u′

j

i,j ⇐⇒ Yi =
∏

i∈[m]

X
(uj−u′

j)·(chl−chl′)−1

i,j ,

where all the exponents are considered integers. By setting wj := (uj − u′
j) · (chl− chl′)−1 for

j ∈ [m] and w := (w1, . . . , wm) we have found a witness such that (X, w) ∈ R and, therefore,
reached a contradiction.
So such a P∗ cannot exist or ord(Ĝ) is not C-rough after all. Hence, if we had such a P∗, we
could distinguish groups Ĝ that do not have a C-rough order. By the ROC assumption, such
a distinguisher has at most negligible advantage. We conclude that CΣP(R) has a soundness
error of 1/C + negl(λ).

8 Note that the soundness property does not require the existence of a witness w such that each wj is
within the range [−S, +S].
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(ii) Assuming the honest prover has secrets wj ∈ [−S, +S], then all the uj are within the required
range [−SC, +SC + A] and the other checks passes as well:

ti · Y chl
i =

m∏
j=1

X
rj

i,j ·

 m∏
j=1

X
wj

i,j

chl

=
m∏

j=1
X

rj+chl·wj

i,j =
m∏

j=1
X

uj

i,j .

Hence, the honest verifier accepts.
(iii) To show special honest-verifier zero-knowledge, we use the Simulate algorithm: If SC/A is

negligible, then the uniformly sampled uj from the simulation are distributed statistically close
to the uj appearing in a real execution, where the honest prover uses a witness w ∈ [−S, +S]m.
The ti are chosen in the only possible way so that the verifier would accept the transcript.

Corollary 10. The protocols ΠDLog := CΣP(RDLog) and ΠEqDLog := CΣP(REqDLog) are zero-
knowledge arguments according to Definition 4 with D := [−S, +S] for the relations RDLog and
REqDLog, respectively.

5.3 Proofs of Plaintext Knowledge and Correct Multiplication

For our MPC protocol in Section 7, we need additional protocols that are not only sound, but also
allow for partial extraction of the witnesses. First, we need the parties to prove that whenever
they publish a ciphertext, it is a) well-formed and b) they know the corresponding plaintext.

REnc = {ct; (m, s) | ct1 = ctm
P 1 · g̃s

q ∧ ct2 = ctm
P 2 · pks

cl} (6)

The relation REnc is parametrized by public parameters ppcl and a special public key p̃kcl, but we
generally omit them from the notation. We do not require a full argument of knowledge, since we
only need to extract the encrypted message a ∈ Fq, but not the randomness s. Therefore, we give
a specialized definition:

Definition 5 (Proof of Plaintext Knowledge). Let Π be a zero-knowledge argument as
defined in Definition 4 for the relation REnc (Equation (6)) (defined for a valid public key p̃kcl)
with witness domain D := Fq×dom(Dq). Let skcl be a secret key matching the public key in REnc. We
say Π is a Proof of Plaintext Knowledge (PoPK) if additionally there exists an efficient algorithm
Extract and the following holds: Given two accepting transcripts (com, chl, res), (com, chl′, res′)
corresponding to a ciphertext ct such that chl ̸= chl′, then
(i) ct can be correctly decrypted Dec(skcl, ct) = m ∈ Fq,

(ii) and the same value m can be extracted from the transcripts:
Extract(ct, (com, chl, res), (com, chl′, res′)) = m.

We show that the canonical protocol CΣP(REnc) satisfies the above condition and define the
corresponding extractor Extract. Extraction of the message m ∈ Fq works, because it appears in
the exponent of f of known order q. We cannot extract the randomness s, however, since we can
neither invert chl− chl′ modulo the unknown order of gq nor expect division over the integers to
work. However, by using the ROC assumption we are able to pretend that certain inverses exists
modulo ord(gq).

Theorem 11. The protocol ΠPoPK := CΣP(REnc) is a Proof of Plaintext Knowledge under the
ROC assumption.
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Proof. By Theorem 9, ΠPoPK is already a zero-knowledge argument according to Definition 4. Let
(com := (t1, t2), chl, res := (u1, u2)) and (com := (t1, t2), chl′, res′ := (u′

1, u′
2)) be two accepting

transcripts. From the Verify equations we get

ctu1
P 1 · g

u2
q = t1 · ctchl

1 ctu1
P 2 · pku2

cl = t2 · ctchl
2

ctu′
1

P 1 · g
u′

2
q = t1 · ctchl′

1 ctu′
1

P 2 · pku′
2

cl = t2 · ctchl′
2

Dividing the equation yields:

ctu1−u′
1

P 1 · gu2−u′
2

q = ctchl−chl′
1 ctu1−u′

1
P 2 · pku2−u2

cl = ctchl−chl′
2

Suppose, ℓ := ord(Ĝ) is C-rough. Since |chl− chl′| < C, it must be invertible modulo ℓ. Then we
can write:

ct(u1−u′
1)·(chl−chl′)−1

P 1 · g(u2−u′
2)·(chl−chl′)−1

q = ct1

ct(u1−u′
1)·(chl−chl′)−1

P 2 · pk(u2−u2)·(chl−chl′)−1

cl = ct2

Since p̃kcl is assumed to be a valid public key and thus ctP has the form (gβ
q , pkβ

cl · f), we can
simplify to obtain:

g
(β·(u1−u′

1)+(u2−u′
2))·(chl−chl′)−1

q = ct1

pk(β·(u1−u′
1)+(u2−u′

2))·(chl−chl′)−1

cl · f (u1−u1)·(chl−chl′)−1
= ct2

We see that ct is a valid ciphertext with message (u1 − u′
1) · (chl− chl′)−1 mod ℓ and randomness

(β · (u1 − u′
1) + (u2 − u′

2)) · (chl− chl′)−1 mod ℓ. While ℓ is unknown and hard to compute, we
know that ord(f) = q | ℓ and can efficiently compute m := (u1− u′

1) · (chl− chl′)−1 mod q. Hence,
we can define Extract to output m. Since ct is a valid ciphertext, this matches what Dec(skcl, ct)
would produce.

In the multiplication part of our MPC protocol, a party needs to multiply a publicly known
ciphertext ctb (which we assume to be valid) with a private value a ∈ Fq that is additionally
encrypted as cta to produce a new ciphertext ctc. We formalize this in the following relation,
where s is the randomness used to encrypt a, and s′ is the randomness used to randomize the
resulting ciphertext.

RMult = {(cta, ctb, ctc); (a, s, s′) | (cta; (a, s)) ∈ REnc ∧

ctc,1 = cta
b,1 · g̃s′

q ∧ ctc,2 = cta
b,2 · pks′

cl }
(7)

Definition 6 (Proof of Correct Multiplication). Let Π be a zero-knowledge argument as
defined in Definition 4 for the relation RMult (Equation (7)) (defined for a valid public key p̃kcl)
with witness domain D := Fq×dom(Dq)2. We say Π is a Proof of Correct Multiplication (PoCM)
if additionally it satisfies the PoPK extraction property (Definition 5) with respect to cta.

Since RMult is an extension of REnc, Theorem 11 immediately carries over:

Corollary 12. The protocol ΠMult := CΣP(RMult) is a Proof of Correct Multiplication under the
ROC assumption.
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6 Threshold Linearly Homomorphic Encryption

Here, we present our novel threshold encryption scheme based on the linearly homomorphic
encryption scheme Πhsm-cl of [CLT18; Cas+20]. To obtain a more efficient protocol we use the
modified Π∗

hsm-cl encryption scheme (Section 3).

Bias in Distributed Key Generation The key generation KeyGen algorithm of the standard
Πhsm-cl scheme requires that the private key skcl is sampled from Dq, which induces an almost-
uniform distribution of the public key pkcl in Gq. Hence, ideally, we would like to have a distributed
key generation protocol that outputs a public key of this form. Gennaro et al. [Gen+07] noted
that the classic distributed key generation protocol by Pedersen [Ped91] (with player elimination)
allows an adversary to bias the distribution of the public key. They show that the generation of
an unbiased public key is possible [Gen+07], however, it requires more rounds and additional
setup. Gennaro et al. [Gen+07] also show that the bias can be tolerated in certain settings, for
example in a threshold protocol for Schnorr signatures [Sch90]. In Section 3.1 we showed that the
bias can also be tolerated in ElGamal-style encryption schemes i.e., we showed that the Π∗

hsm-cl
encryption scheme does still provide IND-CPA security even when the adversary is allowed to bias
the distribution of the key. Hence, we use a simpler key generation based on Pedersen’s [Ped91]
protocol.

Special Public Keys Our protocol generates special public keys of the form p̃kcl = (pkcl, ctP )
where ctP is an encryption of 1 ∈ Fq (see Section 3.2). Since our protocol might be useful for
other applications, we note that if special public keys are not required, the protocol can easily be
adapted to skip the generation of ctP and just output the normal public key pkcl.

Ideal Functionality We specify a UC functionality FTE in Figure 3. Apart from the Init
procedure, it allows the parties to generate a key pair (p̃kcl, skcl) such that the special public key
p̃kcl is made public, but nobody learns the corresponding secret key skcl. The KeyGen method
allows the simulator S to influence the distribution of the generated key pair as specified by
BiasedSpecialKeyGenS

1 (Figure 2). Moreover, the functionality allows parties to decrypt Πhsm-cl
ciphertexts using the stored secret key. Defining a single functionality that contains both the key
generation and the decryption simplifies the simulation proof, since the environment never sees
the honest parties’ shares of the secret key. A similar approach is taken, e.g., in [AF04] for UC
threshold Schnorr signatures.

6.1 Distributed Key Generation and Threshold Decryption

Distributed Key Generation (DKG) We present our protocol in Figure 4. in the (FCL,
FRand)-hybrid model, where FRand is a standard coin tossing functionality. The DKG protocol
consists of two parts: First the parties generate a key pair (pkcl, skcl) such that the secret key skcl
is distributed among all parties. Then, they generate ctP which is an encryption of 1 under the
public key pkcl.

Recall that a key pair is of the form (skcl, pkcl = gskcl
q ), where skcl is a sufficiently large random

integer. Each party first samples their contribution αi to the secret key, and then uses a variant
of Feldman VSS (cf. 4.2 with base gq to share it with all other parties. The properties of the
VSS scheme and complaint resolution guarantee that for every Pi we have either a consistent
secret sharing of αi, or Pi is disqualified and ignored for the remainder of the key generation. The
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Ideal Threshold Encryption Functionality FTE

Init On input (Init, 1λ, q) from all parties, FTE generates ppcl ← CLGen(1λ, q). It stores ppcl and
outputs them to all parties. This method must be called exactly once, and before any other
call.

KeyGen On input (KeyGen) from all parties, FTE runs (p̃kcl, skcl)← BiasedSpecialKeyGenS
1 (ppcl)

with S. When S responds with continue, FTE sends p̃kcl to all parties. This method must be
called exactly once, and before any call to Decrypt.

Decrypt On input (Decrypt, ct = (ct1, ct2) ∈ Ĝ2) from all parties, FTE computes M := ct2 · ct−skcl
1

and sends M to S.a If S responds with abort, FTE aborts. Otherwise, if it responds with
continue, FTE sends m← CLSolve(ppcl, M) to all parties.

a We leak M instead of m to also be able to simulate the decryption in case ct is not a valid
ciphertext since if M ̸∈ F =⇒ CLSolve(ppcl, M) = ⊥.

Fig. 3. Ideal Threshold Encryption Functionality

secret key is now well-defined as skcl =
∑

Pi∈Q αi, and each of these αi can be reconstructed by a
majority of all parties. Each party additionally obtains a share γi of skcl such that any set of at
least (t + 1) parties can reconstruct skcl. Moreover, each party has learned pki := gαi

q for Pi ∈ Q
and can compute the public key as pk =

∏
Pi∈Q pki. Note that the Feldman VSS already reveals

the parties contributions to the public key pki. Hence, a rushing adversary is able to bias the
resulting key based on the honest parties contributions.9

The aim of the second parts is to generate a ciphertext ctP = (ct1, ct2) = (gβ
q , f · pkβ

cl), where
β is again a large random value. Since ct1 is basically an ephemeral public key, the protocol is
very similar to the key generation part of ΠTE: Every party samples their contribution βi to the
randomness β, and proves that their contribution gβi

q has the right form. The difference is that
now we also need to compute ct2. Hence, each party also computes pkβi

cl and uses ΠEqDLog to
prove that their contributions to ct1 and ct2 are consistent. Moreover, parties that misbehave
are not disqualified, but their contributions to ct1 and ct2 are essentially removed by setting
them to 1. While it is not necessary that βi can be reconstucted by a majority of the parties, we
nevertheless share it with a Feldman VSS. This is only necessary for the proof, since it allows the
simulator to reconstruct the βi of the corrupted Pi ∈ C. Alternatively, an online-extractible proof
for the REqDLog relation would suffice as well. Finally, the parties can multiply f into the result to
get an encryption of 1.

Distributed Decryption To decrypt a ciphertext ct, each party Pi computes a partial decryption
wi := ctγi·∆

1 , and proves that they used their share of skcl via ΠEqDLog. Since at least t + 1 parties
do this honestly, they can reconstruct skcl in the exponent of ct1 and perform the remainder of
the the Πhsm-cl decryption.

6.2 Proof of Security

We formally state the security of ΠTE in Theorem 13.
9 The protocol of [Gen+07] prevents this kind of bias in the setting of prime-order groups. We could

instantiate their protocol also in the unknown order setting, but the setup would be significantly more
complicated.
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Protocol ΠTE (Part I)

The parties maintain a set Q of qualified parties initially containing all parties. After a party gets
disqualified, it will be ignored by all honest parties.

Init Send (Gen, 1λ, q) to FCL which returns ppcl = (q, s̄, f, gq, Ĝ, F ; ρ).
KeyGen 1. Generation of a key pair (pkcl, skcl). All Pi proceed in parallel:

(a) Sample the contribution to the secret key αi ← Dq.
(b) Share αi as (yi,1, . . . , yi,N ; Ci,0, . . . , Ci,t)← F-Share(αi; ri; gq). such that yi,j is privately

sent to Pj , and Ci,0, . . . , Ci,t are broadcasted.
(c) Compute (com1

i,k, stt1
i,k)← ΠDLog.Commit(Ci,k, ri,k) for k ∈ [t] and

(com1
i,0, stt1

i,0)← Πbin
DLog.Commit(Ci,0, αi). Broadcast (com1

i,k)k∈[0,t].
(d) Send (Rand, [C]) to FRand so that all parties receive chl1 ∈R [C].
(e) Broadcast res1

i,k ← ΠDLog.Respond(Ci,k, ri,k, stt1
i,k, chl1) for k ∈ [t] and res1

i,0 ←
Πbin

DLog.Respond(Ci,0, αi, stt1
i,0, chl1).

(f) Verify shares received from Pj ̸= Pi: Check if
i. F-Check(i, yj,i; Cj,0, . . . , Cj,t; gq) ?= ⊤, and

ii. ΠDLog.Verify(Cj,k, com1
j,k, chl1, res1

j,k) ?= ⊤ for all k ∈ [t], and
Πbin

DLog.Verify(Cj,0, com1
j,0, chl1, res1

j,0) ?= ⊤.
If only Step 1(f)i failed, then broadcast a complaint against Pj .

(g) For every complaint received by Pj ̸= Pi, broadcast the value yi,j .
(h) If Step 1(f)ii failed for Pj , or if Pj broadcasted a value yj,l in response to Pl that does

not satisfy Step 1(f)i, remove Pj from Q.
2. Computing the public key and shares of the secret key

(a) All parties compute the public key pkcl :=
∏

Pj ∈Q Cj,0 where the secret key is defined as
skcl :=

∑
Pj ∈Q αi.

(b) Each Pi computes its share γi :=
∑

Pj ∈Q yj,i of skcl.

(c) All parties compute Γi :=
∏

Pj ∈Q C∆2
j,0 ·

∏t

k=1 C
(ik)
j,k for each Pi.

3. Continued in Figure 5.

Fig. 4. Distributed Key Generation and Decryption protocols for Πhsm-cl

Theorem 13. The protocol ΠTE (Figure 4) securely realizes the functionality FTE (Figure 3) in
the (FCL, FRand)-hybrid model with secure channels and broadcast with static and computational
security tolerating up to t < N/2 corruptions under the ORD and RON+1 assumptions when
1/C = negl(λ).

Proof. We first show correctness of the protocol, and then prove security by simulation.

Correctness Let us first convince ourselves that a valid key pair (pkcl, skcl) is generated during
the first part of the key generation.

Initially, each Pi samples αi and shares it as (yi,1, . . . , yi,N ; Ci,0, . . . , Ci,t)← F-Share(αi; ri; gq).
The checks in Step 1f make sure that the sharing of each qualified Pi ∈ Q is valid. That means, for
each Pi ∈ Q, we have yi,j = fi(j) for the polynomial fi defined by fi(X) = αi ·∆ +

∑t
k=1 ri,k ·Xk

for all Pj , and Ci,0 = gαi
q and Ci,k = g

ri,k·∆
q for k ∈ [t].

The public key is defined as pkcl =
∏

Pj∈Q Cj,0 = g

∑
Pj ∈Q

αj

q such that skcl :=
∑

Pj∈Q αj is
the corresponding secret key. Moreover, each Pi computes γi :=

∑
Pj∈Q yj,i which are shares of
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Protocol ΠTE (Part II)

KeyGen (continued) 3. Generation of ctP . All Pi proceed in parallel:
(a) Sample the contribution to the randomness βi ← Dq.
(b) Share βi as (zi,1, . . . , zi,N ; Di,0, . . . , Di,t)← F-Share(βi; si; gq) such that zi,j is privately

sent to Pj , and Di,0, . . . , Di,t, D′
i,0 := pkβi

cl are broadcasted.
(c) Compute (com2

i,0, stti,0)← Πbin
EqDLog.Commit((Di,0, pkcl, D′

i,0), si,0), and (com2
i,k, stti,k)←

ΠDLog.Commit(Di,k, si,k) for k ∈ [1, t], and broadcast com2
i,0, . . . , com2

i,t.
(d) Send (Rand, [C]) to FRand so that all parties receive chl2 ∈R [C].
(e) Broadcast res2

i,0 ← Πbin
EqDLog.Respond((Di,0, pkcl, D′

i,0), si,0, stt2
i,0, chl2), and res2

i,k ←
ΠDLog.Respond(Di,k, si,k, stt2

i,k, chl2) for k ∈ [1, t].
(f) Verify shares received from Pj ̸= Pi: Check if

i. F-Check(j, zj,i; Dj,0, . . . , Dj,t; gq) ?= ⊤, and
ii. Πbin

EqDLog.Verify((Dj,0, pkcl, D′
j,0), com2

i,0, chl2, res2
i,0) ?= ⊤, and

ΠDLog.Verify(Dj,k, com2
j,k, chl2, res2

j,k) ?= ⊤ for all k ∈ [1, t],
If only Step 3(f)i failed, then broadcast a complaint against Pj .

(g) For every complaint received by Pj ̸= Pi, broadcast the value zi,j .
(h) If Step 3(f)ii failed for Pj , or if Pj broadcasted a value zj,l in response to Pl that does

not satisfy Step 3(f)i, reset Dj,0 := D′
j.0 := 1.

Finally, everyone computes ctP :=
(∏

Pi∈Q Di,0, f ·
∏

Pi∈Q D′
i,0
)
.

Decrypt To jointly decrypt a Πhsm-cl ciphertext ct = (ct1, ct2) ∈ Ĝ2, all Pi proceed in parallel as
follows:
1. Compute wi := ctγi·∆

1 and (comi, stti)← ΠEqDLog.Commit((ct1, Γi, wi), γi ·∆). Broadcast wi

and comi.
2. Send (Rand, [C]) to FRand so that all parties receive chl ∈R [C].
3. Broadcast resi ← ΠEqDLog.Respond((ct1, Γi, wi), γi ·∆, stti, chl).
4. Define S := {Pi | ΠEqDLog.Verify((ct1, pkj , wj), comj , chl, resj) = ⊤}.

5. Compute W :=
∏

Pj ∈S
w

(ℓS
j ·∆)

j and M := ct∆3
2 ·W −1.

6. Output m := CLSolve(ppcl, M) ·∆−3 mod q.

Fig. 5. Distributed Key Generation and Decryption protocols for Πhsm-cl

skcl shared via a polynomial

f̄(X) =
∑

Pj∈Q
fj(X) =

∑
Pj∈Q

αj

 ·∆ +
t∑

k=1

∑
Pj∈Q

rj,k

 ·Xk.

Then all parties also compute for each Pi

Γi :=
∏

Pj∈Q
C∆2

j,0 ·
t∏

k=1
C

(ik)
j,k =

∏
Pj∈Q

(gαj
q )∆2

·
t∏

k=1
(grj,k·∆

q )(ik)

=
∏

Pj∈Q
(gαj

q )∆2
·

t∏
k=1

(grj,k·∆
q )(ik) = g

∆·
∑

Pj ∈Q

(
αj ·∆+

∑t

k=1
rj,k·(ik)

)
q = g∆·γj

q .

Consider what happens when a ciphertext ct = (ct1, ct2) = (gs
q , (gskcl

q )s ·fm) is being decrypted.
Every Pi publishes wi := ctγi·∆

1 = ctf̄(i)·∆
1 and proves consistency w.r.t. Γi. The set S contains all
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parties that behave honestly in this step, so we have |S| ≥ t + 1. Using the Lagrange coefficients
ℓS

i , we reconstruct skcl in the exponent:

W :=
∏

Pj∈S

w
ℓS

j ·∆
j = ct

∑
Pj ∈S

f̄(j)·ℓS
j ·∆2

1 = ctskcl·∆3

1 .

Note that we accumulate three factors ∆:

– When sharing αi as Share(αi; ri) then the resulting polynomial fi has actually αi · ∆ as
constant term.

– In the definition of wi, the share γi is multiplied by ∆.
– Finally, to do Lagrange interpolation in the exponent, we need to multiply the Lagrange

coefficients by ∆ to obtain integer exponents.

We can adjust for this by also raising ct2 to ∆3:

M := ct∆3

2 ·W −1 = gskcl·s·∆3

q · fm·∆3
· (gs·skcl·∆3

q )−1 = fm·∆3
.

Finally, we take the discrete logarithm of M and also remove ∆3 in the plaintext space: m =
CLSolve(ppcl, M) ·∆−3 mod q.

Simulation We set up the simulation as follows: The environment Z selects a set C of at most
t < N/2 parties to corrupt. Z sends (corrupt, Pi) for each Pi ∈ C to the simulator S who forwards
it to FTE. Now S controls the communication of the Pi to FTE. S sets up simulated copies of
the all parties, and forwards the instructions of Z for the corrupted parties to their simulated
counterparts.

To prove adaptive security for their DKG protocol, Abe et al. [AF04] used the single-
inconsistent-player (SIP) variant of UC. We only aim for static security, but use the same
underlying idea in the standard UC model: S selects a distinguished honest party Ph ∈ H, and
lets all other honest parties H \ {Ph} act according to ΠTE. The messages sent by Ph, however,
are chosen such that the resulting view of the environment is consistent with the values output
by FTE. Hence, S does not always know the witnesses needed to perform the zero-knowledge
arguments. Instead it uses the corresponding simulators and programs the FRand functionality
with the used challenges. Since S controls the honest majority of (simulated) parties, it knows
enough shares to extract the contributions αi of the corrupted parties from the VSS. The full S
is given in Figures 6 and 7.

Set of Qualified Parties and Secret Key are Well-Defined All honest parties have
computed the same set Q after Step 1h of ΠTE, because disqualification of parties depend only
on information that was broadcasted, and is thus consistent among all honest parties. Moreover,
no honest party gets disqualified. Since honest parties adhere to the protocol, no other honest
parties would complain against them. If a corrupted party complains against an honest party,
it will respond with that party’s share which satisfies F-Check, so no other honest party will
consider it disqualified. Let Pi ∈ Q be still qualified party. If Pi ∈ H, then the honest parties have
≥ t + 1 valid shares of αi. If Pi ∈ C is corrupted and not disqualified, then it has responded with
valid shares to all complaints, and, by soundness of ΠDLog and Πbin

DLog, we have Ci,0, . . . , Ci,t ∈ Gq

except with negligible probability. Thus, each honest party Pj ∈ H has either directly received a
valid share yi,j from Pi in Step 1b, or a valid share yi,j has been broadcasted by Pi in Step 1g
after Pj had issued a complaint in Step 1f. Hence, the honest parties know ≥ t + 1 consistent
shares. By Lemma 6, this determines αi.
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Simulator for ΠTE (Part I)

Init Simulate the generation of ppcl by running ppcl ← CLGen(1λ, q).
KeyGen 1. Simulate generation of pkcl. Run BiasedKeyGenS with FTE.
(a) Send (KeyGen) to FTE and receive the intermediate public key pk∗

cl.
(b) For all Pi ∈ H \ {Ph}, simulate Steps 1a to 1c according to ΠTE.
(c) For Ph, instead send Ch,0, . . . , Ch,t computed as follows:

i. Sample αh ← Dq and share it as (yh,1, . . . , yh,N )← Share(αh; rh).
ii. Set Ch,0 := pk∗

cl ·
∏

Pi∈H\{Ph} C−1
i,0 .

iii. Use Lemma 8 to get Ch,1, . . . , Ch,t such that F-Check(j, yh,j ; Ch,0, . . . , Ch,t; gq) holds for
all Pj ∈ C.

iv. Sample chl ∈R [C], run (com1
h,0, res1

h,0)← Πbin
DLog.Simulate(Ch,0, chl1), and

(com1
h,k, res1

h,k)← ΠDLog.Simulate(Ch,k, chl1) for k ∈ [t]. Send (com1
h,k)k∈[0,t]

(d) Receive shares and checking values (yi,j ; Ci,0, . . . , Ci,t) and (com1
i,0, . . . , com1

i,t) from all
Pi ∈ C for all Pj ∈ H.

(e) Simulate the call to FRand and send chl1 to all parties.
(f) For all Pi ∈ H \ {Ph}, compute res1

i,0 ← Πbin
DLog.Respond(Ci,0, αi, stt1

i,0, chl1) and res1
i,k ←

ΠDLog.Respond(Ci,k, ri,k, stt1
i,k, chl1) for k ∈ [t]. Send (res1

i,k)k∈[0,t] for all Pi ∈ H and receive
(res1

i,k)k∈[0,t] from all Pi ∈ C.
(g) Simulate the complaint resolution:

i. Respond honestly to all complaints against honest parties.
ii. Broadcast a complaint on behalf of Pj ∈ H if they received an invalid share yi,j from

Pi ∈ C.
iii. If a Pi ∈ C responds to a complaint with a a corrected value y′

i,j : Remove Pi from Q if
y′

i,j is invalid. Otherwise, reset yi,j := y′
i,j .

(h) Reconstruct αi from the shares {(j, yi,j)}Pj ∈H for each Pi ∈ C ∩ Q.
(i) Set δ :=

∏
Pi∈C∩Q αi, and send δ to FTE.

(j) Define pkcl :=
∏

Pj ∈Q Cj,0 = pk∗
cl · gδ

q , and set γi :=
∑

Pj ∈Q yj,i and Γi := gγi·∆
q for all Pi.

2. Continued in Figure 7.

Fig. 6. Simulator for the key generation protocol in ΠTE

We can apply Lemma 6 here, because we use the Feldman VSS with base gq and we use with
Πbin

DLog a proof of knowledge for C0. By the RON+1 assumption (Def. 3), the parameters ppcl are
indistinguishable to parameters where gq has an order which is co-prime to ∆.

Indistinguishability of the Simulation of KeyGen Following the KeyGen protocol, the
simulation also consists of two phases: The first concerns simulating the generation of a key
pair (pkcl, skcl); the second handles the generation of ctP . In the following, we cover both parts
separately.

In the first part, the messages sent by the simulated parties Pi ∈ H \ {Ph} are distributed
exactly as in the real execution since S let them behave according to protocol. The only deviation
happens in Step 1c of the simulation:

1. S lets Ph send a value Ch,0 that is distributed correctly conditioned given the intermediate
public key pk∗

cl generated by FTE. The other values Ch,1, . . . , Ch,k are produced using Lemma 8.
Hence, the Ch,1, . . . , Ch,k have the correct distribution given Ch,0 and the corrupted parties’
shares {yj | Pj ∈ C}; they are actually fully determined if |C| = t).
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Simulator for ΠTE (Part II)

KeyGen (continued) 2. Simulate generation of ctP . Continue of BiasedSpecialKeyGenS
1 with

FTE.
(a) Receive the intermediate ciphertext ct∗

P = (ct∗
1, ct∗

2).
(b) For all Pi ∈ H \ {Ph}, Simulate Steps 3a to 3c according to ΠTE:
(c) For Ph, instead send Dh,0, . . . , Dh,t, D′

h,0 computed as follows:
i. Sample βh ← Dq and share it as (zh,1, . . . , zh,N )← Share(βh; rh).

ii. Set Dh,0 := ct∗
1 ·
∏

Pi∈H\{Ph} D−1
i,0 .

iii. Set D′
h,0 := ct∗

2 · f−1 ·
∏

Pi∈H\{Ph} D′−1
i,0 .

iv. Use Lemma 8 to get Dh,1, . . . , Dh,t such that F-Check(j, zh,j ; Dh,0, . . . , Dh,t; gq) holds for
all j such that Pj ∈ C.

v. Sample chl2 ∈R [C], run
A. (com2

h,0, chl2, res2
h,0)← Πbin

EqDLog.Simulate((Dh,0, pkcl, D′
h,0), chl2), and

B. (com2
h,k, chl2, res2

h,k)← ΠDLog.Simulate(Dh,k, chl2) for k ∈ [1, t],
and send com2

h,k for k ∈ [0, t].
(d) Receive shares and checking values (zi,j ; Di,0, . . . , Di,t), D′

i,0, and (com2
i,0, . . . , com2

i,t) from
all Pi ∈ C for all Pj ∈ H.

(e) Simulate the call to FRand and send chl2 to all parties.
(f) For all Pi ∈ H \ {Ph}, compute

i. res2
i,0 ← Πbin

EqDLog.Respond((Di,0, pkcl, D′
i,0), ri,0, stt2

i,0, chl2), and
ii. res2

i,k ← ΠDLog.Respond(Di,k, ri,k, stt2
i,k, chl2) for k ∈ [1, t].

Send res2
i,k for all Pi ∈ H and receive res2

i,k from all Pi ∈ C (for k ∈ [0, t]).
(g) Simulate the complaint resolution as in Step 1g above, but instead of disqualifying misbe-

having Pj ∈ C, reset Dj,0 := D′
j.0 := 1 and βj := 0.

(h) Reconstruct βi from the shares {(j, zi,j)}Pj ∈H for all other Pi ∈ C ∩ Q.
(i) Set ε :=

∏
Pi∈C∩Q βi, and send ε to FTE.

(j) Define ctP :=
(∏

Pj ∈Q Dj,0, F ·
∏

Pj ∈Q D′
j,0
)

=
(
ct∗

1 · gε
q , ct∗

2 · pkε
cl
)
. Send continue to FTE.

Decrypt 1. Send (Decrypt, ct = (ct1, ct2) ∈ Ĝ2) on behalf of the corrupted parties to FTE and
receive the partially decrypted message M .

2. Compute M := M∆3
and W := ct∆3

2 ·M−1.
3. Set A := {0} ∪ {i | Pi ∈ C} such that |A| = t + 1.
4. Compute wi := ctγi

1 and wi := w∆
i for Pi ∈ C.

5. Set w0 := ct2 ·M−1.
6. Compute wi := w

ℓA
0 (h)·∆

0 ·
∏

Pj ∈C w
ℓA

j (h)·∆
j for each Pi ∈ H.

7. Sample chl ∈R [C].
8. For all Pi ∈ H run (comi, chl, resi)← ΠEqDLog.Simulate((ct1, Γi, wi), chl).
9. Send (wi, comi) for all Pi ∈ H.

10. Simulate the call to FRand and send chl to all parties.
11. Send resi for all Pi ∈ H.
12. Send continue to FTE.

Fig. 7. Simulator for the decryption protocol in ΠTE

In the real protocol, it holds Ch,0 = gαh
q , where αh is the value shared by Ph, but in the

simulation, Ch,0 and the shared αh are unrelated. Since the Feldman VSS reveals no other
information about αh and the environment sees only the at most t shares of the corrupted
parties Pi ∈ C, it cannot detect the difference.
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2. Additionally, the proofs by Ph are simulated which is possible, since S can sample the challenge
chl1 in advance and then program FRand to output it in Step 1e. By SHVZK of ΠDLog and
Πbin

DLog, the simulated proofs are indistinguishable from a normally computed proofs.
Since S controls the honest parties, it has t + 1 shares of αi for each qualified Pi ∈ Q. Thus, S

can extract the contributions of the corrupted, but still qualified parties’ contributions in Step 1h,
and submit their sum δ in Step 1i to FTE to complete the BiasedKeyGenS procedure.

Note that when S defines the values γi and Γi for each parties, then, by construction,
(γ1, . . . , γN ) is a secret sharing of

∑
Pi∈Q αi ̸= skcl.

The second half of the simulation is very similar to the first. The only difference is that the
parties now need to generate a ciphertext ctP = (ct1, ct2) consisting of two components. Again
the S lets all Pi ∈ H \ {Ph} follow the protocol and chooses Ph’s values such that the honest
parties’ contributions match what FTE outputs as preliminary ciphertext ct∗

P . Then it uses the
Feldman shares to extract the randomness contributions βi from all corrupted parties that were
not caught misbehaving. For all other parties βi is reset to 0 according to the protocol, so that
they become irrelevant.

Hence, we conclude that overall the environment’s view in the KeyGen simulation is indistin-
guishable from its view of a real protocol execution.

Indistinguishability of the Simulation of Decrypt First, recall that, in the simulation,
(γ1, . . . , γN ) is a secret sharing of α :=

∑
Pi∈Q αi, not of skcl, which is unknown to S.

If S would let the honest parties execute the protocol using their shares γh, then the decrypted
value will most likely be invalid and not match the output of FTE, since the ciphertext would
essentially be decrypted with a random secret key α, which is unrelated to skcl. Instead it use the
partially decrypted message M received from FTE to compute messages wi for Pi ∈ H that are
consistent with M and the adversary’s view. Note that the t shares γi of the corrupted parties
Pi ∈ C and the actual secret key skcl uniquely define what the honest parties need to send, since
all points are supposed to lie on some degree-t polynomial f̄ .

Hence, we use Lagrange interpolation in the exponent of ct1 to find values consistent with f̄
such that f̄(0) = skcl and f̄(i) = γi for Pi ∈ C. By definition of M , we have M = ct2 · ct−skcl

1 ⇐⇒
ctskcl

1 = ct2 ·M−1, and set w0 := ct2 ·M−1. If the corrupted parties would behave correctly, they
would send wi := ctγi·∆

1 . Since Lagrange interpolation in the exponent already adds a factor ∆,
we work with wi := ctγi

1 . For each Pi ∈ H, we set

wi := w
ℓA

0 (i)·∆
0 ·

∏
Pj∈C

w
ℓA

j (i)·∆
j = ctskcl·ℓA

0 (i)·∆
1 ·

∏
Pj∈C

ctγj ·ℓA
j (i)·∆

1

= ct
skcl·ℓA

0 (i)·∆+
∑

Pj ∈C
γj ·ℓA

j (i)·∆

1 = ctf̄(j)·∆
1 .

Hence, wi is exactly, what the adversary expects the honest parties to send given the view of the
corrupted parties and the result of the decryption.

Now S does not know the discrete logarithms of the wi to base ct1, it uses the SHVZK
simulator for ΠEqDLog to simulate proof transcripts in Step 8 for a randomly chosen challenge
chl ∈ [C], and then programs the simulated FRand to output chl as challenge. By SHVZK, the
simulated messages (comi)Pi∈H, (resi)Pi∈H are statistically indistinguishable from the messages
appearing in an honestly generated proof.

Guaranteed Output Delivery Assuming public parameters ppcl available, our protocol achieves
guaranteed output delivery (GOD): The adversary cannot prevent the honest parties from suc-
cessfully completing the protocol to generate a shared key or decrypt a ciphertext. This holds
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because the simulator S defined in the proof of Theorem 13 never lets FTE abort, but always
instructs it to deliver the output to the honest parties after a constant number of rounds.

7 MPC

We follow the approach of Damgård et al. [DN03] and define an arithmetic black box functionality
(ABB) Fq

ABB for reactive secure computation over the field Fq (see Figure 8). It allows parties
to privately Input field elements to the ABB and to let it publicly Output stored values to all
parties. Moreover, Fq

ABB allows to compute Linear combinations on stored values with public
coefficients, and to Multiply stored values. For all methods, Fq

ABB conducts the operation if it
receives corresponding messages from at least t + 1 parties. This ensures that the at most t
corrupted parties cannot prevent the honest parties from proceeding with the computation.

Arithmetic Black Box Functionality Fq
ABB

Init Fq
ABB starts with an internal state initialized as st := ∅.

Input On input (Input, Pi, vid, x) from party Pi and (Input, Pi, vid, ?) from at least t other
parties Pj ̸= Pi, Fq

ABB stores st := st ∪ {(vid, x)}.
Output On input (Output, all, vid) from at least t + 1 parties where (vid, x) ∈ st, Fq

ABB sends x to
S. Once S sends continue, send x to all parties.

Linear On input (Linear, vido, (vid1, · · · , vidn), (a0, . . . , an)) from at least t + 1 parties, where
(vidi, xi) ∈ st for i ∈ [n], all ai ∈ Fq, and (vido, ·) ̸∈ st, Fq

ABB stores st := st ∪ {(vido, a0 +∑
i∈[n] ai · xi)}.

Multiply On input (Multiply, vidx, vidy, vidz) from at least t+1 parties, where (vidx, x), (vidy, y) ∈
st and (vidz, ·) ̸∈ st, Fq

ABB stores st := st ∪ {(vidz, x · y)}.

For all methods, S can decide, when the honest parties should receive their output.

Fig. 8. Arithmetic black box functionality for reactive secure computation over Fq

We realize this functionality with Πq
ABB (see Figures 9 and 10), and state security of the

protocol in Theorem 14. The construction of Πq
ABB essentially follows the CDN [DN03] paradigm:

All values in the computation are encrypted with Π∗
hsm-cl and the parties use FTE to generate

a public key and decrypt ciphertexts. Whenever a party publishes a ciphertext or performs a
multiplication it uses ΠPoPK and ΠMult to prove correctness. We use that Π∗

hsm-cl has lossy public
keys to prove indistinguishability of the simulation in the SPDZ-style [Dam+12].

Theorem 14 (Security of Πq
ABB). The protocol Πq

ABB securely realizes the functionality Fq
ABB

in the (FRand, FTE)-hybrid model with broadcast with static and computational security tolerating
up to t < N/2 corruptions given that ΠPoPK and ΠMult are proofs of plaintext knowledge and
correct multiplication.

Proof. We construct a simulator S in Figure 11. It setups simulated instances of FRand and FTE
as well as simulated parties, and gives control of the corrupted parties to the environment Z.
Since S controls the FTE functionality, it know the secret key of the encryption scheme, and can,
thus, decrypt all valid ciphertexts sent by the corrupted parties. This way it can extract the
corrupted parties’ inputs. For the honest parties’ inputs, S encrypts lossy values. By IND-CPA
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MPC Protocol Πq
ABB (Part I)

Init 1. Send (Init, 1λ, q) to FTE to obtain ppcl.
2. Send (KeyGen) to FTE and receive special public key p̃kcl.

Let ΠPoPK and ΠMult be proofs of plaintext knowledge/correct multiplication for the relations REnc
and RMult.
Input For (Input, Pi, vid, x):
1. Pi samples r ← Dq, computes ct← SEnc(p̃kcl, x; r) and (com, stt)← ΠPoPK.Commit(ct, (x, r)),

and broadcasts ct and com.
2. Each Pj send (Rand, [C]) to FRand which replies with chl.
3. Pi broadcasts res← ΠPoPK.Respond(ct, (x, r), stt, chl).
4. If ΠPoPK.Verify(ct, com, chl, res) = ⊥, the other parties set x := 0 and deterministically

recompute ct← SEnc(p̃kcl, 0; 0).
5. Each Pj stores (vid, ct).

Output For (Output, all, vid): Let (vid, ct) be the stored ciphertext. All parties send (Decrypt, ct)
to FTE and receive m ∈ Fq and output m.
Linear For (Linear, vido, (vid1, · · · , vidn), (a0, . . . , an)): Let (vidi, cti)i∈[n] be the stored ciphertexts.
Each Pj locally computes cto ← a0 +

∑
i∈[n] ai · cti without rerandomization. Each party stores

the resulting ciphertext (vid0, cto).

Fig. 9. MPC protocol in the (FTE, FRand)-hybrid model

security of the encryption scheme, these are indistinguishable from the ciphertexts in the real
execution. When an output is to be produced, S simulates the decryption by FTE and inserts the
value that it obtains from Fq

ABB. For all values occurring during ABB operations, S stores the
corresponding ciphertexts.

Init: S simulates the calls to FTE to generate the CL public parameters ppcl and a key pair
(p̃kcl, skcl). For the latter, FTE allows some adversarial influence. Hence, S allows Z to specify the
bias as defined for BiasedSpecialKeyGenZ

1 .
Input: If the value providing party Pi is honest, S does not know its input value. In this case,

it simulates the protocol execution as if Pi had the input x = 0. If Pi is corrupted, S needs to
extract its inputs to provide it to Fq

ABB. If Pi misbehaves by sending an invalid ciphertext ct or if
its proof does not verify, S simulates the honest parties setting x := 0 as in the real protocol.
Otherwise S uses skcl to decrypt x← Dec(skcl, ct), and then forwards x to Fq

ABB.
Output: S obtains the output x as leakage from Fq

ABB. It then simulates the call to (Decrypt,
ct) of FTE and simulates the leakage M := fx to Z.

Linear: Since linear operations are computes locally, S only needs to compute the ciphertext
for the resulting value.

Multiply: Recall that S has ciphertexts stored for both inputs. Note that the decrypted values
in the Multiply protocol are independent of any secrets: In Step 2 the factor x is decrypted only
after masking it with a uniform value d ∈R Fq, and in Step 4 only the shares xj of corrupted
Pj ∈ C may be revealed. Therefore, S can just let the simulation proceed according to Πq

ABB.

Claim. The simulation is computationally indistinguishable to the real execution.

Proof of Claim. To prove indistinguishability, we follow the approach from SPDZ [Dam+12], and
exploit that our encryption scheme has lossy public keys which are indistinguishable to normal
public keys. Hence, we reduce indistinguishability to Lemma 3.
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MPC Protocol Πq
ABB (Part II)

Multiply For (Multiply, vidz, vidx, vidy): Let (vidx, ctx) and (vidy, cty) be the stored ciphertexts.
All Pi proceed in parallel as follows:

1. Sample mask d
(a) Sample di ∈R Fq, ri ← Dq, compute ctdi ← SEnc(p̃kcl, di; ri) and (com1

i , stt1
i ) ←

ΠPoPK.Commit(ctdi , (di, ri)). Broadcast ctdi and com1
i .

(b) Send (Rand, [C]N ) to FRand so that all parties receive (chl1j )j∈[N ] ∈ [C]N .
(c) Broadcast res1

i ← ΠPoPK.Respond(ctdi , (di, ri), stt1
i , chl1i ).

(d) If ΠPoPK.Verify(ctdj , com1
j , chl1j , res1

j ) = ⊥ for some Pj ̸= Pi, set dj := 0 and deterministically
recompute ctdj ← SEnc(p̃kcl, 0; 0).

(e) Let d =
∑N

i=1 di.
2. Decrypt masked x
(a) Locally compute ctx+d ← ctx +

∑N

i=1 ctdi .
(b) Send (Decrypt, ctx+d) to FTE so that all parties receive x + d.

3. Compute additive shares (x1, . . . , xN ) of x
(a) Let x1 := (x + d)− d1 and xj := −dj for j ∈ [2, N ] such that x =

∑
i∈[N ] xi and Pi knows xi.

(b) Locally compute ctx1 ← (x + d)− ctd1 and ctxj ← −ctdj for j ∈ [2, N ].
4. Multiply the xi with cty

(a) Sample si ← Dq, and compute ctxi·y ← xi ·si
R cty and

(com2
i , stt2

i )← ΠMult.Commit((cty, ctxi , ctxi·y), (xi,−ri, si)). Broadcast ctxi·y and com2
i .

(b) Send (Rand, [C]N ) to FRand so that all parties receive (chl2j )j∈[N ] ∈ [C]N .
(c) Broadcast res2

i ← ΠMult.Respond((cty, ctxi , ctxi·y), (xi,−ri, si), stt2
i , chl2i ).

(d) If ΠMult.Verify((cty, ctxj , ctxj ·y), com2
j , chl2j , res2

j ) = ⊥ for some Pj ̸= Pi, send (Decrypt, ctxj ) to
FTE so that all parties receive xj . Then deterministically compute ctxj ·y ← xj · cty.

(e) Locally compute ctz ←
∑

i∈[N ] ctxi·y and store (vidz, ctz).

Fig. 10. MPC protocol in the (FTE, FRand)-hybrid model

Assume towards contradiction there is an environment Z that can distinguish the simulation
of S from a real protocol execution with non-negligible advantage AdvZ(λ). We construct an
algorithm B that uses Z as a subroutine to distinguish working public keys from lossy public
keys.

Initially, the challenger in this indistinguishability game samples a bit b ∈R {0, 1}, which
determines whether a lossy (b = 0) or a working (b = 1) public key will be produced.

Then B also tosses a coin b∗
B ←R {real, simulation}. Depending on the outcome B either

produces the environment a view of a real protocol execution or a simulation. This is not a UC
simulation. So in both cases, B controls all UC entities (ideal functionalities, honest parties), and
uses Z as the environment. Hence, B learns in particular what inputs Z selects for the honest
parties, and it is also allowed to rewind Z.

In both cases, B makes some adjustments:

1. B simulates the FTE functionality, but it changes the behavior of the calls to Init and KeyGen:
Instead of generating the key pair itself during the simulation or execution of the Init phase of
Πq

ABB, B forwards the messages between the challenger and Z such that they compute a key
pair p̃kcl, skcl ← BiasedSpecialKeyGenZ

b (ppcl). Hence, Z can specify the bias and the resulting
p̃kcl is either a lossy (b = 0) or a working (b = 1) public key. This change does not change Z’s
view.
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Simulator for Πq
ABB

Init For (Init), simulate the interaction with FTE:
1. Simulate the call to (Init, 1λ, q) by computing ppcl ← CLGen(1λ, q).
2. Simulate the call to (KeyGen), by computing p̃kcl, skcl ← BiasedSpecialKeyGenZ

1 (ppcl).
Store p̃kcl, skcl.
Input For (Input, Pi, vid, x):
1. if Pi ∈ H

(a) Simulate the protocol with input x = 0 and ct← SEnc(p̃kcl, x).
2. if Pi ∈ C

(a) Receive ciphertext ct from Pi.
(b) Simulate the verification of Pi’s proof.
(c) If the proof verifies, set x := Dec(skcl, ct).
(d) Otherwise, set x := 0 and recompute ct← SEnc(p̃kcl, 0; 0).
(e) Send x as input to Fq

ABB on behalf of Pi.
3. Store (vid, ct).

Output For (Output, all, vid):
1. Let (vid, ct) be the stored ciphertext.
2. Receive x from Fq

ABB.
3. Simulate the call to (Decrypt, ct) of FTE, and simulate the leakage of the partial decryption

M := fx.
Linear For (Linear, vido, (vid1, · · · , vidn), (a0, . . . , an)):
1. Compute cto ← a0 +

∑
i∈[n] ai · cti as in Πq

ABB and store (vido, cto).
Multiply For (Multiply, vidz, vidx, vidy):
1. Use the stored values (vidx, ctx) and (vidy, cty) to simulate the multiplication as in Πq

ABB.
2. Store the resulting (vidz, ctz).

Fig. 11. Simulator for the MPC protocol in Πq
ABB

2. Moreover, since B does not know skcl, it cannot decrypt the ciphertexts of the corrupted
parties to extract their inputs, but needs to use rewinding and the extractor of the ΠPoPK and
ΠMult protocols instead: When a corrupted party Pi ∈ C has an input and proves knowledge
of the plaintext x ∈ Fq corresponding to the broadcasted ciphertext ct, B proceeds as follows:
Let (com, chl, res) be the transcript of Pi’s proof.

– Case I – ΠPoPK.Verify(ct, com, chl, res) = ⊥: B lets the protocol continue as in Πq
ABB, i.e.,

the honest parties set Pi’s input to 0 and continue.
– Case II – ΠPoPK.Verify(ct, com, chl, res) = ⊤: B tries to extract the message. It starts

running two loops in parallel until one of them terminates:
(a) B rewinds Z and the whole system. It programs FRand with a fresh random challenge

chl′ ∈R [C] \ {chl} to obtain another transcript (com, chl′, res′). If the proof verifies,
ΠPoPK.Verify(ct, com, chl′, res′) = ⊤, it terminates the loops.

(b) B does the same as in the first loop, but instead of sampling random challenges, it
iterates over chl′ = 1, 2, . . . , C until it finds chl′ ̸= chl that leads to a valid proof. If
no such chl′ is found, B aborts.

If B has not aborted, then it has now two accepting transcripts and can compute
x← ΠPoPK.Extract(ct, (com, chl, res), (com, chl′, res′)).

If extraction was successful, B continues the protocol execution/simulation with the original
challenge chl.
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Let p be the probability of Case II. If p > 1/C, then the first loop finds a second transcript
after expected 1/p iterations. If p = 1/C, then Pi only responds to the challenge chl, and the
second loop terminates after C iterations. Hence, over both cases the expected number of
loop iteration is constant, and the overall running time of B is expected polynomial time.
Moreover, since 1/C = negl(λ), B aborts only with negligible probability.
In the Multiply case, all parties run the proofs in parallel. and each Pi receives a different
challenge. Therefore, during the rewinding process, B only needs to resample the challenges
for the corrupted parties, and can keep the same challenges for the honest parties.
By keeping track of all values during the computation, B is able to simulate the calls to
Decrypt of FTE without having to know the secret key.

3. Finally, instead of computing the proofs of the honest parties honestly as defined by Πq
ABB and

S, B uses the SHVZK simulators of ΠPoPK and ΠMult and programming of FRand to generate
convincing proofs. By statistical SHVZK of the protocols, this change is not detectable by Z.

If b∗
B = real, then B simulates a real protocol execution of Πq

ABB with the adjustments defined
above, where it lets the honest parties run with the inputs obtained from Z, and the corrupted
parties act as instructed by Z. If b∗

B = simulation, then B creates a simulation setup, where S talks
to a Fq

ABB, and runs the simulation. Finally, Z outputs a bit b∗
Z ∈ {real, simulation} depending on

whether it thinks it experienced the real or the simulated execution. If b∗
Z = b∗

B, i.e., Z guessed
right, B outputs b′ := 1, otherwise it outputs b′ := 0.

In case b = 1, the Z’s view statistically indistinguishable to either the real execution of Πq
ABB

or the simulation with S, and B wins iff Z guesses correctly. Hence, we have Pr[B wins | b = 1] =
1/2 + AdvZ(λ)− negl(σ).

In the other case b = 0, encryptions made with the (lossy key) p̃kcl contain statistically no
information about the encrypted value – they are always just encryptions of 0.

Moreover, since B simulates the honest parties’ proofs, Z’s view in the real execution is
statistically independent of the honest parties inputs. In fact the real execution statistically
coincides with the simulation. Hence, Z’s advantage is negligible in σ. Since B wins in this case if
Z guesses wrongly, we have Pr[B wins | b = 0] = 1/2− negl(σ).

Overall, we combine the two cases to obtain

Pr[B wins] = 1/2 + AdvZ(λ)/2− negl(σ).

Therefore, B has advantage Advhsm-cl,∗,pk
B (λ) ≥ AdvZ(λ)/2−negl(σ) in the key distinguishing game.

If σ is chosen such that negl(σ) is also negligible in λ, then Advhsm-cl,∗,pk
B (λ) is non-negligible in λ,

which contradicts the premise. Hence, such an algorithm B cannot exist, and we can conclude
that the simulation is indistinguishable from the real execution of Πq

ABB. ■

8 YOSO MPC

The YOSO framework (as defined in [Gen+21]) is defined for a universe of M players (servers),
and we use their model for computationally secure YOSO protocols. This concretely means that
the parties in the protocol we specify are actually roles that in an actual execution will be assigned
to physical servers by a Role Assignment Mechanism. It further means that a public encryption
key is assigned to each party (role). In an actual execution, the physical server assigned to play
a role will learn the corresponding secret key, but the adversary will not learn the identity of
the server until it speaks. This mechanism is abstracted away in the model. We can therefore
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think of a large set of parties, they each own a key pair and can only speak once. Furthermore, if
we divide the parties into disjoint committees with N members each, we can assume that each
committee has honest majority if we choose N large enough.

A construction of a role assignment mechanism was presented in [Gen+21]. Their imple-
mentation allows us to choose the encryption scheme freely, so in this paper we will use the
CL encryption scheme. However we will use separate class-group set-up, where the plaintext space
is numbers mod q′, where q′ is chosen large enough compared to q. We will specify below what
this means more precisely.

In the YOSO framework, we assume that public information can be reliably posted for everyone
to see: the motivation for this is that the framework is intended for doing MPC on a blockchain.
When we say in the following that something is “publicly known” or “on public display”, this
means it has been posted or can be efficiently computed from what is posted. Further, a committee
is only allowed to speak once, that is, committee members decrypt whatever ciphertext is intended
for them, read the public information, post a single message and do nothing further. The idea is
that this allows us to assume that even an adaptive adversary who can corrupt a large fraction of
the physical servers, will not be able to corrupt a majority of any committee. See [Gen+21] for
details.

Committees will be denoted by COMi, for i = 0, 1, . . . , and their public keys will be denoted
by pki

1, . . . , pki
N . In the protocol, committees will do their work in numeric order, starting with

COM0. We assume that the role assignment mechanism is called such that when COMi is about
to start, the public keys of (at least) COMi+1, COMi+2, COMi+3, COMi+4 are publicly known.

In the following, we show how to adapt our honest majority MPC protocol to the YOSO setting.
For this, we will need non-interactive zero-knowledge arguments of knowledge (NIAoK) for various
statements. Any instantiation will do, as long as it is simulation extractable10, meaning that you
can extract a witness from a proof that verifies, even if the prover has access to simulated proofs.
We also require that only transparent set-up is needed, as our overall goal is MPC with transparent
set-up. In this paper, we describe Σ-protocols for all the statements needed, so one approach is
to make these non-interactive using the random oracle model and the Fischlin-transform [Fis05]
which will have the required properties. By careful protocol redesign and analysis, we believe it
would be possible to use the more efficient Fiat-Shamir transform, but leave this for future work.
Another option is to use a recent construction of SNARKS with transparent set-up based on class
groups [Aru+22]. We will denote a non-interactive argument on public instance x and witness w
by NIAoK(x, w; eq(x, w)), where eq(x, w) is the equation that x and w are proven to satisfy.

8.1 Threshold Encryption

Key Generation We assume the specification of the class group and the generators is given
(recall that this set-up is transparent). We first need a protocol that allows a committee to obtain
shares of a random value η, while leaking only gη

q to the adversary.
We will need this for key generation, but also for other purposes, and in fact it is a simple

adaptation of Steps 1 and 2 of the distributed key generation protocol ΠTE (Figure 4). It involves
two committees COMu and COMv, where COMu will generate the randomness required, and
COMv will receive the shares.

The idea is that members of the first committee COMu will do a Feldman secret-sharing of
their contribution to η, see Protocol 2. The shares will be intended for COMv, so members of
COMu will encrypt the shares under pkv

1, . . . , pkv
N , do a non-interactive ZK proof that these are

10 Actually a weak form of extraction (see Section 5) will suffice, where we only extract a part of the
witness. This is because the MPC protocol we describe here is a simple adaptation of Πq

ABB for the
non-YOSO model.
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correct, and post the ciphertexts and proofs. See Section 8.3 for more details. The plaintext
modulus q′ for the pki

v’s is chosen such that q′ is larger than any honestly generated share.
Then members of COMv will add the valid contributions together to get gη

q and shares of η. The
protocol is shown in Figure 12. Towards understanding the protocol, note that Pi in the first
step does an integer secret sharing of ηi as a part of the Feldman procedure, resulting in shares
yi,j . Correctness of a share can be verified by the equation g

∆yi,j
q = C∆2

i,0 ·
∏t

k=1 Cjk

i,k, as the right
hand side effectively evaluates the underlying polynomial in the exponent. After the protocol,
every party who looks at the public information will be able to compute gη

q and the Γj ’s, using
the equations in the last step of the protocol.

Protocol CreateVSS

Create and send shares Each member Pi of COMu samples the contribution to the secret ηi ← Dq,
and samples si,j ← Dq

′. Then it shares ηi as (yi,1, . . . , yi,N ; Ci,0, . . . , Ci,t) ← F-Share(ηi; ri; gq),
computes cti,j = Enc(pkv

j , yi,j ; si,j) for j ∈ [N ]. Finally, Pi posts:
– (Ci,0, . . . , Ci,t)
– NIAoK(Ci,0, ηi; Ci,0 = gηi

q )
– NIAoK(Ci,k, ri,k; Ci,k = g

∆ri,k
q ) for k ∈ [t], where ∆ = N !

– NIAoK((pkv
j , {Ci,k}, cti,j), (yi,j , si,j); cti,j = Enc(pkv

j , yi,j ; si,j), g
∆yi,j
q = C∆2

i,0 ·
∏t

k=1 Cjk

i,k), for
j ∈ [M ]

Receive Shares Each member Pj of COMv does the following:
1. Check all the proofs posted by COMu and form a set Q of members (of COMu) for which the

proofs validate (NB: all honest Pj will agree on Q).
2. Decrypt cti,j to get yi,j .
3. Compute a share of η as γj =

∑
i∈Q yi,j , where η :=

∑
i∈Q ηi.

4. Compute gη
q =

∏
i∈Q Ci,0.

5. Compute a public verification value corresponding to γj , namely

Γj = g
∆γj
q =

∏
i∈Q

g
∆yi,j
q =

∏
i∈Q

C∆2
i,0 ·

t∏
k=1

Cjk

i,k.

Fig. 12. Create verifiable secret-sharing for a committee

Definition 7. We say that a committee COMℓ holds VSS(η; f) if it is the case that f is an integer
polynomial of degree at most t, where f(0) = ∆η, each committee member Pi has a share f(i),
and the value g

∆f(i)
q is on public display. Furthermore, also gη

q is publicly known.

With this notation, the CreateVSS protocol can be described as a protocol that is executed
by two committees COMu and COMv, and which results in COMv holding VSS(η; f) for some
random value η, where only gη

q is leaked to the adversary. Note that the underlying structure
is linearly homomorphic: if a committee holds VSS(η; f) and VSS(η′; f ′), it effectively also holds
VSS(η + η′; f + f ′), by adding the underlying shares and multiplying the public values. We use
CreateVSS for distributed key generation (Figure 13). It needs to be executed by committees 0–3,
as this step must happen before anything else.

Resharing the Secret Key We need a protocol for passing the shares of the secret key from
one committee COMv to another committee COMv′ . The idea is for an earlier committee COMu
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Protocol DistKeyGen

Create and share the secret key Committees COM0 and COM1 run CreateVSS so that COM1
holds VSS(η; f), and we set pkcl := gη

q and skcl := η.
Create a special ciphertext The goal is to generate a ciphertext ctP = (ct1, ct2) = (gβ

q , f · pkβ
cl),

where β is a large random value. Our construction in Step 3 of ΠTE does this in the standard
non-YOSO setting. We adapt it for YOSO in exactly the same way as we adapted Steps 1 and 2
to get CreateVSS. The resulting protocol is executed by next two committees COM2, COM3. They
can clearly do this based only on the public key pkcl. As a result, ctP is now on public display, so
now p̃kcl = (pkcl, ctP ) is publicly known.

Fig. 13. Distributed key generation in the YOSO setting

to share the same random value for both COMv and COMv′ , and this will help to do the transfer.
The Reshare protocol (Figure 14) will be called several times, so the indices u, v, v′ should be
thought of as parameters, that will be determined by the global MPC protocol. Execution of
Reshare adds a factor of ∆ to the secret key held by the receiving committee, but this is not a
problem, as we shall see.

Protocol Reshare

Create mask for the secret key We execute CreateVSS twice, one instance is done by
COMu, COMv and one by COMu, COMv′ , with two adjustments:
First, the two instances are correlated such that the shared secret value η is the same in both
cases: as part of CreateVSS, each member Pi must make public gηi

q , where ηi is their additive
contribution to the secret η. The receiving committees check that this value is the same in both
instances and discard the contribution if not. Second, each ηi is chosen as a random number of
bitlength σ larger than the maximal length of skcl. Also, the coefficient in the polynomials used
are chosen to be σ bits longer than those used in the DistKeyGen protocol.
Open masked key We can now assume that COMu holds VSS(skcl, f) as well as VSS(η, g). It
therefore also holds VSS(skcl− η, f− g). Each member Pj of COMu posts its share (f− g)(j). Note
that this share can be publicly verified, as g

∆·(f−g)(j)
q is publicly known.

Adjust shares Members of COMu′ can now identify (at least) t + 1 posted correct shares and
reconstruct (by “integer interpolation”) ∆(skcl − η). They then form VSS(∆(skcl − η), h0) where
h0 is a default polynomial, say the degree-0 polynomial that always takes the value ∆(skcl − η).
This can then be added to ∆ · VSS(η, h) received by the committee in the first step to form
VSS(∆skcl, h + h0).

Fig. 14. Transfer secret-sharing to a new committee

Threshold Decryption Note that our threshold decryption protocol for the standard setting
(Figure 5) is already an one round protocol, once we make the proofs of equality of discrete logs
non-interactive. We need the protocol to work for a committee who holds VSS(∆ℓskcl, f) for some
ℓ, because each execution of Reshare adds a factor of ∆. This is not a problem, we will obtain the
plaintext times a factor of ∆ℓ mod q, and this factor can be divided out locally.
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8.2 MPC

To realize the arithmetic black-box functionality in the YOSO setting, in particular secure
multiplication, we follow the standard approach of generating so-called multiplication triples.
That is, triples (ct1, ct2, ct3) of ciphertexts containing plaintext values a, b, c where a, b are random
and c = ab. We first construct a protocol for generating such triples while leaking nothing but
the ciphertexts.

Protocol CreateTriple

Create encryption of a Each member Pi of COMu samples ai ∈R Fq, ri ← Dq, and computes
ctai ← SEnc(p̃kcl, ai; ri) It then posts

ctai , NIAoK((p̃kcl, ctai ), (ai, ri)); ctai = SEnc(p̃kcl, ai; ri))

using the non-interactive version of ΠPoPK. All servers compute cta =
∑

i
ctai .

Create encryption of b and multiply by a Next, COMv creates an encryption of a random b and
an encryption of c = ab: Each member Pj samples bj ∈R Fq, rj ← Dq, and computes ctbj ←
SEnc(p̃kcl, bj ; rj).
Next, Pj samples sj ← Dq, computes ctbj ·a ← bj ·

sj

R cta, and posts ctbj , ctbj ·a, and
NIAoK((p̃kcl, cta, ctbj , ctbj ·a), (rj , sj); ctbj = SEnc(p̃kcl, bj ; rj), ctbj ·a = bj ·

sj

R cta). All parties can
now compute ctb =

∑
j

ctbj and ctc =
∑

j
ctbj ·a.

Fig. 15. Create multiplication triple

Protocol YOSO− ABB

Input A server supplying input value x ∈ Fq samples r ← Dq, computes ctx ← SEnc(p̃kcl, x; r).
Using the non-interactive version of ΠPoPK, it then posts ctx, NIAoK((p̃kcl, ctx), (x, r)); ctx =
SEnc(p̃kcl, x; r)).

Linear Operations To compute x + αy, where α is public and encryptions ctx, cty of x, y are
public, all servers compute ctx+αy = ctx + α · cty.
Multiplication To compute xy from x, y, where encryptions ctx, cty of x, y are public, the next
committee that holds VSS(skcl, f) uses the next available triple cta, ctb, ctc. It executes the
decryption protocol on inputs ctx − cta and cty − ctb, allowing all servers to compute plaintext
values ϵ, δ. From this all servers compute ctxy = δcta + ϵctb + ctc + ϵδ.
Output To output x, where ctx is public, the next committee that holds VSS(skcl, f) executes the
decryption protocol on input ctx.

Fig. 16. The YOSO MPC protocol

The basic steps of the final MPC protocol are found in Figures 15 and 16, and are a
straightforward adaptation of Πq

ABB which we described for the standard non-YOSO model. We
assume here a global scheduling of which committees do the various types of work, where the first
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4 committees do the key generation. After this, committees only need to work to do multiplications
and output. Assume we are about to do a number of multiplications on encrypted values and that
COMi is the committee with the largest index who holds shares of the secret key but has not
spoken yet. Now, COMi+1, COMi+2 will generate an appropriate number of multiplication triples,
and COMi+3 will do the first part of the Reshare protocol, in the role of the auxiliary committee
COMu, and using COMi and COMi+4 as the sending and receiving committees. Now, COMi can
do its part of the multiplication and post the resulting data, as well as data from the Reshare
protocol, allowing COMi+4 to get shares of the secret key. The system is now ready to do the
next layer of multiplications, with COMi+1 assuming the role COMi played before.

Proof Sketch for Security The CreateVSS protocol is the same as the first part of the key
generation of the non-YOSO protocol, except that shares are sent in encrypted form instead
of being sent on point to point channels. We can therefore do the same simulation except that
shares meant for corrupt parties are encrypted under their keys, and for honest parties we encrypt
dummy values and simulate the zero-knowledge proofs of correctness. This works by IND-CPA
security of the encryption scheme. The same idea works for simulation of the rest of the key
generation.

Simulation for the Reshare uses the same ideas, plus the observation that the data made public
(values of the polynomial (f−g)(j)) can be simulated because f−g is statistically indistinguishable
from a random polynomial by construction. Thus, these protocols leak nothing but the (biased)
public key, exactly as the non-YOSO version. The decryption protocol can use the same simulation
as the non-YOSO version, and this will prove that it only leaks the plaintext of what is decrypted.
Therefore, simulation of the CreateTriple and YOSO− ABB protocols can be done following the
same ideas as the non-YOSO verision.

8.3 Zero-Knowledge Proof for Correctness of Encryptions

We sketch here how to construct a Σ-protocol as needed in the CreateVSS protocol from Section 8.1.
It works with a public key pkv

j , public values Ci,0, . . . , Ci,k created by the prover Pi in a Feldman
VSS, and ciphertexts cti,j . The goal is to prove that the ciphertext was correctly formed from
yi,j , ri,j such that cti,j = Enc(pkv

j , yi,j , si,j)), and where yi,j is determined by the public values
Ci,0, . . . , Ci,k that Pi posts. More concretely, it follows from the definition of F-Share that

g∆yi,j
q = C∆2

i,0 ·
t∏

k=1
Cjk

i,k,

which can be publicly computed. Furthermore, cti,j is supposed to be of form

cti,j = (gsi,j
q , fyi,j · (pkv

j )si,j )

Recall that the public keys pkv
j are from a different class group set-up where the order of f is q′,

chosen large enough that q′ > ∆yi,j for honestly generated yi,j .
We now observe that ∆yi,j appears in the exponent in both g

∆yi,j
q and ct∆

i,j = (g∆ri,j
q , f∆yi,j ·

(pkv
j )∆ri,j ). Therefore correctness of cti,j can be proved using a standard Schnorr-style Sigma-

protocol. The only caveat is that if yi,j is too large, we may get overflow modulo q′ and decryption
would return an incorrect value. We therefore also need a range proof to show that q′ > ∆yi,j .
There are a number of ways to do this, a straightforward approach is to set up an integer
(Pedersen) commitment scheme based on the class group we already have and using Boudot’s
[Bou00] well known 4-squares approach to doing the range proof.
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A Supplementary Material on the Encryption Scheme

A.1 The Original HCM-CL Encryption Scheme

Theorem 15 (IND-CPA Security of Πhsm-cl [CLT18]). The Πhsm-cl encryption scheme
(Figure 17) provides indistinguishability under chosen-plaintext attacks (IND-CPA) under the
HSM assumption (Definition 2).

Setup(1λ, q)

1. Output ppcl ← CLGen(1λ, q).

KeyGen(ppcl)

1. Sample skcl ← Dq, set pkcl := g
skcl
q .

2. Output (pkcl, skcl).

Enc(pkcl, m ∈ Fq; r)

1. Sample r ← Dq.
2. Output ct := (gr

q , fm · pkr
cl).

Dec(skcl, ct)

1. Compute M := ct2 · ct−skcl
1 .

2. Output CLSolve(q, ppcl, M).

EvalAdd(pkcl, ct, m; r)

1. Sample r ← Dq

2. Output ct′ = (gr
q · ct1, pkr

cl · ct2 · fm)

EvalSum(pkcl, ct, ct′; r)

1. Sample r ← Dq

2. Output ct′′ = (gr
q ·ct1 ·ct′

1, pkr
cl ·ct2 ·ct′

2)

EvalScal(pkcl, ct, a; r)

1. Sample r ← Dq

2. Output ct′ = (gr
q · cta

1 , pkr
cl · cta

2)

Fig. 17. The Πhsm-cl linearly homomorphic encryption scheme by Castagnos et al. [CLT18; Cas+20]. We
added the EvalAdd procedure to add a constant to a ciphertext, and use the additional argument r when
we want to make the used randomness explicit.

A.2 Reduction in the Proof of Lemma 2

See Figure 18.

A.3 Proof of Lemma 3

Proof of Lemma 3. In the reduction (Figure 19), we assume towards contradiction that an
adversary B can distinguish between real and lossy keys with non-negligible advantage Advhsm-cl,∗,pk

A .
We use B to construct an adversary A that breaks IND-CPA security of Π1

hsm-cl with non-negligible
advantage Advhsm-cl,1

A .
First A forwards the public parameters ppcl generated by the challenger to B. Then A relays

the messages between the IND-CPA challenger and B such that they create a biased key pair
(pkcl, skcl) and everybody receives pkcl. In the next phase A uses the left-or-right query of the IND-
CPA game to emulate the execution of BiasedSpecialKeyGenB

b towards B: A sends two messages
m0 = 0 and m1 = 1 to the challenger, who samples a bit b ∈R {0, 1} and sends a ciphertext ct of
mb back to A. A forwards ct to B, who responds with a value ε. Given ε, everyone can compute
the special public key ctP . Finally, B outputs a bit b′ whether it believes the generated key is a
real or a lossy key, and A outputs the same bit.
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Challenger A B

. . . . . . . . . . . . . . . . . . . . . . . . . . Key Generation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . .

ppcl ← CLGen(1λ, q)
skcl ← Dq

pkcl := gskcl
q

ppcl, pkcl ppcl, pkcl

pk′
cl := pkcl · g

δ
q

δ ∈ Z

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Left-or-Right Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b ∈R {0, 1} m0, m1 m0, m1 ∈ Fq

ct← Enc(pkcl, mb; r) ct = (ct1, ct2) ct′
2 := ct2 · ctδ

1
ct′ = (ct1, ct′

2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Guessing b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A wins if b = b′ b′ b′ ∈ {0, 1}

Fig. 18. Reduction of IND-CPA security of Π1
hsm-cl with biased keys to the IND-CPA security of Πhsm-cl

(Proof of Lemma 2)

If the challenger decides to encrypt mb = b, then B’s view is exactly the same as in Step 4 of
BiasedSpecialKeyGenB

b . Hence, its view is the same as specified in the Lemma, and if B guesses
correctly, then so does A. Therefore A wins the IND-CPA game with advantage Advhsm-cl,1

A =
Advhsm-cl,∗,pk

B . Since this contradicts the premise that Π1
hsm-cl is IND-CPA secure, such a B cannot

exist.

A.4 Proof of Lemma 4

Proof of Lemma 4. In the reduction (Figure 20), we assume towards contradiction that an
adversary B can break the IND-CPA security of Π∗

hsm-cl with non-negligible advantage Advhsm-cl,∗
A .

We use B to construct an adversary A that can distinguish between real and lossy keys of Π∗
hsm-cl

with non-negligible advantage Advhsm-cl,∗,pk
A .

First A forwards the public parameters ppcl generated by the challenger to B. Then A relays
the messages between the IND-CPA challenger and B such that they create a biased special key
pair (p̃kcl, skcl)← BiasedSpecialKeyGenB

b (ppcl), where b ∈R {0, 1} by the challenger, is generated.
Then, A and B run the IND-CPA game with the generated p̃kcl. If B wins this game, then A
guesses that a real key was generated (b′ = 1). Otherwise, it guesses that a lossy key was generated
(b′ = 0).

In case b = 1, the game is in B’s view identical to the IND-CPA game for Π∗
hsm-cl, and A wins

iff B wins. Hence, we have Pr[A wins | b = 1] = 1/2 + Advhsm-cl,∗
A (λ).

In the other case b = 0, B needs to distinguish between the distributions SEnc(p̃kcl, m0; r) and
SEnc(p̃kcl, m1; r). However, since r ← Dq induces an almost-uniform distribution over Gq, they
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Challenger A B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup and Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ppcl ← CLGen(1λ, q) ppcl ppcl

pkcl, skcl ← BiasedKeyGenB(ppcl)

skcl, pkcl pkcl pkcl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b ∈R {0, 1} m0, m1 m0 = 0, m1 = 1

ct← Enc(pkcl, mb; β) ct = (ct1, ct2) ct

ctP := (ct1 · g̃ε
q , ct2 · pkε

cl) ε ∈ Z

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Guessing b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A wins if b = b′ b′ b′ ∈ {0, 1}

Fig. 19. Reduction of the indistinguishability of special keys of Π∗
hsm-cl to the IND-CPA security of Π1

hsm-cl
(Proof of Lemma 3)
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Challenger A B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ppcl ← CLGen(1λ, q) ppcl ppcl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b ∈R {0, 1}

p̃kcl, skcl ← BiasedSpecialKeyGenB
b (ppcl)

skcl, p̃kcl p̃kcl p̃kcl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Left-or-Right Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c ∈R {0, 1} m0, m1 ∈ Fq

ct′ ← SEnc(p̃kcl, mc; r) ct′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Guessing b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A wins if b = b′ b′
b′ := (c ?= c′) c′ ∈ {0, 1}

Fig. 20. Reduction of IND-CPA security of Π∗
hsm-cl to indistinguishability of working/lossy special keys of

Π∗
hsm-cl (Proof of Lemma 4)
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are are statistically close. Hence, B can only guess b′ with probability 1/2 + negl(σ). As A wins
iff B guesses wrongly, we have Pr[A wins | b = 0] = 1/2− negl(σ).

Overall, we combine the two cases to obtain

Pr[A wins] = 1/2 + Advhsm-cl,∗
A (λ)/2− negl(σ).

Therefore, A has advantage Advhsm-cl,∗,pk
A (λ) ≥ Advhsm-cl,∗

A (λ)/2− negl(σ) in the key distinguishing
game. If σ is chosen such that negl(σ) is also negligible in λ, then Advhsm-cl,∗,pk

A (λ) is non-negligible
in λ, which contradicts the premise.
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B Supplementary Material on Secret Sharing

B.1 Privacy of Shamir’s Secret Sharing over Z

Definition 8 (Privacy of a Secret Sharing Scheme [DT06]). A secret sharing scheme is
statistically private if for any set of corrupted parties C ⊂ {P1, . . . , PN} with |C| ≤ t, any two
secrets α, α′ ∈ [0, 2ℓ) and independent random coins r, r′, we have that the statistical distance
between {Sharei(α, r) | i ∈ C} and {Sharei(α′, r′) | i ∈ C} is negligible in σ.

Protocol 1 achieves this definition of privacy. The proof is along the lines of [Rab98; DT06] and
uses the existence of a so called sweeping polynomials hC(X) for any set C of at most t corrupted
parties such that h(0) = ∆ and h(i) = 0 for Pi ∈ C. Let hmax be a bound on the coefficients of
the hC .

Theorem 16. Protocol 1 provides statistical privacy according to Definition 8, when ℓ0 ≥
ℓ + ⌈log2(hmax · t)⌉+ 1.

In the proof, we use the so-called Sweeping polynomial:

Definition 9 (Sweeping Polynomial). Let C ⊆ [N ] such that |C| = t. Then we define the
sweeping polynomial hC :=

∑
i=0 hC,i ·Xi ∈ Z[X]≤t as the unique polynomial of degree at most

t such that h(0) = ∆ and h(i) = 0 for all i ∈ C. Moreover, let hmax be an upper bound on the
coefficients of the sweeping polynomials, e.g, hmax ≥ max{hC,i | i ∈ [0, t], C ⊆ [N ], |C| = t}

Lemma 17 (Existence of Sweeping Polynomial). For any C ⊆ {1, . . . , N} with |C| = t,
there exists hC ∈ Z[X]≤t satisfying Definition 9.

Proof. From the conditions h(0) = ∆ and h(j) = 0 for j ∈ C, we get by Lagrange interpolation
(Equation 1)

h(X) = ∆ ·
∏
j∈C

j −X

j
. = ∆C ·

∏
j∈C

(j −X)

with ∆C := ∆ ·(
∏

j∈C j)−1 =
∏
{n | 1 ≤ n ≤ N∧n /∈ C} ∈ Z. Hence, we also have h ∈ Z[X]≤t.

Proof of Theorem 16. This proof is adapted from the proof of Lemma 1 in [DT06].
Let α, α′ ∈ [0, 2ℓ) be arbitrary with α̃ = α ·∆ and α̃′ = α′ ·∆, and let C ⊆ [N ] be an arbitrary

set of corrupted parties of size |C| = t.
Suppose α is shared as Share(α, r) using a polynomial f = α̃ +

∑t
i=1 ri ·Xi ∈ Z[X]≤t derived

from the randomness r = (r1, . . . , rt) ∈ [0, 2ℓ0+σ)t. Then f(0) = α̃, and Sharej(α, r) = f(j) for
j ∈ [N ].

The adversary sees the t = |C| shares {f(j) | j ∈ C}. By Lagrange interpolation, this induces
a one-to-one map from possible secrets to sharing polynomials. We use the sweeping polynomial
hC from Definition 9 to make this map explicit as α∗ 7→ f(X) + (α∗ − α) · hC(X).

We say a sharing polynomial is good if all coefficients are good, i.e., lie in the specified range
[0, 2ℓ0+σ). Otherwise, we call them bad.

Since the sharing algorithm generates a polynomial with coefficients sampled uniformly from
this range, each possible secret that maps to a good sharing polynomial is consistent with the
adversaries view, and – given no further information – equally likely due to the one-to-one
correspondence.

By applying the map to α′, we get f ′(X) := f(X) + (α′ − α) · hC(X), which we can write as
f ′ = α̃′ +

∑t
i=1 r′

i · Xi with r′ = (r′
1, . . . , r′

t). Then f ′(0) = α̃′ and Sharej(α, r) = f ′(j) = f(j)
for all j ∈ C. By the above, if f ′ is good, the adversary cannot distinguish whether α or α′ was
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originally shared. Hence, only if f ′ is bad it can distinguish the two cases. The probability that
f ′ is bad is – by the union bound – at most t times the probability that one of the coefficients r′

i

is bad.
These are computed as r′

i = ri +(α′−α)·hC,i. We know that |α′−α| ∈ [0, 2ℓ), and we also know
that hC,i ≤ hmax. Hence, if ri ∈ [2ℓ · hmax, 2ℓ0+σ − 2ℓ · hmax] then r′

i will be good. So we can bound
the probability that r′

i is bad by (2 · 2ℓ · hmax)/(2ℓ0+σ). Since we have ℓ0 ≥ ℓ + ⌈log2(hmax · t)⌉+ 1,
it follows that (t · 2 · 2ℓ · hmax)/(2ℓ0+σ) ≤ 2−σ. So the views of the adversary are statistically
indistinguishable.

B.2 Integer Reconstruction

Let X ⊆ [0, N ] with |X | = t + 1. We write X = {x0, . . . , xt} with x0 < x1 < · · · < xt, and define
the Vandermonde matrix VX as

VX =


1 x0 x2

0 . . . xt
0

1 x1 x2
1 . . . xt

1
1 x2 x2

2 . . . xt
2

...
...

...
. . .

...
1 xt x2

t . . . xt
t

 ∈ Z(t+1)×(t+1).

By the same reasoning as with the Lagrange interpolation formula we get that the inverse of a
Vandermonde matrix multiplied by ∆ is has integer entries:

Lemma 18 (Inverse of the Vandermonde Matrix). Let VX be a Vandermonde matrix as
defined above. Then, ∆ · V −1

X is a (t + 1)× (t + 1) matrix with integer entries, i.e., ∆ · V −1
X ∈

Z(t+1)×(t+1).

Proof of Lemma 5. Let X := {x0, . . . , xt} and VX the corresponding Vandermonde matrix (see
above), and y := (y0 · · · yt)T . By Lagrange interpolation, there exists a polynomial g[X] ∈ Q[X]
of degree at most t such that g(xi) = yi for i = 0, . . . , t. Let b := (b0 · · · bt)T ∈ Qt+1 be the
coefficient vector of g. Then VX · b = y. Since the xi are pairwise distinct, VX is invertible. So we
have b = V −1

X · y. Multiplying both sides with ∆ yields ∆ · b = ∆ · V −1
X · y.

Set f := ∆ · g, so that a := ∆ · b is the corresponding coefficient vector, and f(xi) = ∆ · yi for
i ∈ [0, t]. By Lemma 18, the entries of ∆ · V −1

X are integers. Hence, the coefficients of f can be
written as linear combinations of the yi with integer coefficients.
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C The Issue With Using Rabin’s VSS Protocol

In [Rab98], Rabin describes a VSS protocol that is very similar to our Feldman-style VSS: the
protocol works over the group Z∗

N where N is an RSA modulus, and uses a large order element
g ∈ Z∗

n. The dealer does an Shamir-style integer secret sharing of ∆s with threshold t, where s
is the secret, ∆ = n! and n is the number players. She also publishes grj where the rj ’s are the
coefficients of the underlying polynomial, and sends a share privately to each player. Shares are
now verified to satisfy an equation that essentially evaluates the underlying polynomial in the
exponent using g as the base. This is the same idea we also use and it comes from Feldman’s
work.

The reconstruction protocol starts from at least t + 1 shares. It selects a (sub)set of t + 1
shares that satisfy the verification equation, and then interpolates to get the secret. Concretely
this is done by doing the computation modulo a large prime P . If P is large enough that overflow
does not occur, this mimics an interpolation over the rationals. The last step is to multiply by
∆−1 mod P , which will return s, assuming the interpolation returned ∆s.

It is not proved in [Rab98] that reconstruction works, it is just stated that it follows directly
from Feldman’s work. However, we were not able to reconstruct the argument. The problem is the
following: Feldman’s suggestion was to use a group of known public order, such Z∗

p for a prime
p, or a prime order subgroup. In such a setting, it is the case that from any t + 1 shares that
verify, one can reconstruct the correct secret, and this can can be concluded without relying on
any computational assumptions. But unfortunately, this is not true for the case where integer
secret sharing is used over an unknown order group. Intuitively, the reason is that we use integer
secret sharing, but the verification of shares only guarantees that they are correct modulo the
group order, not that they are the correct integers. More concretely, we found that there is an
attack: a corrupt dealer who knows the group order can break reconstruction, and we sketch the
attack below.

This shows that one cannot prove reconstruction is secure without relying on the assumption
that the group order is hard to compute. However, we were not able to find a way to use this
assumption in a proof of security of the protocol from [Rab98]. Instead, we designed our own
version where the dealer must prove in zero-knowledge that she knows the discrete log of gs where
s is the secret and g is the fixed base element used in the share verification.

For completeness, here is a sketch of the attack mentioned above: assume the corrupt dealer
knows the order D of the group used. We assume all other parties are not corrupted. She will
then execute the sharing phase honestly with secret s, except that she will send st+1 + (t + 1)D
to Pt+1 where st+1 is the correct share. The share verification computes gst+1+(t+1)D and tests
if this is some expected value, but since the factor g(t+1)D vanishes, the verification will work.
Further, the share received is 0 modulo t + 1 as it would be in a normal sharing, and in fact if
the secret is large enough, st+1 + (t + 1)D will be statistically indistinguishable from st+1. So the
attack cannot be detected. Assume that parties P1, ..., Pt+1 try to reconstruct. In this setting,
the Lagrange interpolation coefficient for the share of Pt+1 happens to be −1. This immediately
implies that interpolation will return s− (t + 1)D. Under the reasonable assumption that D is not
divisible by t!, this result is not divisible by ∆, and so the reconstruction cannot be completed
correctly: recall that in the honest case, the value of the polynomial in 0 is ∆s. On the other
hand, when a set of honest players not including Pt+1 reconstruct, they will get the correct s.
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